
University of Latvia

ELǬNA KALNIǹA

MODEL TRANSFORMATION DEVELOPMENT USING MOLA

MAPPINGS AND TEMPLAT E MOLA

Thesis for the PhD Degree

at the University of Latvia

Field: Computer Science

Section: Programming Languages and Systems

Scientific Advisor:

Prof., Dr. Habil. Sc. Comp.

AUDRIS KALNINS

Riga ï 2011

3

This work has been supported by the European Social Fund within the project

çSupport for Doctoral Studies at University of Latviaè.

Scientific Advisor:

Professor, Dr. Sc. Comp. Audris KalniǺġ

Latvijas UniversitǕte

Referees:

Professor, Dr. Sc. Comp. Guntis BǕrzdiǺġ

University of Latvia

Professor, Dr. Sc. Ing. Oksana ǹikiforova

Riga Technical University

Professor, Dr. Olegas Vasilecas

Vilnius Gediminas Technical University (Vilnius, Lithuania)

The defence of the thesis will take place in an open session of the Council of Promotion

in Computer Science of the University of Latvia, in the Institute of Mathematics and

Computer Science of the University of Latvia (Room 413, Raina Boulevard 29, Riga,

Latvia) on March 7, 2012 at 4 PM.

The thesis and its summary are available at the library of the University of Latvia

(Kalpaka Boulevard 4, Riga, Latvia).

4

5

ABSTRACT

Model transformation development for three specific domains: Model-Driven

Software Development (MDSD), DSL tool development and transformation synthesis has

been studied in the thesis. It is concluded that transformation development in domain-

specific transformation languages is more straightforward and faster compared to

traditional transformation languages. A domain-specific model transformation language

has been developed for each studied domain. Two of them are based on mappings. In

both cases it was concluded that mappings better fit for typical tasks and transformations

better fit for non-standard tasks. Therefore a close integration between mappings and

transformations is required.

The research results have been published in 15 papers (6 of them have been

included in SCOPUS).

Keywords

Model transformations, Domain-Specific Languages (DSL), Model-Driven

Software Development (MDSD), DSL tool development, Higher-Order Transformations

(HOT)

6

7

CONTENTS

LIST OF FIGURES .. 11

LIST OF TABLES .. 15

ACKNOWLEDGEMENT .. 17

INTRODUCTION ... 19

CHAPTER 1 MOTIVATION - MDSD AND MODEL TRANS FORMATION

LANGUAGES ... 27

1.1 Modelling .. 27

1.1.1 What is a Model? ... 27

1.1.2 Meta-modelling ... 32

1.2 Model-Driven Software Development .. 34

1.2.1 MD* .. 34

1.2.2 Model Driven Architecture ... 36

1.2.3 Model Driven Software Development .. 39

1.2.4 Domain-Specific Modelling Languages .. 40

1.3 Model Transformations ... 42

1.3.1 Model Transformation Languages .. 43

1.3.2 Mapping Languages .. 45

1.3.3 Higher-Order Transformations .. 45

CHAPTER 2 MOLA LANGUAGE .. 47

2.1 MOLA Overview .. 47

2.2 MOLA Elements ... 48

2.3 MOLA Example .. 53

2.4 Hello World with MOLA .. 55

2.4.1 Greeting Tasks ... 56

2.4.2 Instance Counting .. 57

2.4.3 Reversion ... 63

2.4.4 Model Migration ... 64

2.4.5 Deletion Tasks ... 66

2.4.6 MOLA Tool Support ... 67

2.5 MOLA Metamodel .. 69

CHAPTER 3 TRANSFORMATIONS FOR MODEL -DRIVEN DEVELOPMENT

IN REDSEEDS .. 73

3.1 ReDSeeDS Overview .. 73

3.2 Requirements Specification in ReDSeeDS ... 75

3.2.1 Requirements Specification Language in ReDSeeDS 75

3.2.2 Example of Requirements ... 77

3.3 Model-Driven Development in the ReDSeeDS Project .. 78

3.3.1 Design Patterns and the Architecture Style ... 79

3.3.2 The RSL Profile .. 81

8

3.4 ReDSeeDS Basic Style .. 81

3.4.1 The Platform-Independent Model ... 82

3.4.2 The Platform-Specific Model .. 85

3.5 The Keyword-Based Style .. 85

3.5.1 Models ... 86

3.5.2 Selected Design Patterns for the Keyword-Based Style 88

3.5.3 RSL Profile for the Keyword-Based Style .. 89

3.5.4 The Structure of the Analysis Model .. 91

3.5.5 Transformation of Requirements to Analysis ... 92

3.5.6 The Platform-Independent Model ... 93

3.5.7 Transformation of Requirements and Analysis to PIM 95

3.5.8 The Platform-Specific Model .. 98

3.5.9 The Java Code ... 99

3.6 Implementation .. 103

3.6.1 Model-to-Model Transformations Implementation 103

3.6.2 Model-to-Model Transformations in the Keyword-Based Style................. 105

3.6.3 Model-to-Code Transformation Implementation .. 111

3.6.4 Integration with the Enterprise Architect .. 112

3.7 Conclusions ... 113

CHAPTER 4 MAPPING LA NGUAGES.. 115

4.1 Mapping Idea ... 115

4.1.1 Transformation Languages and Mapping Languages 116

4.1.2 General Purpose Mapping Languages... 118

4.2 Domain-Specific Mapping Languages .. 120

4.2.1 Domain-Specific Model Transformations ... 120

4.2.2 Domain-Specific Mapping Languages .. 121

4.3 MALA4MDSD ï Mapping Language for MDSD .. 121

4.3.1 MALA4MDSD Motivation ... 122

4.3.2 Basics of MALA4MDSD .. 124

4.3.3 MALA4MDSD Elements .. 125

4.3.4 MALA4MDSD UML Tree Type .. 132

4.3.5 More Advanced Mapping Elements .. 136

4.3.6 Mapping Language Semantics .. 140

4.3.7 Mapping and Transformation Comparison ... 144

4.3.8 Related Work... 147

4.4 Domain-Specific Mapping Language Definition .. 148

4.4.1 MALA4MDSD Definition Issues ... 148

4.4.2 Mapping Languages Definition Facilities ... 149

4.4.3 Metamodel of Mapping Language Family .. 152

4.5 Other Applications of the Proposed Approach ... 154

4.5.1 UML to RDB ... 154

4.5.2 UML to XMI ... 155

4.5.3 Other Examples ... 156

4.6 Implementation .. 157

4.7 Conclusions ... 158

CHAPTER 5 TRANSFORMATIONS FOR DSML TOOL DEVELOPMEN T 161

5.1 State of the Art in DSML Tool Development ... 161

9

5.1.1 Terminology Explanation .. 161

5.1.2 Mapping-Based Approach ... 163

5.1.3 Model Transformation Based Approach ... 164

5.1.4 Combined Approach ... 165

5.2 METAclipse .. 167

5.2.1 MOLA Tool ... 167

5.3 Mappings for METAclipse .. 169

5.3.1 The Framework from the User Point of View ... 170

5.3.2 Mapping Definition ... 170

5.3.3 Mapping and Transformation Integration ... 173

5.3.4 Mapping Definition Language User Interface .. 174

5.4 Conclusions ... 176

CHAPTER 6 TEMPLATE MOLA ... 179

6.1 Main Elements ... 180

6.1.1 Template Rule ... 181

6.1.2 Template Loop .. 182

6.1.3 Call Statement and Parameters .. 183

6.1.4 Template Expressions ... 184

6.1.5 Template Elements .. 184

6.2 Template MOLA Compared to MOLA as a HOT .. 187

6.3 Template MOLA Example .. 188

6.4 Metamodelling Issues .. 191

6.4.1 Use of Metamodels Defining Higher-Order Transformations in MOLA ... 192

6.4.2 Metamodels in Template MOLA .. 193

6.4.3 Roles of Different Metamodels in DSML Tool Development 194

6.4.4 Use of Metamodel Elements in Template MOLA Transformations 196

6.5 Elements of Dual Nature in Template MOLA .. 196

6.5.1 MOLA Procedure .. 197

6.5.2 Call Statement and Parameters .. 198

6.5.3 Control Flow ... 198

6.5.4 End Symbol ... 200

6.6 Graphical Template Languages Versus Textual ... 201

6.7 Merge Mechanisms ... 203

6.7.1 Merge Example ... 204

6.7.2 Rule Merge .. 206

6.7.3 Merge Semantics ... 208

6.8 Implementation .. 209

6.9 Conclusions ... 210

CHAPTER 7 TEMPLATE MOLA APPLIC ATIONS .. 213

7.1 Mapping Language Compilation Using HOTs ... 213

7.2 Implementation of Mapping Languages for MDSD ... 214

7.2.1 Editor of the Mapping Language Family .. 214

7.2.2 Mapping Language Family Compilation Schema 214

7.2.3 Mapping Compilation ... 216

7.2.4 Source Tree Pattern Compilation to MOLA ... 217

7.2.5 Implementation of ñCreate if Does not Existò .. 221

7.2.6 Finding of Parent Instance in the Target Tree ... 221

10

7.2.7 Element Creation ... 222

7.2.8 Evaluation.. 223

7.3 Implementation of Mapping Language for DSL Tool Building 224

7.4 Transformation Libraries ... 227

7.4.1 Transformations for Generic Metamodels .. 227

7.4.2 Transformation Design Patterns .. 233

7.5 Conclusions ... 234

CHAPTER 8 CONCLUSIONS .. 235

BIBLIOGRAPHY ... 237

APPENDIX A LIST OF A CRONYMS ... 251

11

LIST OF FIGURES

Fig. 1. Real distance map of the Paris metro [27] .. 28

Fig. 2. Paris metro schema [196] ... 29

Fig. 3. Example of OMG MOF meta-level hierarchy [130] .. 33

Fig. 4. Relationship between MD* terms .. 35

Fig. 5. MDE versus MDD [17] .. 36

Fig. 6. MDA application schema with one execution environment 38

Fig. 7. MDA application schema with multiple execution environments 39

Fig. 8. Relation between MD* and DSL approaches ... 40

Fig. 9. Transformation in the nature [30] ... 42

Fig. 10. Execution scheme of model transformations .. 43

Fig. 11. MOLA example .. 54

Fig. 12. The ñHello World" metamodel and the example instance [106] 56

Fig. 13. The extended ñHello World" metamodel and the example instance [106] 56

Fig. 14. Transformation creating a constant Greeting instance ... 57

Fig. 15. Transformation creating a constant Greeting instance with references................ 57

