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ABSTRACT 

Model transformation development for three specific domains: Model-Driven 

Software Development (MDSD), DSL tool development and transformation synthesis has 

been studied in the thesis. It is concluded that transformation development in domain-

specific transformation languages is more straightforward and faster compared to 

traditional transformation languages. A domain-specific model transformation language 

has been developed for each studied domain. Two of them are based on mappings. In 

both cases it was concluded that mappings better fit for typical tasks and transformations 

better fit for non-standard tasks. Therefore a close integration between mappings and 

transformations is required. 

The research results have been published in 15 papers (6 of them have been 

included in SCOPUS). 

Keywords 

Model transformations, Domain-Specific Languages (DSL), Model-Driven 

Software Development (MDSD), DSL tool development, Higher-Order Transformations 

(HOT) 
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INTRODUCTION 

The present PhD thesis has been worked on from 2007 to 2011 in the Institute of 

Mathematics and Computer Science (UL IMCS), and the Faculty of Computing 

established as an independent unit on the basis of the Faculty of Physics and 

Mathematics, University of Latvia. The thesis supervisor is professor Audris Kalnins. The 

thesis elaborates further the UL IMCS DSL (Domain-Specific Language) tool 

development and language design traditions that started already in the year 1986. 

Relevance of the Thesis: 

Lately Model-Driven Software Development (MDSD) is gaining popularity. The 

idea of elaborating all software development steps on models defined in specialised 

modelling languages lies at the basis of the approach. Models, defined at higher 

abstraction levels, are ever more detailed in each step of Model-Driven Software 

Development.  Model transformations are used to automate transitions from one model to 

another. Use of model transformations allows using models as a direct part of the 

software development process instead of using them only as documentation. 

The origin of MDSD was the Model-Driven Architecture (MDA) [111] initiative 

by Object Management Group (OMG). The first document about the MDA was published 

in 2000 [116]. In 2002 OMG concluded that model transformation languages are required 

[119], to easily describe the required model transformations. Most of the modelling 

languages are defined by using the means of metamodelling; therefore model 

transformations were built to transform the models defined according to metamodels. 

Metamodels were defined by using the metamodelling standard MOF (Meta Object 

Facilities) [120]. 

OMG activities led to the creation of a new model transformation standard MOF-

QVT (MOF Queries/Views/Transformations) [128]. Moreover, many new model 

transformation languages were developed, e.g., ATL [63], GReAT [7], GrGen [48], 

Epsilon [92] and the model transformation language MOLA [76] that was developed in 

UL IMCS. This was also a new application area for graph transformation languages, e.g., 

PROGRES [144], AGG [163], VIATRA [31] and also Fujaba [43], previously used in a 

narrower context. The variety of model transformation languages could be explained by 

two reasons: lack of complete MOF-QVT implementation and different model 
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transformation application domains. In different software development areas there are 

different requirements for a model transformation language. 

Today model transformations are a serious software component in large software 

development projects. Transformation development requires a considerable amount of 

resources. Transformations should be projected, tested, maintained, etc. Currently the 

transformation development is rather chaotic and every developer develops 

transformations according to one’s own wishes. It could be explained by the poor 

experience in adaption of the classic software development steps (testing, etc.) to 

transformations. Consequently, studying of the transformation development is a popular 

research direction. 

In the same way there are attempts to adapt the classic software development 

methods to the model transformation development. One of such methods is to build a 

Domain-Specific Language (DSL) to be applied to the software development in a specific 

class of tasks. The thesis is devoted to researching domain-specific transformation 

languages. Usage of domain-specific transformation languages could improve 

transformation development, the same as the use of the domain-specific languages helps 

to reduce the software development time and costs. However, it should be noted that the 

use of domain-specific languages is cost-effective only in case of developing multiple 

similar solutions. 

Aim of the Research: 

The aim of the research is to investigate the ways of defining transformations for 

classes of similar tasks, requiring development of many transformations of the same type. 

 Explore transformation development for Model-Driven Software 

Development. 

 Explore the nature of the transformations for DSL tool development. 

 Explore the opportunities of defining Model-Driven Software Development 

and tool building transformations in specialised languages (higher 

abstraction level) and using mappings. 

 Explore the definition possibilities of transformation generating 

transformation. Develop a higher-order transformation language which is 

specialized for transformation synthesis. 
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Main Results of the Thesis: 

 Developed and implemented the transformation supported path from the 

requirements to the code. The research has been carried out as a part of the 

ReDSeeDS project. Transformations for Model-Driven Software 

Development have been analyzed. It is concluded that some of the 

transformations could be defined more effectively by using a specialised 

(higher abstraction level) language. 

 Developed the first version of the MOLA 2 tool within the METAclipse 

framework. A conclusion has been drawn that part of the transformations 

are very simple and uniform and it would be more convenient to define 

them in a mapping language. Likewise, it is concluded that it would be 

impossible to define everything by using a mapping language; therefore, 

integration between the mappings and transformations is required. 

 Developed the mapping language MALA4MDSD, which is especially 

adapted for transformation development in Model-Driven Software 

Development. 

 Outlined the mapping language for DSL tool development. 

 Developed the language Template MOLA, which is a domain-specific 

language for transformation synthesis. 

 Analysis of three particular problem areas leads to the conclusion that the 

transformation development in a domain-specific language is possible at a 

higher level of abstraction. Thus, transformations can be developed faster. 

If the transformation is defined by a higher level of abstraction and the use 

of mapping, then less-skilled users can define the transformations as well. 

Scientific and Practical Significance of the Thesis: 

Model transformation development for three specific domains, namely, Model-

Driven Software Development (MDSD), Domain-Specific Language (DSL) tool 

development and transformation synthesis has been studied in the thesis. 

One of the areas under research in the present thesis is a specification of 

transformations for Model-Driven Software Development. While working on the 

ReDSeeDS project the author of the PhD thesis developed two transformation sets for 
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Model-Driven Software Development. This type of transformations typically contains a 

transformation from UML to UML and for facilitating the given transformation 

development, the mapping language MALA4MDSD is offered in the PhD thesis. The 

language MALA4MDSD is also of practical importance, since it makes it significantly 

easier to develop transformations for Model-Driven Software Development. This could 

encourage a wider use of model-driven development methods in industry, as 

transformations could be defined by less experienced users - those who are experts in the 

transformed problem area, but do not know anything about metamodelling. In addition, 

the transformation development would become faster. 

The second researched area is the model transformations for DSL tool 

development. It was concluded that the best way for defining a tool for graphical DSL is 

by combining mappings with transformations. Using of mappings allows a less skilled 

user to configure tools as well; the tool development would become significantly faster. 

However, using mappings makes it impossible to provide convenient instruments for all 

possible cases of non-standard treatment; therefore there is a need for a way of processing 

non-standard cases in a transformation language. Many of the existing DSL tool 

development platforms offer processing the non-standard cases in a programming 

language, but a transformation language for this task would be more appropriate, because 

the data are model-driven, and transformation languages are adapted for processing this 

type of data. 

The third problem area brought an observation that a domain-specific language is 

more convenient for defining transformations. However, here is chosen a different type of 

language that does not use mappings. This is a specific area which describes 

transformation synthesis. The task is very specific, and the existing means are very 

inadequate and are difficult to use, therefore the domain-specific language has been 

created. The language Template MOLA is a higher-order transformation language, 

specifically adapted to the tasks of transformation synthesis. It is the first language in the 

world of such a type. Later an extension, specifically for transformation synthesis, has 

been developed for the language ATL [182]. It should be noted that comparing to the 

language MOLA, ATL is a textual language, therefore the synthesis of ATL is an easier 

task. Nevertheless, the basic idea used in the ATL extension is the same as in the 

Template MOLA - using fragments of concrete syntax. 
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The language Template MOLA helps to solve a very important issue in the model 

transformation world, namely, metamodel independent transformation development. 

Since almost all transformations are linked to metamodels, building of a library of 

transformations and reuse of transformations is still an open problem. 

The research results of the thesis suggest that model transformations is a 

sufficiently vast area, making it possible to choose more limited problem areas – domain-

specific transformations - and domain-specific transformation languages have to be 

created for these areas. The research focused on studying mapping languages as it is the 

most user-friendly way of defining transformations. Nevertheless, the existing mapping 

languages are not quite appropriate as usually they can process only very simple cases. 

Therefore, the research offers a new idea for defining transformations – use of domain-

specific mapping languages instead of a universal mapping language. 

Publications of the Research Results and Presentations in Scientific Conferences: 

The main results of the PhD thesis are presented in 10 publications; each 

containing a significant (70-80%) contribution of the author of the present thesis:  

 

 “DSL Tool Development with Transformations and Static Mappings” [67] 

The publication outlines the role of mapping in the DSL tool development. 

 “DSL Tool Development with Transformations and Static Mappings” [68] 

The publication discusses the use of the mapping language in the DSL tool 

development. 

 “Graphical Template Language for Transformation Synthesis” [69] The 

publication describes the language Template MOLA. 

 “Transformation Synthesis Language – Template MOLA” [71] The 

publication describes in detail the language Template MOLA. 

 “Generation Mechanisms in Graphical Template Language” [70] The 

publication discusses a merge mechanism in the language Template 

MOLA. 

 “From Requirements to Code in a Model Driven Way” [79] The 

publication outlines transformations used for the model-driven 

development process realization within the ReDSeeDS project. 
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 “A Model-Driven Path from Requirements to Code” [80] The publication 

describes in detail the development of transformations for Model-Driven 

Software Development within the ReDSeeDS project. 

 “Model Migration with MOLA” [72] The publication describes a 

transformation design in the language MOLA for transforming UML 1.X 

activity diagrams to UML 2.3 activity diagrams. 

 “Hello World with MOLA - A Solution to the TTC 2011 Instructive Case” 

[74] (accepted for publication). The publication discusses solutions of 

simple transformation tasks in the language MOLA. 

 “Tree Based Domain-Specific Mapping Languages” [73] (accepted for 

publication). The publication describes the mapping language 

MALA4MDSD and the methodology of constructing a domain-specific 

mapping language. 

The author of the thesis has participated in the preparation of 5 more publications 

with the contribution of 5-25%. 

 “Building Tools by Model Transformations in Eclipse” [86] The 

publication outlines the principles of the METAclipse DSL tool 

development framework and its use in the MOLA 2 tool development. 

 “Behaviour Modelling Notation for Information System Design” [78] The 

publication describes the experience, gained while working with the UML 

sequence diagrams within the ReDSeeDS project. 

 “Comprehensive System for Systematic Case-Driven Software Reuse” 

[153] The publication describes a platform developed within the 

ReDSeeDS project and highlights the role of transformations in this 

platform. 

 “Domain-driven Reuse of Software Design Models” [82] The publication 

discusses software reuse facilitatation by the transformations, developed 

within the ReDSeeDS project. 

 “Solving the TTC 2011 Reengineering Case with MOLA and Higher-

Order Transformations” [155] The publication discusses the 

transformation development for transforming the Java code (coded with a 

model) to a state chart model. 
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The author has reported on the results of the work in a number of scientific 

conferences: 

 “Graphical Template Language for Transformation Synthesis” 

International conference SLE (Software Language Engineering), 2009; 

Denver, USA 

 “From Requirements to Code in a Model Driven Way” MDA (Model-

Driven Architecture: Foundations, Practices and Implications) workshop 

of ADBIS (Advances in Databases and Information Systems), 2009; Riga, 

Latvia 

 “DSL Tool Development with Transformations and Static Mappings” 

Doctoral Symposium of MODELS (International Conference on Model-

Driven Engineering Languages and Systems), 2008; Toulouse, France 

 “Domēn-specifiskas attēlojumu valodas” 69
th

 Scientific Conference of the 

University of Latvia, Information Technology Section, 2011; Riga, Latvia. 

 “Valoda Template MOLA un tās realizācija” 68
th

 Scientific Conference of 

the University of Latvia, Information Technology Section, 2010; Riga, 

Latvia. 

 “MDA transformācijas ReDSeeDS projekta kontekstā” 67
th

 Scientific 

Conference of the University of Latvia, Information Technology Section, 

2009; Riga, Latvia. 

 “Transformāciju un attēlojumu kombinēšanas lietojumi rīku būvē” 67
th

 

Scientific Conference of the University of Latvia, Information Technology 

Section, 2009; Riga, Latvia. 

 “MOLA-2 rīka būve, izmantojot METAclipse platformu”, 66
th

 Scientific 

Conference of the University of Latvia, Information Technology Section, 

2008; Riga, Latvia. 

 The developed MOLA tool has been demonstrated at the international 

conference ECMDA-FA Tool Demonstration Section (see [85]). 

Structure of the Thesis: 

The thesis is a logical conclusion of the previously described investigational and 

practical work, thus forming a complete research. The structure of the thesis is as follows: 



 

 

26 

 CHAPTER 1 briefly describes the main ideas of MDSD and the role of 

model transformation languages in the software development process. A 

reader is offered the basic knowledge required for understanding the 

research carried out by the author, as well as the significance of the results 

achieved. In this chapter a reader is familiarized with the concept of model 

transformation language. 

 CHAPTER 2 contains a detailed description of the model transformation 

language MOLA, developed in IMCS. 

 CHAPTER 3 discusses the role of model transformations in MDSD and 

Model-Driven Software Development related experience gained while 

working on the ReDSeeDS project. 

 CHAPTER 4 offers the mapping language MALA4MDSD which 

facilitates the development of this type of transformation. 

 CHAPTER 5 describes another practical application of model 

transformations – the DSL tool development. The DSL tool development 

frameworks and the role of transformations in the DSL tool development 

are outlined. 

 CHAPTER 6 contains a description of the higher-order transformation 

language Template MOLA which should be used for transformation 

synthesis. 

 CHAPTER 7 describes different applications of the Template MOLA. 

Special attention is paid to the development of the mapping language 

compilers and metamodel independent transformations. 

 CHAPTER 8 lists the conclusions drawn while working on the thesis, 

including possible directions of future research. 
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CHAPTER 1 

Motivation - MDSD and Model Transformation Languages 

CHAPTER 1 embraces clarification of the main terms used in the thesis and 

outlines the research field and the main results in the field under discussion. Results by 

other researchers used while working on the present thesis are described. 

Section 1.1 of this chapter is devoted to the description of modelling. The terms 

model and metamodel are defined. Application of modelling in software development is 

discussed in Section 1.2. In Section 1.3 the term model transformations is defined 

alongside with related to the thesis the latest research results in the area of model 

transformations.  

1.1 Modelling 

This section is devoted to the definition of the terms model and metamodel, 

starting with defining what model is. 

1.1.1 What is a Model? 

Let us look at this issue in a little broader context, not only as a part of the 

software development process. Models are used in many areas of our everyday life. Maps 

are a great example of it. Compared to the original, maps are simplified representations. 

They contain the necessary information, but skip unimportant details. For example, in 

metro schemes the lines between stations are drawn as straight lines; however, it is not 

always true in the reality. A real Paris metro map is shown in Fig. 1. The reader may 

compare this map with the Paris metro scheme used in maps and tourist guides. An 

example of a metro scheme is given in Fig. 2. The real metro trajectories do not matter for 

metro passengers as they can leave the metro only in stations. The things that do matter 

are locations of metro stations and where it is possible to change from one metro line to 

another. Metro schemes are drawn keeping in mind what is important and skipping 

unimportant details. 

Models are used in other areas as well and they are widely used in physics. 

Models are built for physical systems to be used extensively for predicting behaviour of a 
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physical system. Results obtained using models are compared to experimental results. If 

the experimental results differ from the results obtained using a model it means that the 

model is false. Consequently, the model of physical systems is either modified or 

extended. 

 

Fig. 1. Real distance map of the Paris metro [27] 

Irrespective of the wide use of models in different areas of our life there is no 

common understanding what a model is. 

„Nobody can just define what a model is, and expect that other people will accept 

this definition; endless discussions have proven that there is no consistent common 

understanding of models.” Jochen Ludewig [103] 

Though common understanding of a model is lacking, many definitions of it are 

available and some of them are listed in Table 1. In the author’s opinion a model is 

simplification of a system which could be used instead of the original for some purpose. 
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As a result, it is possible to use model, which is simpler, safer, and also cheaper, instead 

of something else that is more complicated, dangerous or more expensive. This is exactly 

the case of metro schemes. For metro passengers the real metro trajectory and distance 

does not matter as the stations are the only exit points for them. 

 

Fig. 2. Paris metro schema [196] 

Table 1. Model definitions 

Author Definition  

Oxford Dictionaries 1. a three-dimensional representation of a person or thing or 

of a proposed structure, typically on a smaller scale than 

the original; 

o (in sculpture) a figure or object made in clay or 

wax, to be reproduced in another more durable 

material; 

2. a thing used as an example to follow or imitate; 

o a person or thing regarded as an excellent example 
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Author Definition  

of a specified quality; 

o an actual person or place on which a specified 

fictional character or location is based; 

o (the Model) the plan for the reorganization of the 

Parliamentary army, passed by the House of 

Commons in 1644-5. 

3. a simplified description, especially a mathematical one, of 

a system or process, to assist calculations and predictions; 

4. a person employed to display clothes by wearing them; 

o a person employed to pose for an artist, 

photographer, or sculptor; 

5. a particular design or version of a product; 

o a garment or a copy of a garment by a well-known 

designer. [131] 

Jeff Rothenberg “Modeling in its broadest sense is the cost-effective use of 

something in place of something else for some purpose. It 

allows us to use something that is simpler, safer, or cheaper 

than reality instead of reality for some purpose. A model 

represents reality for the given purpose; the model is an 

abstraction of reality in the sense that it cannot represent all 

aspects of reality.” [143] 

 

Marvin L. Minsky “To an observer B, an object A* is a model of an object A to 

the extent that B can use A* to answer questions that interest 

him about A.” [112] 

 

Jean Bézivin “A model is a simplification of a system built with an 

intended goal in mind. The model should be able to answer 

questions in place of the actual system.” [18] 

 

Alan W. Brown “Models provide abstractions of a physical system that allow 

engineers to reason about that system by ignoring extraneous 

details while focusing on the relevant ones.” [24] 

 

Liliana Favre “A model is a simplified view of a (part of) system and its  
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Author Definition  

environments.” [40] 

Michael Jackson “Here the word ‘Model’ means a part of the Machine’s local 

storage or database that it keeps in a more or less 

synchronised correspondence with a part of the Problem 

Domain. The Model can then act as a surrogate for the 

Problem Domain, providing information to the Machine that 

can not be conveniently obtained from the Problem Domain 

itself when it is needed.” [61] 

 

Thomas Kühne “A model is an abstraction of a (real or language based) 

system allowing predictions or inferences to be made.” [89] 

 

Jochen Ludewig “Models help in developing artefacts by providing 

information about the consequences of building those 

artefacts before they are actually made.” [103] 

 

OMG “A model of a system is a description or specification of that 

system and its environment for some certain purpose.” [111] 

 

Ed Seidewitz “A model is a set of statements about some system under 

study (SUS).” [147] 

 

Bran Selic “Engineering models aim to reduce risk by helping us better 

understand both a complex problem and its potential 

solutions before undertaking the expense and effort of a full 

implementation” [148] 

 

Wilhelm Steinmüller “A model is information: on something (content, meaning), 

created by someone (sender), for somebody (receiver), for 

some purpose (usage context).” [160] 

 

Thomas Stahl,  

Markus Völter 

“A model is an abstract representation of a system’s 

structure, function or behaviour.” [159] 

 

In software development models are used to describe a system to be built. Models 

allow analyzing a system before it is really built and looking at the system in different 

abstraction levels. Systems are very complex. It is not possible to represent all aspects of 

a system in one diagram. Different models may contain information about different 

aspects of a system to be built. For example, UML sequence diagrams describe behaviour 
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of a system. UML use case diagrams describe usage scenarios of a system. UML class 

diagrams contain information about the structure of a system.  

On the other hand the information level about a system in diagrams may have a 

different degree of elaboration. For example, class diagrams may be used to describe the 

conceptual model of a system as well as the class hierarchy of a system. 

Models may be used only as documentation or as an essential part of software 

development. In MDSD (see Section 1.2) formal models are used. Stahl and Völter 

describe a model in MDSD: 

“Models are abstract and formal at the same time. Abstractness does not stand for 

vagueness here, but for compactness and a reduction to the essence. MDSD models have 

the exact meaning of program code in the sense that the bulk of the final implementation, 

not just class and method skeletons, can be generated from them. In this case, models are 

no longer only documentation, but parts of the software, constituting a decisive factor in 

increasing both the speed and quality of software development.” [159] 

This type of models is going to be discussed in the present PhD thesis. These 

models are developed by using modelling languages which may be graphical or textual. 

The focus will be on graphical and formal modelling languages as they are more popular. 

1.1.2 Meta-modelling 

It is necessary to model modelling languages. A model of a modelling language is 

called metamodel. Traditionally a metamodel describes the syntax of a modelling 

language. OMG defines a metamodel similarly: “A metamodel is a model used to model 

modeling itself.” [125] “The typical role of a metamodel is to define the semantics for 

how model elements in a model get instantiated.” [127] 

Stahl and Völter define a metamodel more precisely: “Metamodels are models 

that make statements about modelling. More precisely, a metamodel describes the 

possible structure of models – in an abstract way, it defines constructs of a modelling 

language and their relationships, as well as constraints and modelling rules – but not  the 

concrete syntax of the language” [159]  

The most popular meta-modelling language is MOF. “The MOF 2 Model is used 

to model itself as well as other models and other metamodels (such as UML 2 and CWM 

2 etc.). A metamodel is also used to model arbitrary metadata (for example software 

configuration or requirements metadata).” [125] 
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“A model that is instantiated from a metamodel can in turn be used as a 

metamodel of another model in a recursive manner.” [127] It is possible to go further this 

way and introduce a metametamodel – a model of metamodelling language. It is possible 

to introduce even more meta-levels. However, in practice we don’t need to introduce 

more meta-levels. A scheme of meta-levels is shown in Fig. 3. 

 

Fig. 3. Example of OMG MOF meta-level hierarchy [130] 

Layer M3: “The meta-metamodeling layer forms the foundation of the 

metamodeling hierarchy. The primary responsibility of this layer is to define the language 

for specifying a metamodel.” “MOF is an example of a meta-metamodel.” [127] 

Layer M2: “A metamodel is an instance of a meta-metamodel, meaning that every 

element of the metamodel is an instance of an element in the meta-metamodel. The 

primary responsibility of the metamodel layer is to define a language for specifying 

models.” “UML and the OMG Common Warehouse Metamodel (CWM) are examples of 

metamodels.” [127] 

Layer M1: “A model is an instance of a metamodel. The primary responsibility of 

the model layer is to define languages that describe semantic domains, i.e., to allow users 

to model a wide variety of different problem domains, such as software, business 
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processes, and requirements. The things that are being modeled reside outside the 

metamodel hierarchy.” “A user model is an instance of the UML metamodel.” [127] 

“The metamodel hierarchy bottoms out at M0, which contains the run-time 

instances of model elements defined in a model. The snapshots that are modeled at M1 

are constrained versions of the M0 run-time instances.” [127] 

OMG MOF 1.4 standard explains meta-levels as follows: “the MOF meta-

metamodel is the language used to define the UML metamodel, the UML metamodel is 

the language used to define UML models, and a UML model is a language that defines 

aspects of a computer system.” [118] 

The most popular meta-modelling standard (language) is MOF (Meta-Object 

Facility), developed by the international standards organisation OMG. Currently the 

actual MOF version is 2.4.1 [129]. Of course, MOF is not the only meta-modelling 

language, there are others, for example, KM3 [62] and EMF Ecore [166].  

1.2 Model-Driven Software Development 

Today software becomes more and more complicated. Software development and 

management has become more challenging, especially if it refers to large-scale systems 

which are developed and used by hundreds, even thousands of people. In order to ease the 

development of software, particular models are used to describe different aspects of the 

system to be developed. [130] 

Different terms are used to refer to the use of models in software development. 

This section outlines different approaches to the use of models in software development 

and the role of models in each approach to the software development process. The most 

popular approaches in model use are described below. 

1.2.1 MD* 

Several terms are used regarding model use in software development. The most 

popular terms are listed in Table 2, starting from the narrowest to the broadest 

formulation. Term relationship is given in Fig. 4. 

Table 2. Terms for MD* 

Term Definition  

MDA – Model Driven “MDA is the OMG’s particular vision of MDD and  
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Architecture thus relies on the use of OMG standards. Therefore, 

MDA can be regarded as a subset of MDD.” [113] 

MDSD – Model Driven 

Software Development 

“Model-Driven Software Development is a software 

development approach that aims at developing 

software from domain-specific models.” [190] 

The same as MDD. 

 

MDD – Model Driven 

Development 

“MDD is a development paradigm that uses models as 

the primary artefact of the development process. 

Usually, in MDD, the implementation is 

(semi)automatically generated from the models.” [113] 

“Model-driven development is a style of software 

development where the primary software artifacts are 

models from which code and other artifacts are 

generated.” [161] 

The same as MDSD. 

 

MDE – Model Driven 

Engineering 

“Software Engineering paradigm where models play a 

key role in all engineering activities (forward 

engineering, reverse engineering, software 

evolution,…)” [113] 

 

MD* - Model Driven 

Everything 

“I use MD* as a common moniker for MDD, MDSD, 

MDE, MDA, MIC, LOP and all the other abbreviations 

for basically the same approach.” [189] 

 

 

Fig. 4. Relationship between MD* terms 
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MDA was the first term applied regarding the use of models in software 

development. It was launched by OMG (Object Management Group) in 2000. In MDA a 

chain of three consecutive models is used. More information on MDA is given in Section 

1.2.2. Today MDA is considered an obsolete term. The usage of exactly three consecutive 

models seems too restrictive. 

The terms MDD or MDSD, carrying approximately the same meaning, are used as 

well. The usage of one or another depends on the taste of the author.  

Another term is MDE which has a wider application than MDD and MDSD. See 

Fig. 5 for the way Jean Bezivin presents the relationship between MDD and MDE. MDE 

could be applied to any usage of models, including even those we are not yet familiar 

with. 

 

Fig. 5. MDE versus MDD [17] 

1.2.2 Model Driven Architecture 

Model Driven Architecture (MDA) was launched by OMG in 2000. It was the 

first attempt to formalize the use of models in software development. The first version of 

MDA manual [117] was published in 2000 by OMG. The updated version of the MDA 

guide was published in 2003 [111]. 
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“The Model-Driven Architecture starts with the well-known and long established 

idea of separating the specification of the operation of a system from the details of the 

way that system uses the capabilities of its platform. 

MDA provides an approach for, and enables tools to be provided for: 

 specifying a system independently of the platform that supports it, 

 specifying platforms, 

 choosing a particular platform for the system, and 

 transforming the system specification into one for a particular platform. 

The three primary goals of MDA are portability, interoperability and reusability 

through architectural separation of concerns.” [111] 

The MDA guide proposed to use three consecutive models. Each of them 

described a system on a different level of details, starting from a more abstract definition 

and gradually elaborating the details. The following three models where offered: 

 CIM - “A computation independent model is a view of a system from the 

computation independent viewpoint. A CIM does not show details of the 

structure of systems. A CIM is sometimes called a domain model and a 

vocabulary that is familiar to the practitioners of the domain in question is 

used in its specification.” [111] This model does not contain information 

about the system implementation. “The CIM helps to bridge the gap 

between the experts about the domain and the software engineer.” [40] 

This model could be treated as requirements for a system to be built. “A 

CIM could consist of UML models and other models of requirements.” 

[40] However there is no common understanding what and how should be 

modelled in CIM.  

 PIM - “A platform independent model is a view of a system from the 

platform viewpoint. A PIM exhibits a specified degree of platform 

independence suitable for use with a number of different platforms of 

similar type.” [111] This model describes the architecture and high-level 

behaviour of a system to be built. However this description could be 

adapted for different implementation frameworks.  

 PSM - “A platform specific model is a view of a system from the platform 

specific viewpoint. A PSM combines the specifications in the PIM with the 
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details that specify how that system uses a particular type of platform.” 

[111] This model is an extension of PIM, adding specific details for the 

implementation platform. 

Computation Independent Model was proposed for starting software development 

and continued with Platform Independent Model. Today most of industrial approaches 

propose to start with PIM as there is no common understanding of CIM. Some authors 

even have a disparaging attitude towards CIM; some propose to treat CIM as 

requirements [101]. In case of using CIM some suggest it to be automatically transformed 

to PIM. However, as it is not possible to obtain automatically all the necessary 

information in Platform Independent Model, it was proposed that this model should be 

extended manually. It is easy to see that it is not possible to automatically obtain system 

architecture from requirements.  

Already the MDA guide proposed transition from PIM to PSM to be done by 

using automatic transformation. A model is not an executable system. Therefore one more 

transition step from Platform Specific Model to a code is necessary. MDA application 

scheme is shown in Fig. 6. 

 

Fig. 6. MDA application schema with one execution environment 

One of the goals for MDA introduction was to support reusability and application 

development for different frameworks as there are cases when it is necessary to create the 

same application for different frameworks. Applications for mobile phones may serve as 

an example. Different phone developers support different application execution 

environments. This is one of the reasons why Platform Independent Model is separated 

from Platform Specific Model. When using the same Platform Independent Model it is 
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possible to develop application for different frameworks. MDA application scheme with 

the support of multiple execution environments is given in Fig. 7. 

It should be noted that MDA allows using only the UML language for a model 

description.  

 

Fig. 7. MDA application schema with multiple execution environments 

As already stated above the MDA guide proposed to implement transition from 

PIM to PSM by using automatic model transformation. In the context of MDA the term 

model transformation was introduced. “Model transformation is the process of converting 

one model to another model of the same system.” [111] The term model transformation is 

described in detail in Section 1.3. 

1.2.3 Model Driven Software Development 

MDA process is too restrictive. This is a reason why it has not been widely 

accepted in industry. Nowadays MDA is treated as obsolete term. However, the good 

ideas behind MDA as models and model transformations are employed in Model-Driven 

Software Development.  

Compared to MDA in MDSD it is possible to use any chain of models. In MDA 

there was the restriction that the UML language should be used to define models. In 

MDSD there is no such restriction.  

One specific type of MDSD is Domain-Specific Modelling (DSM). In DSM only 

one model is used. Code is generated directly from this model which is defined in 

specialised Domain-Specific Modelling Language. Domain-Specific Modelling is 

described in detail in Section 1.2.4. 
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1.2.4 Domain-Specific Modelling Languages 

Another specific case of MDSD have become exceedingly popular - the 

specialized modelling languages. It is a common practice to create and use specialized 

modelling languages for a domain area and they are called Domain-Specific Modelling 

Languages (DSML). They are developed for users specialized in a concrete area, e.g. a 

language for automotive software development (AUTOSAR [10]), mobile telephone 

software development [88], and many others.  

Domain-Specific Modelling Languages (DSML) is a subset of a more general set 

of languages, namely, Domain-Specific Languages (DSL). When using Domain-Specific 

Languages users can operate with familiar terms. The use of a DSL increases the 

efficiency of software development in the field. DSLs are applied in many areas of 

software development. A popular DSL, for example, is SQL – a specialised language for 

working with databases. 

Software development using DSML is called Domain-Specific Modelling (DSM). 

Commonly, when applying this approach, only one model developed in DSML is used. 

This model is directly transformed into an executable code. However, approaches exist of 

using chains of domain-specific models when each model covers different aspects of a 

system. Relation between DSM and other software development approaches is shown in 

Fig. 8.  

 

Fig. 8. Relation between MD* and DSL approaches 

There can be graphical or textual Domain-Specific Modelling Languages. 

However, DSMLs are more often graphical. (Nevertheless it is not true for DSLs in 

general.) Only graphical Domain-Specific Modelling Languages will be considered here.  
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A visual Domain-Specific Modelling Language basically consists of two parts – 

the domain part and the presentation (visual) part. Sometimes they are called also the 

abstract and concrete syntax respectively. The domain part of the language is defined by 

means of the domain metamodel, where the relevant language concepts and their 

relationships are formalized. The domain metamodel is also used for a precise definition 

of language semantics. Standard MOF [120] or similar notations are used for the 

definition of domain metamodel.  

As regards the presentation part (concrete syntax) definition there is no 

universally accepted notation. The same meta-modelling techniques are used, but with 

various semantics. Most frequently, instances of classes in the presentation type 

metamodel are types of diagram elements to be used in the diagram. A concrete set of 

graphical element types for a diagram definition is called the presentation type model (a 

typical example is the graphical definition model in GMF [172]).  

Tool development for graphical Domain-Specific Languages is time consuming 

and expensive. Due to the growing popularity of Domain-Specific Modelling Languages 

various graphical tool building frameworks have been developed to improve the tool 

(editor) building process. Two different approaches are used in these environments. The 

first option is to use a mapping-based approach. During the tool design this mapping 

assigns a fixed presentation type model element (a node type, edge type or label type) to a 

domain metamodel element, by means of which the latter must be visualized. This 

solution is quite appropriate for simple cases, where no complicated mapping logic is 

required. In this case tools for simple DSMLs can be developed even during a 

presentation session. However, frequently DSML support requires much more 

complicated and flexible mapping logic. One of the reasons is the lack of fixed 

correspondence between the domain metamodel and presentation types. In this case the 

second approach is used: to define the correspondence by model transformation 

languages. Transformations define the synchronisation between the domain and 

presentation models and the tool behaviour in general. 

Mapping based frameworks are MetaEdit+ [109], GMF framework [172], 

Microsoft DSL Tools [28], Generic Modeling Tool [26] and some other. A pure 

transformation based framework is METAclipse framework [86]. The other 

transformation based frameworks Tiger GMF project [37], ViatraDSM framework [133] 

and GrTP [15] provide also some elements of the mapping based approach.  
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There exist mapping based and transformation based tools, but usually some parts 

of the same DSL are suitable for mappings and some for transformations. It means none 

of the solutions is optimal. The absence of a good combined solution creates the problem 

which is discussed in detail in CHAPTER 5. 

1.3 Model Transformations 

This Section focuses on defining the term model transformation; sketching a brief 

introduction into the history of model transformations; listing the popular model 

transformation languages and discussion of the need of model transformations as DSLs 

for specific transformation domains. For introduction a definition of transformation is 

offered: 

Transformations can easily be understood when thinking about what happens in 

nature: an ugly caterpillar is transformed into a beautiful butterfly (Fig. 9); tadpoles into 

frogs; leaves change their colours in autumn. These transformations occur always in the 

same way. It means that the occurrence and the way of transformation is predefined 

somewhere in nature, most probably in DNA. 

 

Fig. 9. Transformation in the nature [30] 

“A transformation is the automatic generation of a target model from a source 

model, according to a transformation definition.” [90] 

“A transformation definition is a set of transformation rules that together describe 

how a model in the source language can be transformed into a model in the target 

language. A transformation rule is a description of how one or more constructs in the 

source language can be transformed into one or more constructs in the target language.” 

[90] 

Although this definition could be applied to caterpillars and butterflies in terms of 

this thesis we will be concerned with transformation of data or, more precisely, 

transformation of models. Model transformation execution scheme is given in Fig. 10. 

This scheme directly corresponds to the definition of transformation. The source model is 
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transformed into a target model according to a transformation definition. It should be 

added that model transformations are defined in terms of source and target metamodels. It 

means that the same transformation could be used for all source models confirming to the 

source metamodel. As transformation works in terms of metamodels all target models 

will confirm to the target metamodel. Of course, it is possible that source and target 

models coincide; such transformations are called in-place transformations. 

 

Fig. 10. Execution scheme of model transformations 

Model transformation languages are used for writing down a model 

transformation definition. The most popular model transformation languages are listed in 

the following sub-Section. 

1.3.1 Model Transformation Languages 

As already mentioned above the term model transformation for the first time was 

introduced in the MDA Guide [117]. At that point there were no appropriate means for 

writing down model transformations. Of course, general purpose programming languages 

could be used, however, they did not have appropriate means to support working with 

models. Therefore OMG requested to submit proposals on model transformation language 

QVT (Queries/ Views/ Transformations) [119]. The development of QVT standard was 

very slow and the first version of QVT standard was published only in April, 2008 [122]. 

Currently the actual version is QVT 1.1. [128]. 

As a result of the slow QVT development many independent model 

transformation languages were developed, for example, MOLA [76, 59], Lx [13], GReAT 

[7], UMLX [197, 179], ATL [63, 165], Tefkat [98, 35], MTF [56], ATOM
3 

[96, 107], 

VMTS [99, 25], BOTL [105, 58], Fujaba [42, 45], RubyTL [32, 185]. 
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In CHAPTER 2 the model transformation language MOLA is discussed in detail 

as it is used in model transformation applications described in the present PhD thesis. 

There already existed many graph transformation languages before OMGs RFP. 

The first graph transformation language PROGRESS was developed as early as the 

beginning of the 1990s [145]. Influenced by OMGs RFP many graph transformation 

languages were adapted for the development of model transformations, for example, AGG 

[163], PROGRES [144], TGG [146, 46], VIATRA [31, 180]. In fact, there is no big 

difference between typed-attributed graphs and models. At present distinguishing 

between a model and a graph transformation language is sometimes quite difficult.  

Model transformation language alone is not sufficient for developing model 

transformation as tool support for the language is required as well. Tool support for 

independent model transformation languages was mainly developed by research groups 

closely associated with the authors of the language. As a result tool support for many 

languages is mainly experimental and is devoid of industrial qualities. The first language 

with good enough tool support was ATL. Most probably this is the reason why ATL is 

the most popular model transformation language. 

The situation with tool support of the QVT standard is even worse. There is no 

tool supporting the QVT language completely. There are some tools supporting parts of 

MOF QVT. MOF-QVT Operational is supported by SmartQVT tool [150]. Eclipse M2M 

project partially implements QVT Operational and QVT Declarative (Core, Relational) 

[175]. MOF-QVT Relational is partially supported by MediniQVT [57]. UML modelling 

tool MagicDraw [115] uses QVT Operational plug-in implemented by Eclipse M2M 

project [175]. 

