
University of Latvia

ELĪNA KALNIŅA

MODEL TRANSFORMATION DEVELOPMENT USING MOLA

MAPPINGS AND TEMPLATE MOLA

Thesis for the PhD Degree

at the University of Latvia

Field: Computer Science

Section: Programming Languages and Systems

Scientific Advisor:

Prof., Dr. Habil. Sc. Comp.

AUDRIS KALNINS

Riga – 2011

3

This work has been supported by the European Social Fund within the project

«Support for Doctoral Studies at University of Latvia».

Scientific Advisor:

Professor, Dr. Sc. Comp. Audris Kalniņš

Latvijas Universitāte

Referees:

Professor, Dr. Sc. Comp. Guntis Bārzdiņš

University of Latvia

Professor, Dr. Sc. Ing. Oksana Ņikiforova

Riga Technical University

Professor, Dr. Olegas Vasilecas

Vilnius Gediminas Technical University (Vilnius, Lithuania)

The defence of the thesis will take place in an open session of the Council of Promotion

in Computer Science of the University of Latvia, in the Institute of Mathematics and

Computer Science of the University of Latvia (Room 413, Raina Boulevard 29, Riga,

Latvia) on March 7, 2012 at 4 PM.

The thesis and its summary are available at the library of the University of Latvia

(Kalpaka Boulevard 4, Riga, Latvia).

4

5

ABSTRACT

Model transformation development for three specific domains: Model-Driven

Software Development (MDSD), DSL tool development and transformation synthesis has

been studied in the thesis. It is concluded that transformation development in domain-

specific transformation languages is more straightforward and faster compared to

traditional transformation languages. A domain-specific model transformation language

has been developed for each studied domain. Two of them are based on mappings. In

both cases it was concluded that mappings better fit for typical tasks and transformations

better fit for non-standard tasks. Therefore a close integration between mappings and

transformations is required.

The research results have been published in 15 papers (6 of them have been

included in SCOPUS).

Keywords

Model transformations, Domain-Specific Languages (DSL), Model-Driven

Software Development (MDSD), DSL tool development, Higher-Order Transformations

(HOT)

6

7

CONTENTS

LIST OF FIGURES .. 11

LIST OF TABLES .. 15

ACKNOWLEDGEMENT .. 17

INTRODUCTION ... 19

CHAPTER 1 MOTIVATION - MDSD AND MODEL TRANSFORMATION

LANGUAGES ... 27

1.1 Modelling .. 27

1.1.1 What is a Model? ... 27

1.1.2 Meta-modelling ... 32

1.2 Model-Driven Software Development .. 34

1.2.1 MD* .. 34

1.2.2 Model Driven Architecture ... 36

1.2.3 Model Driven Software Development .. 39

1.2.4 Domain-Specific Modelling Languages .. 40

1.3 Model Transformations ... 42

1.3.1 Model Transformation Languages .. 43

1.3.2 Mapping Languages .. 45

1.3.3 Higher-Order Transformations .. 45

CHAPTER 2 MOLA LANGUAGE .. 47

2.1 MOLA Overview .. 47

2.2 MOLA Elements ... 48

2.3 MOLA Example .. 53

2.4 Hello World with MOLA .. 55

2.4.1 Greeting Tasks ... 56

2.4.2 Instance Counting .. 57

2.4.3 Reversion ... 63

2.4.4 Model Migration ... 64

2.4.5 Deletion Tasks ... 66

2.4.6 MOLA Tool Support ... 67

2.5 MOLA Metamodel .. 69

CHAPTER 3 TRANSFORMATIONS FOR MODEL-DRIVEN DEVELOPMENT

IN REDSEEDS .. 73

3.1 ReDSeeDS Overview .. 73

3.2 Requirements Specification in ReDSeeDS ... 75

3.2.1 Requirements Specification Language in ReDSeeDS 75

3.2.2 Example of Requirements ... 77

3.3 Model-Driven Development in the ReDSeeDS Project .. 78

3.3.1 Design Patterns and the Architecture Style ... 79

3.3.2 The RSL Profile .. 81

8

3.4 ReDSeeDS Basic Style .. 81

3.4.1 The Platform-Independent Model ... 82

3.4.2 The Platform-Specific Model .. 85

3.5 The Keyword-Based Style .. 85

3.5.1 Models ... 86

3.5.2 Selected Design Patterns for the Keyword-Based Style 88

3.5.3 RSL Profile for the Keyword-Based Style .. 89

3.5.4 The Structure of the Analysis Model .. 91

3.5.5 Transformation of Requirements to Analysis ... 92

3.5.6 The Platform-Independent Model ... 93

3.5.7 Transformation of Requirements and Analysis to PIM 95

3.5.8 The Platform-Specific Model .. 98

3.5.9 The Java Code ... 99

3.6 Implementation .. 103

3.6.1 Model-to-Model Transformations Implementation 103

3.6.2 Model-to-Model Transformations in the Keyword-Based Style................. 105

3.6.3 Model-to-Code Transformation Implementation .. 111

3.6.4 Integration with the Enterprise Architect .. 112

3.7 Conclusions ... 113

CHAPTER 4 MAPPING LANGUAGES.. 115

4.1 Mapping Idea ... 115

4.1.1 Transformation Languages and Mapping Languages 116

4.1.2 General Purpose Mapping Languages... 118

4.2 Domain-Specific Mapping Languages .. 120

4.2.1 Domain-Specific Model Transformations ... 120

4.2.2 Domain-Specific Mapping Languages .. 121

4.3 MALA4MDSD – Mapping Language for MDSD .. 121

4.3.1 MALA4MDSD Motivation ... 122

4.3.2 Basics of MALA4MDSD .. 124

4.3.3 MALA4MDSD Elements .. 125

4.3.4 MALA4MDSD UML Tree Type .. 132

4.3.5 More Advanced Mapping Elements .. 136

4.3.6 Mapping Language Semantics .. 140

4.3.7 Mapping and Transformation Comparison ... 144

4.3.8 Related Work... 147

4.4 Domain-Specific Mapping Language Definition .. 148

4.4.1 MALA4MDSD Definition Issues ... 148

4.4.2 Mapping Languages Definition Facilities ... 149

4.4.3 Metamodel of Mapping Language Family .. 152

4.5 Other Applications of the Proposed Approach ... 154

4.5.1 UML to RDB ... 154

4.5.2 UML to XMI ... 155

4.5.3 Other Examples ... 156

4.6 Implementation .. 157

4.7 Conclusions ... 158

CHAPTER 5 TRANSFORMATIONS FOR DSML TOOL DEVELOPMENT 161

5.1 State of the Art in DSML Tool Development ... 161

9

5.1.1 Terminology Explanation .. 161

5.1.2 Mapping-Based Approach ... 163

5.1.3 Model Transformation Based Approach ... 164

5.1.4 Combined Approach ... 165

5.2 METAclipse .. 167

5.2.1 MOLA Tool ... 167

5.3 Mappings for METAclipse .. 169

5.3.1 The Framework from the User Point of View ... 170

5.3.2 Mapping Definition ... 170

5.3.3 Mapping and Transformation Integration ... 173

5.3.4 Mapping Definition Language User Interface .. 174

5.4 Conclusions ... 176

CHAPTER 6 TEMPLATE MOLA ... 179

6.1 Main Elements ... 180

6.1.1 Template Rule ... 181

6.1.2 Template Loop .. 182

6.1.3 Call Statement and Parameters .. 183

6.1.4 Template Expressions ... 184

6.1.5 Template Elements .. 184

6.2 Template MOLA Compared to MOLA as a HOT .. 187

6.3 Template MOLA Example .. 188

6.4 Metamodelling Issues .. 191

6.4.1 Use of Metamodels Defining Higher-Order Transformations in MOLA ... 192

6.4.2 Metamodels in Template MOLA .. 193

6.4.3 Roles of Different Metamodels in DSML Tool Development 194

6.4.4 Use of Metamodel Elements in Template MOLA Transformations 196

6.5 Elements of Dual Nature in Template MOLA .. 196

6.5.1 MOLA Procedure .. 197

6.5.2 Call Statement and Parameters .. 198

6.5.3 Control Flow ... 198

6.5.4 End Symbol ... 200

6.6 Graphical Template Languages Versus Textual ... 201

6.7 Merge Mechanisms ... 203

6.7.1 Merge Example ... 204

6.7.2 Rule Merge .. 206

6.7.3 Merge Semantics ... 208

6.8 Implementation .. 209

6.9 Conclusions ... 210

CHAPTER 7 TEMPLATE MOLA APPLICATIONS .. 213

7.1 Mapping Language Compilation Using HOTs ... 213

7.2 Implementation of Mapping Languages for MDSD ... 214

7.2.1 Editor of the Mapping Language Family .. 214

7.2.2 Mapping Language Family Compilation Schema 214

7.2.3 Mapping Compilation ... 216

7.2.4 Source Tree Pattern Compilation to MOLA ... 217

7.2.5 Implementation of “Create if Does not Exist” .. 221

7.2.6 Finding of Parent Instance in the Target Tree ... 221

10

7.2.7 Element Creation ... 222

7.2.8 Evaluation.. 223

7.3 Implementation of Mapping Language for DSL Tool Building 224

7.4 Transformation Libraries ... 227

7.4.1 Transformations for Generic Metamodels .. 227

7.4.2 Transformation Design Patterns .. 233

7.5 Conclusions ... 234

CHAPTER 8 CONCLUSIONS .. 235

BIBLIOGRAPHY ... 237

APPENDIX A LIST OF ACRONYMS ... 251

11

LIST OF FIGURES

Fig. 1. Real distance map of the Paris metro [27] .. 28

Fig. 2. Paris metro schema [196] ... 29

Fig. 3. Example of OMG MOF meta-level hierarchy [130] .. 33

Fig. 4. Relationship between MD* terms .. 35

Fig. 5. MDE versus MDD [17] .. 36

Fig. 6. MDA application schema with one execution environment 38

Fig. 7. MDA application schema with multiple execution environments 39

Fig. 8. Relation between MD* and DSL approaches ... 40

Fig. 9. Transformation in the nature [30] ... 42

Fig. 10. Execution scheme of model transformations .. 43

Fig. 11. MOLA example .. 54

Fig. 12. The “Hello World" metamodel and the example instance [106] 56

Fig. 13. The extended “Hello World" metamodel and the example instance [106] 56

Fig. 14. Transformation creating a constant Greeting instance ... 57

Fig. 15. Transformation creating a constant Greeting instance with references................ 57

Fig. 16. Model-to-text transformation creating a greeting message 57

Fig. 17. The simple graph metamodel [106] .. 58

Fig. 18. Circle of three nodes (simplified representation of edge objects) [106] 58

Fig. 19. Transformation counting nodes in a graph ... 59

Fig. 20. Transformation counting looping edges in a graph .. 59

Fig. 21. Transformation counting isolated nodes in a graph .. 60

Fig. 22. Transformation counting circles consisting of three nodes 61

Fig. 23. Transformation counting circles consisting of three nodes, using temporary

metamodel elements ... 62

Fig. 24. Solution of optional task: counting of dangling edges ... 63

Fig. 25. Transformation inversing edges ... 64

Fig. 26. The evolved graph metamodel [106] .. 64

Fig. 27. The even more evolved graph metamodel [106] .. 64

Fig. 28. Metamodel extensions for model migration tasks .. 65

Fig. 29. Model migration transformation. Migrates graph from encoding graph1 (Fig. 17)

to encoding graph2 (Fig. 26). .. 65

Fig. 30. Solution of optional model migration task. Migrates graph from encoding graph1

(Fig. 17) to encoding graph3 (Fig. 27). ... 66

12

Fig. 31. Transformation that deletes the node named ''n1'' (if such a node exists) in a

graph .. 67

Fig. 32. Transformation that deletes the node named ''n1'' (if such a node exists) and its

incident edges in a graph.. 67

Fig. 33. The metamodel of the MOLA meta-modelling language [130] 70

Fig. 34. The metamodel of the MOLA procedure elements [130] 71

Fig. 35. RSL example .. 78

Fig. 36. Requirements – two scenarios in a textual form... 78

Fig. 37. Model chain in the ReDSeeDS Basic Style .. 82

Fig. 38. Static structure processing example ... 83

Fig. 39. Behaviour example ... 84

Fig. 40. Model chain used in ReDSeeDS Keyword-Based Style 86

Fig. 41. Requirements – scenarios of the use case in a graphical form 90

Fig. 42. Fragment of the generated Domain Model ... 92

Fig. 43. An example of informal mapping describing transformations to Detailed Design

.. 97

Fig. 44. An example of a sequence diagram for the ReservationsService class 102

Fig. 45. Transformation example ... 104

Fig. 46. Creation of a message for a “System-System” sentence without an indirect object

.. 108

Fig. 47. The procedure of finding a lifeline in a sequence diagram, depending on the

object used in the verb phrase .. 109

Fig. 48. MOF QVT Relational example .. 118

Fig. 49. Schematic roles of the mapping language family users 123

Fig. 50. MALA4MDSD example. UML model “PIM” is transformed to UML model

“PSM”. Package “Service” in model “PIM” is transformed to package “service” in

“PSM” model. Classes from source model package “Service” are copied to target package

“service”. .. 125

Fig. 51. MALA4MDSD UML tree type definition.. 134

Fig. 52. Alternative tree type definition ... 135

Fig. 53. Mapping example from the ReDSeeDS project. Transformation in

MALA4MDSD, demonstrating the edge processing and hierarchy flattening 138

Fig. 54. Mapping example from the ReDSeeDS project. Transformation in

MALA4MDSD is demonstrated. MOLA transformation for the highlighted part of the

same task is presented in Fig. 55. .. 145

Fig. 55. Transformation example from the ReDSeeDS project. The same transformation

fragment in MALA4MDSD is coloured in Fig. 54.. 146

Fig. 56. Mapping language definition; fragment of the MALA4MDSD definition 151

13

Fig. 57. Type definition for the mapping language family .. 152

Fig. 58. Core metamodel of the mapping language family .. 153

Fig. 59. UML to RDB example ... 155

Fig. 60. Terminology definition ... 162

Fig. 61. MOLA editor implementation in METAclipse .. 168

Fig. 62. Metamodel fragment, describing that the design pattern field is based directly on

property .. 171

Fig. 63. Mapping and presentation type metamodel subset, describing the property dialogs

 .. 172

Fig. 64. Class dialog example, general and attribute tab ... 173

Fig. 65. Metamodel fragment describing mapping and transformation integration 174

Fig. 66. Wizard diagram example for a domain class mapped to Node 175

Fig. 67. An example of a template rule and the MOLA rule generated from it 182

Fig. 68. An example of a template loop ... 183

Fig. 69. Creation of the rule from Fig. 67, using MOLA as a HOT 188

Fig. 70. Template MOLA example: Generator for copying UML class model instances to

OWL instances ... 189

Fig. 71. The result of transformation from Fig. 70 .. 190

Fig. 72. A metamodel fragment used in a class model to the OWL transformation in Fig.

70 .. 190

Fig. 73. Models to be used if higher-order transformations are written in MOLA 192

Fig. 74. Models to be used if the domain metamodel is analysed and higher-order

transformations are written in MOLA ... 192

Fig. 75. Metamodels and models used for defining transformations in Template MOLA

 .. 194

Fig. 76. Models used in case MOLA is used as a HOT for tool building 195

Fig. 77. Metamodels and models used to define transformations in Template MOLA for

tool building ... 196

Fig. 78. The left side demonstrates the procedure for copying the property values of a

class instance. On the right side there is an example of the generated transformation. ... 204

Fig. 79. The left side demonstrates the procedure for copying the property values of a

class instance with a merge. On the right side there is an example of the generated

transformation. ... 205

Fig. 80. Creation of a star shaped rule by using merge mechanisms 206

Fig. 81. Creation of a chain shaped rule by using merge mechanisms 207

Fig. 82. Merge of loops and rules obtaining different control structures 207

Fig. 83. Compilation of mapping language family .. 215

14

Fig. 84. Template MOLA procedure processing the current mapping 218

Fig. 85. Procedure AddParentsToLoophead recursively creates the loophead rule 220

Fig. 86. Template MOLA procedure implementing the element creation 222

Fig. 87. A simplified domain (upper left side), mapping (upper right side) and

presentation (lower part) metamodel ... 225

Fig. 88. Mapping implementation for tool building in Template MOLA 226

Fig. 89. A MOLA procedure generated for Fig. 88 ... 227

Fig. 90. An example where the traditional MOLA and Template MOLA are combined. A

MOLA procedure calling the template procedure Clone from Fig. 91 is illustrated 229

Fig. 91. The Clone procedure .. 229

Fig. 92. The copyProperties procedure.. 230

Fig. 93. A metamodel example describing information processed by a company. The class

IndividualCustomer is used to describe the generated code in Fig. 94 and Fig. 95......... 231

Fig. 94. MOLA procedure generated from the template procedure Clone 231

Fig. 95. MOLA procedure generated from the template procedure copyProperties 232

15

LIST OF TABLES

Table 1. Model definitions ... 29

Table 2. Terms for MD* .. 34

Table 3. List of MOLA elements ... 48

Table 4. MOLA procedure count in different transformations. Classified as to

processing static structure, behaviour or independent operations. 114

Table 5. List of MALA4MDSD elements ... 125

Table 6. Comparison of transformations from PIM to PSM, developed using the model

transformation language MOLA and the mapping language MALA4MDSD 144

Table 7. Template MOLA elements .. 185

16

17

ACKNOWLEDGEMENT

This work has been partially supported by the European Social Fund within the

project «Support for Doctoral Studies at University of Latvia».

The author of the thesis would like to thank:

 supervisor prof. Audris Kalnins;

 current and former members of MOLA team: Edgars Celms, Agris

Sostaks, Janis Iraids, Oskars Vilitis;

 ReDSeeDS project partners;

 colleagues in LUMII Research Laboratory of System Modeling and

Software Technologies;

 prof. Rusins Martins Freivalds;

 Maija Treilona;

 Lāsma Začesta;

 Valdis Kalniņš;

 Lolita Nahodkina;

 Maiga Reinharde;

 family;

 all others who have helped me in any way.

18

19

INTRODUCTION

The present PhD thesis has been worked on from 2007 to 2011 in the Institute of

Mathematics and Computer Science (UL IMCS), and the Faculty of Computing

established as an independent unit on the basis of the Faculty of Physics and

Mathematics, University of Latvia. The thesis supervisor is professor Audris Kalnins. The

thesis elaborates further the UL IMCS DSL (Domain-Specific Language) tool

development and language design traditions that started already in the year 1986.

Relevance of the Thesis:

Lately Model-Driven Software Development (MDSD) is gaining popularity. The

idea of elaborating all software development steps on models defined in specialised

modelling languages lies at the basis of the approach. Models, defined at higher

abstraction levels, are ever more detailed in each step of Model-Driven Software

Development. Model transformations are used to automate transitions from one model to

another. Use of model transformations allows using models as a direct part of the

software development process instead of using them only as documentation.

The origin of MDSD was the Model-Driven Architecture (MDA) [111] initiative

by Object Management Group (OMG). The first document about the MDA was published

in 2000 [116]. In 2002 OMG concluded that model transformation languages are required

[119], to easily describe the required model transformations. Most of the modelling

languages are defined by using the means of metamodelling; therefore model

transformations were built to transform the models defined according to metamodels.

Metamodels were defined by using the metamodelling standard MOF (Meta Object

Facilities) [120].

OMG activities led to the creation of a new model transformation standard MOF-

QVT (MOF Queries/Views/Transformations) [128]. Moreover, many new model

transformation languages were developed, e.g., ATL [63], GReAT [7], GrGen [48],

Epsilon [92] and the model transformation language MOLA [76] that was developed in

UL IMCS. This was also a new application area for graph transformation languages, e.g.,

PROGRES [144], AGG [163], VIATRA [31] and also Fujaba [43], previously used in a

narrower context. The variety of model transformation languages could be explained by

two reasons: lack of complete MOF-QVT implementation and different model

20

transformation application domains. In different software development areas there are

different requirements for a model transformation language.

Today model transformations are a serious software component in large software

development projects. Transformation development requires a considerable amount of

resources. Transformations should be projected, tested, maintained, etc. Currently the

transformation development is rather chaotic and every developer develops

transformations according to one’s own wishes. It could be explained by the poor

experience in adaption of the classic software development steps (testing, etc.) to

transformations. Consequently, studying of the transformation development is a popular

research direction.

In the same way there are attempts to adapt the classic software development

methods to the model transformation development. One of such methods is to build a

Domain-Specific Language (DSL) to be applied to the software development in a specific

class of tasks. The thesis is devoted to researching domain-specific transformation

languages. Usage of domain-specific transformation languages could improve

transformation development, the same as the use of the domain-specific languages helps

to reduce the software development time and costs. However, it should be noted that the

use of domain-specific languages is cost-effective only in case of developing multiple

similar solutions.

Aim of the Research:

The aim of the research is to investigate the ways of defining transformations for

classes of similar tasks, requiring development of many transformations of the same type.

 Explore transformation development for Model-Driven Software

Development.

 Explore the nature of the transformations for DSL tool development.

 Explore the opportunities of defining Model-Driven Software Development

and tool building transformations in specialised languages (higher

abstraction level) and using mappings.

 Explore the definition possibilities of transformation generating

transformation. Develop a higher-order transformation language which is

specialized for transformation synthesis.

21

Main Results of the Thesis:

 Developed and implemented the transformation supported path from the

requirements to the code. The research has been carried out as a part of the

ReDSeeDS project. Transformations for Model-Driven Software

Development have been analyzed. It is concluded that some of the

transformations could be defined more effectively by using a specialised

(higher abstraction level) language.

 Developed the first version of the MOLA 2 tool within the METAclipse

framework. A conclusion has been drawn that part of the transformations

are very simple and uniform and it would be more convenient to define

them in a mapping language. Likewise, it is concluded that it would be

impossible to define everything by using a mapping language; therefore,

integration between the mappings and transformations is required.

 Developed the mapping language MALA4MDSD, which is especially

adapted for transformation development in Model-Driven Software

Development.

 Outlined the mapping language for DSL tool development.

 Developed the language Template MOLA, which is a domain-specific

language for transformation synthesis.

 Analysis of three particular problem areas leads to the conclusion that the

transformation development in a domain-specific language is possible at a

higher level of abstraction. Thus, transformations can be developed faster.

If the transformation is defined by a higher level of abstraction and the use

of mapping, then less-skilled users can define the transformations as well.

Scientific and Practical Significance of the Thesis:

Model transformation development for three specific domains, namely, Model-

Driven Software Development (MDSD), Domain-Specific Language (DSL) tool

development and transformation synthesis has been studied in the thesis.

One of the areas under research in the present thesis is a specification of

transformations for Model-Driven Software Development. While working on the

ReDSeeDS project the author of the PhD thesis developed two transformation sets for

22

Model-Driven Software Development. This type of transformations typically contains a

transformation from UML to UML and for facilitating the given transformation

development, the mapping language MALA4MDSD is offered in the PhD thesis. The

language MALA4MDSD is also of practical importance, since it makes it significantly

easier to develop transformations for Model-Driven Software Development. This could

encourage a wider use of model-driven development methods in industry, as

transformations could be defined by less experienced users - those who are experts in the

transformed problem area, but do not know anything about metamodelling. In addition,

the transformation development would become faster.

The second researched area is the model transformations for DSL tool

development. It was concluded that the best way for defining a tool for graphical DSL is

by combining mappings with transformations. Using of mappings allows a less skilled

user to configure tools as well; the tool development would become significantly faster.

However, using mappings makes it impossible to provide convenient instruments for all

possible cases of non-standard treatment; therefore there is a need for a way of processing

non-standard cases in a transformation language. Many of the existing DSL tool

development platforms offer processing the non-standard cases in a programming

language, but a transformation language for this task would be more appropriate, because

the data are model-driven, and transformation languages are adapted for processing this

type of data.

The third problem area brought an observation that a domain-specific language is

more convenient for defining transformations. However, here is chosen a different type of

language that does not use mappings. This is a specific area which describes

transformation synthesis. The task is very specific, and the existing means are very

inadequate and are difficult to use, therefore the domain-specific language has been

created. The language Template MOLA is a higher-order transformation language,

specifically adapted to the tasks of transformation synthesis. It is the first language in the

world of such a type. Later an extension, specifically for transformation synthesis, has

been developed for the language ATL [182]. It should be noted that comparing to the

language MOLA, ATL is a textual language, therefore the synthesis of ATL is an easier

task. Nevertheless, the basic idea used in the ATL extension is the same as in the

Template MOLA - using fragments of concrete syntax.

23

The language Template MOLA helps to solve a very important issue in the model

transformation world, namely, metamodel independent transformation development.

Since almost all transformations are linked to metamodels, building of a library of

transformations and reuse of transformations is still an open problem.

The research results of the thesis suggest that model transformations is a

sufficiently vast area, making it possible to choose more limited problem areas – domain-

specific transformations - and domain-specific transformation languages have to be

created for these areas. The research focused on studying mapping languages as it is the

most user-friendly way of defining transformations. Nevertheless, the existing mapping

languages are not quite appropriate as usually they can process only very simple cases.

Therefore, the research offers a new idea for defining transformations – use of domain-

specific mapping languages instead of a universal mapping language.

Publications of the Research Results and Presentations in Scientific Conferences:

The main results of the PhD thesis are presented in 10 publications; each

containing a significant (70-80%) contribution of the author of the present thesis:

 “DSL Tool Development with Transformations and Static Mappings” [67]

The publication outlines the role of mapping in the DSL tool development.

 “DSL Tool Development with Transformations and Static Mappings” [68]

The publication discusses the use of the mapping language in the DSL tool

development.

 “Graphical Template Language for Transformation Synthesis” [69] The

publication describes the language Template MOLA.

 “Transformation Synthesis Language – Template MOLA” [71] The

publication describes in detail the language Template MOLA.

 “Generation Mechanisms in Graphical Template Language” [70] The

publication discusses a merge mechanism in the language Template

MOLA.

 “From Requirements to Code in a Model Driven Way” [79] The

publication outlines transformations used for the model-driven

development process realization within the ReDSeeDS project.

24

 “A Model-Driven Path from Requirements to Code” [80] The publication

describes in detail the development of transformations for Model-Driven

Software Development within the ReDSeeDS project.

 “Model Migration with MOLA” [72] The publication describes a

transformation design in the language MOLA for transforming UML 1.X

activity diagrams to UML 2.3 activity diagrams.

 “Hello World with MOLA - A Solution to the TTC 2011 Instructive Case”

[74] (accepted for publication). The publication discusses solutions of

simple transformation tasks in the language MOLA.

 “Tree Based Domain-Specific Mapping Languages” [73] (accepted for

publication). The publication describes the mapping language

MALA4MDSD and the methodology of constructing a domain-specific

mapping language.

The author of the thesis has participated in the preparation of 5 more publications

with the contribution of 5-25%.

 “Building Tools by Model Transformations in Eclipse” [86] The

publication outlines the principles of the METAclipse DSL tool

development framework and its use in the MOLA 2 tool development.

 “Behaviour Modelling Notation for Information System Design” [78] The

publication describes the experience, gained while working with the UML

sequence diagrams within the ReDSeeDS project.

 “Comprehensive System for Systematic Case-Driven Software Reuse”

[153] The publication describes a platform developed within the

ReDSeeDS project and highlights the role of transformations in this

platform.

 “Domain-driven Reuse of Software Design Models” [82] The publication

discusses software reuse facilitatation by the transformations, developed

within the ReDSeeDS project.

 “Solving the TTC 2011 Reengineering Case with MOLA and Higher-

Order Transformations” [155] The publication discusses the

transformation development for transforming the Java code (coded with a

model) to a state chart model.

25

The author has reported on the results of the work in a number of scientific

conferences:

 “Graphical Template Language for Transformation Synthesis”

International conference SLE (Software Language Engineering), 2009;

Denver, USA

 “From Requirements to Code in a Model Driven Way” MDA (Model-

Driven Architecture: Foundations, Practices and Implications) workshop

of ADBIS (Advances in Databases and Information Systems), 2009; Riga,

Latvia

 “DSL Tool Development with Transformations and Static Mappings”

Doctoral Symposium of MODELS (International Conference on Model-

Driven Engineering Languages and Systems), 2008; Toulouse, France

 “Domēn-specifiskas attēlojumu valodas” 69
th

 Scientific Conference of the

University of Latvia, Information Technology Section, 2011; Riga, Latvia.

 “Valoda Template MOLA un tās realizācija” 68
th

 Scientific Conference of

the University of Latvia, Information Technology Section, 2010; Riga,

Latvia.

 “MDA transformācijas ReDSeeDS projekta kontekstā” 67
th

 Scientific

Conference of the University of Latvia, Information Technology Section,

2009; Riga, Latvia.

 “Transformāciju un attēlojumu kombinēšanas lietojumi rīku būvē” 67
th

Scientific Conference of the University of Latvia, Information Technology

Section, 2009; Riga, Latvia.

 “MOLA-2 rīka būve, izmantojot METAclipse platformu”, 66
th

 Scientific

Conference of the University of Latvia, Information Technology Section,

2008; Riga, Latvia.

 The developed MOLA tool has been demonstrated at the international

conference ECMDA-FA Tool Demonstration Section (see [85]).