Fig. 16. Model-to-text transformation creating a greeting message 57

Fig. 17. The simple graph metamodel [106] .. 58

Fig. 18. Circle of three nodes (simplified representation of edge objects) [106] 58

Fig. 19. Transformation counting nodes in a graph ... 59

Fig. 20. Transformation counting looping edges in a graph .. 59

Fig. 21. Transformation counting isolated nodes in a graph .. 60

Fig. 22. Transformation counting circles consisting of three nodes 61

Fig. 23. Transformation counting circles consisting of three nodes, using temporary

metamodel elements ... 62

Fig. 24. Solution of optional task: counting of dangling edges ... 63

Fig. 25. Transformation inversing edges ... 64

Fig. 26. The evolved graph metamodel [106] .. 64

Fig. 27. The even more evolved graph metamodel [106] .. 64

Fig. 28. Metamodel extensions for model migration tasks .. 65

Fig. 29. Model migration transformation. Migrates graph from encoding graph1 (Fig. 17)

to encoding graph2 (Fig. 26). .. 65

Fig. 30. Solution of optional model migration task. Migrates graph from encoding graph1

(Fig. 17) to encoding graph3 (Fig. 27). ... 66

12

Fig. 31. Transformation that deletes the node named ''n1'' (if such a node exists) in a

graph .. 67

Fig. 32. Transformation that deletes the node named ''n1'' (if such a node exists) and its

incident edges in a graph.. 67

Fig. 33. The metamodel of the MOLA meta-modelling language [130] 70

Fig. 34. The metamodel of the MOLA procedure elements [130] 71

Fig. 35. RSL example .. 78

Fig. 36. Requirements ï two scenarios in a textual form... 78

Fig. 37. Model chain in the ReDSeeDS Basic Style .. 82

Fig. 38. Static structure processing example ... 83

Fig. 39. Behaviour example ... 84

Fig. 40. Model chain used in ReDSeeDS Keyword-Based Style 86

Fig. 41. Requirements ï scenarios of the use case in a graphical form 90

Fig. 42. Fragment of the generated Domain Model ... 92

Fig. 43. An example of informal mapping describing transformations to Detailed Design

.. 97

Fig. 44. An example of a sequence diagram for the ReservationsService class 102

Fig. 45. Transformation example ... 104

Fig. 46. Creation of a message for a ñSystem-Systemò sentence without an indirect object

.. 108

Fig. 47. The procedure of finding a lifeline in a sequence diagram, depending on the

object used in the verb phrase .. 109

Fig. 48. MOF QVT Relational example .. 118

Fig. 49. Schematic roles of the mapping language family users 123

Fig. 50. MALA4MDSD example. UML model ñPIMò is transformed to UML model

ñPSMò. Package ñServiceò in model ñPIMò is transformed to package ñserviceò in

ñPSMò model. Classes from source model package ñServiceò are copied to target package

ñserviceò. .. 125

Fig. 51. MALA4MDSD UML tree type definition.. 134

Fig. 52. Alternative tree type definition ... 135

Fig. 53. Mapping example from the ReDSeeDS project. Transformation in

MALA4MDSD, demonstrating the edge processing and hierarchy flattening 138

Fig. 54. Mapping example from the ReDSeeDS project. Transformation in

MALA4MDSD is demonstrated. MOLA transformation for the highlighted part of the

same task is presented in Fig. 55. .. 145

Fig. 55. Transformation example from the ReDSeeDS project. The same transformation

fragment in MALA4MDSD is coloured in Fig. 54.. 146

Fig. 56. Mapping language definition; fragment of the MALA4MDSD definition 151

13

Fig. 57. Type definition for the mapping language family .. 152

Fig. 58. Core metamodel of the mapping language family .. 153

Fig. 59. UML to RDB example ... 155

Fig. 60. Terminology definition ... 162

Fig. 61. MOLA editor implementation in METAclipse .. 168

Fig. 62. Metamodel fragment, describing that the design pattern field is based directly on

property .. 171

Fig. 63. Mapping and presentation type metamodel subset, describing the property dialogs

 .. 172

Fig. 64. Class dialog example, general and attribute tab ... 173

Fig. 65. Metamodel fragment describing mapping and transformation integration 174

Fig. 66. Wizard diagram example for a domain class mapped to Node 175

Fig. 67. An example of a template rule and the MOLA rule generated from it 182

Fig. 68. An example of a template loop ... 183

Fig. 69. Creation of the rule from Fig. 67, using MOLA as a HOT 188

Fig. 70. Template MOLA example: Generator for copying UML class model instances to

OWL instances ... 189

Fig. 71. The result of transformation from Fig. 70 .. 190

Fig. 72. A metamodel fragment used in a class model to the OWL transformation in Fig.

70 .. 190

Fig. 73. Models to be used if higher-order transformations are written in MOLA 192

Fig. 74. Models to be used if the domain metamodel is analysed and higher-order

transformations are written in MOLA ... 192

Fig. 75. Metamodels and models used for defining transformations in Template MOLA

 .. 194

Fig. 76. Models used in case MOLA is used as a HOT for tool building 195

Fig. 77. Metamodels and models used to define transformations in Template MOLA for

tool building ... 196

Fig. 78. The left side demonstrates the procedure for copying the property values of a

class instance. On the right side there is an example of the generated transformation. ... 204

Fig. 79. The left side demonstrates the procedure for copying the property values of a

class instance with a merge. On the right side there is an example of the generated

transformation. ... 205

Fig. 80. Creation of a star shaped rule by using merge mechanisms 206

Fig. 81. Creation of a chain shaped rule by using merge mechanisms 207

Fig. 82. Merge of loops and rules obtaining different control structures 207

Fig. 83. Compilation of mapping language family .. 215

14

Fig. 84. Template MOLA procedure processing the current mapping 218

Fig. 85. Procedure AddParentsToLoophead recursively creates the loophead rule 220

Fig. 86. Template MOLA procedure implementing the element creation 222

Fig. 87. A simplified domain (upper left side), mapping (upper right side) and

presentation (lower part) metamodel ... 225

Fig. 88. Mapping implementation for tool building in Template MOLA 226

Fig. 89. A MOLA procedure generated for Fig. 88 ... 227

Fig. 90. An example where the traditional MOLA and Template MOLA are combined. A

MOLA procedure calling the template procedure Clone from Fig. 91 is illustrated 229

Fig. 91. The Clone procedure .. 229

Fig. 92. The copyProperties procedure.. 230

Fig. 93. A metamodel example describing information processed by a company. The class

IndividualCustomer is used to describe the generated code in Fig. 94 and Fig. 95......... 231

Fig. 94. MOLA procedure generated from the template procedure Clone 231

Fig. 95. MOLA procedure generated from the template procedure copyProperties 232

15

LIST OF TABLES

Table 1. Model definitions ... 29

Table 2. Terms for MD* .. 34

Table 3. List of MOLA elements ... 48

Table 4. MOLA procedure count in different transformations. Classified as to

processing static structure, behaviour or independent operations. 114

Table 5. List of MALA4MDSD elements ... 125

Table 6. Comparison of transformations from PIM to PSM, developed using the model

transformation language MOLA and the mapping language MALA4MDSD 144

Table 7. Template MOLA elements .. 185

16

17

ACKNOWLEDGEMENT

This work has been partially supported by the European Social Fund within the

project çSupport for Doctoral Studies at University of Latviaè.

The author of the thesis would like to thank:

¶ supervisor prof. Audris Kalnins;

¶ current and former members of MOLA team: Edgars Celms, Agris

Sostaks, Janis Iraids, Oskars Vilitis;

¶ ReDSeeDS project partners;

¶ colleagues in LUMII Research Laboratory of System Modeling and

Software Technologies;

¶ prof. Rusins Martins Freivalds;

¶ Maija Treilona;

¶ LǕsma Zaļesta;

¶ Valdis KalniǺġ;

¶ Lolita Nahodkina;

¶ Maiga Reinharde;

¶ family;

¶ all others who have helped me in any way.

18

19

INTRODUCTION

The present PhD thesis has been worked on from 2007 to 2011 in the Institute of

Mathematics and Computer Science (UL IMCS), and the Faculty of Computing

established as an independent unit on the basis of the Faculty of Physics and

Mathematics, University of Latvia. The thesis supervisor is professor Audris Kalnins. The

thesis elaborates further the UL IMCS DSL (Domain-Specific Language) tool

development and language design traditions that started already in the year 1986.

Relevance of the Thesis:

Lately Model-Driven Software Development (MDSD) is gaining popularity. The

idea of elaborating all software development steps on models defined in specialised

modelling languages lies at the basis of the approach. Models, defined at higher

abstraction levels, are ever more detailed in each step of Model-Driven Software

Development. Model transformations are used to automate transitions from one model to

another. Use of model transformations allows using models as a direct part of the

software development process instead of using them only as documentation.

The origin of MDSD was the Model-Driven Architecture (MDA) [111] initiative

by Object Management Group (OMG). The first document about the MDA was published

in 2000 [116]. In 2002 OMG concluded that model transformation languages are required

[119], to easily describe the required model transformations. Most of the modelling

languages are defined by using the means of metamodelling; therefore model

transformations were built to transform the models defined according to metamodels.

Metamodels were defined by using the metamodelling standard MOF (Meta Object

Facilities) [120].

OMG activities led to the creation of a new model transformation standard MOF-

QVT (MOF Queries/Views/Transformations) [128]. Moreover, many new model

transformation languages were developed, e.g., ATL [63], GReAT [7], GrGen [48],

Epsilon [92] and the model transformation language MOLA [76] that was developed in

UL IMCS. This was also a new application area for graph transformation languages, e.g.,

PROGRES [144], AGG [163], VIATRA [31] and also Fujaba [43], previously used in a

narrower context. The variety of model transformation languages could be explained by

two reasons: lack of complete MOF-QVT implementation and different model

20

transformation application domains. In different software development areas there are

different requirements for a model transformation language.

