University of Latvia

ELONALNI N A

MODEL TRANSFORMATION DEVELOPMENT USING MOLA
MAPPINGS AND TEMPLAT E MOLA

Thesis for the PhD Degree
at the University of Latvia

Field: Computer Science
Section: Programming Languages and Systems

Scientific Advisor:
Prof., Dr. Habil. Sc. Comp.
AUDRIS KALNINS

Rigai 2011

LATVIJAS
UNIVERSITATE

g

Zs ESF ()

EIROPAS SOCIALAIS R A 4
FONDS

IEGULDIJUMS TAVA NAKOTNE

This work has been supported by the European Social Fund within the
cSupportrdlorStbhodites at University

Scientific Advisor)
ProfessoyDr.Sc.Comp Audri s Kal ni Ag
Latvijas UniversitUte

Referees i)
Professor, Dr. Sc. ComuntisBUr z di Ag
University of Latvia

Professor, Dr. Sc. Ing. Oksamai ki f or ov a
Riga Technical University

Professoy Dr. OlegasVasilecas
Vilnius Gediminas Technicalniversity(Vilnius, Lithuania)

Thedefenceof the thesis will take place in an open session of the Council of Promotion
in Computer Science of the University of Latvrathe Institute of Mathematics and
Computer Science of the University of Latvia (Room 413, RBmaevard 29, Riga,
Latvia) onMarch7, 2012 at 4 PM.

The thesis and its summary are available at the library of the University of Latvia
(Kalpaka Boulevard 4, Riga, Latvia).

ABSTRACT

Model transformation development for three specific domains: MDdeen
Software Development (MDSD), DSL tool development and transformation synthesis has
been studied in the thesis. It is concluded that transformation development in -domain
specific transformation languages is more straightforward and faster compmared t
traditional transformation languages. A domapecific model transformation language
has been developed for each studied domain. Two of them are based on mappings. In
both cases it was concluded that mappings better fit for typical tasks and transfesmat
better fit for nonstandard tasks. Therefore a close integration between mappings and
transformations is required.

The research results have been published in 15 papers (6 of them have been
included in SCOPUS).

Keywords

Model transformations, DomaiBpecific Languages (DSL), Mod&riven
Software Development (MDSDRSL tool development, HigheDrder Transformations
(HOT)

CONTENTS

LIST OF FIGURES ..o oo eeee sttt aeenss st eeeaeaaaaeeeeemmeeees 11
LIST OF TABLES ...ttt eeeei bttt sttt et e e e e e e e e e e e e e e e e e s s e e as 15
ACKNOWLEDGEMENT ...ttt ceesess e e e e e e e e e e e s smmmreeaeaaaaeaeaeeaeennnnnns 17
INTRODUCTION oottt eeee st eeens bbb e e e e e e e e e e e e semsseeeees 19
CHAPTER 1 MOTIVATION - MDSD AND MODEL TRANS FORMATION
LANGUAGES ...t e e e e e e e e e 27
S R | (oo [= 1 o o AR P PP PP PP PPPPPRP 27
1.1.1 Whatis a MOE........coooiiiiiiiiiiieee e eeer e e e e e e e 27
1.1.2 MetamOdelliNg........uuueiiiiiiiiiiiiiiit e 32
1.2 ModelDriven Software Development.............ccoovvviiiiiieee e 34
00 R |1 LSRR 34
1.2.2 Model Driven ArChite@CIUIe.........ccuuuiiiiiiiiiieiieeeiiiiee e 36
1.2.3 Model Driven Software Development..........ccccoviiiiiiiiccce e 39
1.2.4 DomainSpecific Modelling Languages.............ccooovvvvvviimemeeeeeeeeeeeeninnnns 40
1.3 Model Transformations............covvviiiiiiiiiimmee e e 42
1.3.1 Model Transformation Languages...........cccccvvvvvvvrrmmreeeeeeevnnnnnninnnennn.. 43
1.3.2 Mapping LANQUAGES.......cccvviiiiiiieeiiiiiiteeeee e smnee e 4D
1.3.3 HigherOrder Transformations..............ccceevviiiiieeei e 45
CHAPTER 2 MOLA LANGUAGE ...ooiiiiiiiieeee e eeeen a7
2.1 MOLA OVEIVIBWeeiiiiiiiiiiee et emme e e e e e e e s s en e e e e enens 47
2.2 MOLA ElBMENTS .. .ot it eeee ettt s s s e e e e e e e e e emnnas 48
2.3 MOLA EXAMPIE... .o e e e e e e e e e e e e e aeee s 53
2.4 Hello World With MOLA ..ot enemna e e e e e e e e 55
2.4.1 Greeting TasKS......ocieii e 56
2.4.2 INStANCE COUNTING ...ttt ieeeaiiieeb e e e e e e e e e e s emer e e e e e e e e e e e eaeaeeeas 57
2.4.3 REVEISION. ..ot i ittt eeee s sttt anans bbb bbbt e e e e e e e eeeeeeeenneees 63
2.4.4 MOl MIQratiON........ccoeiiiiiiiiiiiee e 64
2.4.5 DeletioN TASKS.....uuiiiiiiiiiie et e e 66
2.4.6 MOLA TOOI SUPPOIT....cciiiiieiiiiieeeieeeeee e e 67
2.5 MOLA MetamOAEL.......uuuuuiiiiiiiiiiiiiiiieeeiiiiieeeeee et e e e e e e 69
CHAPTER 3 TRANSFORMATIONS FOR MODEL -DRIVEN DEVELOPMENT
IN REDSEEDS...... ..ttt ettt e e e e e e e e e e e e smr e e e e e e e e e e e e e e e e s e s annnes 73
3.1 REDSEEDS OVEIVIEW .. .ccceeeeeiiiiieeeeiieieeme e e e e e e e ee et eeasssnnnnn e e eeeas 73
3.2 Requirements Specification in ReDSeeDS...........covoiiiiiieeen i, 75
3.2.1 Requirements Specification Language in ReDSeeDS...............c.ccc... 75
3.2.2 Example of Requirements.........ccccoeieiiviiiiimiiiineeeeeeeieieeeeeeevvmmmennnneen o 1
3.3 ModelDriven Development in the ReDSeeDS Project.............eeevvevvvieeeennnee. 78
3.3.1 Design Patterns and the Architecture &tyl..............coooiiiiieee, 79
3.3.2 The RSL Profil@.....cccccoeeeieeeeeeeeeeee e 81

3.4 ReDSEEDS BaSIC StYl@......uuuiiiiiiiiie e 81

3.4.1 The Platformindependent Model...........ccooooeiiieiiiiieeeiiiiee e 82
3.4.2 The PlatformSpecific Model............ooooiiiiiee e 85
3.5 The KeywordBased Style............cccooiiiiiiiiiiieeee e 35
.51 MOURIS ..o e 86
3.5.2 Selected Design Patterns for the Keyw8@ksed Style..........................i 38
3.5.3 RSL Pofile for the KeywordBased Style............c.ooovvvviiiiiicciiieeiiiiinnens 89
3.5.4 The Structure of the Analysis Model...............ceiiiiiiccceiiiiiiceee e, 91
3.5.5 Transformation of Requirements to ANadys..............ooeeeiiieenne e 92
3.5.6 The Platformindependent Model...........cccoooeieeiiiiiieeeiiiie e 93
3.5.7 Transformation of Requirements and Analysis to RIM........................ 95
3.5.8 The PlatformraSpecific MOdEL...............euviiiiiiiiceeecci e eeeen 98
3.5.9 The Java COde........coiiiiiiie e 99
3.6 IMPIEMENTALION.......ciiii i 103
3.6.1 Modelto-Model Transformations Implementatian...................ccceeeeee. 103
3.6.2 Modelto-Model Transformations in the KeywoBhsed Style.............. 105
3.6.3 Modelto-Code Transformation Implementation.............cccccoeeeevieaeee. 111
3.6.4 Integration with the Enterprise Architect..............cccoovviiiccc s 112
G T A o T o 1] o £ 113
CHAPTER 4 MAPPING LA NGUAGES........cottiiiiiiiieee e 115
o RV =T o] o1 o N [0 == PP PP PP PP PP PP 115
4.1.1 Transformation Languages and Mapping Languages...................... 116
4.1.2 General Purpose Mapping Languages............ccccvvvvvimmmnnniniiiniinnnnne 118
4.2 DomainSpecific Mapping LANQUAJES.........coovvvvevivviiiimmmeeeeeeeeeevienennnne e ean 120
4.2.1 DomainSpecific Model Transformations................oooeeeiiiemne s 120
4.2.2 DomainSpecificMapping Languages...........cccovvvvvvvviiimemeeeeeeeeeeeeiiinnns 121
4.3 MALAAMDSD i Mapping Language for MDSD..........ccccvveiiiiiiiiiicceeeeeee, 121
4.3.1 MALAAMDSD MOUIVALION.....cciiiiieeeeieiieeieececieeee e aeeeeees 122
4.3.2 BasiCS Of MALAAMDSND.........coviiiiiiiieiee e e e ennnn s 124
4.3.3 MALAAMDSD EIEMENLS....cciiiiiiiieieieiiieeeesieee e eees e 125
4.3.4 MALAAMDSD UML Tre€ TYPE...uureiiiiiiiiiiieeeeeee e semeeeeeeeae e e e e e e e es e e 132
4.3.5 More Advanced Mapping Elements.............ccooovvviieee e, 136
4.3.6 Mapping Language SemMantiCS............uuuuiriiiiiiieeeiiiieieieieeeieeeeaeee e e e 140
4.3.7 Mapping and Transformation ComparisQn.............ccccoevvvvieemreeeeeeennn. 144
4.3.8 Related WOIK.......oeiiiiiiiiies et eeeeee s e e e e e e e e eeeeeeenes 147
4.4 DomainSpecific Mapping Language Defiion...............ccoooevvviiiieeee e, 148
4.4.1 MALAAMDSD Definition ISSUES......uuuiiiiiieeeeeeeeeiieieeeie e e e e ee e e eeeeeeeeeees 148
4.4.2 Mapping Languages Definition Facilities..........ccccoeeeeiiiiiieeeiiicceennn. 149
4.4.3 Metamodel of Mapping Language Family.............ccccuvvviiiieenriiiiinnne. 152
4.5 Other Applications of the Proposed Approach.............ccccceeiiiieeeniieieeininnn, 154
451 UMLTIO RDB.....oooiiiiiiieeeee e 154
4.5.2 UML O XMI cooiiiiiiiiiiiiee e e e 155
4.5.3 Other EXamPIES........cooiiiiiiiiiiiieee e 156
4.6 IMPIeMENTALION.......couiiii e e e e e e e e e rsna——e 157
O A o o 11153 o] LSS 158
CHAPTER 5 TRANSFORMATIONS FOR DSML TOOL DEVELOPMEN T.....161
5.1 State of the Artin DSML Tool Development..........ccccceeeeiiiiiiccciieeeeens 161