Structure of the Thesis:

The thesis is a logical conclusion of the previously described investigational and

practical work, thus forming a complete research. The structure of the thesis is as follows:

26

 CHAPTER 1 briefly describes the main ideas of MDSD and the role of

model transformation languages in the software development process. A

reader is offered the basic knowledge required for understanding the

research carried out by the author, as well as the significance of the results

achieved. In this chapter a reader is familiarized with the concept of model

transformation language.

 CHAPTER 2 contains a detailed description of the model transformation

language MOLA, developed in IMCS.

 CHAPTER 3 discusses the role of model transformations in MDSD and

Model-Driven Software Development related experience gained while

working on the ReDSeeDS project.

 CHAPTER 4 offers the mapping language MALA4MDSD which

facilitates the development of this type of transformation.

 CHAPTER 5 describes another practical application of model

transformations – the DSL tool development. The DSL tool development

frameworks and the role of transformations in the DSL tool development

are outlined.

 CHAPTER 6 contains a description of the higher-order transformation

language Template MOLA which should be used for transformation

synthesis.

 CHAPTER 7 describes different applications of the Template MOLA.

Special attention is paid to the development of the mapping language

compilers and metamodel independent transformations.

 CHAPTER 8 lists the conclusions drawn while working on the thesis,

including possible directions of future research.

27

CHAPTER 1

Motivation - MDSD and Model Transformation Languages

CHAPTER 1 embraces clarification of the main terms used in the thesis and

outlines the research field and the main results in the field under discussion. Results by

other researchers used while working on the present thesis are described.

Section 1.1 of this chapter is devoted to the description of modelling. The terms

model and metamodel are defined. Application of modelling in software development is

discussed in Section 1.2. In Section 1.3 the term model transformations is defined

alongside with related to the thesis the latest research results in the area of model

transformations.

1.1 Modelling

This section is devoted to the definition of the terms model and metamodel,

starting with defining what model is.

1.1.1 What is a Model?

Let us look at this issue in a little broader context, not only as a part of the

software development process. Models are used in many areas of our everyday life. Maps

are a great example of it. Compared to the original, maps are simplified representations.

They contain the necessary information, but skip unimportant details. For example, in

metro schemes the lines between stations are drawn as straight lines; however, it is not

always true in the reality. A real Paris metro map is shown in Fig. 1. The reader may

compare this map with the Paris metro scheme used in maps and tourist guides. An

example of a metro scheme is given in Fig. 2. The real metro trajectories do not matter for

metro passengers as they can leave the metro only in stations. The things that do matter

are locations of metro stations and where it is possible to change from one metro line to

another. Metro schemes are drawn keeping in mind what is important and skipping

unimportant details.

Models are used in other areas as well and they are widely used in physics.

Models are built for physical systems to be used extensively for predicting behaviour of a

28

physical system. Results obtained using models are compared to experimental results. If

the experimental results differ from the results obtained using a model it means that the

model is false. Consequently, the model of physical systems is either modified or

extended.

Fig. 1. Real distance map of the Paris metro [27]

Irrespective of the wide use of models in different areas of our life there is no

common understanding what a model is.

„Nobody can just define what a model is, and expect that other people will accept

this definition; endless discussions have proven that there is no consistent common

understanding of models.” Jochen Ludewig [103]

Though common understanding of a model is lacking, many definitions of it are

available and some of them are listed in Table 1. In the author’s opinion a model is

simplification of a system which could be used instead of the original for some purpose.

29

As a result, it is possible to use model, which is simpler, safer, and also cheaper, instead

of something else that is more complicated, dangerous or more expensive. This is exactly

the case of metro schemes. For metro passengers the real metro trajectory and distance

does not matter as the stations are the only exit points for them.

Fig. 2. Paris metro schema [196]

Table 1. Model definitions

Author Definition

Oxford Dictionaries 1. a three-dimensional representation of a person or thing or

of a proposed structure, typically on a smaller scale than

the original;

o (in sculpture) a figure or object made in clay or

wax, to be reproduced in another more durable

material;

2. a thing used as an example to follow or imitate;

o a person or thing regarded as an excellent example

30

Author Definition

of a specified quality;

o an actual person or place on which a specified

fictional character or location is based;

o (the Model) the plan for the reorganization of the

Parliamentary army, passed by the House of

Commons in 1644-5.

3. a simplified description, especially a mathematical one, of

a system or process, to assist calculations and predictions;

4. a person employed to display clothes by wearing them;

o a person employed to pose for an artist,

photographer, or sculptor;

5. a particular design or version of a product;

o a garment or a copy of a garment by a well-known

designer. [131]

Jeff Rothenberg “Modeling in its broadest sense is the cost-effective use of

something in place of something else for some purpose. It

allows us to use something that is simpler, safer, or cheaper

than reality instead of reality for some purpose. A model

represents reality for the given purpose; the model is an

abstraction of reality in the sense that it cannot represent all

aspects of reality.” [143]

Marvin L. Minsky “To an observer B, an object A* is a model of an object A to

the extent that B can use A* to answer questions that interest

him about A.” [112]

Jean Bézivin “A model is a simplification of a system built with an

intended goal in mind. The model should be able to answer

questions in place of the actual system.” [18]

Alan W. Brown “Models provide abstractions of a physical system that allow

engineers to reason about that system by ignoring extraneous

details while focusing on the relevant ones.” [24]

Liliana Favre “A model is a simplified view of a (part of) system and its

31

Author Definition

environments.” [40]

Michael Jackson “Here the word ‘Model’ means a part of the Machine’s local

storage or database that it keeps in a more or less

synchronised correspondence with a part of the Problem

Domain. The Model can then act as a surrogate for the

Problem Domain, providing information to the Machine that

can not be conveniently obtained from the Problem Domain

itself when it is needed.” [61]

Thomas Kühne “A model is an abstraction of a (real or language based)

system allowing predictions or inferences to be made.” [89]

Jochen Ludewig “Models help in developing artefacts by providing

information about the consequences of building those

artefacts before they are actually made.” [103]

OMG “A model of a system is a description or specification of that

system and its environment for some certain purpose.” [111]

Ed Seidewitz “A model is a set of statements about some system under

study (SUS).” [147]

Bran Selic “Engineering models aim to reduce risk by helping us better

understand both a complex problem and its potential

solutions before undertaking the expense and effort of a full

implementation” [148]

Wilhelm Steinmüller “A model is information: on something (content, meaning),

created by someone (sender), for somebody (receiver), for

some purpose (usage context).” [160]

Thomas Stahl,

Markus Völter

“A model is an abstract representation of a system’s

structure, function or behaviour.” [159]

In software development models are used to describe a system to be built. Models

allow analyzing a system before it is really built and looking at the system in different

abstraction levels. Systems are very complex. It is not possible to represent all aspects of

a system in one diagram. Different models may contain information about different

aspects of a system to be built. For example, UML sequence diagrams describe behaviour

32

of a system. UML use case diagrams describe usage scenarios of a system. UML class

diagrams contain information about the structure of a system.

On the other hand the information level about a system in diagrams may have a

different degree of elaboration. For example, class diagrams may be used to describe the

conceptual model of a system as well as the class hierarchy of a system.

Models may be used only as documentation or as an essential part of software

development. In MDSD (see Section 1.2) formal models are used. Stahl and Völter

describe a model in MDSD:

“Models are abstract and formal at the same time. Abstractness does not stand for

vagueness here, but for compactness and a reduction to the essence. MDSD models have

the exact meaning of program code in the sense that the bulk of the final implementation,

not just class and method skeletons, can be generated from them. In this case, models are

no longer only documentation, but parts of the software, constituting a decisive factor in

increasing both the speed and quality of software development.” [159]

This type of models is going to be discussed in the present PhD thesis. These

models are developed by using modelling languages which may be graphical or textual.

The focus will be on graphical and formal modelling languages as they are more popular.

1.1.2 Meta-modelling

It is necessary to model modelling languages. A model of a modelling language is

called metamodel. Traditionally a metamodel describes the syntax of a modelling

language. OMG defines a metamodel similarly: “A metamodel is a model used to model

modeling itself.” [125] “The typical role of a metamodel is to define the semantics for

how model elements in a model get instantiated.” [127]

Stahl and Völter define a metamodel more precisely: “Metamodels are models

that make statements about modelling. More precisely, a metamodel describes the

possible structure of models – in an abstract way, it defines constructs of a modelling

language and their relationships, as well as constraints and modelling rules – but not the

concrete syntax of the language” [159]

The most popular meta-modelling language is MOF. “The MOF 2 Model is used

to model itself as well as other models and other metamodels (such as UML 2 and CWM

2 etc.). A metamodel is also used to model arbitrary metadata (for example software

configuration or requirements metadata).” [125]

33

“A model that is instantiated from a metamodel can in turn be used as a

metamodel of another model in a recursive manner.” [127] It is possible to go further this

way and introduce a metametamodel – a model of metamodelling language. It is possible

to introduce even more meta-levels. However, in practice we don’t need to introduce

more meta-levels. A scheme of meta-levels is shown in Fig. 3.

Fig. 3. Example of OMG MOF meta-level hierarchy [130]

Layer M3: “The meta-metamodeling layer forms the foundation of the

metamodeling hierarchy. The primary responsibility of this layer is to define the language

for specifying a metamodel.” “MOF is an example of a meta-metamodel.” [127]

Layer M2: “A metamodel is an instance of a meta-metamodel, meaning that every

element of the metamodel is an instance of an element in the meta-metamodel. The

primary responsibility of the metamodel layer is to define a language for specifying

models.” “UML and the OMG Common Warehouse Metamodel (CWM) are examples of

metamodels.” [127]

Layer M1: “A model is an instance of a metamodel. The primary responsibility of

the model layer is to define languages that describe semantic domains, i.e., to allow users

to model a wide variety of different problem domains, such as software, business

34

processes, and requirements. The things that are being modeled reside outside the

metamodel hierarchy.” “A user model is an instance of the UML metamodel.” [127]

“The metamodel hierarchy bottoms out at M0, which contains the run-time

instances of model elements defined in a model. The snapshots that are modeled at M1

are constrained versions of the M0 run-time instances.” [127]

OMG MOF 1.4 standard explains meta-levels as follows: “the MOF meta-

metamodel is the language used to define the UML metamodel, the UML metamodel is

the language used to define UML models, and a UML model is a language that defines

aspects of a computer system.” [118]

The most popular meta-modelling standard (language) is MOF (Meta-Object

Facility), developed by the international standards organisation OMG. Currently the

actual MOF version is 2.4.1 [129]. Of course, MOF is not the only meta-modelling

language, there are others, for example, KM3 [62] and EMF Ecore [166].

1.2 Model-Driven Software Development

Today software becomes more and more complicated. Software development and

management has become more challenging, especially if it refers to large-scale systems

which are developed and used by hundreds, even thousands of people. In order to ease the

development of software, particular models are used to describe different aspects of the

system to be developed. [130]

Different terms are used to refer to the use of models in software development.

This section outlines different approaches to the use of models in software development

and the role of models in each approach to the software development process. The most

popular approaches in model use are described below.

1.2.1 MD*

Several terms are used regarding model use in software development. The most

popular terms are listed in Table 2, starting from the narrowest to the broadest

formulation. Term relationship is given in Fig. 4.

Table 2. Terms for MD*

Term Definition

MDA – Model Driven “MDA is the OMG’s particular vision of MDD and

35

Architecture thus relies on the use of OMG standards. Therefore,

MDA can be regarded as a subset of MDD.” [113]

MDSD – Model Driven

Software Development

“Model-Driven Software Development is a software

development approach that aims at developing

software from domain-specific models.” [190]

The same as MDD.

MDD – Model Driven

Development

“MDD is a development paradigm that uses models as

the primary artefact of the development process.

Usually, in MDD, the implementation is

(semi)automatically generated from the models.” [113]

“Model-driven development is a style of software

development where the primary software artifacts are

models from which code and other artifacts are

generated.” [161]

The same as MDSD.

MDE – Model Driven

Engineering

“Software Engineering paradigm where models play a

key role in all engineering activities (forward

engineering, reverse engineering, software

evolution,…)” [113]

MD* - Model Driven

Everything

“I use MD* as a common moniker for MDD, MDSD,

MDE, MDA, MIC, LOP and all the other abbreviations

for basically the same approach.” [189]

Fig. 4. Relationship between MD* terms

36

MDA was the first term applied regarding the use of models in software

development. It was launched by OMG (Object Management Group) in 2000. In MDA a

chain of three consecutive models is used. More information on MDA is given in Section

1.2.2. Today MDA is considered an obsolete term. The usage of exactly three consecutive

models seems too restrictive.

The terms MDD or MDSD, carrying approximately the same meaning, are used as

well. The usage of one or another depends on the taste of the author.

Another term is MDE which has a wider application than MDD and MDSD. See

Fig. 5 for the way Jean Bezivin presents the relationship between MDD and MDE. MDE

could be applied to any usage of models, including even those we are not yet familiar

with.

Fig. 5. MDE versus MDD [17]

1.2.2 Model Driven Architecture

Model Driven Architecture (MDA) was launched by OMG in 2000. It was the

first attempt to formalize the use of models in software development. The first version of

MDA manual [117] was published in 2000 by OMG. The updated version of the MDA

guide was published in 2003 [111].

37

“The Model-Driven Architecture starts with the well-known and long established

idea of separating the specification of the operation of a system from the details of the

way that system uses the capabilities of its platform.

MDA provides an approach for, and enables tools to be provided for:

 specifying a system independently of the platform that supports it,

 specifying platforms,

 choosing a particular platform for the system, and

 transforming the system specification into one for a particular platform.

The three primary goals of MDA are portability, interoperability and reusability

through architectural separation of concerns.” [111]

The MDA guide proposed to use three consecutive models. Each of them

described a system on a different level of details, starting from a more abstract definition

and gradually elaborating the details. The following three models where offered:

 CIM - “A computation independent model is a view of a system from the

computation independent viewpoint. A CIM does not show details of the

structure of systems. A CIM is sometimes called a domain model and a

vocabulary that is familiar to the practitioners of the domain in question is

used in its specification.” [111] This model does not contain information

about the system implementation. “The CIM helps to bridge the gap

between the experts about the domain and the software engineer.” [40]

This model could be treated as requirements for a system to be built. “A

CIM could consist of UML models and other models of requirements.”

[40] However there is no common understanding what and how should be

modelled in CIM.

 PIM - “A platform independent model is a view of a system from the

platform viewpoint. A PIM exhibits a specified degree of platform

independence suitable for use with a number of different platforms of

similar type.” [111] This model describes the architecture and high-level

behaviour of a system to be built. However this description could be

adapted for different implementation frameworks.

 PSM - “A platform specific model is a view of a system from the platform

specific viewpoint. A PSM combines the specifications in the PIM with the

38

details that specify how that system uses a particular type of platform.”

[111] This model is an extension of PIM, adding specific details for the

implementation platform.

Computation Independent Model was proposed for starting software development

and continued with Platform Independent Model. Today most of industrial approaches

propose to start with PIM as there is no common understanding of CIM. Some authors

even have a disparaging attitude towards CIM; some propose to treat CIM as

requirements [101]. In case of using CIM some suggest it to be automatically transformed

to PIM. However, as it is not possible to obtain automatically all the necessary

information in Platform Independent Model, it was proposed that this model should be

extended manually. It is easy to see that it is not possible to automatically obtain system

architecture from requirements.

Already the MDA guide proposed transition from PIM to PSM to be done by

using automatic transformation. A model is not an executable system. Therefore one more

transition step from Platform Specific Model to a code is necessary. MDA application

scheme is shown in Fig. 6.

Fig. 6. MDA application schema with one execution environment

One of the goals for MDA introduction was to support reusability and application

development for different frameworks as there are cases when it is necessary to create the

same application for different frameworks. Applications for mobile phones may serve as

an example. Different phone developers support different application execution

environments. This is one of the reasons why Platform Independent Model is separated

from Platform Specific Model. When using the same Platform Independent Model it is

39

possible to develop application for different frameworks. MDA application scheme with

the support of multiple execution environments is given in Fig. 7.

It should be noted that MDA allows using only the UML language for a model

description.

Fig. 7. MDA application schema with multiple execution environments

As already stated above the MDA guide proposed to implement transition from

PIM to PSM by using automatic model transformation. In the context of MDA the term

model transformation was introduced. “Model transformation is the process of converting

one model to another model of the same system.” [111] The term model transformation is

described in detail in Section 1.3.

1.2.3 Model Driven Software Development

MDA process is too restrictive. This is a reason why it has not been widely

accepted in industry. Nowadays MDA is treated as obsolete term. However, the good

ideas behind MDA as models and model transformations are employed in Model-Driven

Software Development.

Compared to MDA in MDSD it is possible to use any chain of models. In MDA

there was the restriction that the UML language should be used to define models. In

MDSD there is no such restriction.

One specific type of MDSD is Domain-Specific Modelling (DSM). In DSM only

one model is used. Code is generated directly from this model which is defined in

specialised Domain-Specific Modelling Language. Domain-Specific Modelling is

described in detail in Section 1.2.4.

40

1.2.4 Domain-Specific Modelling Languages

Another specific case of MDSD have become exceedingly popular - the

specialized modelling languages. It is a common practice to create and use specialized

modelling languages for a domain area and they are called Domain-Specific Modelling

Languages (DSML). They are developed for users specialized in a concrete area, e.g. a

language for automotive software development (AUTOSAR [10]), mobile telephone

software development [88], and many others.

Domain-Specific Modelling Languages (DSML) is a subset of a more general set

of languages, namely, Domain-Specific Languages (DSL). When using Domain-Specific

Languages users can operate with familiar terms. The use of a DSL increases the

efficiency of software development in the field. DSLs are applied in many areas of

software development. A popular DSL, for example, is SQL – a specialised language for

working with databases.

Software development using DSML is called Domain-Specific Modelling (DSM).

Commonly, when applying this approach, only one model developed in DSML is used.

This model is directly transformed into an executable code. However, approaches exist of

using chains of domain-specific models when each model covers different aspects of a

system. Relation between DSM and other software development approaches is shown in

Fig. 8.

Fig. 8. Relation between MD* and DSL approaches

There can be graphical or textual Domain-Specific Modelling Languages.

However, DSMLs are more often graphical. (Nevertheless it is not true for DSLs in

general.) Only graphical Domain-Specific Modelling Languages will be considered here.

41

A visual Domain-Specific Modelling Language basically consists of two parts –

the domain part and the presentation (visual) part. Sometimes they are called also the

abstract and concrete syntax respectively. The domain part of the language is defined by

means of the domain metamodel, where the relevant language concepts and their

relationships are formalized. The domain metamodel is also used for a precise definition

of language semantics. Standard MOF [120] or similar notations are used for the

definition of domain metamodel.

As regards the presentation part (concrete syntax) definition there is no

universally accepted notation. The same meta-modelling techniques are used, but with

various semantics. Most frequently, instances of classes in the presentation type

metamodel are types of diagram elements to be used in the diagram. A concrete set of

graphical element types for a diagram definition is called the presentation type model (a

typical example is the graphical definition model in GMF [172]).

Tool development for graphical Domain-Specific Languages is time consuming

and expensive. Due to the growing popularity of Domain-Specific Modelling Languages

various graphical tool building frameworks have been developed to improve the tool

(editor) building process. Two different approaches are used in these environments. The

first option is to use a mapping-based approach. During the tool design this mapping

assigns a fixed presentation type model element (a node type, edge type or label type) to a

domain metamodel element, by means of which the latter must be visualized. This

solution is quite appropriate for simple cases, where no complicated mapping logic is

required. In this case tools for simple DSMLs can be developed even during a

presentation session. However, frequently DSML support requires much more

complicated and flexible mapping logic. One of the reasons is the lack of fixed

correspondence between the domain metamodel and presentation types. In this case the

second approach is used: to define the correspondence by model transformation

languages. Transformations define the synchronisation between the domain and

presentation models and the tool behaviour in general.

Mapping based frameworks are MetaEdit+ [109], GMF framework [172],

Microsoft DSL Tools [28], Generic Modeling Tool [26] and some other. A pure

transformation based framework is METAclipse framework [86]. The other

transformation based frameworks Tiger GMF project [37], ViatraDSM framework [133]

and GrTP [15] provide also some elements of the mapping based approach.

42

There exist mapping based and transformation based tools, but usually some parts

of the same DSL are suitable for mappings and some for transformations. It means none

of the solutions is optimal. The absence of a good combined solution creates the problem

which is discussed in detail in CHAPTER 5.

1.3 Model Transformations

This Section focuses on defining the term model transformation; sketching a brief

introduction into the history of model transformations; listing the popular model

transformation languages and discussion of the need of model transformations as DSLs

for specific transformation domains. For introduction a definition of transformation is

offered:

Transformations can easily be understood when thinking about what happens in

nature: an ugly caterpillar is transformed into a beautiful butterfly (Fig. 9); tadpoles into

frogs; leaves change their colours in autumn. These transformations occur always in the

same way. It means that the occurrence and the way of transformation is predefined

somewhere in nature, most probably in DNA.

Fig. 9. Transformation in the nature [30]

“A transformation is the automatic generation of a target model from a source

model, according to a transformation definition.” [90]

“A transformation definition is a set of transformation rules that together describe

how a model in the source language can be transformed into a model in the target

language. A transformation rule is a description of how one or more constructs in the

source language can be transformed into one or more constructs in the target language.”

[90]

Although this definition could be applied to caterpillars and butterflies in terms of

this thesis we will be concerned with transformation of data or, more precisely,

transformation of models. Model transformation execution scheme is given in Fig. 10.

This scheme directly corresponds to the definition of transformation. The source model is

43

transformed into a target model according to a transformation definition. It should be

added that model transformations are defined in terms of source and target metamodels. It

means that the same transformation could be used for all source models confirming to the

source metamodel. As transformation works in terms of metamodels all target models

will confirm to the target metamodel. Of course, it is possible that source and target

models coincide; such transformations are called in-place transformations.

Fig. 10. Execution scheme of model transformations

Model transformation languages are used for writing down a model

transformation definition. The most popular model transformation languages are listed in

the following sub-Section.

1.3.1 Model Transformation Languages

As already mentioned above the term model transformation for the first time was

introduced in the MDA Guide [117]. At that point there were no appropriate means for

writing down model transformations. Of course, general purpose programming languages

could be used, however, they did not have appropriate means to support working with

models. Therefore OMG requested to submit proposals on model transformation language

QVT (Queries/ Views/ Transformations) [119]. The development of QVT standard was

very slow and the first version of QVT standard was published only in April, 2008 [122].

Currently the actual version is QVT 1.1. [128].

As a result of the slow QVT development many independent model

transformation languages were developed, for example, MOLA [76, 59], Lx [13], GReAT

[7], UMLX [197, 179], ATL [63, 165], Tefkat [98, 35], MTF [56], ATOM
3

[96, 107],

VMTS [99, 25], BOTL [105, 58], Fujaba [42, 45], RubyTL [32, 185].

44

In CHAPTER 2 the model transformation language MOLA is discussed in detail

as it is used in model transformation applications described in the present PhD thesis.

There already existed many graph transformation languages before OMGs RFP.

The first graph transformation language PROGRESS was developed as early as the

beginning of the 1990s [145]. Influenced by OMGs RFP many graph transformation

languages were adapted for the development of model transformations, for example, AGG

[163], PROGRES [144], TGG [146, 46], VIATRA [31, 180]. In fact, there is no big

difference between typed-attributed graphs and models. At present distinguishing

between a model and a graph transformation language is sometimes quite difficult.

Model transformation language alone is not sufficient for developing model

transformation as tool support for the language is required as well. Tool support for

independent model transformation languages was mainly developed by research groups

closely associated with the authors of the language. As a result tool support for many

languages is mainly experimental and is devoid of industrial qualities. The first language

with good enough tool support was ATL. Most probably this is the reason why ATL is

the most popular model transformation language.

The situation with tool support of the QVT standard is even worse. There is no

tool supporting the QVT language completely. There are some tools supporting parts of

MOF QVT. MOF-QVT Operational is supported by SmartQVT tool [150]. Eclipse M2M

project partially implements QVT Operational and QVT Declarative (Core, Relational)

[175]. MOF-QVT Relational is partially supported by MediniQVT [57]. UML modelling

tool MagicDraw [115] uses QVT Operational plug-in implemented by Eclipse M2M

project [175].

The limited tool support of QVT and understanding that for different domains

different transformation languages are needed are the reasons for developing new

transformation languages even now, among them being Epsilon [92, 169], Henshin [9,

173], GreTL [55], lQuery [100], UML-RSDS [95], Edapt [168].

Examination of application areas of model transformations reveals that for each

different domain a different language is more appropriate. Actually many transformation

languages are developed, keeping a certain domain in mind. For example, MOLA was

developed for transformation development in the MDA process. Viatra specializes in

transformation development for simulators. lQuery is suitable to develop transformations

for the DSL tool development. Epsilon actually is a transformation language family

45

where each language is suitable for a definite set of tasks. There are domain-specific

transformation languages applicable in certain domains. One well studied domain is

model transformation for model migration.

1.3.2 Mapping Languages

When highly abstracting in the consideration of model transformations, we can

treat them as mapping that is done from the source to the target. That is the way

transformations were treated in the MDA guide [111]. However, transformations can be

subject to complicated execution conditions. It is hard to represent these conditions as

mappings. Therefore mappings can be used only in simple and declarative parts of

transformations. Hence mappings can be used as a transformation language for simple

cases.

“A mapping is specified using some language to describe a transformation of one

model to another. The description may be in natural language, an algorithm in an action

language, or in a model mapping language.” [111]

Attempts to create universal mapping languages as a certain alternative to

traditional transformation languages have been started sufficiently early. The term

mappings are used already in the MDA guide [111].

List of mapping languages is given in the Section 4.1.2.

1.3.3 Higher-Order Transformations

MDD can be naturally applied also to transformation development. It means that

transformations are used to create transformations. This special kind of transformations is

named Higher-Order Transformations (HOT). These are transformations modifying/

reading/creating model transformations. In the HOT approach transformations must be

treated as models conforming to the relevant metamodel.

Though the HOT idea can be applied to any transformation language, the largest

amount of HOTs has been created for the ATL language [63]. A comprehensive survey of

HOT applications is given in [183] where the four main types of HOTs have been

identified. One of the HOT application types is transformation synthesis. Transformation

synthesis means transformation generation from various sources of information, including

model mappings. Such a mapping between two models can be considered as a high level

specification of the required model transformation. A large set of such mappings has been

46

obtained by applying the ATLAS Model Weaver (AMW) [39]. The idea of obtaining a

transformation from a mapping can be applied to many other transformation languages,

for example MOLA. In CHAPTER 6 a special language for transformation synthesis

Template MOLA is proposed. It is the first language [69] built specially for the

development of higher-order transformations. Afterwards a special extension of ATL for

transformation synthesis was developed as well. [182]. However ATL is textual, while

MOLA and Template MOLA are graphical languages.

One of the popular research directions related to the HOTs approach is the

development of metamodel independent transformations. In most of the model

transformation languages a transformation is attached to the metamodel it is defined for.

This makes transformation reuse almost impossible. An approach for solving this problem

is proposed by [33] and [139]. It should be noted that Template MOLA could be used to

develop metamodel independent libraries for MOLA. See Section 7.4 for details.

47

CHAPTER 2

MOLA Language

As the model transformation language MOLA was used to develop

transformations described in the thesis an overview of the MOLA language is given in

this chapter. More about the MOLA language can be found in [76], [75] and [77]. A

formal description of MOLA as well as the MOLA tool, can be downloaded at [59].

2.1 MOLA Overview

MOLA is a graphical transformation language developed at the University of

Latvia. It is based on traditional concepts of transformation languages: pattern matching

and rules defining how the matched pattern elements should be transformed.

A MOLA program transforms an instance of a source metamodel into an instance

of a target metamodel. The two metamodels are specified using the EMOF [120]

compliant metamodelling language (MOLA MOF). These metamodels, which may also

coincide, both are parts of a transformation program in MOLA. Mapping associations

may be added to link the corresponding classes in the source and target metamodels.

MOLA is a model transformation language which combines the imperative

(procedural) programming style with declarative means of pattern specification. A

transformation written in MOLA consists of several MOLA procedures, one of them

being the main. An example of a MOLA procedure is given in Fig. 11 (p.54). The

execution of a MOLA program starts with the main procedure. Procedures in MOLA may

be called from the body of another procedure by using call statements. Like in most

transformation languages, class instances, primitive and enumeration-typed variables can

be passed on to the called procedures as parameters. There are other types of statements

in MOLA as well, i.e. rule, foreach loop, text statement, etc. The execution of a MOLA

procedure starts with the start symbol. The next statement to be executed is determined by

the outgoing control flow.

The rule in MOLA represents the classical branching (if-then-else) construct of

imperative programming. The rule contains a declarative pattern that specifies instances

48

of which classes must be selected and how they must be linked. Only the first valid

pattern match is considered. The action part of a rule specifies which matched instances

must be changed and what new instances must be created. The instances to be included in

the search or to be created are specified using class elements in the MOLA rule. The

traditional UML instance notation (instance_name:class_name) is used to identify a

particular class element and specify the class the instance must belong to. Class elements

included in a pattern may have attribute constraints – simple OCL-like expressions.

Expressions are also used to assign values to variables and attributes of class instances.

Additionally, the rule contains association links between class elements. A class element

may represent an instance, matched previously by another pattern. Such class element is

called a reference class element and is specified using the name of the referenced class

element, prefixed with the symbol“@”.