Today model transformations are a serious software component in large software

development projects. Transformation development requires a considerable amount of

resources. Transformations should be projected, tested, maintained, etc. Currently the

transformation development is rather chaotic and every developer develops

transformations according to oneôs own wishes. It could be explained by the poor

experience in adaption of the classic software development steps (testing, etc.) to

transformations. Consequently, studying of the transformation development is a popular

research direction.

In the same way there are attempts to adapt the classic software development

methods to the model transformation development. One of such methods is to build a

Domain-Specific Language (DSL) to be applied to the software development in a specific

class of tasks. The thesis is devoted to researching domain-specific transformation

languages. Usage of domain-specific transformation languages could improve

transformation development, the same as the use of the domain-specific languages helps

to reduce the software development time and costs. However, it should be noted that the

use of domain-specific languages is cost-effective only in case of developing multiple

similar solutions.

Aim of the Research:

The aim of the research is to investigate the ways of defining transformations for

classes of similar tasks, requiring development of many transformations of the same type.

¶ Explore transformation development for Model-Driven Software

Development.

¶ Explore the nature of the transformations for DSL tool development.

¶ Explore the opportunities of defining Model-Driven Software Development

and tool building transformations in specialised languages (higher

abstraction level) and using mappings.

¶ Explore the definition possibilities of transformation generating

transformation. Develop a higher-order transformation language which is

specialized for transformation synthesis.

21

Main Results of the Thesis:

¶ Developed and implemented the transformation supported path from the

requirements to the code. The research has been carried out as a part of the

ReDSeeDS project. Transformations for Model-Driven Software

Development have been analyzed. It is concluded that some of the

transformations could be defined more effectively by using a specialised

(higher abstraction level) language.

¶ Developed the first version of the MOLA 2 tool within the METAclipse

framework. A conclusion has been drawn that part of the transformations

are very simple and uniform and it would be more convenient to define

them in a mapping language. Likewise, it is concluded that it would be

impossible to define everything by using a mapping language; therefore,

integration between the mappings and transformations is required.

¶ Developed the mapping language MALA4MDSD, which is especially

adapted for transformation development in Model-Driven Software

Development.

¶ Outlined the mapping language for DSL tool development.

¶ Developed the language Template MOLA, which is a domain-specific

language for transformation synthesis.

¶ Analysis of three particular problem areas leads to the conclusion that the

transformation development in a domain-specific language is possible at a

higher level of abstraction. Thus, transformations can be developed faster.

If the transformation is defined by a higher level of abstraction and the use

of mapping, then less-skilled users can define the transformations as well.

Scientific and Practical Significance of the Thesis:

Model transformation development for three specific domains, namely, Model-

Driven Software Development (MDSD), Domain-Specific Language (DSL) tool

development and transformation synthesis has been studied in the thesis.

One of the areas under research in the present thesis is a specification of

transformations for Model-Driven Software Development. While working on the

ReDSeeDS project the author of the PhD thesis developed two transformation sets for

22

Model-Driven Software Development. This type of transformations typically contains a

transformation from UML to UML and for facilitating the given transformation

development, the mapping language MALA4MDSD is offered in the PhD thesis. The

language MALA4MDSD is also of practical importance, since it makes it significantly

easier to develop transformations for Model-Driven Software Development. This could

encourage a wider use of model-driven development methods in industry, as

transformations could be defined by less experienced users - those who are experts in the

transformed problem area, but do not know anything about metamodelling. In addition,

the transformation development would become faster.

The second researched area is the model transformations for DSL tool

development. It was concluded that the best way for defining a tool for graphical DSL is

by combining mappings with transformations. Using of mappings allows a less skilled

user to configure tools as well; the tool development would become significantly faster.

However, using mappings makes it impossible to provide convenient instruments for all

possible cases of non-standard treatment; therefore there is a need for a way of processing

non-standard cases in a transformation language. Many of the existing DSL tool

development platforms offer processing the non-standard cases in a programming

language, but a transformation language for this task would be more appropriate, because

the data are model-driven, and transformation languages are adapted for processing this

type of data.

The third problem area brought an observation that a domain-specific language is

more convenient for defining transformations. However, here is chosen a different type of

language that does not use mappings. This is a specific area which describes

transformation synthesis. The task is very specific, and the existing means are very

inadequate and are difficult to use, therefore the domain-specific language has been

created. The language Template MOLA is a higher-order transformation language,

specifically adapted to the tasks of transformation synthesis. It is the first language in the

world of such a type. Later an extension, specifically for transformation synthesis, has

been developed for the language ATL [182]. It should be noted that comparing to the

language MOLA, ATL is a textual language, therefore the synthesis of ATL is an easier

task. Nevertheless, the basic idea used in the ATL extension is the same as in the

Template MOLA - using fragments of concrete syntax.

23

The language Template MOLA helps to solve a very important issue in the model

transformation world, namely, metamodel independent transformation development.

Since almost all transformations are linked to metamodels, building of a library of

transformations and reuse of transformations is still an open problem.

The research results of the thesis suggest that model transformations is a

sufficiently vast area, making it possible to choose more limited problem areas ï domain-

specific transformations - and domain-specific transformation languages have to be

created for these areas. The research focused on studying mapping languages as it is the

most user-friendly way of defining transformations. Nevertheless, the existing mapping

languages are not quite appropriate as usually they can process only very simple cases.

Therefore, the research offers a new idea for defining transformations ï use of domain-

specific mapping languages instead of a universal mapping language.

Publications of the Research Results and Presentations in Scientific Conferences:

The main results of the PhD thesis are presented in 10 publications; each

containing a significant (70-80%) contribution of the author of the present thesis:

¶ ñDSL Tool Development with Transformations and Static Mappingsò [67]

The publication outlines the role of mapping in the DSL tool development.

¶ ñDSL Tool Development with Transformations and Static Mappingsò [68]

The publication discusses the use of the mapping language in the DSL tool

development.

¶ ñGraphical Template Language for Transformation Synthesisò [69] The

publication describes the language Template MOLA.

¶ ñTransformation Synthesis Language ï Template MOLAò [71] The

publication describes in detail the language Template MOLA.

¶ ñGeneration Mechanisms in Graphical Template Languageò [70] The

publication discusses a merge mechanism in the language Template

MOLA.

¶ ñFrom Requirements to Code in a Model Driven Wayò [79] The

publication outlines transformations used for the model-driven

development process realization within the ReDSeeDS project.

24

¶ ñA Model-Driven Path from Requirements to Codeò [80] The publication

describes in detail the development of transformations for Model-Driven

Software Development within the ReDSeeDS project.

¶ ñModel Migration with MOLAò [72] The publication describes a

transformation design in the language MOLA for transforming UML 1.X

activity diagrams to UML 2.3 activity diagrams.

¶ ñHello World with MOLA - A Solution to the TTC 2011 Instructive Caseò

[74] (accepted for publication). The publication discusses solutions of

simple transformation tasks in the language MOLA.

¶ ñTree Based Domain-Specific Mapping Languagesò [73] (accepted for

publication). The publication describes the mapping language

MALA4MDSD and the methodology of constructing a domain-specific

mapping language.

The author of the thesis has participated in the preparation of 5 more publications

with the contribution of 5-25%.

¶ ñBuilding Tools by Model Transformations in Eclipseò [86] The

publication outlines the principles of the METAclipse DSL tool

development framework and its use in the MOLA 2 tool development.

¶ ñBehaviour Modelling Notation for Information System Designò [78] The

publication describes the experience, gained while working with the UML

sequence diagrams within the ReDSeeDS project.

¶ ñComprehensive System for Systematic Case-Driven Software Reuseò

[153] The publication describes a platform developed within the

ReDSeeDS project and highlights the role of transformations in this

platform.

¶ ñDomain-driven Reuse of Software Design Modelsò [82] The publication

discusses software reuse facilitatation by the transformations, developed

within the ReDSeeDS project.

¶ ñSolving the TTC 2011 Reengineering Case with MOLA and Higher-

Order Transformationsò [155] The publication discusses the

transformation development for transforming the Java code (coded with a

model) to a state chart model.

25

The author has reported on the results of the work in a number of scientific

conferences:

¶ ñGraphical Template Language for Transformation Synthesisò

International conference SLE (Software Language Engineering), 2009;

Denver, USA

¶ ñFrom Requirements to Code in a Model Driven Wayò MDA (Model-

Driven Architecture: Foundations, Practices and Implications) workshop

of ADBIS (Advances in Databases and Information Systems), 2009; Riga,

Latvia

¶ ñDSL Tool Development with Transformations and Static Mappingsò

Doctoral Symposium of MODELS (International Conference on Model-

Driven Engineering Languages and Systems), 2008; Toulouse, France

¶ ñDomǛn-specifiskas attǛlojumu valodasò 69
th
 Scientific Conference of the

University of Latvia, Information Technology Section, 2011; Riga, Latvia.

¶ ñValoda Template MOLA un tǕs realizǕcijaò 68
th
 Scientific Conference of

the University of Latvia, Information Technology Section, 2010; Riga,

Latvia.

¶ ñMDA transformǕcijas ReDSeeDS projekta kontekstǕò 67
th
 Scientific

Conference of the University of Latvia, Information Technology Section,

2009; Riga, Latvia.

¶ ñTransformǕciju un attǛlojumu kombinǛġanas lietojumi rǭku bȊvǛò 67
th

Scientific Conference of the University of Latvia, Information Technology

Section, 2009; Riga, Latvia.

¶ ñMOLA-2 rǭka bȊve, izmantojot METAclipse platformuò, 66
th
 Scientific

Conference of the University of Latvia, Information Technology Section,

2008; Riga, Latvia.

¶ The developed MOLA tool has been demonstrated at the international

conference ECMDA-FA Tool Demonstration Section (see [85]).

Structure of the Thesis:

The thesis is a logical conclusion of the previously described investigational and

practical work, thus forming a complete research. The structure of the thesis is as follows:

26

¶ CHAPTER 1 briefly describes the main ideas of MDSD and the role of

model transformation languages in the software development process. A

reader is offered the basic knowledge required for understanding the

research carried out by the author, as well as the significance of the results

achieved. In this chapter a reader is familiarized with the concept of model

transformation language.

¶ CHAPTER 2 contains a detailed description of the model transformation

language MOLA, developed in IMCS.

¶ CHAPTER 3 discusses the role of model transformations in MDSD and

Model-Driven Software Development related experience gained while

working on the ReDSeeDS project.

¶ CHAPTER 4 offers the mapping language MALA4MDSD which

facilitates the development of this type of transformation.