5.1.1 Terminology EXplanation................couuuiiiiiiiiiiiiiiiiiiiiie e 161

5.1.2 MappingBased AppProachi.........cccccceeeeeiiiiiieeeie e 163
5.1.3 Model Transformation Based Approachi.........ccccccccveiiiieemiiiiiinnnnnnn. 164
5.1.4 Combined APProach..........ccooeiiiiiiiiiiieee e 165
5.2 METACHPSE. ...t eeer ettt e e e e e e e e e e 167
5.2.1 MOLA TOOI. ..ttt ettt 167
5.3 Mappings for METACHPSE.cccoiiiiiiiiiiiieeieeeiie ettt 169
5.3.1 The Framework from the User Point of VIeW............ccccvviviiimmnninnnns 170
5.3.2 Mapping DefiNitiOn.........cccuuiiiiiiiiiii e 170
5.3.3 Mapping and Transformation Integration.................cccccvccevvveveennnnns 173
5.3.4 Mapping Definition Language User Interface...........ccccvvveeiiiieecnnnnee. 174
5.4 CONCIUSIONS.....ciiiieieeei ettt reea bbbttt e e e e e e e e s semseee e e 176
CHAPTER 6 TEMPLATE MOLA ..ottt 179
6.1 Main EIBMENTS. ...ttt et e e e e e e e e s 180
6.1.1 Template RUB........ooooiiiiiiee e 181
0 =T a1 o] F= L (=N o Yo o USSR 182
6.1.3 Call Statement and Parameters...........coovvvvevivieeee e eeeeeeeeeeeeeie e 183
6.1.4 Template EXPreSSIONS.......uuuuriiiiiee i e e e ceesiiie e e e e e e e e e e eene e e e e e aeees 184
6.1.5 Template EIEMENTS.......ccooiiiiiiiiieee e 184
6.2 Template MOLA Compared to MOLA as a HQT..........cooevvvvvviiiieeeeceeenns 187
6.3 Template MOLA EXaMPIE.......ccccoiiiiiiiiiiiii et 188
6.4 MetamodelliNg ISSUEBS.........cooiiiiiiiei e 191
6.4.1 Use of Metamodls Defining HigheitOrder Transformations in MOLA. 192
6.4.2 Metamodels in Template MOLAccoooii i 193
6.4.3 Roles of Different Metamodels DSML Tool Development................. 194
6.4.4 Use of Metamodel Elements in Template MOLA Transformations....196
6.5 Elements of Dual Nature ifiemplate MOLA ... 196
6.5.1 MOLA PrOCEAUIE.......cciiiiiiiiiiiiieieieeeeiiieeit e e e e e e e e e s eeeeee e eaeaaaaaeaeens 197
6.5.2 Call Statement and Parameters...........coovvvvvviiieeee e 198
6.5.3 CONIOl FIOW....ccoiiiiiiiiii et e e e e e e e e e e 198
6.5.4 ENd SYMDBOL.......ooiiiiiiiiiiiii e 200
6.6 Graphical Template Languages Versus Textual..............cccvvvvieeeeeieeeeeeenn. 201
6.7 Merge MECNANISMS.coiiiiiiii e 203
6.7.1 Merge EXamPle.........ooooomiiiiiiiiiicee e 204
6.7.2 RUIE MEIQE. ... it eeeea b r e e e e e e e eeeeean 206
6.7.3 Merge SemMAaNTICS......cceeeeiieieieeiiieiiimee e e e 208
6.8 IMPIEMENTALION.... ..ottt 209
6.9 CONCIUSIONS.....coiiieeeeiei ettt e e et e e e e e e e e e eenneeeees 210
CHAPTER 7 TEMPLATE MOLA APPLIC ATIONScccoiiiiiieeeeeeeee e 213
7.1 Mapping Language Compilation Using HOTS..........coooeeviiiiiiiicceiiii e, 213
7.2 Implementation of Mapping Languages for MDSD.............cccoovvviiicceeeeennn. 214
7.2.1 Editor of the Mapping Language Family.........cccccooeeviviiiicniiiineeeeeens 214
7.22 Mapping Language Family Compilation Schema................cccuvvieeenne 214
7.2.3 Mapping Compilation............coiiiiiiiiiiiiiceeeie e 216
7.2.4 Source Tree Pattern Compilation to MOLA...........cccuvviiiiiiiieeniiininee. 217
725 | mp |l e me n Credtel if®oes mof EXG................evvvviiiiivieecnnnne. 221
7.2.6 Finding of Parent Instance in the Target Tree...........cccccvvvvviimenninnnns 221

T.2.7 EleMENT CrEatION. . .. e e eeens 222

T.2.8 BEVAIUALION. ... e e 223
7.3 Implementation of Mappingdnguage for DSL Tool Building....................... 224
7.4 Transformation LIDrari@Scoe et 227
7.4.1 Transformations for Generic MetamodelS..........oooevveviiiiiecieeieieeen, 227
7.4.2 Transformation Design Patterns.............oovvvvivviiemneeiieceeeeeeee e 233
7.5 CONCIUSIONS. . e e e e e 234
CHAPTER 8 CONCLUSIONS. ... e e 235
BIBLIO G RAPHY oo 237
APPENDIX A LIST OF A CRONYMS ...t 251

10

LIST OF FIGURES

Fig. 1.Real distance map of the Paris metro [27]........cccooeeeiiiiiiiceciiiiiiiiee e 28
Fig. 2.Paris metro SChema [196]ccuuiiiiiiiiiiiiiiieeeeeee e 29
Fig. 3.Example of OMG MOF metgevel hierarchy [130]............ovvviiiiiiiiiiceeinnnnnnns 33
Fig. 4.Relationship Btween MD* teImS.........coooiiiiiiiiiiiiieee e 35
Fig. 5.MDE VErsuS MDD [L7].....coieieiiiiiiiiiiie s s e e e e e e e e e s emmmn s s e e e e e e e e e eeeees 36
Fig. 6.MDA application schema with one execution environment......................... 38
Fig. 7.MDA application schema with multiple exd@mn environments...................... 39
Fig. 8.Relation between MD* and DSL approaches.............cccuvvevieeeiiviivinninnennnen. 40
Fig. 9. Transformation in the nature [3Q]..........ooooviiiiiiiiicccre e 42
Fig. 10.Execution scheme of model transformafion.............ccccooevviiiccceiiee, 43
Fig. LL.MOLA €XAMPIE... .o i cceiiiiieeeeeeeeme et a e e e e e e e e e e e enens 54
Fig.12The dAHell o Worl d" metamodel...and.3he exa
Figul13The extended fAHell o Wor | ddncefié6..a.ms6d e | an
Fig. 14.Transformation creating a const@iteetinginstance............cccccccvveeeeveeeeeen. 57
Fig. 15.Transformation creating a const&@teetinginstance with references........... 57
Fig. 16. Modekto-text transformation creating a greeting message...............oooveee 57
Fig. 17.The simple graph metamodel [106]..........ccoooriiiiiiieer e 58
Fig. 18.Circle of three nodes (simplified representation of edge objects) [106]....58
Fig. 19.Transformation counting nodes in a graph..........ccccooiviiiiieeen e 59
Fig. 20.Transformation counting looping edges in a graph.............ooooeiiiieeeeen, 59
Fig. 21.Transformation counting isolated nodes in@pd..............cccceeeeeiiiiiccennnnnnnns 60
Fig. 22.Transformation counting circles consisting of three nades...................... 61
Fig. 23. Transformation counting circles consisting of three nodes, using temporary
MetamOodel ElEMENTIS.........ooiiiee e e e e e e e e e enner e as 62
Fig. 24.Solution of optional task: counting of dangling edges.............coovvvvvieeee.... 63
Fig. 25.Transformation inVersing €AgeS.........uu e e 64
Fig. 26.The evolved graph metamodel [10G]...........ccooevviiiiiiceeii i 64
Fig. 27.The even more evolved graph metamodel [LO6].........cccvvviiiiiieannninnnnn 64
Fig. 28.Metamodel extensions for model migration tasks...............ccccevvuiinnnennn. 65
Fig. 29.Model migration transformation. Migrates graph from encodjraphl (Fig. 17)
to encodin@raph2(Fig. 26).........uuiiiiiiiiiiiie e eeree e 65
Fig. 30.Solution of optional model migration task. Migrates graph from encagtiaygh1
(Fig. 17) to encodingraph3(Fig. 27)....cccuuuuiiiieiiiiii e eeeee e aeeee e eaans 66

Fig. 31. Transformabn that deletes the node named "nl1" (if such a node exists) in a

[0 £=] o 1P 67

Fig. 32. Transformation that deletes the node named "nl1" (if such a node exists) and its
incident edges IN @ graPh.........oooeiiiiiiii e e e e e e e e anes 67

Fig. 33.The metamodel of the MOLA metaodelling language [13Q]...................... 70

Fig. 34.The metamodel of the MOLA procedure elements [130]..............cceeeerrnne. 71

Fig. 35.RSL @XAMPIE. ...t 78

Fig. 36.Requirement$ two scenarios in a textual form..............cccooeeeviieececceieeeeenn 78

Fig. 37.Model chain in the ReDSeelBRSIiC Style.............ooooiiiiiiiiiieen 82

Fig. 38.Static structure processing eXample........cccceeeiiiieeeeicceeiiiiiee e eeeeeen, 83

Fig. 39.Behaviou eXample.... ..o e e 84

Fig. 40.Model chain used in ReDSeeDS Keywddsed Style................coevvvvinnneee.. 86

Fig. 41.Requirement$ scenarios of the use case in a graphical farm................... 90

Fig. 42.Fragment bthe generated Domain Model..............cccooiiiiieeee 92

Fig. 43.An example of informal mapping describing transformations to Detailed Design
... 97

Fig. 44.An example of a sequence diagram forReservationsServiagass............ 102

Fig. 45.Transformation eXample...........iiiiiiiii e eeee e 104
Fig.46.Cr eat i on of a m8gysagmofeentaenS&gswemhout .
... 108

Fig. 47.The procedure of findop a lifeline in a sequence diagram, depending on the
object used in the Verb Phrase.............uueiiii e 109

Fig. 48.MOF QVT Relational example.............cccuuiiiiiiiimeeiiiiiiiieeeee e 118

Fig. 49.Schematic roles of the mapping language family users................oeeeeeeees 123

Fig. 50.MALA4MDSD exampl e. UML model APl MO i s t
APSMO. Package @AServiceo in model APl MO i s
APSMO0 model. Classes from sour ce packdge ! packa

TSI Y O o = o JO PP 125
Fig. 51.MALA4MDSD UML tree type definition..............uueeeeeeiiiiiicesiiiiiiieieeeeeeeeennn 134
Fig. 52.Alternative tree type definition.............ccoooviiiiiiiee e 135

Fig. 53. Mapping example from the ReDSeeDS pcbje Transformation in
MALA4MDSD, demonstrating the edge processing and hierarchy flattening......138

Fig. 54. Mapping example from the ReDSeeDS project. Transformation in
MALA4MDSD is demonstrated. MOLA transformation for the highted part of the
same task is presented iN Fig. B5.... . e 145

Fig. 55. Transformation example from the ReDSeeDS project. The same transformation
fragment in MALA4MDSD is coloured in Fig. 54........ccoooiiiiiiiiiiieeeiieee 146

Fig. 56. Mapping language definition; fragment of the MALA4MDSD definition...151

12

Fig. 57.Type definition for the mapping language family..............ccccovvivieeennnnnn. 152

Fig. 58.Core metamodel of the mapping language family...............ccovvveeeeeee. 153

Fig. 59.UML t0 RDB €XamMPI€......ccooiiiiiiiiiiiieeme e e 155

Fig. 60.Terminology definition.............ooviiiiiiiiiiiie e 162

Fig. 61.MOLA editor implementation in METACHPSE.........ccoooiiiiiiiiiiieeee s 168

Fig. 62.Metamoctl fragment, describing that the design pattern field is based directly on
[T 07 1T 3/ 171

Fig. 63.Mapping and presentation type metamodel subset, describing the property dialogs
... 172

Fig. 64.Classdialog example, general and attribute tab.................cccoeeee 173

Fig. 65.Metamodel fragment describing mapping and transformation integratiod 74
Fig. 66.Wizard diagram example for a domain class mapped to Nade............... 175
Fig. 67.An example of a template rule and the MOLA rule generated fram.it.....182

Fig. 68.An example of a template l0Qp..........ccooeeeiiiiiiiieee e 183
Fig. 69.Creation of the rule from Fig. 6dsing MOLA as a HOT...........cccceeeeeennn. 188
Fig. 70.Template MOLA example: Generator for copying UML class model instances to
OWVL INSTANCESeetttiiiiiiee e e e e e e e eeeeti e sa e s e e e e e e e e et eeeeeameeseaaeeeeaaeeeeeesasssssssnmmmeeeeeeeeesnen 189
Fig. 71.The result of transformation from Fig. Z0............coovrriiiiiie e, 190

Fig. 72.A metamodel fragment used in a class model to the OWL transformation in Fig.

Fig. 73.Models to be used if higharder transformations are written in MOLA.....192
Fig. 74. Models to be used if the domain metamodel is analysed and ‘uglear

transformations are written iNn MOLA..........oooiiiiiiiice e 192
Fig. 75.Metamodels and models used for defining transformations in Template MOLA
... 194
Fig. 76.Models used in case MOLA is used as a HOT for tool building.............. 195
Fig. 77.Metamodels and models used to define transformations in Template MOLA for
L€ Yo] N 071 o [0T ST 196

Fig. 78. The let side demonstrates the procedure for copying the property values of a
class instance. On the right side there is an example of the generated transforrd@fion.