Typical transformation algorithms require iteration through a set of the instances,

satisfying the given constraints. In order to accomplish this task, MOLA provides the

foreach loop statement. The loophead is a special kind of the rule used to specify a set of

instances to be iterated in the foreach loop. The pattern of the loophead is given by using

the same pattern mechanism as for an ordinary rule, but with an additional important

construct. It is the loop variable – the class element that determines the execution of the

loop. The foreach loop is executed for each distinct instance that corresponds to the loop

variable and satisfies the constraints of the pattern. In fact, the loop variable plays the

same role as an iterator in classical programming languages.

2.2 MOLA Elements

Table 3 presents a list of MOLA elements. The application context and semantics

of each element is described.

Table 3. List of MOLA elements

Image Element Description

Start

symbol

Execution of a MOLA procedure starts with a

start symbol.

Execution of a MOLA transformation starts

49

Image Element Description

from the start symbol of the main procedure.

End

symbol

Execution of a MOLA procedure ends with an

end symbol. When the end symbol is reached in

the main procedure execution of transformation

is completed. In other procedures control is

returned to the procedure calling this procedure.

Input

parameter

MOLA procedures may have parameters,

defined by name and type (@<name>:<type>).

The name should be unique in the procedure

(different from class element names). The type

is a reference to a class defined in MOLA MOF

or a primitive type. Parameters are ordered. The

order is represented by numbers.

Values of input parameters are passed to the

procedure; if the value is changed it is not

passed back.

In/out

parameter

The same as the input parameter: the only

difference is that the value of parameter is

passed back to the calling procedure.

Variable It is possible to define variables in MOLA

procedures. For variables the name and the type

is defined (@<name>:<type>). Variables are

used in the same way as parameters.

Rule MOLA rule consists of a pattern to be matched

and an action part. Both are defined by means of

class elements and association links.

The pattern in the rule is matched only once.

If a rule without a valid match is to be executed

and it has no ELSE-exit, then the current

procedure is terminated (if this occurs outside a

loop) or the next iteration of the loop is started

50

Image Element Description

(within a loop body).

Loop MOLA loop contains a loophead (the first rule)

and a loop body (0 or more loop elements whose

execution order is defined by control flows).

The loophead is a rule which contains a loop

variable. The loophead and the loop body are

executed for each distinct match of loop

variable.

Class

element

A class element is a metamodel class, prefixed

by the element (role) name.

A class element may also contain a constraint –

a Boolean expression in a simplified subset of

OCL.

Assignments in class elements may be used to

set the attribute values of the instances.

When a pattern in a rule is matched for each

class element, an instance satisfying constraints

is found and attached to a class element

(constraints are defined in a class element and

by a pattern, e.g., connections with other class

elements).

Class

element,

reference

References are marked with the symbol “@”.

The previously matched instances, as well as the

parameters and the variables, may be used as

references. In this case, an instance already

attached to a referenced element is used in a

pattern matching.

Class

element

with NOT

constraint

Equivalent to NAC (negative application

condition) in graph transformation languages,

e.g., AGG [163].

A pattern is matched if there are no instances in

51

Image Element Description

(NOT-

element)

the model corresponding to the NOT-element.

NOT-elements are typically connected to other

class elements by using association links. Such a

pattern matches if there is no instance

corresponding to the NOT-element which

fulfills conditions defined to NOT-element and

has all specified links to the instances of

“normal part”.

Class

element,

creation

It is possible to create instances in the rules.

Creation is marked with a red dashed line.

Assignments may be used to set the attribute

values of the newly created instances.

Class

element,

deletion

It is possible to delete instances in the rules.

Such class elements may be references or they

are matched before deletion. Deletion of a class

element causes automatic deletion of the related

links.

Loop

variable

Loop variable is an iterator of foreach loop. A

foreach loop iterates through all possible

instances of the loop variable class that satisfies

the constraint imposed by the pattern in the

loophead.

There is only one loop variable in a loop.

Association

link

An association link, connecting two class

elements, corresponds to an association linking

the respective classes in the metamodel. Class

elements at the ends of links are matched to the

instances connected with a link of this type.

52

Image Element Description

Association

link,

creation

It is possible to create instances of association

links. An end of a create-link may be attached to

a class element included in the pattern or to the

class element, creation.

Association

link,

deletion

It is possible to delete instances of association

links. An end of a delete-link may be attached to

a class element included in the pattern (also the

class element, deletion). Association links are

deleted before the class element deletion.

Text

statement

Text statements consist of a constraint and

assignments. It is possible to assign values to

parameters, variables and class element

references. Assignments are skipped if the

constraint fails. Mainly text statements are used

to process primitive-typed elements. A text

statement containing a constraint (a Boolean

expression) may also have an ELSE-exit and

serve as an if-then-else construct.

Call

statement

Call statements are used to invoke sub-

procedures. Parameters are passed to the

invoked procedures. If the parameter is of the

type in/out to pass the value to this parameter a

referencable element (variable, parameter, class

element reference) should be used.

External

call

statement

Besides MOLA procedures, external (coded in

an OOPL) procedures can also be invoked; this

feature is used for low-level data processing

(e.g., model data import). Parameters may be

passed to external procedures.

Control

flow

Control flow arrows determine the execution

order of MOLA statements. The element that

53

Image Element Description

follows the use of the control flow is executed

as the next one. (If the execution of the previous

element – rule, text statement – had succeeded.)

Alternative

control

flow

Certainly, there may be a situation when no

match exists – then the rule is not executed at

all. To distinguish this situation, the rule may

have a special ELSE-exit (alternative control

flow), which is traversed in this situation.

Alternative control flow may be added also to

text statements. This control flow is used if the

constraint in the text statement fails.

2.3 MOLA Example

In order to illustrate the basic MOLA concepts, briefly listed in the previous

section, a simple MOLA transformation example is provided in Fig. 11. This example is

taken from transformations developed in the ReDSeeDS project (see CHAPTER 3). UML

(+ ReDSeeDS specific traceability framework) is used as a source and target metamodel

of the transformation.

This procedure copies the interface and all operations it contains to the provided

package in the target model. ReDSeeDS specific traceability information is created

between the original interface and its copy.

This MOLA procedure has four parameters. Three of them are input parameters

and one in/out parameter. The first parameter (@int) is the interface to be copied. The

second parameter (@pt) is a package for the copy of the interface to be placed. The third

parameter (@sa) is ReDSeeDS specific. It is a logical model (Software Artifact)

processed. All traceability links between the elements are attached to this logical model.

The fourth (in/out) parameter (@i) is used to return the reference to the newly created

copy of the interface.

Execution of the MOLA procedure starts with a start symbol, followed by the

execution of the rule (using control flow). As already stated previously, the MOLA rule

may consist of a declarative pattern and an action description. In this case the pattern is

54

trivial as all class elements with black solid borders are references. Nothing is matched;

the values attached to the references are used directly. Therefore execution of the rule

starts directly with the execution of actions defined in the rule. This rule creates a new

instance of an interface (newint) and the latter is set the same name as the name of the

interface to be copied (name=@int.name). To assign values in MOLA simple OCL like

expressions are used. (For details see MOLA reference manual [6].) In the same rule

ReDSeeDS specific traceability information is created (id:isDependentOn) for which the

original interface is set as a source and the copy of the interface - as a target. The

traceability information is attached to ReDSeeDS logical model (@sa). This rule uses

references to the provided parameters (@int, @sa, @pt) and creates appropriate instances

(newint, id) and association links.

Fig. 11. MOLA example

The rule is followed by a foreach loop which iterates through all operations of the

interface to be copied. The operation is used as a loop variable (o). It is checked that the

55

operation is connected to the interface using the association link ownedOperation –

interface. Only the operations satisfying this condition are processed.

For each such operation procedure “pim_CopyOperation” is called (using the call

statement). This procedure contains four parameters as well. The first is the operation to

be copied (o). The second is simply an empty string and it is not important in this context.

The third is again ReDSeeDS logical model, used to attach the traceability between the

original and the copy in the same way as in this procedure. The fourth is a reference to the

variable (@newo) defined in this procedure. This actually is in/out parameter and is used

to return the newly created copy of operation.

After the call statement the MOLA rule is executed. The copy of operation

(@newo) returned by the call statement is attached to the copy of the interface (@newi).

Association link (ownedOperation – interface) is created.

The loop and actions in it are executed while there are operations satisfying

constraints in the loophead. After execution of the loop completes the text statement is

executed. This text statement assigns a value to in/out parameter. The value of the

parameter is set to the created copy of the interface. As a result, when reaching the end

symbol, the parameter will return the reference to the newly created copy of the interface.

Reaching of an end symbol is the last element of the MOLA procedure and it

completes its execution. Control is returned to the calling procedure. The value of in/out

parameter is also returned.

To get a more detailed understanding about the usage of different MOLA

elements see the next section.

2.4 Hello World with MOLA

This section is dedicated to describing a solution for the Hello World case [106] of

the TTC 2011 [5] contest, implemented in the MOLA model transformation language:

“Saying Hello World with MOLA - A Solution to the TTC 2011 Instructive Case” [74].

This use case demonstrates the application of MOLA constructs for solving typical

transformation tasks. This section provides a more detailed understanding about the usage

of different MOLA elements in transformation development. If a reader is familiar with

the MOLA language he/she can skip this section.

56

The Hello World case consists of several very simple tasks. It confirms the

assertion that simple tasks can be solved in a straightforward and easy readable way in

MOLA. In most cases the basic part of the task is performed by one rule (or loophead).

2.4.1 Greeting Tasks

The first group of tasks is ''Greeting'' transformations. The first task is to “provide

a constant transformation that creates the example instance of the “Hello World"

metamodel given in Fig. 12.” [106] The next task is based on “slightly extended

metamodel given in Fig. 13.” [106] It is required to “provide a constant transformation

that creates the model with references also shown in Fig. 13.” [106] The last task in this

group is to “provide a model-to-text transformation that outputs the GreetingMessage of

a Greeting together with the name of the Person to be greeted. For instance, the model

given in Fig. 13 should be transformed into the String "Hello TTC Participants!" [106]

Fig. 12. The “Hello World" metamodel and the example instance [106]

Fig. 13. The extended “Hello World" metamodel and the example instance [106]

In these transformations the MOLA pattern used is very similar to the

corresponding instance diagram given in the task specification. Greeting transformations

are given in Fig. 14, Fig. 15 and Fig. 16. The transformation logic for these tasks is

described by using one MOLA rule (the grey rounded rectangle). The only requirement in

the first two tasks is to create elements (marked with red dashed lines). In the third task an

instance of the class ''StringResult'' is created, if the pattern (the elements with black solid

lines) is matched with the MOLA rule.

57

Fig. 14. Transformation creating a constant Greeting instance

Fig. 15. Transformation creating a constant Greeting instance with references

Fig. 16. Model-to-text transformation creating a greeting message

2.4.2 Instance Counting

The next group of tasks in the task specification is the instance counting tasks.

The input models are simple graphs conforming to the metamodel given in Fig. 17 [106].

The task specification is as follows

 “Provide a model query that counts the number of nodes in a graph.

 Provide a model query that counts the number of looping edges in a graph, i.e. edges

where the source and the target node coincide.

 Provide a model query that counts the number of isolated nodes in a graph, i.e. nodes

that are neither the source nor the target of any edge.

 Provide a model query that counts the number of matches of a circle consisting of

three nodes, i.e. the pattern shown in Fig. 18 where n1, n2 and n3 are pairwise

distinct. Note that each circle in the model should be matched three times.

 Optional: Provide a model query that counts the number of dangling edges in a

graph, i.e. edges where either the source or the target node is missing.” [106]

Transformation counting nodes in a graph is given in Fig. 19. Transformation

counting looping edges is given in Fig. 20. Transformation counting isolated nodes is

58

given in Fig. 21. In MOLA the counting is implemented by using an integer counter and a

foreach loop (a rectangle with a bold border) where the counter is increased. In most

cases the loophead pattern directly specifies the set of instances to be counted.

Fig. 17. The simple graph metamodel [106]

Fig. 18. Circle of three nodes (simplified representation of edge objects) [106]

A MOLA variable “sk” (a white rectangle) of type integer is used as a counter.

Each loop iteration increases the instance count by one. Text statements (yellow rounded

rectangles) are used to modify the values of the counter. Finally, to save the counting

result in the resulting model the MOLA rule creating an instance of the class ''IntResult''

is used.

For all these tasks it was required to count elements in a graph. As it was not

defined whether the model contains only one graph or multiple graphs, we admitted the

worst case of many graphs in the model. For transformations to work properly when there

is more than one graph in a model we provide the graph to be processed as a parameter.

Consequently, we use another MOLA procedure where we iterate through all graphs in a

59

model (using a foreach loop) and from here we call the transformation (using the call

statement) for processing the current graph. An example of such transformation is given

on the left side of Fig. 19. (The only thing that changes is the called procedure.) A similar

graph processing is done for all tasks where the phrase ''in a graph'' is used. If there is

always only one graph in a model this step could be omitted. The same could be said

about transformations in Fig. 25- Fig. 32 as well.

Fig. 19. Transformation counting nodes in a graph

Fig. 20. Transformation counting looping edges in a graph

60

Fig. 21. Transformation counting isolated nodes in a graph

The only counting task, processed differently, is the circle counting. In MOLA

there are two loop types: the foreach loop and the while loop (rule + appropriate control

flow). In the while loop, to ensure only distinct matches, an explicit marking of the

already found matches (using a NAC construct) is required, claiming the usage of

temporary metamodel elements to solve the task. An alternative is to use three nested

foreach loops, since multiple loop variables are not supported in MOLA. We provide

solutions using both loop types as each has some advantages and disadvantages.

We start with the solution using the foreach loop, as this loop type was used in the

previous tasks. The solution of this task is different from the previous one because we

want to find all different circles. In this case one loop variable is not sufficient and,

consequently, several loops are required.

The task specification did not clearly state whether graphs or multi-graphs should

be considered (i.e., is it possible to have multiple edges between two nodes.) As the

provided metamodel supports multi-graphs and graphs are a subclass of multi-graphs, we

decided to build our solution, providing support to multi-graphs. This being the case, if

there is a circle ''n1;n2;n3'' and two edges between ''n1'' and ''n2'', then there will be two

circles ''n1;n2;n3'' (and 2*''n2;n3;n1'' + 2*''n3;n1;n2''). The solution of this task is given

in Fig. 22. To distinguish different edges between the same nodes, the edges are used as

loop variables. There are three nested loops used in the solution. Each loop selects one

edge for the circle. Actually, finding of circles is defined in the loophead of the first loop,

61

however, when using this loop we are only able to find all edges which are a part of some

circle, but we do not have information in how many circles this edge is used. Adding the

second and the third loop we count all circles that have different edges three times, as

required in the task specification.

Fig. 22. Transformation counting circles consisting of three nodes

If we know that there are no multi-graphs, then the last loop can be omitted

because the existence of the third edge is already validated by the patterns in the first and

the second loop. However, understanding of this case is probably easier if nodes are used

as loop variables, but anyway three loops are needed again.

62

Solving of the task by using the foreach loop is quite lengthy; however, if we add

temporary classes it is possible to create a shorter and more elegant solution. In this case

we will use the while loop. We extend the metamodel by adding the temporary class

''Circle'' and connecting it to the class ''Edge''. The metamodel extension is shown at the

bottom of Fig. 23. If such extended metamodel is used then we can simply write a MOLA

rule looking for circles and marking the found circles: connecting all edges of a circle to a

new instance of the ''Circle'' class. To ensure that each circle is found exactly once a NOT

constraint (an equivalent to NAC in graph transformation languages, e.g., in AGG [163])

is used, stating that this circle has not been marked previously. As in this solution we do

not care about the order of edge finding, the loop counter is increased by 3, to ensure that

each circle has been counted three times. The above mentioned solution is presented in

Fig. 23.

Fig. 23. Transformation counting circles consisting of three nodes, using

temporary metamodel elements

Next was an optional task to count the dangling edges. The solution is given in

Fig. 24. In this case two loops are used. The first one counts the edges without a source.

63

To ensure that the edges without a source and without a target are counted only once the

second loop counts only the edges with a source and without a target.

Fig. 24. Solution of optional task: counting of dangling edges

2.4.3 Reversion

The next task to be considered is edge reversing. It was required to “provide a

transformation that reverses all edges in a graph conforming to the simple graph

metamodel given in Fig. 17 (p.58). This is an update operation.” [106]

We selected a solution where a new reverted edge is created and the old edge is

deleted (delete is marked by using a black dashed line). The solution is displayed in Fig.

25. Actually, a shorter solution in MOLA is possible; however, it is not supported by the

current version of the MOLA tool.

64

Fig. 25. Transformation inversing edges

2.4.4 Model Migration

The next group of tasks was model migration tasks. The first task was to “provide

a transformation that migrates a graph conforming to the metamodel given in Fig. 17

(p.58) to a graph conforming to the metamodel given in Fig. 26. The name of a node

becomes its text. The text of a migrated edge has to be set to the empty string.” [106]

The second optional task was to “provide a topology-changing migration that

transforms graphs of the metamodel given in Fig. 17 (p.58) to graphs as defined by the

metamodel in Fig. 27.” [106]

Fig. 26. The evolved graph metamodel [106]

Fig. 27. The even more evolved graph metamodel [106]

Implementation of such tasks requires adding of temporary traceability relations to

the metamodel. In this case it is sufficient to have an association between nodes in both

metamodels (see Fig. 28). The migration transformation from the metamodel graph1 to

the metamodel graph2 is given in Fig. 29 and from the metamodel graph1 to the

metamodel graph3 in Fig. 30. At first a new graph in the target model is created in both

65

cases. After that all nodes are cloned and traceability links added. (To ensure it a foreach

loop iterating through all nodes in the source graph is used.) Finally, all edges are

transformed by using the traceability information to find the appropriate source and target

nodes in the migrated model. (To ensure it a foreach loop iterating through all edges in

the source graph is used.)

Fig. 28. Metamodel extensions for model migration tasks

Fig. 29. Model migration transformation. Migrates graph from encoding graph1

(Fig. 17) to encoding graph2 (Fig. 26).

66

Fig. 30. Solution of optional model migration task. Migrates graph from encoding

graph1 (Fig. 17) to encoding graph3 (Fig. 27).

2.4.5 Deletion Tasks

Deletion tasks constitute the last group of tasks. The task definition was as

follows:

“Given a simple graph conforming to the metamodel of Fig. 17 (p.58), provide a

transformation that deletes the node with name “n1”. If a node with name “n1” does not

exist, nothing needs to be changed. It can be assumed that there is at most one occurrence

of a node with name “n1”.

Optional: Provide a transformation that removes the node “n1” (as above), but

also all its incident edges.” [106]

The last mandatory transformation is deletion of the node named ''n1''. This

transformation is very straightforward (see Fig. 31). We try to find such a node by using a

MOLA pattern and delete it, in case of finding it. Deletion is represented by a black

dashed line. It was required to delete all incident edges in the extension as well. The

solution of extension is given in Fig. 32. In this case the sequence of deletions is as

67

follows – at first the node is found, all outgoing edges deleted, followed by deletion of all

incoming edges and finally the node itself is deleted.

Fig. 31. Transformation that deletes the node named ''n1'' (if such a node exists) in

a graph

Fig. 32. Transformation that deletes the node named ''n1'' (if such a node exists)

and its incident edges in a graph

2.4.6 MOLA Tool Support

This section describes the technical details regarding the solution of the task.

MOLA has an Eclipse-based graphical development environment (MOLA tool

[59]), incorporating all the required development support. A transformation in MOLA is

compiled via the low-level transformation language L3 [13] into an executable Java code

68

which can be run against a runtime repository containing the source model. For this case

study Eclipse EMF is used as such a runtime repository, but some other repositories can

be used as well (e.g., JGraLab [64], mii_rep [11]).

The MOLA tool has a facility for importing existing metamodels, in particular, in

EMF (Ecore) format. Though the MOLA metamodelling language (MOLA MOF) is very

close to EMOF, and consequently Ecore, there are some issues to be solved. The current

version of MOLA requires all metamodel associations to be navigable both ways (this

permits to perform an efficient pattern matching by using simple matching algorithms).

Since a typical Ecore metamodel has many associations navigable one way, the import

facility has to extend the metamodel. Another issue is the variable coding of references to

primitive data types.

Metamodel import facilities in MOLA are able to perform all these adjustments

automatically. In such a way the provided metamodels were imported into the MOLA

tool. Transformation development of some tasks in MOLA requires additional metamodel

elements, for example, in migration tasks to store relations between the source and target

models. These metamodel elements have to be added manually. In migration tasks, these

are the associations between the node classes in different graph encodings.

Since the metamodels have been modified during import, the original source

model does not conform directly to the metamodel in the repository mainly due to the

added association navigability. Therefore a source model import facility is required. The

MOLA execution environment (MOLA runner) includes a generic model import facility,

which automatically adjusts the imported model to the modified metamodel. Now the

transformation can be run on the model. Similarly, a generic export facility automatically

strips all elements of the transformed model which do not correspond to the original

target metamodel. Thus, a transformation result is obtained which directly conforms to

the target metamodel. (For an inplace transformation the source and target metamodels

coincide, as a result nothing has to be stripped.) The transformation user is not aware of

these generic import and export facilities, he/she directly sees the selected source model

transformed.

An executable version of the solution is available online, using the SHARE [186]

system. A SHARE image of the solution is provided in [4]. By using the SHARE image a

reader can access an executable version of this case study. All transformation sources are

available in the transformation definition environment. It is also possible to compile and

69

execute all “Hello World” transformations in MOLA. To access the SHARE image a

reader should register in the SHARE system and require access to the SHARE image in

[4]. When the access is granted a reader should connect to the SHARE server by using

Remote Desktop Protocol (RDP). It is possible to work with a copy of the image, using a

remote desktop connection.

2.5 MOLA Metamodel

In CHAPTER 6 the Template MOLA language is defined. This language is based

on MOLA. To facilitate a reader’s understanding of the Template MOLA language the

MOLA metamodels are provided in this section.

As already mentioned above the transformation definition in MOLA consists of a

metamodel definition and a transformation procedure definition. The metamodel of

MOLA MOF, MOLA meta-modelling language is given in Fig. 33. This package of the

MOLA metamodel is named “Kernel”. The metamodel of MOLA procedure elements is

given in Fig. 34. This package is named “MOLA”.

70

Fig. 33. The metamodel of the MOLA meta-modelling language [130]

71

Fig. 34. The metamodel of the MOLA procedure elements [130]

72

73

CHAPTER 3

Transformations for Model-Driven Development in ReDSeeDS

In this chapter transformations for Model-Driven Software Development are

analyzed. Transformations described in this chapter are developed within the ReDSeeDS

project [3] therefore a short overview on ReDSeeDS seems appropriate. Further on

Requirements Specification Language (RSL) used in the ReDSeeDS project is described,

this being the entry point for transformations. General principles regarding MDD in

ReDSeeDS are outlined in Section 3.3, continued with the description of two

transformation supported paths from the requirement to the code (Section 3.4 and 3.5).

These paths are based on different architecture styles. The chapter is concluded with

implementation aspects in Section 3.6 and conclusions in Section 3.7.

3.1 ReDSeeDS Overview

Requirements Driven Software Development System (ReDSeeDS) [3, 38] is an

EU funded project (Contract No. IST-2006-33596 under 6FP). The project was realized

from September 2006 till December 2009 and it was coordinated by Infovide (Poland)

with the technical lead of Warsaw University of Technology (Poland) and University of

Koblenz-Landau (Germany); Vienna University of Technology (Austria); Fraunhofer-

Gesellschaft (Germany); Institute of Mathematics and Computer Science, University of

Latvia (Latvia); Hamburger Informatik Technologie Centre e.V., University of Hamburg

(Germany); Heriot-Watt University (United Kingdom); PRO DV Software AG

(Germany); C/S Enformasyon Teknolojileri Limited Sirketi (Cybersoft, Turkey) and

Algoritmu Sistemos (Lithuania).

The author of the thesis was involved in the project from January 2007 till the end

of the project (December, 2009). The author’s responsibility was to develop model

transformations to support a full model-driven path from the requirements to the code.

The author of the thesis participated in the development of 11 project deliverables [65, 83,

84, 81, 94, 19, 8, 136, 134, 135, 151], as well as in the preparation of 4 publications

related to the project results [79, 80, 153, 82].

74

The motto of the ReDSeeDS project was as follows: “Fulfilling the promise of

comprehensive software reuse by bringing it to the level of requirements linked with

precise model-based solutions.” [3]

“The main objective of the project is to create an open framework consisting of a

scenario-driven development method (precise specification language and process for the

“how-to”), a repository for reuse and tool support throughout. The basic reuse approach

will be case-based, where a reusable case is a complete set of closely linked (through

mappings or transformations) software development technical artefacts (models and

code), leading from the initial user’s needs to the resulting executable application.” [3]

The following were the main elements in the ReDSeeDS project:

 Use (and development) of formal and at the same time easily usable,

understandable Requirements Specification Language (RSL). (See Section

3.2.1.)

 Transformation supported model-driven part from the requirements to the

code. All artefacts produced were related with traceability information.

 Software Case Repository for storing artefacts of past software cases

(models and code).

 Query engine to find similar past software cases in the repository.

 Slicing to extract appropriate parts (models and code) from past software

cases to the one under development.

In the ReDSeeDS project a prototype of the ReDSeeDS system was developed.

The usage scenario of the system could be as follows:

 Requirements for the system to be built are sketched in RSL.

 The Software Case Repository is queried for similar past software cases.

Sketched requirements are used as a query.

 A list of similar software cases is presented. For each software case a

similarity coefficient is given. A user can analyze similar software cases.

 Similar slices are found and imported in the current software case. A slice

is set of related elements from the requirements through all models to the

code. The set of requirements is selected and all elements implementing

these requirements (in the models and the code) are automatically added to

the slice.

75

 Imported slices are adapted, if necessary.

 Requirements specification is improved, if necessary.

 The Model-Driven Software Development path described in Section 3.4 or

Section 3.5 is applied.

 The developed software case is saved to the Software Case Repository for

reuse.

If not needed, reuse of the previously defined software cases could be skipped.

The usage scenario without reuse is as follows:

 Requirements for a system to be built are specified in RSL.

 The Model-Driven Software Development path described in Section 3.4 or

Section 3.5 is applied.

In the thesis a model-driven path from the requirements to the code skipping reuse

aspects will be described in detail. It should be noted that the ReDSeeDS approach for

Model-Driven Software Development has a value of its own even without reuse aspects.

It is a real example of a MDSD path with several models. Most of MDSD approaches

proposed in commercial tools use only one model, e.g. Model2code [21]. In commercial

tools there is no path from the requirements. Typical MDSD approaches in these tools

start with PIM. Nevertheless, there exist other approaches starting from the requirements,

e.g. [101].

We will start with a short description of Requirements Specification Language,

continued with a discussion of the possible use of these requirements in a model

transformation supported path from the requirements to the code. Two different model-

driven paths supporting different architecture styles will be considered.

3.2 Requirements Specification in ReDSeeDS

In the ReDSeeDS project Requirements Specification Language (RSL) was

introduced. In this section RSL is described and the usage of RSL is demonstrated.

3.2.1 Requirements Specification Language in ReDSeeDS

RSL [66, 65, 152] is a semiformal language for specifying requirements for a

software system. The elements of RSL which can be directly transformed into the system

design are described below.

76

RSL employs use cases for defining precise requirements for the system

behaviour. Each use case is detailed by one or more scenarios, in turn consisting of

special controlled natural language sentences. The main sentence type is the SVO(O)

sentence [152], consisting of a subject, a verb, and a direct object (optionally, also an

indirect object). These sentences express the actions to be performed in the scenario. In

addition to SVO(O), there can also be conditions, rejoin sentences (“gotos” to a point in

the same or another scenario) and invoke sentences (invoke another use case).

Alternatively, the set of scenarios for a use case can be visualized in a natural way as a

profile of an UML activity diagram. SVO(O) sentences serve as the nodes of the diagram,

and conditions and rejoins as control flows (in addition to the natural “next sentence”

control flow).

Another part of RSL is the domain definition which consists of actors (system

users), system elements, and notions. A reader may think about actors and system

elements as actors in UML use case diagrams. Notions correspond to the elements

(classes) of the conceptual model of the future system. It is also possible to define notion

generalization and simple associations between notions. In the second version of RSL

[65] it is possible to define one notion as an attribute of another notion. Actually, the

notion part in the second version of RSL describes a conceptual model of the system to be

built, only alternative syntax is used instead of traditional class diagrams.

The precise syntax of RSL is defined by means of a metamodel [66]. All elements

of requirements specification in RSL are stored as model elements, corresponding to the

metamodel. Even SVO(O) sentences are processed as model elements, although they

seem to be a plain text to a user. The behaviour and domain parts in a valid RSL

requirements model must be strictly related. The subject of a SVO(O) sentence must be

an actor or a system element. An object (direct or indirect) must be a notion. In principle,

an object is an element of the conceptual model, affected by the action described in a

SVO sentence.

A SVO(O) sentence is given in Listing 1. The syntax used in the RSL editor is

used here. In this sentence the nouns (or noun phrases) - user, facility, reservable facility

list - are coloured blue, the verb (selects) is coloured red. The preposition (from) is

coloured green. “User” is the subject of the sentence. In this case the actor is used as a

subject. “Facility” is a direct object. “Reservable facility list” is an indirect object. For

both objects the notions should be defined in RSL.