The limited tool support of QVT and understanding that for different domains 

different transformation languages are needed are the reasons for developing new 

transformation languages even now, among them being Epsilon [92, 169], Henshin [9, 

173], GreTL [55], lQuery [100], UML-RSDS [95], Edapt [168]. 

Examination of application areas of model transformations reveals that for each 

different domain a different language is more appropriate. Actually many transformation 

languages are developed, keeping a certain domain in mind. For example, MOLA was 

developed for transformation development in the MDA process. Viatra specializes in 

transformation development for simulators. lQuery is suitable to develop transformations 

for the DSL tool development. Epsilon actually is a transformation language family 
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where each language is suitable for a definite set of tasks. There are domain-specific 

transformation languages applicable in certain domains. One well studied domain is 

model transformation for model migration.  

1.3.2 Mapping Languages 

When highly abstracting in the consideration of model transformations, we can 

treat them as mapping that is done from the source to the target. That is the way 

transformations were treated in the MDA guide [111]. However, transformations can be 

subject to complicated execution conditions. It is hard to represent these conditions as 

mappings. Therefore mappings can be used only in simple and declarative parts of 

transformations. Hence mappings can be used as a transformation language for simple 

cases.  

“A mapping is specified using some language to describe a transformation of one 

model to another. The description may be in natural language, an algorithm in an action 

language, or in a model mapping language.” [111] 

Attempts to create universal mapping languages as a certain alternative to 

traditional transformation languages have been started sufficiently early. The term 

mappings are used already in the MDA guide [111].  

List of mapping languages is given in the Section 4.1.2. 

1.3.3 Higher-Order Transformations  

MDD can be naturally applied also to transformation development. It means that 

transformations are used to create transformations. This special kind of transformations is 

named Higher-Order Transformations (HOT). These are transformations modifying/ 

reading/creating model transformations. In the HOT approach transformations must be 

treated as models conforming to the relevant metamodel.  

Though the HOT idea can be applied to any transformation language, the largest 

amount of HOTs has been created for the ATL language [63]. A comprehensive survey of 

HOT applications is given in [183] where the four main types of HOTs have been 

identified. One of the HOT application types is transformation synthesis. Transformation 

synthesis means transformation generation from various sources of information, including 

model mappings. Such a mapping between two models can be considered as a high level 

specification of the required model transformation. A large set of such mappings has been 
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obtained by applying the ATLAS Model Weaver (AMW) [39]. The idea of obtaining a 

transformation from a mapping can be applied to many other transformation languages, 

for example MOLA. In CHAPTER 6 a special language for transformation synthesis 

Template MOLA is proposed. It is the first language [69] built specially for the 

development of higher-order transformations. Afterwards a special extension of ATL for 

transformation synthesis was developed as well. [182]. However ATL is textual, while 

MOLA and Template MOLA are graphical languages. 

One of the popular research directions related to the HOTs approach is the 

development of metamodel independent transformations. In most of the model 

transformation languages a transformation is attached to the metamodel it is defined for. 

This makes transformation reuse almost impossible. An approach for solving this problem 

is proposed by [33] and [139]. It should be noted that Template MOLA could be used to 

develop metamodel independent libraries for MOLA. See Section 7.4 for details. 
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CHAPTER 2 

MOLA Language 

As the model transformation language MOLA was used to develop 

transformations described in the thesis an overview of the MOLA language is given in 

this chapter. More about the MOLA language can be found in [76], [75] and [77]. A 

formal description of MOLA as well as the MOLA tool, can be downloaded at [59]. 

2.1 MOLA Overview 

MOLA is a graphical transformation language developed at the University of 

Latvia. It is based on traditional concepts of transformation languages: pattern matching 

and rules defining how the matched pattern elements should be transformed.  

A MOLA program transforms an instance of a source metamodel into an instance 

of a target metamodel. The two metamodels are specified using the EMOF [120] 

compliant metamodelling language (MOLA MOF). These metamodels, which may also 

coincide, both are parts of a transformation program in MOLA. Mapping associations 

may be added to link the corresponding classes in the source and target metamodels. 

MOLA is a model transformation language which combines the imperative 

(procedural) programming style with declarative means of pattern specification. A 

transformation written in MOLA consists of several MOLA procedures, one of them 

being the main. An example of a MOLA procedure is given in Fig. 11 (p.54). The 

execution of a MOLA program starts with the main procedure. Procedures in MOLA may 

be called from the body of another procedure by using call statements. Like in most 

transformation languages, class instances, primitive and enumeration-typed variables can 

be passed on to the called procedures as parameters. There are other types of statements 

in MOLA as well, i.e. rule, foreach loop, text statement, etc. The execution of a MOLA 

procedure starts with the start symbol. The next statement to be executed is determined by 

the outgoing control flow.  

The rule in MOLA represents the classical branching (if-then-else) construct of 

imperative programming. The rule contains a declarative pattern that specifies instances 
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of which classes must be selected and how they must be linked. Only the first valid 

pattern match is considered. The action part of a rule specifies which matched instances 

must be changed and what new instances must be created. The instances to be included in 

the search or to be created are specified using class elements in the MOLA rule. The 

traditional UML instance notation (instance_name:class_name) is used to identify a 

particular class element and specify the class the instance must belong to. Class elements 

included in a pattern may have attribute constraints – simple OCL-like expressions. 

Expressions are also used to assign values to variables and attributes of class instances. 

Additionally, the rule contains association links between class elements. A class element 

may represent an instance, matched previously by another pattern. Such class element is 

called a reference class element and is specified using the name of the referenced class 

element, prefixed with the symbol“@”. 

Typical transformation algorithms require iteration through a set of the instances, 

satisfying the given constraints. In order to accomplish this task, MOLA provides the 

foreach loop statement. The loophead is a special kind of the rule used to specify a set of 

instances to be iterated in the foreach loop. The pattern of the loophead is given by using 

the same pattern mechanism as for an ordinary rule, but with an additional important 

construct. It is the loop variable – the class element that determines the execution of the 

loop. The foreach loop is executed for each distinct instance that corresponds to the loop 

variable and satisfies the constraints of the pattern. In fact, the loop variable plays the 

same role as an iterator in classical programming languages. 

2.2 MOLA Elements 

Table 3 presents a list of MOLA elements. The application context and semantics 

of each element is described. 

Table 3. List of MOLA elements 

Image Element Description  

 

Start 

symbol 

Execution of a MOLA procedure starts with a 

start symbol. 

Execution of a MOLA transformation starts 
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Image Element Description  

from the start symbol of the main procedure. 

 

End 

symbol 

Execution of a MOLA procedure ends with an 

end symbol. When the end symbol is reached in 

the main procedure execution of transformation 

is completed. In other procedures control is 

returned to the procedure calling this procedure. 

 

 

Input 

parameter 

MOLA procedures may have parameters, 

defined by name and type (@<name>:<type>). 

The name should be unique in the procedure 

(different from class element names). The type 

is a reference to a class defined in MOLA MOF 

or a primitive type. Parameters are ordered. The 

order is represented by numbers. 

Values of input parameters are passed to the 

procedure; if the value is changed it is not 

passed back. 

 

 

In/out 

parameter 

The same as the input parameter: the only 

difference is that the value of parameter is 

passed back to the calling procedure. 

 

 

Variable It is possible to define variables in MOLA 

procedures. For variables the name and the type 

is defined (@<name>:<type>). Variables are 

used in the same way as parameters. 

 

 

Rule MOLA rule consists of a pattern to be matched 

and an action part. Both are defined by means of 

class elements and association links. 

The pattern in the rule is matched only once. 

If a rule without a valid match is to be executed 

and it has no ELSE-exit, then the current 

procedure is terminated (if this occurs outside a 

loop) or the next iteration of the loop is started 
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Image Element Description  

(within a loop body). 

 

Loop MOLA loop contains a loophead (the first rule) 

and a loop body (0 or more loop elements whose 

execution order is defined by control flows).  

The loophead is a rule which contains a loop 

variable. The loophead and the loop body are 

executed for each distinct match of loop 

variable. 

 

 

Class 

element 

A class element is a metamodel class, prefixed 

by the element (role) name. 

A class element may also contain a constraint – 

a Boolean expression in a simplified subset of 

OCL.  

Assignments in class elements may be used to 

set the attribute values of the instances. 

When a pattern in a rule is matched for each 

class element, an instance satisfying constraints 

is found and attached to a class element 

(constraints are defined in a class element and 

by a pattern, e.g., connections with other class 

elements). 

 

 

Class 

element, 

reference 

References are marked with the symbol “@”. 

The previously matched instances, as well as the 

parameters and the variables, may be used as 

references. In this case, an instance already 

attached to a referenced element is used in a 

pattern matching.  

 

 

Class 

element 

with NOT 

constraint 

Equivalent to NAC (negative application 

condition) in graph transformation languages, 

e.g., AGG [163].  

A pattern is matched if there are no instances in 
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Image Element Description  

(NOT- 

element) 

the model corresponding to the NOT-element. 

NOT-elements are typically connected to other 

class elements by using association links. Such a 

pattern matches if there is no instance 

corresponding to the NOT-element which 

fulfills conditions defined to NOT-element and 

has all specified links to the instances of 

“normal part”. 

 

Class 

element, 

creation 

It is possible to create instances in the rules. 

Creation is marked with a red dashed line. 

Assignments may be used to set the attribute 

values of the newly created instances. 

 

 

Class 

element, 

deletion 

It is possible to delete instances in the rules. 

Such class elements may be references or they 

are matched before deletion. Deletion of a class 

element causes automatic deletion of the related 

links. 

 

 

Loop 

variable 

Loop variable is an iterator of foreach loop. A 

foreach loop iterates through all possible 

instances of the loop variable class that satisfies 

the constraint imposed by the pattern in the 

loophead. 

There is only one loop variable in a loop. 

 

 

Association 

link 

An association link, connecting two class 

elements, corresponds to an association linking 

the respective classes in the metamodel. Class 

elements at the ends of links are matched to the 

instances connected with a link of this type. 
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Image Element Description  

 

Association 

link, 

creation 

It is possible to create instances of association 

links. An end of a create-link may be attached to 

a class element included in the pattern or to the 

class element, creation. 

 

 

Association 

link, 

deletion 

It is possible to delete instances of association 

links. An end of a delete-link may be attached to 

a class element included in the pattern (also the 

class element, deletion). Association links are 

deleted before the class element deletion.  

 

 

Text 

statement 

Text statements consist of a constraint and 

assignments. It is possible to assign values to 

parameters, variables and class element 

references. Assignments are skipped if the 

constraint fails. Mainly text statements are used 

to process primitive-typed elements. A text 

statement containing a constraint (a Boolean 

expression) may also have an ELSE-exit and 

serve as an if-then-else construct.  

 

 

Call 

statement 

Call statements are used to invoke sub-

procedures. Parameters are passed to the 

invoked procedures. If the parameter is of the 

type in/out to pass the value to this parameter a 

referencable element (variable, parameter, class 

element reference) should be used. 

 

 

External 

call 

statement 

Besides MOLA procedures, external (coded in 

an OOPL) procedures can also be invoked; this 

feature is used for low-level data processing 

(e.g., model data import). Parameters may be 

passed to external procedures. 

 

 

Control 

flow 

Control flow arrows determine the execution 

order of MOLA statements. The element that 
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Image Element Description  

follows the use of the control flow is executed 

as the next one. (If the execution of the previous 

element – rule, text statement – had succeeded.) 

 

Alternative 

control 

flow 

Certainly, there may be a situation when no 

match exists – then the rule is not executed at 

all. To distinguish this situation, the rule may 

have a special ELSE-exit (alternative control 

flow), which is traversed in this situation. 

Alternative control flow may be added also to 

text statements. This control flow is used if the 

constraint in the text statement fails. 

 

2.3 MOLA Example 

In order to illustrate the basic MOLA concepts, briefly listed in the previous 

section, a simple MOLA transformation example is provided in Fig. 11. This example is 

taken from transformations developed in the ReDSeeDS project (see CHAPTER 3). UML 

( + ReDSeeDS specific traceability framework) is used as a source and target metamodel 

of the transformation.  

This procedure copies the interface and all operations it contains to the provided 

package in the target model. ReDSeeDS specific traceability information is created 

between the original interface and its copy. 

This MOLA procedure has four parameters. Three of them are input parameters 

and one in/out parameter. The first parameter (@int) is the interface to be copied. The 

second parameter (@pt) is a package for the copy of the interface to be placed. The third 

parameter (@sa) is ReDSeeDS specific. It is a logical model (Software Artifact) 

processed. All traceability links between the elements are attached to this logical model. 

The fourth (in/out) parameter (@i) is used to return the reference to the newly created 

copy of the interface. 

Execution of the MOLA procedure starts with a start symbol, followed by the 

execution of the rule (using control flow). As already stated previously, the MOLA rule 

may consist of a declarative pattern and an action description. In this case the pattern is 
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trivial as all class elements with black solid borders are references. Nothing is matched; 

the values attached to the references are used directly. Therefore execution of the rule 

starts directly with the execution of actions defined in the rule. This rule creates a new 

instance of an interface (newint) and the latter is set the same name as the name of the 

interface to be copied (name=@int.name). To assign values in MOLA simple OCL like 

expressions are used. (For details see MOLA reference manual [6].) In the same rule 

ReDSeeDS specific traceability information is created (id:isDependentOn) for which the 

original interface is set as a source and the copy of the interface - as a target. The 

traceability information is attached to ReDSeeDS logical model (@sa). This rule uses 

references to the provided parameters (@int, @sa, @pt) and creates appropriate instances 

(newint, id) and association links. 

 

Fig. 11. MOLA example 

The rule is followed by a foreach loop which iterates through all operations of the 

interface to be copied. The operation is used as a loop variable (o). It is checked that the 
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operation is connected to the interface using the association link ownedOperation – 

interface. Only the operations satisfying this condition are processed. 

For each such operation procedure “pim_CopyOperation” is called (using the call 

statement). This procedure contains four parameters as well. The first is the operation to 

be copied (o). The second is simply an empty string and it is not important in this context. 

The third is again ReDSeeDS logical model, used to attach the traceability between the 

original and the copy in the same way as in this procedure. The fourth is a reference to the 

variable (@newo) defined in this procedure. This actually is in/out parameter and is used 

to return the newly created copy of operation. 

After the call statement the MOLA rule is executed. The copy of operation 

(@newo) returned by the call statement is attached to the copy of the interface (@newi). 

Association link (ownedOperation – interface) is created. 

The loop and actions in it are executed while there are operations satisfying 

constraints in the loophead. After execution of the loop completes the text statement is 

executed. This text statement assigns a value to in/out parameter. The value of the 

parameter is set to the created copy of the interface. As a result, when reaching the end 

symbol, the parameter will return the reference to the newly created copy of the interface. 

Reaching of an end symbol is the last element of the MOLA procedure and it 

completes its execution. Control is returned to the calling procedure. The value of in/out 

parameter is also returned. 

To get a more detailed understanding about the usage of different MOLA 

elements see the next section. 

2.4 Hello World with MOLA 

This section is dedicated to describing a solution for the Hello World case [106] of 

the TTC 2011 [5] contest, implemented in the MOLA model transformation language: 

“Saying Hello World with MOLA - A Solution to the TTC 2011 Instructive Case” [74]. 

This use case demonstrates the application of MOLA constructs for solving typical 

transformation tasks. This section provides a more detailed understanding about the usage 

of different MOLA elements in transformation development. If a reader is familiar with 

the MOLA language he/she can skip this section. 
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The Hello World case consists of several very simple tasks. It confirms the 

assertion that simple tasks can be solved in a straightforward and easy readable way in 

MOLA. In most cases the basic part of the task is performed by one rule (or loophead).  

2.4.1 Greeting Tasks 

The first group of tasks is ''Greeting'' transformations. The first task is to “provide 

a constant transformation that creates the example instance of the “Hello World" 

metamodel given in Fig. 12.” [106] The next task is based on “slightly extended 

metamodel given in Fig. 13.” [106] It is required to “provide a constant transformation 

that creates the model with references also shown in Fig. 13.” [106] The last task in this 

group is to “provide a model-to-text transformation that outputs the GreetingMessage of 

a Greeting together with the name of the Person to be greeted. For instance, the model 

given in Fig. 13 should be transformed into the String "Hello TTC Participants!" [106] 

 

Fig. 12. The “Hello World" metamodel and the example instance [106] 

 

Fig. 13. The extended “Hello World" metamodel and the example instance [106] 

In these transformations the MOLA pattern used is very similar to the 

corresponding instance diagram given in the task specification. Greeting transformations 

are given in Fig. 14, Fig. 15 and Fig. 16. The transformation logic for these tasks is 

described by using one MOLA rule (the grey rounded rectangle). The only requirement in 

the first two tasks is to create elements (marked with red dashed lines). In the third task an 

instance of the class ''StringResult'' is created, if the pattern (the elements with black solid 

lines) is matched with the MOLA rule. 
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Fig. 14. Transformation creating a constant Greeting instance 

 

Fig. 15. Transformation creating a constant Greeting instance with references 

 

Fig. 16. Model-to-text transformation creating a greeting message 

2.4.2 Instance Counting 

The next group of tasks in the task specification is the instance counting tasks. 

The input models are simple graphs conforming to the metamodel given in Fig. 17 [106]. 

The task specification is as follows 

 “Provide a model query that counts the number of nodes in a graph. 

 Provide a model query that counts the number of looping edges in a graph, i.e. edges 

where the source and the target node coincide. 

 Provide a model query that counts the number of isolated nodes in a graph, i.e. nodes 

that are neither the source nor the target of any edge. 

 Provide a model query that counts the number of matches of a circle consisting of 

three nodes, i.e. the pattern shown in Fig. 18 where n1, n2 and n3 are pairwise 

distinct. Note that each circle in the model should be matched three times. 

 Optional: Provide a model query that counts the number of dangling edges in a 

graph, i.e. edges where either the source or the target node is missing.” [106] 

Transformation counting nodes in a graph is given in Fig. 19. Transformation 

counting looping edges is given in Fig. 20. Transformation counting isolated nodes is 
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given in Fig. 21. In MOLA the counting is implemented by using an integer counter and a 

foreach loop (a rectangle with a bold border) where the counter is increased. In most 

cases the loophead pattern directly specifies the set of instances to be counted. 

 

Fig. 17. The simple graph metamodel [106] 

 

Fig. 18. Circle of three nodes (simplified representation of edge objects) [106] 

A MOLA variable “sk” (a white rectangle) of type integer is used as a counter. 

Each loop iteration increases the instance count by one. Text statements (yellow rounded 

rectangles) are used to modify the values of the counter. Finally, to save the counting 

result in the resulting model the MOLA rule creating an instance of the class ''IntResult'' 

is used. 

For all these tasks it was required to count elements in a graph. As it was not 

defined whether the model contains only one graph or multiple graphs, we admitted the 

worst case of many graphs in the model. For transformations to work properly when there 

is more than one graph in a model we provide the graph to be processed as a parameter. 

Consequently, we use another MOLA procedure where we iterate through all graphs in a 
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model (using a foreach loop) and from here we call the transformation (using the call 

statement) for processing the current graph. An example of such transformation is given 

on the left side of Fig. 19. (The only thing that changes is the called procedure.) A similar 

graph processing is done for all tasks where the phrase ''in a graph'' is used. If there is 

always only one graph in a model this step could be omitted. The same could be said 

about transformations in Fig. 25- Fig. 32 as well. 

      

Fig. 19. Transformation counting nodes in a graph 

 

Fig. 20. Transformation counting looping edges in a graph 
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Fig. 21. Transformation counting isolated nodes in a graph 

The only counting task, processed differently, is the circle counting. In MOLA 

there are two loop types: the foreach loop and the while loop (rule + appropriate control 

flow). In the while loop, to ensure only distinct matches, an explicit marking of the 

already found matches (using a NAC construct) is required, claiming the usage of 

temporary metamodel elements to solve the task. An alternative is to use three nested 

foreach loops, since multiple loop variables are not supported in MOLA. We provide 

solutions using both loop types as each has some advantages and disadvantages. 

We start with the solution using the foreach loop, as this loop type was used in the 

previous tasks. The solution of this task is different from the previous one because we 

want to find all different circles. In this case one loop variable is not sufficient and, 

consequently, several loops are required. 

The task specification did not clearly state whether graphs or multi-graphs should 

be considered (i.e., is it possible to have multiple edges between two nodes.) As the 

provided metamodel supports multi-graphs and graphs are a subclass of multi-graphs, we 

decided to build our solution, providing support to multi-graphs. This being the case, if 

there is a circle ''n1;n2;n3'' and two edges between ''n1'' and ''n2'', then there will be two 

circles ''n1;n2;n3'' (and 2*''n2;n3;n1'' + 2*''n3;n1;n2''). The solution of this task is given 

in Fig. 22. To distinguish different edges between the same nodes, the edges are used as 

loop variables. There are three nested loops used in the solution. Each loop selects one 

edge for the circle. Actually, finding of circles is defined in the loophead of the first loop, 
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however, when using this loop we are only able to find all edges which are a part of some 

circle, but we do not have information in how many circles this edge is used. Adding the 

second and the third loop we count all circles that have different edges three times, as 

required in the task specification. 

 

Fig. 22. Transformation counting circles consisting of three nodes 

If we know that there are no multi-graphs, then the last loop can be omitted 

because the existence of the third edge is already validated by the patterns in the first and 

the second loop. However, understanding of this case is probably easier if nodes are used 

as loop variables, but anyway three loops are needed again.  
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Solving of the task by using the foreach loop is quite lengthy; however, if we add 

temporary classes it is possible to create a shorter and more elegant solution. In this case 

we will use the while loop. We extend the metamodel by adding the temporary class 

''Circle'' and connecting it to the class ''Edge''. The metamodel extension is shown at the 

bottom of Fig. 23. If such extended metamodel is used then we can simply write a MOLA 

rule looking for circles and marking the found circles: connecting all edges of a circle to a 

new instance of the ''Circle'' class. To ensure that each circle is found exactly once a NOT 

constraint (an equivalent to NAC in graph transformation languages, e.g., in AGG [163]) 

is used, stating that this circle has not been marked previously. As in this solution we do 

not care about the order of edge finding, the loop counter is increased by 3, to ensure that 

each circle has been counted three times. The above mentioned solution is presented in 

Fig. 23. 

 

 

Fig. 23. Transformation counting circles consisting of three nodes, using 

temporary metamodel elements 

Next was an optional task to count the dangling edges. The solution is given in 

Fig. 24. In this case two loops are used. The first one counts the edges without a source. 
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To ensure that the edges without a source and without a target are counted only once the 

second loop counts only the edges with a source and without a target. 

 

Fig. 24. Solution of optional task: counting of dangling edges 

2.4.3 Reversion 

The next task to be considered is edge reversing. It was required to “provide a 

transformation that reverses all edges in a graph conforming to the simple graph 

metamodel given in Fig. 17 (p.58). This is an update operation.” [106] 

We selected a solution where a new reverted edge is created and the old edge is 

deleted (delete is marked by using a black dashed line). The solution is displayed in Fig. 

25. Actually, a shorter solution in MOLA is possible; however, it is not supported by the 

current version of the MOLA tool. 
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Fig. 25. Transformation inversing edges 

2.4.4 Model Migration 

The next group of tasks was model migration tasks. The first task was to “provide 

a transformation that migrates a graph conforming to the metamodel given in Fig. 17 

(p.58) to a graph conforming to the metamodel given in Fig. 26. The name of a node 

becomes its text. The text of a migrated edge has to be set to the empty string.” [106] 

The second optional task was to “provide a topology-changing migration that 

transforms graphs of the metamodel given in Fig. 17 (p.58) to graphs as defined by the 

metamodel in Fig. 27.” [106] 

 

Fig. 26. The evolved graph metamodel [106] 

 

Fig. 27. The even more evolved graph metamodel [106] 

Implementation of such tasks requires adding of temporary traceability relations to 

the metamodel. In this case it is sufficient to have an association between nodes in both 

metamodels (see Fig. 28). The migration transformation from the metamodel graph1 to 

the metamodel graph2 is given in Fig. 29 and from the metamodel graph1 to the 

metamodel graph3 in Fig. 30. At first a new graph in the target model is created in both 
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cases. After that all nodes are cloned and traceability links added. (To ensure it a foreach 

loop iterating through all nodes in the source graph is used.) Finally, all edges are 

transformed by using the traceability information to find the appropriate source and target 

nodes in the migrated model. (To ensure it a foreach loop iterating through all edges in 

the source graph is used.) 

      

Fig. 28. Metamodel extensions for model migration tasks 

 

Fig. 29. Model migration transformation. Migrates graph from encoding graph1 

(Fig. 17) to encoding graph2 (Fig. 26). 
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Fig. 30. Solution of optional model migration task. Migrates graph from encoding 

graph1 (Fig. 17) to encoding graph3 (Fig. 27). 

2.4.5 Deletion Tasks  

Deletion tasks constitute the last group of tasks. The task definition was as 

follows: 

“Given a simple graph conforming to the metamodel of Fig. 17 (p.58), provide a 

transformation that deletes the node with name “n1”. If a node with name “n1” does not 

exist, nothing needs to be changed. It can be assumed that there is at most one occurrence 

of a node with name “n1”. 

Optional: Provide a transformation that removes the node “n1” (as above), but 

also all its incident edges.” [106] 

The last mandatory transformation is deletion of the node named ''n1''. This 

transformation is very straightforward (see Fig. 31). We try to find such a node by using a 

MOLA pattern and delete it, in case of finding it. Deletion is represented by a black 

dashed line. It was required to delete all incident edges in the extension as well. The 

solution of extension is given in Fig. 32. In this case the sequence of deletions is as 
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follows – at first the node is found, all outgoing edges deleted, followed by deletion of all 

incoming edges and finally the node itself is deleted. 

 

Fig. 31. Transformation that deletes the node named ''n1'' (if such a node exists) in 

a graph 

 

Fig. 32. Transformation that deletes the node named ''n1'' (if such a node exists) 

and its incident edges in a graph 

2.4.6 MOLA Tool Support 

This section describes the technical details regarding the solution of the task. 

MOLA has an Eclipse-based graphical development environment (MOLA tool 

[59]), incorporating all the required development support. A transformation in MOLA is 

compiled via the low-level transformation language L3 [13] into an executable Java code 
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which can be run against a runtime repository containing the source model. For this case 

study Eclipse EMF is used as such a runtime repository, but some other repositories can 

be used as well (e.g., JGraLab [64], mii_rep [11]).  

The MOLA tool has a facility for importing existing metamodels, in particular, in 

EMF (Ecore) format. Though the MOLA metamodelling language (MOLA MOF) is very 

close to EMOF, and consequently Ecore, there are some issues to be solved. The current 

version of MOLA requires all metamodel associations to be navigable both ways (this 

permits to perform an efficient pattern matching by using simple matching algorithms). 

Since a typical Ecore metamodel has many associations navigable one way, the import 

facility has to extend the metamodel. Another issue is the variable coding of references to 

primitive data types. 

Metamodel import facilities in MOLA are able to perform all these adjustments 

automatically. In such a way the provided metamodels were imported into the MOLA 

tool. Transformation development of some tasks in MOLA requires additional metamodel 

elements, for example, in migration tasks to store relations between the source and target 

models. These metamodel elements have to be added manually. In migration tasks, these 

are the associations between the node classes in different graph encodings. 

Since the metamodels have been modified during import, the original source 

model does not conform directly to the metamodel in the repository mainly due to the 

added association navigability. Therefore a source model import facility is required. The 

MOLA execution environment (MOLA runner) includes a generic model import facility, 

which automatically adjusts the imported model to the modified metamodel. Now the 

transformation can be run on the model. Similarly, a generic export facility automatically 

strips all elements of the transformed model which do not correspond to the original 

target metamodel.  Thus, a transformation result is obtained which directly conforms to 

the target metamodel. (For an inplace transformation the source and target metamodels 

coincide, as a result nothing has to be stripped.) The transformation user is not aware of 

these generic import and export facilities, he/she directly sees the selected source model 

transformed. 

An executable version of the solution is available online, using the SHARE [186] 

system. A SHARE image of the solution is provided in [4]. By using the SHARE image a 

reader can access an executable version of this case study. All transformation sources are 

available in the transformation definition environment. It is also possible to compile and 
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execute all “Hello World” transformations in MOLA. To access the SHARE image a 

reader should register in the SHARE system and require access to the SHARE image in 

[4]. When the access is granted a reader should connect to the SHARE server by using 

Remote Desktop Protocol (RDP). It is possible to work with a copy of the image, using a 

remote desktop connection. 

2.5 MOLA Metamodel 

In CHAPTER 6 the Template MOLA language is defined. This language is based 

on MOLA. To facilitate a reader’s understanding of the Template MOLA language the 

MOLA metamodels are provided in this section. 

As already mentioned above the transformation definition in MOLA consists of a 

metamodel definition and a transformation procedure definition. The metamodel of 

MOLA MOF, MOLA meta-modelling language is given in Fig. 33. This package of the 

MOLA metamodel is named “Kernel”. The metamodel of MOLA procedure elements is 

given in Fig. 34. This package is named “MOLA”. 
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Fig. 33. The metamodel of the MOLA meta-modelling language [130] 



 

 

71 

 

Fig. 34. The metamodel of the MOLA procedure elements [130] 
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CHAPTER 3 

Transformations for Model-Driven Development in ReDSeeDS 

In this chapter transformations for Model-Driven Software Development are 

analyzed. Transformations described in this chapter are developed within the ReDSeeDS 

project [3] therefore a short overview on ReDSeeDS seems appropriate. Further on 

Requirements Specification Language (RSL) used in the ReDSeeDS project is described, 

this being the entry point for transformations. General principles regarding MDD in 

ReDSeeDS are outlined in Section 3.3, continued with the description of two 

transformation supported paths from the requirement to the code (Section 3.4 and 3.5). 

These paths are based on different architecture styles. The chapter is concluded with 

implementation aspects in Section 3.6 and conclusions in Section 3.7. 

3.1 ReDSeeDS Overview 

Requirements Driven Software Development System (ReDSeeDS) [3, 38] is an 

EU funded project (Contract No. IST-2006-33596 under 6FP). The project was realized 

from September 2006 till December 2009 and it was coordinated by Infovide (Poland) 

with the technical lead of Warsaw University of Technology (Poland) and University of 

Koblenz-Landau (Germany); Vienna University of Technology (Austria); Fraunhofer-

Gesellschaft (Germany); Institute of Mathematics and Computer Science, University of 

Latvia (Latvia); Hamburger Informatik Technologie Centre e.V., University of Hamburg 

(Germany); Heriot-Watt University (United Kingdom); PRO DV Software AG 

(Germany); C/S Enformasyon Teknolojileri Limited Sirketi (Cybersoft, Turkey) and 

Algoritmu Sistemos (Lithuania). 

The author of the thesis was involved in the project from January 2007 till the end 

of the project (December, 2009). The author’s responsibility was to develop model 

transformations to support a full model-driven path from the requirements to the code. 

The author of the thesis participated in the development of 11 project deliverables [65, 83, 

84, 81, 94, 19, 8, 136, 134, 135, 151], as well as in the preparation of 4 publications 

related to the project results [79, 80, 153, 82]. 
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The motto of the ReDSeeDS project was as follows: “Fulfilling the promise of 

comprehensive software reuse by bringing it to the level of requirements linked with 

precise model-based solutions.” [3] 

“The main objective of the project is to create an open framework consisting of a 

scenario-driven development method (precise specification language and process for the 

“how-to”), a repository for reuse and tool support throughout. The basic reuse approach 

will be case-based, where a reusable case is a complete set of closely linked (through 

mappings or transformations) software development technical artefacts (models and 

code), leading from the initial user’s needs to the resulting executable application.” [3] 

The following were the main elements in the ReDSeeDS project: 

 Use (and development) of formal and at the same time easily usable, 

understandable Requirements Specification Language (RSL). (See Section 

3.2.1.) 

 Transformation supported model-driven part from the requirements to the 

code. All artefacts produced were related with traceability information. 

 Software Case Repository for storing artefacts of past software cases 

(models and code). 

 Query engine to find similar past software cases in the repository. 

 Slicing to extract appropriate parts (models and code) from past software 

cases to the one under development. 

In the ReDSeeDS project a prototype of the ReDSeeDS system was developed. 

The usage scenario of the system could be as follows: 

 Requirements for the system to be built are sketched in RSL. 

 The Software Case Repository is queried for similar past software cases. 

Sketched requirements are used as a query. 

 A list of similar software cases is presented. For each software case a 

similarity coefficient is given. A user can analyze similar software cases. 

 Similar slices are found and imported in the current software case. A slice 

is set of related elements from the requirements through all models to the 

code. The set of requirements is selected and all elements implementing 

these requirements (in the models and the code) are automatically added to 

the slice. 
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 Imported slices are adapted, if necessary. 

 Requirements specification is improved, if necessary. 

 The Model-Driven Software Development path described in Section 3.4 or 

Section 3.5 is applied. 

 The developed software case is saved to the Software Case Repository for 

reuse. 

If not needed, reuse of the previously defined software cases could be skipped. 

The usage scenario without reuse is as follows: 

 Requirements for a system to be built are specified in RSL. 

 The Model-Driven Software Development path described in Section 3.4 or 

Section 3.5 is applied. 

In the thesis a model-driven path from the requirements to the code skipping reuse 

aspects will be described in detail. It should be noted that the ReDSeeDS approach for 

Model-Driven Software Development has a value of its own even without reuse aspects. 

It is a real example of a MDSD path with several models. Most of MDSD approaches 

proposed in commercial tools use only one model, e.g. Model2code [21]. In commercial 

tools there is no path from the requirements. Typical MDSD approaches in these tools 

start with PIM. Nevertheless, there exist other approaches starting from the requirements, 

e.g. [101]. 

We will start with a short description of Requirements Specification Language, 

continued with a discussion of the possible use of these requirements in a model 

transformation supported path from the requirements to the code. Two different model-

driven paths supporting different architecture styles will be considered. 

3.2 Requirements Specification in ReDSeeDS 

In the ReDSeeDS project Requirements Specification Language (RSL) was 

introduced. In this section RSL is described and the usage of RSL is demonstrated.  

3.2.1 Requirements Specification Language in ReDSeeDS 

RSL [66, 65, 152] is a semiformal language for specifying requirements for a 

software system. The elements of RSL which can be directly transformed into the system 

design are described below. 
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RSL employs use cases for defining precise requirements for the system 

behaviour. Each use case is detailed by one or more scenarios, in turn consisting of 

special controlled natural language sentences. The main sentence type is the SVO(O) 

sentence [152], consisting of a subject, a verb, and a direct object (optionally, also an 

indirect object). These sentences express the actions to be performed in the scenario. In 

addition to SVO(O), there can also be conditions, rejoin sentences (“gotos” to a point in 

the same or another scenario) and invoke sentences (invoke another use case). 

Alternatively, the set of scenarios for a use case can be visualized in a natural way as a 

profile of an UML activity diagram. SVO(O) sentences serve as the nodes of the diagram, 

and conditions and rejoins as control flows (in addition to the natural “next sentence” 

control flow).  

Another part of RSL is the domain definition which consists of actors (system 

users), system elements, and notions. A reader may think about actors and system 

elements as actors in UML use case diagrams. Notions correspond to the elements 

(classes) of the conceptual model of the future system. It is also possible to define notion 

generalization and simple associations between notions. In the second version of RSL 

[65] it is possible to define one notion as an attribute of another notion. Actually, the 

notion part in the second version of RSL describes a conceptual model of the system to be 

built, only alternative syntax is used instead of traditional class diagrams. 

The precise syntax of RSL is defined by means of a metamodel [66]. All elements 

of requirements specification in RSL are stored as model elements, corresponding to the 

metamodel. Even SVO(O) sentences are processed as model elements, although they 

seem to be a plain text to a user. The behaviour and domain parts in a valid RSL 

requirements model must be strictly related. The subject of a SVO(O) sentence must be 

an actor or a system element. An object (direct or indirect) must be a notion. In principle, 

an object is an element of the conceptual model, affected by the action described in a 

SVO sentence.  

A SVO(O) sentence is given in Listing 1. The syntax used in the RSL editor is 

used here. In this sentence the nouns (or noun phrases) - user, facility, reservable facility 

list - are coloured blue, the verb (selects) is coloured red. The preposition (from) is 

coloured green. “User” is the subject of the sentence. In this case the actor is used as a 

subject. “Facility” is a direct object. “Reservable facility list” is an indirect object. For 

both objects the notions should be defined in RSL.  
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Listing 1. SVO(O) sentence 

User selects facility from reservable facility list  

The informal meaning of each noun and verb must be defined in a vocabulary 

(currently, WordNet [41]). In the ReDSeeDS tool support it is possible to extend WordNet 

by adding new words and new meanings. Typically complex notions as “reservable 

facility list” should be added manually to the vocabulary which is used as the domain 

dictionary, describing the meaning of domain terms. In addition to the vocabulary 

keywords are introduced in the second version of RSL. Compared to the vocabulary, 

elements for keywords predefined semantics is introduced in the RSL profile (see 

Sections 3.3.2 and 3.5.3). 

3.2.2 Example of Requirements 

The proposed ideas are illustrated on a fragment of an example of the Fitness Club 

system. One use case Reservations is taken – how a club customer can book regular 

access to the selected fitness facility of the club. A simple example of this type is given in 

Fig. 35. The activity diagram representation of the requirements is on the left side of the 

figure. The right side of the figure contains the textual representation of the requirements 

where notions and system elements, related to the SVOO sentences, are also given.  

This scenario consists of four consecutive SVO sentences. Actor or system 

element is used as the subject of these sentences. There is one actor “User” and one 

system element “System”. There are three notions “facility”, “reservable facility list” and 

“reserved facility list”. They are used as direct and indirect objects in the SVO(O) 

sentences. 

Textual representation was used as the main representation of the requirements in 

ReDSeeDS. The colour marking in the textual representation of the requirements helps to 

distinguish more clearly the parts of the SVO(O) sentences – subjects, verbs, and objects. 