Fig. 79.The left side demonstrates the procedure for copyiegptioperty values of a
class instance with a merge. On the right side there is an example of the generated

L= 53 {0 1 1= 11 0] o 205
Fig. 80.Creation of a star shaped rule by using merge mechanisms.................. 206
Fig. 81.Creation of a chain shaped rule by using merge mechanisms............... 207
Fig. 82.Merge of loops and rules obtaining different control structures............... 207
Fig. 83.Compilation of mapping language family...........ccccceveiiiiiceciiiiiiiiiiiieeeen. 215

13

Fig. 84.Template MOLA procedure processing the current mapping................. 218
Fig. 85.ProcedurédddParentsToLoopheaécursively creates the loophead rule..220

Fig. 86.Template MOLA procedure implementing the element creation.............. 222
Fig. 87. A simplified domain (upper left side), mapping (upper right side) and
presentation (lower part) metamodel.............eeviiiiiiiieeciiii e 225
Fig. 88.Mappingimplementation for tool building in Template MOLA.................. 226
Fig. 89.A MOLA procedure generated for Fig. 88..........ccoooriiiiiiiiiccc s 227

Fig. 90.An example where the traditional MOLA and Template MOLA are combined. A
MOLA procedure calling the template proced@®nefrom Fig. 91 is illustrated.....229

Fig. 91.The CloNEProCEAUIE.........iiei i eeeeeeee e eeee e e e e e e eeaaaaanens 229
Fig. 92.The copyProperti@ProCEAUIE.........uuiiiiiiiiiiie ettt 230

Fig. 93.A metanodel example describing information processed by a company. The class
IndividualCustomers used to describe the generated code in Fig. 94 and Fig..9331

Fig. 94.MOLA procedure generated from the template proce@loee.................... 231
Fig. 95.MOLA procedure generated from the template procedopgProperties......232

14

LIST OF TABLES

Table 1. Model definitioNS...........ooiiiiiiiiiiiirrer e e e 29
Table 2. Terms fOr MD* ... e eeeeee e e e e e e e eeeeeaeees 34
Table 3. List Of MOLA €IeMENTS.........uuuuiiiiiiiiiiiiiieeeiiiiiiiieereeee e A8
Table 4. MOLA procedure count in different transformations. Classified as to
processing static structure, behaviour or independentt@pesa.................cccceeeeee.. 114
Table 5. List of MALAAMDSD €lements..........coouuuuiieuuniiiieeeiiiiiianen e e e e e e e 125
Table 6. Comparison of transformations from PIM to PSM, developed using the model
transformation language MOLA and the mapping language MALA4AMDSD........ 144
Table 7. Template MOLA €lemMeNntS.........cceeiiiiiiiiiiiiiieeeieie et eene e 185

15

16

ACKNOWLEDGEMENT

This work has been partially supported by the European Social Fund within the

project ¢Support for Dotvioaal Studi es at

The author ofhethesis would like to thank

= =2 =4 A4 A4 A A -2

supervisomprof. Audris Kalnins;

current and formemembers of MOLA team: dfars Celms, Agris
Sostaks, Janis Iraids, Oskars Vit

ReDSeeDS project partners;

colleagues in LUMII Research Laboratory 8ystem Modeling and
Software Technologies;

prof. Rusins Martins Freivalds;

Maija Treilona,

L®&ma Zal est a;

Val di s; Kal ni Ag

Lolita Nahodkina

Maiga Reinharde;

family;

all others who have helped me in any way.

17

18

INTRODUCTION

The presentPhD thesis has beeworked onfrom 2007 to 2011 inhe Institute of
Mathematics and Computer Science (UL IMCShd a&he Faculty of Computing
established as an independent unit on the basis ofFHwilty of Physics and
MathematicsUniversity of Latvia The thesisupervisor is professor Audris Kalnirighe
thesis elaborates further the UL IMCS DSIDofnainSpecific languagé tool
development and language design traditions that started alreadyyaathE986.

Relevance of the Aesis:

Lately ModelDriven Software Developme(¥DSD) is gaining popularityThe
idea of elaborating all software development steps on matkflaed in specialised
modelling languages lies at the basis of the approach. Models, defined at higher
abstraction levels, are ever more detailed in each step of Ndookeln Software
Development.Model transformations are used to auatgriransitionsfom one model to
another. Use of model transformations allousing models asa direct part ofthe
software development process instead of using them only as documentation.

The originof MDSD wasthe ModelDriven Architecture(MDA) [117]] initiative
by Object Management Group (OMQ)he frst document abouhe MDA was published
in 2000[11§. In 20020MG concluded that model transformation languages are required
[119, to easily describeghe required model transformationdlost of the modelling
languages are defined by using the means of metamodelling; therefore model
transformations were built to transform the models defined according to metamodels.
Metamodels were defined by using the metamodelling standard (ke Object
Facilities) [120.

OMG activities led to the creation of a nemodel transformation standard MOF
QVT (MOF Queries/Views/Transformationg128. Moreover, many new model
transformation languages were develgped., ATL [63], GReAT[7], GrGen [4§],
Epsilon[92] andthe model transformation languad@OLA [76] that wasdeveloped in
UL IMCS. This was als@ new application arefor graph transformation languagesg.,
PROGREJ144, AGG [163, VIATRA[3]] and alsoFujaba[43], previously used ira
narrower contextThe variety of model transforation languages could be explained by

two reasons lack of complete MORQVT implementation and different model

19

transformation application domains. In different software development areas there are
different requirements for a model transformation language.

Today model transformations are a serious software component in large software
development projects. Transformation development requires a considerable amount of
resources. Transformations should be projected, tested, maintatocedCurrently the
transbrmation development is rather chaotic and every developer develops
transformations accor dconldy betexplained legdespooro wn wi s |
experience in adaption dhe classic software development steps (testing, etc.) to
transformationsConseagently, studying of the transformation development is a popular
research direction.

In the same way there asdtemptsto adaptthe classic software development
methods tothe model transformation development. One of such methods is to #&uild
DomainSpecfic LanguaggDSL) to be applied téhe software development iaspecific
class of tasksThe thesis is devoted to researching dorspiecific transformidon
languages. Usage of domapecific transformation languages could improve
transformation developent, the same as the use of doenairspecific languagebelps
to reduce the software development time and costs. However, it should be noted that the
use ofdomainspecific languagess costeffective only in case of developing multiple

similar solutiors.

Aim of theResearch:

The aim of the research is to investigate the ways of defining transformations for
classes of similar tasks, requiring development of many transformations of the same type.
1 Explore transformation development forModelDriven Softwae
Development
Explore the nature of the transformations for DSL tool development.
Explore the opportunities of definifdodelDriven Software Development
and tool building transformations irspecialised languages (higher
abstraction level) andsing mappigs.
1 Explore the definition possibilities of transformation generating
transformationDevelop a higheorder transformation language which is

specialized for transformation synthesis

20

Main Results of theThesis:

1 Developed and implemented the transfornmatsupportedpath from the
requirements to the code. The research has been carriedeopadsof the
ReDSeeDS project. Transformations for ModelDriven Software
Developmenthave been analyzed. It is concluded that some of the
transformations could bdefined more effectively by using apecialised
(higher abstraction levelanguage.

1 Developedthe first version of theMOLA 2 toolwithin the METAclipse
framework A conclusion has been dravimat part of the transformations
are very simple and uniform antwould be more convenient tefine
them ina mapping languagel.ikewise, it is concluded that it would be
impossible to define everything by usingrapping languagetherefore,
integrationbetween the mappings and transformatisnequired

1 Developedthe mapping language MALA4MDSD, which is especially
adapted for transformation development ModelDriven Software
Development.

Outlined the mapping language for DSL tool development.

1 Developedthe language Template MOLA, which is domainspecific
languaye for transformation synthesis.

1 Analysis of three particular problem areas leads to the conclusion that the
transfomation development in a domaspecific language is possikdta
higher level of abstractiom.hus, transformations can be developed faste
If the transformation is defined by a higher level of abstraction and the use

of mapping, then lesskilled users can define the transformations as well.

Scientific andPractical Significance of theThesis:

Model transformation development for three @fie@ domains, namelyModel
Driven Software Developmen{MDSD), DomainSpecific Language (DSL) tool
development and transformation synthesis has been studied in the thesis.

One of the areas under research in the present thesis is a specification of
transbrmations for ModeDriven Software DevelopmentWhile working on the

ReDSeeDS project the author of the PhD thdsieloped two transformation sets for

21

ModelDriven Software [Evelopment. This type of transformations typically contans
transformation fom UML to UML and for facilitating the given transformation
development, the mapping language MALA4MDSD is offered in the PhD thesis. The
language MALA4MDSD is also of practical importance, since it makes it significantly
easier to develop transformatiofts® ModelDriven Software Developmenthis could
encourage a wider use of modkiven development methodén industry as
transformationgould be defined by less experienced usé¢n®se who are experts in the
transformed problem arglhut do not knowanything about metamoldiag. In addition,

the transformation development would become faster.

The secondresearched area ishe model transformations for DSL tool
development. It was concluded that the best feaylefininga toolfor graphical DSLis
by combining mappings with transformationidsing of mappings allows a less skilled
userto configuretools as wellthe tool development would become significantly faster
However using mappings makes it impossiblepimvide convenient instrument®r all
possible cases of nestandard treatment; therefore there is a need for a waypoéssing
nonstandard cases in a transformation language. Many of the existing DSL tool
development platforms offeprocessingthe nonstandard cases ia programming
languaye, but a transformation language for this task would be more appropriate, because
the data are modelriven, and transformation languages are adapted for processing this
type of data.

The third problem arelbroughtan observatiothata domairspecific laaguage is
more convenient for defining transformatiorowever, here is chosen a different type of
language that does not use mappings. This is a specific wngzh describes
transformation synthesis. The task is very specific, and the existeansare very
inadequate and are difficult to use, therefore dioenainspecific languagenas been
created. The language Template MOLA is a higkmder transformation language,
specifically adapted to the tasks of transformation synthiesssthe first languag in the
world of such a typelLater an extension, specifically for transformation synthesis, has
been developed for the languag&L [187. It should be noted that comparing tte
language MOLA, ATL is a textual languggbereforethe synthesisof ATL is aneasier
task Nevertheless, the basic idea used in the Aéktensionis the same a# the
Template MOLA- using fragmentsf concrete syntax

22

The language Template MOLA helps to solve a very important issue in thed mod
transformation world, namely, metamodel independent transformation development.
Since almost all transformations are linked to metamodels, building of a library of
transformations and reuse of transformations is still an open problem.

The researchresuts of the thesissuggest that model transformations is a
sufficiently vastarea making it possible to choose more limifgablem areas domain
specific transformations and domairspecific transformation languages have to be
created for these aredkhe research focused on studying mapping languages as it is the
most useifriendly way of defining transformations. Nevertheless, the existing mapping
languages are not quite appropriateuasally they can process only very simple cases.
Therefore, the resech offers a new idea fakefining transformationg useof domain
specific mapping languages instead of a universal mapping language

Publications of the RsearchResults andPresentations inScientific Canferences:

The main results of the PhD thesis geesented in 10 publications; each
containing a significant (#80%) contribution of the author of the present thesis:

1 ADSL Tool Development witAransformations an@®atic Mapping® [67]
The publication outlines th®le of mapping in the DSL tool development.

1 ADSL Tool Development witAransformations an@®aticMa p p i 6§ s 0
The publication discusses the use of the mapping language in the DSL tool
development.

1 AGraphical Templa e Language for Tr g IHeor mat i
publication describes the language Template MOLA.

1 ATransformation Synthesis Language Te mp | at e [7TNMAQheA o
publicationdescribes in detail the language Template MOLA.

1 AGeneration Mechanisms inGraphical TemplateLa n g u a[¢0e The
publication discusses a merge mechanism in the langubgmplate
MOLA.

1 AFrom Requrements toCode in a Model Driven Wa y ¢79] The
publication outlines transformations used for the modklven

development process realization within the ReDSegidf&ct

23

AA ModetDr i ven Path fr om R Jheipubkcatiennt s t o
describes in detail the development of transformations for Modeén

Software Development withithe ReDSeeDS project.

A Model Mi gr at i o[@2 Twme fpublicatd®©destribes a
transformation design ithe language MOLA for transforming UML 1.X

activity diagrams to UML 2.3 activity diagrams.

fiHello World with MOLA-A Sol ution to the TTC 2011
[74] (accepted for publication)The publication discusses solutions of

simple transformation tasks in the language MOLA.

fiTree Based DomaiBpeci fi ¢ Mappi78 ¢gaccdpechfgrua ge s o
publication) The publicatio describes the mapping language
MALA4MDSD and the methodology of constructing a domsjecific

mapping language

The author of the thesis has participated in the preparation of 5 more publications

with the contribution of £5%.

24

T ABuil ding Todlrandfyor vad e lo rj&] Then Eclip

publication outlines the principles of the METAclipse DSL tool
developmenframeworkand its use ithe MOLA 2 tool development.
ABehaviour Model |l i ngSyWottearm i[D8Ee omo | nf c
publicationdescribes thexperience, gained while working with the UML

sequence diagrams withine ReDSeeDS project.

AComprehensive Systeéemiffen Spbstwewmati qRe
[153 The publication describes a platform developed within the

ReDSeeDS projecand highlights the role of transformations in this

platform.

ADomarmven Reuse of Sd82tTheapubdicatibre si gn M
discusses software reuse facilitatation by the transformations, developed

within the ReDSeeDS project.