¶ CHAPTER 5 describes another practical application of model

transformations ï the DSL tool development. The DSL tool development

frameworks and the role of transformations in the DSL tool development

are outlined.

¶ CHAPTER 6 contains a description of the higher-order transformation

language Template MOLA which should be used for transformation

synthesis.

¶ CHAPTER 7 describes different applications of the Template MOLA.

Special attention is paid to the development of the mapping language

compilers and metamodel independent transformations.

¶ CHAPTER 8 lists the conclusions drawn while working on the thesis,

including possible directions of future research.

27

CHAPTER 1

Motivation - MDSD and Model Transformation Languages

CHAPTER 1 embraces clarification of the main terms used in the thesis and

outlines the research field and the main results in the field under discussion. Results by

other researchers used while working on the present thesis are described.

Section 1.1 of this chapter is devoted to the description of modelling. The terms

model and metamodel are defined. Application of modelling in software development is

discussed in Section 1.2. In Section 1.3 the term model transformations is defined

alongside with related to the thesis the latest research results in the area of model

transformations.

1.1 Modelling

This section is devoted to the definition of the terms model and metamodel,

starting with defining what model is.

1.1.1 What is a Model?

Let us look at this issue in a little broader context, not only as a part of the

software development process. Models are used in many areas of our everyday life. Maps

are a great example of it. Compared to the original, maps are simplified representations.

They contain the necessary information, but skip unimportant details. For example, in

metro schemes the lines between stations are drawn as straight lines; however, it is not

always true in the reality. A real Paris metro map is shown in Fig. 1. The reader may

compare this map with the Paris metro scheme used in maps and tourist guides. An

example of a metro scheme is given in Fig. 2. The real metro trajectories do not matter for

metro passengers as they can leave the metro only in stations. The things that do matter

are locations of metro stations and where it is possible to change from one metro line to

another. Metro schemes are drawn keeping in mind what is important and skipping

unimportant details.

Models are used in other areas as well and they are widely used in physics.

Models are built for physical systems to be used extensively for predicting behaviour of a

28

physical system. Results obtained using models are compared to experimental results. If

the experimental results differ from the results obtained using a model it means that the

model is false. Consequently, the model of physical systems is either modified or

extended.

Fig. 1. Real distance map of the Paris metro [27]

Irrespective of the wide use of models in different areas of our life there is no

common understanding what a model is.

ĂNobody can just define what a model is, and expect that other people will accept

this definition; endless discussions have proven that there is no consistent common

understanding of models.ò Jochen Ludewig [103]

Though common understanding of a model is lacking, many definitions of it are

available and some of them are listed in Table 1. In the authorôs opinion a model is

simplification of a system which could be used instead of the original for some purpose.

29

As a result, it is possible to use model, which is simpler, safer, and also cheaper, instead

of something else that is more complicated, dangerous or more expensive. This is exactly

the case of metro schemes. For metro passengers the real metro trajectory and distance

does not matter as the stations are the only exit points for them.

Fig. 2. Paris metro schema [196]

Table 1. Model definitions

Author Definition

Oxford Dictionaries 1. a three-dimensional representation of a person or thing or

of a proposed structure, typically on a smaller scale than

the original;

o (in sculpture) a figure or object made in clay or

wax, to be reproduced in another more durable

material;

2. a thing used as an example to follow or imitate;

o a person or thing regarded as an excellent example

30

Author Definition

of a specified quality;

o an actual person or place on which a specified

fictional character or location is based;

o (the Model) the plan for the reorganization of the

Parliamentary army, passed by the House of

Commons in 1644-5.

3. a simplified description, especially a mathematical one, of

a system or process, to assist calculations and predictions;

4. a person employed to display clothes by wearing them;

o a person employed to pose for an artist,

photographer, or sculptor;

5. a particular design or version of a product;

o a garment or a copy of a garment by a well-known

designer. [131]

Jeff Rothenberg ñModeling in its broadest sense is the cost-effective use of

something in place of something else for some purpose. It

allows us to use something that is simpler, safer, or cheaper

than reality instead of reality for some purpose. A model

represents reality for the given purpose; the model is an

abstraction of reality in the sense that it cannot represent all

aspects of reality.ò [143]

Marvin L. Minsky ñTo an observer B, an object A* is a model of an object A to

the extent that B can use A* to answer questions that interest

him about A.ò [112]

Jean B®zivin ñA model is a simplification of a system built with an

intended goal in mind. The model should be able to answer

questions in place of the actual system.ò [18]

Alan W. Brown ñModels provide abstractions of a physical system that allow

engineers to reason about that system by ignoring extraneous

details while focusing on the relevant ones.ò [24]

Liliana Favre ñA model is a simplified view of a (part of) system and its

31

Author Definition

environments.ò [40]

Michael Jackson ñHere the word óModelô means a part of the Machineôs local

storage or database that it keeps in a more or less

synchronised correspondence with a part of the Problem

Domain. The Model can then act as a surrogate for the

Problem Domain, providing information to the Machine that

can not be conveniently obtained from the Problem Domain

itself when it is needed.ò [61]

Thomas K¿hne ñA model is an abstraction of a (real or language based)

system allowing predictions or inferences to be made.ò [89]

Jochen Ludewig ñModels help in developing artefacts by providing

information about the consequences of building those

artefacts before they are actually made.ò [103]

OMG ñA model of a system is a description or specification of that

system and its environment for some certain purpose.ò [111]

Ed Seidewitz ñA model is a set of statements about some system under

study (SUS).ò [147]

Bran Selic ñEngineering models aim to reduce risk by helping us better

understand both a complex problem and its potential

solutions before undertaking the expense and effort of a full

implementationò [148]

Wilhelm Steinm¿ller ñA model is information: on something (content, meaning),

created by someone (sender), for somebody (receiver), for

some purpose (usage context).ò [160]

Thomas Stahl,

Markus Vºlter

ñA model is an abstract representation of a systemôs

structure, function or behaviour.ò [159]

In software development models are used to describe a system to be built. Models

allow analyzing a system before it is really built and looking at the system in different

abstraction levels. Systems are very complex. It is not possible to represent all aspects of

a system in one diagram. Different models may contain information about different

aspects of a system to be built. For example, UML sequence diagrams describe behaviour

32

of a system. UML use case diagrams describe usage scenarios of a system. UML class

diagrams contain information about the structure of a system.

On the other hand the information level about a system in diagrams may have a

different degree of elaboration. For example, class diagrams may be used to describe the

conceptual model of a system as well as the class hierarchy of a system.

Models may be used only as documentation or as an essential part of software

development. In MDSD (see Section 1.2) formal models are used. Stahl and Vºlter

describe a model in MDSD:

ñModels are abstract and formal at the same time. Abstractness does not stand for

vagueness here, but for compactness and a reduction to the essence. MDSD models have

the exact meaning of program code in the sense that the bulk of the final implementation,

not just class and method skeletons, can be generated from them. In this case, models are

no longer only documentation, but parts of the software, constituting a decisive factor in

increasing both the speed and quality of software development.ò [159]

This type of models is going to be discussed in the present PhD thesis. These

models are developed by using modelling languages which may be graphical or textual.

The focus will be on graphical and formal modelling languages as they are more popular.

1.1.2 Meta-modelling

It is necessary to model modelling languages. A model of a modelling language is

called metamodel. Traditionally a metamodel describes the syntax of a modelling

language. OMG defines a metamodel similarly: ñA metamodel is a model used to model

modeling itself.ò [125] ñThe typical role of a metamodel is to define the semantics for

how model elements in a model get instantiated.ò [127]

Stahl and Vºlter define a metamodel more precisely: ñMetamodels are models

that make statements about modelling. More precisely, a metamodel describes the

possible structure of models ï in an abstract way, it defines constructs of a modelling

language and their relationships, as well as constraints and modelling rules ï but not the

concrete syntax of the languageò [159]

The most popular meta-modelling language is MOF. ñThe MOF 2 Model is used

to model itself as well as other models and other metamodels (such as UML 2 and CWM

2 etc.). A metamodel is also used to model arbitrary metadata (for example software

configuration or requirements metadata).ò [125]

33

ñA model that is instantiated from a metamodel can in turn be used as a

metamodel of another model in a recursive manner.ò [127] It is possible to go further this

way and introduce a metametamodel ï a model of metamodelling language. It is possible

to introduce even more meta-levels. However, in practice we donôt need to introduce

more meta-levels. A scheme of meta-levels is shown in Fig. 3.

Fig. 3. Example of OMG MOF meta-level hierarchy [130]

Layer M3: ñThe meta-metamodeling layer forms the foundation of the

metamodeling hierarchy. The primary responsibility of this layer is to define the language

for specifying a metamodel.ò ñMOF is an example of a meta-metamodel.ò [127]

Layer M2: ñA metamodel is an instance of a meta-metamodel, meaning that every

element of the metamodel is an instance of an element in the meta-metamodel. The

primary responsibility of the metamodel layer is to define a language for specifying

models.ò ñUML and the OMG Common Warehouse Metamodel (CWM) are examples of

metamodels.ò [127]

Layer M1: ñA model is an instance of a metamodel. The primary responsibility of

the model layer is to define languages that describe semantic domains, i.e., to allow users

to model a wide variety of different problem domains, such as software, business

34

processes, and requirements. The things that are being modeled reside outside the

metamodel hierarchy.ò ñA user model is an instance of the UML metamodel.ò [127]

ñThe metamodel hierarchy bottoms out at M0, which contains the run-time

instances of model elements defined in a model. The snapshots that are modeled at M1

are constrained versions of the M0 run-time instances.ò [127]

OMG MOF 1.4 standard explains meta-levels as follows: ñthe MOF meta-

metamodel is the language used to define the UML metamodel, the UML metamodel is

the language used to define UML models, and a UML model is a language that defines

aspects of a computer system.ò [118]

The most popular meta-modelling standard (language) is MOF (Meta-Object

Facility), developed by the international standards organisation OMG. Currently the

actual MOF version is 2.4.1 [129]. Of course, MOF is not the only meta-modelling

language, there are others, for example, KM3 [62] and EMF Ecore [166].

1.2 Model-Driven Software Development

Today software becomes more and more complicated. Software development and

management has become more challenging, especially if it refers to large-scale systems

which are developed and used by hundreds, even thousands of people. In order to ease the

development of software, particular models are used to describe different aspects of the

system to be developed. [130]

Different terms are used to refer to the use of models in software development.

