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ABSTRACT 

Model transformation development for three specific domains: Model-Driven 

Software Development (MDSD), DSL tool development and transformation synthesis has 

been studied in the thesis. It is concluded that transformation development in domain-

specific transformation languages is more straightforward and faster compared to 

traditional transformation languages. A domain-specific model transformation language 

has been developed for each studied domain. Two of them are based on mappings. In 

both cases it was concluded that mappings better fit for typical tasks and transformations 

better fit for non-standard tasks. Therefore a close integration between mappings and 

transformations is required. 

The research results have been published in 15 papers (6 of them have been 

included in SCOPUS). 

Keywords 

Model transformations, Domain-Specific Languages (DSL), Model-Driven 

Software Development (MDSD), DSL tool development, Higher-Order Transformations 

(HOT) 
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INTRODUCTION  

The present PhD thesis has been worked on from 2007 to 2011 in the Institute of 

Mathematics and Computer Science (UL IMCS), and the Faculty of Computing 

established as an independent unit on the basis of the Faculty of Physics and 

Mathematics, University of Latvia. The thesis supervisor is professor Audris Kalnins. The 

thesis elaborates further the UL IMCS DSL (Domain-Specific Language) tool 

development and language design traditions that started already in the year 1986. 

Relevance of the Thesis: 

Lately Model-Driven Software Development (MDSD) is gaining popularity. The 

idea of elaborating all software development steps on models defined in specialised 

modelling languages lies at the basis of the approach. Models, defined at higher 

abstraction levels, are ever more detailed in each step of Model-Driven Software 

Development.  Model transformations are used to automate transitions from one model to 

another. Use of model transformations allows using models as a direct part of the 

software development process instead of using them only as documentation. 

The origin of MDSD was the Model-Driven Architecture (MDA) [111] initiative 

by Object Management Group (OMG). The first document about the MDA was published 

in 2000 [116]. In 2002 OMG concluded that model transformation languages are required 

[119], to easily describe the required model transformations. Most of the modelling 

languages are defined by using the means of metamodelling; therefore model 

transformations were built to transform the models defined according to metamodels. 

Metamodels were defined by using the metamodelling standard MOF (Meta Object 

Facilities) [120]. 

OMG activities led to the creation of a new model transformation standard MOF-

QVT (MOF Queries/Views/Transformations) [128]. Moreover, many new model 

transformation languages were developed, e.g., ATL [63], GReAT [7], GrGen [48], 

Epsilon [92] and the model transformation language MOLA [76] that was developed in 

UL IMCS. This was also a new application area for graph transformation languages, e.g., 

PROGRES [144], AGG [163], VIATRA [31] and also Fujaba [43], previously used in a 

narrower context. The variety of model transformation languages could be explained by 

two reasons: lack of complete MOF-QVT implementation and different model 
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transformation application domains. In different software development areas there are 

different requirements for a model transformation language. 

Today model transformations are a serious software component in large software 

development projects. Transformation development requires a considerable amount of 

resources. Transformations should be projected, tested, maintained, etc. Currently the 

transformation development is rather chaotic and every developer develops 

transformations according to oneôs own wishes. It could be explained by the poor 

experience in adaption of the classic software development steps (testing, etc.) to 

transformations. Consequently, studying of the transformation development is a popular 

research direction. 

In the same way there are attempts to adapt the classic software development 

methods to the model transformation development. One of such methods is to build a 

Domain-Specific Language (DSL) to be applied to the software development in a specific 

class of tasks. The thesis is devoted to researching domain-specific transformation 

languages. Usage of domain-specific transformation languages could improve 

transformation development, the same as the use of the domain-specific languages helps 

to reduce the software development time and costs. However, it should be noted that the 

use of domain-specific languages is cost-effective only in case of developing multiple 

similar solutions. 

Aim of the Research: 

The aim of the research is to investigate the ways of defining transformations for 

classes of similar tasks, requiring development of many transformations of the same type. 

¶ Explore transformation development for Model-Driven Software 

Development. 

¶ Explore the nature of the transformations for DSL tool development. 

¶ Explore the opportunities of defining Model-Driven Software Development 

and tool building transformations in specialised languages (higher 

abstraction level) and using mappings. 

¶ Explore the definition possibilities of transformation generating 

transformation. Develop a higher-order transformation language which is 

specialized for transformation synthesis. 
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Main Results of the Thesis: 

¶ Developed and implemented the transformation supported path from the 

requirements to the code. The research has been carried out as a part of the 

ReDSeeDS project. Transformations for Model-Driven Software 

Development have been analyzed. It is concluded that some of the 

transformations could be defined more effectively by using a specialised 

(higher abstraction level) language. 

¶ Developed the first version of the MOLA 2 tool within the METAclipse 

framework. A conclusion has been drawn that part of the transformations 

are very simple and uniform and it would be more convenient to define 

them in a mapping language. Likewise, it is concluded that it would be 

impossible to define everything by using a mapping language; therefore, 

integration between the mappings and transformations is required. 

¶ Developed the mapping language MALA4MDSD, which is especially 

adapted for transformation development in Model-Driven Software 

Development. 

¶ Outlined the mapping language for DSL tool development. 

¶ Developed the language Template MOLA, which is a domain-specific 

language for transformation synthesis. 

¶ Analysis of three particular problem areas leads to the conclusion that the 

transformation development in a domain-specific language is possible at a 

higher level of abstraction. Thus, transformations can be developed faster. 

If the transformation is defined by a higher level of abstraction and the use 

of mapping, then less-skilled users can define the transformations as well. 

Scientific and Practical Significance of the Thesis: 

Model transformation development for three specific domains, namely, Model-

Driven Software Development (MDSD), Domain-Specific Language (DSL) tool 

development and transformation synthesis has been studied in the thesis. 

One of the areas under research in the present thesis is a specification of 

transformations for Model-Driven Software Development. While working on the 

ReDSeeDS project the author of the PhD thesis developed two transformation sets for 
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Model-Driven Software Development. This type of transformations typically contains a 

transformation from UML to UML and for facilitating the given transformation 

development, the mapping language MALA4MDSD is offered in the PhD thesis. The 

language MALA4MDSD is also of practical importance, since it makes it significantly 

easier to develop transformations for Model-Driven Software Development. This could 

encourage a wider use of model-driven development methods in industry, as 

transformations could be defined by less experienced users - those who are experts in the 

transformed problem area, but do not know anything about metamodelling. In addition, 

the transformation development would become faster. 

The second researched area is the model transformations for DSL tool 

development. It was concluded that the best way for defining a tool for graphical DSL is 

by combining mappings with transformations. Using of mappings allows a less skilled 

user to configure tools as well; the tool development would become significantly faster. 

However, using mappings makes it impossible to provide convenient instruments for all 

possible cases of non-standard treatment; therefore there is a need for a way of processing 

non-standard cases in a transformation language. Many of the existing DSL tool 

development platforms offer processing the non-standard cases in a programming 

language, but a transformation language for this task would be more appropriate, because 

the data are model-driven, and transformation languages are adapted for processing this 

type of data. 

The third problem area brought an observation that a domain-specific language is 

more convenient for defining transformations. However, here is chosen a different type of 

language that does not use mappings. This is a specific area which describes 

transformation synthesis. The task is very specific, and the existing means are very 

inadequate and are difficult to use, therefore the domain-specific language has been 

created. The language Template MOLA is a higher-order transformation language, 

specifically adapted to the tasks of transformation synthesis. It is the first language in the 

world of such a type. Later an extension, specifically for transformation synthesis, has 

been developed for the language ATL [182]. It should be noted that comparing to the 

language MOLA, ATL is a textual language, therefore the synthesis of ATL is an easier 

task. Nevertheless, the basic idea used in the ATL extension is the same as in the 

Template MOLA - using fragments of concrete syntax. 
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The language Template MOLA helps to solve a very important issue in the model 

transformation world, namely, metamodel independent transformation development. 

Since almost all transformations are linked to metamodels, building of a library of 

transformations and reuse of transformations is still an open problem. 

The research results of the thesis suggest that model transformations is a 

sufficiently vast area, making it possible to choose more limited problem areas ï domain-

specific transformations - and domain-specific transformation languages have to be 

created for these areas. The research focused on studying mapping languages as it is the 

most user-friendly way of defining transformations. Nevertheless, the existing mapping 

languages are not quite appropriate as usually they can process only very simple cases. 

Therefore, the research offers a new idea for defining transformations ï use of domain-

specific mapping languages instead of a universal mapping language. 