The subjects and the objects are blue. The verbs are red. The prepositions preceding the 

indirect object are marked green. The whole following group of words marked blue is an 

object with a complex name (there must be an equally named notion in the domain part of 

the requirements). Note that in the textual syntax, each scenario is one continuous path in 

the diagram.  
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Fig. 35. RSL example 

Fig. 36 provides a fragment from a more elaborated example from this use case 

displaying two scenarios from it. They are given in a textual form as they were entered by 

using the RSL editor. This to be a correct requirements model, the relevant notions must 

also be defined (facility, reservable facility list, etc.). The activity diagram for this use 

case is given in Fig. 41 (p.90). 

 

Fig. 36. Requirements – two scenarios in a textual form 

3.3 Model-Driven Development in the ReDSeeDS Project 

The ReDSeeDS approach covers a complete chain of models for model-driven 

development – from the requirements to the code. Each transition in this chain is to a 
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great degree assisted by formal model transformations. Although two specific chains of 

models are described here, the approach could be applied to any similar setting of models.  

The first in the both chains is the Requirements Model built in a special 

semiformal requirement language RSL (described in Section 3.2). The required behaviour 

specification in this controlled natural language is defined by the model; therefore, this 

specification can be processed by model transformations in order to generate initial 

versions of the next models. 

Both architecture styles, implemented in the ReDSeeDS project, contain 

“Architecture” and “Detailed Design” models corresponding to PIM and PSM in the 

MDA approach. In the Keyword-Based Style additional “Analysis” model between “RSL” 

and “Architecture” (PIM and CIM) is used. All transitions between the models are 

assisted by model-to-model transformations. 

It should be noted that we use for our models a pre-selected consistent set of 

design patterns and other design rules, called an architecture style in our approach (this 

concept is described in Sections 3.3.1 and 3.5.2). Transformations are adjusted to this 

style to get maximum results in extracting the required behaviour from RSL. The best 

results are obtained if the requirements are specified in RSL in an appropriate way – there 

is used an RSL profile, associated with the architecture style (see Section 3.5.3).  

All model-to-model transformations in our approach are implemented in the 

model transformation language MOLA [76]. If the selection of patterns and the 

architecture style are changed, the transformations should be rebuilt, too.  

Another issue to be solved by transformations is the inevitable modifications of 

models and the necessity to reapply the transformations and merge the results. 

Transformation development is discussed in Section 3.6.  

3.3.1 Design Patterns and the Architecture Style 

Today large enterprise systems are developed by using a set of design patterns as 

a rule. There are two types of design patterns: platform-independent and platform-

specific. The traditional GoF design patterns [47] represent the former type. The modern 

Java EE environments (based on the POJO [158] idea and declarative ORM) also share a 

large set of common enterprise patterns (and so do the latest .NET environments based on 

POCO [114]). On the other hand, low level patterns, such as an adequate usage of Spring 

framework annotations, are still platform-specific. 
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Usage of design patterns is vital to efficient application of MDD and 

transformations. However, patterns alone are not sufficient for deciding what the 

generated models look like. Therefore, we use the concept of architecture style, which 

includes the structure of the system and the model, a related set of design patterns (with 

indications where they should be used), the applied general design principles, and finally, 

the rules by which model elements are obtained from the models preceding in the 

development chain. This last feature is formalized by a model transformation set 

associated with the architecture style. The most important content of an architecture style 

is the selected set of design patterns, tied up to the chosen model structure. Namely, 

patterns are the style element which helps most in specifying efficient transformation 

rules. In addition, for transformations supporting the given architecture style to produce 

maximum results, the requirements must be specified in an appropriate style, too; 

therefore, the concept of RSL profile (associated with the given architecture style) is 

introduced. 

Two different architecture styles are considered in the thesis: the Basic style (see 

Section 3.4) and the Keyword-Based Style (see Section 3.5).  

The goal of the Basic Style is to prove the feasibility of the approach in which the 

model-driven development, starting from the requirements, is combined with the 

requirement-based reuse of software. The initial version of the ReDSeeDS tool support 

was based on this style. However, the possibilities to extract behaviour from the 

requirements in the Basic Style are significantly weaker than in the Keyword-Based Style.  

The main goal of the Keyword-Based Style is to extract as much as possible 

behaviour from the requirements. The in-depth analysis of requirements is based on 

keywords to be found in the RSL sentences which the style is named after. The RSL 

profile associated with the Keyword-Based Style is described in Section 3.5.3.  

In no case the described architecture styles should be considered the only possible 

solutions; other styles are also possible. To a great degree, the choice of the most 

appropriate architecture style depends on the domain of the system to be created. For 

example, the Keyword-Based Style could be an adequate solution for simple web-based 

information systems. The selection of architecture style could be formalized on the basis 

of non-functional requirements for the system; however, this topic is completely out of 

the scope of the thesis. Furthermore, it should be reminded that creation of a new 

architecture style also requires creation of an appropriate transformation set. 
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3.3.2 The RSL Profile 

Transformations can be applied to any valid set of requirements in RSL for a 

system. Nevertheless, in order to ensure that these transformations generate a really 

substantial fragment of the software system to be built, some more constraints on the 

requirements should be put. Thus, a concept of the RSL profile is introduced. The profile 

defines the set of keywords with predefined semantics to be used in the scenario 

sentences (verbs, nouns, and prepositions) and some rules on how these keywords should 

be used. Moreover, there are constraints on the order of these sentences (or nodes in the 

activity form). All these rules are “soft” rules in the sense that the requirements do not 

become invalid if they violate some of these rules; simply, the transformations can do 

less. At the same time, profiles are defined so that they never make the requirements less 

readable to domain area specialists (however, more skills may be required by requirement 

engineers to create them). A profile is always associated with an architecture style so that 

the corresponding transformation set can produce the largest possible part of the PIM and 

PSM models from the requirements. 

When defining requirements, keywords are not specially marked, they are used as 

all other words in the scenario sentences. The same could be said about a specific order of 

sentences in an architecture style. So it is completely left to the requirements definer to 

follow or disregard these soft rules. The use of RSL profile is analysed only by 

transformations. If the rules are followed, the transformation produces more detailed 

models of the system to be built. If the rules are ignored, the following models in the 

model driven path are of lower quality. It means that more manual work is required for 

adding the missing information. 

In the RSL profile for the ReDSeeDS Basic Style only assumptions about the 

order of sentences are used. The full power of the RSL profile mechanism is used in the 

Keyword-Based Style. A detailed description of the RSL profile and keywords used in this 

architecture style is given in Section 3.5.3. 

3.4 ReDSeeDS Basic Style 

This architecture style was defined by Warsaw University of Technology (Poland) 

and transformations for it were implemented by the author of the thesis. This was the first 

architecture style defined in the ReDSeeDS project.  
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Fig. 37. Model chain in the ReDSeeDS Basic Style 

The RSL profile for this architecture style has no keywords, only some constraints 

on sentences. The usage of this style has confirmed the feasibility of the used 

technologies and approaches; however, the part of a system, generated by transformations 

in this style, is small. The model chain used in this architecture style is presented in Fig. 

37.  

3.4.1 The Platform-Independent Model 

The PIM model is going to be described in greater detail since its relation to the 

CIM model in RSL is the most interesting in our approach. PIM defines the static 

structure of the system to be built by means of classes, components and interfaces. Draft 

behaviour of the system is described by means of sequence diagrams. 

According to the chosen architecture style, a four-layer architecture is used with 

the following layers: Data Access, Business Logic, Application Logic and User Interface. 

Additionally, Data Transfer Objects (DTOs) are used as data containers for data 

exchange between the layers. Component and interface based design style is used at all 

layers. Components encapsulate groups of related elements of the system. Interfaces 

appear as provided interfaces of the respective components. The main patterns used in 

this architecture style are data access objects (DAO) for the Data Access layer and MVC 

for the Application Logic layer.  

There are seven static structure packages in PIM, one for each layer, one for the 

DTOs, one for the Interfaces and one for the Actors. The package Actors contains actors 

of the system to be built. They are directly copied from the requirements. The package 

Data Transfer Objects contains DTOs created from notions. Each notion is transformed 

into one DTO class. Thus, this package serves also as a sort of conceptual domain model. 
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The package Data Access contains data access objects (DAO) for the persistence 

related operations. Each lowest level notion package is transformed in one DAO 

component. Each notion contained in this package is transformed into an interface of this 

component. The relevant CRUD (create-read-update-delete) operations are added for 

each interface. 

The package Business Logic contains business level components and interfaces. 

Components and interfaces are created in the same way as in the Data Access layer. 

However, only notions, participating in business level operations, are used therein. In 

other words, only interfaces, containing business level operations, are created. Creation of 

the latter will be described together with the behaviour sequence diagram creation. 

The packages Application Logic and UI are based on the MVC (model-view-

controller) pattern. Components in Application Logic are created from use case packages 

of the lowest level in the package tree. Provided interfaces of these components are 

created from use cases written in RSL. One interface is created for each use case. 

Methods of these interfaces are created by analyzing the system behaviour. This will be 

described together with the sequence diagram creation. Currently, only a placeholder for 

the UI part is created. It could be replaced by a real UI support, but it is out of the scope 

of this chapter. 

 

Fig. 38. Static structure processing example 

The above rules for generating the static structure of the system introduced in Fig. 

35 (p.78) are illustrated in Fig. 38. On the left side of Fig. 38 the static structure of 

requirements in RSL (as in the RSL editor) is given. On the right side of Fig. 38 the static 
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structure of PIM (Architecture, as displayed in EA) is shown. Both sides are connected 

with mappings relating the source and the target of some transformation rule described 

above. These mappings are similar to the ones used in the Model Transformation by 

Example (MTBE) approach [199]. However, when replacing concrete instances with 

patterns for finding relevant instances, a new mapping language could be obtained 

(similar to the one described in CHAPTER 4). 

 

Fig. 39. Behaviour example 

Certainly, the most complicated part is the description of the system behaviour. 

The sequence diagrams, describing the system behaviour, are created by analyzing 

scenario sentences. There can be three types of SVO sentences. The first one is an actor – 

system sentence. In this case the subject of the SVO sentence is the actor. For two other 

sentence types the subject of the sentence is a system element. The sentence types are 

distinguished by using the recipient link. Recipient is a SVO sentence element; it defines 

where to the behaviour described in the sentence is directed. The second type of the 

sentence is system – actor. In this case the subject is the system and the recipient is the 

actor. The third sentence type is system – system. In this case the subject and the recipient 

is the system. It is used to describe the internal actions of the system. The type of the 

particular message generated in the sequence diagram depends on the sentence type. Fig. 

39 illustrates the behaviour sequence diagram of the example described above. It shows 
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that the operations in the Business Logic layer are created only for the system – system 

sentences. The actor-system sentences are used for the creation of the Application Logic 

methods. UI methods are created from the system – actor sentences. 

PIM can be manually extended after the initial generation. Afterwards it is 

transformed to PSM. 

3.4.2 The Platform-Specific Model 

The same four layers and DTOs are used in PSM. In this model the factory pattern 

is used, enabling the management of classes and interfaces. Each component in PIM is 

transformed into a package and a factory class in PSM. Every interface is transformed 

into an interface and an implementing class. Classes and interfaces are located in 

packages, created from components. Factory classes, created from components, have 

methods for getting provided interfaces. For each layer one more factory class is created. 

It manages all other factory classes in this layer. 

The platform-specific model can be extended manually in the same way as the 

platform-independent one. Then this model can be transformed to the code. 

Transformation, creating PSM, uses two transformation libraries. The copy library 

was used to copy DTOs from PIM to PSM. For the other layer the transformation library, 

converting components with its interfaces to factory classes, was used. Here the copy 

library for interfaces was used as well. 

3.5 The Keyword-Based Style 

This style is defined by the author of the thesis in cooperation with her supervisor 

and the UL IMCS ReDSeeDS team. All model-to-model transformations have been 

implemented by the author of the thesis. Model-to-text transformations in EA CTF have 

been implemented by Agris Šostaks. 

In this section only the main ideas the Keyword-Based Style rests upon are 

outlined. A detailed description of the Keyword-Based Style model structures and 

transformation algorithms is given in Section 6.3 of ReDSeeDS deliverable D3.2.2 [84]. 

Introduction into the Keyword-Based Style starts with the description of the 

model and system structure and some general design rules. We have chosen a four-layer 

architecture because it is the most popular and accepted information system architecture 
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style today. As already mentioned we use the following layers: Data Access or Repository 

layer, Service or Business layer, Application Logic, and User Interface. We also have 

domain objects as data containers (available to any layer, former DTOs [104]). Another 

general principle of our approach is based on a declarative Object-Relational Mapping 

(ORM). The particular ORM in our approach is Hibernate [16]. Whenever possible, we 

use an interface-based design style for all layers, meaning there is an interface (where the 

operations are specified) and its implementation class. 

3.5.1 Models  

In this section we present a short rationale behind our selection of the specific 

model chain. The selected model chain is given in Fig. 40. 

 

Fig. 40. Model chain used in ReDSeeDS Keyword-Based Style 

Requirements are specified in the requirement specification language RSL [66] 

[152] which lies at the basis of the approach. We are interested mainly in the 

requirements for the system behaviour specified by use case scenarios and draft domain 

concepts (which are called notions in RSL). 

Starting from the requirements, a chain of models for a model-driven development 

of the software system is proposed. To a great degree, this chain has been inspired by the 

classical MDA approach. However, the specific structure and construction principles of 
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the models in our approach are determined by the chosen architecture style, the most 

important feature of which is the set of the selected design patterns. A more precise 

description of the concept of the architecture style is given in Section 3.3.1. All the 

models are built in UML2 [121], using an appropriate profile. 

Initially the Analysis model is extracted by transformations from the requirements. 

This model has no direct counterpart in the classical MDA chain. It corresponds more to 

the Analysis model in the standard OOAD [97] approach. Therefore, we call this model 

the Analysis model. The most important part of it is the class diagram, describing the 

main concepts of the software system to be created (the Domain Model). Stereotypes are 

used to distinguish different types of concepts according to the Analysis Profile. The 

Analysis Model is described in a greater detail in Section 3.5.4. 

The most important model in the proposed model chain is PIM, which is very 

close to the corresponding model in the MDA approach. This model is built according to 

the selected design patterns and contains the description of structure and detailed 

behaviour of the would-be system in a platform-independent way. In this model the 

implementation structure is represented according to the behaviour extracted from use 

case scenarios. This model is platform-independent and could be used as a basis for the 

development of a code on any enterprise platform (Enterprise Java, .NET, etc.). This is 

the model where the selected design patterns and sophisticated analysis of the 

requirements permit to generate a non-trivial part of solution behaviour. Transformations 

which generate the initial version of this model use both Requirements and Analysis as 

inputs. In the whole chain of transformations, this step contributes most to the rich system 

functionality inferred directly from the requirements. The contents of PIM are described 

in Section 3.5.6.  

The final model in the chain is the PSM in a fairly standard MDA style (Section 

3.5.8). It is built by transformations from PIM by adding platform-relevant details. 

Currently the chosen target platform is Java in the Spring/Hibernate framework, but any 

similar platform can be used as well. In this model stereotypes corresponding to Spring-

specific annotations are used. Finally, PSM is transformed to the Java code with 

Spring/Hibernate annotations. The main value of the approach lies in the fact that a large 

fraction of a non-trivial prototype of the system can be obtained from the requirements 

without a manual extension of intermediate models. Certainly, a true model-driven 
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development should follow, where in each step the required details of the real system are 

filled in manually. PSM is described in detail in Section 3.5.8.  

It should be noted that in the ReDSeeDS project an alternative model naming is 

used – PIM is also called the Architecture model and PSM the Detailed Design model. 

3.5.2 Selected Design Patterns for the Keyword-Based Style 

In this section we will describe the design patterns chosen for the Keyword-Based 

architecture style. The patterns are grouped according to models and system layers chosen 

for the style. The patterns used at the PIM level are as much platform-independent as 

possible. Since we have chosen Java + Spring + Hibernate framework as the target 

platform, the design patterns popular in the Spring community are used at the platform-

specific level. This choice has also slightly influenced our PIM level, when we had to 

choose one of several equivalent options. 

We use the DAO design pattern [138] at the Data Access layer. Data access 

objects are introduced as the main actors for explicit ORM-related actions. Therefore, 

each DAO has the basic CRUD and typical Find operations. A data access object is 

created for each persistent domain concept. The DAO classes are assumed to have the 

standard transaction support for their operations. 

Manager is the main design pattern used for Business Logic (see [108] for its 

version in the .NET world). It means that for each domain concept participating in 

Business Logic, a class (and interface) is created, which encapsulates all business level 

operations related to this concept.  

The Application Logic and User Interface layers are governed by the MVC 

pattern, which is used in almost every four-layer architecture. Moreover, the façade 

pattern [47] [104] is used for the Application Logic. For each Use Case in the 

requirements, we create one Application Logic interface and an implementing class. This 

class implements all operations invoked by the MVC controllers within this use case. 

The UI part is kept as simple as possible. It contains only calls to the application 

layer. This research does not include the specific issues of building user interfaces from 

the requirements, which is a separate topic in the ReDSeeDS project (see [87]).  

We also use the domain object design pattern. It means we use domain objects as 

data containers, in other words, as standard “POJO” (not mandatory Java) objects. 

Persistent domain objects are treated as the basis for the ORM definition; therefore, 
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platform-independent ORM features, such as identifying attributes and persistent 

relations, are included. 

The design in general relies on the Dependency Injection Pattern (which will 

appear later as platform-specific dependency annotations) for referencing other classes; 

therefore, the Factory Pattern is not used explicitly. 

Platform-specific design patterns are used in PSM and in the code. These are 

domain objects that have the most of platform-specific features. The POJO pattern is 

used, adapted to the Spring style. We use the declarative ORM definition (Spring + 

Hibernate) based on annotations which are coded as appropriate stereotypes in PSM. The 

transactionality of relevant classes is also defined by annotations. For reference 

initialization, the dependency injection pattern is used. 

For UI layer, the MVC design pattern is used in a standard (“Spring-Basic”) way.  

3.5.3 RSL Profile for the Keyword-Based Style 

As stated in the previous section Java + Spring + Hibernate framework was 

chosen as a target platform for this architecture style. This decision is closely related to 

typical application areas of this architecture style which is suitable for web application 

development. Examples of typical applications are online shops, online reservation 

systems, etc. 

Terms related to this type of systems are selected as keywords. Actions typical to 

this type of systems are selected as verb keywords. Objects used in these systems are 

selected as noun keywords. When selecting some terms as keywords, predefined 

semantics is added to them. 

In this profile the verb keywords for SVO(O) sentences are show, select, build, 

add, and remove. The noun keywords are form and list – when used as parts of complex 

notion names (and, consequently, objects in SVO(O) as well). Conditions (which 

otherwise are arbitrary sentences in RSL) can contain the verb keyword click and the 

noun keywords button and link. The adjective (modifier in RSL terms) empty is also 

treated as a keyword. 

A brief description of the meaning of keywords and some context rules in 

scenarios is given below. The keyword show means that the system must display a form 

defined by the direct object of this sentence. This object, in turn, must correspond to a 

notion whose complex name ends with the noun keyword form. For example, the SVO(O) 
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sentence “System shows reservable facility list form” specifies that the form “reservable 

facility list form” must be displayed at this point.  

Similarly, the sentence “System builds reservable time slot list for facility” uses 

the verb build, which means data creation. The direct object “reservable time slot list” 

denotes a list, since the last noun in it is list.  

The sentence “Customer selects facility from reservable facility list” means that 

the user has performed element selection from the data table in the form. The indirect 

object (preceded by the preposition “from”) specifies the data table contents (“reservable 

facility list”, i.e., a list notion), the selected element is an instance of the notion “facility”. 

The condition “click Select link” means that the user clicks on an active element 

(link) in a form table with selectable rows. Normally this condition should be on the 

control flow, which goes from the shows sentence/node (see the example above) to the 

selects sentence (the previous example). This order of sentences should be followed to 

enhance the following models produced by transformation. A recommended order of 

sentences is a part of the RSL profile. 

 

Fig. 41. Requirements – scenarios of the use case in a graphical form 
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The condition “click Confirm button” means that the form button has been 

clicked. The meaning of the remaining keywords is self-explanatory. The example in Fig. 

41 completely complies with the rules described above.  

It should be noted that the use of keyword and predefined order of sentences is 

voluntary. However, it affects the quality of the following models. If keywords are used 

appropriately, more complete models are obtained in the following steps. 

The described profile for the Keyword-Based Style is supported in the current 

version of the ReDSeeDS tools. Currently for a term to be treated as a keyword exactly 

this predefined term should be used. Nevertheless, extending keyword support and using 

WordNet [41] it should be possible to treat synonyms of predefined terms as keywords as 

well. 

3.5.4 The Structure of the Analysis Model 

The main part of the Analysis model in the Keyword-Based Style is the Domain 

Model – a conceptual class model for the system to be built. The Domain Model is 

generated by appropriate transformations from the domain (notion) part of Requirements. 

It contains classes corresponding to all notions in Requirements. Class attributes and 

associations are also extracted from the notions part of Requirements (if they have been 

defined there). A special Analysis profile is defined in ReDSeeDS which contains 

stereotypes to be applied to the Domain Model. Classes generated from persistent notions 

would have the <<entity>> stereotype (there also are some heuristic rules how to find 

persistent notions when they have not been properly marked in the requirements). Other 

classes with the stereotype <<form>> would correspond to forms – notions with the 

suffix form in their names. In a similar way, collection classes (for example, 

ReservableFacilityList) will have the <<list>> stereotype. In the design stage, these 

classes will be converted into generic list classes. Control elements in forms (such as 

buttons and links) are also represented by stereotyped classes in the Domain Model, with 

stereotypes <<button>>, <<gridLink>>, <<link>>, and some others. Additional 

associations, having a special meaning for the design model (e.g. aggregations linking a 

form to a list to be visualised as a data grid in this form), can also be generated. These 

associations are also given special stereotypes (<<owned>>, <<formElement>>, a.o.). 

See more on the principles how the Domain Model is generated from Requirements by 

transformations in Section 3.5.5. Fig. 42 presents a part of the generated Domain Model 
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in the Fitness club example. It shows that the proposed approach can transfer a significant 

part of the intended semantics of the requirements into the stereotyped Domain Model 

(this, in turn, will guarantee a rich behaviour to be generated into the PIM model). 

 

Fig. 42. Fragment of the generated Domain Model 

The full strength of the transformations is revealed only if requirements are built 

in RSL according to the appropriate RSL profile (see 3.5.3). If requirements in RSL 

cannot provide sufficient information for building this Domain Model, it is highly 

recommended to extend this model manually in the Analysis step. Only in this case the 

next steps will provide the desired results.  

The structuring of the Domain Model is based on notion packaging (provided in 

RSL). 

3.5.5 Transformation of Requirements to Analysis 

The main task of this transformation is to create the Domain Model from the 

notion part of Requirements, taking into account some elements of scenarios as well. The 

basic transformation is very straightforward since notions, their attributes, and 

relationships in RSL actually are in one-to-one correspondence to the class model. The 

stereotypes <<list>> and <<form>> are added if the respective keywords are present in 
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the notion names. An additional analysis is done for list classes. If an entity name is 

contained within the list notion name (such as “facility” within “reservable facility list”), 

the entity class is assumed to be the element of that list (a <<listItems>> association is 

generated).  

Classes for control elements can be generated from scenarios. We are looking for 

a click-condition (click … link or click … button) which follows a show-sentence (… 

shows … form). If such (new) situation is found, a class is generated with the name equal 

to the name in the click-condition and the stereotype <<gridLink>> or <<button>>, 

respectively. The association (with the stereotype <<formElement>>) linking the control 

element to its form is also generated. 

More form-related associations can be generated from scenarios. Select-sentences 

(such as ... selects facility from reservable facility list) allow us conclude that the relevant 

form (that in the preceding show-sentence) permits to select elements exactly from this 

kind of list. Hence, this list (here, ReservableFacilityList) is visualized in the form (the 

<<owned>> association can be built), and each gridLink element in the form corresponds 

to a row in the list (the <<gridRow>> association is built). 

Using these relatively simple principles, the Domain Model in the example in Fig. 

42 can be generated from notions and the scenario in Fig. 41 (p.90). Implementation of 

these transformations in the MOLA language is also quite straightforward. 

3.5.6 The Platform-Independent Model 

This model is the most important to our approach since all platform-independent 

functionality is generated in this model. This is done by revisiting the use case scenarios 

and analyzing them repeatedly, taking into account the (possibly manually extended) 

Domain Model from Analysis. In combination with the keyword-based sentence analysis, 

a significant part of application and especially Business Logic can be generated. This 

model is created according to the platform-independent design patterns described in 

Section 3.5.2. 

The main result of the PIM step is the design class model: packages and classes 

(and interfaces) with all attributes and operations. The operations will have all parameters 

defined. All the other data such as persistence info for ORM-related classes are coded by 

platform-independent stereotypes, which constitute the PIM profile. 
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The other essential results of this analysis are stored as sequence diagrams, also 

covering a significant part of the Business Logic method bodies. All method invocations 

with appropriate parameters that can be generated are coded this way. Whenever possible, 

the invocation logic up to the DAO level is documented. These sequence diagrams are 

kept in the behaviour package and are grouped in the same way as use cases in the 

Requirements Model. Some small practical extensions of sequence diagram syntax are 

used, for example, FOREACH iterator in loop fragments. 

The design class model is split into the following packages: applicationlogic, 

businesslogic, dataaccess and domainobjects. The first three are further subdivided into 

Interfaces and Implementation parts, containing interfaces and implementing classes, 

respectively. Each interface name has the prefix “I” added to the corresponding class 

name. 

For application logic, the façade design pattern is used. For each use case, a class 

corresponding to this use case is generated (with the suffix “Service” added to the name). 

Further structuring of the applicationlogic package is done according to the use case 

packages. 

The content of businesslogic is generated according to the Manager Pattern. Here 

classes correspond to persistent classes (entities) whose usage in Business Logic can be 

inferred from sentences with keywords and the Domain Model. Classes/interfaces have 

the suffix “Service” added to the entity name. 

For dataaccess, an updated version of the DAO pattern is used, and practically 

applicable methods are generated for DAO classes. Each class corresponds to a persistent 

domain object; the class name is generated from the object name with the suffix “DAO”. 

Classes are grouped in the same way as domain objects. For each class, CRUD and some 

typical find operations are generated. Bodies of these operations are similar in all classes, 

only the types vary. Therefore, we propose to implement them once in a template class 

which contains parameterized types. All the other classes will inherit them from this 

template class (with parameters set to the relevant values in each case). We remind that 

this specialization of the classical DAO pattern is platform-independent since it can be 

directly implemented in most of typical platforms.  

For the domainobjects package, the domain object design pattern is used. This 

package represents a platform-independent Object Relational Mapping (ORM) model for 

all entities with platform-independent annotations. Associations (relations) are also 
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included in a way typical of an ORM definition. A database schema for a specific 

platform can also be easily generated from this model (in the next PSM step). Names of 

domain objects are taken from the corresponding domain concepts. For each persistent 

class, a unique identifier attribute is defined as well.  

3.5.7 Transformation of Requirements and Analysis to PIM 

Transformations for building a platform-independent model are more complicated 

than for building the Domain Model in Analysis. They use the behaviour part of the 

Requirements model as input, as well as the updated Domain Model.  

The transformation of domain objects is very straightforward. Domain classes are 

transformed to PIM domain objects, retaining all attributes. For each persistent class 

without a primary key, an artificial primary key is created. Here the copy library is used.  

For each persistent domain class, a DAO class and its interface is created in the 

dataaccess package. They specialise the template-based implementation of CRUD and 

filter operations. 

In the Business Logic layer, classes and interfaces have a structure, similar to that 

in DAO, with the exception that classes, devoid of business level methods, are excluded. 

The generation of business methods is done in the general context of behaviour 

generation by analyzing scenarios in the requirements. 

In the Application Logic layer, for each use case, a class and interface is 

generated. For this interface/class, one “main” method is generated (which means 

invoking this use case from another one). Its name corresponds to the Use Case name. 

Other methods for this class are generated for UI-related sentences in the scenario that are 

detected by analyzing the subject of the sentence. If the subject of the sentence is an actor, 

then it is actor-system sentence (or UI-related sentence). 

Behaviour generation, described below, is the most complicated part. Here we 

greatly rely on the meaning attached to the keyword. We use heuristics describing how 

the resulting model should look if one or another keyword is used. The transformation 

algorithm is complicated. A detailed description of the transformation algorithm is quite 

lengthy (see [84]).  

Now we present the main ideas transformations rest upon and typical examples, 

representing the use of keywords in transformation algorithms. 
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Behaviour is grouped in the same way as Use Cases. For one Use Case, one or 

more sequence diagrams are generated by processing its scenario. The behaviour of a Use 

Case begins with invocation of the “main” method of the Application Logic class 

corresponding to the Use Case.  

In order to build an Application Logic method body, we look for consecutive 

scenario sentences with the subject System and the recipient system (in other words, any 

verb other than “System shows …). All these sentences correspond to calls to the 

Business Logic layer. At first the verb used in this sentence is analyzed. If the verb is a 

keyword, the sentence is analyzed according to the rules used for this keyword. If the 

verb used is not a keyword, the structure of the sentence alongside with the object 

keywords is analyzed. Default behaviour generation principles corresponding to the 

sentence structure are applied. The immediate recipient of this call depends on the 

sentence structure. If the indirect object (e.g., … for facility) is present, the call is directed 

to the manager of the corresponding entity (here, FacilityService). Another typical case is 

when an indirect object is absent and the direct object corresponds to a notion/class with 

the stereotype <<list>>. Then the invocation is created to the manager class 

corresponding to the entity class which is the list element. There are also some other 

“patterns” of sentences, corresponding to the Business Logic calls (or simple actions 

directly in the Application Logic layer).  

The grouping of the generated Business Logic calls is done in a simple way – all 

these calls up to the next UI call (corresponding to the next “System shows …” sentence) 

are included in the body of the current Application Logic method body (see Fig. 43). The 

“System shows … form” sentence generates a call to the User Interface layer (to the 

controller of the relevant form), which completes the current body. The next sentence 

(which in fact follows the “click …” condition) corresponds to the invocation of another 

Application Logic method. Then building of the body of this method starts. 

Fig. 43 illustrates in detail a typical application of the transformation rules 

described above by an informal “model mapping diagram”, with arrows going from the 

source model instances (bottom) to the corresponding target model instances (top). The 

first sentence in the scenario fragment (“Customer selects facility from reservable facility 

list”) follows the “click Select link” condition; therefore, it implies the method invocation 

selectFacilityFromReservableFacilityList() to the Application Logic class 
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(ReservationsService). The two following sentences in the scenario correspond to the 

actions in the body of this Application Logic method.  

 

Fig. 43. An example of informal mapping describing transformations to Detailed 

Design 

Fig. 43 presents a detailed analysis of the first sentence. The sentence “System 

builds reservable time slot list for facility” implies the Business Logic method invocation 

buildReservableTimeSlotList(). According to the rules described above, there is an 
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indirect object (“for facility”); therefore, the method must go to the corresponding 

manager class (to the class FacilityService). Because of build-semantics (build is the 

keyword) of the verb and list-semantics of the direct object, the return type of the method 

is List<TimeSlot>. The returned value must be stored in the attribute 

reservableTimeSlotList (of the same list type) of the invoking application class 

(ReservationsService). The next sentence corresponds to an action in the body 

(assignment to the attribute reservedTimeSlotList) because of the semantics of the 

keyword empty. Note that all lifelines correspond to the interfaces because any invocation 

goes via the corresponding interface in our style (certainly, the body behaviour relates to 

the relevant class). 

There are some more rules in the approach quite similar to those explained in the 

example. We do not examine the interaction with the UI layer in a greater detail. 

3.5.8 The Platform-Specific Model  

This model is a specialisation of the platform-independent model to a specific 

platform. The choice was Java with Spring + Hibernate 3 with the greatest possible 

declarative (annotation-based) style. 

For this platform, the model is quite similar to the platform-independent model. 

The class structure in PIM corresponds more or less to the required structure in PSM. The 

main task is to convert annotations to the specific style required by Spring and Hibernate. 

However, some new model elements should be added as well. In this step the copy library 

is widely used which is characterized by the feature to do copying and make some 

modifications depending on the transformation type 

A new model is the database diagram generated from the domain objects. This is a 

typical database design diagram (with tables, columns, PK, FK, etc.) in EA. 

The domain objects are “copied” with the same package structure. They are used 

to describe Hibernate-specific ORM functionality. All Hibernate- and Spring-specific 

annotations are added (coded as stereotypes) to the domain classes, attributes, and 

operations. The relevant getters/setters and some predefined methods are added to the 

classes. Traceability links between PIM and PSM elements are generated by 

transformations and used to maintain various annotations related to mappings between 

different parts of the model. 
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For each DAO class, the annotation <<@Repository>>is added. These classes 

have also annotations describing the transactional mode, the default “required” is used. 

The template-based mechanism is directly taken from PIM.  

The Application Logic layer classes are included in the Business Logic layer. 

Classes in these layers are given the annotation <<@Service>> (to mark them as Spring 

beans). The annotation <<@Autowired>> is used to initialize references to other beans. 

The structure of PSM corresponds directly to the potential Java class structure 

typically used in Spring (with the packages domain, repository and service). These 

packages are further structured in accordance with the already defined model structuring. 

In order to have a more or less complete design class structure and behaviour in 

sequence diagrams, some elements in the UI area have to be specified as well. The basic 

source for that – forms, attached data, and actions (buttons and links) are available in the 

Analysis model. Currently a rudimentary solution directly based on Spring MVC is 

proposed. In this solution, we can use JSP for data visualisation and controllers to manage 

user actions. We use one controller per form, adding a method for each user action in the 

form. Typically a controller method directly calls the appropriate Application Logic 

method. Nevertheless, this should be treated only as a “stub” which can be replaced by a 

more appropriate UI feature definition. Such a prototype form structure definition could 

be incorporated in the requirements since the RSL language contains features for that 

purpose. Some experiments in this direction have been performed. 

Sequence diagrams, defining behaviour within method bodies, are also refined 

according to the Spring requirements. The most significant changes refer to the User 

Interface part. At this level, a simple version of UI and the Application Logic interaction 

can be precisely defined. In particular, a special “executable” solution (including DAO 

methods) could be provided for finding the object selected by the user via a data grid in a 

form. This way, the form behaviour sufficient for simple prototyping could be provided. 

We do not describe the UI aspects of PSM in a greater detail since the tool support for 

them has not been fully implemented. 

3.5.9 The Java Code 

The provided PSM can be used for the Java code generation. This generation is 

quite straightforward – at first all information must be transferred into a properly 

stereotyped class model using the MOLA transformations (the body behaviour must also 
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be transferred from sequence diagrams to the code sections of operations in EA). Then 

the properly modified EA Java code generation scripts can be used. The main issue of 

modification concerns adding scripts for processing all relevant annotations.  

The structure of the Java code directly corresponds to the structure of PSM. 

Methods are generated according to the model. Predefined method bodies are generated 

for some methods. This is widely used for domain objects (almost all methods are 

generated). Bodies of getters, setters, hashCode, equals, toString are generated in 

particular. A template-based generator is used and the method body vary according to the 

object properties for which the method is generated. 

There are also generated predefined method bodies of the TemplateDAO class and 

concrete DAO classes extending the TemplateDAO class with appropriate types. 

Appropriate Hibernate configuration file describing, for example, the data base 

connection is also necessary. An initial version of this file can be generated. It should be 

noted that a data base script can also be generated from PSM. 

The Business logic- and Application Logic-related functionality is generated 

according to the class structure. The behaviour (described in sequence diagrams) is 

generated as well. Concerning the UI part, currently only a placeholder is generated. 

The generated Java project can be inserted into an Eclipse IDE project template 

containing references to the required Spring and Hibernate libraries. Thus, a ready-to-

compile project is obtained. All this constitutes a significant part of a simple prototype – 

mainly the UI part has to be added manually. However, if the complete set of 

transformations described here was implemented, a “near to executable” prototype would 

be obtained. 

Some examples of the generated Java code are given below. The example in 

Listing 2 presents apart of the code generated for the Facility entity.  

Listing 2. Generated Java code for the entity class “Facility”. 

@Entity 

@Table(name="facility") 

public class Facility { 

 

private Boolean active; 

private Boolean capacity; 

private String description; 

private String facilityNumber; 

private String id; 

 

@Override 

public boolean equals(Object obj){ 
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if (this == obj) return true; 

if (!super.equals(obj)) return false; 

if (getClass() != obj.getClass()) return false; 

Facility other = (Facility) obj; 

if (active == null) { 

 if (other.active != null) return false; 

} else if (!active.equals(other.active)) return false; 

if (capacity == null) { 

 if (other.capacity != null) return false; 

} else if (!capacity.equals(other.capacity)) return false; 

if (description == null) { 

 if (other.description != null) return false; 

} else if (!description.equals(other.description)) return false; 

if (facilityNumber == null) { 

 if (other.facilityNumber != null) return false; 

} else if (!facilityNumber.equals(other.facilityNumber)) return false; 

return true; 

} 

 

@Column(name = "active", nullable = false) 

public Boolean get_Active(){ 

return active; 

} 

public void set_Active(Boolean p){ 

active=p; 

} 

 

} 

The code fragment in Listing 3 illustrates the code generated for the Application 

Logic methods. They represent three methods for the Application Logic class 

ReservationsService. To understand the context, one sequence diagram from the PSM 

model is given in Fig. 44. There are three method invocations on the ReservationsService 

lifeline (reservations, selectsFacilityFromReservableFacilityList, and 

selectsTimeSlotFromReservableTimeSlotList). The methods invoked within the 

corresponding fragments of the lifeline (until the return) appear within the corresponding 

body. 