77

Listing 1. SVO(O) sentence

User selects facility from reservable facility list

The informal meaning of each noun and verb must be defined in a vocabulary

(currently, WordNet [41]). In the ReDSeeDS tool support it is possible to extend WordNet

by adding new words and new meanings. Typically complex notions as “reservable

facility list” should be added manually to the vocabulary which is used as the domain

dictionary, describing the meaning of domain terms. In addition to the vocabulary

keywords are introduced in the second version of RSL. Compared to the vocabulary,

elements for keywords predefined semantics is introduced in the RSL profile (see

Sections 3.3.2 and 3.5.3).

3.2.2 Example of Requirements

The proposed ideas are illustrated on a fragment of an example of the Fitness Club

system. One use case Reservations is taken – how a club customer can book regular

access to the selected fitness facility of the club. A simple example of this type is given in

Fig. 35. The activity diagram representation of the requirements is on the left side of the

figure. The right side of the figure contains the textual representation of the requirements

where notions and system elements, related to the SVOO sentences, are also given.

This scenario consists of four consecutive SVO sentences. Actor or system

element is used as the subject of these sentences. There is one actor “User” and one

system element “System”. There are three notions “facility”, “reservable facility list” and

“reserved facility list”. They are used as direct and indirect objects in the SVO(O)

sentences.

Textual representation was used as the main representation of the requirements in

ReDSeeDS. The colour marking in the textual representation of the requirements helps to

distinguish more clearly the parts of the SVO(O) sentences – subjects, verbs, and objects.

The subjects and the objects are blue. The verbs are red. The prepositions preceding the

indirect object are marked green. The whole following group of words marked blue is an

object with a complex name (there must be an equally named notion in the domain part of

the requirements). Note that in the textual syntax, each scenario is one continuous path in

the diagram.

78

Fig. 35. RSL example

Fig. 36 provides a fragment from a more elaborated example from this use case

displaying two scenarios from it. They are given in a textual form as they were entered by

using the RSL editor. This to be a correct requirements model, the relevant notions must

also be defined (facility, reservable facility list, etc.). The activity diagram for this use

case is given in Fig. 41 (p.90).

Fig. 36. Requirements – two scenarios in a textual form

3.3 Model-Driven Development in the ReDSeeDS Project

The ReDSeeDS approach covers a complete chain of models for model-driven

development – from the requirements to the code. Each transition in this chain is to a

79

great degree assisted by formal model transformations. Although two specific chains of

models are described here, the approach could be applied to any similar setting of models.

The first in the both chains is the Requirements Model built in a special

semiformal requirement language RSL (described in Section 3.2). The required behaviour

specification in this controlled natural language is defined by the model; therefore, this

specification can be processed by model transformations in order to generate initial

versions of the next models.

Both architecture styles, implemented in the ReDSeeDS project, contain

“Architecture” and “Detailed Design” models corresponding to PIM and PSM in the

MDA approach. In the Keyword-Based Style additional “Analysis” model between “RSL”

and “Architecture” (PIM and CIM) is used. All transitions between the models are

assisted by model-to-model transformations.

It should be noted that we use for our models a pre-selected consistent set of

design patterns and other design rules, called an architecture style in our approach (this

concept is described in Sections 3.3.1 and 3.5.2). Transformations are adjusted to this

style to get maximum results in extracting the required behaviour from RSL. The best

results are obtained if the requirements are specified in RSL in an appropriate way – there

is used an RSL profile, associated with the architecture style (see Section 3.5.3).

All model-to-model transformations in our approach are implemented in the

model transformation language MOLA [76]. If the selection of patterns and the

architecture style are changed, the transformations should be rebuilt, too.

Another issue to be solved by transformations is the inevitable modifications of

models and the necessity to reapply the transformations and merge the results.

Transformation development is discussed in Section 3.6.

3.3.1 Design Patterns and the Architecture Style

Today large enterprise systems are developed by using a set of design patterns as

a rule. There are two types of design patterns: platform-independent and platform-

specific. The traditional GoF design patterns [47] represent the former type. The modern

Java EE environments (based on the POJO [158] idea and declarative ORM) also share a

large set of common enterprise patterns (and so do the latest .NET environments based on

POCO [114]). On the other hand, low level patterns, such as an adequate usage of Spring

framework annotations, are still platform-specific.

80

Usage of design patterns is vital to efficient application of MDD and

transformations. However, patterns alone are not sufficient for deciding what the

generated models look like. Therefore, we use the concept of architecture style, which

includes the structure of the system and the model, a related set of design patterns (with

indications where they should be used), the applied general design principles, and finally,

the rules by which model elements are obtained from the models preceding in the

development chain. This last feature is formalized by a model transformation set

associated with the architecture style. The most important content of an architecture style

is the selected set of design patterns, tied up to the chosen model structure. Namely,

patterns are the style element which helps most in specifying efficient transformation

rules. In addition, for transformations supporting the given architecture style to produce

maximum results, the requirements must be specified in an appropriate style, too;

therefore, the concept of RSL profile (associated with the given architecture style) is

introduced.

Two different architecture styles are considered in the thesis: the Basic style (see

Section 3.4) and the Keyword-Based Style (see Section 3.5).

The goal of the Basic Style is to prove the feasibility of the approach in which the

model-driven development, starting from the requirements, is combined with the

requirement-based reuse of software. The initial version of the ReDSeeDS tool support

was based on this style. However, the possibilities to extract behaviour from the

requirements in the Basic Style are significantly weaker than in the Keyword-Based Style.

The main goal of the Keyword-Based Style is to extract as much as possible

behaviour from the requirements. The in-depth analysis of requirements is based on

keywords to be found in the RSL sentences which the style is named after. The RSL

profile associated with the Keyword-Based Style is described in Section 3.5.3.

In no case the described architecture styles should be considered the only possible

solutions; other styles are also possible. To a great degree, the choice of the most

appropriate architecture style depends on the domain of the system to be created. For

example, the Keyword-Based Style could be an adequate solution for simple web-based

information systems. The selection of architecture style could be formalized on the basis

of non-functional requirements for the system; however, this topic is completely out of

the scope of the thesis. Furthermore, it should be reminded that creation of a new

architecture style also requires creation of an appropriate transformation set.

81

3.3.2 The RSL Profile

Transformations can be applied to any valid set of requirements in RSL for a

system. Nevertheless, in order to ensure that these transformations generate a really

substantial fragment of the software system to be built, some more constraints on the

requirements should be put. Thus, a concept of the RSL profile is introduced. The profile

defines the set of keywords with predefined semantics to be used in the scenario

sentences (verbs, nouns, and prepositions) and some rules on how these keywords should

be used. Moreover, there are constraints on the order of these sentences (or nodes in the

activity form). All these rules are “soft” rules in the sense that the requirements do not

become invalid if they violate some of these rules; simply, the transformations can do

less. At the same time, profiles are defined so that they never make the requirements less

readable to domain area specialists (however, more skills may be required by requirement

engineers to create them). A profile is always associated with an architecture style so that

the corresponding transformation set can produce the largest possible part of the PIM and

PSM models from the requirements.

When defining requirements, keywords are not specially marked, they are used as

all other words in the scenario sentences. The same could be said about a specific order of

sentences in an architecture style. So it is completely left to the requirements definer to

follow or disregard these soft rules. The use of RSL profile is analysed only by

transformations. If the rules are followed, the transformation produces more detailed

models of the system to be built. If the rules are ignored, the following models in the

model driven path are of lower quality. It means that more manual work is required for

adding the missing information.

In the RSL profile for the ReDSeeDS Basic Style only assumptions about the

order of sentences are used. The full power of the RSL profile mechanism is used in the

Keyword-Based Style. A detailed description of the RSL profile and keywords used in this

architecture style is given in Section 3.5.3.

3.4 ReDSeeDS Basic Style

This architecture style was defined by Warsaw University of Technology (Poland)

and transformations for it were implemented by the author of the thesis. This was the first

architecture style defined in the ReDSeeDS project.

82

Fig. 37. Model chain in the ReDSeeDS Basic Style

The RSL profile for this architecture style has no keywords, only some constraints

on sentences. The usage of this style has confirmed the feasibility of the used

technologies and approaches; however, the part of a system, generated by transformations

in this style, is small. The model chain used in this architecture style is presented in Fig.

37.

3.4.1 The Platform-Independent Model

The PIM model is going to be described in greater detail since its relation to the

CIM model in RSL is the most interesting in our approach. PIM defines the static

structure of the system to be built by means of classes, components and interfaces. Draft

behaviour of the system is described by means of sequence diagrams.

According to the chosen architecture style, a four-layer architecture is used with

the following layers: Data Access, Business Logic, Application Logic and User Interface.

Additionally, Data Transfer Objects (DTOs) are used as data containers for data

exchange between the layers. Component and interface based design style is used at all

layers. Components encapsulate groups of related elements of the system. Interfaces

appear as provided interfaces of the respective components. The main patterns used in

this architecture style are data access objects (DAO) for the Data Access layer and MVC

for the Application Logic layer.

There are seven static structure packages in PIM, one for each layer, one for the

DTOs, one for the Interfaces and one for the Actors. The package Actors contains actors

of the system to be built. They are directly copied from the requirements. The package

Data Transfer Objects contains DTOs created from notions. Each notion is transformed

into one DTO class. Thus, this package serves also as a sort of conceptual domain model.

83

The package Data Access contains data access objects (DAO) for the persistence

related operations. Each lowest level notion package is transformed in one DAO

component. Each notion contained in this package is transformed into an interface of this

component. The relevant CRUD (create-read-update-delete) operations are added for

each interface.

The package Business Logic contains business level components and interfaces.

Components and interfaces are created in the same way as in the Data Access layer.

However, only notions, participating in business level operations, are used therein. In

other words, only interfaces, containing business level operations, are created. Creation of

the latter will be described together with the behaviour sequence diagram creation.

The packages Application Logic and UI are based on the MVC (model-view-

controller) pattern. Components in Application Logic are created from use case packages

of the lowest level in the package tree. Provided interfaces of these components are

created from use cases written in RSL. One interface is created for each use case.

Methods of these interfaces are created by analyzing the system behaviour. This will be

described together with the sequence diagram creation. Currently, only a placeholder for

the UI part is created. It could be replaced by a real UI support, but it is out of the scope

of this chapter.

Fig. 38. Static structure processing example

The above rules for generating the static structure of the system introduced in Fig.

35 (p.78) are illustrated in Fig. 38. On the left side of Fig. 38 the static structure of

requirements in RSL (as in the RSL editor) is given. On the right side of Fig. 38 the static

84

structure of PIM (Architecture, as displayed in EA) is shown. Both sides are connected

with mappings relating the source and the target of some transformation rule described

above. These mappings are similar to the ones used in the Model Transformation by

Example (MTBE) approach [199]. However, when replacing concrete instances with

patterns for finding relevant instances, a new mapping language could be obtained

(similar to the one described in CHAPTER 4).

Fig. 39. Behaviour example

Certainly, the most complicated part is the description of the system behaviour.

The sequence diagrams, describing the system behaviour, are created by analyzing

scenario sentences. There can be three types of SVO sentences. The first one is an actor –

system sentence. In this case the subject of the SVO sentence is the actor. For two other

sentence types the subject of the sentence is a system element. The sentence types are

distinguished by using the recipient link. Recipient is a SVO sentence element; it defines

where to the behaviour described in the sentence is directed. The second type of the

sentence is system – actor. In this case the subject is the system and the recipient is the

actor. The third sentence type is system – system. In this case the subject and the recipient

is the system. It is used to describe the internal actions of the system. The type of the

particular message generated in the sequence diagram depends on the sentence type. Fig.

39 illustrates the behaviour sequence diagram of the example described above. It shows

85

that the operations in the Business Logic layer are created only for the system – system

sentences. The actor-system sentences are used for the creation of the Application Logic

methods. UI methods are created from the system – actor sentences.

PIM can be manually extended after the initial generation. Afterwards it is

transformed to PSM.

3.4.2 The Platform-Specific Model

The same four layers and DTOs are used in PSM. In this model the factory pattern

is used, enabling the management of classes and interfaces. Each component in PIM is

transformed into a package and a factory class in PSM. Every interface is transformed

into an interface and an implementing class. Classes and interfaces are located in

packages, created from components. Factory classes, created from components, have

methods for getting provided interfaces. For each layer one more factory class is created.

It manages all other factory classes in this layer.

The platform-specific model can be extended manually in the same way as the

platform-independent one. Then this model can be transformed to the code.

Transformation, creating PSM, uses two transformation libraries. The copy library

was used to copy DTOs from PIM to PSM. For the other layer the transformation library,

converting components with its interfaces to factory classes, was used. Here the copy

library for interfaces was used as well.

3.5 The Keyword-Based Style

This style is defined by the author of the thesis in cooperation with her supervisor

and the UL IMCS ReDSeeDS team. All model-to-model transformations have been

implemented by the author of the thesis. Model-to-text transformations in EA CTF have

been implemented by Agris Šostaks.

In this section only the main ideas the Keyword-Based Style rests upon are

outlined. A detailed description of the Keyword-Based Style model structures and

transformation algorithms is given in Section 6.3 of ReDSeeDS deliverable D3.2.2 [84].

Introduction into the Keyword-Based Style starts with the description of the

model and system structure and some general design rules. We have chosen a four-layer

architecture because it is the most popular and accepted information system architecture

86

style today. As already mentioned we use the following layers: Data Access or Repository

layer, Service or Business layer, Application Logic, and User Interface. We also have

domain objects as data containers (available to any layer, former DTOs [104]). Another

general principle of our approach is based on a declarative Object-Relational Mapping

(ORM). The particular ORM in our approach is Hibernate [16]. Whenever possible, we

use an interface-based design style for all layers, meaning there is an interface (where the

operations are specified) and its implementation class.

3.5.1 Models

In this section we present a short rationale behind our selection of the specific

model chain. The selected model chain is given in Fig. 40.

Fig. 40. Model chain used in ReDSeeDS Keyword-Based Style

Requirements are specified in the requirement specification language RSL [66]

[152] which lies at the basis of the approach. We are interested mainly in the

requirements for the system behaviour specified by use case scenarios and draft domain

concepts (which are called notions in RSL).

Starting from the requirements, a chain of models for a model-driven development

of the software system is proposed. To a great degree, this chain has been inspired by the

classical MDA approach. However, the specific structure and construction principles of

87

the models in our approach are determined by the chosen architecture style, the most

important feature of which is the set of the selected design patterns. A more precise

description of the concept of the architecture style is given in Section 3.3.1. All the

models are built in UML2 [121], using an appropriate profile.

Initially the Analysis model is extracted by transformations from the requirements.

This model has no direct counterpart in the classical MDA chain. It corresponds more to

the Analysis model in the standard OOAD [97] approach. Therefore, we call this model

the Analysis model. The most important part of it is the class diagram, describing the

main concepts of the software system to be created (the Domain Model). Stereotypes are

used to distinguish different types of concepts according to the Analysis Profile. The

Analysis Model is described in a greater detail in Section 3.5.4.

The most important model in the proposed model chain is PIM, which is very

close to the corresponding model in the MDA approach. This model is built according to

the selected design patterns and contains the description of structure and detailed

behaviour of the would-be system in a platform-independent way. In this model the

implementation structure is represented according to the behaviour extracted from use

case scenarios. This model is platform-independent and could be used as a basis for the

development of a code on any enterprise platform (Enterprise Java, .NET, etc.). This is

the model where the selected design patterns and sophisticated analysis of the

requirements permit to generate a non-trivial part of solution behaviour. Transformations

which generate the initial version of this model use both Requirements and Analysis as

inputs. In the whole chain of transformations, this step contributes most to the rich system

functionality inferred directly from the requirements. The contents of PIM are described

in Section 3.5.6.

The final model in the chain is the PSM in a fairly standard MDA style (Section

3.5.8). It is built by transformations from PIM by adding platform-relevant details.

Currently the chosen target platform is Java in the Spring/Hibernate framework, but any

similar platform can be used as well. In this model stereotypes corresponding to Spring-

specific annotations are used. Finally, PSM is transformed to the Java code with

Spring/Hibernate annotations. The main value of the approach lies in the fact that a large

fraction of a non-trivial prototype of the system can be obtained from the requirements

without a manual extension of intermediate models. Certainly, a true model-driven

88

development should follow, where in each step the required details of the real system are

filled in manually. PSM is described in detail in Section 3.5.8.

It should be noted that in the ReDSeeDS project an alternative model naming is

used – PIM is also called the Architecture model and PSM the Detailed Design model.

3.5.2 Selected Design Patterns for the Keyword-Based Style

In this section we will describe the design patterns chosen for the Keyword-Based

architecture style. The patterns are grouped according to models and system layers chosen

for the style. The patterns used at the PIM level are as much platform-independent as

possible. Since we have chosen Java + Spring + Hibernate framework as the target

platform, the design patterns popular in the Spring community are used at the platform-

specific level. This choice has also slightly influenced our PIM level, when we had to

choose one of several equivalent options.

We use the DAO design pattern [138] at the Data Access layer. Data access

objects are introduced as the main actors for explicit ORM-related actions. Therefore,

each DAO has the basic CRUD and typical Find operations. A data access object is

created for each persistent domain concept. The DAO classes are assumed to have the

standard transaction support for their operations.

Manager is the main design pattern used for Business Logic (see [108] for its

version in the .NET world). It means that for each domain concept participating in

Business Logic, a class (and interface) is created, which encapsulates all business level

operations related to this concept.

The Application Logic and User Interface layers are governed by the MVC

pattern, which is used in almost every four-layer architecture. Moreover, the façade

pattern [47] [104] is used for the Application Logic. For each Use Case in the

requirements, we create one Application Logic interface and an implementing class. This

class implements all operations invoked by the MVC controllers within this use case.

The UI part is kept as simple as possible. It contains only calls to the application

layer. This research does not include the specific issues of building user interfaces from

the requirements, which is a separate topic in the ReDSeeDS project (see [87]).

We also use the domain object design pattern. It means we use domain objects as

data containers, in other words, as standard “POJO” (not mandatory Java) objects.

Persistent domain objects are treated as the basis for the ORM definition; therefore,

89

platform-independent ORM features, such as identifying attributes and persistent

relations, are included.

The design in general relies on the Dependency Injection Pattern (which will

appear later as platform-specific dependency annotations) for referencing other classes;

therefore, the Factory Pattern is not used explicitly.

Platform-specific design patterns are used in PSM and in the code. These are

domain objects that have the most of platform-specific features. The POJO pattern is

used, adapted to the Spring style. We use the declarative ORM definition (Spring +

Hibernate) based on annotations which are coded as appropriate stereotypes in PSM. The

transactionality of relevant classes is also defined by annotations. For reference

initialization, the dependency injection pattern is used.

For UI layer, the MVC design pattern is used in a standard (“Spring-Basic”) way.

3.5.3 RSL Profile for the Keyword-Based Style

As stated in the previous section Java + Spring + Hibernate framework was

chosen as a target platform for this architecture style. This decision is closely related to

typical application areas of this architecture style which is suitable for web application

development. Examples of typical applications are online shops, online reservation

systems, etc.

Terms related to this type of systems are selected as keywords. Actions typical to

this type of systems are selected as verb keywords. Objects used in these systems are

selected as noun keywords. When selecting some terms as keywords, predefined

semantics is added to them.

In this profile the verb keywords for SVO(O) sentences are show, select, build,

add, and remove. The noun keywords are form and list – when used as parts of complex

notion names (and, consequently, objects in SVO(O) as well). Conditions (which

otherwise are arbitrary sentences in RSL) can contain the verb keyword click and the

noun keywords button and link. The adjective (modifier in RSL terms) empty is also

treated as a keyword.

A brief description of the meaning of keywords and some context rules in

scenarios is given below. The keyword show means that the system must display a form

defined by the direct object of this sentence. This object, in turn, must correspond to a

notion whose complex name ends with the noun keyword form. For example, the SVO(O)

90

sentence “System shows reservable facility list form” specifies that the form “reservable

facility list form” must be displayed at this point.

Similarly, the sentence “System builds reservable time slot list for facility” uses

the verb build, which means data creation. The direct object “reservable time slot list”

denotes a list, since the last noun in it is list.

The sentence “Customer selects facility from reservable facility list” means that

the user has performed element selection from the data table in the form. The indirect

object (preceded by the preposition “from”) specifies the data table contents (“reservable

facility list”, i.e., a list notion), the selected element is an instance of the notion “facility”.

The condition “click Select link” means that the user clicks on an active element

(link) in a form table with selectable rows. Normally this condition should be on the

control flow, which goes from the shows sentence/node (see the example above) to the

selects sentence (the previous example). This order of sentences should be followed to

enhance the following models produced by transformation. A recommended order of

sentences is a part of the RSL profile.

Fig. 41. Requirements – scenarios of the use case in a graphical form

91

The condition “click Confirm button” means that the form button has been

clicked. The meaning of the remaining keywords is self-explanatory. The example in Fig.

41 completely complies with the rules described above.

It should be noted that the use of keyword and predefined order of sentences is

voluntary. However, it affects the quality of the following models. If keywords are used

appropriately, more complete models are obtained in the following steps.

The described profile for the Keyword-Based Style is supported in the current

version of the ReDSeeDS tools. Currently for a term to be treated as a keyword exactly

this predefined term should be used. Nevertheless, extending keyword support and using

WordNet [41] it should be possible to treat synonyms of predefined terms as keywords as

well.

3.5.4 The Structure of the Analysis Model

The main part of the Analysis model in the Keyword-Based Style is the Domain

Model – a conceptual class model for the system to be built. The Domain Model is

generated by appropriate transformations from the domain (notion) part of Requirements.

It contains classes corresponding to all notions in Requirements. Class attributes and

associations are also extracted from the notions part of Requirements (if they have been

defined there). A special Analysis profile is defined in ReDSeeDS which contains

stereotypes to be applied to the Domain Model. Classes generated from persistent notions

would have the <<entity>> stereotype (there also are some heuristic rules how to find

persistent notions when they have not been properly marked in the requirements). Other

classes with the stereotype <<form>> would correspond to forms – notions with the

suffix form in their names. In a similar way, collection classes (for example,

ReservableFacilityList) will have the <<list>> stereotype. In the design stage, these

classes will be converted into generic list classes. Control elements in forms (such as

buttons and links) are also represented by stereotyped classes in the Domain Model, with

stereotypes <<button>>, <<gridLink>>, <<link>>, and some others. Additional

associations, having a special meaning for the design model (e.g. aggregations linking a

form to a list to be visualised as a data grid in this form), can also be generated. These

associations are also given special stereotypes (<<owned>>, <<formElement>>, a.o.).

See more on the principles how the Domain Model is generated from Requirements by

transformations in Section 3.5.5. Fig. 42 presents a part of the generated Domain Model

92

in the Fitness club example. It shows that the proposed approach can transfer a significant

part of the intended semantics of the requirements into the stereotyped Domain Model

(this, in turn, will guarantee a rich behaviour to be generated into the PIM model).

Fig. 42. Fragment of the generated Domain Model

The full strength of the transformations is revealed only if requirements are built

in RSL according to the appropriate RSL profile (see 3.5.3). If requirements in RSL

cannot provide sufficient information for building this Domain Model, it is highly

recommended to extend this model manually in the Analysis step. Only in this case the

next steps will provide the desired results.

The structuring of the Domain Model is based on notion packaging (provided in

RSL).

3.5.5 Transformation of Requirements to Analysis

The main task of this transformation is to create the Domain Model from the

notion part of Requirements, taking into account some elements of scenarios as well. The

basic transformation is very straightforward since notions, their attributes, and

relationships in RSL actually are in one-to-one correspondence to the class model. The

stereotypes <<list>> and <<form>> are added if the respective keywords are present in

93

the notion names. An additional analysis is done for list classes. If an entity name is

contained within the list notion name (such as “facility” within “reservable facility list”),

the entity class is assumed to be the element of that list (a <<listItems>> association is

generated).

Classes for control elements can be generated from scenarios. We are looking for

a click-condition (click … link or click … button) which follows a show-sentence (…

shows … form). If such (new) situation is found, a class is generated with the name equal

to the name in the click-condition and the stereotype <<gridLink>> or <<button>>,

respectively. The association (with the stereotype <<formElement>>) linking the control

element to its form is also generated.

More form-related associations can be generated from scenarios. Select-sentences

(such as ... selects facility from reservable facility list) allow us conclude that the relevant

form (that in the preceding show-sentence) permits to select elements exactly from this

kind of list. Hence, this list (here, ReservableFacilityList) is visualized in the form (the

<<owned>> association can be built), and each gridLink element in the form corresponds

to a row in the list (the <<gridRow>> association is built).

Using these relatively simple principles, the Domain Model in the example in Fig.

42 can be generated from notions and the scenario in Fig. 41 (p.90). Implementation of

these transformations in the MOLA language is also quite straightforward.

3.5.6 The Platform-Independent Model

This model is the most important to our approach since all platform-independent

functionality is generated in this model. This is done by revisiting the use case scenarios

and analyzing them repeatedly, taking into account the (possibly manually extended)

Domain Model from Analysis. In combination with the keyword-based sentence analysis,

a significant part of application and especially Business Logic can be generated. This

model is created according to the platform-independent design patterns described in

Section 3.5.2.

The main result of the PIM step is the design class model: packages and classes

(and interfaces) with all attributes and operations. The operations will have all parameters

defined. All the other data such as persistence info for ORM-related classes are coded by

platform-independent stereotypes, which constitute the PIM profile.

94

The other essential results of this analysis are stored as sequence diagrams, also

covering a significant part of the Business Logic method bodies. All method invocations

with appropriate parameters that can be generated are coded this way. Whenever possible,

the invocation logic up to the DAO level is documented. These sequence diagrams are

kept in the behaviour package and are grouped in the same way as use cases in the

Requirements Model. Some small practical extensions of sequence diagram syntax are

used, for example, FOREACH iterator in loop fragments.

The design class model is split into the following packages: applicationlogic,

businesslogic, dataaccess and domainobjects. The first three are further subdivided into

Interfaces and Implementation parts, containing interfaces and implementing classes,

respectively. Each interface name has the prefix “I” added to the corresponding class

name.

For application logic, the façade design pattern is used. For each use case, a class

corresponding to this use case is generated (with the suffix “Service” added to the name).

Further structuring of the applicationlogic package is done according to the use case

packages.

The content of businesslogic is generated according to the Manager Pattern. Here

classes correspond to persistent classes (entities) whose usage in Business Logic can be

inferred from sentences with keywords and the Domain Model. Classes/interfaces have

the suffix “Service” added to the entity name.

For dataaccess, an updated version of the DAO pattern is used, and practically

applicable methods are generated for DAO classes. Each class corresponds to a persistent

domain object; the class name is generated from the object name with the suffix “DAO”.

Classes are grouped in the same way as domain objects. For each class, CRUD and some

typical find operations are generated. Bodies of these operations are similar in all classes,

only the types vary. Therefore, we propose to implement them once in a template class

which contains parameterized types. All the other classes will inherit them from this

template class (with parameters set to the relevant values in each case). We remind that

this specialization of the classical DAO pattern is platform-independent since it can be

directly implemented in most of typical platforms.

For the domainobjects package, the domain object design pattern is used. This

package represents a platform-independent Object Relational Mapping (ORM) model for

all entities with platform-independent annotations. Associations (relations) are also

95

included in a way typical of an ORM definition. A database schema for a specific

platform can also be easily generated from this model (in the next PSM step). Names of

domain objects are taken from the corresponding domain concepts. For each persistent

class, a unique identifier attribute is defined as well.

3.5.7 Transformation of Requirements and Analysis to PIM

Transformations for building a platform-independent model are more complicated

than for building the Domain Model in Analysis. They use the behaviour part of the

Requirements model as input, as well as the updated Domain Model.

The transformation of domain objects is very straightforward. Domain classes are

transformed to PIM domain objects, retaining all attributes. For each persistent class

without a primary key, an artificial primary key is created. Here the copy library is used.

For each persistent domain class, a DAO class and its interface is created in the

dataaccess package. They specialise the template-based implementation of CRUD and

filter operations.

In the Business Logic layer, classes and interfaces have a structure, similar to that

in DAO, with the exception that classes, devoid of business level methods, are excluded.

The generation of business methods is done in the general context of behaviour

generation by analyzing scenarios in the requirements.

In the Application Logic layer, for each use case, a class and interface is

generated. For this interface/class, one “main” method is generated (which means

invoking this use case from another one). Its name corresponds to the Use Case name.

Other methods for this class are generated for UI-related sentences in the scenario that are

detected by analyzing the subject of the sentence. If the subject of the sentence is an actor,

then it is actor-system sentence (or UI-related sentence).

Behaviour generation, described below, is the most complicated part. Here we

greatly rely on the meaning attached to the keyword. We use heuristics describing how

the resulting model should look if one or another keyword is used. The transformation

algorithm is complicated. A detailed description of the transformation algorithm is quite

lengthy (see [84]).

Now we present the main ideas transformations rest upon and typical examples,

representing the use of keywords in transformation algorithms.

96

Behaviour is grouped in the same way as Use Cases. For one Use Case, one or

more sequence diagrams are generated by processing its scenario. The behaviour of a Use

Case begins with invocation of the “main” method of the Application Logic class

corresponding to the Use Case.