ASolving the TTC 2011 Reengineering Case with MOLA and Higher

Order Tr ans 185 nThd ipalicatian discusses the

transformation development for transformiting Java code (coded with a

model) to a state chart model.

The author has reported dhe results of the work in a number of scientific
conferences:

1 AGraphical Template Language for Transfamtion Synthesod
International conferenc&LE (Software Language Engineeringl009;
Denver, USA

1 fAFrom Requirements to Code in a Model Driven W8DA (Model-
Driven Architecture: Foundations, Practices dngplications) workshop
of ADBIS (Advances in Datbases and Information Systen)09; Riga,
Latvia

1 ADSL Tool Development withTransformations andSatic Mapping®
Doctoral Symposiumof MODELS (International Conference dviodek
Driven Engineering Languagesd SystemsP008; Toulouse, France

9 ADomBpe i fi skas at dad SripntifimGonferentemtitizes
University of Latvia,Information TechnologySection, 2011; Riga, Latvia.

1 iVal oda Temp!l at e MO 68AScientific Cdiferenceeof | i z Uc
the University of Latvia,Information Technolog Section 2010; Riga,
Latvia.

9 AMDA transformUcijas Re®D6&™ &destificpr oj e k
Conference of the University of Latvitnformation Technology Sectipn
2009; Riga, Latvia.

9 ATransformUciju un attUl oj umu67kombi n
Scientific Conference of the University of Latvlaformation Technology
Section 2009; Riga, Latvia.

9 AMOLA2 roka bive, i zmant oj6d ScieMificT Acl i p
Conference of the University of Latvilgformation Technology Section
2008; Riga Latvia.

1 The developed MOLA tool has been demonstraedhe international
conference ECMDAFA Tool DemonstratiorBection (se¢85]).

Structure of theThesis:

The thesis is a logical conclusion of the previously diesdrinvestigational and

practical work, thus forming a complete research. The structure of the thesi®i®ws

25

26

CHAPTER 1briefly describes the main idea$ MDSD and the role of
model transformation languages in tisefiware developmenprocess A
reader is offered the basic knowledge required for understanding the
research carried out by the author, as well as the significance of the results
achievedlIn this chapter a reader is familiarized with the concept of model
transformation language.

CHAPTER 2containsa detailed description athe model transformation
language MOLAdeveloped in IMCS

CHAPTER 3discusseghe role of model transformations iWDSD and
ModelDriven Software Bvelopmentrelated experienceyained while
working onthe ReDSeeDS project.

CHAPTER 4 offers the mapping language MALA4MDSD which
facilitates the development of this type of transformation

CHAPTER 5 describes another practical application ofmodel
transformations the DSL tool developmeniThe DSL tool development
frameworks and the role of transformations in the DSL tool development
are outlined.

CHAPTER 6 containsa description ofthe higherorder transformation
language Template MOLAwhich shold be ugd for transformation
synthesis

CHAPTER 7 describesdifferent applications ofthe Templae MOLA.
Special #ention is paid to the development of the mapping language
compilers and metamodel independent transformations.

CHAPTER 8lists the conclusions drawn while working on the thesis,

including possible directions of future resdarc

CHAPTER 1

Motivation - MDSD and Model Transformation Languages

CHAPTER 1 embraces clarification of the main terms used in the thesis and
outlines the research field and the main results in the field under discussion. Results by
other researchers used while waoikion the present thesis are described.

Sectionl.1 of this chapter is devoted to the description of modelling. The terms
model and metamodel are defined. Application of modelling in software development is
discussed in Sectiod.2 In Section1.3 the term model transformations is defined
alongside with related to the thesis the latest research results in the area of model

transformations.

1.1 Modelling
This section is devetd to the definition of the terms model and metamodel,

starting with defining what model is.

1.1.1 What is a Model?

Let us look at this issue in a little broader context, not only as a part of the
software development procedsodels are used in many areas of eueryday life. Maps
are a great example of it. Compared to the original, maps are simplified representations.
They contain the necessary information, but skip unimportant details. For example, in
metro schemes the lines between stations are drawn @ghistiises; however, it is not
always true in the reality. A real Paris metro map is showhignl. The reader may
compare this map with the Paris metro scheme used in maps and tourist guides. An
example of a metro scheme is@ivinFig. 2. The real metro trajectories do not matter for
metro passengers as they can leave the metro only in stations. The things that do matter
are locations of metro stations and where it is possible to change from ondineetoo
another. Metro schemes are drawn keeping in mind what is important and skipping
unimportant details.

Models are used in other areas as well and they are widely used in physics.
Models are built for physical systems to be used extensively forcpiregbehaviour of a

27

physical system. Results obtained using models are compared to experimental results. If
the experimental results differ from the results obtained using a model it means that the
model is false. Consequently, the model of physical syste either modified or

extended.

Fig. 1. Real distance map of the Pam&tro[27]

Irrespective of the wide use of models in different areas of our life there is n
common understanding what a model is.

ANobody can just define what a model i s,
this definition; endless discussions have proven that there is no consistent common
under st andi dogheroLudewgiGBe | s . 0

Though common understanding of a model is lackingny definitions of it are
available and some of them are listedTiable 1 I n the authoroés opin

simplification of a system which could be used instead of the original for some purpose.

28

As a result, it is possible to ussode] which is simpler, safer, and also cheaper, instead
of something else that is more complicated, dangerous or more expdimgs/is. exactly

the case of metro schemdr metro passengers the real metro trajectory and distance
does not matter as the stations are the only exit points for them.

. 13 Asniéres — Gennevilliers — Les Courtilles

Plan schématique
du réseau de Paris e s
chemaic lanof th Pars Wéto, o 58

i

@®

e Saint-Denis = Université 13 7 La Courneuve — 8 Mai 1945
B4

Porte de Clignancourt] Porte de la Chapelle
4 T i i

s (O
S/ s portedes tilas

1 Chateau de Vincennes

AN D =
= = I {op®
@ @ EonrllS
4_ Porte d'Orléans 1)
© 7 Mairie divy 8 Crétell — Préfecture

® 7 Villejulf — Louls Aragon
Chatilion — Montrouge 13

Fig. 2. Paris metro schenja9q

Table 1. Model definitions

Author Definition

Oxford Dictionaries 1. a threedimensional representation of a person or thin
of a proposed structure, typically on a smaller scale
the original;

o) (in sculpture) a figure or object made clay or
wax, to be reproduced in another more dur¢
material;

2. athing used as an example to follow or imitate;

0 a person or thing regarded as an excellent exal

29

Author

Definition

of a specified quality;
0 an actual person or place on which a speci
fictional characteor location is based
0 (the Mode) the plan for the reorganization of tl
Parliamentary army, passed by the House
Commons in 1644%.
3. a simplified description, especially a mathematical one
a system or process, to assist calculations agdigions
4. aperson employed to display clothes by wearing then
0 a person employed to pose for an arl
photographer, or sculptor;
5. a particular design or version of a product;
0 a garment or a copy of a garment by a walbwn
designer[13]]

Jeff Rothenberg

AModel ing in its b-efeddess of
something in place of something else for some purpos
allows us to use something that is simpler, safer, or che
than reality instead of reality for see purpose. A mods
represents reality for the given purpose; the model is
abstraction of reality in the sense that it cannot represen
aspects [d43 reality. o

Marvin L. Minsky

ATo an obsertA%iganddel ohan obfedi A t
the extent that B can use A* to answer questions that int
him abpidgt A. 0

Jean B®zi v

AA model i s a simplifica
intended goal in mind. The mod&ould be able to answe

guestions in placH of the

Alan W. Brown

AModel s provide abstracti «
engineers to reason about that system by ignoring extran

detailsvhi | e focusing o2 t he r

Liliana Favre

AA model is a simplified

30

Author Definition

environ4flents. o

Michael Jackson AHere the wor dparModefl 6t hme
storage or database that it keeps in a more or
synchronised correspondence with a part of the Prok
Domain. The Model can then act as a surrogate for
Problem Domain, providing information to the Machine tl
can notbe conveniently obtained from the Problem Domnr
itself when it is needeu[6]]

Thomas K¢i¢h AA model is an abstractio
system all owing predict[8or
Jochen Ludewig AModel s help I n devel op

information about the consequences of building tr

artefacts before [08ey ar e

OMG i A mo d e $temasfa descrigign or specification of tt
system and its environiidlt

Ed Seidewitz AA model i's a set of st a
study [@&LSUS) . o

Bran Selic AEngineering models aim t:
understand both a complex problem and its poter
solutions before undertaking the expense and effort of ¢
i mpl eme fl#48at i ono

Wil helm St iA model i's informati on:
created by someone (sender), for somebody (receiver,
some purpose [l60dQsage cont e>

Thomas Stahl, AA omhel S an abstract r

Mar kus V°I| structure, funjdiji on or bet

In software development models are used to describe a system to be built. Models
allow analyzing a system before it is really Ibaind looking at the system in different
abstraction levels. Systems are very complex. It is not possible to represent all aspects of
a system in one diagram. Different models may contain information about different

aspects of a system to be built. Foaewle, UML sequence diagrams describe behaviour

31

of a system. UML use case diagrams describe usage scenarios of a system. UML class
diagrams contain information about the structure of a system.

On the other hand the information level about a system imaireggmay have a
different degree of elaboration. For example, class diagrams may be used to describe the
conceptual model of a system as well as the class hierarchy of a system.

Models may be used only as documentation or as an essential part of software
development. In MDSD (see Sectidn?) for mal model s are wused.
describe a model in MDSD:

AModel s are abstract and for mal at the sa
vagueness here, but for compactnessaneduction to the essence. MDSD models have
the exact meaning of program code in the sense that the bulk of the final implementation,
not just class and method skeletons, can be generated from them. In this case, models are
no longer only documentationubparts of the software, constituting a decisive factor in
increasing both the speed B quality of sof

This type of models is going to be discussed in the present PhD thesis. These
models are desloped by using modelling languages which may be graphical or textual.

The focus will be on graphical and formal modelling languages as they are more popular.

1.1.2 Meta-moddling

It is necessary to model modelling languages. A model of a modelling language is
called metamodel. Traditionally a metamodel describes the syntax of a modelling
language. OMG defines a metamodel similalyA met amod el i's a model
model i ndgl29 i Tshed ft Yopi cal r o ltoedefioefthe aemantics farmo d e |
how model el ements i f27a model get instantiat
St ahl and V°Ilter defindMat ammoadelos ebhr eno me
that make statements about modellindore precisely, a niamodel describes the
possible structure of modeisin an abstract way, it defines constructs of a modelling
language and their relationships, as well as constraints and modellingirldesnot the
concrete synt a¥9of the | anguageo
The most popular metaoddling language is MOFi The MOF 2 Model i s
to model itself as well as other models and other metamodels (such as UML 2 and CWM
2 etc.). A metamodel is also used to model arbitrary metadata (for exanfplarso

configuration or r[Ruirements metadata). o

32

AA model t hat IS i nstantiated from a
met amodel of anot her md2d & is possible @ gorfuetleeuthtiss i v e
way and introduce a metametamotl@ model of metamodelling language. It is possible
to introduce even more meltae v e | s . However, i n practice

more metdevels. A scheme of metavels is shown Fig. 3.

MOF

M3 layer (meta-metamodel)

Other
languages

M2 layer (metamodels)

models models

M1 layer (models)

Systems J

MO layer (real world objects)

Fig. 3. Example of OMG MOF metevel hierarchy130

Layer M3: A T h e -metmaaeling layer forms the foundation of the
metamodeling hierarchy. The primagsponsibility of this layer is to define the language
for specifying a metamoderetoamdidl i an ex.

Layer M2 A met amodel i s -metamodelsmeanimgtieat eweiy a me
element ofthe metamodel is an instance of an element in the-metamodel. The
primary responsibility of the metamodel layer is to define a language for specifying
model s. 0 AUML and the OMG CWwWMyracrexaMfdes e h o u s e
metamodel®.[127]

Layer M1:i A mo d el i's an instance of a met amc
the model layer is to define languages that describe semantic domains, i.e., to allow users

to model a wide variety of different problem domaisgch as software, business

33

processes, and requirements. The things that are being modeled reside outside the
met amodel hi erarchy. 0 AA user mold¥]l i's an in
AThe met amode lomshouteat MQ, which cobtans the rtime
instances of model elements defined in a model. The snapshots that are modeled at M1
are constrained versions of the MO rtime instaneso [127)]
OMG MOF 1.4 standard explainmetalevels as follows:fit he MO-F met a
metamodel is the language used to define the UML metamodel, the UML metamodel is
the language used to define UML models, andML model is a language that defines
aspects of a [@ldmputer system. o
The most popular metanodelling standard (language) is MOQMetaObject
Facility), developed by the international standards organisation O®i@rently the
actual MOF version is 2.1 [129. Of course MOF is not the only metanodelling
languagethere are other$or example KM3 [62] andEMF Ecore[166].