Publications of the Research Results and Presentations in Scientific Conferences: 

The main results of the PhD thesis are presented in 10 publications; each 

containing a significant (70-80%) contribution of the author of the present thesis:  

 

¶ ñDSL Tool Development with Transformations and Static Mappingsò [67] 

The publication outlines the role of mapping in the DSL tool development. 

¶ ñDSL Tool Development with Transformations and Static Mappingsò [68] 

The publication discusses the use of the mapping language in the DSL tool 

development. 

¶ ñGraphical Template Language for Transformation Synthesisò [69] The 

publication describes the language Template MOLA. 

¶ ñTransformation Synthesis Language ï Template MOLAò [71] The 

publication describes in detail the language Template MOLA. 

¶ ñGeneration Mechanisms in Graphical Template Languageò [70] The 

publication discusses a merge mechanism in the language Template 

MOLA. 

¶ ñFrom Requirements to Code in a Model Driven Wayò [79] The 

publication outlines transformations used for the model-driven 

development process realization within the ReDSeeDS project. 
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¶ ñA Model-Driven Path from Requirements to Codeò [80] The publication 

describes in detail the development of transformations for Model-Driven 

Software Development within the ReDSeeDS project. 

¶ ñModel Migration with MOLAò [72] The publication describes a 

transformation design in the language MOLA for transforming UML 1.X 

activity diagrams to UML 2.3 activity diagrams. 

¶ ñHello World with MOLA - A Solution to the TTC 2011 Instructive Caseò 

[74] (accepted for publication). The publication discusses solutions of 

simple transformation tasks in the language MOLA. 

¶ ñTree Based Domain-Specific Mapping Languagesò [73] (accepted for 

publication). The publication describes the mapping language 

MALA4MDSD and the methodology of constructing a domain-specific 

mapping language. 

The author of the thesis has participated in the preparation of 5 more publications 

with the contribution of 5-25%. 

¶ ñBuilding Tools by Model Transformations in Eclipseò [86] The 

publication outlines the principles of the METAclipse DSL tool 

development framework and its use in the MOLA 2 tool development. 

¶ ñBehaviour Modelling Notation for Information System Designò [78] The 

publication describes the experience, gained while working with the UML 

sequence diagrams within the ReDSeeDS project. 

¶ ñComprehensive System for Systematic Case-Driven Software Reuseò 

[153] The publication describes a platform developed within the 

ReDSeeDS project and highlights the role of transformations in this 

platform. 

¶ ñDomain-driven Reuse of Software Design Modelsò [82] The publication 

discusses software reuse facilitatation by the transformations, developed 

within the ReDSeeDS project. 

¶ ñSolving the TTC 2011 Reengineering Case with MOLA and Higher-

Order Transformationsò [155] The publication discusses the 

transformation development for transforming the Java code (coded with a 

model) to a state chart model. 
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The author has reported on the results of the work in a number of scientific 

conferences: 

¶ ñGraphical Template Language for Transformation Synthesisò 

International conference SLE (Software Language Engineering), 2009; 

Denver, USA 

¶ ñFrom Requirements to Code in a Model Driven Wayò MDA (Model-

Driven Architecture: Foundations, Practices and Implications) workshop 

of ADBIS (Advances in Databases and Information Systems), 2009; Riga, 

Latvia 

¶ ñDSL Tool Development with Transformations and Static Mappingsò 

Doctoral Symposium of MODELS (International Conference on Model-

Driven Engineering Languages and Systems), 2008; Toulouse, France 

¶ ñDomǛn-specifiskas attǛlojumu valodasò 69
th
 Scientific Conference of the 

University of Latvia, Information Technology Section, 2011; Riga, Latvia. 

¶ ñValoda Template MOLA un tǕs realizǕcijaò 68
th
 Scientific Conference of 

the University of Latvia, Information Technology Section, 2010; Riga, 

Latvia. 

¶ ñMDA transformǕcijas ReDSeeDS projekta kontekstǕò 67
th
 Scientific 

Conference of the University of Latvia, Information Technology Section, 

2009; Riga, Latvia. 

¶ ñTransformǕciju un attǛlojumu kombinǛġanas lietojumi rǭku bȊvǛò 67
th
 

Scientific Conference of the University of Latvia, Information Technology 

Section, 2009; Riga, Latvia. 

¶ ñMOLA-2 rǭka bȊve, izmantojot METAclipse platformuò, 66
th
 Scientific 

Conference of the University of Latvia, Information Technology Section, 

2008; Riga, Latvia. 

¶ The developed MOLA tool has been demonstrated at the international 

conference ECMDA-FA Tool Demonstration Section (see [85]). 

Structure of the Thesis: 

The thesis is a logical conclusion of the previously described investigational and 

practical work, thus forming a complete research. The structure of the thesis is as follows: 
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¶ CHAPTER 1 briefly describes the main ideas of MDSD and the role of 

model transformation languages in the software development process. A 

reader is offered the basic knowledge required for understanding the 

research carried out by the author, as well as the significance of the results 

achieved. In this chapter a reader is familiarized with the concept of model 

transformation language. 

¶ CHAPTER 2 contains a detailed description of the model transformation 

language MOLA, developed in IMCS. 

¶ CHAPTER 3 discusses the role of model transformations in MDSD and 

Model-Driven Software Development related experience gained while 

working on the ReDSeeDS project. 

¶ CHAPTER 4 offers the mapping language MALA4MDSD which 

facilitates the development of this type of transformation. 

¶ CHAPTER 5 describes another practical application of model 

transformations ï the DSL tool development. The DSL tool development 

frameworks and the role of transformations in the DSL tool development 

are outlined. 

¶ CHAPTER 6 contains a description of the higher-order transformation 

language Template MOLA which should be used for transformation 

synthesis. 

¶ CHAPTER 7 describes different applications of the Template MOLA. 

Special attention is paid to the development of the mapping language 

compilers and metamodel independent transformations. 

¶ CHAPTER 8 lists the conclusions drawn while working on the thesis, 

including possible directions of future research. 
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CHAPTER 1 

Motivation - MDSD and Model Transformation Languages 

CHAPTER 1 embraces clarification of the main terms used in the thesis and 

outlines the research field and the main results in the field under discussion. Results by 

other researchers used while working on the present thesis are described. 

Section 1.1 of this chapter is devoted to the description of modelling. The terms 

model and metamodel are defined. Application of modelling in software development is 

discussed in Section 1.2. In Section 1.3 the term model transformations is defined 

alongside with related to the thesis the latest research results in the area of model 

transformations.  

1.1 Modelling 

This section is devoted to the definition of the terms model and metamodel, 

starting with defining what model is. 

1.1.1 What is a Model? 

Let us look at this issue in a little broader context, not only as a part of the 

software development process. Models are used in many areas of our everyday life. Maps 

are a great example of it. Compared to the original, maps are simplified representations. 

They contain the necessary information, but skip unimportant details. For example, in 

metro schemes the lines between stations are drawn as straight lines; however, it is not 

always true in the reality. A real Paris metro map is shown in Fig. 1. The reader may 

compare this map with the Paris metro scheme used in maps and tourist guides. An 

example of a metro scheme is given in Fig. 2. The real metro trajectories do not matter for 

metro passengers as they can leave the metro only in stations. The things that do matter 

are locations of metro stations and where it is possible to change from one metro line to 

another. Metro schemes are drawn keeping in mind what is important and skipping 

unimportant details. 

Models are used in other areas as well and they are widely used in physics. 

Models are built for physical systems to be used extensively for predicting behaviour of a 
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physical system. Results obtained using models are compared to experimental results. If 

the experimental results differ from the results obtained using a model it means that the 

model is false. Consequently, the model of physical systems is either modified or 

extended. 

 

Fig. 1. Real distance map of the Paris metro [27] 

Irrespective of the wide use of models in different areas of our life there is no 

common understanding what a model is. 

ĂNobody can just define what a model is, and expect that other people will accept 

this definition; endless discussions have proven that there is no consistent common 

understanding of models.ò Jochen Ludewig [103] 

Though common understanding of a model is lacking, many definitions of it are 

available and some of them are listed in Table 1. In the authorôs opinion a model is 

simplification of a system which could be used instead of the original for some purpose. 
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As a result, it is possible to use model, which is simpler, safer, and also cheaper, instead 

of something else that is more complicated, dangerous or more expensive. This is exactly 

the case of metro schemes. For metro passengers the real metro trajectory and distance 

does not matter as the stations are the only exit points for them. 