In order to build an Application Logic method body, we look for consecutive

scenario sentences with the subject System and the recipient system (in other words, any

verb other than “System shows …). All these sentences correspond to calls to the

Business Logic layer. At first the verb used in this sentence is analyzed. If the verb is a

keyword, the sentence is analyzed according to the rules used for this keyword. If the

verb used is not a keyword, the structure of the sentence alongside with the object

keywords is analyzed. Default behaviour generation principles corresponding to the

sentence structure are applied. The immediate recipient of this call depends on the

sentence structure. If the indirect object (e.g., … for facility) is present, the call is directed

to the manager of the corresponding entity (here, FacilityService). Another typical case is

when an indirect object is absent and the direct object corresponds to a notion/class with

the stereotype <<list>>. Then the invocation is created to the manager class

corresponding to the entity class which is the list element. There are also some other

“patterns” of sentences, corresponding to the Business Logic calls (or simple actions

directly in the Application Logic layer).

The grouping of the generated Business Logic calls is done in a simple way – all

these calls up to the next UI call (corresponding to the next “System shows …” sentence)

are included in the body of the current Application Logic method body (see Fig. 43). The

“System shows … form” sentence generates a call to the User Interface layer (to the

controller of the relevant form), which completes the current body. The next sentence

(which in fact follows the “click …” condition) corresponds to the invocation of another

Application Logic method. Then building of the body of this method starts.

Fig. 43 illustrates in detail a typical application of the transformation rules

described above by an informal “model mapping diagram”, with arrows going from the

source model instances (bottom) to the corresponding target model instances (top). The

first sentence in the scenario fragment (“Customer selects facility from reservable facility

list”) follows the “click Select link” condition; therefore, it implies the method invocation

selectFacilityFromReservableFacilityList() to the Application Logic class

97

(ReservationsService). The two following sentences in the scenario correspond to the

actions in the body of this Application Logic method.

Fig. 43. An example of informal mapping describing transformations to Detailed

Design

Fig. 43 presents a detailed analysis of the first sentence. The sentence “System

builds reservable time slot list for facility” implies the Business Logic method invocation

buildReservableTimeSlotList(). According to the rules described above, there is an

98

indirect object (“for facility”); therefore, the method must go to the corresponding

manager class (to the class FacilityService). Because of build-semantics (build is the

keyword) of the verb and list-semantics of the direct object, the return type of the method

is List<TimeSlot>. The returned value must be stored in the attribute

reservableTimeSlotList (of the same list type) of the invoking application class

(ReservationsService). The next sentence corresponds to an action in the body

(assignment to the attribute reservedTimeSlotList) because of the semantics of the

keyword empty. Note that all lifelines correspond to the interfaces because any invocation

goes via the corresponding interface in our style (certainly, the body behaviour relates to

the relevant class).

There are some more rules in the approach quite similar to those explained in the

example. We do not examine the interaction with the UI layer in a greater detail.

3.5.8 The Platform-Specific Model

This model is a specialisation of the platform-independent model to a specific

platform. The choice was Java with Spring + Hibernate 3 with the greatest possible

declarative (annotation-based) style.

For this platform, the model is quite similar to the platform-independent model.

The class structure in PIM corresponds more or less to the required structure in PSM. The

main task is to convert annotations to the specific style required by Spring and Hibernate.

However, some new model elements should be added as well. In this step the copy library

is widely used which is characterized by the feature to do copying and make some

modifications depending on the transformation type

A new model is the database diagram generated from the domain objects. This is a

typical database design diagram (with tables, columns, PK, FK, etc.) in EA.

The domain objects are “copied” with the same package structure. They are used

to describe Hibernate-specific ORM functionality. All Hibernate- and Spring-specific

annotations are added (coded as stereotypes) to the domain classes, attributes, and

operations. The relevant getters/setters and some predefined methods are added to the

classes. Traceability links between PIM and PSM elements are generated by

transformations and used to maintain various annotations related to mappings between

different parts of the model.

99

For each DAO class, the annotation <<@Repository>>is added. These classes

have also annotations describing the transactional mode, the default “required” is used.

The template-based mechanism is directly taken from PIM.

The Application Logic layer classes are included in the Business Logic layer.

Classes in these layers are given the annotation <<@Service>> (to mark them as Spring

beans). The annotation <<@Autowired>> is used to initialize references to other beans.

The structure of PSM corresponds directly to the potential Java class structure

typically used in Spring (with the packages domain, repository and service). These

packages are further structured in accordance with the already defined model structuring.

In order to have a more or less complete design class structure and behaviour in

sequence diagrams, some elements in the UI area have to be specified as well. The basic

source for that – forms, attached data, and actions (buttons and links) are available in the

Analysis model. Currently a rudimentary solution directly based on Spring MVC is

proposed. In this solution, we can use JSP for data visualisation and controllers to manage

user actions. We use one controller per form, adding a method for each user action in the

form. Typically a controller method directly calls the appropriate Application Logic

method. Nevertheless, this should be treated only as a “stub” which can be replaced by a

more appropriate UI feature definition. Such a prototype form structure definition could

be incorporated in the requirements since the RSL language contains features for that

purpose. Some experiments in this direction have been performed.

Sequence diagrams, defining behaviour within method bodies, are also refined

according to the Spring requirements. The most significant changes refer to the User

Interface part. At this level, a simple version of UI and the Application Logic interaction

can be precisely defined. In particular, a special “executable” solution (including DAO

methods) could be provided for finding the object selected by the user via a data grid in a

form. This way, the form behaviour sufficient for simple prototyping could be provided.

We do not describe the UI aspects of PSM in a greater detail since the tool support for

them has not been fully implemented.

3.5.9 The Java Code

The provided PSM can be used for the Java code generation. This generation is

quite straightforward – at first all information must be transferred into a properly

stereotyped class model using the MOLA transformations (the body behaviour must also

100

be transferred from sequence diagrams to the code sections of operations in EA). Then

the properly modified EA Java code generation scripts can be used. The main issue of

modification concerns adding scripts for processing all relevant annotations.

The structure of the Java code directly corresponds to the structure of PSM.

Methods are generated according to the model. Predefined method bodies are generated

for some methods. This is widely used for domain objects (almost all methods are

generated). Bodies of getters, setters, hashCode, equals, toString are generated in

particular. A template-based generator is used and the method body vary according to the

object properties for which the method is generated.

There are also generated predefined method bodies of the TemplateDAO class and

concrete DAO classes extending the TemplateDAO class with appropriate types.

Appropriate Hibernate configuration file describing, for example, the data base

connection is also necessary. An initial version of this file can be generated. It should be

noted that a data base script can also be generated from PSM.

The Business logic- and Application Logic-related functionality is generated

according to the class structure. The behaviour (described in sequence diagrams) is

generated as well. Concerning the UI part, currently only a placeholder is generated.

The generated Java project can be inserted into an Eclipse IDE project template

containing references to the required Spring and Hibernate libraries. Thus, a ready-to-

compile project is obtained. All this constitutes a significant part of a simple prototype –

mainly the UI part has to be added manually. However, if the complete set of

transformations described here was implemented, a “near to executable” prototype would

be obtained.

Some examples of the generated Java code are given below. The example in

Listing 2 presents apart of the code generated for the Facility entity.

Listing 2. Generated Java code for the entity class “Facility”.

@Entity

@Table(name="facility")

public class Facility {

private Boolean active;

private Boolean capacity;

private String description;

private String facilityNumber;

private String id;

@Override

public boolean equals(Object obj){

101

if (this == obj) return true;

if (!super.equals(obj)) return false;

if (getClass() != obj.getClass()) return false;

Facility other = (Facility) obj;

if (active == null) {

 if (other.active != null) return false;

} else if (!active.equals(other.active)) return false;

if (capacity == null) {

 if (other.capacity != null) return false;

} else if (!capacity.equals(other.capacity)) return false;

if (description == null) {

 if (other.description != null) return false;

} else if (!description.equals(other.description)) return false;

if (facilityNumber == null) {

 if (other.facilityNumber != null) return false;

} else if (!facilityNumber.equals(other.facilityNumber)) return false;

return true;

}

@Column(name = "active", nullable = false)

public Boolean get_Active(){

return active;

}

public void set_Active(Boolean p){

active=p;

}

}

The code fragment in Listing 3 illustrates the code generated for the Application

Logic methods. They represent three methods for the Application Logic class

ReservationsService. To understand the context, one sequence diagram from the PSM

model is given in Fig. 44. There are three method invocations on the ReservationsService

lifeline (reservations, selectsFacilityFromReservableFacilityList, and

selectsTimeSlotFromReservableTimeSlotList). The methods invoked within the

corresponding fragments of the lifeline (until the return) appear within the corresponding

body.

Listing 3. The generated code, describing the system behaviour for the

ApplicationLogic class “ReservatinService”

@Service("ReservationsService")

public class ReservationsService implements IReservationsService {

@Autowired

private IChangeDisplayCriteriaService iChangeDisplayCriteriaService_;

@Autowired

private IFacilityService iFacilityService_;

@Autowired

private IReservedTimeSlotListService iReservedTimeSlotListService_;

private List<Facility> reservableFacilityList;

private List<TimeSlot> reservableTimeSlotList;

private List<TimeSlot> reservedTimeSlotList;

public void reservations(){

reservableFacilityList=iFacilityService_.buildsReservableFacilityList();

}

public void selectsFacilityFromReservableFacilityList(Facility facility){

102

reservableTimeSlotList=iFacilityService_.buildsReservableTimeSlotListFor(

facility);

reservedTimeSlotList= new ArrayList<TimeSlot>();

}

public void selectsTimeSlotFromReservableTimeSlotList(TimeSlot timeslot){

reservedTimeSlotList.add(timeslot);

reservableTimeSlotList.remove(timeslot);

}

}

Fig. 44. An example of a sequence diagram for the ReservationsService class

103

3.6 Implementation

In the ReDSeeDS project an experimental tool support for the approaches

described above has been built. The tool support is named the ReDSeeDS engine. It (and

its sources) is available from SourceForge.net [2].

The ReDSeeDS engine contains the RSL editor, integrated transformation

execution environment, and the entry point to the UML editor. The Enterprise Architect

(EA) tool [156] used as the UML editor. A tool support for automatic data exchange with

EA was built. For details see Section 3.6.4.

Model-to-model transformations supporting the MDSD path were implemented in

the model transformation language MOLA [76]. More about transformation in general

can be found in Section 3.6.1. The transformations algorithms used in the Keyword-

Based Style are described in Section 3.6.2. Model-to-text transformations implementing

code generation are described in Section 3.6.3.

3.6.1 Model-to-Model Transformations Implementation

Transformation algorithms described in style definitions (see Sections 3.4 and 3.5)

are implemented in the model transformation language MOLA [76]. The transformations

are implemented using the MOLA tool [59].

The metamodel used for transformations is the same as for other ReDSeeDS tool

components – it consists of a RSL metamodel merged with the relevant parts of the

standard UML metamodel and extended by special traceability elements. Transformations

also build the relevant traceability links in every step.

Fig. 45 presents a MOLA transformation example which creates (or finds an

existing) lifeline in a sequence diagram. The first rounded rectangle represents the most

typical construct in MOLA – the rule (for details see CHAPTER 2). This concrete rule

searches for a lifeline in a sequence diagram.

While implementing transformations, some transformation libraries were

developed and they were reused in different layers of the models and in different

transformation steps. The most powerful and most widely used library was the copy

library, used to copy some element with all its child elements to another model. For each

UML element type it was necessary to develop transformation in the library,

104

implementing the copy logic. In MOLA it is not possible to define the copy logic

independently of element types.

Fig. 45. Transformation example

In fact, when using this library it was possible to incorporate also typical changes

of the resulting model. Each use of the library was given a name. By using this name a

check-up was performed on the need for any adaption of the model elements. It was easy

to combine the library with the extensions attached to the name of the library use.

The copy library was mainly used when working with a static structure. There

were other transformation libraries used in the ReDSeeDS project, e.g., string processing,

sequence diagram creation and processing, traceability creation, etc.

Another aspect of transformation implementation should be pointed out as well.

All transformations in the chain must support repeated runs – the requirements always

change. What is even more important, for the same transformations to be applicable to the

manual model-driven development, all models in the chain should allow manual

modification. Therefore, support for various result merge actions must be included in the

transformation set. In our approach, this support mainly relies on traceability links.

Currently one kind of the merge procedure – the so-called Simple Merge - is

implemented, but more sophisticated merge procedures could be implemented, too.

Transformations were used not only to support a path from one model to another,

but also to implement such technical tasks as merge or model import/export. As a result

105

the following model-to-model transformations were developed: for the Basic style: RSL

to PIM, PIM to PSM; for the Keyword-Based Style: keyword analysis, RSL to Analysis,

Analysis to PIM, PIM to PSM, PSM to code; technical transformations: RSL scenario

visualization by UML activity diagrams, export to EA, import from EA and Simple

Merge. It should be noted that some transformation rules are reused in several

transformations.

3.6.2 Model-to-Model Transformations in the Keyword-Based Style

In this section, we briefly describe the implementation of transformation

algorithms for building the chain of models in the Keyword-Based Style.

Missing Features

Not all model transformation features outlined in the Keyword-Based Style

description have been implemented. Mainly the features related to the generation of UI

functionality are missing. The delay of transformation support for the UI functionality is

due to the fact that it would be natural to combine the generation of UI features from

scenarios with a direct specification of the UI structure in RSL (as is usually done during

the requirements specification). Although this possibility exists in the RSL language, as

already stated, currently there is minimum tool support for this.

Consequently, the UI part in the generated models is implemented minimally;

only some basic UI classes and interfaces have been created. All the remaining details of

UI, such as form elements, are not generated in the current version. Therefore, the code

generation for the UI part is not supported either, although the generation of some code

skeletons is technically feasible.

One deviation from clean usage of UML in models is also observable in some of

the examples. Assignments in sequence diagrams are emulated by the message text and

some tagged values because this feature is defined in UML in a very complicated way

and virtually supported in no UML tools. This workaround has made some

transformations more complicated.

Keyword-Based Analysis and Analysis Model

Some non-trivial aspects of transformation implementation are described below.

106

Transformation for keyword analysis (which is the first to be applied in the chain)

scans nouns, verbs and modifiers used in the scenario sentences, and fills in the keyword

field of the relevant RSL elements. This permits to specify the same keyword with several

synonyms. It could be improved further by using the WordNet meaning as the keyword.

This way it would be possible to distinguish different meanings of the same term and to

use all synonyms with the same meaning.

The next transformation is from RSL to the Analysis Model. The logic of this

transformation is relatively simple – it analyses the notion model in RSL and transforms it

directly into an UML class diagram, adding stereotypes based on the keywords set by the

previous transformation.

Creation of PIM

The most important transformation is from the Requirements and the Analysis

model to PIM. This transformation has two logical parts. The first part is the creation of a

static structure – package hierarchy, classes, and interfaces. The second part is the

creation of behaviour stored as UML sequence diagrams.

For creation of a static structure, a universal “package hierarchy copier” library is

used. The package hierarchy copier receives as input the root of the source package

hierarchy, the target package, and the copy mode. The package copier copies a hierarchy

of packages and their elements (classes, interfaces, etc.) in a way specific to the given

model. For example, it is possible to define that for some mode either a suffix should be

added to the class name or class attributes should be ignored, etc. The universal package

hierarchy copier is used in several contexts during the creation of PIM and PSM models.

In PIM the Data Access objects and the Business Logic objects are based on the Analysis

class diagram. In PIM the Data Access class should be created for each persistent class in

the Analysis model. This is ensured by using an appropriate copy mode. The same copy

package hierarchy mechanism is even more widely used in the creation of PSM since it is

based on the PIM model with some modifications.

Another important part of PIM is the behaviour description, using UML sequence

diagrams. In this case the RSL scenarios are analyzed and sequence diagrams are created.

For each scenario, one UML sequence diagram is created. The content of this sequence

diagram depends on the RSL sentences, used in this scenario. Objects, generated from a

107

sentence, depend on the kind of the sentence. There are three kinds of sentences: an actor-

system sentence defines the interaction of an actor with the system. It can be recognized

by the subject of the sentence – an actor. The subject of the two other kinds of sentences

must be a system element. The next kind is a system-actor sentence. Such sentence

typically means that the system shows something to the user or asks for some input from

the user. The third kind is system-system sentences. These sentences are used to describe

internal actions of the system, typically some Business Logic. There are different sub-

kinds of these sentences, depending on the keywords used in the sentence.

The sequence diagram elements generated from a sentence depend on the kind and

sub-kind of the sentence. At first the sub-kind of the sentence is determined, followed by

the creation of elements of the sequence diagrams. Since the UML sequence diagram

metamodel is quite complicated, a library has been created for the basic element creation

and used accordingly. The procedure for one sub-kind of a sentence consists of calls to

procedures for creating/finding the basic sequence diagram elements. It helped to separate

the transformation algorithm from the technical sequence diagram metamodel processing.

Fig. 46 provides an example of the procedure for creating the sequence diagram

elements for a system-system SVO sentence without keywords. At first the lifeline,

corresponding to the object, is found or created. Then a message to this lifeline is created.

Afterwards an operation corresponding to this message is found or created, followed by

association of this operation with the message created. Then a return message is created.

Each of these tasks is implemented as a MOLA procedure, invoked by the given

procedure. These procedures for the sequence diagram element processing are used as

building blocks. The content of one such MOLA procedure is shown in Fig. 47, which

demonstrates the search of lifeline in a sequence diagram depending on the object used in

the verb phrase. In the first rule, the notion corresponding to the noun used in the verb

phrase is found (the long chain of associations necessary to locate this correspondence is

implied by the RSL metamodel [66]). Then it is determined whether this notion or its

parent should be used and the interface corresponding to this notion is found (it has been

created during the static structure generation). In this case, the Business Logic interface is

found. Finally, the lifeline for this interface is found or created. This procedure is very

typical of transformation implementation in ReDSeeDS – it uses the MOLA patterns for

finding complicated correspondences between model elements (such complicated

correspondences are enforced by the structure of RSL and UML metamodels).

108

Fig. 46. Creation of a message for a “System-System” sentence without an

indirect object

109

Fig. 47. The procedure of finding a lifeline in a sequence diagram, depending on

the object used in the verb phrase

110

PSM Model and Initial Code

The next step in the chain is the transition from PIM to PSM. For the creation of

PSM, the package hierarchy copier described above is widely used. Only appropriate

modes are defined. The transformation algorithm, creating static structure of PSM from

PIM, is mainly based on the package hierarchy processing. There are many repetitive

steps. Most of transformations in this step could be defined by using a higher-level

language than MOLA (see CHAPTER 4). Behaviour processing in this step actually is

also copying of sequence diagrams with some small fine tuning.

The transformation from PSM to the initial code analyses the sequence diagrams

and creates the initial code. The code is attached to each relevant method. All messages

from a lifeline starting from a method invocation on the lifeline to the return message (a

message describing return to the caller of this message or a message to UI) are

transformed to actions in the code for this method. For storing a code, corresponding to

an operation, the UML comments are used (the initial code is not a standard UML

metamodel element). The transformation for code creation iterates through all messages

in the sequence diagram. The search is performed in a recursive way (based on a stack).

When it detects a call of some operation, it means the following messages will constitute

the body of this operation. If a call to another operation follows this operation, the call to

this other operation is added to the code body of this operation and this operation is added

to the stack; and the newly created operation is set to be the current. If return from this

operation to the previous operation is detected, the previous operation is popped out from

the stack. If self messages are detected, an appropriate code is simply added to the

message body. The stack is implemented by using the UML comments since it was not

possible to extend the metamodel with temporary classes (due to the requirements of

other tool components).

Summary

Implementation of these transformation rules in the Keyword-Based Architecture

Style took approximately 3 person months. Implementation of these transformation rules

consists of about 140 MOLA procedures (of a size similar to the one given Fig. 46, or

Fig. 47, p.109). Implementation of rules, currently missing, would be a small part of the

existing code.

111

3.6.3 Model-to-Code Transformation Implementation

Many MDD-based tools offer code generation from the UML models. The

Enterprise Architect (EA), the modelling tool used in the ReDSeeDS project, has the

Code Template Framework (CTF) which also provides code generation features. Just like

most of code generation tools in the MDSD world, EA does not provide a full code

generation, but code skeletons (classes, interfaces, fields and operation declarations) can

be obtained. Only packages, classes, and interfaces are used by these templates, the other

UML elements are ignored. These templates are called base templates. The latest versions

of EA (not used in the project) provide some code generation features for behavioural

UML diagrams as well (sequence, state).

Since the ReDSeeDS project uses EA for UML support, there is a possibility to

reuse all CTF capabilities of code generation. It is a significantly easier way to obtain a

code than to generate a Java model as the first step and then convert this model to a

proper code.

Base templates can be used directly for the ReDSeeDS Basic style. These

templates are applied to a Detailed design model of this architecture style. The package

hierarchy, declarations of all classes (DAO, DTO, etc.), and methods are included in the

generated code. Bodies of the obtained methods should be filled in manually since the

detailed design model in this style contains no behaviour.

For the Keyword-Based style, significantly more code can be generated, including

the behaviour aspects. Base templates do not generate the declarative annotations used in

the Keyword-Based architecture style. We underline that these annotations are specified

in the platform-specific model as appropriate stereotypes of classes, attributes, and

associations. However, code generation templates are defined by using the model-to-text

language (the CTF language) in EA. Thus, it is possible to customize the way in which

CTF generates a source code. The extension of the Java code generation template for the

Spring framework has been built. The generated code contains Spring annotations

obtained from the stereotypes.

Although behavioural diagrams cannot be properly used for code generation in

EA, they can be processed by model transformations before the code generation step. For

example, a MOLA transformation converting a message and action sequence in a

sequence diagram into a part of the code of the appropriate method body has been

112

implemented by using an intermediate model. Then such an enriched intermediate model

can be further processed by the code generation templates in EA. Since such pre-

processing is done, a great portion of the code (for example, method invocations from

sequence diagrams) is being generated, using EA. This way a meaningful executable

prototype code could be obtained directly from the requirements. If the models in the

software platform-independent and platform-specific models have been extended

manually, a true model-driven development can be carried out by this approach.

3.6.4 Integration with the Enterprise Architect

As already stated the Enterprise Architect (EA) tool [156] was used as the UML

editor in the ReDSeeDS project. However, it was necessary to exchange the UML models

between the ReDSeeDS repository and EA, as EA was used to visualize and modify the

UML models created by model transformations.

The data exchange was done by using import/export procedure. It was possible to

export the data to EA and then the user could modify the data using EA. After that the

data were imported back to the ReDSeeDS repository.

The data export to EA was done in two steps. In the first step the UML model was

transformed to the EA encoding of UML. A metamodel describing the structure of EA

Application Programming Interface (API) was used as the EA encoding of UML. The

first step was implemented in model-to-model transformation. The second step was

implemented by a Java program that was reading the data in the EA encoding of UML

and feeding them in EA by using EA API.

The data import from EA was performed similarly in two steps. At first the data

from EA API were transferred to the EA encoding of UML by using a Java program. As

the second step the data from the EA encoding of UML were transformed to the UML

model.

This two step data exchange was selected because the UML encoding in the

ReDSeeDS repository and in EA was very different. These differences were mainly due

to a strange encoding of the UML models in EA. For example, enumeration was encoded

as a class with the stereotype “enumeration”.

The author of the thesis implemented model transformations from EA encoding of

UML to UML and back. The transformation from UML to EA was implemented by using

113

23 of the MOLA procedures. The transformation from EA to UML was implemented by

using 39 MOLA procedures.

3.7 Conclusions

In this chapter a model-driven path from the requirements to the code is studied.

Two different paths built in the ReDSeeDS project are analyzed. Transformations

supporting these paths are typical transformations used in Model-Driven Software

Development. This is a great case study in building transformations for Model-Driven

Software Development from which various conclusions can be drawn.

Almost each model consisted of a static structure description and behaviour

description. When creating static structure descriptions, mainly the copy library for the

selected UML subset was used. Creation of static structure usually meant copying

elements from one model to another with some small modifications. Although the copy

library helped a lot in static structure transformation development, here still was a lot of

routine job and the amount of static structure transformations was big enough. Creation of

static structure could be described by using the mapping similar to the ones used in Fig.

38 (p.83). The effort required to build all these different cases of static structure

processing in the project was the main stimulus to develop the mapping languages to be

described in the next chapter.

Transformations, creating the behaviour part of models, were more advanced. The

most complicated part was creation of sequence diagrams from the requirements. This

task required quite complicated analysis of the requirements to produce appropriate

sequence diagrams. The algorithm was very complicated. Another issue was work with an

annoying UML metamodel for sequence diagrams. To ease work with sequence diagrams

a library for processing the sequence diagrams was created and widely used. The library

helped to separate logical work from technical processing of the UML model. In general,

the classical pattern and the rule based transformation paradigm seemed to be the most

appropriate for this part of task – thus making MOLA a very adequate implementation

language for it.

The most complex transformations were transformations generating the initial

code. Here a stack was required to keep track in which operation the code, corresponding

to this sequence diagram message, should be included. In MOLA there is no natural

114

support for a stack. Therefore, it was necessary to emulate all stack operations by using

transformations. It was also hard to determine whether this is a forward call or a call back

when using sequence diagram metamodel instances. Though MOLA could be used for

this task, clearly a specific language extension for collection processing (similar to such

libraries in the OOP languages) would be of high value.

The number of MOLA procedures for each task is given in Table 4. The number

of transformations related to static structure processing and behaviour processing is also

provided.

Table 4. MOLA procedure count in different transformations. Classified as to

processing static structure, behaviour or independent operations.

Type Transformation Static structure Behaviour Other Total

Basic Style
RSL to PIM 12 19 3 34

PIM to PSM 8 1 9

Keyword-

Based Style

Keyword Analysis 4 4

RSL to Analysis 8 2 10

RSL, Analysis to

PIM

16 32 5 53

PIM to PSM 14 2 2 18

PSM to Code 9 9

Libraries

Copy library 23 9 32

Sequence processing 9 9

Traceability library 4 4

Delete 7 7

Other 24 24

Technical

RSL visualization 19 19

Merge 26 26

UML -> EA 35 35

EA -> UML 41 41

Test 22 22

Total 81 71 204 356

115

CHAPTER 4

Mapping Languages

4.1 Mapping Idea

Transformations could be treated as mappings between the source and the target

models. However, not any transformation language is a mapping language. The author of

the thesis believes that mapping should be defined in terms of simple relations, most

probably represented by simple arrows from one element to another. Simplicity is the

key. However, in traditional transformation languages it is possible to write down very

complicated conditions. For example, in one sub-case A should be transformed to B, in

another sub-case A should be skipped, and in a third sub-case A should be transformed to

C. To describe these complicated options, all kinds of conditions spoil the simplicity of

these languages.

However, in many transformation languages, especially in declarative ones, there

appear some elements of mappings. A pattern with the source and the target elements

separated could be considered a mapping element. One side of the diagram describes

what should be transformed and the other side – what should be created. . Mapping

elements in transformation languages are described in detail in Section 4.1.1.

Although in OMG RFP [119] and in the MDA guide [111] the term mappings has

been used, today transformation languages are not treated as mapping languages. We may

consider that in general the mapping idea in transformation languages has failed.

Irrespective of that there have been attempts to create universal mapping languages.

Usually these languages are incomplete. They are practically applicable only in simple

cases when the relation between the source and the target is simple. To make them

applicable in all transformation tasks they should possess a full power of model

transformation languages. It means that they should have the same complexity as in

model transformation languages. These languages are described in detail in Section 4.1.2.

An interesting approach is used in Atlas Model Weaver (AMW) [39]], proposing

a universal mapping language. However, this mapping language is only a basis for

defining specialized mapping languages.

116

To specialise this general purpose mapping language, in fact, a new mapping

language should be built. This new mapping language should contain details specific to

the domain processed – a feature typical of domain-specific languages. As a result we can

speak about domain-specific mapping languages that could be more expressive than

general purpose languages, not loosing simplicity and understandability of the language.

Domain-specific mapping languages are discussed in Section 4.4.

Another view on mappings holds that they should be treated as an initial skeleton

of transformations to be built. An approach of this type is proposed in [50]. Mappings

build a skeleton of transformations and details are filled in the transformation language.

In this case the transformation sources are generated from mapping. To describe

transformation generation from mappings higher-order transformations could be used. A

mapping language compilation using higher-order transformations is described in Section

7.2.

4.1.1 Transformation Languages and Mapping Languages

There is no formal generally accepted definition on considering a language either

a model transformation language or a mapping language. However, in practice there is a

more or less common understanding and we present our interpretation of it.

A model transformation language focuses on a precise executable transformation

definition (that results in “Turing model completeness”). Currently, most of the

transformation languages rely on the pattern-rule paradigm. A pattern specifies what

fragment is to be found in the source model and a rule specifies what is to be done on the

basis of this fragment (in-place update or creation in the target model). Certainly, there

are big differences how the rule execution order is controlled – in a non-deterministic way

aided by various guards (NACs, when and where conditions, etc.) or within some classic

control structure.