Listing 3. The generated code, describing the system behaviour for the 

ApplicationLogic class “ReservatinService” 

@Service("ReservationsService") 

public class ReservationsService implements IReservationsService { 

 

@Autowired 

private IChangeDisplayCriteriaService iChangeDisplayCriteriaService_; 

@Autowired 

private IFacilityService iFacilityService_; 

@Autowired 

private IReservedTimeSlotListService iReservedTimeSlotListService_; 

private List<Facility> reservableFacilityList; 

private List<TimeSlot> reservableTimeSlotList; 

private List<TimeSlot> reservedTimeSlotList; 

 

public void reservations(){ 

reservableFacilityList=iFacilityService_.buildsReservableFacilityList(); 

} 

public void selectsFacilityFromReservableFacilityList(Facility facility){ 
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reservableTimeSlotList=iFacilityService_.buildsReservableTimeSlotListFor(

facility); 

reservedTimeSlotList= new ArrayList<TimeSlot>(); 

} 

public void selectsTimeSlotFromReservableTimeSlotList(TimeSlot timeslot){ 

reservedTimeSlotList.add(timeslot); 

reservableTimeSlotList.remove(timeslot); 

} 

} 

 

Fig. 44. An example of a sequence diagram for the ReservationsService class 
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3.6 Implementation 

In the ReDSeeDS project an experimental tool support for the approaches 

described above has been built. The tool support is named the ReDSeeDS engine. It (and 

its sources) is available from SourceForge.net [2].  

The ReDSeeDS engine contains the RSL editor, integrated transformation 

execution environment, and the entry point to the UML editor. The Enterprise Architect 

(EA) tool [156] used as the UML editor. A tool support for automatic data exchange with 

EA was built. For details see Section 3.6.4. 

Model-to-model transformations supporting the MDSD path were implemented in 

the model transformation language MOLA [76]. More about transformation in general 

can be found in Section 3.6.1. The transformations algorithms used in the Keyword-

Based Style are described in Section 3.6.2. Model-to-text transformations implementing 

code generation are described in Section 3.6.3. 

3.6.1 Model-to-Model Transformations Implementation 

Transformation algorithms described in style definitions (see Sections 3.4 and 3.5) 

are implemented in the model transformation language MOLA [76]. The transformations 

are implemented using the MOLA tool [59]. 

The metamodel used for transformations is the same as for other ReDSeeDS tool 

components – it consists of a RSL metamodel merged with the relevant parts of the 

standard UML metamodel and extended by special traceability elements. Transformations 

also build the relevant traceability links in every step. 

Fig. 45 presents a MOLA transformation example which creates (or finds an 

existing) lifeline in a sequence diagram. The first rounded rectangle represents the most 

typical construct in MOLA – the rule (for details see CHAPTER 2). This concrete rule 

searches for a lifeline in a sequence diagram. 

While implementing transformations, some transformation libraries were 

developed and they were reused in different layers of the models and in different 

transformation steps. The most powerful and most widely used library was the copy 

library, used to copy some element with all its child elements to another model. For each 

UML element type it was necessary to develop transformation in the library, 
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implementing the copy logic. In MOLA it is not possible to define the copy logic 

independently of element types. 

 

Fig. 45. Transformation example 

In fact, when using this library it was possible to incorporate also typical changes 

of the resulting model. Each use of the library was given a name. By using this name a 

check-up was performed on the need for any adaption of the model elements. It was easy 

to combine the library with the extensions attached to the name of the library use. 

The copy library was mainly used when working with a static structure. There 

were other transformation libraries used in the ReDSeeDS project, e.g., string processing, 

sequence diagram creation and processing, traceability creation, etc. 

Another aspect of transformation implementation should be pointed out as well. 

All transformations in the chain must support repeated runs – the requirements always 

change. What is even more important, for the same transformations to be applicable to the 

manual model-driven development, all models in the chain should allow manual 

modification. Therefore, support for various result merge actions must be included in the 

transformation set. In our approach, this support mainly relies on traceability links. 

Currently one kind of the merge procedure – the so-called Simple Merge - is 

implemented, but more sophisticated merge procedures could be implemented, too.  

Transformations were used not only to support a path from one model to another, 

but also to implement such technical tasks as merge or model import/export. As a result 
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the following model-to-model transformations were developed: for the Basic style: RSL 

to PIM, PIM to PSM; for the Keyword-Based Style: keyword analysis, RSL to Analysis, 

Analysis to PIM, PIM to PSM, PSM to code; technical transformations: RSL scenario 

visualization by UML activity diagrams, export to EA, import from EA and Simple 

Merge. It should be noted that some transformation rules are reused in several 

transformations.  

3.6.2 Model-to-Model Transformations in the Keyword-Based Style 

In this section, we briefly describe the implementation of transformation 

algorithms for building the chain of models in the Keyword-Based Style.  

Missing Features 

Not all model transformation features outlined in the Keyword-Based Style 

description have been implemented. Mainly the features related to the generation of UI 

functionality are missing. The delay of transformation support for the UI functionality is 

due to the fact that it would be natural to combine the generation of UI features from 

scenarios with a direct specification of the UI structure in RSL (as is usually done during 

the requirements specification). Although this possibility exists in the RSL language, as 

already stated, currently there is minimum tool support for this. 

Consequently, the UI part in the generated models is implemented minimally; 

only some basic UI classes and interfaces have been created. All the remaining details of 

UI, such as form elements, are not generated in the current version. Therefore, the code 

generation for the UI part is not supported either, although the generation of some code 

skeletons is technically feasible.  

One deviation from clean usage of UML in models is also observable in some of 

the examples. Assignments in sequence diagrams are emulated by the message text and 

some tagged values because this feature is defined in UML in a very complicated way 

and virtually supported in no UML tools. This workaround has made some 

transformations more complicated. 

Keyword-Based Analysis and Analysis Model 

Some non-trivial aspects of transformation implementation are described below.  
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Transformation for keyword analysis (which is the first to be applied in the chain) 

scans nouns, verbs and modifiers used in the scenario sentences, and fills in the keyword 

field of the relevant RSL elements. This permits to specify the same keyword with several 

synonyms. It could be improved further by using the WordNet meaning as the keyword. 

This way it would be possible to distinguish different meanings of the same term and to 

use all synonyms with the same meaning. 

The next transformation is from RSL to the Analysis Model. The logic of this 

transformation is relatively simple – it analyses the notion model in RSL and transforms it 

directly into an UML class diagram, adding stereotypes based on the keywords set by the 

previous transformation. 

Creation of PIM 

The most important transformation is from the Requirements and the Analysis 

model to PIM. This transformation has two logical parts. The first part is the creation of a 

static structure – package hierarchy, classes, and interfaces. The second part is the 

creation of behaviour stored as UML sequence diagrams.  

For creation of a static structure, a universal “package hierarchy copier” library is 

used. The package hierarchy copier receives as input the root of the source package 

hierarchy, the target package, and the copy mode. The package copier copies a hierarchy 

of packages and their elements (classes, interfaces, etc.) in a way specific to the given 

model. For example, it is possible to define that for some mode either a suffix should be 

added to the class name or class attributes should be ignored, etc. The universal package 

hierarchy copier is used in several contexts during the creation of PIM and PSM models. 

In PIM the Data Access objects and the Business Logic objects are based on the Analysis 

class diagram. In PIM the Data Access class should be created for each persistent class in 

the Analysis model. This is ensured by using an appropriate copy mode. The same copy 

package hierarchy mechanism is even more widely used in the creation of PSM since it is 

based on the PIM model with some modifications. 

Another important part of PIM is the behaviour description, using UML sequence 

diagrams. In this case the RSL scenarios are analyzed and sequence diagrams are created. 

For each scenario, one UML sequence diagram is created. The content of this sequence 

diagram depends on the RSL sentences, used in this scenario. Objects, generated from a 
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sentence, depend on the kind of the sentence. There are three kinds of sentences: an actor-

system sentence defines the interaction of an actor with the system. It can be recognized 

by the subject of the sentence – an actor. The subject of the two other kinds of sentences 

must be a system element. The next kind is a system-actor sentence. Such sentence 

typically means that the system shows something to the user or asks for some input from 

the user. The third kind is system-system sentences. These sentences are used to describe 

internal actions of the system, typically some Business Logic. There are different sub-

kinds of these sentences, depending on the keywords used in the sentence. 

The sequence diagram elements generated from a sentence depend on the kind and 

sub-kind of the sentence. At first the sub-kind of the sentence is determined, followed by 

the creation of elements of the sequence diagrams. Since the UML sequence diagram 

metamodel is quite complicated, a library has been created for the basic element creation 

and used accordingly. The procedure for one sub-kind of a sentence consists of calls to 

procedures for creating/finding the basic sequence diagram elements. It helped to separate 

the transformation algorithm from the technical sequence diagram metamodel processing. 

Fig. 46 provides an example of the procedure for creating the sequence diagram 

elements for a system-system SVO sentence without keywords. At first the lifeline, 

corresponding to the object, is found or created. Then a message to this lifeline is created. 

Afterwards an operation corresponding to this message is found or created, followed by 

association of this operation with the message created. Then a return message is created. 

Each of these tasks is implemented as a MOLA procedure, invoked by the given 

procedure. These procedures for the sequence diagram element processing are used as 

building blocks. The content of one such MOLA procedure is shown in Fig. 47, which 

demonstrates the search of lifeline in a sequence diagram depending on the object used in 

the verb phrase. In the first rule, the notion corresponding to the noun used in the verb 

phrase is found (the long chain of associations necessary to locate this correspondence is 

implied by the RSL metamodel [66]). Then it is determined whether this notion or its 

parent should be used and the interface corresponding to this notion is found (it has been 

created during the static structure generation). In this case, the Business Logic interface is 

found. Finally, the lifeline for this interface is found or created. This procedure is very 

typical of transformation implementation in ReDSeeDS – it uses the MOLA patterns for 

finding complicated correspondences between model elements (such complicated 

correspondences are enforced by the structure of RSL and UML metamodels). 
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Fig. 46. Creation of a message for a “System-System” sentence without an 

indirect object 
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Fig. 47. The procedure of finding a lifeline in a sequence diagram, depending on 

the object used in the verb phrase 
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PSM Model and Initial Code 

The next step in the chain is the transition from PIM to PSM. For the creation of 

PSM, the package hierarchy copier described above is widely used. Only appropriate 

modes are defined. The transformation algorithm, creating static structure of PSM from 

PIM, is mainly based on the package hierarchy processing. There are many repetitive 

steps. Most of transformations in this step could be defined by using a higher-level 

language than MOLA (see CHAPTER 4). Behaviour processing in this step actually is 

also copying of sequence diagrams with some small fine tuning. 

The transformation from PSM to the initial code analyses the sequence diagrams 

and creates the initial code. The code is attached to each relevant method. All messages 

from a lifeline starting from a method invocation on the lifeline to the return message (a 

message describing return to the caller of this message or a message to UI) are 

transformed to actions in the code for this method. For storing a code, corresponding to 

an operation, the UML comments are used (the initial code is not a standard UML 

metamodel element). The transformation for code creation iterates through all messages 

in the sequence diagram. The search is performed in a recursive way (based on a stack). 

When it detects a call of some operation, it means the following messages will constitute 

the body of this operation. If a call to another operation follows this operation, the call to 

this other operation is added to the code body of this operation and this operation is added 

to the stack; and the newly created operation is set to be the current. If return from this 

operation to the previous operation is detected, the previous operation is popped out from 

the stack. If self messages are detected, an appropriate code is simply added to the 

message body. The stack is implemented by using the UML comments since it was not 

possible to extend the metamodel with temporary classes (due to the requirements of 

other tool components). 

Summary 

Implementation of these transformation rules in the Keyword-Based Architecture 

Style took approximately 3 person months. Implementation of these transformation rules 

consists of about 140 MOLA procedures (of a size similar to the one given Fig. 46, or 

Fig. 47, p.109). Implementation of rules, currently missing, would be a small part of the 

existing code. 
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3.6.3 Model-to-Code Transformation Implementation 

Many MDD-based tools offer code generation from the UML models. The 

Enterprise Architect (EA), the modelling tool used in the ReDSeeDS project, has the 

Code Template Framework (CTF) which also provides code generation features. Just like 

most of code generation tools in the MDSD world, EA does not provide a full code 

generation, but code skeletons (classes, interfaces, fields and operation declarations) can 

be obtained. Only packages, classes, and interfaces are used by these templates, the other 

UML elements are ignored. These templates are called base templates. The latest versions 

of EA (not used in the project) provide some code generation features for behavioural 

UML diagrams as well (sequence, state). 

Since the ReDSeeDS project uses EA for UML support, there is a possibility to 

reuse all CTF capabilities of code generation. It is a significantly easier way to obtain a 

code than to generate a Java model as the first step and then convert this model to a 

proper code. 

Base templates can be used directly for the ReDSeeDS Basic style. These 

templates are applied to a Detailed design model of this architecture style. The package 

hierarchy, declarations of all classes (DAO, DTO, etc.), and methods are included in the 

generated code. Bodies of the obtained methods should be filled in manually since the 

detailed design model in this style contains no behaviour. 

For the Keyword-Based style, significantly more code can be generated, including 

the behaviour aspects. Base templates do not generate the declarative annotations used in 

the Keyword-Based architecture style. We underline that these annotations are specified 

in the platform-specific model as appropriate stereotypes of classes, attributes, and 

associations. However, code generation templates are defined by using the model-to-text 

language (the CTF language) in EA. Thus, it is possible to customize the way in which 

CTF generates a source code. The extension of the Java code generation template for the 

Spring framework has been built. The generated code contains Spring annotations 

obtained from the stereotypes. 

Although behavioural diagrams cannot be properly used for code generation in 

EA, they can be processed by model transformations before the code generation step. For 

example, a MOLA transformation converting a message and action sequence in a 

sequence diagram into a part of the code of the appropriate method body has been 
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implemented by using an intermediate model. Then such an enriched intermediate model 

can be further processed by the code generation templates in EA. Since such pre-

processing is done, a great portion of the code (for example, method invocations from 

sequence diagrams) is being generated, using EA. This way a meaningful executable 

prototype code could be obtained directly from the requirements. If the models in the 

software platform-independent and platform-specific models have been extended 

manually, a true model-driven development can be carried out by this approach. 

3.6.4 Integration with the Enterprise Architect 

As already stated the Enterprise Architect (EA) tool [156] was used as the UML 

editor in the ReDSeeDS project. However, it was necessary to exchange the UML models 

between the ReDSeeDS repository and EA, as EA was used to visualize and modify the 

UML models created by model transformations. 

The data exchange was done by using import/export procedure. It was possible to 

export the data to EA and then the user could modify the data using EA. After that the 

data were imported back to the ReDSeeDS repository. 

The data export to EA was done in two steps. In the first step the UML model was 

transformed to the EA encoding of UML. A metamodel describing the structure of EA 

Application Programming Interface (API) was used as the EA encoding of UML. The 

first step was implemented in model-to-model transformation. The second step was 

implemented by a Java program that was reading the data in the EA encoding of UML 

and feeding them in EA by using EA API. 

The data import from EA was performed similarly in two steps. At first the data 

from EA API were transferred to the EA encoding of UML by using a Java program. As 

the second step the data from the EA encoding of UML were transformed to the UML 

model. 

This two step data exchange was selected because the UML encoding in the 

ReDSeeDS repository and in EA was very different. These differences were mainly due 

to a strange encoding of the UML models in EA. For example, enumeration was encoded 

as a class with the stereotype “enumeration”.  

The author of the thesis implemented model transformations from EA encoding of 

UML to UML and back. The transformation from UML to EA was implemented by using 
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23 of the MOLA procedures. The transformation from EA to UML was implemented by 

using 39 MOLA procedures. 

3.7 Conclusions 

In this chapter a model-driven path from the requirements to the code is studied. 

Two different paths built in the ReDSeeDS project are analyzed. Transformations 

supporting these paths are typical transformations used in Model-Driven Software 

Development. This is a great case study in building transformations for Model-Driven 

Software Development from which various conclusions can be drawn. 

Almost each model consisted of a static structure description and behaviour 

description. When creating static structure descriptions, mainly the copy library for the 

selected UML subset was used. Creation of static structure usually meant copying 

elements from one model to another with some small modifications. Although the copy 

library helped a lot in static structure transformation development, here still was a lot of 

routine job and the amount of static structure transformations was big enough. Creation of 

static structure could be described by using the mapping similar to the ones used in Fig. 

38 (p.83). The effort required to build all these different cases of static structure 

processing in the project was the main stimulus to develop the mapping languages to be 

described in the next chapter. 

Transformations, creating the behaviour part of models, were more advanced. The 

most complicated part was creation of sequence diagrams from the requirements. This 

task required quite complicated analysis of the requirements to produce appropriate 

sequence diagrams. The algorithm was very complicated. Another issue was work with an 

annoying UML metamodel for sequence diagrams. To ease work with sequence diagrams 

a library for processing the sequence diagrams was created and widely used. The library 

helped to separate logical work from technical processing of the UML model. In general, 

the classical pattern and the rule based transformation paradigm seemed to be the most 

appropriate for this part of task – thus making MOLA a very adequate implementation 

language for it. 

The most complex transformations were transformations generating the initial 

code. Here a stack was required to keep track in which operation the code, corresponding 

to this sequence diagram message, should be included. In MOLA there is no natural 
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support for a stack. Therefore, it was necessary to emulate all stack operations by using 

transformations. It was also hard to determine whether this is a forward call or a call back 

when using sequence diagram metamodel instances. Though MOLA could be used for 

this task, clearly a specific language extension for collection processing (similar to such 

libraries in the OOP languages) would be of high value. 

The number of MOLA procedures for each task is given in Table 4. The number 

of transformations related to static structure processing and behaviour processing is also 

provided. 

Table 4. MOLA procedure count in different transformations. Classified as to 

processing static structure, behaviour or independent operations. 

Type Transformation Static structure Behaviour Other Total 

Basic Style 
RSL to PIM 12 19 3 34 

PIM to PSM 8  1 9 

Keyword-

Based Style 

Keyword Analysis   4 4 

RSL to Analysis 8  2 10 

RSL, Analysis to 

PIM 

16 32 5 53 

PIM to PSM 14 2 2 18 

PSM to Code   9 9 

Libraries 

Copy library 23 9  32 

Sequence processing  9  9 

Traceability library   4 4 

Delete   7 7 

Other   24 24 

Technical 

RSL visualization   19 19 

Merge   26 26 

UML -> EA    35 35 

EA -> UML    41 41 

Test   22 22 

Total 81 71 204 356 
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CHAPTER 4 

Mapping Languages 

4.1 Mapping Idea 

Transformations could be treated as mappings between the source and the target 

models. However, not any transformation language is a mapping language. The author of 

the thesis believes that mapping should be defined in terms of simple relations, most 

probably represented by simple arrows from one element to another. Simplicity is the 

key. However, in traditional transformation languages it is possible to write down very 

complicated conditions. For example, in one sub-case A should be transformed to B, in 

another sub-case A should be skipped, and in a third sub-case A should be transformed to 

C. To describe these complicated options, all kinds of conditions spoil the simplicity of 

these languages. 

However, in many transformation languages, especially in declarative ones, there 

appear some elements of mappings. A pattern with the source and the target elements 

separated could be considered a mapping element. One side of the diagram describes 

what should be transformed and the other side – what should be created. . Mapping 

elements in transformation languages are described in detail in Section 4.1.1. 

Although in OMG RFP [119] and in the MDA guide [111] the term mappings has 

been used, today transformation languages are not treated as mapping languages. We may 

consider that in general the mapping idea in transformation languages has failed. 

Irrespective of that there have been attempts to create universal mapping languages. 

Usually these languages are incomplete. They are practically applicable only in simple 

cases when the relation between the source and the target is simple. To make them 

applicable in all transformation tasks they should possess a full power of model 

transformation languages. It means that they should have the same complexity as in 

model transformation languages. These languages are described in detail in Section 4.1.2. 

An interesting approach is used in Atlas Model Weaver (AMW) [39]], proposing 

a universal mapping language. However, this mapping language is only a basis for 

defining specialized mapping languages. 
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To specialise this general purpose mapping language, in fact, a new mapping 

language should be built. This new mapping language should contain details specific to 

the domain processed – a feature typical of domain-specific languages. As a result we can 

speak about domain-specific mapping languages that could be more expressive than 

general purpose languages, not loosing simplicity and understandability of the language. 

Domain-specific mapping languages are discussed in Section 4.4. 

Another view on mappings holds that they should be treated as an initial skeleton 

of transformations to be built. An approach of this type is proposed in [50]. Mappings 

build a skeleton of transformations and details are filled in the transformation language. 

In this case the transformation sources are generated from mapping. To describe 

transformation generation from mappings higher-order transformations could be used. A 

mapping language compilation using higher-order transformations is described in Section 

7.2. 

4.1.1 Transformation Languages and Mapping Languages 

There is no formal generally accepted definition on considering a language either 

a model transformation language or a mapping language. However, in practice there is a 

more or less common understanding and we present our interpretation of it. 

A model transformation language focuses on a precise executable transformation 

definition (that results in “Turing model completeness”). Currently, most of the 

transformation languages rely on the pattern-rule paradigm. A pattern specifies what 

fragment is to be found in the source model and a rule specifies what is to be done on the 

basis of this fragment (in-place update or creation in the target model). Certainly, there 

are big differences how the rule execution order is controlled – in a non-deterministic way 

aided by various guards (NACs, when and where conditions, etc.) or within some classic 

control structure. 

The main paradigm of a mapping language is a direct specification of a set of 

correspondences between the source metamodel and the metamodel elements. The idea of 

correspondence is as follows – for each instance of the source metamodel element the 

corresponding target instance is created (or its existence is checked). An additional 

standard requirement claims for the language to be very easily readable; therefore 

frequently the correspondences are visualized as simple arrows between the metamodel 

elements. Other features of a mapping language depend on its use. A mapping language 



 

 

117 

may simply serve as a facility for defining transformation drafts (abstractions). Then a 

transformation is manually created on this basis (with a possible automatic skeleton 

generation). Alternatively, a mapping language may serve as a precise, but still easily 

readable transformation specification. Then mappings are used as a source for generation 

of the actual transformation definition in a transformation language. To increase the 

expressiveness various additional features are added (filters, constraints, assignments, 

etc.) while trying to preserve the readability; however, completeness is not so easily 

reachable this way. To illustrate the main ideas behind the mapping concept a short 

overview of mapping specification languages is given in the next section. 

An alternative way to meet both criteria (expressiveness and readability) is to 

narrow the application domain of a language – build a domain-specific mapping 

language. In this chapter we present a language exactly of that kind. Such a language will 

cover all typical cases of mappings in the given domain and will satisfy the readability 

requirement. Certainly, there is always an option to extend the generated transformation 

definition manually. 

We conclude the section with some remarks on using the mapping ideas within 

some transformation languages. Thus, in MOF QVT Relational [128] (especially the 

graphical form) each relation reminds of a visual mapping in the case when both patterns 

are reduced to the corresponding metamodel elements. Fig. 48 presents a small 

transformation example in MOF QVT Relational [128]. The left side of the figure 

contains a fragment of the source model and the right side of the figure contains a 

fragment of the target model. Actually, MOF QVT Relational is bidirectional, therefore 

the source and the target models could be exchanged. In fact, this small example reminds 

of a mapping which defines that one source model fragment should be transformed to 

another target model fragment. However, as soon as more constraints are added the set of 

relations becomes significantly less readable and a transformation with complicated 

constraints does not remind of mappings anymore. So we can conclude that there are 

mapping elements in MOF QVT Relational. 

It should be noted that the MOF QVT Operational Mapping sublanguage has 

preserved the term mapping for denoting an operation of creating a target model element 

from a source model element. However, this operation is more an elementary 

transformation element with various conditions and helper operations around than a 

relation in MOF QVT Relational. 
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Fig. 48. MOF QVT Relational example 

A similar effect appears in some other languages as well, e.g., in ATL [63], AGG 

[163]. A special situation is with the TGG [146] that has so many mapping features that 

sometimes is considered to be on the borderline. TGG is a graph transformation language 

extended with mapping elements. An intermediate model or a mapping model is used 

explicitly defining a transformation in TGG. In this model relations between the source 

and the target are directly represented. However, when the full power of patterns and 

NACs is used in TGG, it is more a traditional transformation language.  

Another remark concerns bidirectionality that is an important issue for 

transformations, but it is out of the scope for this research since it is not so significant for 

our domain. 

Some mapping elements could also be observed in the model transformation 

language MOLA (described in CHAPTER 2), although they are not as direct as in some 

other languages. The MOLA rule consists of a pattern and action part, although these 

parts are not strictly separated. The pattern part could be treated as a source of mapping 

and the action part – as a target of the mapping. 

4.1.2 General Purpose Mapping Languages  

Attempts to create universal mapping languages as a certain alternative to 

traditional transformation languages have been started sufficiently early. 

An attempt to describe the mapping concept more precisely was made in the paper 

by Hausmann and Kent [51] in 2003. They used the term mapping to address the general 

understanding of connection between models and offered a graphical mapping language 
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to specify mappings. However, the precise functionality of mappings had to be defined in 

OCL thus these relatively simple diagrams actually meant a complicated programming in 

OCL, in addition, their primary concern was bidirectionality. 

In the thesis of Lopes [102] the Hausmann's and Kent's ideas have been developed 

much further – a mapping specification language (no special name was given to it) has 

been created and implemented as an Eclipse plug-in  Lopes considered the universal 

approach - the specification of mappings between two arbitrary metamodels. Mapping 

specification (mapping model) has been used to generate the actual model transformation 

definition in ATL, more or less complete transformations could be generated if mappings 

were detailed by appropriate OCL expressions. In addition, the usage of abstract syntax 

(standard UML metamodel) has led to complicated mappings even for simple tasks. 

Atlas Model Weaver (AMW) [39] provides a generic infrastructure and editor to 

declaratively specify weaving models between two arbitrary models. The weaving models 

are used to capture different kinds of links between model elements. The links have 

different semantics, depending on the application scenario. In fact, AMW provides a 

generic mapping (core) metamodel which should be extended in particular case. The 

Higher-Order Transformations (HOT) generate actual model transformations. 

The most recent approach uses composite Mapping Operators (MOps) [198]. The 

basic mapping operators called kernel MOps provide the basic types of possible mappings 

(like class to class, attribute to attribute, relation to relation, etc.). Kernel MOps can be 

composed into more advanced mapping operators – composite MOps. Composite MOps 

can be easily reused further once defined. This approach has been implemented on the 

basis of AMW and also generates ATL using HOTs. All abovementioned mapping 

languages are general purpose ones, applicable to any domain and are based on the 

abstract syntax.  

Another view on mapping languages is given in Guerra et al. [50], where it is 

proposed to use mappings as requirements specification for transformations. Mapping 

diagrams of transML (a language family for development of model transformations) are 

used for high-level design of model transformations; from these diagrams only 

transformation skeletons can be generated. 

We believe that a mapping language should not be universal and complete in 

order to preserve the readability. If a mapping language is complete, then really it is a 

new transformation language. The mapping language should be used only for typical 
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cases. There should be a close integration with a model transformation language and the 

rest should be written in this traditional model transformation language. 

4.2 Domain-Specific Mapping Languages 

As it was stated in Section 1.2.3 specialised modelling languages - Domain-

Specific Modelling Languages – are used for specialised modelling areas. These 

languages are suitable for use in concrete domains. Domain-specific languages contain 

terms specific to the domain as language elements. Consequently, language users can 

operate with terms familiar to them. It raises the abstraction level and increases 

productivity as well. 

4.2.1 Domain-Specific Model Transformations 

Similarly to modelling languages there are model transformation languages 

suitable for certain domains. Actually, each model transformation language is more or 

less dedicated to a certain domain. For example, MOLA is suitable for model 

transformation development in MDSD. In the Epsilon project [93] a multi language 

framework has been built. This framework consists of several languages. Each of these 

languages is dedicated to a specialised group of transformation tasks. These languages 

are: Epsilon Transformation Language (ETL), Epsilon Validation Language (EVL), 

Epsilon Generation Language (EGL), Epsilon Wizard Language (EWL), Epsilon 

Comparison Language (ECL), Epsilon Merging Language (EML), Epsilon Flock (a 

language for model migration). 

Model migration could be mentioned as a concrete transformation domain. 

Currently, there are two specialised languages for model migration: COPE [52] and 

Epsilon Flock [141]. In some sense these languages are mapping languages as there 

declarative means are used to specify relations between the source and the target models. 

It should be noted that specialised transformation languages perform better than 

languages of general purpose. In TTC 2010 the same model migration task [142] was 

implemented in 9 model transformation languages.  The best results [140, 184] were 

reached by the specialised languages COPE [52] and Epsilon Flock [141]. 
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4.2.2 Domain-Specific Mapping Languages 

There are domain-specific mapping languages suitable for certain domains and 

based on concrete metamodels. The following are examples of such mapping languages: 

 The language R2RML to map RDB to RDF [191] is currently under 

development by W3C. A draft is available [195]. 

 D2RQ Mapping Language [44] is a declarative language for describing the 

relation between a relational database schema and the RDFS vocabularies 

or the OWL ontologies. 

 D2R map [20] is a database to the RDF mapping language. 

 Silk-LSL (Silk Link Specification Language) [1] is provided by the Silk 

framework. It is a declarative language for specifying which types of RDF 

links should be discovered between the data sources, as well as which 

conditions the data items must meet in order to be interlinked. 

 RDB to OWL [22] defines mappings to transform the RDB data to the 

OWL data. 

 Epsilon Flock [141] and COPE [52] for model migration. 

Domain-specific mapping languages may be graphical, textual or tool driven. For 

example, Epsilon Flock [141] is textual, COPE [52] is tool driven and MALA4MDSD, 

proposed in Section 4.3, is graphical. 

There are not so many domain-specific mapping languages, therefore research on 

the creation of such languages is of importance. In the present thesis two mapping 

languages of this type are proposed. A mapping language for MDSD is described in 

Section 4.3 and a mapping language for the DSL tool development is described in Section 

5.3. 

4.3 MALA4MDSD – Mapping Language for MDSD 

In this section a mapping language for MDSD - MALA4MDSD is proposed. This 

language is domain-specific. It is built to transform one UML model to another UML 

model. A typical application of such language is transformations from PIM to PSM in the 

MDA lifecycle. Actually, the language does not support full UML - it supports only a 

UML subset typically used in MDSD. More precisely, the described subset is meant for 
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transforming only the static structure of an UML model (however, it could be easily 

extended to include many behaviour-related elements as well). 

Unlike the mapping language approaches described in Section 4.1.2, we propose 

to base the mapping language on a concrete syntax of the source and the target languages. 

A similar idea has already been applied to transformation languages, e.g., in AToM
3 

[96] 

and [49]. 

The language demonstrates the cornerstones of our approach – the source and the 

target model structures are represented by trees. Tree nodes specify what kind of model 

elements appear in the given context and the mapping relations (arrows) from the source 

to the target tree nodes specify which kind of the target model elements are created from 

which source elements. Tree nodes do not correspond directly to UML metamodel classes 

(abstract syntax, as in [102, 39]), but to concrete syntax elements – types of nodes 

typically found in UML model trees in various UML tools (a sort of de-facto tree syntax 

of UML). This makes the tree notation significantly more readable (no large amount of 

abstract classes is to be shown). 

4.3.1 MALA4MDSD Motivation 

The usage of model transformation languages requires highly skilled specialists 

with deep knowledge of metamodelling. That is one of the main reasons why the industry 

has not yet widely accepted the MD* approaches and most of model transformation 

languages are used only by a small group of people closely related to language 

developers. 

Domain-Specific Modelling (DSM) proposes to use modelling languages that use 

notation and concepts specific to the domain actually being modelled. It narrows the gap 

between languages being used to describe the problem and the solution. Similar principles 

may be applied to model transformation languages. Instead of using a general purpose 

model transformation language we propose to use domain-specific transformation 

languages that use elements specific to the models being transformed. Most of the model 

transformation languages (including the standard MOF-QVT) use abstract syntax 

(metamodels) to specify model transformation definitions. However, users of the 

modelling languages use only the concrete syntax of the language. Thus, the domain-

specific model transformation language should use familiar concepts for modelling 

experts: the concrete syntax of the modelling language.  
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This should lead to the shift of roles of developers in the Model-Driven Software 

Development (MDSD) process (see Fig. 49). Metamodelling experts (highly skilled 

professionals) would be the developers of domain-specific modelling languages, using all 

the arsenal of technologies they have. The software developers (modellers) would become 

the actual developers and users of model transformations. Thus, the former model 

transformation users would become model transformation developers (and users), but the 

former model transformation developers would become model transformation language 

developers. 

 

Fig. 49. Schematic roles of the mapping language family users 

Another crucial aspect for a domain-specific model transformation language is the 

use of convenient means to represent the correspondences between the source and the 

target model elements in the model transformation definition. The most intuitive option to 

define model transformations is to use mappings. Mappings permit to specify 

transformations in a simple way, frequently by very intuitive graphics. From the very 

beginning of model transformation languages there has been an intention to define 

transformations as simple mappings. The expressive power of such general purpose 

mapping languages is limited; however, we demonstrate that mappings are expressive 

enough for transformations in specific domains.  

In this section we propose an approach for building domain-specific 

transformation languages based on simple mappings and the concrete syntax of models 

being transformed so as to reach simplicity, readability and sufficient expressiveness of 

the language at the same time. 

This section proceeds with the description of one domain-specific mapping 

language – MALA4MDSD. Actually, the approach proposed could be applied to a 

mapping language family. The mapping language described in this section is only one 

instance of the mapping language family. Mapping languages in the family differ by the 

used concrete syntax trees. The MALA4MDSD description contains occasional remarks 
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whether the described feature is specific to MALA4MDSD or common to all mapping 

language family. 

Section 4.4 is devoted to the description of obtaining languages of the mapping 

language family. 

4.3.2 Basics of MALA4MDSD 

The UML model structure is greatly determined by the composition relationship 

in general. Therefore, in practice it is sufficient to represent the UML model structure as 

trees. The source and the target in this domain-specific language are UML models within 

the same subset; consequently, both trees can contain the same kinds of nodes. For the 

chosen UML subset there is a predefined set of nodes to be used in a tree. It is natural to 

think of trees in this mapping language as UML instance tree patterns. They represent a 

possible structure of an instance tree in a typical UML tool containing the source or the 

target model. For example, it means that if a specific mapping requires that there should 

be a package inside a package there will be two hierarchical package nodes in our tree. 

The source and the target tree nodes are connected by using mapping relations. A 

mapping relation means that if an instance corresponding to the source node is found in 

the source model then an appropriate instance should be created in the target model (here 

we should think of both models to be represented by their instance trees). The source tree 

is traversed in a top – down manner. For each valid instance of the source node the 

outgoing mappings are executed (i.e., target instances created). The validity of an instance 

is checked by using the containment relationship to the parent and the filter conditions. 

For the target nodes it is possible to use attribute assignment expressions to define the 

attribute values of the newly created instance. 

A simple mapping example is presented in Fig. 50. The topmost mapping relation 

is executed first. It maps two UML models. In the source a UML model named “PIM” is 

sought for. For each such model a UML model named “PSM” is created in the target. In 

the real transformation context from which this example is taken there is only one model 

instance named “PIM” available in the source, but we do not distinguish this situation 

syntactically in our language. Then the second mapping is executed. The packages named 

“Service” in the UML model “PIM” are found. For each such package (in this case again 

actually only one) the corresponding package named “service” in the target UML model 

“PSM” is created. The third mapping relation copies all classes in the source model 
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package “Service” to the target model package “service”. Classes with all child elements 

(here – attributes and operations) are copied because the copy modifier is used (for details 

see Section 4.3.5). The name of the target class is calculated using an expression. The 

prefix “i” is added to the source model class name; pay attention to the use of the 

reference “~c” to navigate the mapping named “c” from the target to the source. Thus, the 

expression “~c.name” gives us the name of the mapping source node (class). 

 

Fig. 50. MALA4MDSD example. UML model “PIM” is transformed to UML 

model “PSM”. Package “Service” in model “PIM” is transformed to package “service” in 

“PSM” model. Classes from source model package “Service” are copied to target package 

“service”. 

4.3.3 MALA4MDSD Elements 

The list of MALA4MDSD elements is given in Table 5, consisting of two parts. 

The first part of the table presents MALA4MDSD tree elements, defining the role of each 

element in the UML model, the attributes usable in MALA4MDSD and the possible child 

elements. In the second part the elements of the mapping language family are presented. 

Table 5. List of MALA4MDSD elements 

Image Element Description  

Tree type elements 
 

 

Model node Corresponds to UML model. 

Attributes: name; 

Child elements: package node, 

recursive package node. 

 

 

Package node Corresponds to UML package. 

Attributes: name; 

 

 

 



 

 

126 

Image Element Description  

Child elements: package node, 

recursive package node, class 

node, interface node, 

component node, enumeration 

node, data type node, actor 

node, interaction node. 

 

Recursive 

package node 

Describes the package 

hierarchy of arbitrary depth in 

the UML model. All elements 

in the hierarchy independently 

of depth are treated as children. 

Attributes: name; 

Child elements: class node, 

interface node, component 

node, enumeration node, data 

type node, actor node, 

interaction node; 

Description: see Section 4.3.5. 

 

 

Class node Corresponds to UML class. 

Attributes: name, stereotype; 

Child elements: attribute node, 

operation node. 

 

 

Interface node Corresponds to UML interface. 

Attributes: name; 

Child elements: attribute node, 

operation node. 

 

 

Component 

node 

Corresponds to UML 

component. 

Attributes: name; 

Child elements: interface node. 

 

  

 <<class>> 

 <<interface>> 

 

 c 
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Image Element Description  

 

Enumeration 

node 

Corresponds to UML 

enumeration. 

Attributes: name; 

Child elements: enumeration 

literals (in this use case not 

used explicitly). 

 

 

Data type node Corresponds to UML data type. 

Attributes: name. 

 

 

Actor node Corresponds to UML actor. 

Attributes: name. 

 

 

Interaction node Corresponds to UML 

interaction (sequence diagram). 

Attributes: name; 

Child elements: in this use 

case the child elements are not 

used explicitly. However, all 

sequence diagram elements 

should be treated as child 

elements. 