 

Fig. 2. Paris metro schema [196] 

Table 1. Model definitions 

Author Definition  

Oxford Dictionaries 1. a three-dimensional representation of a person or thing or 

of a proposed structure, typically on a smaller scale than 

the original; 

o (in sculpture) a figure or object made in clay or 

wax, to be reproduced in another more durable 

material; 

2. a thing used as an example to follow or imitate; 

o a person or thing regarded as an excellent example 
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Author Definition  

of a specified quality; 

o an actual person or place on which a specified 

fictional character or location is based; 

o (the Model) the plan for the reorganization of the 

Parliamentary army, passed by the House of 

Commons in 1644-5. 

3. a simplified description, especially a mathematical one, of 

a system or process, to assist calculations and predictions; 

4. a person employed to display clothes by wearing them; 

o a person employed to pose for an artist, 

photographer, or sculptor; 

5. a particular design or version of a product; 

o a garment or a copy of a garment by a well-known 

designer. [131] 

Jeff Rothenberg ñModeling in its broadest sense is the cost-effective use of 

something in place of something else for some purpose. It 

allows us to use something that is simpler, safer, or cheaper 

than reality instead of reality for some purpose. A model 

represents reality for the given purpose; the model is an 

abstraction of reality in the sense that it cannot represent all 

aspects of reality.ò [143] 

 

Marvin L. Minsky ñTo an observer B, an object A* is a model of an object A to 

the extent that B can use A* to answer questions that interest 

him about A.ò [112] 

 

Jean B®zivin ñA model is a simplification of a system built with an 

intended goal in mind. The model should be able to answer 

questions in place of the actual system.ò [18] 

 

Alan W. Brown ñModels provide abstractions of a physical system that allow 

engineers to reason about that system by ignoring extraneous 

details while focusing on the relevant ones.ò [24] 

 

Liliana Favre ñA model is a simplified view of a (part of) system and its  
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Author Definition  

environments.ò [40] 

Michael Jackson ñHere the word óModelô means a part of the Machineôs local 

storage or database that it keeps in a more or less 

synchronised correspondence with a part of the Problem 

Domain. The Model can then act as a surrogate for the 

Problem Domain, providing information to the Machine that 

can not be conveniently obtained from the Problem Domain 

itself when it is needed.ò [61] 

 

Thomas K¿hne ñA model is an abstraction of a (real or language based) 

system allowing predictions or inferences to be made.ò [89] 

 

Jochen Ludewig ñModels help in developing artefacts by providing 

information about the consequences of building those 

artefacts before they are actually made.ò [103] 

 

OMG ñA model of a system is a description or specification of that 

system and its environment for some certain purpose.ò [111] 

 

Ed Seidewitz ñA model is a set of statements about some system under 

study (SUS).ò [147] 

 

Bran Selic ñEngineering models aim to reduce risk by helping us better 

understand both a complex problem and its potential 

solutions before undertaking the expense and effort of a full 

implementationò [148] 

 

Wilhelm Steinm¿ller ñA model is information: on something (content, meaning), 

created by someone (sender), for somebody (receiver), for 

some purpose (usage context).ò [160] 

 

Thomas Stahl,  

Markus Vºlter 

ñA model is an abstract representation of a systemôs 

structure, function or behaviour.ò [159] 

 

In software development models are used to describe a system to be built. Models 

allow analyzing a system before it is really built and looking at the system in different 

abstraction levels. Systems are very complex. It is not possible to represent all aspects of 

a system in one diagram. Different models may contain information about different 

aspects of a system to be built. For example, UML sequence diagrams describe behaviour 
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of a system. UML use case diagrams describe usage scenarios of a system. UML class 

diagrams contain information about the structure of a system.  

On the other hand the information level about a system in diagrams may have a 

different degree of elaboration. For example, class diagrams may be used to describe the 

conceptual model of a system as well as the class hierarchy of a system. 

Models may be used only as documentation or as an essential part of software 

development. In MDSD (see Section 1.2) formal models are used. Stahl and Vºlter 

describe a model in MDSD: 

ñModels are abstract and formal at the same time. Abstractness does not stand for 

vagueness here, but for compactness and a reduction to the essence. MDSD models have 

the exact meaning of program code in the sense that the bulk of the final implementation, 

not just class and method skeletons, can be generated from them. In this case, models are 

no longer only documentation, but parts of the software, constituting a decisive factor in 

increasing both the speed and quality of software development.ò [159] 

This type of models is going to be discussed in the present PhD thesis. These 

models are developed by using modelling languages which may be graphical or textual. 

The focus will be on graphical and formal modelling languages as they are more popular. 

1.1.2 Meta-modelling 

It is necessary to model modelling languages. A model of a modelling language is 

called metamodel. Traditionally a metamodel describes the syntax of a modelling 

language. OMG defines a metamodel similarly: ñA metamodel is a model used to model 

modeling itself.ò [125] ñThe typical role of a metamodel is to define the semantics for 

how model elements in a model get instantiated.ò [127] 

Stahl and Vºlter define a metamodel more precisely: ñMetamodels are models 

that make statements about modelling. More precisely, a metamodel describes the 

possible structure of models ï in an abstract way, it defines constructs of a modelling 

language and their relationships, as well as constraints and modelling rules ï but not  the 

concrete syntax of the languageò [159]  

The most popular meta-modelling language is MOF. ñThe MOF 2 Model is used 

to model itself as well as other models and other metamodels (such as UML 2 and CWM 

2 etc.). A metamodel is also used to model arbitrary metadata (for example software 

configuration or requirements metadata).ò [125] 
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ñA model that is instantiated from a metamodel can in turn be used as a 

metamodel of another model in a recursive manner.ò [127] It is possible to go further this 

way and introduce a metametamodel ï a model of metamodelling language. It is possible 

to introduce even more meta-levels. However, in practice we donôt need to introduce 

more meta-levels. A scheme of meta-levels is shown in Fig. 3. 

 

Fig. 3. Example of OMG MOF meta-level hierarchy [130] 

Layer M3: ñThe meta-metamodeling layer forms the foundation of the 

metamodeling hierarchy. The primary responsibility of this layer is to define the language 

for specifying a metamodel.ò ñMOF is an example of a meta-metamodel.ò [127] 

Layer M2: ñA metamodel is an instance of a meta-metamodel, meaning that every 

element of the metamodel is an instance of an element in the meta-metamodel. The 

primary responsibility of the metamodel layer is to define a language for specifying 

models.ò ñUML and the OMG Common Warehouse Metamodel (CWM) are examples of 

metamodels.ò [127] 

Layer M1: ñA model is an instance of a metamodel. The primary responsibility of 

the model layer is to define languages that describe semantic domains, i.e., to allow users 

to model a wide variety of different problem domains, such as software, business 



 

 

34 

processes, and requirements. The things that are being modeled reside outside the 

metamodel hierarchy.ò ñA user model is an instance of the UML metamodel.ò [127] 

ñThe metamodel hierarchy bottoms out at M0, which contains the run-time 

instances of model elements defined in a model. The snapshots that are modeled at M1 

are constrained versions of the M0 run-time instances.ò [127] 

OMG MOF 1.4 standard explains meta-levels as follows: ñthe MOF meta-

metamodel is the language used to define the UML metamodel, the UML metamodel is 

the language used to define UML models, and a UML model is a language that defines 

aspects of a computer system.ò [118] 

The most popular meta-modelling standard (language) is MOF (Meta-Object 

Facility), developed by the international standards organisation OMG. Currently the 

actual MOF version is 2.4.1 [129]. Of course, MOF is not the only meta-modelling 

language, there are others, for example, KM3 [62] and EMF Ecore [166].  

1.2 Model-Driven Software Development 

Today software becomes more and more complicated. Software development and 

management has become more challenging, especially if it refers to large-scale systems 

which are developed and used by hundreds, even thousands of people. In order to ease the 

development of software, particular models are used to describe different aspects of the 

system to be developed. [130] 

Different terms are used to refer to the use of models in software development. 

This section outlines different approaches to the use of models in software development 

and the role of models in each approach to the software development process. The most 

popular approaches in model use are described below. 

1.2.1 MD*  

Several terms are used regarding model use in software development. The most 

popular terms are listed in Table 2, starting from the narrowest to the broadest 

formulation. Term relationship is given in Fig. 4. 

Table 2. Terms for MD* 

Term Definition  

MDA ï Model Driven ñMDA is the OMGôs particular vision of MDD and  
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Architecture thus relies on the use of OMG standards. Therefore, 

MDA can be regarded as a subset of MDD.ò [113] 

MDSD ï Model Driven 

Software Development 

ñModel-Driven Software Development is a software 

development approach that aims at developing 

software from domain-specific models.ò [190] 

The same as MDD. 