1.2 Model-Driven Software Development
Todaysoftware becomes more and morenpticated. Software development and

management has become more challenging, especially if it refers testalgesystems
which are developed and used by hundreds, even thousands of people. In order to ease the
development of software, particular modete ased to describe different aspects of the
system to be developed.3(

Different terms are used to refer to the use of models in software development.
This section outlines different approaches to the use of modststware development
and the role of models in each approach to the software development process. The most

popular approaches in model use are described below.

1.2.1 MD*

Several terms are used regarding model use in software development. The most
popular terrs are listed inTable 2 starting from the narrowest to the broadest

formulation. Term relationship is given g. 4.

Table 2. Terms for MD*

Term Definition

MDA 1 Model Driven AMDA i s t hparticlaM@sios of MDD and

34

Architectue

thus relies on the use of OMG standards. Theref
MDA can be regarded as a subset of MB[113

MDSD 1 Model Driven

Software Development

i Mo dDeiden Software Development is afteare
development approach that aims at develof
software from domakspecific models [190

The same as MDD.

MDD i Model Driven

Development

AMDD is a development p
the primary artefact b the development proces
Usually, in MDD, the implementation
(semi)automatically (&3
i Mo ddaven development is a style of softwi
development where the primary software adifaare
models from which code and other artifacts
generated [16]]

The same as MDSD.

MDE i Model Driven
Engineering

inSoftware Engineering p

key role in all engineering activities fofward

MD* - Model Driven
Everything

engineering, reverse engineering, softwi
evol ut [1d3n, €) 0O
il use MD* as a common

MDE, MDA, MIC, LOP and all the other abbreviatiol

for basicallyt he s ame [&a89pr oach.

MDD, MDSD

Fig. 4. Relationship between MD* terms

35

MDA was the first term applied regarding the use of models in software
development. It was launched by OMGhject Managemnt Group) in 2000. In MDA a
chain of three consecutive models is used. More information on MDA is giv&ection
1.2.2 Today MDA is considered an obsolete term. The usage of exactly three consecutive
models seems too restive.

The terms MDD or MDSD, carrying approximately the same meaning, are used as
well. The usage of one or another depends on the taste of the author.

Another term is MDE which has a wider application than MDD and MDSD. See
Fig. 5 for the way Jean Bezivin presents the relationship between MDD and MDE. MDE
could be applied to any usage of models, including even those we are famiistr

with.

Broadening application area

We have not yet seen the full application deployment of MDE

P——
i — . - “‘.’
MDD

MDE_4

MDD = Model Driven (Software) Development MDE = Model Driven Engineering
Fig. 5. MDE versus MDD[17]
1.2.2 Model Driven Architecture

Model Driven Architecture (MDA) was launched by OMG in 2000. It was the
first attempt to formalizéhe use of models in software development. The first version of
MDA manual[117] was published in 2000 by OMG. The updated version oMbB&
guide was published in 200311]].

36

i T h edeldriven Architecture starts with the wédhown and long established
idea of separating the specification of the operation of a system from the details of the
way that system uses the capabilities of its platform.

MDA provides an approach for, and emedtools to be provided for:

1 specifying a system independently of the platform that supports it,

1 specifying platforms,

1 choosing a particular platform for the system, and

1 transforming the system specification into one for a particular platform.

The three pmary goals of MDA are portability, interoperability and reusability
through architectur 0] separati on of concer |
The MDA guide proposed to use three consecutive models. Each of them
described a system on a difént level of details, starting from a more abstract definition

and gradually elaborating the details. The following three models where offered:

T CIM-AA computation independent model
computation independent viewpoint. A Ctdes not show details of the
structure of systems. A CIM is sometimes called a domain model and a
vocabulary that is familiar to the practitioners of the domain in question is
used i n it s[119 ghesariodédoesanoticantain imformation
about the system implementatioi The CI M hel ps to bri
bet ween the experts about th@d) domair
This model could be treated as requirements for a&msysb be builti A
CI'M could consi st of UML model s and
[40] However there is no common understanding what and how should be
modelled in CIM.

T PIM -A A platform i ndependsystem frono thee | i s
platform viewpoint. A PIM exhibits a specified degree of platform
independence suitable for use with a number of different platforms of
s i mi | a [111tThip reodad describethe architectureand high-level
behaviourof a system to be built. However this degtian could be
adapted for different implementation frameworks.

T PSM-A A platform specific model i's a Vv
specific viewpoint. A PSM combines the specificatiorte PIM with the

37

details that specify how that system
[111] This model is an extension of PIM, adding specific details for the
implementation platform.

Computation Independent Modebs proposed for starting software development
and continued wittPlatform Independent ModelToday most of industrial approaches
propose to start with PIM as there is no common understanding of &Me authors
even have a disparaging attitude towarddV C some proposeto treat CIM as
requirement$101]]. In case of using CIM some suggest it to be automatically transformed
to PIM. However, as it is not possible to obtain automatically all the necessary
information inPlatform Independent Modeit was proposed that this model should be
extended manually. It is easy to see that it is not possible to automatically obtain system
architecture from requirements.

Already the MDA guide proposed transition from PIM to P&Wbe done by
using automatic transformation. A model is not an executable system. Therefore one more
transition step fronPlatform Specific Modeto a code is necessary. MDA application
scheme is shown iRig. 6.

2> - Execution order
@— Model transformation
== - Manual extension

Fig. 6. MDA application schema with one execution environment

One of the goals for MDA introduction was to support reusability and application
development for different frameworks as there are cases when it is necessary to create the
same applicationof different frameworks. Applications for mobile phones may serve as
an example. Different phone developers support different application execution
environments. This is one of the reasons Wigtform Independent Modét separated

from Platform SpecifidModel When using the samilatform Independent Moddl is

38

possible to develop application for different frameworks. MDA application scheme with
the support of multiple execution environments is giveRign7.

It should be note that MDA allows using only the UML language for a model
description.

2 - Execution order

Q— Model transformation

-- Manual extension

" PSM
Flatform B

—‘ﬁ
B2

Code
Platform B

\.
,.

Fig. 7. MDA application schema with multiple execution environments

As already stated above the MDA guide proposed to implement transition from
PIM to PSM by ging automatic model transformation. In the context of MDA the term
model transformation was introducédMo del transf or mati on is th
one model to anot her [lidpTihetérm mdel transfermasicnme sy s
described in detail iectionl.3.

1.2.3 Model Driven Software Development

MDA process is too restrictive. This is a reason why it has not been widely
accepted in industry. Nowadays MDA is treated as obstéete. However, the good
ideas behind MDA as models and model transformations are emplojéaditDriven
Software Development

Compared to MDA in MDSD it is possible to use any chain of models. In MDA
there was the restriction that the UML language sthdad used to define models. In
MDSD there is no such restriction.

One specific type of MDSD iBDomainSpecific ModellingDSM). In DSM only
one model is used. Code is generated directly from this model which is defined in
specialised DomainSpecific Modding Language DomainSpecific Modelling is

described in detail iBectionl.2.4

39

1.2.4 Domain-Specific Modelling Languages

Another specific case of MDSD have become exceedingly populére
specialized modelling languagds is acommon practice to create and use specialized
modelling languages for a domain area and they are datedainJpecific Modelling
LanguagegDSML). They are developed for users specialized in a concrete area, e.g. a
language for autootive software develoment (AUTOSAR[10Q]), mobile telephone
software developmef88], and manythers

DomainSpecific Modelling Languagd®SML)is a subset of a more general set
of languages, namelypomainSpecific Language©SL) When usingdbomainSpecific
Languagesusers can operate with familiar terms. The use of a DSL increases the
efficiency of software development in the field. DSLs are applied in many areas of
software development. A popular DSor example, is SQIL a specialised language for
working with databases.

Software development using DSML is callbdmainSpecific ModellingDSM).
Commonly, when applying this approach, only one model developed in DSML is used.
This model is directlyransformed into an executable code. However, approachs&tnéxi
using chains of domaispecific nodels when each model covers different aspects of a
system. Relation between DSM and other software development approaches is shown in

Fig. 8.

DSL

approach

Fig. 8. Relation between MD* and DSL approaches

There can be graphical or textu8lomainSpecific Modelling Languages
However, DSMLs are more often graphical. (Nevertheless it is not true for DSLs in
general.) Only gnahical DomainSpecific Modelling Languagesll be considered here.

40

A visual DomainSpecific Modelling Languagebasically consists of two paris
the domain part and the presentation (visual) part. Sometimes they are called also the
abstract and concresyntax respectively. The domain part of the language is defined by
means of thedomain metamodglwhere the relevant language concepts and their
relationships are formalized. The domain metamodalss used for @recise definition
of language semanticsStandard MOF[12(or similar notations are used for the
definition of domain metamodel.

As regardsthe presentation part (concrete syntax) definition there is no
universally accepted notation. The same rmetalelling techniques are used, but with
various semantics. Most frequentlypsiances of classes in the presentation type
metamodel aréypesof diagram element® be used in the diagram. A concrete set of
graphical element types for a diagram definition is caltedpresentation type modéh
typical example is the graphical definition model in GNMF2).

Tool development for graphic@omainSpecific Languages time consuming
and expensive. Due to the growing popularityp@imainSpecific Modelling Languages
various graphical tool building frameworks have been developed to improve the tool
(editor) building process. Two different approaches are used in these environments. The
first option is to use a mappifzased approactburing the tool design this mapping
assigns a fixed presentation type model element (a node type, edge type or label type) to a
domain metamodel element, by means of which the latter must be visualized. This
solution is quite appropriate for simple case®ere no complicated mapping logic is
required. In this case tools for simple @Bs can be developed even during a
presentation session. fMever, frequently DSML support requires much more
complicated and flexible mapping logic. One of the reassnshe lack of fixed
correspondence between the domain metamodel and presentation types. In this case the
second approach is used: to define the correspondencendolel transformation
languages Transformations define the synchronisation between the domain and
presentation models and the tool behaviour in general.

Mapping based frameworks areletaEditr [109, GMF framework [172],
Microsoft DSL Tools[28], Generic Modeling Tool[26] and some other. A pure
transformation based framework IMETAclipse framework [86]. The other
transformation based frameworkgger GMF project[37], ViatraDSM framewor133

andGrTP[15] provide also some elements of the mapping based approach.

41

There exist mapping based and transformation bigds, but usually some parts
of the same DSL are suitable for mappings and some for transformations. It means none
of the solutions is optimal. The absence of a good combined solution creates the problem
which is discussed in detail GZHAPTER 5

1.3 Model Transformations
This Section focuses on defining the term model transformation; sketching a brief

introduction into the history of model transformations; listing the popular model
transformation languages and discussion of #edmof model transformations as DSLs
for specific transformation domains. For introduction a definition of transformation is
offered:

Transformations can easily be understood when thinking about what happens in
nature: an ugly caterpillar is transformedbim beautiful butterfl\{Fig. 9); tadpoles into
frogs; leaves change their colours in autumn. These transformations occur always in the
same way. It means that the occurrence and the way of transformation is predefined

somewherén nature, most probably in DNA.

gy —>

Fig. 9. Transformatiorin the naturg30]

AA transformation is the automatic gener
model, according to a transformation defian.o [90]

AA transformation definition is a set of transformation rules that together describe
how a model in the source language can be transformed into a model in the target
language.A transformation rule is a dedption of how one or more constructs in the
source |l anguage can be transformed into one
[90]

Although this definition could be applied to caterpillars and butterflies in tefms
this thesis we will be concerned with transformation of data or, more precisely,
transformation of models. Model transformation execution scheme is giviely.id0.

This scheme directly corresponds to the definition of transiton. The source model is

42

transformed into a target model according to a transformation definition. It should be
added that model transformations are defined in terms of source and target metamodels. It
means that the same transformation could be wwegllfsource models confirming to the
source metamodel. As transformation works in terms of metamodels all target models
will confirm to the target metamodel. Of course, it is possible that source and target

models coincide; such transformations are dalheplace transformations.

Source . — Target
Transformation definition 9
metamodel | metamodel
ilnatance of idescrihes ilnstance of

¥
source Transformation execution target
model " —_model

Fig. 10. Execution scheme of model transformations

Model transformation languages are used for writing down a model
transformation definition. The most popular model transformation languages arerlisted i

the following subSection.

1.3.1 Model Transformation Languages

As already mentioned above the term model transformation for the first time was
introduced in the MDA Guid¢117]. At that point there were no appropriate me#ors
writing down model transformations. Of course, general purpose programming languages
could be used, however, they did not have appropriate means to support working with
models. Therefore OMG requested to submit proposals on model transformatiomgéngua
QVT (Queries/ Views/ Transformatiord)1l9. The development of QVT standard was
very slow and the first version of QVT standard was published only in April, POOB.
Currentlytheactualversion is QVT 11. [12§.