 

   

Operation node Corresponds to UML operation. 

Attributes: name, stereotype, 

type (primitive type name or 

reference to type: class node or 

enumeration node); 

Child elements: parameter 

node. 

 

 

Parameter node Corresponds to UML operation 

parameter. 

Attributes: name, direction 

(enumeration: set of fixed 

values), type (primitive type 

 

 

 <<enumeration>> 

 
 

<<dataType>> 
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Image Element Description  

name or reference to type: class 

node or enumeration node). 

 

Attribute node Corresponds to UML attribute 

(coded as property without 

association in UML model). 

Attributes: name, stereotype, 

type (primitive type name or 

reference to type: class node or 

enumeration node). 

 

 

Association 

edge 

Corresponds to UML 

association. 

Source node type: class node; 

Target node type: class node; 

Attributes: stereotype, source 

role, target role. 

 

 

Generalization 

edge 

Corresponds to UML 

generalization. 

Source node type: class node; 

Target node type: class node. 

 

 
Realisation edge Corresponds to UML 

realisation. 

Source node type: interface 

node; 

Target node type: class node. 

 

 

Dependency 

edge 

Corresponds to UML 

dependency. 

Source node type: class node; 

Target node type: class node. 
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Image Element Description  

Mapping elements 
 

 

Constraint In the source tree it is possible 

to define constraints in a tree 

element. Constraint means that 

only instances satisfying this 

constraint will be processed. 

Constraint language is a 

simplified version of OCL. 

Here it is possible to reference 

tree type elements. 

 

 

Attribute 

assignment 

In the target tree it is possible 

to assign values to attributes 

defined in the tree type. 

Assignments are described as 

follows: 

<attribute>=<expression>. 

Expression is defined in a 

simplified version of OCL. It 

describes how the attribute 

value to be assigned is 

evaluated. Expressions are 

described in detail in Section 

4.3.5. 

 

 Mapping Mapping relates the source and 

the target trees. It describes 

from which source tree element 

which target tree element 

should be created. 

Default mapping When 

mapping creates a node in the 

 

name=“domain” 
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Image Element Description  

target model a traceability link 

is created. Before creation of 

the target instance a traceability 

link is used for checking 

whether there is a node in the 

target corresponding to 

mapping in this target context. 

If such an instance is found it is 

used and nothing is created. In 

case such an instance is missing 

a new instance is created. 

Mappings are ordered top 

down. Mappings have names 

that could be used in the OCL 

expressions. If mapping is 

traversed in the opposite 

direction the name is prefixed 

with the “~” symbol. 

 

Mapping copy Copy modifier means that this 

element and all its child 

elements should be copied to 

the target model. This modifier 

could be used only on mapping 

relating nodes of the same type. 

If assignment is used in the 

target node it rewrites the 

default value of the attribute 

obtained using copy. 

Description: see Section 4.3.5. 

 

 

Mapping 

copyAttributes 

CopyAttributes modifier is used 

to copy the node and all its 
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Image Element Description  

attribute values. Child elements 

are not processed.  

This modifier could be used 

only on mapping relating nodes 

of the same type. 

If assignment is used in the 

target node it rewrites the 

default value of the attribute 

obtained using copyAttributes. 

Description: see Section 4.3.5. 

 

Mapping check  Check modifier means that a 

node in the target model must 

be found. Creating a node in the 

target model a traceability link 

corresponding to the mapping 

used is created. In this case the 

traceability link is used to find 

the node already created by 

mapping with this name. 

Description: see Section 4.3.5. 

 

 

Pattern In the source tree patterns could 

be used to describe complicated 

mapping application conditions. 

Description: see Section 4.3.5. 

 

 

Custom MOLA 

procedure 

It is possible to call custom 

MOLA procedures. For these 

procedures the first parameter 

should be the parent of 

 

 <<class>> 

stereotype=”list” 

  c1    <<class>> 

stereotype=“listItems” 
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Image Element Description  

“Custom MOLA procedure” 

node. The type of this tree type 

element should correspond to 

the MOLA parameter. All other 

parameters are of the type 

in/out and are represented as 

child nodes. In this case the 

types should correspond again. 

Description: see Section 4.3.5. 

4.3.4 MALA4MDSD UML Tree Type 

To be able to define transformations it should be clear to a user what kind of 

elements in the source and the target trees could be used. For each tree type element the 

possible attributes and child elements should be defined. 

For the UML tree type used in MALA4MDSD the root node is always Model that 

can contain Packages. Package can contain other Packages, Classes, Interfaces, 

Components, DataTypes, Actors, Interactions and Enumerations. Class and Interface are 

allowed to contain Attributes and Operations. Operations contain their Parameters. Each 

of the node types has a predefined set of attributes (name, etc.).  

In Table 5 all elements of MALA4MDSD tree type are listed. For each element 

the possible child elements and attributes are listed. However, it would be easier for a 

user if he/she could see these possible containments graphically and there are two 

alternative ways for their graphical representation. One of them is to show the tree 

containing the possible elements in each position. It is possible to give a name to a sub-

tree and explicitly define it only once, if the sub-tree is used multiple times. Such a tree is 

presented in Fig. 51. This tree is very useful as a reader can easily see what kind of 

elements could be used as sub-elements of the given element. However, if the language 

has many elements this tree may get very large. Even for the UML subset used in 

MALA4MDSD it is hard to fit this tree on one page. An alternative option is to use the 

syntax similar to the context free grammars [149]. In this case the non-terminal symbols 

are the names attached to tree fragments. A complete tree is built by replacing the non-
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terminal symbols with the appropriate tree fragments. This type of representing the UML 

tree type used in MALA4MDSD is given in Fig. 52. This syntax is more useful for large 

tree types as it is possible to split it in several small images. Both representations are 

equivalent: the first is more suitable for small tree types and the other – for larger tree 

types. 

The source and the target trees in mapping languages are defined according to the 

tree type definition. The tree node type of root elements in the source and the target trees 

should be the same as in the tree type definition. Only the parent-child relations defined in 

the tree type are permitted in the source and the target trees. However, a child of the same 

type could be repeated multiple times in different contexts. Children of some type could 

be omitted if they are not needed in the defined mapping diagram (transformation). 

However, it is not possible to skip some intermediate elements from the tree. For 

example, it is not allowed to use Parameter directly as a child of Class. The parent of 

Parameter should be Operation. 

In the source tree it is possible to add constraints to elements. It means the same 

tree node type could be used multiple times as a child of the same element with different 

conditions. In the target tree it is possible to add assignments to elements and the same 

element type could appear multiple times as well. It is used if different mappings describe 

the creation of elements in the same context. 
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Fig. 51. MALA4MDSD UML tree type definition 
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Fig. 52. Alternative tree type definition 
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4.3.5 More Advanced Mapping Elements  

Elements described in Section 4.3.2 are the core of the proposed mapping 

language. To facilitate the transformation development in this mapping language some 

more features are introduced. 

For some tasks large source and target trees with many mapping relations must be 

built, therefore there is a need to divide mappings into smaller sub-diagrams. One 

mapping program (transformation) consists of several ordered mapping diagrams. They 

are executed separately in the given order. The root of each tree in the mapping diagram 

should be the tree node of the root type in the used tree type. 

Mapping Modifiers 

As it was mentioned in Section 4.3.2 there are special mapping modifiers. A 

mapping with the copyAttributes modifier specifies that in the target node for each 

attribute an implicit assignment is performed, setting it to the value corresponding to that 

value in the source node.  

The copy modifier is even more powerful. It specifies that implicit mappings are 

performed with the copyAttributes modifier for all children types of the node (at any 

depth, according to the tree type definition). This is a very powerful feature for copying 

tree fragments where nothing has to be modified. Certainly, the node types for copy must 

be the same. In Fig. 53 (p.138) the copy modifier is used for enumeration and class nodes. 

For enumeration the copied child elements are enumeration literals. For classes the child 

elements are attributes and operations, operations in turn are copied with their parameters 

– according to the type hierarchy in the tree type.  

The third mapping modifier check means that nothing is created in the target tree, 

only the relevant node is found by using traces between the source and the target (another 

kind of arrowhead is used here). Such mappings are necessary, and as an example here 

may serve the location of edge endpoints in the target tree as in Fig. 53 (p.138). 

Expressions 

Constraint can be used for tree nodes in the source tree. Constraints are used to 

restrict the set of instances corresponding to the tree node. Constraints are defined by 

using an OCL subset. In expressions a supported OCL subset is similar to a supported 
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OCL subset in MOLA. In the OCL expressions tree type attributes could be used. 

Actually, the most popular constraint type implies adding a condition which checks that 

the values of attributes satisfy the conditions defined by the constraint. It is also possible 

to navigate the tree upwards; in this case “.parent” navigation is used. 

Expressions are used in the target tree to define the attribute value assignments. It 

is possible to traverse mappings in these expressions. If mapping is traversed in the 

opposite direction, the name is prefixed with the “~” symbol. Mapping traversion is 

defined as navigation in the OCL expression. Similarly to constraint the attribute values 

could be used in these expressions as well. 

Recursive Elements 

As it was already mentioned in the previous section a UML package can contain 

other packages. It means there could be a package hierarchy with arbitrary depth. 

Sometimes we want to process this hierarchy in a generic way. Therefore, in our mapping 

language for packages it is possible to use a special type of node representing the whole 

package hierarchy (see Fig. 53, the 3
rd

 node in the source tree). It means that the mapping 

applies not only to the packages in this level, but to all packages in the hierarchy. This 

modifier could be used in the source tree, as well as in the target tree. If the modifier is 

used in the source and the target trees it means that the package hierarchy must be 

preserved in the target as well. If the modifier is used only in the source tree it means that 

in the target tree the package hierarchy must be flattened. It is possible to add child 

elements to this package hierarchy, e.g., classes: if it is done, all classes in this hierarchy 

(satisfying other constraints) should be processed. 

Edge Processing 

So far we have considered only nodes in a UML model. However, there are also 

edges in UML (in the sense of diagram syntax). These edges should be processed some 

way as well. Therefore we add to our language edges typical of a UML model: 

Association, Generalization, Implementation and Dependency. These edges are 

represented as links between the tree nodes. Edges can be used both in the source and the 

target trees, edges can be mapped as well. The edge processing is done after both nodes 

connected by this edge are processed. In general, the edge end instances in the target are 
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determined by maps of the corresponding line ends in the source; in more complicated 

cases patterns should be used. 

 

Fig. 53. Mapping example from the ReDSeeDS project. Transformation in 

MALA4MDSD, demonstrating the edge processing and hierarchy flattening 

An edge mapping is given in Fig. 53. All Associations and Generalizations 

between classes in the predefined package hierarchy are copied to the target. All classes 

in this hierarchy have already been copied before the edge processing (by the mapping 

cl2cl). To find for an association the other end class in the target the mapping cl2cl is 

duplicated from another class node in the source (the other end of edge in the source), but 

this time with the Check modifier.  

Patterns and Conditional Expressions 

If the value to be assigned depends on some source element properties, 

conditional assignments (assignments included in if-then block) can be used. Of course, it 

is possible to code these source elements with different property values as different kinds 

of the source node. However, if only the attribute values in the target depend on these 
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conditions it is not effective to introduce additional source nodes. Conditional assignment 

is used in 4
th

 target node of Fig. 54 (p.145). 

The same could be said about the application of constraints on mapping relations. 

It is possible to create different source node sets using filter conditions; however, if only 

something specific should be added to the target model while general mapping is the 

same it is not effective to add special nodes to the source tree. Adding an additional 

constrained mapping relation to a source node is a significantly more readable way.  

Sometimes composition relationships alone are not sufficient to define the 

mapping application context. Therefore it is possible to use source patterns, mapping 

relations with application condition and conditional assignments in the target. Patterns are 

needed to increase the expressiveness of the mapping language – to add some of the 

power of pattern and rule based transformation languages. Typically patterns are used to 

add constraints to nodes, especially when a node should be connected to another node 

using some edge. However, patterns in this language are not as expressive as patterns in 

MOLA. The difference is that only the node types and edge types defined in the tree type 

may be used in a pattern, but not arbitrary domain metamodel classes and associations as 

in MOLA. 

At least one of the nodes in a pattern should be connected with the source tree by 

using a parent-child relation. It is possible to give names to pattern elements, in the same 

way as to class elements in MOLA rules. Only one mapping from a pattern is supported. 

The node (or edge) used as the source of mapping is the main node in the pattern. If the 

mapping from a pattern is traversed in the opposite direction, then the tree element 

located by default is the source of mapping, however, navigation expression could be 

continued with the name of the pattern element. It is useful, if the attribute values of other 

pattern elements are required. 

Integration with Custom Transformations 

Although features have been introduced to raise the language expressiveness it is 

not possible to write an arbitrary transformation between the models in this mapping 

language. Therefore, it should be possible to extend the mappings defined in this 

language by explicit custom transformations. We have chosen MOLA as the language for 

custom transformations. We have introduced a special tree node type named “custom 
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MOLA procedure”. In this node it is possible to specify the MOLA procedure name to be 

applied when the given node is executed. The MOLA procedure can have parameters. 

Rules are defined how to represent these parameters in the mapping tree. 

The first parameter for these procedures should be the parent of the custom MOLA 

procedure node. A type of this tree type element should correspond to the MOLA 

parameter. All other parameters are of the type in/out and are represented as child nodes. 

In this case the types again should correspond. It is possible to use the already found 

elements as child nodes, references to these elements are defined as a path to the tree 

nodes. 

A study of typical application contexts of custom procedures is left for future 

research. This study might reveal the need to introduce new mapping modifiers to 

enhance the use of custom transformations. 

This feature enables the possibility to apply the mapping language to 

transformation tasks when transformation is defined by combining simple mappings with 

explicit transformations for complicated fragments. 

4.3.6 Mapping Language Semantics 

The previous sections contained a description of the mapping language syntax. 

Below a description of the mapping language semantics is offered. 

Multiple mapping diagrams are supported in the proposed mapping language. As 

already stated in Section 4.3.5 these diagrams are ordered. The mapping diagrams are 

executed according to the ordering. 

Multiple mappings are used in the same mapping diagram. Mappings in a diagram 

are ordered as well. It is possible to explicitly define this ordering; in this case an explicit 

ordering is used. Mappings are ordered top–down according to the source end if the 

ordering is not defined explicitly. It should be noted that multiple mappings from the 

same source node are also ordered top–down. 

The only exception is mappings from edges. In the ordering they are placed 

directly after the second node (the end node of the edge, located farther in the mapping 

ordering). 

For target nodes without incoming mappings (nodes created with a parent), 

mapping is introduced. The source of the mapping is the same as the source of the parent 

node mapping. In the mapping ordering these mappings are inserted directly after the 
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parent node mapping. If the multiple children of the parent node have no mappings, these 

newly introduced mappings are ordered top–down according to the target. 

Using the principles described above it is possible to obtain a mapping ordering 

for any mapping diagram. Mappings in the diagram are executed according to the 

mapping ordering in the top–down manner. 

Mapping Semantics 

Although we use mappings to define a transformation from the source tree to the 

target tree, actually we want to transform models. These models are related to a tree type. 

For details see the mapping language definition facilities in Section 4.4. A transformation 

defined in terms of tree nodes could be translated in a transformation defined in terms of 

the source and the target models. 

To execute a mapping we should find an instance set satisfying the mapping 

application conditions defined by the source tree. This condition is defined by the source 

tree fragment from the source node of the mapping, including all its parents, to the source 

tree root. Of course, conditions defined for these nodes should be included in this 

constraint. This could be treated as a pattern describing the application context of 

mapping. 

When executing a transformation, the pattern defined in terms of the tree type 

should be transformed in the pattern defined in terms of model. It should be noted that it 

is possible to perform such transformation by using the tree type definition described in 

Section 4.4. A pattern defined in terms of model will be used to find the model instances 

to be transformed. 

When processing the current mapping in instance level, the target instance created 

by the mapping should be attached to the appropriate parent instance in the target tree. It 

is necessary to find this parent instance corresponding to the parent tree node. The parent 

tree node should be related to the source tree by using some already processed mapping 

relation. Besides, the already processed mapping relation (from the target node parent) 

should go to the parent of the current mapping source node. If these conditions are not 

satisfied, it means the mapping diagram is semantically incorrect. 

As the parent in the source tree (the source of the already processed mapping 

relation) is included in the pattern describing a possible application condition of the 
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mapping, it is possible to create a pattern describing how to find an instance of the source 

parent node from the source node instance of the current mapping. It is also possible to 

define it in terms of models. 

For mappings in our mapping language there is the semantics “Create, if does not 

exist” and for each performed mapping traceability information is created. It means that 

by using this traceability information from the source node instance of the already 

processed mapping it is possible to find a corresponding target node instance. This feature 

together with the previously described pattern could be used to find the parent instance 

for the target node instance of the current mapping. 

Before execution of the current mapping it should be checked whether such 

mapping has not been executed before. Traceability links are saved in models, therefore, 

it is possible to define this check in terms of the source and the target models. Checking 

of the existence of such mapping is done by using the mapping name. 

If nothing is found we should create an instance of the target model. This again 

should be done in terms of model. The target tree node type is transformed in terms of 

model element creation. The mapping source node again should be transformed in terms 

of the domain metamodel. Between the source node (defined in terms of model) and 

between the target node creation (defined in terms of model) the traceability creation 

should be defined in terms of model. Creation of the relation between the target tree node 

and its parent should be defined in terms of model as well. 

The property values of target element are assigned according to the assignment 

description in the target tree. This description again is translated in terms of models. 

In this way it is possible to translate the execution of mapping in terms of the 

source and the target models. This translation is described in detail in Section 7.2. 

Mapping Modifiers 

In addition to simple mappings it is possible to use mappings with mapping 

modifiers. In the latter case the execution semantics is modified a little. 

If the check modifier is used, the mapping execution stops at the point of checking 

whether such a mapping exists. The test of the mapping existence is done for each node 

satisfying the mapping application conditions. If mapping does not exist for some node, 
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then error is produced. Child elements of this element are excluded from the application 

context of the mapping following this mapping in the mapping ordering. 

It should be noted that copy and the copyAttributes modifiers could be used only if 

the node types in both ends of the mapping are the same. 

If the copyAttributes modifier is used, the mapping execution semantics is as 

described in the previous section. Only when transforming the target tree node to its 

creation in this element, the attribute value assignments are added. 

If the copy modifier is used, the execution semantics is the same as for mapping 

with the copyAttributes modifier. The extension means that child cloning should be done 

as well which is performed by a call to the universal instance copier. 

 

Edge Processing 

Mappings outgoing from the edges should be processed as well. For edge 

mapping an application condition in the source tree is defined by the trees for both ends 

of the edge. It means that in the pattern describing the edge mapping application two 

paths to the root node are added. This pattern defined in terms of tree nodes again should 

be transformed in terms of the source model. 

The ends of the edge in the target model should be linked with mappings to the 

nodes included in the pattern defining the application context of the edge mapping. This 

way, similarly to the location of the parent node, it is possible to locate the ends of the 

edge to be created in the target. 

The rest is similar to the mapping processing for nodes. 

Other Elements 

Conditional mapping is treated as an additional constraint added to the mapping 

application context. The pattern adds additional constraints to the mapping application 

context as well. The pattern is translated in the pattern defined in terms of the domain 

metamodel. The rest is similar to the mapping execution semantics defined above. 

Conditional assignment does not affect the mapping execution semantics. The 

only change is in translation of the attribute value assignments to the model terms. 
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4.3.7 Mapping and Transformation Comparison 

In this section we will compare UML to UML transformation development in the 

mapping language MALA4MDSD and in a traditional transformation language. As 

already mentioned above a typical application of this language is transformations from 

PIM to PSM in the MDA lifecycle. 

In the IST 6
th

 framework project ReDSeeDS a model-driven path from the 

requirements to the code is investigated [3], as already described in CHAPTER 3. Two 

different transformation sets (“styles”) from the requirements to the code have been 

developed. Each set contains a different structure of Platform Independent (PIM) and 

Platform Specific Models (PSM) and different transformations between them. These 

transformations have been developed in the model transformation language MOLA [76]. 

For a detailed description see CHAPTER 3 and [84].  

We have rewritten the static structure processing of PIM to PSM transformations 

in the language MALA4MDSD. Table 6 contains statistics about transformations in 

MOLA and transformations in MALA4MDSD. For the simplest – the Basic style 

transformations - 19 MOLA procedures (diagrams) were needed while it was possible to 

write the same in MALA4MDSD with only 19 mapping links. 

Table 6. Comparison of transformations from PIM to PSM, developed using the 

model transformation language MOLA and the mapping language MALA4MDSD 

 Basic style  Keyword-based style 

MOLA procedures 19 51 

MOLA rules 84 137 

MOLA class elements 265 418 

Mapping diagrams 3 8 

Mapping links 19 41 

Mapping nodes 29 (source:11; target:18) 66 (source:27; target:39) 

In Fig. 54 one mapping diagram from the Keyword-based style transformations is 

presented. In this diagram copying of Classes, Interfaces and Interface realizations from 

the PIM model to the appropriate place in the PSM model is presented. Classes and 

Interfaces in the PIM model can be located in the sub-package hierarchy under the 

packages “businesslogic” and “applicationlogic” (the 3
rd

 node in the source tree 
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represents the package hierarchy). The same sub-package hierarchy should be retained in 

the target model. In Fig. 54 edge processing and conditional assignment is used as well. 

 

Fig. 54. Mapping example from the ReDSeeDS project. Transformation in 

MALA4MDSD is demonstrated. MOLA transformation for the highlighted part of the 

same task is presented in Fig. 55. 

In Fig. 55 (p.146) a part of MOLA transformations implementing the same logic 

is presented. Actually, here only the package hierarchy is processed and the class and the 

interface copiers are invoked. It corresponds to the coloured part of MALA4MDSD 

diagram in Fig. 54. All the copy logic is defined directly in other MOLA procedures. This 

copy logic description is quite long as there has to be described that attributes, operations 

and operation parameters should be copied and how they should be copied in terms of 

UML metamodel. The mapping part above the package hierarchy symbols is described in 

another MOLA procedure. Interface realization processing is not presented in this MOLA 

transformation either. 
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Fig. 55. Transformation example from the ReDSeeDS project. The same 

transformation fragment in MALA4MDSD is coloured in Fig. 54.  

A reader may get the impression that MOLA is not a suitable language for this 

task and other transformation languages would do better. However, it is not the case. 

Transformation languages usually deal with UML in its abstract syntax. Therefore, all 
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processing of all classes and associations according to the UML metamodel should be 

precisely defined. In the mapping language UML logical elements (a sort of concrete 

syntax) are processed and a user should not care whether this logical element is 

represented with an instance of one class or with instances of two classes connected with 

an association (and so on) in the UML domain. 

4.3.8 Related Work 

All mapping languages mentioned in Section 4.1.2 are general purpose languages, 

applicable to any domain and they are based on an abstract syntax. Differing from the 

approaches described in Section 4.1.2, we propose to base the mapping language on a 

concrete syntax of the source and the target languages. For transformation languages a 

similar idea has already been applied, e.g., in AToM
3 

[96], and by Grønmo in [49]. A 

concrete syntax is used directly in model (graph) transformation rules that lead to a more 

familiar representation for modellers. However, this approach lacks the simplicity and 

power of representation of correspondences between model elements offered by the 

mapping languages. 

There is also a similarity between our approach and a Model Transformation by 

Example (MTBE) [199] where transformation examples are specified as mappings in a 

concrete syntax. However, the MTBE approach requires a reasoner for transformation 

synthesis from examples while in our approach the defined mappings are complete 

transformation definitions.  

Although models in the context of model-driven software development are graphs 

and not pure trees, we have made a brief overview on several areas where transformation 

languages are operating on the data represented by trees.  

XML is the most popular and widespread technology. XSLT [194] is the 

transformation language used to transform data in the XML format. Although XSLT itself 

is an XML-based textual language, there are tools that use mappings to represent XSLT 

transformations, e.g., Stylus Studio XSLT Mapper [132] and xsl:easy [154]. The source 

and the target schemas are represented by fixed trees and all transformation logic is 

specified by using much more complex mapping features than it has been done in our 

approach.   

Another field of data being trees is program rewriting. Though, the tools and 

languages, like Stratego/XT [23] or TXL [29], are intended for the analysis, manipulation 
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and generation of programs, their features make them useful for transforming any 

structured documents. 

4.4 Domain-Specific Mapping Language Definition 

So far very few responsibilities of a mapping language developer have been 

described, namely, only to create definitions of the relevant tree type. In fact, this is only 

a small part of the job. The precise definition of the general mapping language execution 

(semantics) as far as provided in the previous sections was only from an instance tree to 

another instance tree. However, in real life there are only models (compliant to their 

metamodels) in various modelling languages and in various forms – exports from 

modelling tools, models in repositories, such as Eclipse EMF [166], a.o. So there must be 

facilities how to get from a model to a tree and vice versa. To make our mapping 

language family usable in practice a uniform solution has to be provided for these tasks. 

4.4.1 MALA4MDSD Definition Issues 

The previous section presented one specific mapping language for transforming 

the UML models. Now we want to discuss the basic principles according to which this 

language was defined and their possible application to similar model transformation 

cases. 

The first issue is an appropriate selection of the model elements to be represented 

in the tree (source, target or both) – the nodes of the tree type. A natural hierarchical 

subset of the modelling language concepts has to be selected for the chosen domain. 

Containment has to be the most important relation in this subset since all its elements are 

represented in one tree. For example, the tree type defined in Section 4.3.4 described the 

static structure of the UML class model for typical MDSD. The chosen subset 

corresponds to the one represented in the model tree in most of the UML tools for a class 

model structure. Another selection criterion implies the elements to be represented by 

nodes or their subparts in the relevant diagram notation – a class diagram in the given 

case. The corresponding diagram notation is also the main source for the choice of 

elements to be represented as edges in the tree type – associations, generalisations, 

dependencies and realisations in the example. Lines are not shown as tree nodes, they are 

attached to the nodes when required (many modelling tools show also lines directly in the 
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model tree). The notation used in our approach is a more convenient way to show how the 

end points of lines are defined during the mapping process (when selected in the source or 

created in the target). 

Since the choice of the tree type elements is based on the existing diagram (or 

tree) notation of the model, it certainly represents the concrete syntax of the modelling 

notation. The concrete syntax is normally much more compact than the corresponding 

abstract syntax – the domain metamodel. The ratio is about 1 to 3 for the selected UML 

fragment. Certainly, this concrete syntax has to be unambiguously mapped to the domain 

metamodel (abstract syntax) since our approach to the mapping language implementation 

finally converts a mapping definition to transformation in MOLA working upon the 

domain. The traceability between the source and the target is also defined at the domain 

level. Such a mapping is obvious in our example, but it should be easy to define it in other 

cases as well. 

Another feature of the language definition is the attribute list for each element in a 

tree type. Certainly, the attributes of the domain metamodel class mapped to the given 

tree element can be used in this role. However, non-containment associations navigable 

from the domain class (with multiplicity 1 or 0..1, playing the role of references) can also 

be defined as attributes – their type is the target class in the metamodel. Again, the 

inspiration for such attribute selection is the diagram notation – they are visualised within 

the main element. For example, in our mapping language, such attributes are operation 

type and class stereotype. 

A specific mapping language is uniquely defined by its complete source and target 

tree type and the mapping of the tree elements to the domain metamodel. There are no 

domain-specific features in the mapping definition facilities and various expressions are 

used there. Only the mapping modifiers could be domain-specific – copy and 

copyAttributes are meaningful only if the source and the target trees are of the same type, 

otherwise some other domain-specific processing of complete sub-trees could be added.  

4.4.2 Mapping Languages Definition Facilities 

We propose a uniform solution for relating the models in a modelling language 

(such as UML) to the trees conforming to a tree type describing the selected part of the 

language in the form of trees extended by some edge types (e.g., the tree type simpleUML 

for MALA4MDSD). Certainly, we assume the metamodel of the language in MOF to be 
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given. The solution – domain-to-tree mapping – is based on the tree type itself. It extends 

the tree type by the OCL expressions based on the metamodel and a few predefined 

keywords. Our mapping definition will directly show how a mapping defined in terms of 

tree nodes could be translated in a transformation defined in terms of models.  

We will specify which metamodel class is at the basis for each node type (by 

using the Class keyword). In addition, a selection expression in OCL can also be provided 

if not all class instances qualify. Further, for each attribute we want to include in the node 

type an OCL expression describing how a relevant value from a model should be 

extracted. If that expression is to return a reference to another node type in our tree type, 

the Node function is used (certainly, its argument must have a type equal to a class 

mapped to a node type). The Node function is used to define the finding of association 

end nodes in the tree type definition, demonstrated in Fig. 56. 

For each containment (parent-child) relation an OCL navigation expression 

specifying how child instances can be reached from the parent in a model must be 

provided (after the keyword Path). A node with a transitive containment (such as Package 

in UML) must provide a special Path expression (marked with an icon) within it, 

indicating how the next contained instance of the same type may be reached. 

Similarly, the metamodel class the edge types are based on must be specified. 

Attributes are specified the same way as for nodes. A new element is the path in a model 

by which the relevant end node instance can be found. 

It is possible to name branches of the tree type definition and to use this name as a 

reference to the tree type branch supported in this position, similarly as it was done for 

the MALA4MDSD tree type described in Section 4.3.4. Actually, the tree type 

description similar to the one used in Section 4.3.4 is obtained from the tree type 

definition throwing out the OCL expression. 

A mapping language developer has to define one or two domain-to-tree mappings 

to specify the language. 

Fig. 56 illustrates how the tree type simpleUML can be defined on the basis of the 

standard UML 2 metamodel. A slightly simplified version of the metamodel is assumed, 

e.g., such as used for the UML 2 tool in Eclipse [178] – just to avoid unnecessary 

packages, etc. All OCL expressions are assumed to be based on this metamodel. Only the 

top three node types: Model, Package and Class are visible in the fragment, but the 

continuation is quite similar. For all three node types the name attribute is defined in a 
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natural way (the OCL self points to the node base class). The containment relation in all 

cases is defined by the same OCL navigation expression self.packagableElement – the 

UML metamodel is built this way. Only the Association edge is visible in the fragment. 

The role and stereotype attributes are defined for it (their definitions rely on the fact that 

only binary associations (with two ends) are used in our UML subset). Since both ends of 

an association are attached to classes, two similar end specifications are given. 

 

Fig. 56. Mapping language definition; fragment of the MALA4MDSD definition 

The completion of Fig. 56 for all node and edge types is sufficient for the 

definition of MALA4MDSD. It should be completely clear now how it is possible to 

translate the transformation definition in terms of metamodel elements. The given 

mapping clarifies also how the node and edge typed parameters can be converted to 

metamodel elements (and vice versa) when a transformation language procedure is 

invoked from a mapping. 

Another element to be defined is the “implementation” at the model level of the 

special trace edge between the trees. Since keeping the transformation traceability is of 

value for model management, typically a special class with associations should be added 

to metamodels (as it was done in the ReDSeeDS project). 

This mapping definition is also sufficient for creating an implementation of a 

mapping language. The compiler and the editor could be generated from the tree type 

definition in a generic way (see Section 4.6). 
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To conclude some suggestions are offered for defining a specific mapping 

language. When an appropriate domain and a modelling language (together with the 

metamodel) for it have been selected, the tree type definition should include all relevant 

language concepts representable in a hierarchic way. Containment relations are typically 

based on compositions in the metamodel, but it is not mandatory (see the example in Fig. 

59 p.155). Only those edge types which are relevant to the tasks to be solved in the 

domain should be included. The same holds true for attributes of the types. 

4.4.3 Metamodel of Mapping Language Family 

In this section metamodels of the mapping language family are considered. There 

is a core metamodel common for all mapping language family. This metamodel is 

presented in Fig. 58. A metamodel for the definition of the mapping language is given in 

Fig. 57. 

 

Fig. 57. Type definition for the mapping language family 
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Fig. 58. Core metamodel of the mapping language family 
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4.5 Other Applications of the Proposed Approach 

A wider application of the proposed mappings to UML-to-UML transformations is 

possible. For example, the UML subset for MALA4MDSD can be extended to include 

several behaviour aspects important for the MDSD tasks. The creation of interactions 

(sequence diagrams) in the basic cases can be described just by adding interaction and 

lifeline nodes and the message edge to the tree type definition (the message ordering can 

be emulated by the target tree element ordering). The gain with respect to explicit 

transformation specification of the same task is huge since the UML metamodel here is 

very “verbose”. 

4.5.1 UML to RDB 

The approach is appropriate for many other cases where UML is not involved at 

all or only one of the sides (source or target) is related to UML. A brief description of an 

example of this kind follows. It is a classical model transformation task solved almost by 

every model transformation language – Class Model to Relational Database (RDB). The 

precise task description can be found in the appendix of the MOF-QVT standard [128], 

therefore we do not repeat it here in detail. 

The task is to transform the persistent classes of a simplified UML model to tables 

of a simplified RDB model. A persistent class maps to a table containing a primary key 

and an identifying column. Primitive-typed attributes, including the inherited ones, map 

to columns of the table. An association between two persistent classes maps to a foreign 

key relationship between the corresponding tables. The only simplification of the original 

task is removing the recursive processing of attributes having complex data types. The 

solution of the task by using our approach is given in Fig. 59. 

Containment relations in the source and the target trees are based mainly on the 

composition hierarchy in the source and the target metamodels. For example, Table node 

in the target tree may be owned by Schema node, but Key and Column may be owned by 

Table node. This is a natural representation and similar trees can be found in almost every 

database management tool. 

However, we want to emphasize the flexibility of our approach – the containment 

relations represented by the highlighted lines in Fig. 59 are not based on composition. The 

first one shown as a double filled arrow represents the transitive closure of all super-
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classes of the given class. It can be defined by means of OCL due to the closure operation 

introduced in OCL 2.3 [126] (see tree type definition fragment in Fig. 59). The second 

non-composition containment relation represents the association in the simplified UML. 

In fact, there are many cases when the model can be represented completely as a pure tree 

using different containment relations depending on the needs of concrete developers. As 

one can see in Fig. 59 the shapes of containment relations may be adjusted according to 

the concrete syntax of the used modelling languages. 

 

Fig. 59. UML to RDB example 

4.5.2 UML to XMI 

There are several other transformation examples that could be very adequately 

specified by using the proposed mapping language approach. One such example is 

transformations from UML to XML. In this case the source tree could be similar to the 

one described in Section 4.3.4.  

The XML tree could be used as a target tree. Since the XML document already 

has a tree structure, the target tree can be built straightforward. The root node in the XML 
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tree should be XML document which contains XML nodes that in turn may contain other 

XML nodes and XML attributes. This mapping language, for example, could be used for 

writing a transformation from UML to WSDL. Of course, such transformation is already 

implemented in many UML tools and has been described in [102]. However, in our 

approach the mapping between the source and the target is visible. If you have a concrete 

WSDL file generated from some source model it is easier to understand how elements in 

this WSDL file have been created. You can select one XML node in the WSDL file, it is 

easy to find the corresponding node in the target tree as the structure of the target tree and 

the resulting XML file are similar. Using mapping relations it is easy to understand which 

UML model elements influenced the creation of such node. Consequently, this mapping 

definition could be useful as documentation. 

Of course, UML to WSDL is not the only case when XML files from UML 

models are generated. Almost all UML tools have XML export. Usually XMI export is 

used, however, sometimes tools use their own custom formats. The export semantics 

could be described by mapping from UML to XML. UML models could be also used to 

describe the data interchanged by applications. In this case it is possible to generate XSD 

schemas (actually XML) describing the interchanged XML files. The same could be said 

about Hibernate configuration files, all kind of XML data stores, a.o. 

4.5.3 Other Examples 

Other examples where this approach should work could be migrating data from 

RDB to the existing ontologies with a similar structure (similar to the task discussed in 

[53]) and even for more complicated relational data transformation.  

The transformation algorithm from RSL static structure to PIM static structure in 

Fig. 38 (p.83) has already been described by applying informal mappings which was 

demonstrated by means of an example. However, this example demonstrates that the 

source and the target models of transformation could be naturally described using trees. 

By replacing concrete instances from the example with tree type elements a mapping 

language could be obtained. The mapping language for the static structure transformation 

in RSL to UML could be easily created. It would be an adequate means to describe the 

transformations defined in the ReDSeeDS project. 

However, in no way the proposed domain-specific approach is intended to replace 

model transformation languages in general. The pattern and rule based paradigm 
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supported by most of the transformation languages is much better for transformation tasks 

which involve a complicated graph-based source model analysis. For example, tasks 

involving a graph structure analysis, such as finding well-structured components during 

the compilation of BPMN to BPEL [36], are inappropriate for the proposed mapping 

language. 

It is likely that the mapping language would not be appropriate for defining 

transformations creating the behaviour part of PIM. In these transformations the pattern 

based analysis of the scenario sentences is widely used. Transformation languages like 

MOLA are more appropriate for this task. 

Other limitations are related to the DSL approach in general – a certain amount of 

similar transformation tasks in a domain should be required to be implemented in order to 

outweigh the costs for the language support development. 

4.6 Implementation 

The main difficulty of successful adoption of a domain-specific language is the 

rather complex and expensive development of the language implementation. 

MALA4MDSD has not yet been implemented fully, however, the implementation 

principles are clear and the feasibility has been tested. The planned implementation 

scenario is the main topic of this section. We propose a universal implementation of the 

described mapping language family instead of implementation just for MALA4MDSD.  

From the language user perspective a graphical development environment for 

transformations in this language and its compiler/interpreter must be created.  

From the language developer perspective a tool support for the tree type definition 

is required. It should support the definition of a tree type on the basis of the 

corresponding metamodel. In the tree type definer definition facilities for the following 

elements are required: tree node types, tree node styles, permitted tree node containment, 

tree node type attributes, edge types, edge styles, edge context and finally relations 

between the tree type elements and the given metamodel. This involves creation of 

relatively simple graphical elements and property dialogs. To implement such editor, a 

graphical tool building framework could be used, e.g., GMF [172], Microsoft DSL Tools 

[28], GRAF [12] or METAclipse [86].  
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On the basis of the defined tree type (or a pair of them) a mapping 

(transformation) development tool for the defined mapping language should be created. 