 

MDD ï Model Driven 

Development 

ñMDD is a development paradigm that uses models as 

the primary artefact of the development process. 

Usually, in MDD, the implementation is 

(semi)automatically generated from the models.ò [113] 

ñModel-driven development is a style of software 

development where the primary software artifacts are 

models from which code and other artifacts are 

generated.ò [161] 

The same as MDSD. 

 

MDE ï Model Driven 

Engineering 

ñSoftware Engineering paradigm where models play a 

key role in all engineering activities (forward 

engineering, reverse engineering, software 

evolution,é)ò [113] 

 

MD* - Model Driven 

Everything 

ñI use MD* as a common moniker for MDD, MDSD, 

MDE, MDA, MIC, LOP and all the other abbreviations 

for basically the same approach.ò [189] 

 

 

Fig. 4. Relationship between MD* terms 
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MDA was the first term applied regarding the use of models in software 

development. It was launched by OMG (Object Management Group) in 2000. In MDA a 

chain of three consecutive models is used. More information on MDA is given in Section 

1.2.2. Today MDA is considered an obsolete term. The usage of exactly three consecutive 

models seems too restrictive. 

The terms MDD or MDSD, carrying approximately the same meaning, are used as 

well. The usage of one or another depends on the taste of the author.  

Another term is MDE which has a wider application than MDD and MDSD. See 

Fig. 5 for the way Jean Bezivin presents the relationship between MDD and MDE. MDE 

could be applied to any usage of models, including even those we are not yet familiar 

with. 

 

Fig. 5. MDE versus MDD [17] 

1.2.2 Model Driven Architecture 

Model Driven Architecture (MDA) was launched by OMG in 2000. It was the 

first attempt to formalize the use of models in software development. The first version of 

MDA manual [117] was published in 2000 by OMG. The updated version of the MDA 

guide was published in 2003 [111]. 
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ñThe Model-Driven Architecture starts with the well-known and long established 

idea of separating the specification of the operation of a system from the details of the 

way that system uses the capabilities of its platform. 

MDA provides an approach for, and enables tools to be provided for: 

¶ specifying a system independently of the platform that supports it, 

¶ specifying platforms, 

¶ choosing a particular platform for the system, and 

¶ transforming the system specification into one for a particular platform. 

The three primary goals of MDA are portability, interoperability and reusability 

through architectural separation of concerns.ò [111]  

The MDA guide proposed to use three consecutive models. Each of them 

described a system on a different level of details, starting from a more abstract definition 

and gradually elaborating the details. The following three models where offered: 

¶ CIM  - ñA computation independent model is a view of a system from the 

computation independent viewpoint. A CIM does not show details of the 

structure of systems. A CIM is sometimes called a domain model and a 

vocabulary that is familiar to the practitioners of the domain in question is 

used in its specification.ò [111] This model does not contain information 

about the system implementation. ñThe CIM helps to bridge the gap 

between the experts about the domain and the software engineer.ò [40] 

This model could be treated as requirements for a system to be built. ñA 

CIM could consist of UML models and other models of requirements.ò 

[40] However there is no common understanding what and how should be 

modelled in CIM.  

¶ PIM  - ñA platform independent model is a view of a system from the 

platform viewpoint. A PIM exhibits a specified degree of platform 

independence suitable for use with a number of different platforms of 

similar type.ò [111] This model describes the architecture and high-level 

behaviour of a system to be built. However this description could be 

adapted for different implementation frameworks.  

¶ PSM - ñA platform specific model is a view of a system from the platform 

specific viewpoint. A PSM combines the specifications in the PIM with the 
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details that specify how that system uses a particular type of platform.ò 

[111] This model is an extension of PIM, adding specific details for the 

implementation platform. 

Computation Independent Model was proposed for starting software development 

and continued with Platform Independent Model. Today most of industrial approaches 

propose to start with PIM as there is no common understanding of CIM. Some authors 

even have a disparaging attitude towards CIM; some propose to treat CIM as 

requirements [101]. In case of using CIM some suggest it to be automatically transformed 

to PIM. However, as it is not possible to obtain automatically all the necessary 

information in Platform Independent Model, it was proposed that this model should be 

extended manually. It is easy to see that it is not possible to automatically obtain system 

architecture from requirements.  

Already the MDA guide proposed transition from PIM to PSM to be done by 

using automatic transformation. A model is not an executable system. Therefore one more 

transition step from Platform Specific Model to a code is necessary. MDA application 

scheme is shown in Fig. 6. 

 

Fig. 6. MDA application schema with one execution environment 

One of the goals for MDA introduction was to support reusability and application 

development for different frameworks as there are cases when it is necessary to create the 

same application for different frameworks. Applications for mobile phones may serve as 

an example. Different phone developers support different application execution 

environments. This is one of the reasons why Platform Independent Model is separated 

from Platform Specific Model. When using the same Platform Independent Model it is 
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possible to develop application for different frameworks. MDA application scheme with 

the support of multiple execution environments is given in Fig. 7. 

It should be noted that MDA allows using only the UML language for a model 

description.  

 

Fig. 7. MDA application schema with multiple execution environments 

As already stated above the MDA guide proposed to implement transition from 

PIM to PSM by using automatic model transformation. In the context of MDA the term 

model transformation was introduced. ñModel transformation is the process of converting 

one model to another model of the same system.ò [111] The term model transformation is 

described in detail in Section 1.3. 

1.2.3 Model Driven Software Development 

MDA process is too restrictive. This is a reason why it has not been widely 

accepted in industry. Nowadays MDA is treated as obsolete term. However, the good 

ideas behind MDA as models and model transformations are employed in Model-Driven 

Software Development.  

Compared to MDA in MDSD it is possible to use any chain of models. In MDA 

there was the restriction that the UML language should be used to define models. In 

MDSD there is no such restriction.  

One specific type of MDSD is Domain-Specific Modelling (DSM). In DSM only 

one model is used. Code is generated directly from this model which is defined in 

specialised Domain-Specific Modelling Language. Domain-Specific Modelling is 

described in detail in Section 1.2.4. 
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1.2.4 Domain-Specific Modelling Languages 

Another specific case of MDSD have become exceedingly popular - the 

specialized modelling languages. It is a common practice to create and use specialized 

modelling languages for a domain area and they are called Domain-Specific Modelling 

Languages (DSML). They are developed for users specialized in a concrete area, e.g. a 

language for automotive software development (AUTOSAR [10]), mobile telephone 

software development [88], and many others.  

Domain-Specific Modelling Languages (DSML) is a subset of a more general set 

of languages, namely, Domain-Specific Languages (DSL). When using Domain-Specific 

Languages users can operate with familiar terms. The use of a DSL increases the 

efficiency of software development in the field. DSLs are applied in many areas of 

software development. A popular DSL, for example, is SQL ï a specialised language for 

working with databases. 

Software development using DSML is called Domain-Specific Modelling (DSM). 

Commonly, when applying this approach, only one model developed in DSML is used. 

This model is directly transformed into an executable code. However, approaches exist of 

using chains of domain-specific models when each model covers different aspects of a 

system. Relation between DSM and other software development approaches is shown in 

Fig. 8.  

 

Fig. 8. Relation between MD* and DSL approaches 

There can be graphical or textual Domain-Specific Modelling Languages. 

However, DSMLs are more often graphical. (Nevertheless it is not true for DSLs in 

general.) Only graphical Domain-Specific Modelling Languages will be considered here.  
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A visual Domain-Specific Modelling Language basically consists of two parts ï 

the domain part and the presentation (visual) part. Sometimes they are called also the 

abstract and concrete syntax respectively. The domain part of the language is defined by 

means of the domain metamodel, where the relevant language concepts and their 

relationships are formalized. The domain metamodel is also used for a precise definition 

of language semantics. Standard MOF [120] or similar notations are used for the 

definition of domain metamodel.  

As regards the presentation part (concrete syntax) definition there is no 

universally accepted notation. The same meta-modelling techniques are used, but with 

various semantics. Most frequently, instances of classes in the presentation type 

metamodel are types of diagram elements to be used in the diagram. A concrete set of 

graphical element types for a diagram definition is called the presentation type model (a 

typical example is the graphical definition model in GMF [172]).  