As a result of the slow QVT developmentmany independent model
transformation languages were developed, for exan@,A [76, 59, Lx [13], GReAT
[7], UMLX [197, 179, ATL [63, 165, Tefkat[98, 35], MTF [56], ATOM [96, 107,
VMTS[99, 25], BOTL[105, 58], Fujaba[42, 45], RubyTL[32, 185.

43

In CHAPTER 2the model transformation language MOLA is discussed in detail
as it is used in model transformation applizasi described in the present PhD thesis.

There alreadexistedmany graph transformation languages before OMGs RFP.
The frst graph transformation languaggROGRESSwvas developedas early as the
beginning of the 1990§145. Influenced by OMGs RFP many graph transformation
languages were adapted for the development of model transformé&tioesample AGG
[163, PROGRES 144, TGG [146 46], VIATRA[31, 18(. In fact, there is no big
difference between typeattributed graphs and models. At present disistgog
between a model and a graph transformation language is sometimes quite difficult.

Model transformation language alone is not sufficient for developing model
transformation as tool support for the language is required as well. Tool support for
independent model transformation languages was mainly developed by research groups
closely associated with the authors of the language. As a result tool support for many
languages is mainly experimental and is devoid of industrial qualities. The first language
with good enough tool support was ATL. Most probably this is the reason why ATL is
the most popular model transformation language.

The situation with tool support dhe QVT standard is even worse. There is no
tool supportingthe QVT language completely.HEre are some tools supporting parts of
MOF QVT. MOF-QVT Operationals supported bysmartQVTtool [150. Eclipse M2M
project partially implementQVT Operationaland QVT Declarative(Core, Relationgl
[179. MOF-QVT Relationals partially supported biMediniQVT[57]. UML modelling
tool MagicDraw [115 usesQVT Operationalplug-in implemented byEclipse M2
project[175.

The Imited tool support of QVT and understanding that for different domains
different transformation languages are neecded the reasons for developing new
transformation languages even now, among themg®Epsilon[92, 169, Henshin[9,

173, GreTL[55], IQuery[10(, UML-RSDY 95|, Edapt[16].

Examination of application areas of model transformations reveals that for each
different domain a different language is morerappate. Actually many transformation
languages are developed, keeping a certain domain in mind. For example, MOLA was
developed for transformation development in the MDA proc¥sstra specializes in
transformation development for simulatdQueryis suitable to develop transformations

for the DSL tool developmenEpsilon actually is a transformation language family

44

where each language is suitable for a definite set of .taskere are domainspecific
transformation languages applicable in certain @om One well studied domain is

model transformation for model migration.

1.3.2 Mapping L anguages

When highly abstracting in the consideration midel transformationsve can
treat them as mappinthat is donefrom the source tothe target. That is the way
transformations were treated in the MDA gu[d41]. However transformations cabe
subject tocomgicated exeution conditions. It is hard to represent these conditions as
mappings. Therefore mappings can be used onlginmple and declarative parts of
transformations. Hence mappings can be used teensformation language for simple
cases.
AA mapping is specified using some | ang
model to another. The description may be in natlaagjuage, an algorithm in an action
| anguage, or in a mdfel mapping | anguage. 0
Attempts to create universal mapping languages as a certain alternative to
traditional transformation languages have been startedcisutfy early. The &rm
mappings are used alreadytie MDA guide[11]].
List of mapping &nguages is given the Section4.1.2

1.3.3 Higher-Order Transformations

MDD can be naturally appliediso to transformation developmetitmeans that
transformations are used to create transformatibims. special kind of transformations is
named Higher-Order TransformationgHOT). These are transformations modifying/
reading/creating model transfornmats. In the HOT approach transformations must be
treated as models conforming to the relevant metaimode

Though the HOT idea can be applied to any transformation language, the largest
amount of HOTs has been created forAfi¢. languagg63]. A comprehensive survey of
HOT applications is given 183 where the four main types of HOTs havbeen
identified. One of the HOT application types is transformation synthesis. Transformation
synthesis means transformation generation from various sources of information, including
model mappings. Such a mapping between two models can be considered as a high level

specification of the required model transformation. A large set of such mappings has been

45

obtained by applying th&ATLAS Model WeavegilAMW) [39]. The idea of obtaining a
transformation from a mapping can be applied to mather transformation languages,
for example MOLA In CHAPTER 6a special language for transfoation synthesis
Template MOLA is proposed. It is the first languadé9] built specially for the
development ohigher-order transformaions. Afterwardsa special extension of ATL for
transformationsynthesiswas developed as well182. However ATL is textualwhile
MOLA and Template MOLA are graphical languages.

One of the popular research directions relatedh® HOTs approach isthe
development of metamodel independent transformations. In mostheofmodel
transformation languagestransformation is attached tbe metamodel it is defined for.
This makes transformation reuse almost impossftileapproach for solvinthis problem
is proposed by33] and[139. It should be noted that Template MOLA coulel used to

develop metamodel independent libraries for MO See SectiorY.4for details

46

CHAPTER 2

MOLA Language

As the model transformation language MOLA was used to develop
transformations described the thesis an overview of ttdOLA language is givenn
this chapter More aboutthe MOLA language can be found i{v6], [75] and[77]. A
formal description of MOLA as well abe MOLA tool can be downloaded E&9].

2.1 MOLA Overview

MOLA is a graphical transformation language developed at the University of
Latvia. It is based on traditional concepts of transformation languages: pattern matching
and rules defining how the matched pattern elements should be transformed.

A MOLA program transforma an instance of a source metamodel into an instance
of a target metamodel. The two metamodels are specified usingENt@F [120
compliant metamodelling languag®IQLA MOBP). These metamodels, which may also
coincide, bth are parts of a transformation program in MOLA. Mapping associations
may be added to link the corresponding classéiseisource and target metamodels.

MOLA is a model transformation language which combines the imperative
(procedural) programming stylavith declarative means of pattern specification. A
transformation written in MOLA consists of seveMOLA proceduresone of them
being the main. An example of a MOLA procedure is given kig. 11 (p.54). The
execution of a MOLA program starts with the main proced@recedures in MOLA may
be called from the body of another procedbyeusing call statementsLike in most
transformation languages, class instances, primitive and enumdsgdezhvarables can
be passed on to the called procedures as parameters. There are other types of statements
in MOLA as well, i.e.rule, foreach loop text statementetc. The execution of a MOLA
procedure starts with tretart symbalThe next statement to be extsmliis determined by
the outgoing control flow.

The rule in MOLA represents the classical branchifighénelse construct of

imperative programminglhe rule contains a declarative pattern that specifies instances

47

of which classes must be selected dmodv they must be linked. Only the first valid
pattern match is considered. The action part of a rule specifies which matched instances
must be changed and what new instances must be created. The instances to be included in
the search or to be created apedfied usingclasselementsn the MOLA rule. The
traditional UML instance notationinstance _name:class_najne used to identify a
particular class element and specify the class the instance must belong to. Class elements
included in a pattern may hawtribute constraint§ simple OCLlike expressions.
Expressions are also used to assign values to variables and attributes of class instances.
Additionally, the rule containassociation linkdetween class elements. A class element

may represent an ireice, matched previously by another pattern. Such class element is
called a reference class element and is specified using the name of the referenced class
element, prefixed witthesymboh @0 .

Typical transformation algorithms require iteration througdetof the instances
satisfyingthe given constraints. In order to accomplish this task, MOLA provides the
foreachloop statement. Thoopheadis a special kind otherule used to specify a set of
instances to be iterated in the foreach loop. The pattethe loophead is givdny using
the same pattern mechanism foran ordinary rule, but with an additional important
construct. It is théoop variablei the class element that determines the execution of the
loop. The foreach loop is executed for eddtinct instance that corresponds to the loop
variable and satisfies the constraints of the pattern. In fact, the loop variable plays the

same role as an iterator in classical programming languages.

2.2 MOLA Elements

Table 3presnts alist of MOLA elements. The application context and semantics

of each element is described.

Table 3. List of MOLA elements

Image Element Description
Start Execution ofa MOLA procedure starts witla
. symbol start symbol.

Execution of a MQ@QA transformation starts

48

Image

Element

Description

from the start symbol dhemain procedure.

End

symbol

Execution ofa MOLA procedure ends witlan
endsymbol Whenthe end symbol is reached i
the main procedure execution of transformati
is completed. Inother procedures control

returned taheprocedure calling this procedure

[Eai : Operation
1

Input

parameter

MOLA procedures may haveparameters
definedby name and typ&@<name>:<type>).

The name should be unique in the procec
(different from ¢ass element names). The ty
is a reference to a class defined in MOLA M(
or a primitive type. Parameters are ordered.
order is represented by numbers.

Values of input parameters are passed to
procedure; if the value is changed it is |
passed ack.

z

In/out

parameter

The same aghe input parameterthe only
difference is that the value of parameter i

passed back tie calling procedure.

[op : Operation

Variable

It is possible to define variables in MOL
procedures. 6 variables the name and the ty
is defined @<name>:<type>. Variables are

used in the same way as parameters.

o : Operation

Rule

MOLA rule consists of a pattern to be matcl
and an action parBoth are defined by means
class elements andsociatiorlinks.

The pattern in the rule is matched only once.
If a rule without a valid match is to be execui
and it has noELSEexit, then the current
procedure is terminated (if this occurs outsid

loop) or the next iteration of the loop is stari

49

Image

Element

Description

(within a loop body).

Loop

MOLA loop contains a loophead (the first rul
and a loop body (0 or more loop elements wh
execution order is defined by control flows).

The loophead is a rule which contains a I
variable. The loopred and the loop body al
executed for each distinct match of lo

variable.

o Operation

Class

element

A class elemenis a metamodel class, prefixe
by the elementr¢le) name

A class elementnay also contain a constraiint
a Boolean expressiom a simplified subset o
OCL.

Assignments irclass elemestmay be used t
set the attribute values of the instances.
When a pttern in a rule is matched faach
class elementan instance satisfyingonstraints
is found and attached to a class elemr
(constraints are defined in a class element
by a pattern, e.g., connections with other cl

elements).

o : Operation

Class
element,

reference

References are marke
The previously matched instances, as well as
parametes and the variables, may be used
references. In this case, an instance alre
attached to a referenced element is used

pattern matching.

{NOT}
o : Operation

Class
element
with NOT

constraint

Equivalent to NAC (negative applicatic
condition) in graph transformation languag
e.g.,AGG[163.

A pattern is matched if there are no instance

50

Image Element Description
(NOT- the model corresponding to the N@lement.
element) NOT-elements are typically connected to otl
class elemds by using association links. Suct
pattern matches if there is no instar
corresponding to the NGQG@&lement which
fulfills conditions defined to NO%lement anc
has all specified links to the instances
Anor mal part o.
Class It is possible to create instances in the ru
5 2 B o elemaent, Creation is marked with a red dashed line.
CEREREPER creation Assignments may be used to set the attrit
values of the newly created instances.
Class It is possible to delte instances in the rule
__________ element, Such class elements may be references or
"”F'ﬂ. deletion are matched before deletidbeletion of a clast
___________ element causes automatic deletion of the rel:
links.
Loop Loop variable is an iterator of foreachop. A
variable foreach loop iterates through all possil
P— instances of the loop variable class that satis
the constraint imposed by the pattern in
loophead.
There is only one loop variable in a loop.
Association An association hk, connecting two class
2 : Cperstion link elemens, corresponds to an association linki

interface
i : Interface

operati

the respective classes in the metamo@dhss
elements at the ends of links are matched tc
instances connected with a link of this type.

51

Image Element Description
— Association It is possible to create instances of associa
. . link, links. An end of a creaténk may be attached t
'mfrf?rir:r creation aclass elemenincluded in the pattern or to tr
class elementreation
Association It is possible todeleteinstances of associatic
(B0 Dperaion link, links. An end of adeletelink may be attached t
interface i"p‘-'““"” deletion a class elemenincluded inthe pattern(alsothe
CERLLLC class element, deletipnAssociation ihks are
deleted beforéheclass element deletion
Text Text statementsconsist of a constraint ar
statement assignmentslt is possible to assign values
parameters, variables and class elen
references. Assignments are skipped tlie
CPF@C' constraint fails. Mainly text statements are u:
to process primitivedyped elemsts. A text
statement containing a constraint (a Bools
expression) may also have &iLSEexit and
serve asnif-thenelseconstruct
Call Call statements are used to invoke -s
statement procedures. Parameters are passed to
C o invoked procedures. If the parameter is of
type infout to pass the value to this paramet
referencable element (variable, parameter, ¢
element reference) should be used.
External Besides MOLA procedures, extatn(coded in
call an OOPL) procedures can also be invoked;
showhisglHello!) statement feature is used for lowevel data processin
(e.g., model data import). Parameters may
passed to external procedures.
. Control Control flow arrows determine the exeiout
v flow order of MOLA statementsThe element tha

52

Image Element Description

follows the use of the control flow is execut
as the next one. (If the execution of the previ

element rule, text statemerithad succeeded.’