This section outlines different approaches to the use of models in software development

and the role of models in each approach to the software development process. The most

popular approaches in model use are described below.

1.2.1 MD*

Several terms are used regarding model use in software development. The most

popular terms are listed in Table 2, starting from the narrowest to the broadest

formulation. Term relationship is given in Fig. 4.

Table 2. Terms for MD*

Term Definition

MDA ï Model Driven ñMDA is the OMGôs particular vision of MDD and

35

Architecture thus relies on the use of OMG standards. Therefore,

MDA can be regarded as a subset of MDD.ò [113]

MDSD ï Model Driven

Software Development

ñModel-Driven Software Development is a software

development approach that aims at developing

software from domain-specific models.ò [190]

The same as MDD.

MDD ï Model Driven

Development

ñMDD is a development paradigm that uses models as

the primary artefact of the development process.

Usually, in MDD, the implementation is

(semi)automatically generated from the models.ò [113]

ñModel-driven development is a style of software

development where the primary software artifacts are

models from which code and other artifacts are

generated.ò [161]

The same as MDSD.

MDE ï Model Driven

Engineering

ñSoftware Engineering paradigm where models play a

key role in all engineering activities (forward

engineering, reverse engineering, software

evolution,é)ò [113]

MD* - Model Driven

Everything

ñI use MD* as a common moniker for MDD, MDSD,

MDE, MDA, MIC, LOP and all the other abbreviations

for basically the same approach.ò [189]

Fig. 4. Relationship between MD* terms

36

MDA was the first term applied regarding the use of models in software

development. It was launched by OMG (Object Management Group) in 2000. In MDA a

chain of three consecutive models is used. More information on MDA is given in Section

1.2.2. Today MDA is considered an obsolete term. The usage of exactly three consecutive

models seems too restrictive.

The terms MDD or MDSD, carrying approximately the same meaning, are used as

well. The usage of one or another depends on the taste of the author.

Another term is MDE which has a wider application than MDD and MDSD. See

Fig. 5 for the way Jean Bezivin presents the relationship between MDD and MDE. MDE

could be applied to any usage of models, including even those we are not yet familiar

with.

Fig. 5. MDE versus MDD [17]

1.2.2 Model Driven Architecture

Model Driven Architecture (MDA) was launched by OMG in 2000. It was the

first attempt to formalize the use of models in software development. The first version of

MDA manual [117] was published in 2000 by OMG. The updated version of the MDA

guide was published in 2003 [111].

37

ñThe Model-Driven Architecture starts with the well-known and long established

idea of separating the specification of the operation of a system from the details of the

way that system uses the capabilities of its platform.

MDA provides an approach for, and enables tools to be provided for:

¶ specifying a system independently of the platform that supports it,

¶ specifying platforms,

¶ choosing a particular platform for the system, and

¶ transforming the system specification into one for a particular platform.

The three primary goals of MDA are portability, interoperability and reusability

through architectural separation of concerns.ò [111]

The MDA guide proposed to use three consecutive models. Each of them

described a system on a different level of details, starting from a more abstract definition

and gradually elaborating the details. The following three models where offered:

¶ CIM - ñA computation independent model is a view of a system from the

computation independent viewpoint. A CIM does not show details of the

structure of systems. A CIM is sometimes called a domain model and a

vocabulary that is familiar to the practitioners of the domain in question is

used in its specification.ò [111] This model does not contain information

about the system implementation. ñThe CIM helps to bridge the gap

between the experts about the domain and the software engineer.ò [40]

This model could be treated as requirements for a system to be built. ñA

CIM could consist of UML models and other models of requirements.ò

[40] However there is no common understanding what and how should be

modelled in CIM.

¶ PIM - ñA platform independent model is a view of a system from the

platform viewpoint. A PIM exhibits a specified degree of platform

independence suitable for use with a number of different platforms of

similar type.ò [111] This model describes the architecture and high-level

behaviour of a system to be built. However this description could be

adapted for different implementation frameworks.

¶ PSM - ñA platform specific model is a view of a system from the platform

specific viewpoint. A PSM combines the specifications in the PIM with the

38

details that specify how that system uses a particular type of platform.ò

[111] This model is an extension of PIM, adding specific details for the

implementation platform.

Computation Independent Model was proposed for starting software development

and continued with Platform Independent Model. Today most of industrial approaches

propose to start with PIM as there is no common understanding of CIM. Some authors

even have a disparaging attitude towards CIM; some propose to treat CIM as

requirements [101]. In case of using CIM some suggest it to be automatically transformed

to PIM. However, as it is not possible to obtain automatically all the necessary

information in Platform Independent Model, it was proposed that this model should be

extended manually. It is easy to see that it is not possible to automatically obtain system

architecture from requirements.

Already the MDA guide proposed transition from PIM to PSM to be done by

using automatic transformation. A model is not an executable system. Therefore one more

transition step from Platform Specific Model to a code is necessary. MDA application

scheme is shown in Fig. 6.

Fig. 6. MDA application schema with one execution environment

One of the goals for MDA introduction was to support reusability and application

development for different frameworks as there are cases when it is necessary to create the

same application for different frameworks. Applications for mobile phones may serve as

an example. Different phone developers support different application execution

environments. This is one of the reasons why Platform Independent Model is separated

from Platform Specific Model. When using the same Platform Independent Model it is

39

possible to develop application for different frameworks. MDA application scheme with

the support of multiple execution environments is given in Fig. 7.

It should be noted that MDA allows using only the UML language for a model

description.

Fig. 7. MDA application schema with multiple execution environments

As already stated above the MDA guide proposed to implement transition from

PIM to PSM by using automatic model transformation. In the context of MDA the term

model transformation was introduced. ñModel transformation is the process of converting

one model to another model of the same system.ò [111] The term model transformation is

described in detail in Section 1.3.

1.2.3 Model Driven Software Development

MDA process is too restrictive. This is a reason why it has not been widely

accepted in industry. Nowadays MDA is treated as obsolete term. However, the good

ideas behind MDA as models and model transformations are employed in Model-Driven

Software Development.

Compared to MDA in MDSD it is possible to use any chain of models. In MDA

there was the restriction that the UML language should be used to define models. In

MDSD there is no such restriction.

One specific type of MDSD is Domain-Specific Modelling (DSM). In DSM only

one model is used. Code is generated directly from this model which is defined in

specialised Domain-Specific Modelling Language. Domain-Specific Modelling is

described in detail in Section 1.2.4.

40

1.2.4 Domain-Specific Modelling Languages

Another specific case of MDSD have become exceedingly popular - the

specialized modelling languages. It is a common practice to create and use specialized

modelling languages for a domain area and they are called Domain-Specific Modelling

Languages (DSML). They are developed for users specialized in a concrete area, e.g. a

language for automotive software development (AUTOSAR [10]), mobile telephone

software development [88], and many others.

Domain-Specific Modelling Languages (DSML) is a subset of a more general set

of languages, namely, Domain-Specific Languages (DSL). When using Domain-Specific

Languages users can operate with familiar terms. The use of a DSL increases the

efficiency of software development in the field. DSLs are applied in many areas of

software development. A popular DSL, for example, is SQL ï a specialised language for

working with databases.

Software development using DSML is called Domain-Specific Modelling (DSM).

Commonly, when applying this approach, only one model developed in DSML is used.

This model is directly transformed into an executable code. However, approaches exist of

using chains of domain-specific models when each model covers different aspects of a

system. Relation between DSM and other software development approaches is shown in

Fig. 8.

Fig. 8. Relation between MD* and DSL approaches

There can be graphical or textual Domain-Specific Modelling Languages.

However, DSMLs are more often graphical. (Nevertheless it is not true for DSLs in

general.) Only graphical Domain-Specific Modelling Languages will be considered here.

41

A visual Domain-Specific Modelling Language basically consists of two parts ï

the domain part and the presentation (visual) part. Sometimes they are called also the

abstract and concrete syntax respectively. The domain part of the language is defined by

means of the domain metamodel, where the relevant language concepts and their

relationships are formalized. The domain metamodel is also used for a precise definition

of language semantics. Standard MOF [120] or similar notations are used for the

definition of domain metamodel.

As regards the presentation part (concrete syntax) definition there is no

universally accepted notation. The same meta-modelling techniques are used, but with

various semantics. Most frequently, instances of classes in the presentation type

metamodel are types of diagram elements to be used in the diagram. A concrete set of

graphical element types for a diagram definition is called the presentation type model (a

typical example is the graphical definition model in GMF [172]).

Tool development for graphical Domain-Specific Languages is time consuming

and expensive. Due to the growing popularity of Domain-Specific Modelling Languages

various graphical tool building frameworks have been developed to improve the tool

(editor) building process. Two different approaches are used in these environments. The

first option is to use a mapping-based approach. During the tool design this mapping

assigns a fixed presentation type model element (a node type, edge type or label type) to a

domain metamodel element, by means of which the latter must be visualized. This

solution is quite appropriate for simple cases, where no complicated mapping logic is

required. In this case tools for simple DSMLs can be developed even during a

presentation session. However, frequently DSML support requires much more

complicated and flexible mapping logic. One of the reasons is the lack of fixed

correspondence between the domain metamodel and presentation types. In this case the

second approach is used: to define the correspondence by model transformation

languages. Transformations define the synchronisation between the domain and

presentation models and the tool behaviour in general.

Mapping based frameworks are MetaEdit+ [109], GMF framework [172],

Microsoft DSL Tools [28], Generic Modeling Tool [26] and some other. A pure

transformation based framework is METAclipse framework [86]. The other

transformation based frameworks Tiger GMF project [37], ViatraDSM framework [133]

and GrTP [15] provide also some elements of the mapping based approach.

42

There exist mapping based and transformation based tools, but usually some parts

of the same DSL are suitable for mappings and some for transformations. It means none

of the solutions is optimal. The absence of a good combined solution creates the problem

which is discussed in detail in CHAPTER 5.