Such a tool would embrace universal features and domain-specific ones. The universal 

features would include a generic support for creating a pair of trees, mappings between 

them and simple patterns. The domain-specific features are the specific tree node styles, 

edge styles, possible attributes and restrictions describing the permitted node/edge type 

containment. This tool could be created by using a model based DSL tool development 

framework. Appropriate candidates are transformation based tools GRAF [12] or 

METAclipse [86]. There the universal behaviour could be defined by using the tool 

definition facilities. Transformations describing the language specific behaviour of the 

tool could be generated by using higher–order transformations. In this case special 

languages for transformation synthesis would be useful, e.g., Template MOLA [69] or the 

extension of ATL described in [182]. Since the behaviour of METAclipse framework is 

defined by using the model transformations in MOLA [76] and Template MOLA is 

adapted to synthesise model transformations in MOLA, METAclipse + Template MOLA 

are selected for implementation of the mapping language editors. 

Another issue is the mapping language compiler/interpreter. In this case a 

universal mapping interpreter/compiler could be built. The input data for the mapping 

interpreter/compiler will be the mapping language specification (domain-to-tree mapping 

based on the given metamodel) and a concrete mapping model in this language. One of 

the possible implementation scenarios is a compiler to model transformation language 

using higher-order transformations. Template MOLA could be used for this task again. 

However, an interpreter solution also looks feasible. 

The compiler and the editor development of the mapping language family by 

using Template MOLA is described in detail in Section 7.2. 

To conclude, appropriate means for the implementation of such a mapping 

language family does exist, only its implementation requires a certain technical effort. 

4.7 Conclusions 

In this chapter the use of domain-specific mapping languages is discussed. It is 

proposed to define model transformations by using simple mapping relations and tree 

syntax of the source and the target models. As a result it is possible to define typical 
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model transformations in terms familiar to modellers and therefore these domain-specific 

mapping languages could be applied by a much wider class of users.  

The proposed general principles have been applied to a family of the mapping 

languages where a language for a specific domain is defined by specifying the tree syntax 

for the source and the target. One specific mapping language – MALA4MDSD for 

transformations from PIM to PSM (a UML subset to a UML subset) – is discussed in 

greater detail. A concrete syntax similar to the model trees in UML tools is used for the 

source and the target models. The transformation development in this language is 

compared to the transformation development in a traditional model transformation 

language. A significant gain both in transformation size and understandability has been 

noticed since there is no need to deal with the technical details of the UML abstract 

syntax. 

We propose a generic approach to the creation of domain-specific mapping 

languages. To define a mapping language, the tree types of the source and the target trees 

and their relations to models should be defined. This should be done by an expert in 

metamodelling and OCL. However, this should be done only once for a mapping 

language. Of course, the creation of a mapping language pays off only if multiple 

transformations in the same domain should be defined.  

In no way the proposed domain-specific approach is intended to replace model 

transformation languages in general. For transformation tasks which involve a 

complicated source model analysis the pattern and rule based paradigm supported by 

most of transformation languages is much better. For example, tasks involving graph 

structure analysis, such as finding well-structured components during compilation of 

BPMN to BPEL [36], are inappropriate for the proposed mapping language. 
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CHAPTER 5 

Transformations for DSML Tool Development 

DSML tool development is another application area of model transformations. 

Transformation development for DSL tools is discussed in this section. The use of 

transformations and mappings in DSML tool development will be considered. 

5.1 State of the Art in DSML Tool Development 

The existing approaches for DSL tool development are briefly described further 

on. 

5.1.1 Terminology Explanation 

To start with, some terminology clarification is required as today different DSML 

development frameworks use completely inconsistent terminologies, even the terms 

model and metamodel are used differently depending on the context. For example, the 

mapping-based GMF [172] speaks only of two layers: model and metamodel, everything 

a tool builder creates is termed a model. We propose to combine both the transformations 

and the static mapping context. To avoid misunderstanding, a consistent terminology and 

its relations to be used in this chapter are defined in Fig. 60.  

As we can see the domain metamodel is defined using MOF [120] as a meta-

metamodel. A domain model is created according to the domain metamodel. It should be 

noted that alternative domain meta-metamodels used in some approaches in fact play the 

same role as MOF (and are similar to it). 

The situation is not so simple with the presentation part. In every framework there 

is a fixed presentation type definition environment. Possibilities supported in this 

environment can be described with a presentation type metamodel. Presentation types for 

a concrete domain-specific language constitute a presentation type model defined 

according to the presentation type metamodel. Presentation types describe the relevant 

graphical element types. When data are created in this concrete DSML tool, instances of 

presentation model are created, but data in this model are not an instance in the 
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presentation type model. It is an instance of the presentation metamodel describing 

supported graphical elements in the tool in general, e.g., line, box, label, etc. For example, 

in the presentation type model we can describe that we want to represent this type as a 

grey rounded rectangle with green lines and containing one label. In this case instances of 

the rounded rectangle, label and colours will be created in the presentation model with the 

appropriate properties set according to the presentation metamodel). After the instances 

have been created a user can change the colour of the rounded rectangle (if this feature is 

supported by the tool). In this case the presentation model is modified, but it does not 

affect the presentation type model. The presentation type describes only the default look 

of this node. Due to this reason the presentation model and the presentation type model 

are two separate models. 

 

Fig. 60. Terminology definition 

It is important to define a mapping model and it should be done according to the 

mapping metamodel. The mapping model describes the relationship between the domain 

metamodel and the presentation types. Mappings are not used directly at the data level. 

When defining a new DSML tool in a tool definition framework, a user has to 

define a domain metamodel, a presentation type model and a mapping model. It should be 

noted that the presentation metamodel is needed directly only if mappings are defined by 



 

 

163 

using model transformations. Models required at runtime for the tool created from the 

definition depend on whether the tool definition framework is an interpreter or a 

generator. If the framework is an interpreter the mapping and the presentation type 

models are needed to interpret them in runtime. If the framework is a generator, these 

models are not needed in runtime because the tool code is generated according to the data 

in these models.  

Most of the known DSML tool definition frameworks can be correctly categorized 

in the framework of this terminology schema. 

5.1.2 Mapping-Based Approach 

A mapping-based approach prescribes which presentation type model element 

must be used to visualize each domain metamodel element. Thus, functionality of the 

graphical tool is basically defined by this mapping which itself can be defined as a 

mapping model according to the mapping metamodel. The mapping typically may be 

complemented by use of constraints, but only at a few selected points. 

Most of the frameworks (GMF [172], Microsoft DSL tools [110], etc.) use the 

generation step, by means of which language classes are generated in the corresponding 

OOPL (Java, C#, etc.) from the involved models. The generated code ensures the relevant 

synchronization between the domain and the presentation models in runtime. If the 

generated functionality is insufficient, the language code can be extended manually. 

Actually, mapping may be used without the generation step as well – examples of it are 

MetaEdit+ [109] and Generic Modelling Tool [26], which are model interpreters.  

It must be noted that the mapping approach is easy to use. If the generated code is 

sufficient (or should be accompanied by a small amount of manual code), the tool 

definition is mainly declarative and very fast. However, when the presentation type model 

is dissimilar to the domain metamodel, a lot of code in OOPL must be added. To avoid 

this, it is a common practice for simple DSMLs to create custom domain metamodels 

nearly isomorphic to the corresponding presentation type metamodels (one class to one 

node type, etc.). However, there can be situations when it is not possible to select the 

domain metamodel freely, for example, if it is used for compiling, integration with other 

tools, etc.  

Mapping definition capabilities of a framework depend on mapping design 

patterns supported. The most expressive static mapping language is implemented in GMF 
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[172]. But even this is not expressive enough. For example, every domain class mapped 

to a diagram node must be contained in a domain class mapped to the diagram itself 

(canvas in GMF). Therefore, it is impossible to implement by pure mappings standard a 

UML class diagram where a class is contained in a package (in the UML domain) and is 

visualised in several diagrams independently of its package containment.  

There is also the EuGENia [170] framework based on GMF where the tool is 

defined by using the annotated Ecore model. The GMF models (gmfgraph, gmftool, 

gmfmap) are generated from the annotated Ecore model. EuGENia supports only a subset 

of GMF; however, it is possible to support full GMF modifying generated GMF models 

by using model transformations in EOL [91]. Although model transformations are used 

this is still a mapping-based approach as transformations are only used to compile an 

alternative tool language to the mapping-based approach in GMF. Transformations do not 

support full tool behaviour. However, if the GMF mapping definition facilities are not 

sufficient then extensions should be implemented in Java.  

Let us consider some DSML language examples where the mapping approach is 

clearly insufficient. Evidently, one such group is model transformation languages. A 

typical example is MOLA [76, 59], which is a graphical language with a lot of semantic 

dependencies between language elements. It is important to use the native MOLA 

metamodel as a domain metamodel for the MOLA tool, since only this way complicated 

syntax checks can be performed during editing and context-sensitive lists of the valid 

references proposed. If the goal of the tool is to create syntactically correct models as far 

as it is possible, clearly it is impossible to implement this tool by using only static 

mappings. The same can be said about tools for other transformation languages, e.g., 

MOF QVT [122], where the native domain metamodel is even farther from the 

presentation. Another such group could be complicated workflow languages. 

5.1.3 Model Transformation Based Approach 

A complete alternative to the mapping-based approach is the model 

transformation based approach. The correspondence between the domain and the 

presentation is defined by transformations in a model transformation language, e.g., 

MOLA [76, 59]. These transformations define what modifications must be done in one of 

the models, if the other one changes (due to the user actions or other internal activities). 

Therefore, the correspondence between the domain metamodel and the presentation type 
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model may be arbitrarily complicated here. In fact, transformations control the complete 

tool behaviour.  

At first glance this approach seems more complicated for use though experience 

reveals that programming model element mappings in an adequate model transformation 

language is much easier than in a standard OOPL. The usability of the approach is also 

ensured by the fact that a significant part of the transformations are domain-independent 

and are built only once as part of the framework itself. Clearly, the transformation driven 

approach is more time consuming in simple cases. 

The first pure transformation based project is the Tiger project [37]. However, a 

specific domain modelling notation is used there, making the domain metamodel of a 

language still to be close to the presentation metamodel. Standard editing actions (create, 

delete, etc.) are specified by graph transformations which act on the domain model, and 

the presentation model is updated accordingly. The main goal of the Tiger approach is to 

provide the building of syntactically correct diagrams only. 

The most advanced transformation based framework is METAclipse [86] that uses 

the MOLA transformation language and a powerful presentation engine in Eclipse which 

is an extension of GEF [171], GMF runtime [172] and some other plug-ins. It is based on 

a presentation metamodel specially adapted for defining transformations. The current 

version of the MOLA editor [86] is built on this framework (using a bootstrapping 

approach). This editor provides an advanced support for ensuring the syntactical 

correctness of MOLA programs and a high usability. The developed editor confirms the 

suitability of the framework for implementing complicated DSLs.  

5.1.4 Combined Approach 

Usually, for some parts of the tool the correspondence from the domain to the 

presentation is simple (fit for mappings) while for some it is complicated (fit for 

transformations). The best solution would be to combine both approaches. In this case for 

simple one-to-one relations between the domain and the presentation the mapping-based 

approach could be used, but model transformations could be written for complicated 

parts. For example, for the abovementioned MOLA Editor [86] the transformation size 

could be reduced approximately by 50% if mappings were applicable. Simple 

visualisation could be defined by mappings, but transformations would still be needed for 

complicated consistency maintenance. 
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Currently there are only known a few attempts to combine both approaches in a 

limited way. The frameworks, using this combination to a certain extent, are the Tiger 

GMF Transformation project [162] and the ViatraDSM framework [133].  

The Tiger GMF Transformation project [162] (related to the original Tiger 

project) proposes to extend GMF by complex editing commands. The mapping between 

the domain and the presentation models is defined by standard GMF facilities. But new 

complex model editing commands can be defined by transformations acting only on the 

domain model. However, this approach does not permit to define more complicated 

(transformation based) mappings between the domain and the presentation, which is the 

main goal of the approach proposed in Section 5.3. 

The ViatraDSM framework [133] is based on the Viatra2 [180] transformation 

language [31]. In this framework a mapping from the domain to the GEF-level 

presentation concepts has to be defined. This static mapping is interpreted by the 

ViatraDSM engine. The transformation based mapping (defined by Viatra2 [180] rules) 

can be combined with the static mapping approach. The goal of ViatraDSM seems to be 

the closest to our proposal. However, a lot of principal issues are not solved there. First of 

all, the static mapping mechanisms support only very limited mapping possibilities – only 

the basic mapping patterns are supported. Mapping and transformation integration 

possibilities are very limited as well. Each object can be mapped using either 

transformations or mappings. The mapping definition for ViatraDSM framework has no 

adequate notation. Solutions to all these issues are the themes of the DSML tool 

development framework proposal described in Section 5.3.  

We propose to use a more detailed mapping and transformation integration 

granularity, for example, to use transformations as pre-processors or postprocessors for 

mappings. A more expressive mapping language and a mapping definition notation are 

proposed as well.  

There is one more framework GRAF [12] which combines both approaches to a 

certain extent, but in a different setting. This framework is based on an advanced tool 

definition (presentation type) metamodel and the corresponding configuration tool [157], 

by means of which the desired diagram structure and property dialogs are defined. The 

framework contains a large set of predefined transformations that implement all standard 

user actions related to the defined diagram type. All these predefined actions can be 

extended or replaced by custom transformations. The main application area for this 
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framework is various conceptual modelling languages; consequently, there is no built-in 

support for domain models. If required, synchronisation with the corresponding domain 

can be supported by custom transformations. Complex validations and other additional 

options can be implemented in the model transformation language as well. It should be 

underlined that GRAF is based on the Transformation-Driven Architecture (TDA) [14] 

which is a system and tool building approach where multiple presentations and services 

can be linked by model transformations. Tools built by GRAF are based on TDA as well. 

5.2 METAclipse 

METAclipse [86] is a graphical DSL tool development framework built in the 

University of Latvia, Institute of Mathematics and Computer Science. The METAclipse 

framework was proposed in the PhD thesis of Oskars Vilitis [188]. This framework is 

suitable for DSL tool developments were verification of syntaxes and semantics is 

required. 

The METAclipse framework is based on Eclipse [167]; it uses many Eclipse plug-

ins and GMF runtime is one of them. 

The METAclipse framework provides functionality common to all DSL tools. A 

concrete DSL tool is built by using model transformations that have to processes only the 

semantic events of the DSL tool. Other events are processed by the tool building 

framework. Typically model transformations for the METAclipse framework are defined 

in the model transformation language MOLA [76]. 

5.2.1 MOLA Tool 

The author of the present PhD thesis has developed the first version of MOLA 2 

tool [85] in the METAclipse framework [86]. The MOLA 2 tool was the main test-bed for 

the METAclipse framework, since MOLA is clearly in the DSML category for which 

transformation based approach is more appropriate. In MOLA there are complicated 

dependencies between the abstract and concrete syntaxes, therefore, it would be 

complicated to build the MOLA editor in a tool building framework based on mappings. 

The MOLA environment has been developed in a bootstrapping manner [59] with 

the previous prototype editor built by using the Generic Modelling Tool [26] framework. 
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The new editor implements a lot of validity checks and a smart prompting during the 

diagram building.  

The MOLA 2 tool consists of two parts – the metamodel editor and the model 

transformation editor. The UML class editor actually is the simplest part of the MOLA 

environment. The MOLA procedure editor requires much more sophisticated domain-

specific logic during element building or updates. Both editors are interdependent: for 

example, the modification of a class name must be reflected in all class element instances 

in the MOLA rules that reference the given class.  

In addition to the editors, the MOLA 2 tool contains also the MOLA compiler 

(built in a lower level transformation language L3 [137], also developed at UL IMCS), 

running on the same repository. The MOLA compiler is described in detail in the PhD 

thesis of Agris Šostaks [130]. 

 

Fig. 61. MOLA editor implementation in METAclipse 

Fig. 61 demonstrates the editor in action – with both a sample class and the 

MOLA diagrams visible. After the first version of METAclipse was completed (including 

about 180 domain-independent MOLA procedures), the implementation of the initial 

MOLA 2 editor required about one man-month to develop and test it (containing about 
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120 procedures in the domain-dependent part; there are about 30 essential classes in the 

domain metamodel). Adding additional services to the MOLA tool, all tool behaviour 

description was described by using approximately 450 MOLA procedures (including the 

domain independent procedures). The developed MOLA 2 tool was successfully applied 

in the European IST project ReDSeeDS [3]. 

However, developing model transformations for the MOLA tool required a lot of 

routine work. There were transformations similar to one another. Such transformations 

could be generated automatically from the mapping between the domain of the language 

and the presentation types of the language. 

Still it is also necessary to describe the way the language specifies the tool 

behaviour. Model transformation languages are the most appropriate means for these 

tasks, implying that in simple cases mappings could be used, while complicated cases 

could be described by using transformations. The approach of this type is proposed in 

Section 5.3. 

5.3 Mappings for METAclipse 

This section focuses on the description of the way of adding mappings to a 

transformation based tool development framework. The METAclipse framework [86] and 

the model transformation language MOLA built by UL IMCS is chosen as the basis for 

the realisation of the proposed approach. The choice is based on the following – the 

framework is completely transformation based, it provides flexible ways of extension and 

it itself can be used in a bootstrapping manner for implementing the extended features. 

To ensure usability of the proposed approach, mappings and transformations 

should be smoothly integrated. The proposed mapping language could be implemented by 

using an interpreter or a generator generating transformations in a model transformation 

language (MOLA in our case). This implementation decision affects integration 

possibilities. In both cases there could be used extension points where custom 

transformations can be added to the functionality defined by mappings. If the generator 

approach is used we can allow also manual modifications of the generated 

transformations.  

The main extension mechanism should be extension points; the latter should be 

selected appropriately for the mechanism to suffice in the majority of cases. The 
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extension points should permit to replace or extend the built-in mapping possibilities by 

custom transformations. 

5.3.1 The Framework from the User Point of View 

The proposed tool definition framework will be metamodel based. At the 

beginning the domain metamodel of a domain-specific language should be built (e.g., by 

the MOLA metamodel editor). The next step would be defining the presentation type 

model and mappings between the domain metamodel and the presentation type model. 

All this will be done, using graphical wizard-style dialogs in the tool development 

framework.  

If the built-in mapping possibilities are not suitable for some task, the tool builder 

will be able to select/create a custom MOLA procedure (using the built-in MOLA editor). 

Appropriate parameters to and from this procedure should be passed to ensure integrity 

with the mappings. For each extension point there are predefined parameters passed to the 

procedures used in this extension point. 

When the tool development is complete, the tool builder can press the button 

“Build tool”. Thus, the tool executable in one step is obtained. Alternatively, if there is 

such a need the generated transformations can be edited and then compiled.  

5.3.2 Mapping Definition 

Mappings are based on typical mapping patterns. A large set of mapping patterns 

has been identified in Generic Modelling Tool [26] and they will be reused in the 

proposed approach. 

The mapping definition is based on the mapping and presentation type 

metamodels as the abstract syntax of the “mapping language”.  

The visible form of this mapping language will differ from the one used for the 

mapping languages in CHAPTER 4. It is frequently required to define more complicated 

transformation logic using mappings in the DSL tool building, therefore, the tree based 

syntax is not appropriate. This language will show up as wizard-style dialogs that will 

build instances of mapping and presentation type metamodels. The appropriate tool 

support can be built with little effort using the METAclipse framework. A more detailed 

description is given in the following sections of this chapter. A simplified version of the 
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mapping language from the domain to the presentation is also given in Section 7.3 where 

a compilator development for such languages is discussed. 

The presentation definition in a graphical tool consists of several parts: property 

dialogs, diagrams, as well as a model tree, menus, etc. Informal mapping examples 

mentioned so far all have been related to mapping the domain to the diagram element 

types. Now we switch over to another part of the presentation – the property dialogs. It is 

because the proposed ideas can be easier demonstrated on this part and the corresponding 

metamodels are smaller. Here only an essential subset from the property dialog part of the 

presentation type and mapping metamodels is briefly sketched (in Fig. 63). We assume 

here that typical Eclipse-style dialogs are used. 

When a property dialog for a domain class is to be defined, at first an appropriate 

property dialog type (i.e., its structure, element types and functionality) is designed, then 

it is mapped to the domain metamodel elements. A property dialog consists of tabs that 

can be either a field list (for displaying class attributes and linked class instances) or a 

grid (for displaying child instance properties in a tabular form). The basic element of both 

is a field whose type definition is the central point in the approach. It must be defined 

what must be shown for each field type when the corresponding class instance is selected. 

For many field kinds (e.g., combo box) the valid value set (e.g., a set of appropriate class 

instances) must be obtained and visualized. Finally, it must be defined what has to be 

done when the value is modified (in the Eclipse-style dialogs the model update follows 

immediately). 

As the metamodel in Fig. 63 demonstrates, for all these situations possible typical 

cases are defined via mappings to the domain metamodel elements (e.g., which class 

attribute must be visualized in a field in the simplest case, see the fragment in Fig. 62). 

 

Fig. 62. Metamodel fragment, describing that the design pattern field is based 

directly on property 

The metamodel contains also structuring elements defining various typical ways 

how these elementary mappings can be combined, e.g., expressions built over elementary 

mapped values. In all cases the corresponding mapping-based definition can be replaced 
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by a call to a specified custom MOLA procedure. Another novel idea is using the MOLA 

patterns for defining custom instance set filters, e.g., for the selection of relevant child 

instances. 

 

Fig. 63. Mapping and presentation type metamodel subset, describing the property 

dialogs 
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For example, we can use this mapping language to describe a property editor for 

the UML 2 class diagrams (based on the standard UML 2 metamodel [120]). For UML 

Class a property dialog type could be defined, consisting of two tabs. The first tab will 

contain a field list describing the UML Class itself. The attributes name and isAbstract 

are directly mapped to the fields in this tab. A uniqueness check (within a package) before 

the change is needed for the attribute name, and for this task a custom MOLA procedure 

can be invoked. The second tab could be a grid describing class attributes (see Fig. 64). In 

this case, the grid InstanceSetDefiniton feature is mapped to the Property class. The basic 

instance selection is via ownedAttribute master-detail association and additional filtering 

is defined by using the MOLA pattern selecting only those properties that are attributes 

(but not association ends). 

Patterns are a very powerful tool; it allows the selected instance set to be easily 

specified. The use of MOLA pattern here is similar to the use of tree patterns in 

MALA4MDSD. Patterns are a very useful and universal tool for definition of constraints 

on the selected instance set. 

 

Fig. 64. Class dialog example, general and attribute tab 

The metamodel part for the diagram mapping and presentation types can be built 

the same way, only more classes would be present since it is more complicated. 

5.3.3 Mapping and Transformation Integration 

The most important task for the mapping metamodel is a seamless integration of 

mappings with custom MOLA procedures. MOLA is a procedural transformation 

language, therefore MOLA procedures are chosen as the integration unit. It does not 

restrict the integration possibilities, since any set of statements can be included in a 

procedure. Actually, it even allows reusing the same procedure in different contexts. 

The mapping metamodel granularity and structure should be chosen so that each 

action could be extended or replaced by an appropriate custom MOLA procedure. The 
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transformation based approach permits to use a more detailed mapping granularity than in 

the traditional mapping-based tools. 

For each extension point, the set of required parameters for custom procedure is 

predefined. The predefined set should be compatible with the parameter set of the 

selected procedure. 

In Fig. 65 an integration example is given. When a property dialog field is 

modified, a custom transformation can be executed as a pre-processor, postprocessor or 

instead of the action implied by the static mapping. A custom procedure can be used as 

well to calculate the field value to be displayed. 

 

Fig. 65. Metamodel fragment describing mapping and transformation integration 

The close integration of mappings and the transformation based approach is a key 

factor in reaching the goal when the transformations generated from mapping only need 

to be combined with the specified custom MOLA procedures, but require no direct 

manual modification. 

5.3.4 Mapping Definition Language User Interface 

We propose to use wizard style dialogs for the definition of presentation type 

model and mappings. These wizards will create instances according to the relevant 

metamodel. The presentation type and mapping definition will be integrated. 

To generate presentation types and mapping for a domain class, the user will be 

asked to select the appropriate tool design pattern and enter additional properties of the 

presentation types to be created (for property dialog, diagram node type, etc.). The 

relevant mapping instances will be created automatically. The palette element, if needed, 

will be created simultaneously as well. 
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Wizards will be organised in several levels for the whole domain metamodel (as 

in GMF [172]) or on one domain class to see or modify the features related only to this 

class. 

In addition to the presentation and mapping definition, wizards will allow for 

complicated cases to select custom MOLA procedures for the relevant extension points. 

These procedures will be created by using the built-in MOLA editor. 

A natural way to implement the proposed mapping definition editor in the 

METAclipse framework is to build it as an extension of the existing MOLA tool [86]. 

Then a slightly extended metamodel definition editor can be reused for the domain 

metamodel creation and the MOLA editor can be used directly for creating custom 

procedures. 

The mapping/presentation wizard itself could be implemented in several ways. A 

classical wizard style dialog sequence could be built, but this requires certain extensions 

to the METAclipse property engine. A more interesting and user friendly way could be 

the creation of wizard diagrams. The dashboard in GMF [172] could serve as a simple 

prototype for such diagrams. The possibilities of METAclipse permit to create dynamic 

wizard diagrams where each node represents some wizard dialog “page”. The dialog in 

such a page can be defined by using standard METAclipse property dialog facilities. The 

edges in such a diagram represent the order in which these pages must be visited. At the 

next step nodes and edges will be created and the existing ones enabled/disabled in 

response to the values the user has entered in the current node. A simplified sketch of a 

wizard diagram for a domain class mapped to a node can be seen in Fig. 66. It is assumed 

that the user currently defines tabs for the property dialog. 

   

Fig. 66. Wizard diagram example for a domain class mapped to Node 
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The same visual representation can be used to modify the defined mappings. After 

opening the appropriate wizard diagram the user can select a node and update the 

properties. If this modification influences dependencies to other wizard nodes, the user is 

asked to update these nodes as well. 

We can think about other mapping visualisation possibilities, too. For example, a 

“mapping diagram” similar to the one in Microsoft DSL Tools [28] can be used with the 

domain metamodel on one side of the diagram and the presentation type model on the 

other, and with mapping lines connecting them. Actually, this mapping language would 

be rather similar to the mapping languages discussed in CHAPTER 4. Here mapping 

would be defined between the domain metamodel and the property dialogs, as well as 

between the property dialogs and the domain metamodel. It should be noted that these 

mappings would be bidirectional compared to the mappings discussed in CHAPTER 4. 

However, it seems that the tree is not the most appropriate representation of the domain 

metamodel; the class diagram representation is more appropriate. On the other hand, the 

tree seems a quite appropriate representation for the property dialog definition. 

The domain part could be visualised by a standard class diagram. A palette 

element (if needed) can be given together with the presentation type. A presentation type 

can be visualized close to the node visualisation with this type. Instead of a label a short 

form of the template about the calculation of this label value can be shown. Sub-element 

mappings could be presented in a similar way, too. 

5.4 Conclusions 

In this section the graphical DSL tool development domain is discussed. The 

model transformation based tool METAclipse has been selected. The author of this thesis 

has developed transformations for the METAclipse framework and transformations for 

the first version of MOLA 2 tool in the METAclipse framework. To do it, in total about 

450 MOLA procedures had been developed.  

When analysing these transformations, it became clear that the simple part of 

transformations is more appropriate for mappings and the logically complicated part – for 

transformations.  

As a result it was concluded that the tool building framework with options to 

combine mappings and transformation would be most appropriate for the tool 
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development of DSLs with complicated dependencies between the domain and the 

presentation. Such a framework is proposed in this section. 
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CHAPTER 6 

Template MOLA 

One of the Higher-Order Transformation (HOT) application types in [183] is 

transformation synthesis. Transformation synthesis means transformation generation from 

various sources of information, including model mappings. A survey on HOTs [183] 

reveals that most of the HOTs have been written in ATL. In the case of ATL synthesis 

[183] the relevant ATL model is created and then extracted as a transformation text. The 

same task could be considered for graphical transformation languages, e.g., MOLA [76]. 

A MOLA transformation in abstract syntax could be created in the same way as the 

abstract syntax of ATL transformations. The transformation visualisation task for 

graphical languages is harder, but still feasible. Consequently, for graphical 

transformation synthesis the HOT approach is usable; however, the experience shows that 

usage of abstract syntax for the definition of HOT is inconvenient and time-consuming. It 

seems to be true for most of transformation languages, including ATL. A better template-

based solution is proposed in this chapter.  

There are many template-based model-to-text languages, e.g., the popular ones 

JET [174] and mof2text [123]. The basic application of these languages is to create a code 

from PSM model in the standard MDSD process. These languages typically contain 

facilities to navigate the given model according to its metamodel. However, the main 

advantage of these languages is the possibility to define the text fragment to be generated 

by the given rule as a textual template in the relevant concrete syntax. The variable parts 

in the text to be generated are specified by means of template expressions that typically 

contain model class attributes and variables.  

An ATL transformation text could be created by using some template-based 

model-to-text language as well. Since MOLA is a graphical transformation language, 

textual template languages could not be applied here. In this chapter the problem of 

MOLA transformation synthesis by using template-based mechanisms is addressed.  

New graphical template-based language Template MOLA for MOLA 

transformation synthesis is proposed. In this language elements to be created in MOLA 

can be defined explicitly in syntax close to the traditional MOLA statements. The 
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generation logic in Template MOLA is described by facilities close to the standard 

MOLA. This part of the description is executed during the generation process. The 

elements to be placed in the created transformation are described in a MOLA extension 

consisting of template statements. The given extension is similar to the basic MOLA, but 

having a possibility to incorporate also template expressions that are replaced by the 

corresponding generation time values during the generation. Thus, the idea of textual 

template languages is adapted to a graphical language. The main advantages of the 

template approach are retained – adequate facilities to process and navigate the source 

model, and concrete syntax based descriptions of elements to be created as a result. The 

proposed solution is significantly more convenient for transformation generation than 

pure use of MOLA as a HOT. 

All MOLA elements are retained in Template MOLA. Additionally, special 

template elements for easy MOLA transformation synthesis are included. They make it 

possible to define explicitly in a graphical syntax which MOLA elements should be 

created. 

The Template MOLA language is an adaption of template mechanisms used for 

textual template languages (of the model-to-text kind) to a graphical language. Template 

MOLA is used for easy generation of transformations in MOLA from various input 

models as a substitute for the classical HOT approach.  

6.1 Main Elements 

In this section, the basic constructs of Template MOLA are described. The 

proposed Template MOLA language contains two kinds of MOLA statements: generation 

statements and template statements. 

Generation statements are executed during the transformation generation process. 

They are used to define the logic of generation process on the basis of the provided input 

metamodel. All ordinary MOLA statements may be used as generation statements.  

Template statements are meant to be “copied” to the generated “MOLA code” (in 

fact, a model) with template expressions replaced by the appropriate generation time 

values. Template statements look similar to ordinary MOLA statements but can be 

distinguished by their graphical style – the green colour. The most used template 
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statements are template rule and template loop; however, other MOLA statements may be 

used as template statements, too. 

Statements in Template MOLA are organized into procedures in the same way as 

in the traditional MOLA described in CHAPTER 2. A procedure may contain both 

generation and template statements; however, generation statements alone should 

constitute a valid MOLA procedure. Template statements may be interspersed between 

generation statements. Thus, the general idea of Template MOLA is that the “generation 

part” of a procedure is executed in the same way as the traditional MOLA. The only 

difference is that template statements to be executed in this process are copied to the 

resulting traditional MOLA procedures (instead of directly executing them). Certainly, 

there are some more complex situations to be described further, but at first glance 

Template MOLA means exactly that.  

6.1.1 Template Rule 

The most used template statement is template rule. In the generation time it is 

copied to the generated “code” (i.e., to the relevant generated MOLA procedure). 

Elements of the template rule may contain variable textual parts – template expressions 

(expressions enclosed in angle brackets followed (preceded) by a percent sign). These 

expressions are replaced by the corresponding generation time values.  

An example of a template rule can be seen in Fig. 67. In this rule, the constraint in 

the class element b:Class2 contains the template expression <%@p.name%> where @p 

is a known generation time reference (defined in the procedure containing this rule). 

Another kind of a variable part in a rule is a template expression specifying the class of a 

class element (here c:<%@tc:Class%>). The generation time reference @tc must point 

to an appropriate metamodel class, i.e., it must point to an instance of Kernel::Class (the 

::Class suffix in the syntax emphasizes that), and it must be set before the rule under 

discussion is to be executed. In the resulting traditional MOLA rule, this template 

expression is replaced by the referenced class name. Association links may also be 

specified by a template expression in order to adapt to a variable class element in the end. 

Association links are specified using Property at one end of the Association. Property at 

the other end and the Association is inferable from this Property. This template 

expression (<%@prop:Property%> in Fig. 67) must reference a property in the 

metamodel. The value of this reference must certainly be set correctly during the 
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generation; in the presented example only the properties (related to Class2) of association 

linking classes Class2 and Class3 are valid. In the generated rule, the standard MOLA 

notation for association links (both role names) is used. 

 

Fig. 67. An example of a template rule and the MOLA rule generated from it 

The lower part of Fig. 67 shows the generated MOLA rule obtained from the 

template rule above. Here we assume that the reference @p.name has a string value 

“Box”, the reference @tc points to the class Class3 and @prop to the role name class2 of 

the association class2 - class3.  

6.1.2 Template Loop 

Similarly to rules, the loop constructed in MOLA – the foreach loop statement – 

also has its template form in Template MOLA. The template loop is copied to the 

generated procedure during the generation process, including its body (which may also 

contain generation statements, see an example in Fig. 88, p. 226). The template loop in its 

loophead rule can use all the extensions introduced for the template rule. Fig. 68 gives an 

example of a template loop, a simple construct for creating copies of all instances of an 

arbitrary class. In the loophead of this loop, the class to be used in all class elements 

(including the loop variable orig) is defined by the template expression 

<%@type:Class%> which means that the reference @type must be set to the required 

class before the given template loop. Then a traditional MOLA loop is generated from 

this template loop, and the generated loop performs the instance copying for the given 

class. The additional class element orig_exists with NOT constraint is used as NAC 

(negative application condition) prevents a repeated copying of the copies. The example 

presents a very simple case of another area of a typical application of HOTs for 
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transformation generation in [183] – building a generic transformation for a previously 

unknown metamodel. (This application is also discussed in Section 7.4.1.) 

 

Fig. 68. An example of a template loop 

6.1.3 Call Statement and Parameters 

The body of the loop in Fig. 68 contains another template-related construct – a 

MOLA procedure call with arguments of previously unknown types (@orig and @copy). 

The type of these arguments is learned only during the generation process. The given 

procedure call contains one more argument – the reference to the type itself. This last 

argument is a generation-time argument which is not included in the generated invocation 

(it has no sense in that context). Yet for the generation of the procedure copyProperties, 

which has to perform copying of all attributes of the arbitrary class, such a parameter 

could be of high value for defining an appropriate generation time loop (traversing the 

attributes).  

The exact kind of procedure parameters is visible in its declaration. There are 

three types of parameters that can be declared in a Template MOLA procedure – 

template, generation and type parameters. Template parameters are created in a generated 

procedure. Generation parameters are used in the generation time and are not created in a 

generated procedure. Appropriate arguments must be passed in call statements for the 

template and generation parameters. The type parameters are also used in the generation 

time, but they are inferred from other parameters instead of passing them explicitly. Since 

the types of parameters in MOLA are described by using the class Kernel::Type, type 

parameters may refer to the instances of Kernel::Type (Class, PrimitiveType or 

Enumeration) only.  
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6.1.4 Template Expressions 

We have already given an insight into the template expressions used in Template 

MOLA; however, the example does not cover all possible use cases. Therefore, a short 

summary on template expressions follows. The most common elements where template 

expressions appear are class elements within a template rule. A template expression can 

be used to specify the class of the class element. In this case, the template expression 

must be a reference to Kernel::Class instance. If template expressions are used to specify 

the name of the class element, constraint or expressions in the assignment, a string 

expression is used for this purpose. These expressions may contain the generation time 

variables, parameters and attribute specifications, but no template element references. 

References to instances of appropriate classes can be used to specify references to objects, 

e.g., the attribute to be used in an assignment within a class element (a reference to 

Kernel::Property), or the source/target end of an association link (a reference to 

Kernel::Property as an end of Kernel::Association). Template expressions can also be 

used in template text statements and in call statements to specify arguments that conform 

to the template parameters of the called procedure. 

6.1.5 Template Elements 

On the whole, the idea of generating template procedures in Template MOLA and 

providing appropriate naming conventions for them is based on the principles similar to 

those in the OOP languages, such as C++ and Java, also containing some template 

mechanisms. 

A list of all Template MOLA elements is given in Table 7. The name, image and a 

short description are given for each element. Elements are divided in two groups: the 

Template MOLA elements – new elements (compared to MOLA) introduced in Template 

MOLA – and MOLA elements with a modified semantics, achieving modification by 

adding additional generation time semantics for some MOLA elements in Template 

MOLA. This issue is discussed in detail in Section 6.5. 
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Table 7. Template MOLA elements  

Image Name Description  

Template MOLA Elements  

 

Template rule This element creates the MOLA rule 

in a synthesised transformation. The 

rule is created one to one. Template 

expressions are replaced with their 

generation time values (see Section 

6.1.1). 

 

 

Template loop This element creates a loop in a 

synthesised transformation. The 

Template loop may contain 

generation time elements, describing 

the algorithm for the loop body 

generation. Template elements 

executed in the loop body are 

generated in the loop body (see 

Section 6.1.2). 

 

 

Template 

parameter 

This element indicates that a 

parameter should be generated for a 

generated MOLA procedure.  