Alternative Certainly, thee may be a situation when

control match exists then the rule is not executed

flow all. To distinguish this situatiorthe rule may
:{ELSE} have a special ELSExit (alternative contro
W flow), which is traversed in this situation.

Alternative control flow may be addealso to
text statements. This control flow is usedhé

constraint inthetext statement fails.

2.3 MOLA Example

In order to illustrate the basic MOLA concepts, briefly listed in the previous
section, a simple MOLA transformation exameprovidedin Fig. 11. This example is
taken from transformations developedhie ReDSeeD%$roject(seeCHAPTER 3. UML
(+ RDSeeDSspecific traceability framework) is used as a source and target metamodel
of thetransformation.

This procedure copiethe interface and all operations it contaiaghe provided
package inthe target model. ReDSeeDS specific traceability information is created
betweertheoriginal interface andstcopy.

This MOLA procedure has four pameters. Three of them are input parameters
and one in/out parameter. The first parame@m() is the interface to be copied. The
second paramete@p?) is a package for the copy of the interface to be placed. The third
parameter @sg is ReDSeeDSspecfic. It is a logical model $%oftware Artifack
processed. All traceability links between the elements are attached to this logical model.
The fourth (in/fout) paramete@() is used to return the reference to the newly created
copy of the interface.

Executon of the MOLA procedure starts with a start symbol, followed by the
execution of the rule (using control flow). As already stated previously, the MOLA rule

may consist of a declarative pattern and an action description. In this case the pattern is

53

trivial as all class elements with black solid borders are references. Nothing is matched,;
the values attached to the references are used dirébtyefore execution of the rule
startsdirectly with the execution of actions defined the rule. This rule createa new
instance ofan interface fiewin) and the latter is set the same name as the name of the
interface to be copiethame=@int.namé. To assign values in MOLA simple OCL like
expressions are used. (For details see MOLA reference mggjyaln the same rule
ReDSeeDSpecific traceability information is createid:{(sDependentOnfor which the
original interfaceis set asa source andhe copy of the interface as a target. The
traceability information is attached ReDSeeDS logical model (@sa). This rule uses
references to the provided parameté@snt, @sa, @ptand creates appropriate instances

(newint, id and association links.

input parame ter infout param eter

start symbol

[winit : Interfacs [yt : Package @sa S-:-ftwareﬁmfact I © Interfac:
1 2
class elg;neiil flow _':__‘? fIrterfaces} [Kemel] r=clkemel) fInterfaces}
reference Ri@m'lmerfax
" : Sl (=3 : Software Artifact T @newo : Operation
nterfac:s g kemel
rle » - {sclkemel} [Kemel} { I

Lo . 'dependency Souns: D -
assoclation link : f st packagedElemert | Dm,nghck# variable
creation : ownedTrace + : newirt : Interface & _

cllentl)ependa:t-l:l:u--'d Iz Dependent On ¢ EUPpllerDePenda'tD'u :M: Et_tr__1bute
INSTANCE——F——— fookemep £ dapandancyTargd : ame =@t name 4 |assignment
creation Lesesssmmsssesd L EaaaRaiaaea
association linlk
“foreach” loop—m i’
loophead — ownedOperation |[Eint : Interface {Enewint ; Interface
: finterfaces} finterfacss}
. interface
loop variable™ | -
: ad Operation e
call stalement s parameters il C
il kv {@Enewo : Operation
(psm_Copy Operation(i@a, '™, (@3, @nen) S {kemel}

text statement

variable assignment

Fig. 11. MOLA example

The rule is followed by a foreachdp which iterates through all operations of the

interface to be copied. The operation is used as a loop var@bleié checked that the

54

operation is connected to the interface using the associatiorovimedOperationi
interface Only the operationsatisfying this condition are processed.

For each such operation procedure fpi m_
statement). This procedure contains four parameters as well. The first is the operation to
be copied@). The second is simply an emying and it is not important in this context.

The third is again ReDSeeDS logical model, used to attach the traceability between the
original and the copy in the same way as in this procedure. The fourth is a reference to the
variable @newq defined inthis procedure. This actually is in/out parameter and is used

to return the newly created copy of operation.

After the call statement the MOLA rule is executed. The copy of operation
(@newg returned by the call statement is attached to the copy of tifréaice @new).
Association link ewnedOperatiori interface is created.

The loop and actions in it are executed while there are operations satisfying
constraints in the loophead. After execution of the loop comptbtetext statement is
executed. Thigext statement assigns a value to in/out parameter. The value of the
parameter is set to the created copy of the interface. As a result, when reaching the end
symbol, the parameter will return the reference to the newly created copy of the interface.

Readting of an end symbol is the last element of the MOLA procedure and it
completes its execution. Control is returned to the calling procedure. The value of in/out
parameter is also returned.

To get a more detailed understanding about the usage of diffste&hiA

elements see the next section.

2.4 Hello World with MOLA

This section is dedicated to describing a solution foH#ko Worldcase[106 of
the TTC 2011[5] contest, implemerd inthe MOLA model transformation language
fiSaying Hello World with MOLA A Solution to the TTC 2011 Instructive Ca$é4].
This use case demonstrates the application of MOLA constructs for solving typical
transfomation tasksThis section provides a more detailed understanding about the usage
of different MOLA elements in transformation development. If a reader is familiar with

the MOLA language he/she can skip this section.

55

The Hello World case consists of sevéraery simple taskslt confirms the
assertion that simple tasks can be solved in a straightforward and easy readable way in

MOLA. In most cases the basic part of the task is performed by one rule (or loophead).

2.4.1 Greeting Tasks

The first group of taskis "Greeting" transformation$he frst task is tai povide
a constant transformation that creates the
metamodel given irFig. 120 [106 The rext task is based ofslightly extended
metamodel given ifig. 13.0 [10§ It is required toii povide a constant transformation
that creates the model with refeoas also shown iRig. 13.0 [106 The last task in this
group is tofiprovide a modeto-text transformation that outputs the GreetingMessage of
a Greeting together with theame of the Person to be greeted. For instance, the model
given inFig. 13 should be transformed into the String "Hello TTC Participanit$0q

H Greeting
o text ; EString

| Gresting
ext="Hello World"

Fig.12The fHell o Worl d" met amdgel and the

H Greeting Creeling

greetigMessage

‘GieefinnMessage | Ferson
—J—J—E Sl s E Person texi="Hello* name="TTe Participants®
| = text : EString = name : EString

Fig.l3The extended famicél &ndthe/dramplaifstarfbast

In these transformations the MOLA pattern used is very similar to the
corresponding instance diagram given in the task specific&igreting transformations
are given inFig. 14, Fig. 15 and Fig. 16. The transformation logic for these tasks is
described by using one MOLA rule (the grey rounded rectangle). The only requirement in
the first two tasks is to create elements (marked with red dashed lines). In the third task an
instanceof the class'StringResult'is created, if the pattern (the elements with black solid
lines) is matched with the MOLA rule.

56

----- b Y :-Iireeting .
Thelloward}

Etext:="HeIIu:| warld" :

g Greetlngl‘-.n‘lessage
: Thellowardext] :

@

i | » bexk ="Hello" .

Fig. 15. Transfornation creatinga constaniGreetinginstance with references

-

C e

.

-~
g : Greeting Opp_person_Greding
opp_grestingMeszage_Greding fhelloworidext} I _[;©
greetingMessage S rotingResut ; persen
gm : Greetinghieszage 1 frezult} ! p : Person
thelloworidext} result = (@gm text+" @0 name+T E hellowordaxt}
......................... J_H

Fig. 16. Modekto-text transformation creatinggreeting message

2.4.2 Instance Gounting

The next group of tasks in the task specificati® the instance counting tasks.

The nput models are simple graphs conforming to the metamodel giv@g.ih7 [106].

The task specification is as follows

T AProvide a model

1 Provide a model query that counts the number of looping edges in a graph, i.e. edges

guery stnlagraph.count s

where the source and the target node coincide.

1 Provide a model query that counts the number of isolated nodes in a graph, i.e. nodes

that are neither the soce nor the target of any edge.

1 Provide a model query that counts the number of matches of a circle consisting of

t he

three nodes, i.e. the pattern shownFig. 18 where nl, n2 and n3 are pairwise

distinct. Note thagach circle in the model should be matched three times.

1 Optional: Provide a model query that counts the number of dangling edges in a

graph, i.e. edges where either the source or the target node i ngigsioq

Transformation counting nodes in a graph is giverFign 19. Transformation

counting looping edges is given Kig. 20. Transformation counting isolated nodes is

57

n

u

given inFig. 21. In MOLA the counting is implementda using an integer countand a
foreach loop(a rectangle witha bold border)where the counter is increasdd. most

cases the loophead pattern directly specifies¢h@®f instances to be counted.

H Node
nodes = name : EString

l o,.*
Sr g

H Graph 0.1 0.1

T edges
|

" H Edge

Fig. 17. The simple graph metamod&log

ni:Mode

:Edge

n3:Mode

:Edge

:Edge

A 4
nZ:Made

Fig. 18. Circle of three nodes (simpiid representation of edge objé¢t0q

A MOLA variable fiskd (a white rectangle) of type integer is used as a counter.
Each loop iteration increases the instance count byTane.statements (yellow rounded
rectangles) are used to moditye values of the coust. Finally, to save the counting
result in the resulting model the MOLA rule creating an instance of the"tfBesult”
is used.

For all these tasks it was required to count elements in a graph. As it was not
defined whether the model contains onhyeograph or multiple graphs, we admitted the
worst case of many graphs in the model. For transformations to work properly when there
is more than one graph in a model we provide the graph to be processed as a parameter.

Consequently, we use another MOLApedure where we iterate through all graphs in a

58

model (using a foreach loop) and from here we call the transformation (using the call
statement) for processirige current graph. An example of such transformation is given
on the left side oFig. 19. (The only thing that changes is the called procedérsijnilar

graph processing is done for all tasks where the phrase "in a graph" i#f dseck is
always only one graph in a model this step could be omitted.same could be said

about transformations iRig. 25 Fig. 32 as well

. @] : Graph
. 1 @sk : Integer
v

fqraph1}

n : Mode EElEs £y : Graph
h1
faraph 1} opp_nodes_Greph faraph 1}

r: It Resul
Tresult}

@) "
ek © Integer

. oraph1}
are
';g: ”T& B e Edge Jadges @q - Graph
rap rg h1
farphi} opp_edges_Graph faraphi}
opp_trg_Edge

r: IntResul
fresult}

Fig. 20. Transformation counting looping edges in a graph

59

g : Graph

._ - ski=0 1 sk Integer

{graph1}
opp_sri_Edge
{HOT} — n : Mode " g : Graph
es : Bdge INOT} | app_ tra_Edge {araphi} nodes {araphi}
Tgraphil . PP1Ta_ opp_nodes_Geph
et : BEdge trg
Taraphi}

r:Int Resuk
Tre=sult}

Fig. 21. Transformation counting isolated nodes in a graph

The only counting taskprocessed different)yis the circle counting. In MOLA
there are two loop types: the foreach l@oplthe while loop(rule + appropriate control
flow). In the while loop, to ensure only distinct matches, an explicit marking of the
already found matches (using a NAC construct) is requickaiming theusage of
temporary metamodel elements to solve tdwk. An alternative is to use three nested
foreach loopssince multiple loop variables are not supported in MOLA. We provide
solutions using both loop types as each has some advantages and disadvantages.

We start with the solution using the foreach loag this loop type was used in the
previous tasks. The solution of this task is different from the previous one because we
want to find all different circlesln this case one loop variable is not sufficient and,
consequently, several loops are required.

The task specification did not clearly state whether graphs or-grajths should
be considered (i.e., is it possible to have multiple edges between two nodes.) As the
provided metamodel supports medtiaphs and graphs are a subclass of rgudiphs, we
decided to build our solution, providing support to mgtaphs. This being the case, if
there is a circleénl;n2;n3' and two edges betweenl" and h2', then there will be two
circles 'h1;n2;n3' (and 2*h2;n3;nl' + 2*"'n3;n1;n2"). The ®lution of this task is given
in Fig. 22. To distinguish different edges between the same nddesdges are used as
loop variables. There are three nested loops used in the solution. Each loop selects one

edge for theeircle. Actually, finding of circles is defined in the loophead of the first loop,

60

however, when using this loop we are only able to find all edges which are a part of some
circle, but we do not have information in how many circles this edge is useagAithe
second and the third loop we count all circles that have different edges three times, as

required in the task specification.