1.3 Model Transformations

This Section focuses on defining the term model transformation; sketching a brief

introduction into the history of model transformations; listing the popular model

transformation languages and discussion of the need of model transformations as DSLs

for specific transformation domains. For introduction a definition of transformation is

offered:

Transformations can easily be understood when thinking about what happens in

nature: an ugly caterpillar is transformed into a beautiful butterfly (Fig. 9); tadpoles into

frogs; leaves change their colours in autumn. These transformations occur always in the

same way. It means that the occurrence and the way of transformation is predefined

somewhere in nature, most probably in DNA.

Fig. 9. Transformation in the nature [30]

ñA transformation is the automatic generation of a target model from a source

model, according to a transformation definition.ò [90]

ñA transformation definition is a set of transformation rules that together describe

how a model in the source language can be transformed into a model in the target

language. A transformation rule is a description of how one or more constructs in the

source language can be transformed into one or more constructs in the target language.ò

[90]

Although this definition could be applied to caterpillars and butterflies in terms of

this thesis we will be concerned with transformation of data or, more precisely,

transformation of models. Model transformation execution scheme is given in Fig. 10.

This scheme directly corresponds to the definition of transformation. The source model is

43

transformed into a target model according to a transformation definition. It should be

added that model transformations are defined in terms of source and target metamodels. It

means that the same transformation could be used for all source models confirming to the

source metamodel. As transformation works in terms of metamodels all target models

will confirm to the target metamodel. Of course, it is possible that source and target

models coincide; such transformations are called in-place transformations.

Fig. 10. Execution scheme of model transformations

Model transformation languages are used for writing down a model

transformation definition. The most popular model transformation languages are listed in

the following sub-Section.

1.3.1 Model Transformation Languages

As already mentioned above the term model transformation for the first time was

introduced in the MDA Guide [117]. At that point there were no appropriate means for

writing down model transformations. Of course, general purpose programming languages

could be used, however, they did not have appropriate means to support working with

models. Therefore OMG requested to submit proposals on model transformation language

QVT (Queries/ Views/ Transformations) [119]. The development of QVT standard was

very slow and the first version of QVT standard was published only in April, 2008 [122].

Currently the actual version is QVT 1.1. [128].

As a result of the slow QVT development many independent model

transformation languages were developed, for example, MOLA [76, 59], Lx [13], GReAT

[7], UMLX [197, 179], ATL [63, 165], Tefkat [98, 35], MTF [56], ATOM
3

[96, 107],

VMTS [99, 25], BOTL [105, 58], Fujaba [42, 45], RubyTL [32, 185].

44

In CHAPTER 2 the model transformation language MOLA is discussed in detail

as it is used in model transformation applications described in the present PhD thesis.

There already existed many graph transformation languages before OMGs RFP.

The first graph transformation language PROGRESS was developed as early as the

beginning of the 1990s [145]. Influenced by OMGs RFP many graph transformation

languages were adapted for the development of model transformations, for example, AGG

[163], PROGRES [144], TGG [146, 46], VIATRA [31, 180]. In fact, there is no big

difference between typed-attributed graphs and models. At present distinguishing

between a model and a graph transformation language is sometimes quite difficult.

Model transformation language alone is not sufficient for developing model

transformation as tool support for the language is required as well. Tool support for

independent model transformation languages was mainly developed by research groups

closely associated with the authors of the language. As a result tool support for many

languages is mainly experimental and is devoid of industrial qualities. The first language

with good enough tool support was ATL. Most probably this is the reason why ATL is

the most popular model transformation language.

The situation with tool support of the QVT standard is even worse. There is no

tool supporting the QVT language completely. There are some tools supporting parts of

MOF QVT. MOF-QVT Operational is supported by SmartQVT tool [150]. Eclipse M2M

project partially implements QVT Operational and QVT Declarative (Core, Relational)

[175]. MOF-QVT Relational is partially supported by MediniQVT [57]. UML modelling

tool MagicDraw [115] uses QVT Operational plug-in implemented by Eclipse M2M

project [175].

The limited tool support of QVT and understanding that for different domains

different transformation languages are needed are the reasons for developing new

transformation languages even now, among them being Epsilon [92, 169], Henshin [9,

173], GreTL [55], lQuery [100], UML-RSDS [95], Edapt [168].

Examination of application areas of model transformations reveals that for each

different domain a different language is more appropriate. Actually many transformation

languages are developed, keeping a certain domain in mind. For example, MOLA was

developed for transformation development in the MDA process. Viatra specializes in

transformation development for simulators. lQuery is suitable to develop transformations

for the DSL tool development. Epsilon actually is a transformation language family

45

where each language is suitable for a definite set of tasks. There are domain-specific

transformation languages applicable in certain domains. One well studied domain is

model transformation for model migration.

1.3.2 Mapping L anguages

When highly abstracting in the consideration of model transformations, we can

treat them as mapping that is done from the source to the target. That is the way

transformations were treated in the MDA guide [111]. However, transformations can be

subject to complicated execution conditions. It is hard to represent these conditions as

mappings. Therefore mappings can be used only in simple and declarative parts of

transformations. Hence mappings can be used as a transformation language for simple

cases.

ñA mapping is specified using some language to describe a transformation of one

model to another. The description may be in natural language, an algorithm in an action

language, or in a model mapping language.ò [111]

Attempts to create universal mapping languages as a certain alternative to

traditional transformation languages have been started sufficiently early. The term

mappings are used already in the MDA guide [111].

List of mapping languages is given in the Section 4.1.2.

1.3.3 Higher-Order Transformations

MDD can be naturally applied also to transformation development. It means that

transformations are used to create transformations. This special kind of transformations is

named Higher-Order Transformations (HOT). These are transformations modifying/

reading/creating model transformations. In the HOT approach transformations must be

treated as models conforming to the relevant metamodel.

Though the HOT idea can be applied to any transformation language, the largest

amount of HOTs has been created for the ATL language [63]. A comprehensive survey of

HOT applications is given in [183] where the four main types of HOTs have been

identified. One of the HOT application types is transformation synthesis. Transformation

synthesis means transformation generation from various sources of information, including

model mappings. Such a mapping between two models can be considered as a high level

specification of the required model transformation. A large set of such mappings has been

46

obtained by applying the ATLAS Model Weaver (AMW) [39]. The idea of obtaining a

transformation from a mapping can be applied to many other transformation languages,

for example MOLA. In CHAPTER 6 a special language for transformation synthesis

Template MOLA is proposed. It is the first language [69] built specially for the

development of higher-order transformations. Afterwards a special extension of ATL for

transformation synthesis was developed as well. [182]. However ATL is textual, while

MOLA and Template MOLA are graphical languages.

One of the popular research directions related to the HOTs approach is the

development of metamodel independent transformations. In most of the model

transformation languages a transformation is attached to the metamodel it is defined for.

This makes transformation reuse almost impossible. An approach for solving this problem

is proposed by [33] and [139]. It should be noted that Template MOLA could be used to

develop metamodel independent libraries for MOLA. See Section 7.4 for details.

47

CHAPTER 2

MOLA Language

As the model transformation language MOLA was used to develop

transformations described in the thesis an overview of the MOLA language is given in

this chapter. More about the MOLA language can be found in [76], [75] and [77]. A

formal description of MOLA as well as the MOLA tool, can be downloaded at [59].

2.1 MOLA Overview

MOLA is a graphical transformation language developed at the University of

Latvia. It is based on traditional concepts of transformation languages: pattern matching

and rules defining how the matched pattern elements should be transformed.

A MOLA program transforms an instance of a source metamodel into an instance

of a target metamodel. The two metamodels are specified using the EMOF [120]

compliant metamodelling language (MOLA MOF). These metamodels, which may also

coincide, both are parts of a transformation program in MOLA. Mapping associations

may be added to link the corresponding classes in the source and target metamodels.

MOLA is a model transformation language which combines the imperative

(procedural) programming style with declarative means of pattern specification. A

transformation written in MOLA consists of several MOLA procedures, one of them

being the main. An example of a MOLA procedure is given in Fig. 11 (p.54). The

execution of a MOLA program starts with the main procedure. Procedures in MOLA may

be called from the body of another procedure by using call statements. Like in most

transformation languages, class instances, primitive and enumeration-typed variables can

be passed on to the called procedures as parameters. There are other types of statements

in MOLA as well, i.e. rule, foreach loop, text statement, etc. The execution of a MOLA

procedure starts with the start symbol. The next statement to be executed is determined by

the outgoing control flow.

The rule in MOLA represents the classical branching (if-then-else) construct of

imperative programming. The rule contains a declarative pattern that specifies instances

48

of which classes must be selected and how they must be linked. Only the first valid

pattern match is considered. The action part of a rule specifies which matched instances

must be changed and what new instances must be created. The instances to be included in

the search or to be created are specified using class elements in the MOLA rule. The

traditional UML instance notation (instance_name:class_name) is used to identify a

particular class element and specify the class the instance must belong to. Class elements

included in a pattern may have attribute constraints ï simple OCL-like expressions.

Expressions are also used to assign values to variables and attributes of class instances.

Additionally, the rule contains association links between class elements. A class element

may represent an instance, matched previously by another pattern. Such class element is

called a reference class element and is specified using the name of the referenced class

element, prefixed with the symbolñ@ò.

Typical transformation algorithms require iteration through a set of the instances,

satisfying the given constraints. In order to accomplish this task, MOLA provides the

foreach loop statement. The loophead is a special kind of the rule used to specify a set of

instances to be iterated in the foreach loop. The pattern of the loophead is given by using

the same pattern mechanism as for an ordinary rule, but with an additional important

construct. It is the loop variable ï the class element that determines the execution of the

loop. The foreach loop is executed for each distinct instance that corresponds to the loop

variable and satisfies the constraints of the pattern. In fact, the loop variable plays the

same role as an iterator in classical programming languages.

2.2 MOLA Elements

Table 3 presents a list of MOLA elements. The application context and semantics

of each element is described.

Table 3. List of MOLA elements

Image Element Description

Start

symbol

Execution of a MOLA procedure starts with a

start symbol.

Execution of a MOLA transformation starts

49

Image Element Description

from the start symbol of the main procedure.

End

symbol

Execution of a MOLA procedure ends with an

end symbol. When the end symbol is reached in

the main procedure execution of transformation

is completed. In other procedures control is

returned to the procedure calling this procedure.

Input

parameter

MOLA procedures may have parameters,

defined by name and type (@<name>:<type>).

The name should be unique in the procedure

(different from class element names). The type

is a reference to a class defined in MOLA MOF

or a primitive type. Parameters are ordered. The

order is represented by numbers.