The main paradigm of a mapping language is a direct specification of a set of

correspondences between the source metamodel and the metamodel elements. The idea of

correspondence is as follows – for each instance of the source metamodel element the

corresponding target instance is created (or its existence is checked). An additional

standard requirement claims for the language to be very easily readable; therefore

frequently the correspondences are visualized as simple arrows between the metamodel

elements. Other features of a mapping language depend on its use. A mapping language

117

may simply serve as a facility for defining transformation drafts (abstractions). Then a

transformation is manually created on this basis (with a possible automatic skeleton

generation). Alternatively, a mapping language may serve as a precise, but still easily

readable transformation specification. Then mappings are used as a source for generation

of the actual transformation definition in a transformation language. To increase the

expressiveness various additional features are added (filters, constraints, assignments,

etc.) while trying to preserve the readability; however, completeness is not so easily

reachable this way. To illustrate the main ideas behind the mapping concept a short

overview of mapping specification languages is given in the next section.

An alternative way to meet both criteria (expressiveness and readability) is to

narrow the application domain of a language – build a domain-specific mapping

language. In this chapter we present a language exactly of that kind. Such a language will

cover all typical cases of mappings in the given domain and will satisfy the readability

requirement. Certainly, there is always an option to extend the generated transformation

definition manually.

We conclude the section with some remarks on using the mapping ideas within

some transformation languages. Thus, in MOF QVT Relational [128] (especially the

graphical form) each relation reminds of a visual mapping in the case when both patterns

are reduced to the corresponding metamodel elements. Fig. 48 presents a small

transformation example in MOF QVT Relational [128]. The left side of the figure

contains a fragment of the source model and the right side of the figure contains a

fragment of the target model. Actually, MOF QVT Relational is bidirectional, therefore

the source and the target models could be exchanged. In fact, this small example reminds

of a mapping which defines that one source model fragment should be transformed to

another target model fragment. However, as soon as more constraints are added the set of

relations becomes significantly less readable and a transformation with complicated

constraints does not remind of mappings anymore. So we can conclude that there are

mapping elements in MOF QVT Relational.

It should be noted that the MOF QVT Operational Mapping sublanguage has

preserved the term mapping for denoting an operation of creating a target model element

from a source model element. However, this operation is more an elementary

transformation element with various conditions and helper operations around than a

relation in MOF QVT Relational.

118

Fig. 48. MOF QVT Relational example

A similar effect appears in some other languages as well, e.g., in ATL [63], AGG

[163]. A special situation is with the TGG [146] that has so many mapping features that

sometimes is considered to be on the borderline. TGG is a graph transformation language

extended with mapping elements. An intermediate model or a mapping model is used

explicitly defining a transformation in TGG. In this model relations between the source

and the target are directly represented. However, when the full power of patterns and

NACs is used in TGG, it is more a traditional transformation language.

Another remark concerns bidirectionality that is an important issue for

transformations, but it is out of the scope for this research since it is not so significant for

our domain.

Some mapping elements could also be observed in the model transformation

language MOLA (described in CHAPTER 2), although they are not as direct as in some

other languages. The MOLA rule consists of a pattern and action part, although these

parts are not strictly separated. The pattern part could be treated as a source of mapping

and the action part – as a target of the mapping.

4.1.2 General Purpose Mapping Languages

Attempts to create universal mapping languages as a certain alternative to

traditional transformation languages have been started sufficiently early.

An attempt to describe the mapping concept more precisely was made in the paper

by Hausmann and Kent [51] in 2003. They used the term mapping to address the general

understanding of connection between models and offered a graphical mapping language

119

to specify mappings. However, the precise functionality of mappings had to be defined in

OCL thus these relatively simple diagrams actually meant a complicated programming in

OCL, in addition, their primary concern was bidirectionality.

In the thesis of Lopes [102] the Hausmann's and Kent's ideas have been developed

much further – a mapping specification language (no special name was given to it) has

been created and implemented as an Eclipse plug-in Lopes considered the universal

approach - the specification of mappings between two arbitrary metamodels. Mapping

specification (mapping model) has been used to generate the actual model transformation

definition in ATL, more or less complete transformations could be generated if mappings

were detailed by appropriate OCL expressions. In addition, the usage of abstract syntax

(standard UML metamodel) has led to complicated mappings even for simple tasks.

Atlas Model Weaver (AMW) [39] provides a generic infrastructure and editor to

declaratively specify weaving models between two arbitrary models. The weaving models

are used to capture different kinds of links between model elements. The links have

different semantics, depending on the application scenario. In fact, AMW provides a

generic mapping (core) metamodel which should be extended in particular case. The

Higher-Order Transformations (HOT) generate actual model transformations.

The most recent approach uses composite Mapping Operators (MOps) [198]. The

basic mapping operators called kernel MOps provide the basic types of possible mappings

(like class to class, attribute to attribute, relation to relation, etc.). Kernel MOps can be

composed into more advanced mapping operators – composite MOps. Composite MOps

can be easily reused further once defined. This approach has been implemented on the

basis of AMW and also generates ATL using HOTs. All abovementioned mapping

languages are general purpose ones, applicable to any domain and are based on the

abstract syntax.

Another view on mapping languages is given in Guerra et al. [50], where it is

proposed to use mappings as requirements specification for transformations. Mapping

diagrams of transML (a language family for development of model transformations) are

used for high-level design of model transformations; from these diagrams only

transformation skeletons can be generated.

We believe that a mapping language should not be universal and complete in

order to preserve the readability. If a mapping language is complete, then really it is a

new transformation language. The mapping language should be used only for typical

120

cases. There should be a close integration with a model transformation language and the

rest should be written in this traditional model transformation language.

4.2 Domain-Specific Mapping Languages

As it was stated in Section 1.2.3 specialised modelling languages - Domain-

Specific Modelling Languages – are used for specialised modelling areas. These

languages are suitable for use in concrete domains. Domain-specific languages contain

terms specific to the domain as language elements. Consequently, language users can

operate with terms familiar to them. It raises the abstraction level and increases

productivity as well.

4.2.1 Domain-Specific Model Transformations

Similarly to modelling languages there are model transformation languages

suitable for certain domains. Actually, each model transformation language is more or

less dedicated to a certain domain. For example, MOLA is suitable for model

transformation development in MDSD. In the Epsilon project [93] a multi language

framework has been built. This framework consists of several languages. Each of these

languages is dedicated to a specialised group of transformation tasks. These languages

are: Epsilon Transformation Language (ETL), Epsilon Validation Language (EVL),

Epsilon Generation Language (EGL), Epsilon Wizard Language (EWL), Epsilon

Comparison Language (ECL), Epsilon Merging Language (EML), Epsilon Flock (a

language for model migration).

Model migration could be mentioned as a concrete transformation domain.

Currently, there are two specialised languages for model migration: COPE [52] and

Epsilon Flock [141]. In some sense these languages are mapping languages as there

declarative means are used to specify relations between the source and the target models.

It should be noted that specialised transformation languages perform better than

languages of general purpose. In TTC 2010 the same model migration task [142] was

implemented in 9 model transformation languages. The best results [140, 184] were

reached by the specialised languages COPE [52] and Epsilon Flock [141].

121

4.2.2 Domain-Specific Mapping Languages

There are domain-specific mapping languages suitable for certain domains and

based on concrete metamodels. The following are examples of such mapping languages:

 The language R2RML to map RDB to RDF [191] is currently under

development by W3C. A draft is available [195].

 D2RQ Mapping Language [44] is a declarative language for describing the

relation between a relational database schema and the RDFS vocabularies

or the OWL ontologies.

 D2R map [20] is a database to the RDF mapping language.

 Silk-LSL (Silk Link Specification Language) [1] is provided by the Silk

framework. It is a declarative language for specifying which types of RDF

links should be discovered between the data sources, as well as which

conditions the data items must meet in order to be interlinked.

 RDB to OWL [22] defines mappings to transform the RDB data to the

OWL data.

 Epsilon Flock [141] and COPE [52] for model migration.

Domain-specific mapping languages may be graphical, textual or tool driven. For

example, Epsilon Flock [141] is textual, COPE [52] is tool driven and MALA4MDSD,

proposed in Section 4.3, is graphical.

There are not so many domain-specific mapping languages, therefore research on

the creation of such languages is of importance. In the present thesis two mapping

languages of this type are proposed. A mapping language for MDSD is described in

Section 4.3 and a mapping language for the DSL tool development is described in Section

5.3.

4.3 MALA4MDSD – Mapping Language for MDSD

In this section a mapping language for MDSD - MALA4MDSD is proposed. This

language is domain-specific. It is built to transform one UML model to another UML

model. A typical application of such language is transformations from PIM to PSM in the

MDA lifecycle. Actually, the language does not support full UML - it supports only a

UML subset typically used in MDSD. More precisely, the described subset is meant for

122

transforming only the static structure of an UML model (however, it could be easily

extended to include many behaviour-related elements as well).

Unlike the mapping language approaches described in Section 4.1.2, we propose

to base the mapping language on a concrete syntax of the source and the target languages.

A similar idea has already been applied to transformation languages, e.g., in AToM
3

[96]

and [49].

The language demonstrates the cornerstones of our approach – the source and the

target model structures are represented by trees. Tree nodes specify what kind of model

elements appear in the given context and the mapping relations (arrows) from the source

to the target tree nodes specify which kind of the target model elements are created from

which source elements. Tree nodes do not correspond directly to UML metamodel classes

(abstract syntax, as in [102, 39]), but to concrete syntax elements – types of nodes

typically found in UML model trees in various UML tools (a sort of de-facto tree syntax

of UML). This makes the tree notation significantly more readable (no large amount of

abstract classes is to be shown).

4.3.1 MALA4MDSD Motivation

The usage of model transformation languages requires highly skilled specialists

with deep knowledge of metamodelling. That is one of the main reasons why the industry

has not yet widely accepted the MD* approaches and most of model transformation

languages are used only by a small group of people closely related to language

developers.

Domain-Specific Modelling (DSM) proposes to use modelling languages that use

notation and concepts specific to the domain actually being modelled. It narrows the gap

between languages being used to describe the problem and the solution. Similar principles

may be applied to model transformation languages. Instead of using a general purpose

model transformation language we propose to use domain-specific transformation

languages that use elements specific to the models being transformed. Most of the model

transformation languages (including the standard MOF-QVT) use abstract syntax

(metamodels) to specify model transformation definitions. However, users of the

modelling languages use only the concrete syntax of the language. Thus, the domain-

specific model transformation language should use familiar concepts for modelling

experts: the concrete syntax of the modelling language.

123

This should lead to the shift of roles of developers in the Model-Driven Software

Development (MDSD) process (see Fig. 49). Metamodelling experts (highly skilled

professionals) would be the developers of domain-specific modelling languages, using all

the arsenal of technologies they have. The software developers (modellers) would become

the actual developers and users of model transformations. Thus, the former model

transformation users would become model transformation developers (and users), but the

former model transformation developers would become model transformation language

developers.

Fig. 49. Schematic roles of the mapping language family users

Another crucial aspect for a domain-specific model transformation language is the

use of convenient means to represent the correspondences between the source and the

target model elements in the model transformation definition. The most intuitive option to

define model transformations is to use mappings. Mappings permit to specify

transformations in a simple way, frequently by very intuitive graphics. From the very

beginning of model transformation languages there has been an intention to define

transformations as simple mappings. The expressive power of such general purpose

mapping languages is limited; however, we demonstrate that mappings are expressive

enough for transformations in specific domains.

In this section we propose an approach for building domain-specific

transformation languages based on simple mappings and the concrete syntax of models

being transformed so as to reach simplicity, readability and sufficient expressiveness of

the language at the same time.

This section proceeds with the description of one domain-specific mapping

language – MALA4MDSD. Actually, the approach proposed could be applied to a

mapping language family. The mapping language described in this section is only one

instance of the mapping language family. Mapping languages in the family differ by the

used concrete syntax trees. The MALA4MDSD description contains occasional remarks

124

whether the described feature is specific to MALA4MDSD or common to all mapping

language family.

Section 4.4 is devoted to the description of obtaining languages of the mapping

language family.

4.3.2 Basics of MALA4MDSD

The UML model structure is greatly determined by the composition relationship

in general. Therefore, in practice it is sufficient to represent the UML model structure as

trees. The source and the target in this domain-specific language are UML models within

the same subset; consequently, both trees can contain the same kinds of nodes. For the

chosen UML subset there is a predefined set of nodes to be used in a tree. It is natural to

think of trees in this mapping language as UML instance tree patterns. They represent a

possible structure of an instance tree in a typical UML tool containing the source or the

target model. For example, it means that if a specific mapping requires that there should

be a package inside a package there will be two hierarchical package nodes in our tree.

The source and the target tree nodes are connected by using mapping relations. A

mapping relation means that if an instance corresponding to the source node is found in

the source model then an appropriate instance should be created in the target model (here

we should think of both models to be represented by their instance trees). The source tree

is traversed in a top – down manner. For each valid instance of the source node the

outgoing mappings are executed (i.e., target instances created). The validity of an instance

is checked by using the containment relationship to the parent and the filter conditions.

For the target nodes it is possible to use attribute assignment expressions to define the

attribute values of the newly created instance.

A simple mapping example is presented in Fig. 50. The topmost mapping relation

is executed first. It maps two UML models. In the source a UML model named “PIM” is

sought for. For each such model a UML model named “PSM” is created in the target. In

the real transformation context from which this example is taken there is only one model

instance named “PIM” available in the source, but we do not distinguish this situation

syntactically in our language. Then the second mapping is executed. The packages named

“Service” in the UML model “PIM” are found. For each such package (in this case again

actually only one) the corresponding package named “service” in the target UML model

“PSM” is created. The third mapping relation copies all classes in the source model

125

package “Service” to the target model package “service”. Classes with all child elements

(here – attributes and operations) are copied because the copy modifier is used (for details

see Section 4.3.5). The name of the target class is calculated using an expression. The

prefix “i” is added to the source model class name; pay attention to the use of the

reference “~c” to navigate the mapping named “c” from the target to the source. Thus, the

expression “~c.name” gives us the name of the mapping source node (class).

Fig. 50. MALA4MDSD example. UML model “PIM” is transformed to UML

model “PSM”. Package “Service” in model “PIM” is transformed to package “service” in

“PSM” model. Classes from source model package “Service” are copied to target package

“service”.

4.3.3 MALA4MDSD Elements

The list of MALA4MDSD elements is given in Table 5, consisting of two parts.

The first part of the table presents MALA4MDSD tree elements, defining the role of each

element in the UML model, the attributes usable in MALA4MDSD and the possible child

elements. In the second part the elements of the mapping language family are presented.

Table 5. List of MALA4MDSD elements

Image Element Description

Tree type elements

Model node Corresponds to UML model.

Attributes: name;

Child elements: package node,

recursive package node.

Package node Corresponds to UML package.

Attributes: name;

126

Image Element Description

Child elements: package node,

recursive package node, class

node, interface node,

component node, enumeration

node, data type node, actor

node, interaction node.

Recursive

package node

Describes the package

hierarchy of arbitrary depth in

the UML model. All elements

in the hierarchy independently

of depth are treated as children.

Attributes: name;

Child elements: class node,

interface node, component

node, enumeration node, data

type node, actor node,

interaction node;

Description: see Section 4.3.5.

Class node Corresponds to UML class.

Attributes: name, stereotype;

Child elements: attribute node,

operation node.

Interface node Corresponds to UML interface.

Attributes: name;

Child elements: attribute node,

operation node.

Component

node

Corresponds to UML

component.

Attributes: name;

Child elements: interface node.

 <<class>>

 <<interface>>

 c

127

Image Element Description

Enumeration

node

Corresponds to UML

enumeration.

Attributes: name;

Child elements: enumeration

literals (in this use case not

used explicitly).

Data type node Corresponds to UML data type.

Attributes: name.

Actor node Corresponds to UML actor.

Attributes: name.

Interaction node Corresponds to UML

interaction (sequence diagram).

Attributes: name;

Child elements: in this use

case the child elements are not

used explicitly. However, all

sequence diagram elements

should be treated as child

elements.

Operation node Corresponds to UML operation.

Attributes: name, stereotype,

type (primitive type name or

reference to type: class node or

enumeration node);

Child elements: parameter

node.

Parameter node Corresponds to UML operation

parameter.

Attributes: name, direction

(enumeration: set of fixed

values), type (primitive type

 <<enumeration>>

<<dataType>>

128

Image Element Description

name or reference to type: class

node or enumeration node).

Attribute node Corresponds to UML attribute

(coded as property without

association in UML model).

Attributes: name, stereotype,

type (primitive type name or

reference to type: class node or

enumeration node).

Association

edge

Corresponds to UML

association.

Source node type: class node;

Target node type: class node;

Attributes: stereotype, source

role, target role.

Generalization

edge

Corresponds to UML

generalization.

Source node type: class node;

Target node type: class node.

Realisation edge Corresponds to UML

realisation.

Source node type: interface

node;

Target node type: class node.

Dependency

edge

Corresponds to UML

dependency.

Source node type: class node;

Target node type: class node.

129

Image Element Description

Mapping elements

Constraint In the source tree it is possible

to define constraints in a tree

element. Constraint means that

only instances satisfying this

constraint will be processed.

Constraint language is a

simplified version of OCL.

Here it is possible to reference

tree type elements.

Attribute

assignment

In the target tree it is possible

to assign values to attributes

defined in the tree type.

Assignments are described as

follows:

<attribute>=<expression>.

Expression is defined in a

simplified version of OCL. It

describes how the attribute

value to be assigned is

evaluated. Expressions are

described in detail in Section

4.3.5.

 Mapping Mapping relates the source and

the target trees. It describes

from which source tree element

which target tree element

should be created.

Default mapping When

mapping creates a node in the

name=“domain”

130

Image Element Description

target model a traceability link

is created. Before creation of

the target instance a traceability

link is used for checking

whether there is a node in the

target corresponding to

mapping in this target context.

If such an instance is found it is

used and nothing is created. In

case such an instance is missing

a new instance is created.

Mappings are ordered top

down. Mappings have names

that could be used in the OCL

expressions. If mapping is

traversed in the opposite

direction the name is prefixed

with the “~” symbol.

Mapping copy Copy modifier means that this

element and all its child

elements should be copied to

the target model. This modifier

could be used only on mapping

relating nodes of the same type.

If assignment is used in the

target node it rewrites the

default value of the attribute

obtained using copy.

Description: see Section 4.3.5.

Mapping

copyAttributes

CopyAttributes modifier is used

to copy the node and all its

131

Image Element Description

attribute values. Child elements

are not processed.

This modifier could be used

only on mapping relating nodes

of the same type.

If assignment is used in the

target node it rewrites the

default value of the attribute

obtained using copyAttributes.

Description: see Section 4.3.5.

Mapping check Check modifier means that a

node in the target model must

be found. Creating a node in the

target model a traceability link

corresponding to the mapping

used is created. In this case the

traceability link is used to find

the node already created by

mapping with this name.

Description: see Section 4.3.5.

Pattern In the source tree patterns could

be used to describe complicated

mapping application conditions.

Description: see Section 4.3.5.

Custom MOLA

procedure

It is possible to call custom

MOLA procedures. For these

procedures the first parameter

should be the parent of

 <<class>>

stereotype=”list”

 c1 <<class>>

stereotype=“listItems”

132

Image Element Description

“Custom MOLA procedure”

node. The type of this tree type

element should correspond to

the MOLA parameter. All other

parameters are of the type

in/out and are represented as

child nodes. In this case the

types should correspond again.

Description: see Section 4.3.5.

4.3.4 MALA4MDSD UML Tree Type

To be able to define transformations it should be clear to a user what kind of

elements in the source and the target trees could be used. For each tree type element the

possible attributes and child elements should be defined.

For the UML tree type used in MALA4MDSD the root node is always Model that

can contain Packages. Package can contain other Packages, Classes, Interfaces,

Components, DataTypes, Actors, Interactions and Enumerations. Class and Interface are

allowed to contain Attributes and Operations. Operations contain their Parameters. Each

of the node types has a predefined set of attributes (name, etc.).

In Table 5 all elements of MALA4MDSD tree type are listed. For each element

the possible child elements and attributes are listed. However, it would be easier for a

user if he/she could see these possible containments graphically and there are two

alternative ways for their graphical representation. One of them is to show the tree

containing the possible elements in each position. It is possible to give a name to a sub-

tree and explicitly define it only once, if the sub-tree is used multiple times. Such a tree is

presented in Fig. 51. This tree is very useful as a reader can easily see what kind of

elements could be used as sub-elements of the given element. However, if the language

has many elements this tree may get very large. Even for the UML subset used in

MALA4MDSD it is hard to fit this tree on one page. An alternative option is to use the

syntax similar to the context free grammars [149]. In this case the non-terminal symbols

are the names attached to tree fragments. A complete tree is built by replacing the non-

133

terminal symbols with the appropriate tree fragments. This type of representing the UML

tree type used in MALA4MDSD is given in Fig. 52. This syntax is more useful for large

tree types as it is possible to split it in several small images. Both representations are

equivalent: the first is more suitable for small tree types and the other – for larger tree

types.

The source and the target trees in mapping languages are defined according to the

tree type definition. The tree node type of root elements in the source and the target trees

should be the same as in the tree type definition. Only the parent-child relations defined in

the tree type are permitted in the source and the target trees. However, a child of the same

type could be repeated multiple times in different contexts. Children of some type could

be omitted if they are not needed in the defined mapping diagram (transformation).

However, it is not possible to skip some intermediate elements from the tree. For

example, it is not allowed to use Parameter directly as a child of Class. The parent of

Parameter should be Operation.

In the source tree it is possible to add constraints to elements. It means the same

tree node type could be used multiple times as a child of the same element with different

conditions. In the target tree it is possible to add assignments to elements and the same

element type could appear multiple times as well. It is used if different mappings describe

the creation of elements in the same context.

134

Fig. 51. MALA4MDSD UML tree type definition

135

Fig. 52. Alternative tree type definition

136

4.3.5 More Advanced Mapping Elements

Elements described in Section 4.3.2 are the core of the proposed mapping

language. To facilitate the transformation development in this mapping language some

more features are introduced.

For some tasks large source and target trees with many mapping relations must be

built, therefore there is a need to divide mappings into smaller sub-diagrams. One

mapping program (transformation) consists of several ordered mapping diagrams. They

are executed separately in the given order. The root of each tree in the mapping diagram

should be the tree node of the root type in the used tree type.

Mapping Modifiers

As it was mentioned in Section 4.3.2 there are special mapping modifiers. A

mapping with the copyAttributes modifier specifies that in the target node for each

attribute an implicit assignment is performed, setting it to the value corresponding to that

value in the source node.

The copy modifier is even more powerful. It specifies that implicit mappings are

performed with the copyAttributes modifier for all children types of the node (at any

depth, according to the tree type definition). This is a very powerful feature for copying

tree fragments where nothing has to be modified. Certainly, the node types for copy must

be the same. In Fig. 53 (p.138) the copy modifier is used for enumeration and class nodes.

For enumeration the copied child elements are enumeration literals. For classes the child

elements are attributes and operations, operations in turn are copied with their parameters

– according to the type hierarchy in the tree type.

The third mapping modifier check means that nothing is created in the target tree,

only the relevant node is found by using traces between the source and the target (another

kind of arrowhead is used here). Such mappings are necessary, and as an example here

may serve the location of edge endpoints in the target tree as in Fig. 53 (p.138).

Expressions

Constraint can be used for tree nodes in the source tree. Constraints are used to

restrict the set of instances corresponding to the tree node. Constraints are defined by

using an OCL subset. In expressions a supported OCL subset is similar to a supported

137

OCL subset in MOLA. In the OCL expressions tree type attributes could be used.

Actually, the most popular constraint type implies adding a condition which checks that

the values of attributes satisfy the conditions defined by the constraint. It is also possible

to navigate the tree upwards; in this case “.parent” navigation is used.

Expressions are used in the target tree to define the attribute value assignments. It

is possible to traverse mappings in these expressions. If mapping is traversed in the

opposite direction, the name is prefixed with the “~” symbol. Mapping traversion is

defined as navigation in the OCL expression. Similarly to constraint the attribute values

could be used in these expressions as well.

Recursive Elements

As it was already mentioned in the previous section a UML package can contain

other packages. It means there could be a package hierarchy with arbitrary depth.

Sometimes we want to process this hierarchy in a generic way. Therefore, in our mapping

language for packages it is possible to use a special type of node representing the whole

package hierarchy (see Fig. 53, the 3
rd

 node in the source tree). It means that the mapping

applies not only to the packages in this level, but to all packages in the hierarchy. This

modifier could be used in the source tree, as well as in the target tree. If the modifier is

used in the source and the target trees it means that the package hierarchy must be

preserved in the target as well. If the modifier is used only in the source tree it means that

in the target tree the package hierarchy must be flattened. It is possible to add child

elements to this package hierarchy, e.g., classes: if it is done, all classes in this hierarchy

(satisfying other constraints) should be processed.

Edge Processing

So far we have considered only nodes in a UML model. However, there are also

edges in UML (in the sense of diagram syntax). These edges should be processed some

way as well. Therefore we add to our language edges typical of a UML model:

Association, Generalization, Implementation and Dependency. These edges are

represented as links between the tree nodes. Edges can be used both in the source and the

target trees, edges can be mapped as well. The edge processing is done after both nodes

connected by this edge are processed. In general, the edge end instances in the target are

138

determined by maps of the corresponding line ends in the source; in more complicated

cases patterns should be used.

Fig. 53. Mapping example from the ReDSeeDS project. Transformation in

MALA4MDSD, demonstrating the edge processing and hierarchy flattening

An edge mapping is given in Fig. 53. All Associations and Generalizations

between classes in the predefined package hierarchy are copied to the target. All classes

in this hierarchy have already been copied before the edge processing (by the mapping

cl2cl). To find for an association the other end class in the target the mapping cl2cl is

duplicated from another class node in the source (the other end of edge in the source), but

this time with the Check modifier.

Patterns and Conditional Expressions

If the value to be assigned depends on some source element properties,

conditional assignments (assignments included in if-then block) can be used. Of course, it

is possible to code these source elements with different property values as different kinds

of the source node. However, if only the attribute values in the target depend on these

139

conditions it is not effective to introduce additional source nodes. Conditional assignment

is used in 4
th

 target node of Fig. 54 (p.145).

The same could be said about the application of constraints on mapping relations.

It is possible to create different source node sets using filter conditions; however, if only

something specific should be added to the target model while general mapping is the

same it is not effective to add special nodes to the source tree. Adding an additional

constrained mapping relation to a source node is a significantly more readable way.

Sometimes composition relationships alone are not sufficient to define the

mapping application context. Therefore it is possible to use source patterns, mapping

relations with application condition and conditional assignments in the target. Patterns are

needed to increase the expressiveness of the mapping language – to add some of the

power of pattern and rule based transformation languages. Typically patterns are used to

add constraints to nodes, especially when a node should be connected to another node

using some edge. However, patterns in this language are not as expressive as patterns in

MOLA. The difference is that only the node types and edge types defined in the tree type

may be used in a pattern, but not arbitrary domain metamodel classes and associations as

in MOLA.

At least one of the nodes in a pattern should be connected with the source tree by

using a parent-child relation. It is possible to give names to pattern elements, in the same

way as to class elements in MOLA rules. Only one mapping from a pattern is supported.

The node (or edge) used as the source of mapping is the main node in the pattern. If the

mapping from a pattern is traversed in the opposite direction, then the tree element

located by default is the source of mapping, however, navigation expression could be

continued with the name of the pattern element. It is useful, if the attribute values of other

pattern elements are required.

Integration with Custom Transformations

Although features have been introduced to raise the language expressiveness it is

not possible to write an arbitrary transformation between the models in this mapping

language. Therefore, it should be possible to extend the mappings defined in this

language by explicit custom transformations. We have chosen MOLA as the language for

custom transformations. We have introduced a special tree node type named “custom

140

MOLA procedure”. In this node it is possible to specify the MOLA procedure name to be

applied when the given node is executed. The MOLA procedure can have parameters.

Rules are defined how to represent these parameters in the mapping tree.

The first parameter for these procedures should be the parent of the custom MOLA

procedure node. A type of this tree type element should correspond to the MOLA

parameter. All other parameters are of the type in/out and are represented as child nodes.

In this case the types again should correspond. It is possible to use the already found

elements as child nodes, references to these elements are defined as a path to the tree

nodes.

A study of typical application contexts of custom procedures is left for future

research. This study might reveal the need to introduce new mapping modifiers to

enhance the use of custom transformations.

This feature enables the possibility to apply the mapping language to

transformation tasks when transformation is defined by combining simple mappings with

explicit transformations for complicated fragments.

4.3.6 Mapping Language Semantics

The previous sections contained a description of the mapping language syntax.

Below a description of the mapping language semantics is offered.

Multiple mapping diagrams are supported in the proposed mapping language. As

already stated in Section 4.3.5 these diagrams are ordered. The mapping diagrams are

executed according to the ordering.

Multiple mappings are used in the same mapping diagram. Mappings in a diagram

are ordered as well. It is possible to explicitly define this ordering; in this case an explicit

ordering is used. Mappings are ordered top–down according to the source end if the

ordering is not defined explicitly. It should be noted that multiple mappings from the

same source node are also ordered top–down.

The only exception is mappings from edges. In the ordering they are placed

directly after the second node (the end node of the edge, located farther in the mapping

ordering).

For target nodes without incoming mappings (nodes created with a parent),

mapping is introduced. The source of the mapping is the same as the source of the parent

node mapping. In the mapping ordering these mappings are inserted directly after the

141

parent node mapping. If the multiple children of the parent node have no mappings, these

newly introduced mappings are ordered top–down according to the target.

Using the principles described above it is possible to obtain a mapping ordering

for any mapping diagram. Mappings in the diagram are executed according to the

mapping ordering in the top–down manner.