Tool development for graphical Domain-Specific Languages is time consuming 

and expensive. Due to the growing popularity of Domain-Specific Modelling Languages 

various graphical tool building frameworks have been developed to improve the tool 

(editor) building process. Two different approaches are used in these environments. The 

first option is to use a mapping-based approach. During the tool design this mapping 

assigns a fixed presentation type model element (a node type, edge type or label type) to a 

domain metamodel element, by means of which the latter must be visualized. This 

solution is quite appropriate for simple cases, where no complicated mapping logic is 

required. In this case tools for simple DSMLs can be developed even during a 

presentation session. However, frequently DSML support requires much more 

complicated and flexible mapping logic. One of the reasons is the lack of fixed 

correspondence between the domain metamodel and presentation types. In this case the 

second approach is used: to define the correspondence by model transformation 

languages. Transformations define the synchronisation between the domain and 

presentation models and the tool behaviour in general. 

Mapping based frameworks are MetaEdit+  [109], GMF framework [172], 

Microsoft DSL Tools [28], Generic Modeling Tool [26] and some other. A pure 

transformation based framework is METAclipse framework [86]. The other 

transformation based frameworks Tiger GMF project [37], ViatraDSM framework [133] 

and GrTP [15] provide also some elements of the mapping based approach.  
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There exist mapping based and transformation based tools, but usually some parts 

of the same DSL are suitable for mappings and some for transformations. It means none 

of the solutions is optimal. The absence of a good combined solution creates the problem 

which is discussed in detail in CHAPTER 5. 

1.3 Model Transformations 

This Section focuses on defining the term model transformation; sketching a brief 

introduction into the history of model transformations; listing the popular model 

transformation languages and discussion of the need of model transformations as DSLs 

for specific transformation domains. For introduction a definition of transformation is 

offered: 

Transformations can easily be understood when thinking about what happens in 

nature: an ugly caterpillar is transformed into a beautiful butterfly (Fig. 9); tadpoles into 

frogs; leaves change their colours in autumn. These transformations occur always in the 

same way. It means that the occurrence and the way of transformation is predefined 

somewhere in nature, most probably in DNA. 

 

Fig. 9. Transformation in the nature [30] 

ñA transformation is the automatic generation of a target model from a source 

model, according to a transformation definition.ò [90] 

ñA transformation definition is a set of transformation rules that together describe 

how a model in the source language can be transformed into a model in the target 

language. A transformation rule is a description of how one or more constructs in the 

source language can be transformed into one or more constructs in the target language.ò 

[90] 

Although this definition could be applied to caterpillars and butterflies in terms of 

this thesis we will be concerned with transformation of data or, more precisely, 

transformation of models. Model transformation execution scheme is given in Fig. 10. 

This scheme directly corresponds to the definition of transformation. The source model is 
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transformed into a target model according to a transformation definition. It should be 

added that model transformations are defined in terms of source and target metamodels. It 

means that the same transformation could be used for all source models confirming to the 

source metamodel. As transformation works in terms of metamodels all target models 

will confirm to the target metamodel. Of course, it is possible that source and target 

models coincide; such transformations are called in-place transformations. 

 

Fig. 10. Execution scheme of model transformations 

Model transformation languages are used for writing down a model 

transformation definition. The most popular model transformation languages are listed in 

the following sub-Section. 

1.3.1 Model Transformation Languages 

As already mentioned above the term model transformation for the first time was 

introduced in the MDA Guide [117]. At that point there were no appropriate means for 

writing down model transformations. Of course, general purpose programming languages 

could be used, however, they did not have appropriate means to support working with 

models. Therefore OMG requested to submit proposals on model transformation language 

QVT (Queries/ Views/ Transformations) [119]. The development of QVT standard was 

very slow and the first version of QVT standard was published only in April, 2008 [122]. 

Currently the actual version is QVT 1.1. [128]. 

As a result of the slow QVT development many independent model 

transformation languages were developed, for example, MOLA [76, 59], Lx [13], GReAT 

[7], UMLX [197, 179], ATL [63, 165], Tefkat [98, 35], MTF [56], ATOM
3 

[96, 107], 

VMTS [99, 25], BOTL [105, 58], Fujaba [42, 45], RubyTL [32, 185]. 
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In CHAPTER 2 the model transformation language MOLA is discussed in detail 

as it is used in model transformation applications described in the present PhD thesis. 

There already existed many graph transformation languages before OMGs RFP. 

The first graph transformation language PROGRESS was developed as early as the 

beginning of the 1990s [145]. Influenced by OMGs RFP many graph transformation 

languages were adapted for the development of model transformations, for example, AGG 

[163], PROGRES [144], TGG [146, 46], VIATRA [31, 180]. In fact, there is no big 

difference between typed-attributed graphs and models. At present distinguishing 

between a model and a graph transformation language is sometimes quite difficult.  

Model transformation language alone is not sufficient for developing model 

transformation as tool support for the language is required as well. Tool support for 

independent model transformation languages was mainly developed by research groups 

closely associated with the authors of the language. As a result tool support for many 

languages is mainly experimental and is devoid of industrial qualities. The first language 

with good enough tool support was ATL. Most probably this is the reason why ATL is 

the most popular model transformation language. 

The situation with tool support of the QVT standard is even worse. There is no 

tool supporting the QVT language completely. There are some tools supporting parts of 

MOF QVT. MOF-QVT Operational is supported by SmartQVT tool [150]. Eclipse M2M 

project partially implements QVT Operational and QVT Declarative (Core, Relational) 

[175]. MOF-QVT Relational is partially supported by MediniQVT [57]. UML modelling 

tool MagicDraw [115] uses QVT Operational plug-in implemented by Eclipse M2M 

project [175]. 

The limited tool support of QVT and understanding that for different domains 

different transformation languages are needed are the reasons for developing new 

transformation languages even now, among them being Epsilon [92, 169], Henshin [9, 

173], GreTL [55], lQuery [100], UML-RSDS [95], Edapt [168]. 

Examination of application areas of model transformations reveals that for each 

different domain a different language is more appropriate. Actually many transformation 

languages are developed, keeping a certain domain in mind. For example, MOLA was 

developed for transformation development in the MDA process. Viatra specializes in 

transformation development for simulators. lQuery is suitable to develop transformations 

for the DSL tool development. Epsilon actually is a transformation language family 
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where each language is suitable for a definite set of tasks. There are domain-specific 

transformation languages applicable in certain domains. One well studied domain is 

model transformation for model migration.  

1.3.2 Mapping L anguages 

When highly abstracting in the consideration of model transformations, we can 

treat them as mapping that is done from the source to the target. That is the way 

transformations were treated in the MDA guide [111]. However, transformations can be 

subject to complicated execution conditions. It is hard to represent these conditions as 

mappings. Therefore mappings can be used only in simple and declarative parts of 

transformations. Hence mappings can be used as a transformation language for simple 

cases.  

ñA mapping is specified using some language to describe a transformation of one 

model to another. The description may be in natural language, an algorithm in an action 

language, or in a model mapping language.ò [111] 

Attempts to create universal mapping languages as a certain alternative to 

traditional transformation languages have been started sufficiently early. The term 

mappings are used already in the MDA guide [111].  

List of mapping languages is given in the Section 4.1.2. 

1.3.3 Higher-Order Transformations  

MDD can be naturally applied also to transformation development. It means that 

transformations are used to create transformations. This special kind of transformations is 

named Higher-Order Transformations (HOT). These are transformations modifying/ 

reading/creating model transformations. In the HOT approach transformations must be 

treated as models conforming to the relevant metamodel.  

Though the HOT idea can be applied to any transformation language, the largest 

amount of HOTs has been created for the ATL language [63]. A comprehensive survey of 

HOT applications is given in [183] where the four main types of HOTs have been 

identified. One of the HOT application types is transformation synthesis. Transformation 

synthesis means transformation generation from various sources of information, including 

model mappings. Such a mapping between two models can be considered as a high level 

specification of the required model transformation. A large set of such mappings has been 
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obtained by applying the ATLAS Model Weaver (AMW) [39]. The idea of obtaining a 

transformation from a mapping can be applied to many other transformation languages, 

for example MOLA. In CHAPTER 6 a special language for transformation synthesis 

Template MOLA is proposed. It is the first language [69] built specially for the 

development of higher-order transformations. Afterwards a special extension of ATL for 

transformation synthesis was developed as well. [182]. However ATL is textual, while 

MOLA and Template MOLA are graphical languages. 

One of the popular research directions related to the HOTs approach is the 

development of metamodel independent transformations. In most of the model 

transformation languages a transformation is attached to the metamodel it is defined for. 

This makes transformation reuse almost impossible. An approach for solving this problem 

is proposed by [33] and [139]. It should be noted that Template MOLA could be used to 

develop metamodel independent libraries for MOLA. See Section 7.4 for details. 
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CHAPTER 2 

MOLA Language 

As the model transformation language MOLA was used to develop 

transformations described in the thesis an overview of the MOLA language is given in 

this chapter. More about the MOLA language can be found in [76], [75] and [77]. A 

formal description of MOLA as well as the MOLA tool, can be downloaded at [59]. 