Values of input parameters are passed to the

procedure; if the value is changed it is not

passed back.

In/out

parameter

The same as the input parameter: the only

difference is that the value of parameter is

passed back to the calling procedure.

Variable It is possible to define variables in MOLA

procedures. For variables the name and the type

is defined (@<name>:<type>). Variables are

used in the same way as parameters.

Rule MOLA rule consists of a pattern to be matched

and an action part. Both are defined by means of

class elements and association links.

The pattern in the rule is matched only once.

If a rule without a valid match is to be executed

and it has no ELSE-exit, then the current

procedure is terminated (if this occurs outside a

loop) or the next iteration of the loop is started

50

Image Element Description

(within a loop body).

Loop MOLA loop contains a loophead (the first rule)

and a loop body (0 or more loop elements whose

execution order is defined by control flows).

The loophead is a rule which contains a loop

variable. The loophead and the loop body are

executed for each distinct match of loop

variable.

Class

element

A class element is a metamodel class, prefixed

by the element (role) name.

A class element may also contain a constraint ï

a Boolean expression in a simplified subset of

OCL.

Assignments in class elements may be used to

set the attribute values of the instances.

When a pattern in a rule is matched for each

class element, an instance satisfying constraints

is found and attached to a class element

(constraints are defined in a class element and

by a pattern, e.g., connections with other class

elements).

Class

element,

reference

References are marked with the symbol ñ@ò.

The previously matched instances, as well as the

parameters and the variables, may be used as

references. In this case, an instance already

attached to a referenced element is used in a

pattern matching.

Class

element

with NOT

constraint

Equivalent to NAC (negative application

condition) in graph transformation languages,

e.g., AGG [163].

A pattern is matched if there are no instances in

51

Image Element Description

(NOT-

element)

the model corresponding to the NOT-element.

NOT-elements are typically connected to other

class elements by using association links. Such a

pattern matches if there is no instance

corresponding to the NOT-element which

fulfills conditions defined to NOT-element and

has all specified links to the instances of

ñnormal partò.

Class

element,

creation

It is possible to create instances in the rules.

Creation is marked with a red dashed line.

Assignments may be used to set the attribute

values of the newly created instances.

Class

element,

deletion

It is possible to delete instances in the rules.

Such class elements may be references or they

are matched before deletion. Deletion of a class

element causes automatic deletion of the related

links.

Loop

variable

Loop variable is an iterator of foreach loop. A

foreach loop iterates through all possible

instances of the loop variable class that satisfies

the constraint imposed by the pattern in the

loophead.

There is only one loop variable in a loop.

Association

link

An association link, connecting two class

elements, corresponds to an association linking

the respective classes in the metamodel. Class

elements at the ends of links are matched to the

instances connected with a link of this type.

52

Image Element Description

Association

link,

creation

It is possible to create instances of association

links. An end of a create-link may be attached to

a class element included in the pattern or to the

class element, creation.

Association

link,

deletion

It is possible to delete instances of association

links. An end of a delete-link may be attached to

a class element included in the pattern (also the

class element, deletion). Association links are

deleted before the class element deletion.

Text

statement

Text statements consist of a constraint and

assignments. It is possible to assign values to

parameters, variables and class element

references. Assignments are skipped if the

constraint fails. Mainly text statements are used

to process primitive-typed elements. A text

statement containing a constraint (a Boolean

expression) may also have an ELSE-exit and

serve as an if-then-else construct.

Call

statement

Call statements are used to invoke sub-

procedures. Parameters are passed to the

invoked procedures. If the parameter is of the

type in/out to pass the value to this parameter a

referencable element (variable, parameter, class

element reference) should be used.

External

call

statement

Besides MOLA procedures, external (coded in

an OOPL) procedures can also be invoked; this

feature is used for low-level data processing

(e.g., model data import). Parameters may be

passed to external procedures.

Control

flow

Control flow arrows determine the execution

order of MOLA statements. The element that

53

Image Element Description

follows the use of the control flow is executed

as the next one. (If the execution of the previous

element ï rule, text statement ï had succeeded.)

Alternative

control

flow

Certainly, there may be a situation when no

match exists ï then the rule is not executed at

all. To distinguish this situation, the rule may

have a special ELSE-exit (alternative control

flow), which is traversed in this situation.

Alternative control flow may be added also to

text statements. This control flow is used if the

constraint in the text statement fails.

2.3 MOLA Example

In order to illustrate the basic MOLA concepts, briefly listed in the previous

section, a simple MOLA transformation example is provided in Fig. 11. This example is

taken from transformations developed in the ReDSeeDS project (see CHAPTER 3). UML

(+ ReDSeeDS specific traceability framework) is used as a source and target metamodel

of the transformation.

This procedure copies the interface and all operations it contains to the provided

package in the target model. ReDSeeDS specific traceability information is created

between the original interface and its copy.

This MOLA procedure has four parameters. Three of them are input parameters

and one in/out parameter. The first parameter (@int) is the interface to be copied. The

second parameter (@pt) is a package for the copy of the interface to be placed. The third

parameter (@sa) is ReDSeeDS specific. It is a logical model (Software Artifact)

processed. All traceability links between the elements are attached to this logical model.

The fourth (in/out) parameter (@i) is used to return the reference to the newly created

copy of the interface.

Execution of the MOLA procedure starts with a start symbol, followed by the

execution of the rule (using control flow). As already stated previously, the MOLA rule

may consist of a declarative pattern and an action description. In this case the pattern is

54

trivial as all class elements with black solid borders are references. Nothing is matched;

the values attached to the references are used directly. Therefore execution of the rule

starts directly with the execution of actions defined in the rule. This rule creates a new

instance of an interface (newint) and the latter is set the same name as the name of the

interface to be copied (name=@int.name). To assign values in MOLA simple OCL like

expressions are used. (For details see MOLA reference manual [6].) In the same rule

ReDSeeDS specific traceability information is created (id:isDependentOn) for which the

original interface is set as a source and the copy of the interface - as a target. The

traceability information is attached to ReDSeeDS logical model (@sa). This rule uses

references to the provided parameters (@int, @sa, @pt) and creates appropriate instances

(newint, id) and association links.

Fig. 11. MOLA example

The rule is followed by a foreach loop which iterates through all operations of the

interface to be copied. The operation is used as a loop variable (o). It is checked that the

55

operation is connected to the interface using the association link ownedOperation ï

interface. Only the operations satisfying this condition are processed.

For each such operation procedure ñpim_CopyOperationò is called (using the call

statement). This procedure contains four parameters as well. The first is the operation to

be copied (o). The second is simply an empty string and it is not important in this context.

The third is again ReDSeeDS logical model, used to attach the traceability between the

original and the copy in the same way as in this procedure. The fourth is a reference to the

variable (@newo) defined in this procedure. This actually is in/out parameter and is used

to return the newly created copy of operation.

After the call statement the MOLA rule is executed. The copy of operation

(@newo) returned by the call statement is attached to the copy of the interface (@newi).

Association link (ownedOperation ï interface) is created.

The loop and actions in it are executed while there are operations satisfying

constraints in the loophead. After execution of the loop completes the text statement is

executed. This text statement assigns a value to in/out parameter. The value of the

parameter is set to the created copy of the interface. As a result, when reaching the end

symbol, the parameter will return the reference to the newly created copy of the interface.

Reaching of an end symbol is the last element of the MOLA procedure and it

completes its execution. Control is returned to the calling procedure. The value of in/out

parameter is also returned.

To get a more detailed understanding about the usage of different MOLA

elements see the next section.

2.4 Hello World with MOLA

This section is dedicated to describing a solution for the Hello World case [106] of

the TTC 2011 [5] contest, implemented in the MOLA model transformation language:

ñSaying Hello World with MOLA - A Solution to the TTC 2011 Instructive Caseò [74].

This use case demonstrates the application of MOLA constructs for solving typical

transformation tasks. This section provides a more detailed understanding about the usage

of different MOLA elements in transformation development. If a reader is familiar with

the MOLA language he/she can skip this section.

56

The Hello World case consists of several very simple tasks. It confirms the

assertion that simple tasks can be solved in a straightforward and easy readable way in

MOLA. In most cases the basic part of the task is performed by one rule (or loophead).

2.4.1 Greeting Tasks

The first group of tasks is ''Greeting'' transformations. The first task is to ñprovide

a constant transformation that creates the example instance of the ñHello World"

metamodel given in Fig. 12.ò [106] The next task is based on ñslightly extended

metamodel given in Fig. 13.ò [106] It is required to ñprovide a constant transformation

that creates the model with references also shown in Fig. 13.ò [106] The last task in this

group is to ñprovide a model-to-text transformation that outputs the GreetingMessage of

a Greeting together with the name of the Person to be greeted. For instance, the model

given in Fig. 13 should be transformed into the String "Hello TTC Participants!" [106]

Fig. 12. The ñHello World" metamodel and the example instance [106]

Fig. 13. The extended ñHello World" metamodel and the example instance [106]

In these transformations the MOLA pattern used is very similar to the

corresponding instance diagram given in the task specification. Greeting transformations

are given in Fig. 14, Fig. 15 and Fig. 16. The transformation logic for these tasks is

described by using one MOLA rule (the grey rounded rectangle). The only requirement in

the first two tasks is to create elements (marked with red dashed lines). In the third task an

instance of the class ''StringResult'' is created, if the pattern (the elements with black solid

lines) is matched with the MOLA rule.

57

Fig. 14. Transformation creating a constant Greeting instance

Fig. 15. Transformation creating a constant Greeting instance with references

Fig. 16. Model-to-text transformation creating a greeting message

2.4.2 Instance Counting

The next group of tasks in the task specification is the instance counting tasks.

The input models are simple graphs conforming to the metamodel given in Fig. 17 [106].

The task specification is as follows

¶ ñProvide a model query that counts the number of nodes in a graph.

¶ Provide a model query that counts the number of looping edges in a graph, i.e. edges

where the source and the target node coincide.

¶ Provide a model query that counts the number of isolated nodes in a graph, i.e. nodes

that are neither the source nor the target of any edge.

¶ Provide a model query that counts the number of matches of a circle consisting of

three nodes, i.e. the pattern shown in Fig. 18 where n1, n2 and n3 are pairwise

distinct. Note that each circle in the model should be matched three times.