Mapping Semantics

Although we use mappings to define a transformation from the source tree to the

target tree, actually we want to transform models. These models are related to a tree type.

For details see the mapping language definition facilities in Section 4.4. A transformation

defined in terms of tree nodes could be translated in a transformation defined in terms of

the source and the target models.

To execute a mapping we should find an instance set satisfying the mapping

application conditions defined by the source tree. This condition is defined by the source

tree fragment from the source node of the mapping, including all its parents, to the source

tree root. Of course, conditions defined for these nodes should be included in this

constraint. This could be treated as a pattern describing the application context of

mapping.

When executing a transformation, the pattern defined in terms of the tree type

should be transformed in the pattern defined in terms of model. It should be noted that it

is possible to perform such transformation by using the tree type definition described in

Section 4.4. A pattern defined in terms of model will be used to find the model instances

to be transformed.

When processing the current mapping in instance level, the target instance created

by the mapping should be attached to the appropriate parent instance in the target tree. It

is necessary to find this parent instance corresponding to the parent tree node. The parent

tree node should be related to the source tree by using some already processed mapping

relation. Besides, the already processed mapping relation (from the target node parent)

should go to the parent of the current mapping source node. If these conditions are not

satisfied, it means the mapping diagram is semantically incorrect.

As the parent in the source tree (the source of the already processed mapping

relation) is included in the pattern describing a possible application condition of the

142

mapping, it is possible to create a pattern describing how to find an instance of the source

parent node from the source node instance of the current mapping. It is also possible to

define it in terms of models.

For mappings in our mapping language there is the semantics “Create, if does not

exist” and for each performed mapping traceability information is created. It means that

by using this traceability information from the source node instance of the already

processed mapping it is possible to find a corresponding target node instance. This feature

together with the previously described pattern could be used to find the parent instance

for the target node instance of the current mapping.

Before execution of the current mapping it should be checked whether such

mapping has not been executed before. Traceability links are saved in models, therefore,

it is possible to define this check in terms of the source and the target models. Checking

of the existence of such mapping is done by using the mapping name.

If nothing is found we should create an instance of the target model. This again

should be done in terms of model. The target tree node type is transformed in terms of

model element creation. The mapping source node again should be transformed in terms

of the domain metamodel. Between the source node (defined in terms of model) and

between the target node creation (defined in terms of model) the traceability creation

should be defined in terms of model. Creation of the relation between the target tree node

and its parent should be defined in terms of model as well.

The property values of target element are assigned according to the assignment

description in the target tree. This description again is translated in terms of models.

In this way it is possible to translate the execution of mapping in terms of the

source and the target models. This translation is described in detail in Section 7.2.

Mapping Modifiers

In addition to simple mappings it is possible to use mappings with mapping

modifiers. In the latter case the execution semantics is modified a little.

If the check modifier is used, the mapping execution stops at the point of checking

whether such a mapping exists. The test of the mapping existence is done for each node

satisfying the mapping application conditions. If mapping does not exist for some node,

143

then error is produced. Child elements of this element are excluded from the application

context of the mapping following this mapping in the mapping ordering.

It should be noted that copy and the copyAttributes modifiers could be used only if

the node types in both ends of the mapping are the same.

If the copyAttributes modifier is used, the mapping execution semantics is as

described in the previous section. Only when transforming the target tree node to its

creation in this element, the attribute value assignments are added.

If the copy modifier is used, the execution semantics is the same as for mapping

with the copyAttributes modifier. The extension means that child cloning should be done

as well which is performed by a call to the universal instance copier.

Edge Processing

Mappings outgoing from the edges should be processed as well. For edge

mapping an application condition in the source tree is defined by the trees for both ends

of the edge. It means that in the pattern describing the edge mapping application two

paths to the root node are added. This pattern defined in terms of tree nodes again should

be transformed in terms of the source model.

The ends of the edge in the target model should be linked with mappings to the

nodes included in the pattern defining the application context of the edge mapping. This

way, similarly to the location of the parent node, it is possible to locate the ends of the

edge to be created in the target.

The rest is similar to the mapping processing for nodes.

Other Elements

Conditional mapping is treated as an additional constraint added to the mapping

application context. The pattern adds additional constraints to the mapping application

context as well. The pattern is translated in the pattern defined in terms of the domain

metamodel. The rest is similar to the mapping execution semantics defined above.

Conditional assignment does not affect the mapping execution semantics. The

only change is in translation of the attribute value assignments to the model terms.

144

4.3.7 Mapping and Transformation Comparison

In this section we will compare UML to UML transformation development in the

mapping language MALA4MDSD and in a traditional transformation language. As

already mentioned above a typical application of this language is transformations from

PIM to PSM in the MDA lifecycle.

In the IST 6
th

 framework project ReDSeeDS a model-driven path from the

requirements to the code is investigated [3], as already described in CHAPTER 3. Two

different transformation sets (“styles”) from the requirements to the code have been

developed. Each set contains a different structure of Platform Independent (PIM) and

Platform Specific Models (PSM) and different transformations between them. These

transformations have been developed in the model transformation language MOLA [76].

For a detailed description see CHAPTER 3 and [84].

We have rewritten the static structure processing of PIM to PSM transformations

in the language MALA4MDSD. Table 6 contains statistics about transformations in

MOLA and transformations in MALA4MDSD. For the simplest – the Basic style

transformations - 19 MOLA procedures (diagrams) were needed while it was possible to

write the same in MALA4MDSD with only 19 mapping links.

Table 6. Comparison of transformations from PIM to PSM, developed using the

model transformation language MOLA and the mapping language MALA4MDSD

 Basic style Keyword-based style

MOLA procedures 19 51

MOLA rules 84 137

MOLA class elements 265 418

Mapping diagrams 3 8

Mapping links 19 41

Mapping nodes 29 (source:11; target:18) 66 (source:27; target:39)

In Fig. 54 one mapping diagram from the Keyword-based style transformations is

presented. In this diagram copying of Classes, Interfaces and Interface realizations from

the PIM model to the appropriate place in the PSM model is presented. Classes and

Interfaces in the PIM model can be located in the sub-package hierarchy under the

packages “businesslogic” and “applicationlogic” (the 3
rd

 node in the source tree

145

represents the package hierarchy). The same sub-package hierarchy should be retained in

the target model. In Fig. 54 edge processing and conditional assignment is used as well.

Fig. 54. Mapping example from the ReDSeeDS project. Transformation in

MALA4MDSD is demonstrated. MOLA transformation for the highlighted part of the

same task is presented in Fig. 55.

In Fig. 55 (p.146) a part of MOLA transformations implementing the same logic

is presented. Actually, here only the package hierarchy is processed and the class and the

interface copiers are invoked. It corresponds to the coloured part of MALA4MDSD

diagram in Fig. 54. All the copy logic is defined directly in other MOLA procedures. This

copy logic description is quite long as there has to be described that attributes, operations

and operation parameters should be copied and how they should be copied in terms of

UML metamodel. The mapping part above the package hierarchy symbols is described in

another MOLA procedure. Interface realization processing is not presented in this MOLA

transformation either.

146

Fig. 55. Transformation example from the ReDSeeDS project. The same

transformation fragment in MALA4MDSD is coloured in Fig. 54.

A reader may get the impression that MOLA is not a suitable language for this

task and other transformation languages would do better. However, it is not the case.

Transformation languages usually deal with UML in its abstract syntax. Therefore, all

147

processing of all classes and associations according to the UML metamodel should be

precisely defined. In the mapping language UML logical elements (a sort of concrete

syntax) are processed and a user should not care whether this logical element is

represented with an instance of one class or with instances of two classes connected with

an association (and so on) in the UML domain.

4.3.8 Related Work

All mapping languages mentioned in Section 4.1.2 are general purpose languages,

applicable to any domain and they are based on an abstract syntax. Differing from the

approaches described in Section 4.1.2, we propose to base the mapping language on a

concrete syntax of the source and the target languages. For transformation languages a

similar idea has already been applied, e.g., in AToM
3

[96], and by Grønmo in [49]. A

concrete syntax is used directly in model (graph) transformation rules that lead to a more

familiar representation for modellers. However, this approach lacks the simplicity and

power of representation of correspondences between model elements offered by the

mapping languages.

There is also a similarity between our approach and a Model Transformation by

Example (MTBE) [199] where transformation examples are specified as mappings in a

concrete syntax. However, the MTBE approach requires a reasoner for transformation

synthesis from examples while in our approach the defined mappings are complete

transformation definitions.

Although models in the context of model-driven software development are graphs

and not pure trees, we have made a brief overview on several areas where transformation

languages are operating on the data represented by trees.

XML is the most popular and widespread technology. XSLT [194] is the

transformation language used to transform data in the XML format. Although XSLT itself

is an XML-based textual language, there are tools that use mappings to represent XSLT

transformations, e.g., Stylus Studio XSLT Mapper [132] and xsl:easy [154]. The source

and the target schemas are represented by fixed trees and all transformation logic is

specified by using much more complex mapping features than it has been done in our

approach.

Another field of data being trees is program rewriting. Though, the tools and

languages, like Stratego/XT [23] or TXL [29], are intended for the analysis, manipulation

148

and generation of programs, their features make them useful for transforming any

structured documents.

4.4 Domain-Specific Mapping Language Definition

So far very few responsibilities of a mapping language developer have been

described, namely, only to create definitions of the relevant tree type. In fact, this is only

a small part of the job. The precise definition of the general mapping language execution

(semantics) as far as provided in the previous sections was only from an instance tree to

another instance tree. However, in real life there are only models (compliant to their

metamodels) in various modelling languages and in various forms – exports from

modelling tools, models in repositories, such as Eclipse EMF [166], a.o. So there must be

facilities how to get from a model to a tree and vice versa. To make our mapping

language family usable in practice a uniform solution has to be provided for these tasks.

4.4.1 MALA4MDSD Definition Issues

The previous section presented one specific mapping language for transforming

the UML models. Now we want to discuss the basic principles according to which this

language was defined and their possible application to similar model transformation

cases.

The first issue is an appropriate selection of the model elements to be represented

in the tree (source, target or both) – the nodes of the tree type. A natural hierarchical

subset of the modelling language concepts has to be selected for the chosen domain.

Containment has to be the most important relation in this subset since all its elements are

represented in one tree. For example, the tree type defined in Section 4.3.4 described the

static structure of the UML class model for typical MDSD. The chosen subset

corresponds to the one represented in the model tree in most of the UML tools for a class

model structure. Another selection criterion implies the elements to be represented by

nodes or their subparts in the relevant diagram notation – a class diagram in the given

case. The corresponding diagram notation is also the main source for the choice of

elements to be represented as edges in the tree type – associations, generalisations,

dependencies and realisations in the example. Lines are not shown as tree nodes, they are

attached to the nodes when required (many modelling tools show also lines directly in the

149

model tree). The notation used in our approach is a more convenient way to show how the

end points of lines are defined during the mapping process (when selected in the source or

created in the target).

Since the choice of the tree type elements is based on the existing diagram (or

tree) notation of the model, it certainly represents the concrete syntax of the modelling

notation. The concrete syntax is normally much more compact than the corresponding

abstract syntax – the domain metamodel. The ratio is about 1 to 3 for the selected UML

fragment. Certainly, this concrete syntax has to be unambiguously mapped to the domain

metamodel (abstract syntax) since our approach to the mapping language implementation

finally converts a mapping definition to transformation in MOLA working upon the

domain. The traceability between the source and the target is also defined at the domain

level. Such a mapping is obvious in our example, but it should be easy to define it in other

cases as well.

Another feature of the language definition is the attribute list for each element in a

tree type. Certainly, the attributes of the domain metamodel class mapped to the given

tree element can be used in this role. However, non-containment associations navigable

from the domain class (with multiplicity 1 or 0..1, playing the role of references) can also

be defined as attributes – their type is the target class in the metamodel. Again, the

inspiration for such attribute selection is the diagram notation – they are visualised within

the main element. For example, in our mapping language, such attributes are operation

type and class stereotype.

A specific mapping language is uniquely defined by its complete source and target

tree type and the mapping of the tree elements to the domain metamodel. There are no

domain-specific features in the mapping definition facilities and various expressions are

used there. Only the mapping modifiers could be domain-specific – copy and

copyAttributes are meaningful only if the source and the target trees are of the same type,

otherwise some other domain-specific processing of complete sub-trees could be added.

4.4.2 Mapping Languages Definition Facilities

We propose a uniform solution for relating the models in a modelling language

(such as UML) to the trees conforming to a tree type describing the selected part of the

language in the form of trees extended by some edge types (e.g., the tree type simpleUML

for MALA4MDSD). Certainly, we assume the metamodel of the language in MOF to be

150

given. The solution – domain-to-tree mapping – is based on the tree type itself. It extends

the tree type by the OCL expressions based on the metamodel and a few predefined

keywords. Our mapping definition will directly show how a mapping defined in terms of

tree nodes could be translated in a transformation defined in terms of models.

We will specify which metamodel class is at the basis for each node type (by

using the Class keyword). In addition, a selection expression in OCL can also be provided

if not all class instances qualify. Further, for each attribute we want to include in the node

type an OCL expression describing how a relevant value from a model should be

extracted. If that expression is to return a reference to another node type in our tree type,

the Node function is used (certainly, its argument must have a type equal to a class

mapped to a node type). The Node function is used to define the finding of association

end nodes in the tree type definition, demonstrated in Fig. 56.

For each containment (parent-child) relation an OCL navigation expression

specifying how child instances can be reached from the parent in a model must be

provided (after the keyword Path). A node with a transitive containment (such as Package

in UML) must provide a special Path expression (marked with an icon) within it,

indicating how the next contained instance of the same type may be reached.

Similarly, the metamodel class the edge types are based on must be specified.

Attributes are specified the same way as for nodes. A new element is the path in a model

by which the relevant end node instance can be found.

It is possible to name branches of the tree type definition and to use this name as a

reference to the tree type branch supported in this position, similarly as it was done for

the MALA4MDSD tree type described in Section 4.3.4. Actually, the tree type

description similar to the one used in Section 4.3.4 is obtained from the tree type

definition throwing out the OCL expression.

A mapping language developer has to define one or two domain-to-tree mappings

to specify the language.

Fig. 56 illustrates how the tree type simpleUML can be defined on the basis of the

standard UML 2 metamodel. A slightly simplified version of the metamodel is assumed,

e.g., such as used for the UML 2 tool in Eclipse [178] – just to avoid unnecessary

packages, etc. All OCL expressions are assumed to be based on this metamodel. Only the

top three node types: Model, Package and Class are visible in the fragment, but the

continuation is quite similar. For all three node types the name attribute is defined in a

151

natural way (the OCL self points to the node base class). The containment relation in all

cases is defined by the same OCL navigation expression self.packagableElement – the

UML metamodel is built this way. Only the Association edge is visible in the fragment.

The role and stereotype attributes are defined for it (their definitions rely on the fact that

only binary associations (with two ends) are used in our UML subset). Since both ends of

an association are attached to classes, two similar end specifications are given.

Fig. 56. Mapping language definition; fragment of the MALA4MDSD definition

The completion of Fig. 56 for all node and edge types is sufficient for the

definition of MALA4MDSD. It should be completely clear now how it is possible to

translate the transformation definition in terms of metamodel elements. The given

mapping clarifies also how the node and edge typed parameters can be converted to

metamodel elements (and vice versa) when a transformation language procedure is

invoked from a mapping.

Another element to be defined is the “implementation” at the model level of the

special trace edge between the trees. Since keeping the transformation traceability is of

value for model management, typically a special class with associations should be added

to metamodels (as it was done in the ReDSeeDS project).

This mapping definition is also sufficient for creating an implementation of a

mapping language. The compiler and the editor could be generated from the tree type

definition in a generic way (see Section 4.6).

152

To conclude some suggestions are offered for defining a specific mapping

language. When an appropriate domain and a modelling language (together with the

metamodel) for it have been selected, the tree type definition should include all relevant

language concepts representable in a hierarchic way. Containment relations are typically

based on compositions in the metamodel, but it is not mandatory (see the example in Fig.

59 p.155). Only those edge types which are relevant to the tasks to be solved in the

domain should be included. The same holds true for attributes of the types.

4.4.3 Metamodel of Mapping Language Family

In this section metamodels of the mapping language family are considered. There

is a core metamodel common for all mapping language family. This metamodel is

presented in Fig. 58. A metamodel for the definition of the mapping language is given in

Fig. 57.

Fig. 57. Type definition for the mapping language family

153

Fig. 58. Core metamodel of the mapping language family

154

4.5 Other Applications of the Proposed Approach

A wider application of the proposed mappings to UML-to-UML transformations is

possible. For example, the UML subset for MALA4MDSD can be extended to include

several behaviour aspects important for the MDSD tasks. The creation of interactions

(sequence diagrams) in the basic cases can be described just by adding interaction and

lifeline nodes and the message edge to the tree type definition (the message ordering can

be emulated by the target tree element ordering). The gain with respect to explicit

transformation specification of the same task is huge since the UML metamodel here is

very “verbose”.

4.5.1 UML to RDB

The approach is appropriate for many other cases where UML is not involved at

all or only one of the sides (source or target) is related to UML. A brief description of an

example of this kind follows. It is a classical model transformation task solved almost by

every model transformation language – Class Model to Relational Database (RDB). The

precise task description can be found in the appendix of the MOF-QVT standard [128],

therefore we do not repeat it here in detail.

The task is to transform the persistent classes of a simplified UML model to tables

of a simplified RDB model. A persistent class maps to a table containing a primary key

and an identifying column. Primitive-typed attributes, including the inherited ones, map

to columns of the table. An association between two persistent classes maps to a foreign

key relationship between the corresponding tables. The only simplification of the original

task is removing the recursive processing of attributes having complex data types. The

solution of the task by using our approach is given in Fig. 59.

Containment relations in the source and the target trees are based mainly on the

composition hierarchy in the source and the target metamodels. For example, Table node

in the target tree may be owned by Schema node, but Key and Column may be owned by

Table node. This is a natural representation and similar trees can be found in almost every

database management tool.

However, we want to emphasize the flexibility of our approach – the containment

relations represented by the highlighted lines in Fig. 59 are not based on composition. The

first one shown as a double filled arrow represents the transitive closure of all super-

155

classes of the given class. It can be defined by means of OCL due to the closure operation

introduced in OCL 2.3 [126] (see tree type definition fragment in Fig. 59). The second

non-composition containment relation represents the association in the simplified UML.

In fact, there are many cases when the model can be represented completely as a pure tree

using different containment relations depending on the needs of concrete developers. As

one can see in Fig. 59 the shapes of containment relations may be adjusted according to

the concrete syntax of the used modelling languages.

Fig. 59. UML to RDB example

4.5.2 UML to XMI

There are several other transformation examples that could be very adequately

specified by using the proposed mapping language approach. One such example is

transformations from UML to XML. In this case the source tree could be similar to the

one described in Section 4.3.4.

The XML tree could be used as a target tree. Since the XML document already

has a tree structure, the target tree can be built straightforward. The root node in the XML

156

tree should be XML document which contains XML nodes that in turn may contain other

XML nodes and XML attributes. This mapping language, for example, could be used for

writing a transformation from UML to WSDL. Of course, such transformation is already

implemented in many UML tools and has been described in [102]. However, in our

approach the mapping between the source and the target is visible. If you have a concrete

WSDL file generated from some source model it is easier to understand how elements in

this WSDL file have been created. You can select one XML node in the WSDL file, it is

easy to find the corresponding node in the target tree as the structure of the target tree and

the resulting XML file are similar. Using mapping relations it is easy to understand which

UML model elements influenced the creation of such node. Consequently, this mapping

definition could be useful as documentation.

Of course, UML to WSDL is not the only case when XML files from UML

models are generated. Almost all UML tools have XML export. Usually XMI export is

used, however, sometimes tools use their own custom formats. The export semantics

could be described by mapping from UML to XML. UML models could be also used to

describe the data interchanged by applications. In this case it is possible to generate XSD

schemas (actually XML) describing the interchanged XML files. The same could be said

about Hibernate configuration files, all kind of XML data stores, a.o.

4.5.3 Other Examples

Other examples where this approach should work could be migrating data from

RDB to the existing ontologies with a similar structure (similar to the task discussed in

[53]) and even for more complicated relational data transformation.

The transformation algorithm from RSL static structure to PIM static structure in

Fig. 38 (p.83) has already been described by applying informal mappings which was

demonstrated by means of an example. However, this example demonstrates that the

source and the target models of transformation could be naturally described using trees.

By replacing concrete instances from the example with tree type elements a mapping

language could be obtained. The mapping language for the static structure transformation

in RSL to UML could be easily created. It would be an adequate means to describe the

transformations defined in the ReDSeeDS project.

However, in no way the proposed domain-specific approach is intended to replace

model transformation languages in general. The pattern and rule based paradigm

157

supported by most of the transformation languages is much better for transformation tasks

which involve a complicated graph-based source model analysis. For example, tasks

involving a graph structure analysis, such as finding well-structured components during

the compilation of BPMN to BPEL [36], are inappropriate for the proposed mapping

language.

It is likely that the mapping language would not be appropriate for defining

transformations creating the behaviour part of PIM. In these transformations the pattern

based analysis of the scenario sentences is widely used. Transformation languages like

MOLA are more appropriate for this task.

Other limitations are related to the DSL approach in general – a certain amount of

similar transformation tasks in a domain should be required to be implemented in order to

outweigh the costs for the language support development.

4.6 Implementation

The main difficulty of successful adoption of a domain-specific language is the

rather complex and expensive development of the language implementation.

MALA4MDSD has not yet been implemented fully, however, the implementation

principles are clear and the feasibility has been tested. The planned implementation

scenario is the main topic of this section. We propose a universal implementation of the

described mapping language family instead of implementation just for MALA4MDSD.

From the language user perspective a graphical development environment for

transformations in this language and its compiler/interpreter must be created.

From the language developer perspective a tool support for the tree type definition

is required. It should support the definition of a tree type on the basis of the

corresponding metamodel. In the tree type definer definition facilities for the following

elements are required: tree node types, tree node styles, permitted tree node containment,

tree node type attributes, edge types, edge styles, edge context and finally relations

between the tree type elements and the given metamodel. This involves creation of

relatively simple graphical elements and property dialogs. To implement such editor, a

graphical tool building framework could be used, e.g., GMF [172], Microsoft DSL Tools

[28], GRAF [12] or METAclipse [86].

158

On the basis of the defined tree type (or a pair of them) a mapping

(transformation) development tool for the defined mapping language should be created.

Such a tool would embrace universal features and domain-specific ones. The universal

features would include a generic support for creating a pair of trees, mappings between

them and simple patterns. The domain-specific features are the specific tree node styles,

edge styles, possible attributes and restrictions describing the permitted node/edge type

containment. This tool could be created by using a model based DSL tool development

framework. Appropriate candidates are transformation based tools GRAF [12] or

METAclipse [86]. There the universal behaviour could be defined by using the tool

definition facilities. Transformations describing the language specific behaviour of the

tool could be generated by using higher–order transformations. In this case special

languages for transformation synthesis would be useful, e.g., Template MOLA [69] or the

extension of ATL described in [182]. Since the behaviour of METAclipse framework is

defined by using the model transformations in MOLA [76] and Template MOLA is

adapted to synthesise model transformations in MOLA, METAclipse + Template MOLA

are selected for implementation of the mapping language editors.

Another issue is the mapping language compiler/interpreter. In this case a

universal mapping interpreter/compiler could be built. The input data for the mapping

interpreter/compiler will be the mapping language specification (domain-to-tree mapping

based on the given metamodel) and a concrete mapping model in this language. One of

the possible implementation scenarios is a compiler to model transformation language

using higher-order transformations. Template MOLA could be used for this task again.

However, an interpreter solution also looks feasible.

The compiler and the editor development of the mapping language family by

using Template MOLA is described in detail in Section 7.2.

To conclude, appropriate means for the implementation of such a mapping

language family does exist, only its implementation requires a certain technical effort.

4.7 Conclusions

In this chapter the use of domain-specific mapping languages is discussed. It is

proposed to define model transformations by using simple mapping relations and tree

syntax of the source and the target models. As a result it is possible to define typical

159

model transformations in terms familiar to modellers and therefore these domain-specific

mapping languages could be applied by a much wider class of users.

The proposed general principles have been applied to a family of the mapping

languages where a language for a specific domain is defined by specifying the tree syntax

for the source and the target. One specific mapping language – MALA4MDSD for

transformations from PIM to PSM (a UML subset to a UML subset) – is discussed in

greater detail. A concrete syntax similar to the model trees in UML tools is used for the

source and the target models. The transformation development in this language is

compared to the transformation development in a traditional model transformation

language. A significant gain both in transformation size and understandability has been

noticed since there is no need to deal with the technical details of the UML abstract

syntax.

We propose a generic approach to the creation of domain-specific mapping

languages. To define a mapping language, the tree types of the source and the target trees

and their relations to models should be defined. This should be done by an expert in

metamodelling and OCL. However, this should be done only once for a mapping

language. Of course, the creation of a mapping language pays off only if multiple

transformations in the same domain should be defined.

In no way the proposed domain-specific approach is intended to replace model

transformation languages in general. For transformation tasks which involve a

complicated source model analysis the pattern and rule based paradigm supported by

most of transformation languages is much better. For example, tasks involving graph

structure analysis, such as finding well-structured components during compilation of

BPMN to BPEL [36], are inappropriate for the proposed mapping language.

160

161

CHAPTER 5

Transformations for DSML Tool Development

DSML tool development is another application area of model transformations.

Transformation development for DSL tools is discussed in this section. The use of

transformations and mappings in DSML tool development will be considered.

5.1 State of the Art in DSML Tool Development

The existing approaches for DSL tool development are briefly described further

on.

5.1.1 Terminology Explanation

To start with, some terminology clarification is required as today different DSML

development frameworks use completely inconsistent terminologies, even the terms

model and metamodel are used differently depending on the context. For example, the

mapping-based GMF [172] speaks only of two layers: model and metamodel, everything

a tool builder creates is termed a model. We propose to combine both the transformations

and the static mapping context. To avoid misunderstanding, a consistent terminology and

its relations to be used in this chapter are defined in Fig. 60.

As we can see the domain metamodel is defined using MOF [120] as a meta-

metamodel. A domain model is created according to the domain metamodel. It should be

noted that alternative domain meta-metamodels used in some approaches in fact play the

same role as MOF (and are similar to it).

The situation is not so simple with the presentation part. In every framework there

is a fixed presentation type definition environment. Possibilities supported in this

environment can be described with a presentation type metamodel. Presentation types for

a concrete domain-specific language constitute a presentation type model defined

according to the presentation type metamodel. Presentation types describe the relevant

graphical element types. When data are created in this concrete DSML tool, instances of

presentation model are created, but data in this model are not an instance in the

162

presentation type model. It is an instance of the presentation metamodel describing

supported graphical elements in the tool in general, e.g., line, box, label, etc. For example,

in the presentation type model we can describe that we want to represent this type as a

grey rounded rectangle with green lines and containing one label. In this case instances of

the rounded rectangle, label and colours will be created in the presentation model with the

appropriate properties set according to the presentation metamodel). After the instances

have been created a user can change the colour of the rounded rectangle (if this feature is

supported by the tool). In this case the presentation model is modified, but it does not

affect the presentation type model. The presentation type describes only the default look

of this node. Due to this reason the presentation model and the presentation type model

are two separate models.

Fig. 60. Terminology definition

It is important to define a mapping model and it should be done according to the

mapping metamodel. The mapping model describes the relationship between the domain

metamodel and the presentation types. Mappings are not used directly at the data level.

When defining a new DSML tool in a tool definition framework, a user has to

define a domain metamodel, a presentation type model and a mapping model. It should be

noted that the presentation metamodel is needed directly only if mappings are defined by

163

using model transformations. Models required at runtime for the tool created from the

definition depend on whether the tool definition framework is an interpreter or a

generator. If the framework is an interpreter the mapping and the presentation type

models are needed to interpret them in runtime. If the framework is a generator, these

models are not needed in runtime because the tool code is generated according to the data

in these models.

Most of the known DSML tool definition frameworks can be correctly categorized

in the framework of this terminology schema.

5.1.2 Mapping-Based Approach

A mapping-based approach prescribes which presentation type model element

must be used to visualize each domain metamodel element. Thus, functionality of the

graphical tool is basically defined by this mapping which itself can be defined as a

mapping model according to the mapping metamodel. The mapping typically may be

complemented by use of constraints, but only at a few selected points.

Most of the frameworks (GMF [172], Microsoft DSL tools [110], etc.) use the

generation step, by means of which language classes are generated in the corresponding

OOPL (Java, C#, etc.) from the involved models. The generated code ensures the relevant

synchronization between the domain and the presentation models in runtime. If the

generated functionality is insufficient, the language code can be extended manually.

Actually, mapping may be used without the generation step as well – examples of it are

MetaEdit+ [109] and Generic Modelling Tool [26], which are model interpreters.

It must be noted that the mapping approach is easy to use. If the generated code is

sufficient (or should be accompanied by a small amount of manual code), the tool

definition is mainly declarative and very fast. However, when the presentation type model

is dissimilar to the domain metamodel, a lot of code in OOPL must be added. To avoid

this, it is a common practice for simple DSMLs to create custom domain metamodels

nearly isomorphic to the corresponding presentation type metamodels (one class to one

node type, etc.). However, there can be situations when it is not possible to select the

domain metamodel freely, for example, if it is used for compiling, integration with other

tools, etc.