2.1 MOLA Overview  

MOLA is a graphical transformation language developed at the University of 

Latvia. It is based on traditional concepts of transformation languages: pattern matching 

and rules defining how the matched pattern elements should be transformed.  

A MOLA program transforms an instance of a source metamodel into an instance 

of a target metamodel. The two metamodels are specified using the EMOF [120] 

compliant metamodelling language (MOLA MOF). These metamodels, which may also 

coincide, both are parts of a transformation program in MOLA. Mapping associations 

may be added to link the corresponding classes in the source and target metamodels. 

MOLA is a model transformation language which combines the imperative 

(procedural) programming style with declarative means of pattern specification. A 

transformation written in MOLA consists of several MOLA procedures, one of them 

being the main. An example of a MOLA procedure is given in Fig. 11 (p.54). The 

execution of a MOLA program starts with the main procedure. Procedures in MOLA may 

be called from the body of another procedure by using call statements. Like in most 

transformation languages, class instances, primitive and enumeration-typed variables can 

be passed on to the called procedures as parameters. There are other types of statements 

in MOLA as well, i.e. rule, foreach loop, text statement, etc. The execution of a MOLA 

procedure starts with the start symbol. The next statement to be executed is determined by 

the outgoing control flow.  

The rule in MOLA represents the classical branching (if-then-else) construct of 

imperative programming. The rule contains a declarative pattern that specifies instances 
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of which classes must be selected and how they must be linked. Only the first valid 

pattern match is considered. The action part of a rule specifies which matched instances 

must be changed and what new instances must be created. The instances to be included in 

the search or to be created are specified using class elements in the MOLA rule. The 

traditional UML instance notation (instance_name:class_name) is used to identify a 

particular class element and specify the class the instance must belong to. Class elements 

included in a pattern may have attribute constraints ï simple OCL-like expressions. 

Expressions are also used to assign values to variables and attributes of class instances. 

Additionally, the rule contains association links between class elements. A class element 

may represent an instance, matched previously by another pattern. Such class element is 

called a reference class element and is specified using the name of the referenced class 

element, prefixed with the symbolñ@ò. 

Typical transformation algorithms require iteration through a set of the instances, 

satisfying the given constraints. In order to accomplish this task, MOLA provides the 

foreach loop statement. The loophead is a special kind of the rule used to specify a set of 

instances to be iterated in the foreach loop. The pattern of the loophead is given by using 

the same pattern mechanism as for an ordinary rule, but with an additional important 

construct. It is the loop variable ï the class element that determines the execution of the 

loop. The foreach loop is executed for each distinct instance that corresponds to the loop 

variable and satisfies the constraints of the pattern. In fact, the loop variable plays the 

same role as an iterator in classical programming languages. 

2.2 MOLA Elements 

Table 3 presents a list of MOLA elements. The application context and semantics 

of each element is described. 

Table 3. List of MOLA elements 

Image Element Description  

 

Start 

symbol 

Execution of a MOLA procedure starts with a 

start symbol. 

Execution of a MOLA transformation starts 
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Image Element Description  

from the start symbol of the main procedure. 

 

End 

symbol 

Execution of a MOLA procedure ends with an 

end symbol. When the end symbol is reached in 

the main procedure execution of transformation 

is completed. In other procedures control is 

returned to the procedure calling this procedure. 

 

 

Input 

parameter 

MOLA procedures may have parameters, 

defined by name and type (@<name>:<type>). 

The name should be unique in the procedure 

(different from class element names). The type 

is a reference to a class defined in MOLA MOF 

or a primitive type. Parameters are ordered. The 

order is represented by numbers. 

Values of input parameters are passed to the 

procedure; if the value is changed it is not 

passed back. 

 

 

In/out 

parameter 

The same as the input parameter: the only 

difference is that the value of parameter is 

passed back to the calling procedure. 

 

 

Variable It is possible to define variables in MOLA 

procedures. For variables the name and the type 

is defined (@<name>:<type>). Variables are 

used in the same way as parameters. 

 

 

Rule MOLA rule consists of a pattern to be matched 

and an action part. Both are defined by means of 

class elements and association links. 

The pattern in the rule is matched only once. 

If a rule without a valid match is to be executed 

and it has no ELSE-exit, then the current 

procedure is terminated (if this occurs outside a 

loop) or the next iteration of the loop is started 
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Image Element Description  

(within a loop body). 

 

Loop MOLA loop contains a loophead (the first rule) 

and a loop body (0 or more loop elements whose 

execution order is defined by control flows).  

The loophead is a rule which contains a loop 

variable. The loophead and the loop body are 

executed for each distinct match of loop 

variable. 

 

 

Class 

element 

A class element is a metamodel class, prefixed 

by the element (role) name. 

A class element may also contain a constraint ï 

a Boolean expression in a simplified subset of 

OCL.  

Assignments in class elements may be used to 

set the attribute values of the instances. 

When a pattern in a rule is matched for each 

class element, an instance satisfying constraints 

is found and attached to a class element 

(constraints are defined in a class element and 

by a pattern, e.g., connections with other class 

elements). 

 

 

Class 

element, 

reference 

References are marked with the symbol ñ@ò. 

The previously matched instances, as well as the 

parameters and the variables, may be used as 

references. In this case, an instance already 

attached to a referenced element is used in a 

pattern matching.  

 

 

Class 

element 

with NOT 

constraint 

Equivalent to NAC (negative application 

condition) in graph transformation languages, 

e.g., AGG [163].  

A pattern is matched if there are no instances in 
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Image Element Description  

(NOT- 

element) 

the model corresponding to the NOT-element. 

NOT-elements are typically connected to other 

class elements by using association links. Such a 

pattern matches if there is no instance 

corresponding to the NOT-element which 

fulfills conditions defined to NOT-element and 

has all specified links to the instances of 

ñnormal partò. 

 

Class 

element, 

creation 

It is possible to create instances in the rules. 

Creation is marked with a red dashed line. 

Assignments may be used to set the attribute 

values of the newly created instances. 

 

 

Class 

element, 

deletion 

It is possible to delete instances in the rules. 

Such class elements may be references or they 

are matched before deletion. Deletion of a class 

element causes automatic deletion of the related 

links. 

 

 

Loop 

variable 

Loop variable is an iterator of foreach loop. A 

foreach loop iterates through all possible 

instances of the loop variable class that satisfies 

the constraint imposed by the pattern in the 

loophead. 

There is only one loop variable in a loop. 

 

 

Association 

link 

An association link, connecting two class 

elements, corresponds to an association linking 

the respective classes in the metamodel. Class 

elements at the ends of links are matched to the 

instances connected with a link of this type. 
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Image Element Description  

 

Association 

link, 

creation 

It is possible to create instances of association 

links. An end of a create-link may be attached to 

a class element included in the pattern or to the 

class element, creation. 

 

 

Association 

link, 

deletion 

It is possible to delete instances of association 

links. An end of a delete-link may be attached to 

a class element included in the pattern (also the 

class element, deletion). Association links are 

deleted before the class element deletion.  

 

 

Text 

statement 

Text statements consist of a constraint and 

assignments. It is possible to assign values to 

parameters, variables and class element 

references. Assignments are skipped if the 

constraint fails. Mainly text statements are used 

to process primitive-typed elements. A text 

statement containing a constraint (a Boolean 

expression) may also have an ELSE-exit and 

serve as an if-then-else construct.  

 

 

Call 

statement 

Call statements are used to invoke sub-

procedures. Parameters are passed to the 

invoked procedures. If the parameter is of the 

type in/out to pass the value to this parameter a 

referencable element (variable, parameter, class 

element reference) should be used. 

 

 

External 

call 

statement 

Besides MOLA procedures, external (coded in 

an OOPL) procedures can also be invoked; this 

feature is used for low-level data processing 

(e.g., model data import). Parameters may be 

passed to external procedures. 

 

 

Control 

flow 

Control flow arrows determine the execution 

order of MOLA statements. The element that 
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Image Element Description  

follows the use of the control flow is executed 

as the next one. (If the execution of the previous 

element ï rule, text statement ï had succeeded.) 

 

Alternative 

control 

flow 

Certainly, there may be a situation when no 

match exists ï then the rule is not executed at 

all. To distinguish this situation, the rule may 

have a special ELSE-exit (alternative control 

flow), which is traversed in this situation. 

Alternative control flow may be added also to 

text statements. This control flow is used if the 

constraint in the text statement fails. 