 

 

Type parameter This is an implicit parameter. It is 

used when a Template MOLA 

procedure may be called from a 

MOLA procedure. It is used to 

describe the type of template 

parameter. 

 

 

Template variable Creates a variable in the generated 

MOLA procedure. 
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Image Name Description  

 

Template control 

flow 

Describes generation of the control 

flow explicitly. May be used 

between the Template elements and 

elements of dual nature: template 

rule; template loop, template end 

symbol, template text statement, 

template call statement, template 

external call statement start symbol, 

end symbol, call statement (see 

Section 6.5.3). 

 

 

Template end 

symbol 

Describes generation of the end 

symbol in a MOLA procedure (see 

Section 6.5.4). 

 

 

Template text 

statement 

Text statement generations  

 

Template external 

call statement 

External call statement generations  

MOLA Elements with Modified Semantics  

 

Start symbol Describes start of the procedure and 

generation of the start symbol. 

 

 

End symbol Describes end of the procedure and 

generation of the end symbol, if the 

current control flow has no end 

symbol (see Section 6.5.4). 

 

 

Call statement Executed as a call to another 

procedure and generation of a call 

statement to the generated procedure 

corresponding to the call. If marked 

as inline, the generation is omitted 

(see Section 6.5.2). 
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Image Name Description  

 

Control flow Describes the execution logic. If the 

template control flows are not 

shown explicitly, execution control 

flows are used to determine the 

template control flows to be 

generated (see Section 6.5.3).  

 

6.2 Template MOLA Compared to MOLA as a HOT 

A question may arise about the advantages of transformation synthesis in 

Template MOLA in comparison with the traditional MOLA. Writing higher-order 

transformations for transformation synthesis directly in MOLA requires defining of the 

creation of all MOLA metamodel elements explicitly (i.e., according to the abstract 

syntax of MOLA). To create one rule, we have to create the rule, all its class elements, all 

association links, all their sub-elements, and to map them to the appropriate types from 

the metamodel of this transformation. Fig. 69 demonstrates a transformation for the 

creation of one rule by using the traditional MOLA as a HOT language. Creation of the 

same rule in Template MOLA was demonstrated in Fig. 67 (p.182). 

It is easy to see that the code for creation of this rule in Template MOLA is 

significantly more readable than in the traditional MOLA. First of all, the size of the rule 

creation pattern differs significantly. Note that in this example we considered the creation 

of a very simple rule. The difference is even more significant for more complicated rules. 

The same situation holds true for loops since they mainly consist of rules.  

The same issue of complexity arises in regard to other transformation languages 

usable for HOT tasks. 

Template MOLA allows to implement the same HOT tasks with much less effort 

and with a smaller amount of errors since the structure of the resulting MOLA statements 

is clearly visible already in the templates. 
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Fig. 69. Creation of the rule from Fig. 67, using MOLA as a HOT 

6.3 Template MOLA Example 

A simple Template MOLA example is demonstrated in Fig. 70. In this example 

we consider a simplified data migration from a model based repository to the OWL/RDF 

[192, 193] based repository built according to the ODM metamodel (see [124]). We 

assume that we have an UML class diagram describing the structure of the model based 

repository and a mapping information describing the way this model should be modified 

when transferring it to the OWL based repository. In particular, this mapping 

demonstrates which classes together with their instances should be transferred and the 

way the classes should be renamed. The transformation in Fig. 70 iterates through all 

classes mapped to OWL. For each such class it creates a rule creating an OWL class and 

it creates a loop copying model instances of this class to the OWL instances of this class. 

We can run this Template MOLA on a class/mapping model and we will obtain an 

efficient data migration tool just for this model. In this example the main template MOLA 

statements are demonstrated as well. In the template rule the value of template expression 

is assigned to the attribute name. This value will be determined in the generation time and 

then used in the generated code. The loophead also contains a class element with the 
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template type that will also be determined in the generation time and replaced with the 

appropriate value. On the other hand, the types of other class elements are constant and 

the same in all generated transformations from this template MOLA program. 

 

Fig. 70. Template MOLA example: Generator for copying UML class model 

instances to OWL instances 

The transformation example in Fig. 70 contains also a call statement. This call 

statement contains two types of parameters. The parameters “@cm” and “@c” are the 

generation time parameters, while “@ce_...” and “@ci_...” are the template parameters. 

The generation time parameters are used only for transformation synthesis. The template 

parameters will appear in the generated code as well. It means that we will obtain a call in 

the generated code only with two parameters. The generation loop creates several rules 

and loops in one procedure. These generated rules will contain elements with different 

types. We need also different names for the generated elements to distinguish between 

them. Therefore the template expressions are used also to determine the generated 

element names and reference to them. 

A simple example of MOLA transformations obtained by executing the Template 

MOLA transformation from Fig. 70 can be seen in Fig. 71. A rule and a loop is generated 

Generation loop 

Call statement 

statement 

Template  

expresion 

Template expresion 

as element name 

Template 

loop 

Template 

rule 

Class element 
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for each class with the mapping. In this case two classes are considered. The class 

Department together with its instances is copied without renaming to the OWL 

repository. The class Employee is transformed to the OWL class Person. Thus, a specific 

transformation has been obtained, for migrating the instance level (M0) data for these two 

classes to the OWL repository. We remind that the example illustrates a simplified 

instance level data migration, but not the general ontology migration from UML coding to 

OWL (as in [124] for example). 

 

Fig. 71. The result of transformation from Fig. 70 

In these transformations as in any transformations metamodels are used. In a 

generated code, instances of some metamodel are transformed to the OWL metamodel 

instances. It means that the metamodel used in the generated code consists of two parts – 

the OWL metamodel and the domain metamodel. A fragment of the OWL metamodel, 

used in this example, is shown on the left side of Fig. 72.  

 

Fig. 72. A metamodel fragment used in a class model to the OWL transformation 

in Fig. 70 

According to the task specification the domain metamodel is the UML class 

model describing the given repository to be transformed. In Template MOLA this domain 

metamodel is used as input data affecting the generated code. It means when generating 
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transformation the domain metamodel is treated as instances of the UML metamodel. 

When executing the generated transformation, the domain metamodel is treated as a 

metamodel. 

In the description of transformation logic besides the domain metamodel also 

ClassMapping (on the right of Fig. 72) is used describing how the UML classes should be 

transformed to the OWL classes. As a result ClassMapping and Kernel::Class (from the 

domain metamodel) are used in the generation time statement (rule). 

An input for the Template MOLA transformation is a model defined according to 

the metamodel sketch shown on the right side of Fig. 72. When executing this Template 

MOLA transformation the result is a MOLA program. The input model consists of the 

domain metamodel (the repository structure description) and mappings, describing 

representation of this domain metamodel in OWL. From the domain metamodel 

description only Kernel::Class is shown in Fig. 72. Instances of Kernel::Class are classes 

of the processed domain metamodel. Other classes from the UML class diagram 

metamodel are required, for a complete definition of the transformation. Here only the 

class mapping is shown from the mapping metamodel. There will be other mapping 

classes in the complete transformation definition as well. It should be noted, that the 

mapping and the UML class diagram metamodels are related. This relation should be 

treated as a part of the mapping metamodel. 

The OWL metamodel classes are used in the template rules. The pointer to the 

instance of Kernel::Class is used as well, however, here the instances of metamodel are 

used. Metamodelling in Template MOLA is discussed in detail in the next section. 

6.4 Metamodelling Issues 

As in any other transformation language, transformations in MOLA are based on 

the appropriate metamodel definition, frequently containing the source and the target part. 

The definition of a metamodel for Template MOLA is more complicated because the 

relevant HOT level features for defining the generation logic have to be supported. At the 

same time, the use of template statements requires the presence of the appropriate parts in 

the metamodel. 
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6.4.1 Use of Metamodels Defining Higher-Order Transformations in MOLA 

In order to have a deeper understanding of metamodelling issues in Template 

MOLA, we start with the comparison to the metamodel structure required for defining a 

traditional HOT in MOLA for synthesis of a MOLA transformation (an example of which 

is in Section 6.2 above). Fig. 73 demonstrates the structure of this metamodel. The source 

of the HOT is the source model (a mapping definition or something similar) 

corresponding to the source metamodel. The HOT must create a complete MOLA 

transformation definition consisting of a specific metamodel for this transformation 

(frequently containing the source and the target parts) and the proper transformation (a set 

of MOLA procedures). Similarly, at the metamodel level, the definition of HOT is based 

on two metamodel parts that serve as a target metamodel for this HOT. Firstly, there are 

MOLA metamodelling facilities named MOLA MOF MM (actually, the Kernel package 

mentioned in 2.1). Secondly, the MOLA procedure metamodel (MOLA MM) is required.  

 

Fig. 73. Models to be used if higher-order transformations are written in MOLA 

 

Fig. 74. Models to be used if the domain metamodel is analysed and higher-order 

transformations are written in MOLA 

Actually, the approach presented in Fig. 73 is a simplified view on metamodels in 

HOTs. Very often, besides mapping the domain metamodel is analysed (as in Fig. 70) as 

well. This domain metamodel is used in a transformation logic description as instances of 

MOLA MOF, however, in the generated code it is used as a metamodel – types of class 

elements. Besides this domain metamodel also some constant metamodel could be used 

as types of class elements in the generated code. If we consider the example discussed in 

the previous section (actually, the generated result), the domain metamodel and the OWL 
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metamodels were used there. The domain metamodel was the transformation source 

metamodel and OWL was the transformation target metamodel. In this case OWL plays 

the role of a constant metamodel. 

It should be noted that there may be cases when one of these metamodels is 

empty. For example, the instance cloning, discussed in Section 7.4.1, uses only the 

domain metamodel. Generation of transformation between fixed metamodels may use 

only a constant metamodel. 

6.4.2 Metamodels in Template MOLA 

Now we can focus on the differences in a metamodel structure if Template MOLA 

is used instead of a standard HOT approach for the same tasks. Fig. 75 shows the general 

transformation synthesis by Template MOLA (an analogue of Fig. 73). As a rule the 

“runtime” metamodel for the generated transformation (more precisely, its variable part), 

must also be provided as an input to the Template MOLA-based HOT implementation. 

This situation could certainly occur in the general case of Fig. 73, but in Fig. 75 this 

situation is clearly syntactically visible. Such metamodel division was already introduced 

in Fig. 74 where MOLA was used as HOT. It is due to the necessity to use template 

expressions for accessing the classes of this variable metamodel part in template rules in a 

generic way (see Fig. 68, p.183). A typical example of such variable part is the domain 

metamodel (as in Fig. 70, p.189). The difference from Fig. 74 is the necessity to provide 

the constant part of this “runtime” metamodel for the definition of Template MOLA-

based HOT. This is due to the fact that the classes of this constant part are used to define 

“constant” class elements in template rules. Therefore, these classes must be defined 

before the definition of Template MOLA rules. Although this constant part of the 

metamodel is clearly an instance of the MOLA MOF metamodel, in order to be 

referenced in “constant” Template MOLA elements, it must be provided alongside the 

MOLA MOF metamodel itself. Metamodel packages, included in a complete 

transformation definition in Template MOLA, belong to two adjacent metalevels. 

However, it is not confusing since the usage of their elements is clearly distinguished. 

Classes form different metamodels may be used in different contexts in Template MOLA. 

This issue is discussed in Section 6.4.4. 

All different metamodel types used in Template MOLA (given in Fig. 75) are 

used in the example discussed in Section 6.3. The Template MOLA transformation for 
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this example was shown in Fig. 70 (p.189) and its metamodel sketch was presented in 

Fig. 72 (p.190). The OWL metamodel (the left side of Fig. 72, p.190) is used as a 

constant metamodel. The mapping metamodel is used (in this case the class 

ClassMapping) as the source metamodel. A UML class diagram is used as a variable 

metamodel. In Template MOLA, the MOLA MOF metamodel is used, in the generated 

code its instances are used. Only Kernel::Class is given in Fig. 72 (p.190). However, 

other classes could be added as well. This metamodel is connected to the mapping 

metamodel (the source metamodel). The connection should be treated as a part of the 

source metamodel. In fact, this is a typical situation for mapping languages. 

Source MM Mola MMMOLA MOF MM

Source 

model

Metamodel for

transformation
Transformation

in Mola

MOLA MOF MM
Constant

metamodel

Metamodel for

transformation

Constant 

metamodel

copy
copy

 

Fig. 75. Metamodels and models used for defining transformations in Template 

MOLA 

The same way as in MOLA, in Template MOLA depending on the task specific 

requirements some metamodels could be omitted, as in the example of instance cloning 

only the domain metamodel (the metamodel for transformations) is required. In this use 

case the source metamodel and the constant metamodels are empty. Building a compiler 

for the mapping language MALA4MDSD the constant metamodel is empty. In the DSL 

tool building all three metamodel types are required. 

6.4.3 Roles of Different Metamodels in DSML Tool Development 

A typical application of HOTs in general and Template MOLA in particular is the 

generation of transformations from mappings for metamodel-based graphical DSL tool 

building. The tool building platforms, really requiring it, are METAclipse [86] and 

ViatraDSM [133]. However, the basic ideas can also be demonstrated in the popular 

Graphical Modelling Framework (GMF) [172] in Eclipse (we assume for a moment that 

transformations are generated in MOLA instead of Java for all actions). Fig. 76 illustrates 

the specialisation of the metamodelling situation in Fig. 73, when MOLA transformations 

are generated by HOT for a DSL tool – i.e., we assume that the GMF generator is 
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implemented as a HOT instead of being written in Java. The source metamodel now 

consists of several parts with different roles. A definition of DSL normally is based on the 

relevant domain metamodel (abstract syntax) using, in turn, a version of MOF as a 

metamodel (in particular, the MOLA MOF could be used in such a role). Another part of 

the metamodel used by GMF and similar platforms is the presentation type metamodel 

(named graphical definition metamodel in GMF) and the mapping metamodel. Together 

they provide the means for graphical syntax definition of a diagram and mapping 

definition from the domain metamodel classes to presentation types in the diagram (by 

these means the instances of these classes must be visualized). The generated 

transformations in the runtime should use the same domain metamodel; therefore, this 

metamodel must be copied by the HOT to the generated transformation. There is also a 

constant part of the metamodel – the presentation metamodel (named notation metamodel 

in GMF) – which defines possible diagram elements at the runtime. This constant part 

should also be created by the HOT. One of the tasks the generated transformation should 

do in the runtime is to create a visual diagram element for a new domain class instance 

(according to the defined mapping). Thus, two important special features have appeared 

in this application: the use of the domain metamodel in two different roles (a part of the 

HOT source and a part of the created transformation metamodel), and the constant 

(independent of the source) presentation metamodel is included in the created 

transformation. In fact, the reuse of a part of the HOT source as a variable part of the 

metamodel for the created transformation is quite typical when transformations are 

generated by HOTs from mappings (as it was already underlined in the comments to Fig. 

74). 

  

Fig. 76. Models used in case MOLA is used as a HOT for tool building 

Finally, we analyse the application-to–metamodel-based tool building in Template 

MOLA (Fig. 77). The main difference from Fig. 76 is that the presentation metamodel 

plays the role of the constant part of the metamodel for transformation. Therefore, it must 
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be provided before the definition of Template MOLA. Note that classes for mappings and 

presentation types can only be used in the generation (non-template) rules and loops of 

Template MOLA (they play the role of the source metamodel). The domain metamodel is 

clearly the variable part of the metamodel for transformation. An example of this kind of 

application is presented in Section 7.3. 
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Fig. 77. Metamodels and models used to define transformations in Template 

MOLA for tool building 

6.4.4 Use of Metamodel Elements in Template MOLA Transformations 

Now, some remarks on the permitted use of metamodel elements in Template 

MOLA constructs. The source metamodel elements can be used directly only in the 

generation (non-template) statements of Template MOLA. They can also be used inside 

the template expressions in template statements. Elements of the variable part of the 

metamodel for transformation (the “runtime” metamodel) can be referenced via the 

corresponding classes of the MOLA MOF in the generation statements as well. The same 

elements can be referenced in template statements only via template expressions for the 

types. The elements of the constant part of the metamodel for transformation can only be 

used in “constant” class elements in template rules.  

6.5 Elements of Dual Nature in Template MOLA 

There are some elements in Template MOLA which are used on the one hand for 

the description of the transformation generation logic and on the other hand reflected in 

the generated code. Such elements are call statements, start symbols, end symbols and 

control flows. 

The situation with start symbols is very simple. If such an element is come upon it 

is created in the generated code and then executed according to its semantics in the 

generation process.  

Semantics of other elements is described in this section. 
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6.5.1 MOLA Procedure 

The most important structuring element in Template MOLA is template 

procedure. In some sense it has a dual nature. It structures the generation algorithm into 

smaller parts and at the same time is reused to describe the structure of what should be 

generated. It should be mentioned that it is possible to generate several MOLA 

procedures from one Template procedure. The generated code may depend on the 

generation parameter values, therefore it may be required to generate one procedure for 

each value used (more precisely, invoked with this parameter value). In such cases we 

should distinguish between these procedures and give them different names. It is possible 

to use the default name generator or to define a template expression describing how the 

procedure name should be created. The default name is generated from the procedure 

name and the values of generation time parameters (parameter and type parameter), 

however, typically the custom name expressions are used. This is also the case of the 

example described in Section 6.3, where the owlname attribute from the cm parameter is 

used as a suffix in the generated procedure names. The procedure name expression is 

defined by using the property editor, though it is not visualised graphically. 

The generated procedure name is also used to determine when a new procedure 

should be created and when an existing one could be reused. When a call statement is 

processed during the generation, the name expression of the invoked procedure is 

evaluated. If the value of the name expression matches the name of an existing procedure, 

the existing procedure will be reused. Typically, this name expression contains constants 

and values of the generation time parameters. The described mechanism permits to have 

the required control over the procedure duplication. 

There can also be cases when the amount of the code generated by a template 

procedure is very small. So we may want to include the code generated by this procedure 

into the procedure it is called from (by replacing the call statement). To solve this 

problem we allow the “inline” annotation for call statements. It means that the code 

generated by an invoked procedure is embedded in the current one. In the generated code 

references to the template parameters are replaced by the values of the corresponding call 

parameters.  

Besides optimizing the generated procedure structure, the “inline” annotation is 

vital for supporting the use of merge mechanism (see Section 6.6). 
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6.5.2 Call Statement and Parameters 

Semantics of call statements is similar in this sense. They are used both for calling 

of procedures describing the generation logic and at the same time reused in the generated 

code. Unless the inline option is used the call statement is generated to invoke the 

appropriate procedure (according to the name generation expression in the called template 

procedure). 

However, a call statement is directly related to the parameters of the called 

procedure. The procedure may contain the template parameters and the generation time 

parameters. The template parameters are kept in the generated code. The generation time 

parameters are used only for the description of the code to be generated by the called 

procedure. They are omitted in the generated call statement. 

Let us consider the call statement in Fig. 70 (p.189) as an example. It has 4 

parameters: 2 generation time (the first and the last) and 2 template parameters. In the 

generated transformation example in Fig. 71 (p.190) the generated calls have 2 

parameters corresponding to the template parameters. In this case the generation time 

parameters are used for the description of how the body of the procedure 

SetIndividualDetails should be generated. 

6.5.3 Control Flow 

As already presented in Table 7, there are two types of control flows in Template 

MOLA: template control flow and (MOLA) control flow. Template control flows are 

used to explicitly define how control flows should be built in the generated code. Control 

flows describe the execution order of Template MOLA elements, however, frequently 

they are also used to infer control flows in the generated code. 

A typical Template MOLA program describes synthesis of a MOLA 

transformation. Typically the synthesis of MOLA elements is described in a top-down 

manner (from the start symbol to end symbol). In this case the generation order of MOLA 

elements reflects also the way these elements should be connected with control flows. In 

this case control flows in the generated code can be easily inferred from the generation 

control flows; it means that only control flows describing the generation logic must be 

defined in simple case. This typical case is supported in Template MOLA using the 

heuristics described bellow. However, if more complicated control flows (e.g., branching) 
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are required then it is necessary to use  template control flows to define explicitly the 

control flows to be generated or even the merge mechanism to create arbitrary 

complicated control flow structures. 

Now we will shortly describe the execution semantics of template control flow. 

Template control flows can go from one element to another element. Only the forward 

control flows are processed. By a forward control flow we understand a control flow 

whose outgoing flow end is created before the incoming flow end. If a template control 

flow goes from/to a template element then the element generated from this template 

element is used as a flow end of the control flow. If a control flow goes from/to a 

generation time element then this end of the control flow is moved to the next created 

element in the generated code. The only exception is a template control flow from foreach 

loop. The outgoing flow end of this control flow is the last element generated by foreach 

loop. If nothing is generated by foreach loop, then this control flow is skipped. A template 

control flow whose source end is processed, but the target end is not processed is skipped 

as well. It should be noted that there are rules restricting the usage of template control 

flows, e.g., outgoing template control flows from end statements are prohibited. 

If something more specific is required, e.g., backward control flows, the merge 

mechanisms described in Section 6.6 should be used. 

If all template control flows were defined explicitly the Template MOLA 

diagrams would become unnecessary complicated. Therefore, in simple cases the 

generated control flows are inferred from the template element execution order. It means, 

control flows used for the description of the generation algorithm are used also to decide 

what kind of control flows are to be included in the generated code. In fact, some 

heuristics are used there to infer how control flows should be created. In most cases the 

default principle described below is sufficient. 

If there are two template elements in the description of the generation logic 

following each other and there are no explicit control flows defined, then a control flow 

between them is created in the generated code (more precisely, between the elements 

generated from these template elements). The same holds true if instead of one or both of 

the template elements a node with dual nature is used. Actually, this rule is more general 

when a new element is generated in the code, then a flow from the previously generated 

element to the new one is created. The same rule holds true for generation time loops as 

well. It means a flow between the last element generated in the previous iteration and the 
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first element of the next iteration is created. For example, in Fig. 71 (p.190) a flow 

between the loop dealing with Departments and the rule dealing with Persons is created. 

At the beginning of the loop a flow from the previously generated element is created. 

After the loop a flow to the next element is created. 

This automatic inference of flows simplifies transformation creation in Template 

MOLA. A user, creating a transformation generation procedure, does not have to define 

additional control flows describing the code to be generated. It should be noted that in all 

Template MOLA examples included in the thesis it is possible to define transformation 

synthesis using only (MOLA) control flows. However, if it is necessary it is possible to 

specify the control flows explicitly. If something even more specific is required, the 

merge mechanisms described in Section 6.6 should be used. By using the merge 

mechanism it is possible to obtain any control flow structures. 

6.5.4 End Symbol 

Similarly to control flows there are also a template end symbol and an end 

symbol. Template end symbols are used to describe the generation of end symbol: 

however, in simple cases the end symbol in the generated code could be inferred from the 

end symbol. 

In these cases by executing the end symbol it is created in generated code as well. 

Here heuristics are used to support typical cases. It is applicable if the last template 

element was not an end symbol, it was not merged to the other element (see Section 6.7) 

and there were no explicit control flows from the last template element. 

If the end symbol should be generated before the generation procedure completes 

its execution or multiple end symbols are required, then the template end symbol should 

be used. The next template statement following the template end symbol should be the 

element with merge (see Section 6.7) or an element with explicit incoming template 

control flows defined. Between them many generation time elements could be used. It 

should be noted that the outgoing template control flows are not allowed from the 

template end symbol. 
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6.6 Graphical Template Languages Versus Textual 

Section 6.1 gives the basics of the proposed Template MOLA language for 

generation of MOLA programs. 

In this section we want to elaborate the discussion on the principles of template-

based languages for generation (both textual and graphical) and the way these principles 

influence the constructs chosen for Template MOLA. Textual template based languages 

served as a rational for introducing some more advanced constructs in Template MOLA. 

We will briefly analyze the principles of those languages where the generation 

source is a model. These are the popular textual template languages mof2text [123], 

MOFScript [176], Acceleo [164], Xpand [181], TCS [177], a.o. The only specifically 

template oriented graphical generation language seems to be Template MOLA, but 

similar issues could appear also in languages using a concrete graphical syntax for 

transformation definition (ATOM
3
 [96], a.o.). 

Template-based languages (textual or graphical) for program generation from a 

model consist of two parts – the model navigation part and the generation part. The 

generation part specifies the object which has to be created. In fact, only the generation 

part is fully based on the template mechanism corresponding to the given concrete syntax 

(textual or graphical). The navigation part is based on the control structures for traversing 

the source model in the order required by the generation algorithm to be implemented (the 

so-called visitor principle). The basic control structures always are sequence, alternative, 

some form of loop (iteration) and invocation of a “procedure” (or something similar). 

However, this basic set is not always sufficient. 

Another part of languages is facilities for data extraction (query) from the model. 

The extracted data typically are held in some temporary data structures, including various 

collections. They are used for a direct substitution of the relevant variable parts of 

templates (variable expressions etc.) and for organizing additional generation loops. This 

query part may be more or less incorporated into the model navigation mechanisms or 

may be a more independent sublanguage. For most of the considered textual languages, 

the query mechanism is an independent one based on OCL or a similar language. This 

query mechanism as a rule supports recursion, thus, transitive closure-type queries (such 

as all inherited attributes of a class) can also be specified. 
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An essential property of textual template languages is the fact that an appropriate 

loop construct can surround any part of a textual template. This permits to create in a 

simple natural way any nested iterative structure as a result. 

Another feature of textual languages is the concrete syntax for coding a reference 

defined in the corresponding metamodel (from a variable usage to its declaration, from a 

procedure call to its definition, etc.). In a textual language such a reference as a rule is 

coded by using a sort of a name of the referenced object (certainly, it must be unique in 

the given namespace). Such a reference name can be easily generated from the model by 

using a navigation mechanism (or query in more complicated cases). But in any case the 

reference can be created “in-place” from the generation algorithm point of view (no return 

to it is required later).  

These two features determine that in most cases the above mentioned control 

structures are sufficient for defining the generation algorithm. The transformation 

algorithms are basically “single-pass” (with various distant data lookups implemented by 

queries). Certainly, it is true if the source metamodel contains a fragment which in a sense 

is isomorphic to the target object to be generated. Since textual template languages in 

practice are not supposed to implement arbitrary model transformations but only perform 

the final step of a transformation chain, this is virtually always the case. 

However, for the 2D world of graphical languages the situation is not so simple 

even in the standard case when the source and target structures are isomorphic. First of 

all, it is not always so easy to enclose any part of a graphical template in a generation 

loop. In Template MOLA the main “regular” cases are well supported from this point of 

view. These include a sequence of rules or loops to be created by a generation loop. Then 

a template for such rule or loop is contained in the generation loop body. This case was 

illustrated in the example in Fig. 70 (p.189). The only issue there is the convention how 

flows should link the results of iteration steps. This case covers a significant part of the 

usage of generator loops in Template MOLA. 

However, there may be other “iterative” situations, too. The first one is a number 

of assignments per class element dependent on some repeating element in the source 

model (e.g., see Fig. 79, p.205). A similar situation in textual templates creates no 

problems at all. But in Template MOLA it would be quite awkward to define a generation 

loop within a template class element. 



 

 

203 

The other big difference is referencing. The name-based referencing is used in 

graphical languages as well, but mainly for proper “distant” referencing – such as a 

procedure call to its graphical definition. However, frequently graphical edges represent a 

“local” reference in the concrete syntax. One such situation has already been presented. A 

control flow in the MOLA procedure generated by the Template MOLA example in Fig. 

70 (p.189) must go from the loop generated in the previous iteration of the generation 

loop to the rule generated in the current iteration. This fact cannot be easily visualized in 

Template MOLA; it is an assumption in the generation semantics. 

A similar situation can occur also with edges representing association links in a 

rule. There may be a necessity to create a variable number of class elements in a rule all 

linked by association links forming a chain (see the example in Fig. 81, p.207). It would 

be natural to assume that each class element is generated by one iteration of the 

corresponding generation loop. The corresponding association link must go from a class 

element generated in one iteration to the one generated in the next. No implicit 

assumption can be made for association links since they represent specific associations. A 

direct graphical notation in Template MOLA for association links, connecting two 

iterations of a loop, would also look quite strange. 

The described situations (and other similar ones) with the necessity to relate 

several graphical template elements appearing in adjacent iterations of a generation loop 

require some generic and visually easy readable solution. The merge construct is 

proposed for this purpose. This construct is defined not only with Template MOLA in 

mind, but also other graphical template language applications.  

Another issue worth mentioning relates to the generation part of Template MOLA 

– in fact, the normal MOLA language – which has no specific model query sublanguage. 

Queries are implemented by means of the standard pattern mechanism in rules. Therefore 

recursive queries (of the transitive closure type) require explicit recursive calls of MOLA 

procedures. This enforces the requirement that the merge principle should be applicable 

not only to generation loops, but also to recursive calls in the generation time. 

6.7 Merge Mechanisms 

One of the use cases where Template MOLA could be applied is transformations 

for generic metamodels. We may consider one simple transformation of such type – 
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instance cloning (instance cloning is discussed in detail in Section 7.4.1). In order to 

clone an instance we should create another instance and copy the values of all attributes. 

Fig. 78 demonstrates a transformation cloning values of all attributes of a class in 

Template MOLA. Functionally, this template MOLA procedure performs the required 

task. However, the generated code is a spaghetti code (see the right side of Fig. 78). More 

precisely, in a “normal” MOLA all attribute assignments should be placed in the same 

class element (and not a new class element generated for each one). 

   

Fig. 78. The left side demonstrates the procedure for copying the property values 

of a class instance. On the right side there is an example of the generated transformation. 

To solve this problem we introduce a merge mechanism in Template MOLA 

which is introduced in a generic way so that it could be applied to synthesis of code in 

any graphical language. 

6.7.1 Merge Example 

The general principle is very simple. We introduce the merge expression for all 

template elements. Elements are merged if the value of the merge expression is equal to 

the merge expression of a previously generated element (of the same kind). For elements 

already containing a unique identifier in a container, it is possible to use this identifier in 

a role of the merge expression. For template MOLA it means that the merge expression is 

required for the template rule and template loop. For class elements the class element 

name is reused in the role of the merge expression. 
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Fig. 79. The left side demonstrates the procedure for copying the property values 

of a class instance with a merge. On the right side there is an example of the generated 

transformation. 

Now we can take a look at the previous example with the merge mechanism 

enabled. The left side of Fig. 79 demonstrates the transformation from Fig. 78 with the 

merge annotations. In this case the rules created in the first loop are merged, since their 

merge expressions all are equal. Each rule contains one class element and their class 

element name (which is used in the role of merge expression) is equal. Therefore the class 

elements are merged – all attribute assignments are placed in the same compartment. 

Consequently, we generate the transformation on the right side of Fig. 79. This is evident 

in the case when all instances of rule R1 are generated in the same loop. However, since 

the template definition contains a recursive call to the same procedure, it is possible that 

instances are generated by a loop in another procedure instance. To ensure that instances 

generated in all invocations are merged together, the procedure call should be marked 

with inline annotation. It means that all elements generated by this call will be included in 

this procedure. Since in the generated code all elements are included in the same 

procedure, we can use merge mechanisms also for them. In this case the rules generated 

by a recursive call will have the same merge expression. It means we can merge them 

with the existing rules. Class elements will also be of the same type and with the same 

name (used as the merge expression). (Actually, this procedure has one more generation 

parameter when compared to the procedure in Fig. 78. This parameter is introduced to 

enable the element merge so that they will have the same type in all recursive calls 

instead of cast to a super class in recursive calls in Fig. 78.) It means we can merge also 

the class elements. As a result all assignments will be placed in one class element. We 
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should also consider the assignment merge, as there can be inheritance diamonds and in 

such a case one attribute will have multiple assignments. Assignments are merged by the 

attribute, keeping the first assignment, the others are ignored. 

6.7.2 Rule Merge 

There are also other cases when the merge construct is useful. For example, it is 

the case when the set of class elements in a rule should vary depending on some 

condition. Such a case can occur when we have to iterate through some data and create a 

class element for each instance. We consider a case when we want to obtain a star-shaped 

rule of class elements. Fig. 80 demonstrates the way of obtaining such a rule by using the 

merge mechanism. We merge the rules and the class element at the centre of the star. 

Using a generation loop we can create as many peripheral nodes as needed in our star 

shaped rule. The basic semantics of the merge operation determines that all generated 

association links go to this merged centre node. 

        

Fig. 80. Creation of a star shaped rule by using merge mechanisms 

Similarly to the star structure described above we can also obtain an element chain 

in a rule. A chain example is given in Fig. 81. Combining the chain and star mechanisms 

we can obtain any rule structure by using merge mechanisms. 

The question may arise: “Why should we create rules partially?” It is because not 

all elements that should be used in a rule can be created at the same time. There are no 

other ways to add new elements to an existing rule. Of course, we may try to split the 
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rules in smaller ones. However, in this case we will end up with a spaghetti code. It can 

also affect the efficiency of the generated code. This is because each rule is matched at 

once in MOLA while splitting it may cause some elements to be matched repeatedly and 

spoil the pattern matching optimization. 

    

Fig. 81. Creation of a chain shaped rule by using merge mechanisms 

    

 

Fig. 82. Merge of loops and rules obtaining different control structures 

The same mechanism, demonstrated for the rule merge to obtain different 

patterns, could be reused for obtaining different control structures between the loops and 

the rules. For this purpose it is possible to repeat an empty rule or loop only with the 

merge name defined. In this case it will be used to define the outgoing point of the control 
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flow. Fig. 82 demonstrates how such construct works. In this case the default control flow 

semantics defined in Section 6.5.3 is redefined. 

6.7.3 Merge Semantics 

A brief description of the merge semantics is given in this subsection. Two rules 

are merged if the merge expression of a rule to be created is the same as the merge 

expression of an existing rule in this procedure. Rule merge means that class elements 

and association links to be created in the new rule will be included in the rule it is merged 

with according to the merge semantics of elements and links. Semantics of loop merge is 

similar, only instead of class elements the loop elements (rules, call statements, etc.) are 

treated the same way. Loop elements are created in the merged loop according to their 

merge semantics. 

Class elements are merged if the name of the new class element is equal to the 

name of some existing class element in this rule. When merging class elements their types 

are also checked. If their types are different a merge process error message is generated 

and the creation of this class element and its association links is skipped. Assignments are 

the most important part of class element from the merge perspective. New assignments 

are added to the relevant existing element. If the element already contains an assignment 

to this attribute, the new assignment is ignored and a warning is produced. If the merged 

class element has a condition while the original one does not, the condition is added. If 

the original element already has a condition, then the condition in the merged element is 

ignored and a warning is produced. The same principle is applied to other features of 

class element. When defining a merge of class elements users should take care to avoid 

generation errors.  

Concerning association links, it is possible only to add new association links by 

using the merge mechanism. If there is no link between these two class elements in the 

rule, then a new link is added. Otherwise the link is ignored. Association link properties 

are not merged. 

Flow merge in a sense is similar to the association link merge. Always new flows 

are added. However, it is not checked whether such flow already exists. 
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6.8 Implementation 

To implement Template MOLA, we have to consider two aspects – editing and 

processing of Template MOLA.  

The Template MOLA editor was built as a part of the Master Thesis of Janis 

Iraids [60] and it has been built in a METAclipse framework using the MOLA editor as a 

basis. Model transformations, implementing the traditional MOLA language within a 

METAclipse framework, have been extended to support the desired functionality in the 

new editor. Since Template MOLA reuses the syntax from the traditional MOLA 

language, many of the MOLA procedures implementing the editing actions can be reused. 

The template elements can be regarded as subclasses of their related “regular” elements, 

thus inheriting all their required editing behaviour. A template text statement, for 

example, is almost equivalent to the traditional text statement from the editor’s point of 

view. New and unique functionality can be easily included where appropriate. So even 

though a substantial number of new diagram elements have been introduced, the volume 

of the code has not grown proportionally, but much less than that. In addition, the sub-

classing approach eliminates any need for non-trivial migration when converting pure 

MOLA transformation models to the Template MOLA transformation models.  

Another aspect is the execution of Template MOLA. Several solutions were 

considered, including an interpreter and a Template MOLA pre-processor.  

The author of the present Thesis proposes to use the pre-processor that converts 

Template MOLA to traditional MOLA with a later reuse of the MOLA compiler to obtain 

transformations for generation. This approach is similar to pre-processing of macros in 

C++ environments. The pre-processor replaces the Template MOLA statements with 

traditional MOLA rules that create corresponding instances of MOLA statements. For 

example, the template rule in Fig. 67 (p.182) is replaced with the MOLA rule in Fig. 69 

(p.183). The newly-created MOLA transformation is compiled by using the compiler of 

the traditional MOLA language. Finally, the obtained transformation is used as a HOT. 

An experimental implementation of a pre-processor was built. The experiments 

confirmed that it is possible to build a pre-processor. The most complicated part was 

work with multiple meta-levels at the same time. 

In the Master Thesis of Janis Iraids [60] the Template MOLA interpreter was 

considered. To create the Template MOLA interpreter, a MOLA interpreter is required. 
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The creation of a MOLA interpreter is the most time consuming task. Extension of a 

MOLA interpreter to the Template MOLA interpreter is not very labour intensive. In the 

MOLA interpreter the most important and also the most complicated part is the 

implementation of pattern matching. Currently there is only a compiler available for 

MOLA. The MOLA interpreter would be valuable per se, as by using an interpreter it 

could be possible to debug the MOLA programs. 

Evaluation has revealed that the implementation of the pre-processor solution 

requires less effort. However, the interpreter solution is also feasible and it has other 

advantages. 

Another issue to be considered is the readability of the MOLA sources, generated 

by using Template MOLA. The easiest solution is to create transformations, using only 

the abstract syntax of MOLA. The abstract syntax is sufficient if we want to execute these 

transformations without a manual extension. However, to obtain a concrete graphical 

syntax for the generated transformations, an abstract-to-concrete syntax transformation 

and an automatic diagram layout generator must be used. Some experiments have been 

performed in the field practice by Edgars Didrihsons, confirming that it is technically 

feasible to automatically create a usable concrete syntax of the generated MOLA 

transformations. 