.. F E=k : Integer
a ™y
n{; : N:;:I: e el :Bdge | opp_trg_Edge |02 : Mode
rap foraph 1} foraph 1}
tself <> @n2} opp_src_Edge trg
=
bpp_trg_Bdge |trg opp_src_Edge
3 : Bdge opp_sr_Edge [0 @ Mode|rg a2 : Edge
h1
fgraph1} ore Lioreh 1} [onn o pae |EEn
. : A
i ™y
_ nd : Mode
23 Bdge | opp sro_Edge faraph 13
faraphi} P
M8 rcalf < @n 1 and self <> @nd
opp_trg_Fdge ;
trg opp_trg_Edge |9
@nl : Mode 22 : Bdge | opp_sre_Edge En2 : Node
foraph1} faraph1} o |_faraph1}
" : S
@n1 : Node [el : Bdge Dpp_src_EdgEI@"S ::?de
mpht} [e | fareeh 1} | {=pht}
n
shi=sk+1

Fig. 22. Transformation counting circles consisting of three nodes

If we know that there are no ntugraphs, then the last loop can be omitted
because the existence of the third edge is already validated by the patterns in the first and
the second loop. However, understanding of this case is probably easier if nodes are used

as loop variables, but angy three loops are needed again.

61

Solving of the task by usingehforeach loop is quite lengthigpwever, if we add
temporary classes it is possible to create a shorter and more elegant solution. In this case
we will use thewnhile loop We extend the metaodel by adding the temporary class
"Circle" and connecting it to the clas8dge" The metamodel extension is shown at the
bottom ofFig. 23. If such extended metamodel is used then we can simply write a MOLA
rule looking for circles and marking the found circles: connecting all edges of a circle to a
new instance of the "Circle" class. To ensure that each circle is found exactly once a NOT
constraint (an equivalent to NAC in graph transformation languagesin AGG [163)
is used, stating that this circle has not been marked previously. As in this solution we do
not care about the order of edge finding, the loop counter is increased by 3, to ensure that
each circle ha been counted three times. The above mentioned solution is presented in
Fig. 23.

.. . - i@k : Integer
Vi

i >
. sre opp_tr
nl : Hoda =1 Edge pp_trg_Bdge =TT
{araph1} opp_src_Edge faraphi} trg faraph1}
3 edged fzelf<>i@n1}
e loapd . o edge
opp_irg_bie edgel l-I : .Ei-r;I;-' {NOT} sro
- LR . - nl - Circle
el : Bdge loop - Stempd »loopd loopd frermp}
{araph1} adge T) ------: | P
5 loopd
opp_sri_Edge .
N3 Moda . edgel | opp_src_Edge
sre {araph1} t adge &l : Edge
Izelf<r@n and self < End s fgraph1}
. opp_trg_Edoge P
fELSE} £ :

S intResut : ""'
Tresult}
L WEER ©

(3 cirele|loop (9 graph1:Edge
adge

Fig. 23. Transformation counting circles consisting of three npdsisg
temporary metamodel elements

Next was an optional task to coutite dangling edges. The solution is given in

Fig. 24. In this case two loops are used. The first one counts the edges without a source.

62

To ensure that the edges without a sourcevatitbut a target are counted only once the

second loop counts only the edges with a source and without a target.

——= [i@g - Graph
k:=0

. ! i@sh : Integer
¥

faraph1}

[HOT} _
=n : Hode |58 e Edge fedges i@ : Graph

h1 {graph1}
fgraphi} [opp_sre_Edge fgraph opp_edges_Greph

v

Vi
tr
fHoT} [e : Edge | adges i®g : Graph
tn : Node | @PP_ATE_ araphil faraph1}
faraph1} opp_edges_Graph

: Mod
S{I;mp:1; aro |Dpp_src_EdQe

r: IntResul
fresult}

Fig. 24. Solution of optional task: counting of dangling edges

2.4.3 Reversion

The nexttask to be considered exige revesing. It was required tai povide a
transformation that reverses all edges in a graph conforming to the simple graph
metamodel given iRig. 17 (p.58). This is an update operatian[106]

We selected a solution where a new reverted edge is created and the old edge is
deleted (delete is markday using a black dashed line). The solution is displaye@ign
25. Actually, a shorter solution in MOLA is possible; howeviglis not supported by the

current version ofhe MOLA tool.

63

£ [fgp==ccocaccocaco0co0a00000000005000000E : ™
5 : Node @y : Graph opp_trg_Bdge :
foraph 1} fraph1} [OPP-=d3es Breh e

edges. fgraphi} .

opp_sre_Edge |57¢ opp_edges_Grph :ﬁ:
2 e edges T Hode e Enpp_src_EdQe
fgraph1} |oPp_trg_Edge fgraphil f=-="

" trg W,

Fig. 25. Transformation inversing edges

2.4.4 Model Migration

The next group of tasks was model migration taske. irst tak was tofiprovide
a transformation that migrates a graph conforming to the metamodel givEm.iri7
(p.58) to a graph conforming to the metamodel giverFig. 26. The name of a node
becomes its text. The text of a [hggr ated edg
The fcond @tional task was tofi povide a topologychanging migration that
transfams graphs of the metamodel givenFig. 17 (p.58) to graphs as defined by the
metamodel irFig. 27.0 [106]

B {Z?'a;t:-ﬁ-L'm:-;im:?e-*?r_; o= Graph
| &= text : ESring | gcs |
: 0., *
— j_\ grc 0.1 - EI:I.J:.

trg 0..1
Fig. 26. The evolved graph metamodé&iDg

] T 7 = y linksTo
= GI'C—‘1|:-|‘| | nodes | = MNode -

5> = text : EString | -

) *

Fig. 27. The even more evolved graph metamddék

Implementation ofuch tasks requires adding of temporary tracealditions to
the metamodel. In this case it is sufficient to have an associattereén nodes in both
metamodels (seEig. 28). The migration transformation from the metamogeiphlto
the metamodelgraph2 is given in Fig. 29 and from the metamodelgraphl to the

metamodefgraph3in Fig. 30. At first a new graph in the target model is createtdoth

64

cases. After that all nodere cloned and traceability links added. (To ensure it a foreach
loop iterating through all nodes in the source graph is used.) Finally, all edges are
transformed by using the traceability information to find the appropriate source and target
nodes in te migrated model. (To ensure it a foreach loop iterating through all @uges

the source graph is used.)

(3 graphi:Hode| graph @ graph2:Hode (2 graph1:Hode| grap {= graph3:Hode
name : String[0..1] araph niarme : String[0..1] graphd |text : String[0..1]

Fig. 28. Metamodel extensions for model migration tasks

Eg : Graph
1
Tqraph 1}
~
= : Node rodes Eg : Graph
fgraph1} opp_nodes_Graph fgraph}
Egrapm
H FemmEmmam=as L
: : g2n : Mode oS g2 : Graph
...l fgrEphd} Eee eI R raphz
graphz ———————— opp_ges_Graph farph}
® et = (s .name |

T A @
v

i Ty
2N : N":?E S & : Bdge opp_trg_Edge tn : Mode
faraph1} pp_src_Edge faraph1} ra fgraphi}
raphl
R opp_sdges_Graph adges e graph Al
g : Graph | gess “PP_ges_Graphs gZtn : Mode
araphz phth | fhe " Eager | @92 Graph || jgrapha}
gZsn : Mode |orp + Igraph} ! fgraphl} i
fgraphz} [Rftoaresesrees ' =
P opp_src_Edge « text:=" v opp_trg_Edge :
N ot iy

Fig. 29. Model migration transformatiorMigrates graph from encodirggaphl
(Fig. 17) to encodinggraph2(Fig. 26).

65

@ : Graph

igraph1}
£ ™
5 : Hode rodes iEg : Graph
faraph1y opp_nodes_Greph fgraph1}
:grapl'? ____________ g3 : Graph
E ' g3n:Mode O Igraph3}!
..... » fgraph3}l . .
ropp_nodes_ Gl
araphs 2 text = (@s name '-l‘::cl'?_ -
L | |
. ,f
- ™,
=n : Node e e : Edge T Hode
fgraphi} opp_sre_Edge faraph1} trg faraphi}
raphil
SR opp_edges_Grph [2dges graphi
hraphd iEg : Graph graph
q3sn : Mode faraphi} g2tn : Mode
fgrapha} opp_linksTo_Hode farapha}
N limksTo W,

Fig. 30. Solution of optional model migration task. Migrates grapimflencoding
graph1(Fig. 17) to encodinggraph3(Fig. 27).

2.4.5 Deletion Tasks

Deletion tasks constitute the last group of tasks. The task definition was as
follows:

A Gi v eimple grapbd conforming to the metamodeFad. 17 (p.58), provide a
transformation that de&l eltfe sa tnhoed endmes etothw i ntahmen &
exist, nothing needs to bhanged. It can be assumed that there is at most one occurrence
of a node with name fAnl

Optional: Provide atrangfr mat i on t hat nlée (@eoabave), buit he nod:
also all its incident edges[106

The last madatory transformation is deletion of the node named "nl". This
transformation is very straightforward (deig. 31). We try to find suctanodeby using a
MOLA pattern anddelete it,in case of finding it Deletion is represeatl by a black
dashed line. It was required to delete all incident edges in the extension as well. The

solution of extension is given iRig. 32. In this case the sequence of deletions is as

66

follows i at first the node is found,lalutgoing edges deleted, followed by deletion of all

incoming edges and finally the node itself is deleted.

. ®yg : Graph
1

¥ {graphi}
' n:Hode
fgraph1} Tniodes i@ : Graph
' name="n1"l | opp_nodes_Geph fgraph1;
-,

1{ELSE}

Fig. 31. Transformation that deletéisenode named "nl1" (if su@node exists) in

a graph
. [@g : Graph
w7 leehd :
n{;m::;j; glalal=> i@y : Graph {-E-L-S E } i
name=n17 | SPP_nades_Gech fgraph}

3
?g: Edl-?:} opp_src_Edge @l : Mode
rap!
arG fgraph i}
‘:Q;EE'::-?;E} opp_tro_Bdoe wnl : Mode
P g fgraph1}

Fig. 32. Transformation that deletéise node named "nl1" (if su@node exists)
andits incident edges in a graph

2.4.6 MOLA Tool Support
This section describes the technical details regarding the solution of the task.
MOLA has an Eclipsdased graphical develo@nt environmentMOLA tool

[59)]), incorporating all the required development support. A transformation in MOLA is
compiled via the lowevel transformation languade3 [13] into an exeutable Java code

67

which can be run against a runtime repository containing the source model. For this case
studyEclipse EMFis used as such a runtime repository, but some other repositories can
be used as well (e,glGraLab[64], mii_rep[11]).

The MOLA tool has a facility for importing existing metamodels, in particular, in
EMF (Ecorg format. Thoughthe MOLA metamodelling languageM(OLA MORB is very
close to EMOF, and consequeniigore there are some issues to be solved. The current
version of MOLA requires all metamodel associations to be navigable both ways (this
permits to perform an efficient pattern matchimgusing simple matching algorithms).
Since a typicaEcore metamodkehas many associations navigable one way, the import
facility has to extend the metamodel. Another issue is the variable coding of references to
primitive data types.

Metamodel import facilities in MOLA are able to perform all these adjustments
automaticlly. In such a way the provided metamodels were imported into the MOLA
tool. Transformation development of some tasks in MOLA requires additional metamodel
elements, for example, in migration tasks to store relations between the source and target
models. hese metamodel elements have to be added manually. In migration tasks, these
are the associations between the node classes in different graph encodings.

Since the metamodels have been modified during import, the original source
model does not conform dirig to the metamodel in the repository mainly due to the
added association navigability. Therefore a source model import facility is required. The
MOLA execution environmefOLA runnej includes a generic model import facility,
which automatically adjustthe imported model to the modified metamodel. Now the
transformation can be run on the model. Similarly, a generic export facility automatically
strips all elements of the transformed model which do not correspond to the original
target metamodel. Thug, transformation result is obtained which directly conforms to
the target metamodel. (For amplace transformation the source and target metamodels
coincide, as a result nothing has to be stripped.) The transformation user is not aware of
these generiamport and export facilities, he/she directly sees the selected source model
transformed.

An executable version of the solution is available online, using the SHASGE
system A SHARE image of the solution is provided[4]. By using the SHARE image a
reader can access an executable version of this case study. All transformation sources are

available in the transformation definition environment. It is also possible tpileand

68