 

2.3 MOLA Example  

In order to illustrate the basic MOLA concepts, briefly listed in the previous 

section, a simple MOLA transformation example is provided in Fig. 11. This example is 

taken from transformations developed in the ReDSeeDS project (see CHAPTER 3). UML 

( + ReDSeeDS specific traceability framework) is used as a source and target metamodel 

of the transformation.  

This procedure copies the interface and all operations it contains to the provided 

package in the target model. ReDSeeDS specific traceability information is created 

between the original interface and its copy. 

This MOLA procedure has four parameters. Three of them are input parameters 

and one in/out parameter. The first parameter (@int) is the interface to be copied. The 

second parameter (@pt) is a package for the copy of the interface to be placed. The third 

parameter (@sa) is ReDSeeDS specific. It is a logical model (Software Artifact) 

processed. All traceability links between the elements are attached to this logical model. 

The fourth (in/out) parameter (@i) is used to return the reference to the newly created 

copy of the interface. 

Execution of the MOLA procedure starts with a start symbol, followed by the 

execution of the rule (using control flow). As already stated previously, the MOLA rule 

may consist of a declarative pattern and an action description. In this case the pattern is 
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trivial as all class elements with black solid borders are references. Nothing is matched; 

the values attached to the references are used directly. Therefore execution of the rule 

starts directly with the execution of actions defined in the rule. This rule creates a new 

instance of an interface (newint) and the latter is set the same name as the name of the 

interface to be copied (name=@int.name). To assign values in MOLA simple OCL like 

expressions are used. (For details see MOLA reference manual [6].) In the same rule 

ReDSeeDS specific traceability information is created (id:isDependentOn) for which the 

original interface is set as a source and the copy of the interface - as a target. The 

traceability information is attached to ReDSeeDS logical model (@sa). This rule uses 

references to the provided parameters (@int, @sa, @pt) and creates appropriate instances 

(newint, id) and association links. 

 

Fig. 11. MOLA example 

The rule is followed by a foreach loop which iterates through all operations of the 

interface to be copied. The operation is used as a loop variable (o). It is checked that the 
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operation is connected to the interface using the association link ownedOperation ï 

interface. Only the operations satisfying this condition are processed. 

For each such operation procedure ñpim_CopyOperationò is called (using the call 

statement). This procedure contains four parameters as well. The first is the operation to 

be copied (o). The second is simply an empty string and it is not important in this context. 

The third is again ReDSeeDS logical model, used to attach the traceability between the 

original and the copy in the same way as in this procedure. The fourth is a reference to the 

variable (@newo) defined in this procedure. This actually is in/out parameter and is used 

to return the newly created copy of operation. 

After the call statement the MOLA rule is executed. The copy of operation 

(@newo) returned by the call statement is attached to the copy of the interface (@newi). 

Association link (ownedOperation ï interface) is created. 

The loop and actions in it are executed while there are operations satisfying 

constraints in the loophead. After execution of the loop completes the text statement is 

executed. This text statement assigns a value to in/out parameter. The value of the 

parameter is set to the created copy of the interface. As a result, when reaching the end 

symbol, the parameter will return the reference to the newly created copy of the interface. 

Reaching of an end symbol is the last element of the MOLA procedure and it 

completes its execution. Control is returned to the calling procedure. The value of in/out 

parameter is also returned. 

To get a more detailed understanding about the usage of different MOLA 

elements see the next section. 

2.4 Hello World with MOLA  

This section is dedicated to describing a solution for the Hello World case [106] of 

the TTC 2011 [5] contest, implemented in the MOLA model transformation language: 

ñSaying Hello World with MOLA - A Solution to the TTC 2011 Instructive Caseò [74]. 

This use case demonstrates the application of MOLA constructs for solving typical 

transformation tasks. This section provides a more detailed understanding about the usage 

of different MOLA elements in transformation development. If a reader is familiar with 

the MOLA language he/she can skip this section. 
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The Hello World case consists of several very simple tasks. It confirms the 

assertion that simple tasks can be solved in a straightforward and easy readable way in 

MOLA. In most cases the basic part of the task is performed by one rule (or loophead).  

2.4.1 Greeting Tasks 

The first group of tasks is ''Greeting'' transformations. The first task is to ñprovide 

a constant transformation that creates the example instance of the ñHello World" 

metamodel given in Fig. 12.ò [106] The next task is based on ñslightly extended 

metamodel given in Fig. 13.ò [106] It is required to ñprovide a constant transformation 

that creates the model with references also shown in Fig. 13.ò [106] The last task in this 

group is to ñprovide a model-to-text transformation that outputs the GreetingMessage of 

a Greeting together with the name of the Person to be greeted. For instance, the model 

given in Fig. 13 should be transformed into the String "Hello TTC Participants!" [106] 

 

Fig. 12. The ñHello World" metamodel and the example instance [106] 

 

Fig. 13. The extended ñHello World" metamodel and the example instance [106] 

In these transformations the MOLA pattern used is very similar to the 

corresponding instance diagram given in the task specification. Greeting transformations 

are given in Fig. 14, Fig. 15 and Fig. 16. The transformation logic for these tasks is 

described by using one MOLA rule (the grey rounded rectangle). The only requirement in 

the first two tasks is to create elements (marked with red dashed lines). In the third task an 

instance of the class ''StringResult'' is created, if the pattern (the elements with black solid 

lines) is matched with the MOLA rule. 
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Fig. 14. Transformation creating a constant Greeting instance 

 

Fig. 15. Transformation creating a constant Greeting instance with references 

 

Fig. 16. Model-to-text transformation creating a greeting message 

2.4.2 Instance Counting 

The next group of tasks in the task specification is the instance counting tasks. 

The input models are simple graphs conforming to the metamodel given in Fig. 17 [106]. 

The task specification is as follows 

¶ ñProvide a model query that counts the number of nodes in a graph. 

¶ Provide a model query that counts the number of looping edges in a graph, i.e. edges 

where the source and the target node coincide. 

¶ Provide a model query that counts the number of isolated nodes in a graph, i.e. nodes 

that are neither the source nor the target of any edge. 

¶ Provide a model query that counts the number of matches of a circle consisting of 

three nodes, i.e. the pattern shown in Fig. 18 where n1, n2 and n3 are pairwise 

distinct. Note that each circle in the model should be matched three times. 

¶ Optional: Provide a model query that counts the number of dangling edges in a 

graph, i.e. edges where either the source or the target node is missing.ò [106] 

Transformation counting nodes in a graph is given in Fig. 19. Transformation 

counting looping edges is given in Fig. 20. Transformation counting isolated nodes is 
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given in Fig. 21. In MOLA the counting is implemented by using an integer counter and a 

foreach loop (a rectangle with a bold border) where the counter is increased. In most 

cases the loophead pattern directly specifies the set of instances to be counted. 

 

Fig. 17. The simple graph metamodel [106] 

 

Fig. 18. Circle of three nodes (simplified representation of edge objects) [106] 

A MOLA variable ñskò (a white rectangle) of type integer is used as a counter. 

Each loop iteration increases the instance count by one. Text statements (yellow rounded 

rectangles) are used to modify the values of the counter. Finally, to save the counting 

result in the resulting model the MOLA rule creating an instance of the class ''IntResult'' 

is used. 

For all these tasks it was required to count elements in a graph. As it was not 

defined whether the model contains only one graph or multiple graphs, we admitted the 

worst case of many graphs in the model. For transformations to work properly when there 

is more than one graph in a model we provide the graph to be processed as a parameter. 

Consequently, we use another MOLA procedure where we iterate through all graphs in a 
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model (using a foreach loop) and from here we call the transformation (using the call 

statement) for processing the current graph. An example of such transformation is given 

on the left side of Fig. 19. (The only thing that changes is the called procedure.) A similar 

graph processing is done for all tasks where the phrase ''in a graph'' is used. If there is 

always only one graph in a model this step could be omitted. The same could be said 

about transformations in Fig. 25- Fig. 32 as well. 

      

Fig. 19. Transformation counting nodes in a graph 

 

Fig. 20. Transformation counting looping edges in a graph 
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Fig. 21. Transformation counting isolated nodes in a graph 

The only counting task, processed differently, is the circle counting. In MOLA 

there are two loop types: the foreach loop and the while loop (rule + appropriate control 

flow). In the while loop, to ensure only distinct matches, an explicit marking of the 

already found matches (using a NAC construct) is required, claiming the usage of 

temporary metamodel elements to solve the task. An alternative is to use three nested 

foreach loops, since multiple loop variables are not supported in MOLA. We provide 

solutions using both loop types as each has some advantages and disadvantages. 