Note that the transformations in Template MOLA actually contain some layout 

information for the MOLA procedures to be generated. For example, the layout of 

elements in a template rule could be reused in the generated transformation. However, 

this issue requires further research. 

6.9 Conclusions 

A new graphical template-based language Template MOLA for the MOLA 

transformation synthesis is proposed in this section. This language leverages the 

advantage of template-based model-to-text languages (easy specification of the language 

elements to be generated) to graphical languages. These are the graphical template 

statements of Template MOLA – template rules and template loops that are transferred to 

the new transformation to be generated. Certainly, they can contain variable elements – 

template expressions to be replaced in the generation process which itself depends on the 

input model and is defined by means of the generation statements – ordinary MOLA 
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statements included in Template MOLA. These generation statements are executed in a 

standard way during the generation process.  

The merge mechanism for templates is proposed, enabling the possibilities to 

define the generation of nested graphical structures in a simple way. Even the generation 

of large text compartments in graphical elements (such as an attribute compartment in a 

class symbol) requires this mechanism in a general case. Still this mechanism has a much 

wider application – a graphical element has to be extended by several steps of the 

generation process everywhere. 

It is described that it is much easier to specify a transformation synthesis task in 

Template MOLA than to specify the same task in the traditional HOT style (using MOLA 

as a HOT). 

Implementation of Template MOLA is under development. The editor has already 

been built. For the execution of Template MOLA an interpreter is selected due to its 

positive side effects (e.g., the MOLA interpreter). Implementation of the interpreter is 

under development. 

Template MOLA applications are discussed in CHAPTER 7. These applications 

were used to validate the applicability of Template MOLA language. The experimental 

usage confirmed that Template MOLA is suitable for the definition of synthesis 

transformations. 
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CHAPTER 7 

Template MOLA Applications 

The chapter dedicated to the discussion of Template MOLA applications focuses 

on the two main application areas: the mapping language compilation and the 

development of transformation libraries. 

7.1 Mapping Language Compilation Using HOTs 

In addition to the mapping language definition facilities an interpreter or a 

compiler is required for mapping languages. As stated in CHAPTER 4 domain-specific 

mapping languages could be incomplete, therefore integration with transformation 

languages is needed. One of the ways for achieving the integration is compilation of 

mapping languages to transformation languages. In this case it could be possible to extend 

the code generated by mapping in the transformation language. 

Higher-order transformations (of synthesis type) could be used to compile 

mapping languages to transformation languages. Such approach was also used in AMW 

[39] proposing to compile mapping languages using ATL [63]. As a result it is not 

surprising that most of HOTs have been implemented in ATL [183], although it is 

possible to define HOT in any transformation language. 

Thus, defining HOTs can also be done in the model transformation language 

MOLA, although the HOT definition using the abstract syntax of MOLA is not very 

suitable. The Template MOLA language defined in CHAPTER 6 is more appropriate for 

this task, as it was shown in Section 6.2.  

Similarly, instead of standard ATL for transformation synthesis it is proposed to 

use ATL extension [182], by means of which the lines of code in ATL synthesis 

transformation could be reduced by 43.81% [182]. 

These specialised languages, like Template MOLA and ATL extension, are the 

best choices for the development of mapping language compilers. In a mapping language 

compiler to model transformation the mapping model should be analysed and 

transformations should be synthesised. We have selected to use Template MOLA for the 



 

 

214 

mapping language compilation as in both studied mapping domains integration with 

MOLA transformations is required. Ideas for the development of mapping language 

compilers are described in the following sections. 

7.2 Implementation of Mapping Languages for MDSD 

As it was described in Section 4.6 it is planned to implement MALA4MDSD and 

the mapping language family by using higher-order transformations for the development 

of both – the editor and the compiler and each of them will contain the static part 

common to all languages in the family and the specific part. The latter will be generated 

by analyzing the language definition. 

7.2.1 Editor of the Mapping Language Family 

The mapping language definition will be used as an input for this higher-order 

transformation, generating the editor of a language. The definition will be analysed to 

find the graphical primitives in a language, as well as palette elements. This will be 

concluded from the tree type elements and their concrete syntax definition, as well as 

used for deciding for which elements the recursive elements could be used. 

The possible child elements of the tree node will also be concluded from the tree 

type definition. It will be used to generate transformations for checking whether one 

element can be used as a child of another element. 

Processing of the mapping part of the language is metamodel independent and 

predefined transformations will be used there. The only thing to be checked from the 

language definition will be whether the modifiers “copy” and “copyAttributes” are 

supported (whether the tree types are the same). 

When creating a new mapping diagram in a mapping language, the root nodes are 

always included in the diagram. For each node in the diagram there are context menu 

points for creating child elements of the appropriate type. The list of context menu points 

depends on the tree type. 

7.2.2 Mapping Language Family Compilation Schema 

Another issue relates to the compiler development of mapping languages. Like the 

editor, part of the compiler could be developed in a generic way for the entire mapping 
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language family. In addition to the specified mappings the mapping language definition 

will be used by these parts of compiler. 

The mapping language compiler should transform the mapping defined in terms of 

tree types to a transformation defined in terms of the domain metamodel. The tree type 

definition could be used for the purpose. This definition states the way each tree type 

element is represented in terms of the domain metamodel. This information is widely 

used in the mapping language compiler. 

As already stated above, the compiler defined in Template MOLA is used for the 

compilation of the mapping language family. The metamodels described in Section 4.4 

are used as the source metamodel of Template MOLA transformation. There is used the 

metamodel describing the mapping language definition, as well as the mapping 

metamodel. Metamodels corresponding to the source and the target trees should be used 

as the domain metamodel. 

 

Fig. 83. Compilation of mapping language family 

There are ordered mapping diagrams in the mapping program. Diagrams should 

be executed according to this ordering. Each mapping diagram consists of multiple 

mappings that are ordered in the diagram. Mappings are executed in a top-down manner, 

if the ordering is not specified explicitly. When executing the mapping, all instances, 
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corresponding to the constraints defined for the source of the mapping, are processed. It 

means we can process each mapping separately according to the mapping ordering. 

Transformation defining the mapping execution order is given in Fig. 83. It should be 

noted that some mappings are not defined explicitly; we assume that these mappings have 

already been inserted in the pre-processing step. 

Compilation of a mapping is discussed in the next section with some mapping 

compilation aspects dwelt on in detail in the other following sections. 

7.2.3 Mapping Compilation 

The main ideas on mapping compilation are presented in this section. A 

transformation implementing the application of the mapping is created from each 

mapping. This transformation is generated by using higher-order transformations. We 

define the transformation generation algorithm in Template MOLA. 

The first thing the generated transformation should do is to select an instance set 

for the transformation to be applied. If we think in terms of tree instances, then instances 

of the source node of the current mapping should be transformed. Besides, these instances 

should satisfy constraints defined for this node and should have as ancestors instances 

satisfying constraints defined for the ancestor nodes. We can treat the tree as a pattern, 

describing an appropriate instance set. In this pattern all nodes (and their constraints) 

between the root and the source node of the current mapping should be included.  

As a transformation should be defined in terms of model, not tree, it means that 

the tree pattern should be translated in a MOLA rule defined in terms of the source 

metamodel elements (metamodel corresponding to the source tree). It is possible to 

translate a pattern defined in terms of tree in a pattern defined in terms of model by using 

the tree type definition. This issue is discussed in detail in Section 7.2.4. 

Our mapping language has the semantics “create if does not exist”. Next we 

should create a rule checking whether this instance has not been processed before. In 

creation of this rule traceability information is used. Special attention should be paid here 

to mappings with the check modifier. This issue is discussed in detail in Section 7.2.5. 

If no instance is found, then an appropriate instance in the target should be 

created. To create an instance in the target, it is necessary to find the appropriate parent 

instance. The parent node of the current mappings target node should have a mapping to 

some already processed source tree node. Besides, this source tree node should be in the 
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tree between the source node of the current mapping and the root node. An instance of the 

source tree node could be located by using a pattern similar to the one used for the 

selection of instance set (or even using reference to the already found instance in this 

pattern). To locate the appropriate target instance again traceability could be used. The 

parent finding is discussed in detail in Section 7.2.6. 

Finally, it is possible to implement creation of the target tree node instance. Here a 

rule is created by translating the target tree node creation in terms of model element 

creation; traceability creation should be added as well. This issue is discussed in detail in 

Section 7.2.7. 

The last thing is processing of the copy or copyAttributes modifiers if they are 

used. To solve these tasks a universal instance copy library is created. In mapping 

compilation only a call to the library is added, if required. The library uses the tree type 

definition to create appropriate transformations for the tree node types. 

In the following sections details regarding mapping compilation are discussed. A 

description is given on what should be generated in each compilation step to result in the 

MOLA procedure. For some steps the generation algorithm description in Template 

MOLA is given as well. We focus on the algorithm supporting typical cases; the other 

issues are only slightly touched upon. 

7.2.4 Source Tree Pattern Compilation to MOLA 

In this section we consider the creation of transformation that selects an 

appropriate instance set for the mapping application. As already stated above, this 

instance set should satisfy conditions defined by a tree fragment from the root node to the 

source node of the current mapping. The tree fragment should be translated in the MOLA 

program defined in terms of the source metamodel (a metamodel corresponding to the 

source tree) elements. 

We are interested in all distinct instances of the source node of the current 

mapping. To process the instance set we should create foreach loop in the generated code, 

where a class element corresponding to the source node of the current mapping is used as 

a loop variable.  

We assume here that there are no recursive tree nodes in the source tree, therefore 

it is possible to transform the whole pattern defined by the source tree in a loophead rule. 

Each tree node type is replaced with a class element. The type of the class element should 
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be the domain class associated with the tree node type in the tree type definition. If the 

domain class in the tree node type definition is restricted by using the OCL constraint, 

then this OCL constraint is added to the appropriate class element. 

Parent-child relations in the tree should be replaced with appropriate association 

links in the generated loophead rule. If classes corresponding to the parent and the child 

nodes are directly related by using the parent-child association, then an association link is 

simply added. If a longer OCL path is used, then intermediate class elements are added as 

well. 

If expressions are used for some tree nodes, then these expressions are translated 

in terms of metamodel and added to appropriate class elements. It is required to translate 

these constraints as they were defined in terms of tree elements. 

A simplified version of Template MOLA procedure processing mappings is given 

in Fig. 84. This procedure processes the current mapping that is received as a parameter. 

Here the source tree node of the current mapping is found by using the MOLA rule. 

 

Fig. 84. Template MOLA procedure processing the current mapping 

The Template MOLA procedure FindTreeNodeDomainClass is used to find the 

domain class corresponding to this tree node by using the tree type definition. This 

procedure has one input parameter – the source tree node – and two output parameters: 

the domain class corresponding to the tree node and constraints. The values of the output 
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parameters are stored in two variables. The domain class is used as a type of the loop 

variable in the template loop. Constraints are used in the class element corresponding to 

this tree node. Constraints used in the node type definition as well as constraints used in 

the tree node, defined in terms of domain metamodel, are included in the returned 

constraint string. In the given procedure only the local constraints are supported. To 

support more complicated constraints, adding of additional elements to the loophead rule 

is required. 

The next element in the procedure is the template loop. It generates a loop 

processing all appropriate instances of the source node of the current mapping. The 

generated loop will iterate through all instances of the source tree node. It means the type 

of the loop variable will be the domain class corresponding to the source node (the class 

found by using the procedure FindTreeNodeDomainClass). If required, then constraints 

are added to the loop variable as well. They are found by using the procedure 

FindTreeNodeDomainClass. 

Other tree pattern elements are added to the loophead rule by using inline call to 

the procedure AddParentsToLoophead (given in Fig. 85). This procedure adds elements 

one by one to the loophead recursively processing the tree upwards. Elements to the 

loophead are added by using the merge mechanism. Therefore, the merge expressions for 

the template loop and the loophead are defined in Fig. 84. When the loophead rule 

defining the instance set has been created, the procedure implementing the semantics 

“find if does not exist” is called in the template loop in Fig. 84. It completes the 

processing of the current mapping. 

The procedure AddParentsToLoophead (given in Fig. 85) is used to add the other 

tree elements to the loophead rule. We remind that here we still assume that there are no 

recursive nodes in the source tree. This procedure is recursive, it processes the parent of 

the current tree node and calls itself on the parent of this tree node. When the root node is 

reached, nothing is done. 

In the first rule the parent of a tree node is found. If there is no parent (the root has 

been reached), the procedure completes its work. If the parent is found, the domain class 

and constraints corresponding to this parent are found by using the procedure 

FindTreeNodeDomainClass. After that the association relating the parent and the child 

tree nodes in the domain metamodel is found by using the procedure 

findChildRelationAssociation. It should be noted that only navigation expressions of 
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length one (direct associations) are supported in the Template MOLA procedure given in 

Fig. 85, however, it could be easily extended to support more complicated navigation 

paths. In this case intermediate class elements (nodes in the path from parent to child) and 

multiple associations should be added to the loophead rule. 

 

Fig. 85. Procedure AddParentsToLoophead recursively creates the loophead rule 

Finally, the parent element is added to the loophead of the template loop. This is 

done by using the merge mechanism. This procedure was called using the inline mode 

and the merge expression of the template loop and the loophead rule are equal to the 

merge expressions used in the procedure processing mappings (Fig. 84). As a result all 

elements appearing in the loophead in this procedure will actually appear in the loophead 

iterating through the source tree node instances (Fig. 84).  

It should be reminded that there is also a merge of class elements where the 

element name is used as a merge expression. When executing the loophead given in Fig. 

85, actually only one class element is added to the merged loophead as the class element 

corresponding to the child node has already been added previously. The element added to 

the loophead is connected by using the association link to the child element previously 

created in the loophead. This link corresponds to the parent-child relation in the domain 

metamodel. The association implementing the parent-child relation was found by using 

the procedure findChildRelationAssociation. 
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To create the loophead from the source tree pattern a merge was very appropriate 

as here the rule has to be created recursively. 

To support recursive nodes the loophead pattern is split in several patterns and 

recursive calls are used. Constraints to the supported instance set are added gradually. 

Consequently, the Template MOLA program becomes quite complicated. 

7.2.5 Implementation of “Create if Does not Exist” 

In MALA4MDSD the semantics “create if does not exist” is used. The instance is 

created if it has not been created previously by the mapping with the same name. To 

support this feature it is required to generate a simple rule with three class elements: 

reference to the processed instance (a loop variable in the previous section), a class 

element with the type traceability class and the domain representation of the target node. 

For the traceability class element constraint is added checking whether the trace name is 

equal to the mapping name. The domain representation of the target node is obtained 

similarly to the way the domain representation of the source node has been obtained. 

Control flows are generated from this rule. If the rule fails, then the transformation 

should go on with instance creation, however, prior to that the parent instance in the 

target model should be found. If the rule succeeds, the mapping execution should be 

completed. A special issue are mappings with the “check” modifier. If they fail, error is 

produced. 

7.2.6 Finding of Parent Instance in the Target Tree 

To create an instance in the target model, it is required to find the appropriate 

target instance to which the newly created instance should be attached. 

It is done by finding a mapping from the parent node in the target model and by 

finding the appropriate instances of this mapping. In the MOLA pattern generated in the 

loophead (see Section 7.2.4) the source instance of this mapping should already be found. 

The source instance and traceability links are used to find the appropriate target instance. 

It should succeed as this mapping should already be processed according to our ordering 

of mappings. 
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7.2.7 Element Creation 

Finally we are able to generate a transformation for the creation of target instance. 

A simplified version of this transformation is given in Fig. 86. 

This procedure has two template parameters: one of them contains reference to the 

source node instance being processed and the other – reference to the instance to be used 

as the parent in the target model. At first the appropriate association is found relating the 

child to the parent. (Here again only simple relations are supported, similarly to the 

loophead creation in Section 7.2.4.) 

Then the MOLA rule is created. It has four elements: reference to the source 

instance, traceability instance creation, target instance creation and reference to the parent 

instance in the target model. We assume that traceability is implemented by using the 

constant class Trace in the Template MOLA rule given in Fig. 86. 

 

Fig. 86. Template MOLA procedure implementing the element creation 
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If for mapping the modifier copy or copyAttributes is used, then a call to the copy 

library is created, respectively copying all child elements or only the attribute values. The 

copy library supports copying of the tree node instances. It is implemented in a generic 

way, however, for each node type the appropriate copy transformation is generated by 

using the tree type definition. It is similar to the copy library discussed in Section 7.4.1. If 

only the attribute values should be processed, the procedure copyAttributes could be 

called directly.  

The explicitly defined assignments are performed after the copy operations to 

replace the default values set by the copy. Here the assignment defined in terms of tree 

nodes is translated into the assignment defined in terms of metamodel elements. Each 

assignment is processed separately and it is done by using the Template MOLA 

procedure PerformAssignemnt. 

7.2.8 Evaluation 

Only the main ideas used in the compilation algorithm have been presented here. 

It is described what should be generated in each compilation step. The Template MOLA 

procedures implementing the creation of the loophead and the element creation are given 

as well. The use of merge is demonstrated in the loophead creation; the merge mechanism 

is required here as the loophead creation algorithm is recursive. On the other hand the 

creation of the element is very simple and is defined by using one template rule. 

In the described solution, many details and exceptional cases were skipped; 

however, a complete compiler requires support also for these cases. Full implementation 

of the compiler is left for the future. Nonetheless, the experiments have confirmed that the 

proposed approach is technically feasible and that Template MOLA is appropriate for this 

task. 

The overall conclusion is that Template MOLA seems appropriate for the 

development of a mapping language compiler. The only inconvenient issue concerns the 

limited OCL expression support in MOLA. It requires performing a complicated 

transformation of the OCL expressions to the MOLA patterns. There are two possible 

solutions: one is to restrict the supported OCL subset used in the mapping language (and 

its definition) to the subset used in MOLA; the other is to extend the MOLA constraint 

language with a complete coverage of OCL features. 
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7.3 Implementation of Mapping Language for DSL Tool Building 

In this section a simplified example of tool building is presented. It is a sort of 

continuation of the topics discussed in Section 5.3.  

As stated in Section 5.3, there are approaches combining mappings and 

transformations. In this case mappings are used to generate transformations. The 

transformation synthesis required there provides a perfect opportunity for application of 

Template MOLA. 

We use a specific task from the tool building field as an example in this section. 

We assume that we have instances of some graphical DSL in the abstract syntax (a 

domain model), and we want to generate the corresponding visualisation (instances of the 

presentation metamodel). We can certainly write manually a MOLA transformation, 

solving the task for this concrete DSL.  

In our tool building environment we have means for the domain metamodel 

definition, as well as for the mapping and the presentation type definition; therefore, 

visualisation transformation for each DSL can be created in a generic way. It means we 

can build a generic transformation in Template MOLA from which the transformation for 

visualisation creation in a concrete DSL can be generated automatically. It should be 

noted that here only one tool building aspect is considered. In the complete mapping 

language compiler the other aspects, discussed in CHAPTER 5, e.g. property dialogs, 

palette elements, element update, etc., should be supported as well. 

To write the transformation, we need the corresponding metamodels (built 

according to the general schema in Fig. 77, p.196). A simplified metamodel version is 

used in this example. The domain metamodel is defined using a small subset of UML (see 

the upper left side of Fig. 87). Presentation types and a mapping metamodel are also 

needed. Instances of this metamodel are used as the input in the generation time. Here we 

present a very simple integrated mapping and presentation type metamodel where 

minimal information on the intended graphical form is included directly in the mapping 

definition (see Fig. 87, the upper right side). Instances of a domain class can be visualised 

as a box (ClassToBox) or as a line (ClassToLine). If the class is visualised as a box it may 

contain several text fields in which the values of some class properties are usually 

displayed (PropertyToField). The user syntax of this simple mapping language could be 

built in a way similar to the property mapping language, discussed in Section 5.3.4. 
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During the visualization of classes, the generated transformation has to create 

instances of a fixed presentation metamodel supported by the tool (see the lower part of 

Fig. 87). These instances appear only in the generated transformations. Therefore, the 

presentation metamodel is the constant part of the metamodel for the generated 

transformation (compare to Fig. 75, p.194 and Fig. 77, p.196). It describes a graph 

diagram with Nodes and Edges. There are CompositeNodes containing other Nodes and 

Labels for text visualization. 

 

Fig. 87. A simplified domain (upper left side), mapping (upper right side) and 

presentation (lower part) metamodel 

When metamodels and their roles are specified, we can move on to transformation 

definition in Template MOLA (see Fig. 88). We remind that the proper input for this 

generation transformation is a specific domain metamodel and a related mapping model. 

The transformation starts with the loop iterating through all instances of the class to box 

mapping. This loop is a generation loop and is executed in the generation time. As a 

result, a traditional MOLA procedure is built, containing a loop for each such mapping 

instance (generated from the template loop which constitutes the body of the generation 
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time loop). The generated loops simply follow each other linked by control flows. The 

template loop contains the loop variable with the name being generated. The loop variable 

name is a concatenation of the letter “i” and the name of the appropriate class given by 

the template expression <%@c.name%>. The type of the loop variable is defined by the 

template expression <%@c:Class%>. In each generated loop the type (@c) is replaced 

with the concrete domain class corresponding to the mapping instance this loop is 

generated from. In each loop the value assigned to shapeType attribute is explicitly 

defined. This value is calculated in the generation time using the corresponding mapping 

data (the template expression <%@cm.boxType%> directly references the boxType 

attribute of the current mapping instance). Now in runtime each generated loop iterates 

over all instances of the corresponding domain class and creates a box for each of them. 

 

Fig. 88. Mapping implementation for tool building in Template MOLA 

We must also generate transformations to create fields and set their values. 

Therefore, a rule for processing each field has to be generated in the loop body. To ensure 

this, in the template loop a generation time loop is included. This loop checks which field 
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mappings are included into the given class mapping. A rule is created for each such field 

which adds a label to the box and sets its value. To set the value of the label, the relevant 

property value of the runtime instance should be used. To access this property, the 

template expression <%@p.name%> is used within the assignment in the template rule. 

During generation the generation time loop ensures that the template expression is 

replaced with the relevant property each time. It is not difficult to see that the generated 

sequence of rules will do exactly the required label creation. The structure of the 

generated procedure is given in Fig. 89. 

 

Fig. 89. A MOLA procedure generated for Fig. 88 

7.4 Transformation Libraries 

Another application area of synthesis transformations is the development of 

transformation libraries. It is important for the model transformation languages which do 

not support the work with multiple metalevels. In these languages model transformations 

are attached to the metamodel they are defined for. As a result it is not possible to define 

metamodel independent transformations. HOTs could be used to solve this problem. It is 

possible to define a transformation which reads the metamodel and creates the appropriate 

transformation for this metamodel. When using this approach, it is possible to create 

metamodel independent transformation libraries. The given HOT application is discussed 

in this section. 

7.4.1 Transformations for Generic Metamodels 

Template MOLA can be used to write transformations for generic metamodels 

(the metamodel is unknown at the time of writing). For example, we can write a generic 

instance cloning procedure. More precisely, we can write an instance cloning generator in 
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Template MOLA, then execute it for a concrete metamodel and run the generated 

traditional MOLA to clone instances of this metamodel. 

Such approach can be used to create reusable transformation libraries. Model 

transformation reuse has been considered an important topic [34]. One of the obstacles is 

the complete dependency of the transformation definition on the used metamodel. 

Generic transformations (transformation generators) in Template MOLA could be used to 

create a reusable library of common metamodel independent algorithms for model 

processing.  

This approach is less important if the transformation language contains features 

for work with several meta-levels at a time. However, it is useful for transformation 

languages like MOLA (and most of others that include the OMG standard MOF QVT 

[122]), which have no support for work with different meta-levels.  

Generic Template MOLA procedures can be combined with the traditional 

MOLA. The analogy with C++ templates and Java generics is used here. For example, it 

is also possible to write such a template based cloning procedure in C++ (see Listing 4). 

Listing 4. Template based cloning procedure in C++ 

template <class T> void Clone (T orig, T& copy) {...}. 

In C++ this template procedure can be called with parameters of a concrete type. 

To process this template procedure, the pre-processor generates an instance of this 

procedure for every type it is called with. The same idea is used to combine MOLA with 

Template MOLA. This feature is required if we want to invoke reusable transformations 

from a transformation library.  

Calls to template procedures can be used in ordinary MOLA transformations. In 

Fig. 90 calls to the template procedure Clone are demonstrated. The same pre-processor 

technology is applied when combining MOLA with Template MOLA as in C++ when 

generating procedures for each type they are called with. 

Since several MOLA procedures should be generated from one template 

procedure, the procedure names should be generated, too (several procedures with the 

same name are not allowed in MOLA). Here the default name generation is used. For a 

template procedure, it is possible to define an expression of how the procedure name 

should be generated exactly, however, the default naming conventions are also provided. 
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One of the pre-processor tasks in combining MOLA and Template MOLA is to replace 

calls to the template procedure with calls to the appropriate generated procedures. 

 

Fig. 90. An example where the traditional MOLA and Template MOLA are 

combined. A MOLA procedure calling the template procedure Clone from Fig. 91 is 

illustrated 

 

Fig. 91. The Clone procedure 

Fig. 91 demonstrates the content of the template procedure Clone. It contains two 

template parameters. It means that two parameters will be created in the generated 

procedure. Instead of the type, these parameters contain the template expression 

<%@type:Class%>. This template expression is evaluated in the generation time and 

replaced with the appropriate values in the generated procedures. The procedure contains 

one more kind of parameter – a type parameter (the parameter @type). This parameter 

has an analogy to C++ code, where the template parameter T was explicitly defined in the 

procedure definition. In the same way as in C++, the value of the parameter is not defined 

in a call, but it is inferred from other parameters. Note that the type parameter is used for 

this type of transformations only (transformations for generic metamodels) and is not 

required for typical HOT use cases. Since this template procedure is invoked from the 

ordinary MOLA, the referenced metamodel must be MOLA MOF itself (the Kernel 

package). 
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In the Clone procedure one rule and one call is generated. In the rule, the template 

expressions (which specify types of class elements) are replaced with their generation 

time values in the same way as in the template parameters. The call statement contains 

one generation time parameter and two template parameters. The template parameters are 

kept in the generated call. Actually, instead of a call to the template procedure, a call to 

the appropriate instance of the procedure generated from the template procedure is 

created (taking into account the name generation). 

The template procedure in Fig. 92 generates the procedure to copy instance 

properties. It contains two template parameters and one generation time parameter. The 

generated procedure will have two parameters created from the template parameters. 

Generation time parameter is only used in the generation time. 

 

Fig. 92. The copyProperties procedure 

The procedure copyProperties contains two generation time loops. The first loop 

(on the left in Fig. 92) iterates through all direct attributes of the class. For each attribute, 

it generates a rule containing a class element with an assignment in it. The value of the 

same attribute in the instance orig is assigned to this attribute. In the generated class 

element, all template expressions are replaced with their values. The template expressions 

are used for the class element type, for the attribute to be assigned and for the assigned 

expression. A remark on the template expression syntax: the left hand side of the 

assignment must be an attribute reference in MOLA. Formally, both the notation @p (the 

reference to the attribute) and @p.name (a string expression equal to the attribute name) 
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could be used here. Our choice is @p since it expresses more directly that the left hand 

side is a reference (it is preferred for the implementation as well).  

The second loop (on the right in Fig. 92) iterates trough all immediate super-

classes of this class. For each super-class, it generates a call to a procedure that copies 

direct attributes of this super-class. In this way, using recursion in Template MOLA, 

values of all attributes are finally copied. It should be noted that the generated MOLA 

procedures are not recursive due to the fact that procedure names are generated when 

several MOLA procedures are created from one template procedure. Fig. 94 and Fig. 95 

explain this situation by means of an example. 

 

Fig. 93. A metamodel example describing information processed by a company. 

The class IndividualCustomer is used to describe the generated code in Fig. 94 and Fig. 

95 

 

Fig. 94. MOLA procedure generated from the template procedure Clone 

Now let us consider MOLA procedures generated from the Clone algorithm as 

described above by using Template MOLA. We will demonstrate the generated result for 

the first call of the procedure Clone in Fig. 90. The type of the instance to be cloned is 

Company::IndividualCustomer. The metamodel for this fragment is described in Fig. 93 

(the package containing the fragment is assumed to be Company). This could be a 

simplified metamodel describing the information processed by a company. Fig. 94 

presents the code generated form the template procedure Clone. The type parameter value 
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is the type of the instance the call statement was invoked with. In this case, it is the class 

Company::IndividualCustomer. In the generated code, the type parameter @type is 

replaced with this class. The procedure call is replaced with a call to the generated 

procedure with appropriate types. Note that procedure names are generated in Template 

MOLA as well (according to the default name generation rules, which can be modified if 

required). The procedure name here will be appended by the class name from the type 

parameter. The procedure name generation is necessary because the generated procedure 

code depends on the type (or generation) parameter value (as shown in Fig. 95). The type 

parameter itself is not included in the generated code. 

 

Fig. 95. MOLA procedure generated from the template procedure copyProperties 

Fig. 95 presents the structure of a MOLA procedure generated from the 

copyProperties procedure in Fig. 92 (p.230) when the class specified by the generation 

time parameter is Company::IndividualCustomer (i.e., it is the procedure copyProperties_ 

IndividualCustomer). The left side shows two of the generated rules for assigning direct 

attribute values of the IndividualCustomer class (to the attributes level and 

loyaltyCardNumber). The attribute assignments are followed by calls to the 

copyProperties procedures generated for the superclasses of IndividualCustomer (calls 

for the superclasses Person and Customer are shown). Note that the generated names of 

the procedures include the class name from the generation time parameter, thus there is 

no recursion in the generated code. 

In this example the generated MOLA source is a kind of spaghetti code. However, 

it would be sufficient to have one class element containing assignments for each property. 

This issue could be solved using the merge mechanism described in Section 6.7. A 
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solution of the same task using the merge mechanism is described in Section 6.7.1, the 

Template MOLA procedure and an example of generated code is given in Fig. 79 (p.205).  

7.4.2 Transformation Design Patterns 

The higher-order transformations could be used to apply transformation design 

patterns. It means it could be possible to generate the initial transformation code 

according to the transformation design pattern using HOTs, e.g., to apply some design 

pattern for one specific case according to the defined parameters. 

It should be reminded that using HOTs it is also possible to read the 

transformation sources. It means it should be possible to adapt some existing 

transformation according to the selected design pattern.  

In this way it is also possible to implement transformation refactoring and merge 

of several transformations. 

When using higher-order transformations, we could automatically get a transitive 

closure according to some associations. It should be noted that there is no direct support 

for a transitive closure of an association in the MOLA patterns, while some other 

transformation languages have this feature. The TTC 2011 Reengineering challenge [54] 

demonstrates that there are tasks where a transitive closure could be widely used. The 

MOLA solution of this task used higher-order transformations to generate concrete 

transformations [155]. Here higher-order transformations were defined in MOLA; 

however, Template MOLA could be even a more adequate solution. Thus, Template 

MOLA can be used to add the missing language features to MOLA in a generic way. 

The mapping operators proposed in [198] could also be treated as transformation 

design patterns with one type of the operators being the Copy operator, which copies the 

data from one model to another. Copy was also widely used in the mapping language 

MALA4MDSD. The Copy operation is very popular in model transformations and it 

would be useful to obtain a metamodel independent copy library. In [198] other mapping 

operators have been considered. However, these operators were very simple and therefore 

do not seem so useful in the context of this research. 

On the whole the identification of reusable transformation design patterns is an 

interesting issue and the author of the given thesis believes that it has not been studied 

enough and therefore offers a perspective direction of future research. 
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7.5 Conclusions 

There are several application areas for Template MOLA. First of all it is 

metamodel-based tool building for graphical DSL. More precisely, it is the generation of 

transformations that determine the tool behaviour according to mappings that define the 

tool functionality in a static way (as, for example, in GMF).  

A related application could be generation of transformations from a more general 

kind of mappings between models. This is the area where HOTs are widely used, 

especially in ATL. The development of experimental mapping language compiler has 

confirmed that Template MOLA is applicable to solve this task. Detailed conclusions 

were already given in Section 7.2. 

Another important application is the building of transformations for unknown 

metamodels. In this way reusable transformation libraries for performing typical model 

processing tasks could be created. Afterwards transformations from such libraries could 

be used in the ordinary MOLA transformations for a specific metamodel. A very simple 

example from this area is also provided in this chapter. 

A future research direction could be an extension of Template MOLA for defining 

templates in other graphical languages, e.g., UML activity diagrams. Then the 

corresponding template statements would be defined by the graphical syntax of the 

generated language. Generation statements controlling the generation process would 

certainly remain in MOLA. This approach could be applied, e.g., for building of various 

process generators. This requires more research because the implementation could turn 

out to be more complicated than that for Template MOLA. 
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CHAPTER 8 

Conclusions 

This PhD thesis presents a research on model transformation development. Three 

domain-specific transformation application areas have been studied: transformations for 

Model-Driven Software Development, transformations for graphical DSL tool building 

and transformations synthesising transformations. 

It is concluded that a domain-specific language is more convenient and efficient 

for transformation development in a specific domain. Each selected domain area 

confirmed this conclusion and for each domain area a domain-specific language has been 

built. The thesis confirms that transformation development in these specific languages is 

more convenient compared to transformation development in traditional model 

transformation languages. 

The given domain-specific transformation languages should support 

transformation development for typical cases; however, it is not necessary to support all 

exceptional cases. A domain-specific language should be well integrated with general-

purpose transformation languages then the processing of an exceptional case can be 

implemented in a transformation language. Support for processing of all exceptional cases 

in the domain-specific language would make this language excessively complicated. 

The above given conclusions are based on research in the three selected domain 

areas. However, proving the general validity of these statements is a task for future 

research. 

It should be noted that the development of domain-specific language is not free of 

charge. Language development pays off only at a big enough amount of transformations 

to be developed. In case of requiring only one small transformation the development of a 

new domain-specific language is very likely to be unproductive. In this case one of the 

existing languages should be used as the time demanded for developing a new language 

will be greater than the time spent developing transformations. One of directions for 

future research could focus on elaboration of cost-effectiveness evaluation of a new 

domain-specific language for a particular domain.  
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The transformation domains discussed in the PhD thesis are big enough to have a 

potential for developing many similar transformations, therefore creation of a domain-

specific language will pay off. 

It should be underlined that two of the specialised domain-specific transformation 

languages proposed in the thesis are based on mappings that are the most comprehensible 

means for transformation development. However, it is not possible to define 

transformations by using only mappings. This explains why only mapping elements are 

used in model transformation languages. Nevertheless, if mappings are adapted for a 

specific domain, then most of transformation logic could be defined by using mappings. 

In fact, the approach used for MALA4MDSD could be generalised for a wider 

class of transformations. This approach could be used to build other similar mapping 

languages for other domains. Another direction of future research is studying the 

applicability in different domains and limitations of this approach. It would be interesting 

to find out whether this approach could be applied for graphical DSL tool development. 

A tool for developing a mapping language compiler is also proposed in the thesis. 

In the given case the Template MOLA language for transformation synthesis is 

applicable. Mapping and the transformation integration problem is solved by using the 

Template MOLA for the mapping language compilation. Mappings are compiled to 

transformations and to accomplish the integration only calls to the appropriate MOLA 

procedures should be created. 

The Template MOLA is suitable for MOLA transformation synthesis. Synthesis 

of code in other graphical languages might provide a very interesting direction of future 

research as it is likely that the approach similar to the one used in the Template MOLA 

could be used, namely, to synthesize diagram fragments in concrete syntax. 
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APPENDIX A 

List of Acronyms 

A 

API – Application Programming Interface 

ATL – Atlas Transformation Language 

AMW – Atlas Model Weaver 

B 

BPEL – Business Process Execution Language 

BPMN – Business Process Modelling Notation 

C 

CIM – Computation Independent Model 

CRUD – create-reade-update-delete 

CTE – Code Template Framework 

D 

DSL – Domain-Specific Language 

DSM – Domains-Specific Modelling 

DSML – Domains-Specific Modelling Language 

E 

EA – Enterprise Architect 

EOL – Epsilon Object Language 

EMF – Eclipse Modeling Framework 

EMOF – Essential MOF 

G 

GEF – Graphical Editing Framework 
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GMF – Graphical Modeling Framework 

H 

HOT – Higher-Order Transformation 

J 

JSP – JavaServer Pages 

L 

LUMII – Latvijas Univeristātes Matemātikas un informātikas institūts (Institute of 

Mathematics and Computer Science University of Latvia) 

M 

MALA4MDSD – Mapping Language for MDSD  

MDA – Model-Driven Architecture 

MDD – Model-Driven Development 

MDE – Model-Driven Engineering 

MDSD – Model-Driven Software Development 

MD* – Model-Driven Everything 

MOF – Meta Object Facility 

MOLA – MOdel transformation Language 

MOps – Mapping Operators 

MTBE – Model Transformation By Example 

MVC – Model-View-Controller 

N 

NAC – Negative Application Condition  

O 

OCL – Object Constraint Language 

ODM – Ontology Definition Metamodel 

OMG – Object Management Group 
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OOP – Object-Oriented Programming 

OOPL – Object-Oriented Programming Language 

ORM – Object-Relational Mapping 

OWL – Web Ontology Language 

P 

PIM – Platform Independent Model 

POJO – Plain Old Java Object 

PSM – Platform Specific Model 

Q 

QVT – Query/View/Transformation 

R 

RDB – Relational DataBases 

RDF – Resource Description Framework 

RDFS – RDF Schema 

RDP – Remote Desktop Protocol  

ReDSeeDS – Requirement Driven Software Development System 

RFP – Request For Proposal 

RSL – Requirement Specification Language 

T 

TDA – Transformation-Driven Architecture 

U 

UI – User Interface 

UL IMCS (LUMII) – Institute of Mathematics and Computer Science University 

of Latvia 

UML – Unified Modelling Language 
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W 

W3C – World Wide Web Consortium 

WSDL – Web Services Description Language 

X 

XML – eXtensible Markup Language 

XSLT – eXtensible Stylesheet Language Transformations 

XSD – XML Schema Definition 