¶ Optional: Provide a model query that counts the number of dangling edges in a

graph, i.e. edges where either the source or the target node is missing.ò [106]

Transformation counting nodes in a graph is given in Fig. 19. Transformation

counting looping edges is given in Fig. 20. Transformation counting isolated nodes is

58

given in Fig. 21. In MOLA the counting is implemented by using an integer counter and a

foreach loop (a rectangle with a bold border) where the counter is increased. In most

cases the loophead pattern directly specifies the set of instances to be counted.

Fig. 17. The simple graph metamodel [106]

Fig. 18. Circle of three nodes (simplified representation of edge objects) [106]

A MOLA variable ñskò (a white rectangle) of type integer is used as a counter.

Each loop iteration increases the instance count by one. Text statements (yellow rounded

rectangles) are used to modify the values of the counter. Finally, to save the counting

result in the resulting model the MOLA rule creating an instance of the class ''IntResult''

is used.

For all these tasks it was required to count elements in a graph. As it was not

defined whether the model contains only one graph or multiple graphs, we admitted the

worst case of many graphs in the model. For transformations to work properly when there

is more than one graph in a model we provide the graph to be processed as a parameter.

Consequently, we use another MOLA procedure where we iterate through all graphs in a

59

model (using a foreach loop) and from here we call the transformation (using the call

statement) for processing the current graph. An example of such transformation is given

on the left side of Fig. 19. (The only thing that changes is the called procedure.) A similar

graph processing is done for all tasks where the phrase ''in a graph'' is used. If there is

always only one graph in a model this step could be omitted. The same could be said

about transformations in Fig. 25- Fig. 32 as well.

Fig. 19. Transformation counting nodes in a graph

Fig. 20. Transformation counting looping edges in a graph

60

Fig. 21. Transformation counting isolated nodes in a graph

The only counting task, processed differently, is the circle counting. In MOLA

there are two loop types: the foreach loop and the while loop (rule + appropriate control

flow). In the while loop, to ensure only distinct matches, an explicit marking of the

already found matches (using a NAC construct) is required, claiming the usage of

temporary metamodel elements to solve the task. An alternative is to use three nested

foreach loops, since multiple loop variables are not supported in MOLA. We provide

solutions using both loop types as each has some advantages and disadvantages.

We start with the solution using the foreach loop, as this loop type was used in the

previous tasks. The solution of this task is different from the previous one because we

want to find all different circles. In this case one loop variable is not sufficient and,

consequently, several loops are required.

The task specification did not clearly state whether graphs or multi-graphs should

be considered (i.e., is it possible to have multiple edges between two nodes.) As the

provided metamodel supports multi-graphs and graphs are a subclass of multi-graphs, we

decided to build our solution, providing support to multi-graphs. This being the case, if

there is a circle ''n1;n2;n3'' and two edges between ''n1'' and ''n2'', then there will be two

circles ''n1;n2;n3'' (and 2*''n2;n3;n1'' + 2*''n3;n1;n2''). The solution of this task is given

in Fig. 22. To distinguish different edges between the same nodes, the edges are used as

loop variables. There are three nested loops used in the solution. Each loop selects one

edge for the circle. Actually, finding of circles is defined in the loophead of the first loop,

61

however, when using this loop we are only able to find all edges which are a part of some

circle, but we do not have information in how many circles this edge is used. Adding the

second and the third loop we count all circles that have different edges three times, as

required in the task specification.

Fig. 22. Transformation counting circles consisting of three nodes

If we know that there are no multi-graphs, then the last loop can be omitted

because the existence of the third edge is already validated by the patterns in the first and

the second loop. However, understanding of this case is probably easier if nodes are used

as loop variables, but anyway three loops are needed again.

62

Solving of the task by using the foreach loop is quite lengthy; however, if we add

temporary classes it is possible to create a shorter and more elegant solution. In this case

we will use the while loop. We extend the metamodel by adding the temporary class

''Circle'' and connecting it to the class ''Edge''. The metamodel extension is shown at the

bottom of Fig. 23. If such extended metamodel is used then we can simply write a MOLA

rule looking for circles and marking the found circles: connecting all edges of a circle to a

new instance of the ''Circle'' class. To ensure that each circle is found exactly once a NOT

constraint (an equivalent to NAC in graph transformation languages, e.g., in AGG [163])

is used, stating that this circle has not been marked previously. As in this solution we do

not care about the order of edge finding, the loop counter is increased by 3, to ensure that

each circle has been counted three times. The above mentioned solution is presented in

Fig. 23.

Fig. 23. Transformation counting circles consisting of three nodes, using

temporary metamodel elements

Next was an optional task to count the dangling edges. The solution is given in

Fig. 24. In this case two loops are used. The first one counts the edges without a source.

63

To ensure that the edges without a source and without a target are counted only once the

second loop counts only the edges with a source and without a target.

Fig. 24. Solution of optional task: counting of dangling edges

2.4.3 Reversion

The next task to be considered is edge reversing. It was required to ñprovide a

transformation that reverses all edges in a graph conforming to the simple graph

metamodel given in Fig. 17 (p.58). This is an update operation.ò [106]

We selected a solution where a new reverted edge is created and the old edge is

deleted (delete is marked by using a black dashed line). The solution is displayed in Fig.

25. Actually, a shorter solution in MOLA is possible; however, it is not supported by the

current version of the MOLA tool.

64

Fig. 25. Transformation inversing edges

2.4.4 Model Migration

The next group of tasks was model migration tasks. The first task was to ñprovide

a transformation that migrates a graph conforming to the metamodel given in Fig. 17

(p.58) to a graph conforming to the metamodel given in Fig. 26. The name of a node

becomes its text. The text of a migrated edge has to be set to the empty string.ò [106]

The second optional task was to ñprovide a topology-changing migration that

transforms graphs of the metamodel given in Fig. 17 (p.58) to graphs as defined by the

metamodel in Fig. 27.ò [106]

Fig. 26. The evolved graph metamodel [106]

Fig. 27. The even more evolved graph metamodel [106]

Implementation of such tasks requires adding of temporary traceability relations to

the metamodel. In this case it is sufficient to have an association between nodes in both

metamodels (see Fig. 28). The migration transformation from the metamodel graph1 to

the metamodel graph2 is given in Fig. 29 and from the metamodel graph1 to the

metamodel graph3 in Fig. 30. At first a new graph in the target model is created in both

65

cases. After that all nodes are cloned and traceability links added. (To ensure it a foreach

loop iterating through all nodes in the source graph is used.) Finally, all edges are

transformed by using the traceability information to find the appropriate source and target

nodes in the migrated model. (To ensure it a foreach loop iterating through all edges in

the source graph is used.)

Fig. 28. Metamodel extensions for model migration tasks

Fig. 29. Model migration transformation. Migrates graph from encoding graph1

(Fig. 17) to encoding graph2 (Fig. 26).

66

Fig. 30. Solution of optional model migration task. Migrates graph from encoding

graph1 (Fig. 17) to encoding graph3 (Fig. 27).

2.4.5 Deletion Tasks

Deletion tasks constitute the last group of tasks. The task definition was as

follows:

ñGiven a simple graph conforming to the metamodel of Fig. 17 (p.58), provide a

transformation that deletes the node with name ñn1ò. If a node with name ñn1ò does not

exist, nothing needs to be changed. It can be assumed that there is at most one occurrence

of a node with name ñn1ò.

Optional: Provide a transformation that removes the node ñn1ò (as above), but

also all its incident edges.ò [106]

The last mandatory transformation is deletion of the node named ''n1''. This

transformation is very straightforward (see Fig. 31). We try to find such a node by using a

MOLA pattern and delete it, in case of finding it. Deletion is represented by a black

dashed line. It was required to delete all incident edges in the extension as well. The

solution of extension is given in Fig. 32. In this case the sequence of deletions is as

67

follows ï at first the node is found, all outgoing edges deleted, followed by deletion of all

incoming edges and finally the node itself is deleted.

Fig. 31. Transformation that deletes the node named ''n1'' (if such a node exists) in

a graph

Fig. 32. Transformation that deletes the node named ''n1'' (if such a node exists)

and its incident edges in a graph

2.4.6 MOLA Tool Support

This section describes the technical details regarding the solution of the task.

MOLA has an Eclipse-based graphical development environment (MOLA tool

[59]), incorporating all the required development support. A transformation in MOLA is

compiled via the low-level transformation language L3 [13] into an executable Java code

68

which can be run against a runtime repository containing the source model. For this case

study Eclipse EMF is used as such a runtime repository, but some other repositories can

be used as well (e.g., JGraLab [64], mii_rep [11]).

The MOLA tool has a facility for importing existing metamodels, in particular, in

EMF (Ecore) format. Though the MOLA metamodelling language (MOLA MOF) is very

close to EMOF, and consequently Ecore, there are some issues to be solved. The current

version of MOLA requires all metamodel associations to be navigable both ways (this

permits to perform an efficient pattern matching by using simple matching algorithms).

Since a typical Ecore metamodel has many associations navigable one way, the import

facility has to extend the metamodel. Another issue is the variable coding of references to

primitive data types.

Metamodel import facilities in MOLA are able to perform all these adjustments

automatically. In such a way the provided metamodels were imported into the MOLA

tool. Transformation development of some tasks in MOLA requires additional metamodel

elements, for example, in migration tasks to store relations between the source and target

models. These metamodel elements have to be added manually. In migration tasks, these

are the associations between the node classes in different graph encodings.

Since the metamodels have been modified during import, the original source

model does not conform directly to the metamodel in the repository mainly due to the

added association navigability. Therefore a source model import facility is required. The

MOLA execution environment (MOLA runner) includes a generic model import facility,

which automatically adjusts the imported model to the modified metamodel. Now the

transformation can be run on the model. Similarly, a generic export facility automatically

strips all elements of the transformed model which do not correspond to the original

target metamodel. Thus, a transformation result is obtained which directly conforms to

the target metamodel. (For an inplace transformation the source and target metamodels

coincide, as a result nothing has to be stripped.) The transformation user is not aware of

these generic import and export facilities, he/she directly sees the selected source model

transformed.

An executable version of the solution is available online, using the SHARE [186]

system. A SHARE image of the solution is provided in [4]. By using the SHARE image a

reader can access an executable version of this case study. All transformation sources are

available in the transformation definition environment. It is also possible to compile and