We start with the solution using the foreach loop, as this loop type was used in the 

previous tasks. The solution of this task is different from the previous one because we 

want to find all different circles. In this case one loop variable is not sufficient and, 

consequently, several loops are required. 

The task specification did not clearly state whether graphs or multi-graphs should 

be considered (i.e., is it possible to have multiple edges between two nodes.) As the 

provided metamodel supports multi-graphs and graphs are a subclass of multi-graphs, we 

decided to build our solution, providing support to multi-graphs. This being the case, if 

there is a circle ''n1;n2;n3'' and two edges between ''n1'' and ''n2'', then there will be two 

circles ''n1;n2;n3'' (and 2*''n2;n3;n1'' + 2*''n3;n1;n2''). The solution of this task is given 

in Fig. 22. To distinguish different edges between the same nodes, the edges are used as 

loop variables. There are three nested loops used in the solution. Each loop selects one 

edge for the circle. Actually, finding of circles is defined in the loophead of the first loop, 
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however, when using this loop we are only able to find all edges which are a part of some 

circle, but we do not have information in how many circles this edge is used. Adding the 

second and the third loop we count all circles that have different edges three times, as 

required in the task specification. 

 

Fig. 22. Transformation counting circles consisting of three nodes 

If we know that there are no multi-graphs, then the last loop can be omitted 

because the existence of the third edge is already validated by the patterns in the first and 

the second loop. However, understanding of this case is probably easier if nodes are used 

as loop variables, but anyway three loops are needed again.  
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Solving of the task by using the foreach loop is quite lengthy; however, if we add 

temporary classes it is possible to create a shorter and more elegant solution. In this case 

we will use the while loop. We extend the metamodel by adding the temporary class 

''Circle'' and connecting it to the class ''Edge''. The metamodel extension is shown at the 

bottom of Fig. 23. If such extended metamodel is used then we can simply write a MOLA 

rule looking for circles and marking the found circles: connecting all edges of a circle to a 

new instance of the ''Circle'' class. To ensure that each circle is found exactly once a NOT 

constraint (an equivalent to NAC in graph transformation languages, e.g., in AGG [163]) 

is used, stating that this circle has not been marked previously. As in this solution we do 

not care about the order of edge finding, the loop counter is increased by 3, to ensure that 

each circle has been counted three times. The above mentioned solution is presented in 

Fig. 23. 

 

 

Fig. 23. Transformation counting circles consisting of three nodes, using 

temporary metamodel elements 

Next was an optional task to count the dangling edges. The solution is given in 

Fig. 24. In this case two loops are used. The first one counts the edges without a source. 
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To ensure that the edges without a source and without a target are counted only once the 

second loop counts only the edges with a source and without a target. 

 

Fig. 24. Solution of optional task: counting of dangling edges 

2.4.3 Reversion 

The next task to be considered is edge reversing. It was required to ñprovide a 

transformation that reverses all edges in a graph conforming to the simple graph 

metamodel given in Fig. 17 (p.58). This is an update operation.ò [106] 

We selected a solution where a new reverted edge is created and the old edge is 

deleted (delete is marked by using a black dashed line). The solution is displayed in Fig. 

25. Actually, a shorter solution in MOLA is possible; however, it is not supported by the 

current version of the MOLA tool. 
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Fig. 25. Transformation inversing edges 

2.4.4 Model Migration  

The next group of tasks was model migration tasks. The first task was to ñprovide 

a transformation that migrates a graph conforming to the metamodel given in Fig. 17 

(p.58) to a graph conforming to the metamodel given in Fig. 26. The name of a node 

becomes its text. The text of a migrated edge has to be set to the empty string.ò [106]  

The second optional task was to ñprovide a topology-changing migration that 

transforms graphs of the metamodel given in Fig. 17 (p.58) to graphs as defined by the 

metamodel in Fig. 27.ò [106] 

 

Fig. 26. The evolved graph metamodel [106] 

 

Fig. 27. The even more evolved graph metamodel [106] 

Implementation of such tasks requires adding of temporary traceability relations to 

the metamodel. In this case it is sufficient to have an association between nodes in both 

metamodels (see Fig. 28). The migration transformation from the metamodel graph1 to 

the metamodel graph2 is given in Fig. 29 and from the metamodel graph1 to the 

metamodel graph3 in Fig. 30. At first a new graph in the target model is created in both 
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cases. After that all nodes are cloned and traceability links added. (To ensure it a foreach 

loop iterating through all nodes in the source graph is used.) Finally, all edges are 

transformed by using the traceability information to find the appropriate source and target 

nodes in the migrated model. (To ensure it a foreach loop iterating through all edges in 

the source graph is used.) 

      

Fig. 28. Metamodel extensions for model migration tasks 

 

Fig. 29. Model migration transformation. Migrates graph from encoding graph1 

(Fig. 17) to encoding graph2 (Fig. 26). 
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Fig. 30. Solution of optional model migration task. Migrates graph from encoding 

graph1 (Fig. 17) to encoding graph3 (Fig. 27). 

2.4.5 Deletion Tasks  

Deletion tasks constitute the last group of tasks. The task definition was as 

follows: 

ñGiven a simple graph conforming to the metamodel of Fig. 17 (p.58), provide a 

transformation that deletes the node with name ñn1ò. If a node with name ñn1ò does not 

exist, nothing needs to be changed. It can be assumed that there is at most one occurrence 

of a node with name ñn1ò. 

Optional: Provide a transformation that removes the node ñn1ò (as above), but 

also all its incident edges.ò [106] 

The last mandatory transformation is deletion of the node named ''n1''. This 

transformation is very straightforward (see Fig. 31). We try to find such a node by using a 

MOLA pattern and delete it, in case of finding it. Deletion is represented by a black 

dashed line. It was required to delete all incident edges in the extension as well. The 

solution of extension is given in Fig. 32. In this case the sequence of deletions is as 
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follows ï at first the node is found, all outgoing edges deleted, followed by deletion of all 

incoming edges and finally the node itself is deleted. 

 

Fig. 31. Transformation that deletes the node named ''n1'' (if such a node exists) in 

a graph 

 

Fig. 32. Transformation that deletes the node named ''n1'' (if such a node exists) 

and its incident edges in a graph 

2.4.6 MOLA Tool Support  

This section describes the technical details regarding the solution of the task. 

MOLA has an Eclipse-based graphical development environment (MOLA tool 

[59]), incorporating all the required development support. A transformation in MOLA is 

compiled via the low-level transformation language L3 [13] into an executable Java code 
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which can be run against a runtime repository containing the source model. For this case 

study Eclipse EMF is used as such a runtime repository, but some other repositories can 

be used as well (e.g., JGraLab [64], mii_rep [11]).  

The MOLA tool has a facility for importing existing metamodels, in particular, in 

EMF (Ecore) format. Though the MOLA metamodelling language (MOLA MOF) is very 

close to EMOF, and consequently Ecore, there are some issues to be solved. The current 

version of MOLA requires all metamodel associations to be navigable both ways (this 

permits to perform an efficient pattern matching by using simple matching algorithms). 

Since a typical Ecore metamodel has many associations navigable one way, the import 

facility has to extend the metamodel. Another issue is the variable coding of references to 

primitive data types. 

Metamodel import facilities in MOLA are able to perform all these adjustments 

automatically. In such a way the provided metamodels were imported into the MOLA 

tool. Transformation development of some tasks in MOLA requires additional metamodel 

elements, for example, in migration tasks to store relations between the source and target 

models. These metamodel elements have to be added manually. In migration tasks, these 

are the associations between the node classes in different graph encodings. 

Since the metamodels have been modified during import, the original source 

model does not conform directly to the metamodel in the repository mainly due to the 

added association navigability. Therefore a source model import facility is required. The 

MOLA execution environment (MOLA runner) includes a generic model import facility, 

which automatically adjusts the imported model to the modified metamodel. Now the 

transformation can be run on the model. Similarly, a generic export facility automatically 

strips all elements of the transformed model which do not correspond to the original 

target metamodel.  Thus, a transformation result is obtained which directly conforms to 

the target metamodel. (For an inplace transformation the source and target metamodels 

coincide, as a result nothing has to be stripped.) The transformation user is not aware of 

these generic import and export facilities, he/she directly sees the selected source model 

transformed. 

An executable version of the solution is available online, using the SHARE [186] 

system. A SHARE image of the solution is provided in [4]. By using the SHARE image a 

reader can access an executable version of this case study. All transformation sources are 

available in the transformation definition environment. It is also possible to compile and 
















































































































































































































































































































































