Mapping definition capabilities of a framework depend on mapping design

patterns supported. The most expressive static mapping language is implemented in GMF

164

[172]. But even this is not expressive enough. For example, every domain class mapped

to a diagram node must be contained in a domain class mapped to the diagram itself

(canvas in GMF). Therefore, it is impossible to implement by pure mappings standard a

UML class diagram where a class is contained in a package (in the UML domain) and is

visualised in several diagrams independently of its package containment.

There is also the EuGENia [170] framework based on GMF where the tool is

defined by using the annotated Ecore model. The GMF models (gmfgraph, gmftool,

gmfmap) are generated from the annotated Ecore model. EuGENia supports only a subset

of GMF; however, it is possible to support full GMF modifying generated GMF models

by using model transformations in EOL [91]. Although model transformations are used

this is still a mapping-based approach as transformations are only used to compile an

alternative tool language to the mapping-based approach in GMF. Transformations do not

support full tool behaviour. However, if the GMF mapping definition facilities are not

sufficient then extensions should be implemented in Java.

Let us consider some DSML language examples where the mapping approach is

clearly insufficient. Evidently, one such group is model transformation languages. A

typical example is MOLA [76, 59], which is a graphical language with a lot of semantic

dependencies between language elements. It is important to use the native MOLA

metamodel as a domain metamodel for the MOLA tool, since only this way complicated

syntax checks can be performed during editing and context-sensitive lists of the valid

references proposed. If the goal of the tool is to create syntactically correct models as far

as it is possible, clearly it is impossible to implement this tool by using only static

mappings. The same can be said about tools for other transformation languages, e.g.,

MOF QVT [122], where the native domain metamodel is even farther from the

presentation. Another such group could be complicated workflow languages.

5.1.3 Model Transformation Based Approach

A complete alternative to the mapping-based approach is the model

transformation based approach. The correspondence between the domain and the

presentation is defined by transformations in a model transformation language, e.g.,

MOLA [76, 59]. These transformations define what modifications must be done in one of

the models, if the other one changes (due to the user actions or other internal activities).

Therefore, the correspondence between the domain metamodel and the presentation type

165

model may be arbitrarily complicated here. In fact, transformations control the complete

tool behaviour.

At first glance this approach seems more complicated for use though experience

reveals that programming model element mappings in an adequate model transformation

language is much easier than in a standard OOPL. The usability of the approach is also

ensured by the fact that a significant part of the transformations are domain-independent

and are built only once as part of the framework itself. Clearly, the transformation driven

approach is more time consuming in simple cases.

The first pure transformation based project is the Tiger project [37]. However, a

specific domain modelling notation is used there, making the domain metamodel of a

language still to be close to the presentation metamodel. Standard editing actions (create,

delete, etc.) are specified by graph transformations which act on the domain model, and

the presentation model is updated accordingly. The main goal of the Tiger approach is to

provide the building of syntactically correct diagrams only.

The most advanced transformation based framework is METAclipse [86] that uses

the MOLA transformation language and a powerful presentation engine in Eclipse which

is an extension of GEF [171], GMF runtime [172] and some other plug-ins. It is based on

a presentation metamodel specially adapted for defining transformations. The current

version of the MOLA editor [86] is built on this framework (using a bootstrapping

approach). This editor provides an advanced support for ensuring the syntactical

correctness of MOLA programs and a high usability. The developed editor confirms the

suitability of the framework for implementing complicated DSLs.

5.1.4 Combined Approach

Usually, for some parts of the tool the correspondence from the domain to the

presentation is simple (fit for mappings) while for some it is complicated (fit for

transformations). The best solution would be to combine both approaches. In this case for

simple one-to-one relations between the domain and the presentation the mapping-based

approach could be used, but model transformations could be written for complicated

parts. For example, for the abovementioned MOLA Editor [86] the transformation size

could be reduced approximately by 50% if mappings were applicable. Simple

visualisation could be defined by mappings, but transformations would still be needed for

complicated consistency maintenance.

166

Currently there are only known a few attempts to combine both approaches in a

limited way. The frameworks, using this combination to a certain extent, are the Tiger

GMF Transformation project [162] and the ViatraDSM framework [133].

The Tiger GMF Transformation project [162] (related to the original Tiger

project) proposes to extend GMF by complex editing commands. The mapping between

the domain and the presentation models is defined by standard GMF facilities. But new

complex model editing commands can be defined by transformations acting only on the

domain model. However, this approach does not permit to define more complicated

(transformation based) mappings between the domain and the presentation, which is the

main goal of the approach proposed in Section 5.3.

The ViatraDSM framework [133] is based on the Viatra2 [180] transformation

language [31]. In this framework a mapping from the domain to the GEF-level

presentation concepts has to be defined. This static mapping is interpreted by the

ViatraDSM engine. The transformation based mapping (defined by Viatra2 [180] rules)

can be combined with the static mapping approach. The goal of ViatraDSM seems to be

the closest to our proposal. However, a lot of principal issues are not solved there. First of

all, the static mapping mechanisms support only very limited mapping possibilities – only

the basic mapping patterns are supported. Mapping and transformation integration

possibilities are very limited as well. Each object can be mapped using either

transformations or mappings. The mapping definition for ViatraDSM framework has no

adequate notation. Solutions to all these issues are the themes of the DSML tool

development framework proposal described in Section 5.3.

We propose to use a more detailed mapping and transformation integration

granularity, for example, to use transformations as pre-processors or postprocessors for

mappings. A more expressive mapping language and a mapping definition notation are

proposed as well.

There is one more framework GRAF [12] which combines both approaches to a

certain extent, but in a different setting. This framework is based on an advanced tool

definition (presentation type) metamodel and the corresponding configuration tool [157],

by means of which the desired diagram structure and property dialogs are defined. The

framework contains a large set of predefined transformations that implement all standard

user actions related to the defined diagram type. All these predefined actions can be

extended or replaced by custom transformations. The main application area for this

167

framework is various conceptual modelling languages; consequently, there is no built-in

support for domain models. If required, synchronisation with the corresponding domain

can be supported by custom transformations. Complex validations and other additional

options can be implemented in the model transformation language as well. It should be

underlined that GRAF is based on the Transformation-Driven Architecture (TDA) [14]

which is a system and tool building approach where multiple presentations and services

can be linked by model transformations. Tools built by GRAF are based on TDA as well.

5.2 METAclipse

METAclipse [86] is a graphical DSL tool development framework built in the

University of Latvia, Institute of Mathematics and Computer Science. The METAclipse

framework was proposed in the PhD thesis of Oskars Vilitis [188]. This framework is

suitable for DSL tool developments were verification of syntaxes and semantics is

required.

The METAclipse framework is based on Eclipse [167]; it uses many Eclipse plug-

ins and GMF runtime is one of them.

The METAclipse framework provides functionality common to all DSL tools. A

concrete DSL tool is built by using model transformations that have to processes only the

semantic events of the DSL tool. Other events are processed by the tool building

framework. Typically model transformations for the METAclipse framework are defined

in the model transformation language MOLA [76].

5.2.1 MOLA Tool

The author of the present PhD thesis has developed the first version of MOLA 2

tool [85] in the METAclipse framework [86]. The MOLA 2 tool was the main test-bed for

the METAclipse framework, since MOLA is clearly in the DSML category for which

transformation based approach is more appropriate. In MOLA there are complicated

dependencies between the abstract and concrete syntaxes, therefore, it would be

complicated to build the MOLA editor in a tool building framework based on mappings.

The MOLA environment has been developed in a bootstrapping manner [59] with

the previous prototype editor built by using the Generic Modelling Tool [26] framework.

168

The new editor implements a lot of validity checks and a smart prompting during the

diagram building.

The MOLA 2 tool consists of two parts – the metamodel editor and the model

transformation editor. The UML class editor actually is the simplest part of the MOLA

environment. The MOLA procedure editor requires much more sophisticated domain-

specific logic during element building or updates. Both editors are interdependent: for

example, the modification of a class name must be reflected in all class element instances

in the MOLA rules that reference the given class.

In addition to the editors, the MOLA 2 tool contains also the MOLA compiler

(built in a lower level transformation language L3 [137], also developed at UL IMCS),

running on the same repository. The MOLA compiler is described in detail in the PhD

thesis of Agris Šostaks [130].

Fig. 61. MOLA editor implementation in METAclipse

Fig. 61 demonstrates the editor in action – with both a sample class and the

MOLA diagrams visible. After the first version of METAclipse was completed (including

about 180 domain-independent MOLA procedures), the implementation of the initial

MOLA 2 editor required about one man-month to develop and test it (containing about

169

120 procedures in the domain-dependent part; there are about 30 essential classes in the

domain metamodel). Adding additional services to the MOLA tool, all tool behaviour

description was described by using approximately 450 MOLA procedures (including the

domain independent procedures). The developed MOLA 2 tool was successfully applied

in the European IST project ReDSeeDS [3].

However, developing model transformations for the MOLA tool required a lot of

routine work. There were transformations similar to one another. Such transformations

could be generated automatically from the mapping between the domain of the language

and the presentation types of the language.

Still it is also necessary to describe the way the language specifies the tool

behaviour. Model transformation languages are the most appropriate means for these

tasks, implying that in simple cases mappings could be used, while complicated cases

could be described by using transformations. The approach of this type is proposed in

Section 5.3.

5.3 Mappings for METAclipse

This section focuses on the description of the way of adding mappings to a

transformation based tool development framework. The METAclipse framework [86] and

the model transformation language MOLA built by UL IMCS is chosen as the basis for

the realisation of the proposed approach. The choice is based on the following – the

framework is completely transformation based, it provides flexible ways of extension and

it itself can be used in a bootstrapping manner for implementing the extended features.

To ensure usability of the proposed approach, mappings and transformations

should be smoothly integrated. The proposed mapping language could be implemented by

using an interpreter or a generator generating transformations in a model transformation

language (MOLA in our case). This implementation decision affects integration

possibilities. In both cases there could be used extension points where custom

transformations can be added to the functionality defined by mappings. If the generator

approach is used we can allow also manual modifications of the generated

transformations.

The main extension mechanism should be extension points; the latter should be

selected appropriately for the mechanism to suffice in the majority of cases. The

170

extension points should permit to replace or extend the built-in mapping possibilities by

custom transformations.

5.3.1 The Framework from the User Point of View

The proposed tool definition framework will be metamodel based. At the

beginning the domain metamodel of a domain-specific language should be built (e.g., by

the MOLA metamodel editor). The next step would be defining the presentation type

model and mappings between the domain metamodel and the presentation type model.

All this will be done, using graphical wizard-style dialogs in the tool development

framework.

If the built-in mapping possibilities are not suitable for some task, the tool builder

will be able to select/create a custom MOLA procedure (using the built-in MOLA editor).

Appropriate parameters to and from this procedure should be passed to ensure integrity

with the mappings. For each extension point there are predefined parameters passed to the

procedures used in this extension point.

When the tool development is complete, the tool builder can press the button

“Build tool”. Thus, the tool executable in one step is obtained. Alternatively, if there is

such a need the generated transformations can be edited and then compiled.

5.3.2 Mapping Definition

Mappings are based on typical mapping patterns. A large set of mapping patterns

has been identified in Generic Modelling Tool [26] and they will be reused in the

proposed approach.

The mapping definition is based on the mapping and presentation type

metamodels as the abstract syntax of the “mapping language”.

The visible form of this mapping language will differ from the one used for the

mapping languages in CHAPTER 4. It is frequently required to define more complicated

transformation logic using mappings in the DSL tool building, therefore, the tree based

syntax is not appropriate. This language will show up as wizard-style dialogs that will

build instances of mapping and presentation type metamodels. The appropriate tool

support can be built with little effort using the METAclipse framework. A more detailed

description is given in the following sections of this chapter. A simplified version of the

171

mapping language from the domain to the presentation is also given in Section 7.3 where

a compilator development for such languages is discussed.

The presentation definition in a graphical tool consists of several parts: property

dialogs, diagrams, as well as a model tree, menus, etc. Informal mapping examples

mentioned so far all have been related to mapping the domain to the diagram element

types. Now we switch over to another part of the presentation – the property dialogs. It is

because the proposed ideas can be easier demonstrated on this part and the corresponding

metamodels are smaller. Here only an essential subset from the property dialog part of the

presentation type and mapping metamodels is briefly sketched (in Fig. 63). We assume

here that typical Eclipse-style dialogs are used.

When a property dialog for a domain class is to be defined, at first an appropriate

property dialog type (i.e., its structure, element types and functionality) is designed, then

it is mapped to the domain metamodel elements. A property dialog consists of tabs that

can be either a field list (for displaying class attributes and linked class instances) or a

grid (for displaying child instance properties in a tabular form). The basic element of both

is a field whose type definition is the central point in the approach. It must be defined

what must be shown for each field type when the corresponding class instance is selected.

For many field kinds (e.g., combo box) the valid value set (e.g., a set of appropriate class

instances) must be obtained and visualized. Finally, it must be defined what has to be

done when the value is modified (in the Eclipse-style dialogs the model update follows

immediately).

As the metamodel in Fig. 63 demonstrates, for all these situations possible typical

cases are defined via mappings to the domain metamodel elements (e.g., which class

attribute must be visualized in a field in the simplest case, see the fragment in Fig. 62).

Fig. 62. Metamodel fragment, describing that the design pattern field is based

directly on property

The metamodel contains also structuring elements defining various typical ways

how these elementary mappings can be combined, e.g., expressions built over elementary

mapped values. In all cases the corresponding mapping-based definition can be replaced

172

by a call to a specified custom MOLA procedure. Another novel idea is using the MOLA

patterns for defining custom instance set filters, e.g., for the selection of relevant child

instances.

Fig. 63. Mapping and presentation type metamodel subset, describing the property

dialogs

173

For example, we can use this mapping language to describe a property editor for

the UML 2 class diagrams (based on the standard UML 2 metamodel [120]). For UML

Class a property dialog type could be defined, consisting of two tabs. The first tab will

contain a field list describing the UML Class itself. The attributes name and isAbstract

are directly mapped to the fields in this tab. A uniqueness check (within a package) before

the change is needed for the attribute name, and for this task a custom MOLA procedure

can be invoked. The second tab could be a grid describing class attributes (see Fig. 64). In

this case, the grid InstanceSetDefiniton feature is mapped to the Property class. The basic

instance selection is via ownedAttribute master-detail association and additional filtering

is defined by using the MOLA pattern selecting only those properties that are attributes

(but not association ends).

Patterns are a very powerful tool; it allows the selected instance set to be easily

specified. The use of MOLA pattern here is similar to the use of tree patterns in

MALA4MDSD. Patterns are a very useful and universal tool for definition of constraints

on the selected instance set.

Fig. 64. Class dialog example, general and attribute tab

The metamodel part for the diagram mapping and presentation types can be built

the same way, only more classes would be present since it is more complicated.

5.3.3 Mapping and Transformation Integration

The most important task for the mapping metamodel is a seamless integration of

mappings with custom MOLA procedures. MOLA is a procedural transformation

language, therefore MOLA procedures are chosen as the integration unit. It does not

restrict the integration possibilities, since any set of statements can be included in a

procedure. Actually, it even allows reusing the same procedure in different contexts.

The mapping metamodel granularity and structure should be chosen so that each

action could be extended or replaced by an appropriate custom MOLA procedure. The

174

transformation based approach permits to use a more detailed mapping granularity than in

the traditional mapping-based tools.

For each extension point, the set of required parameters for custom procedure is

predefined. The predefined set should be compatible with the parameter set of the

selected procedure.

In Fig. 65 an integration example is given. When a property dialog field is

modified, a custom transformation can be executed as a pre-processor, postprocessor or

instead of the action implied by the static mapping. A custom procedure can be used as

well to calculate the field value to be displayed.

Fig. 65. Metamodel fragment describing mapping and transformation integration

The close integration of mappings and the transformation based approach is a key

factor in reaching the goal when the transformations generated from mapping only need

to be combined with the specified custom MOLA procedures, but require no direct

manual modification.

5.3.4 Mapping Definition Language User Interface

We propose to use wizard style dialogs for the definition of presentation type

model and mappings. These wizards will create instances according to the relevant

metamodel. The presentation type and mapping definition will be integrated.

To generate presentation types and mapping for a domain class, the user will be

asked to select the appropriate tool design pattern and enter additional properties of the

presentation types to be created (for property dialog, diagram node type, etc.). The

relevant mapping instances will be created automatically. The palette element, if needed,

will be created simultaneously as well.

175

Wizards will be organised in several levels for the whole domain metamodel (as

in GMF [172]) or on one domain class to see or modify the features related only to this

class.

In addition to the presentation and mapping definition, wizards will allow for

complicated cases to select custom MOLA procedures for the relevant extension points.

These procedures will be created by using the built-in MOLA editor.

A natural way to implement the proposed mapping definition editor in the

METAclipse framework is to build it as an extension of the existing MOLA tool [86].

Then a slightly extended metamodel definition editor can be reused for the domain

metamodel creation and the MOLA editor can be used directly for creating custom

procedures.

The mapping/presentation wizard itself could be implemented in several ways. A

classical wizard style dialog sequence could be built, but this requires certain extensions

to the METAclipse property engine. A more interesting and user friendly way could be

the creation of wizard diagrams. The dashboard in GMF [172] could serve as a simple

prototype for such diagrams. The possibilities of METAclipse permit to create dynamic

wizard diagrams where each node represents some wizard dialog “page”. The dialog in

such a page can be defined by using standard METAclipse property dialog facilities. The

edges in such a diagram represent the order in which these pages must be visited. At the

next step nodes and edges will be created and the existing ones enabled/disabled in

response to the values the user has entered in the current node. A simplified sketch of a

wizard diagram for a domain class mapped to a node can be seen in Fig. 66. It is assumed

that the user currently defines tabs for the property dialog.

Fig. 66. Wizard diagram example for a domain class mapped to Node

176

The same visual representation can be used to modify the defined mappings. After

opening the appropriate wizard diagram the user can select a node and update the

properties. If this modification influences dependencies to other wizard nodes, the user is

asked to update these nodes as well.

We can think about other mapping visualisation possibilities, too. For example, a

“mapping diagram” similar to the one in Microsoft DSL Tools [28] can be used with the

domain metamodel on one side of the diagram and the presentation type model on the

other, and with mapping lines connecting them. Actually, this mapping language would

be rather similar to the mapping languages discussed in CHAPTER 4. Here mapping

would be defined between the domain metamodel and the property dialogs, as well as

between the property dialogs and the domain metamodel. It should be noted that these

mappings would be bidirectional compared to the mappings discussed in CHAPTER 4.

However, it seems that the tree is not the most appropriate representation of the domain

metamodel; the class diagram representation is more appropriate. On the other hand, the

tree seems a quite appropriate representation for the property dialog definition.

The domain part could be visualised by a standard class diagram. A palette

element (if needed) can be given together with the presentation type. A presentation type

can be visualized close to the node visualisation with this type. Instead of a label a short

form of the template about the calculation of this label value can be shown. Sub-element

mappings could be presented in a similar way, too.

5.4 Conclusions

In this section the graphical DSL tool development domain is discussed. The

model transformation based tool METAclipse has been selected. The author of this thesis

has developed transformations for the METAclipse framework and transformations for

the first version of MOLA 2 tool in the METAclipse framework. To do it, in total about

450 MOLA procedures had been developed.

When analysing these transformations, it became clear that the simple part of

transformations is more appropriate for mappings and the logically complicated part – for

transformations.

As a result it was concluded that the tool building framework with options to

combine mappings and transformation would be most appropriate for the tool

177

development of DSLs with complicated dependencies between the domain and the

presentation. Such a framework is proposed in this section.

178

179

CHAPTER 6

Template MOLA

One of the Higher-Order Transformation (HOT) application types in [183] is

transformation synthesis. Transformation synthesis means transformation generation from

various sources of information, including model mappings. A survey on HOTs [183]

reveals that most of the HOTs have been written in ATL. In the case of ATL synthesis

[183] the relevant ATL model is created and then extracted as a transformation text. The

same task could be considered for graphical transformation languages, e.g., MOLA [76].

A MOLA transformation in abstract syntax could be created in the same way as the

abstract syntax of ATL transformations. The transformation visualisation task for

graphical languages is harder, but still feasible. Consequently, for graphical

transformation synthesis the HOT approach is usable; however, the experience shows that

usage of abstract syntax for the definition of HOT is inconvenient and time-consuming. It

seems to be true for most of transformation languages, including ATL. A better template-

based solution is proposed in this chapter.

There are many template-based model-to-text languages, e.g., the popular ones

JET [174] and mof2text [123]. The basic application of these languages is to create a code

from PSM model in the standard MDSD process. These languages typically contain

facilities to navigate the given model according to its metamodel. However, the main

advantage of these languages is the possibility to define the text fragment to be generated

by the given rule as a textual template in the relevant concrete syntax. The variable parts

in the text to be generated are specified by means of template expressions that typically

contain model class attributes and variables.

An ATL transformation text could be created by using some template-based

model-to-text language as well. Since MOLA is a graphical transformation language,

textual template languages could not be applied here. In this chapter the problem of

MOLA transformation synthesis by using template-based mechanisms is addressed.

New graphical template-based language Template MOLA for MOLA

transformation synthesis is proposed. In this language elements to be created in MOLA

can be defined explicitly in syntax close to the traditional MOLA statements. The

180

generation logic in Template MOLA is described by facilities close to the standard

MOLA. This part of the description is executed during the generation process. The

elements to be placed in the created transformation are described in a MOLA extension

consisting of template statements. The given extension is similar to the basic MOLA, but

having a possibility to incorporate also template expressions that are replaced by the

corresponding generation time values during the generation. Thus, the idea of textual

template languages is adapted to a graphical language. The main advantages of the

template approach are retained – adequate facilities to process and navigate the source

model, and concrete syntax based descriptions of elements to be created as a result. The

proposed solution is significantly more convenient for transformation generation than

pure use of MOLA as a HOT.

All MOLA elements are retained in Template MOLA. Additionally, special

template elements for easy MOLA transformation synthesis are included. They make it

possible to define explicitly in a graphical syntax which MOLA elements should be

created.

The Template MOLA language is an adaption of template mechanisms used for

textual template languages (of the model-to-text kind) to a graphical language. Template

MOLA is used for easy generation of transformations in MOLA from various input

models as a substitute for the classical HOT approach.

6.1 Main Elements

In this section, the basic constructs of Template MOLA are described. The

proposed Template MOLA language contains two kinds of MOLA statements: generation

statements and template statements.

Generation statements are executed during the transformation generation process.

They are used to define the logic of generation process on the basis of the provided input

metamodel. All ordinary MOLA statements may be used as generation statements.

Template statements are meant to be “copied” to the generated “MOLA code” (in

fact, a model) with template expressions replaced by the appropriate generation time

values. Template statements look similar to ordinary MOLA statements but can be

distinguished by their graphical style – the green colour. The most used template

181

statements are template rule and template loop; however, other MOLA statements may be

used as template statements, too.

Statements in Template MOLA are organized into procedures in the same way as

in the traditional MOLA described in CHAPTER 2. A procedure may contain both

generation and template statements; however, generation statements alone should

constitute a valid MOLA procedure. Template statements may be interspersed between

generation statements. Thus, the general idea of Template MOLA is that the “generation

part” of a procedure is executed in the same way as the traditional MOLA. The only

difference is that template statements to be executed in this process are copied to the

resulting traditional MOLA procedures (instead of directly executing them). Certainly,

there are some more complex situations to be described further, but at first glance

Template MOLA means exactly that.

6.1.1 Template Rule

The most used template statement is template rule. In the generation time it is

copied to the generated “code” (i.e., to the relevant generated MOLA procedure).

Elements of the template rule may contain variable textual parts – template expressions

(expressions enclosed in angle brackets followed (preceded) by a percent sign). These

expressions are replaced by the corresponding generation time values.

An example of a template rule can be seen in Fig. 67. In this rule, the constraint in

the class element b:Class2 contains the template expression <%@p.name%> where @p

is a known generation time reference (defined in the procedure containing this rule).

Another kind of a variable part in a rule is a template expression specifying the class of a

class element (here c:<%@tc:Class%>). The generation time reference @tc must point

to an appropriate metamodel class, i.e., it must point to an instance of Kernel::Class (the

::Class suffix in the syntax emphasizes that), and it must be set before the rule under

discussion is to be executed. In the resulting traditional MOLA rule, this template

expression is replaced by the referenced class name. Association links may also be

specified by a template expression in order to adapt to a variable class element in the end.

Association links are specified using Property at one end of the Association. Property at

the other end and the Association is inferable from this Property. This template

expression (<%@prop:Property%> in Fig. 67) must reference a property in the

metamodel. The value of this reference must certainly be set correctly during the

182

generation; in the presented example only the properties (related to Class2) of association

linking classes Class2 and Class3 are valid. In the generated rule, the standard MOLA

notation for association links (both role names) is used.

Fig. 67. An example of a template rule and the MOLA rule generated from it

The lower part of Fig. 67 shows the generated MOLA rule obtained from the

template rule above. Here we assume that the reference @p.name has a string value

“Box”, the reference @tc points to the class Class3 and @prop to the role name class2 of

the association class2 - class3.

6.1.2 Template Loop

Similarly to rules, the loop constructed in MOLA – the foreach loop statement –

also has its template form in Template MOLA. The template loop is copied to the

generated procedure during the generation process, including its body (which may also

contain generation statements, see an example in Fig. 88, p. 226). The template loop in its

loophead rule can use all the extensions introduced for the template rule. Fig. 68 gives an

example of a template loop, a simple construct for creating copies of all instances of an

arbitrary class. In the loophead of this loop, the class to be used in all class elements

(including the loop variable orig) is defined by the template expression

<%@type:Class%> which means that the reference @type must be set to the required

class before the given template loop. Then a traditional MOLA loop is generated from

this template loop, and the generated loop performs the instance copying for the given

class. The additional class element orig_exists with NOT constraint is used as NAC

(negative application condition) prevents a repeated copying of the copies. The example

presents a very simple case of another area of a typical application of HOTs for

183

transformation generation in [183] – building a generic transformation for a previously

unknown metamodel. (This application is also discussed in Section 7.4.1.)

Fig. 68. An example of a template loop

6.1.3 Call Statement and Parameters

The body of the loop in Fig. 68 contains another template-related construct – a

MOLA procedure call with arguments of previously unknown types (@orig and @copy).

The type of these arguments is learned only during the generation process. The given

procedure call contains one more argument – the reference to the type itself. This last

argument is a generation-time argument which is not included in the generated invocation

(it has no sense in that context). Yet for the generation of the procedure copyProperties,

which has to perform copying of all attributes of the arbitrary class, such a parameter

could be of high value for defining an appropriate generation time loop (traversing the

attributes).

The exact kind of procedure parameters is visible in its declaration. There are

three types of parameters that can be declared in a Template MOLA procedure –

template, generation and type parameters. Template parameters are created in a generated

procedure. Generation parameters are used in the generation time and are not created in a

generated procedure. Appropriate arguments must be passed in call statements for the

template and generation parameters. The type parameters are also used in the generation

time, but they are inferred from other parameters instead of passing them explicitly. Since

the types of parameters in MOLA are described by using the class Kernel::Type, type

parameters may refer to the instances of Kernel::Type (Class, PrimitiveType or

Enumeration) only.

184

6.1.4 Template Expressions

We have already given an insight into the template expressions used in Template

MOLA; however, the example does not cover all possible use cases. Therefore, a short

summary on template expressions follows. The most common elements where template

expressions appear are class elements within a template rule. A template expression can

be used to specify the class of the class element. In this case, the template expression

must be a reference to Kernel::Class instance. If template expressions are used to specify

the name of the class element, constraint or expressions in the assignment, a string

expression is used for this purpose. These expressions may contain the generation time

variables, parameters and attribute specifications, but no template element references.

References to instances of appropriate classes can be used to specify references to objects,

e.g., the attribute to be used in an assignment within a class element (a reference to

Kernel::Property), or the source/target end of an association link (a reference to

Kernel::Property as an end of Kernel::Association). Template expressions can also be

used in template text statements and in call statements to specify arguments that conform

to the template parameters of the called procedure.

6.1.5 Template Elements

On the whole, the idea of generating template procedures in Template MOLA and

providing appropriate naming conventions for them is based on the principles similar to

those in the OOP languages, such as C++ and Java, also containing some template

mechanisms.

A list of all Template MOLA elements is given in Table 7. The name, image and a

short description are given for each element. Elements are divided in two groups: the

Template MOLA elements – new elements (compared to MOLA) introduced in Template

MOLA – and MOLA elements with a modified semantics, achieving modification by

adding additional generation time semantics for some MOLA elements in Template

MOLA. This issue is discussed in detail in Section 6.5.

185

Table 7. Template MOLA elements

Image Name Description

Template MOLA Elements

Template rule This element creates the MOLA rule

in a synthesised transformation. The

rule is created one to one. Template

expressions are replaced with their

generation time values (see Section

6.1.1).

Template loop This element creates a loop in a

synthesised transformation. The

Template loop may contain

generation time elements, describing

the algorithm for the loop body

generation. Template elements

executed in the loop body are

generated in the loop body (see

Section 6.1.2).

Template

parameter

This element indicates that a

parameter should be generated for a

generated MOLA procedure.

Type parameter This is an implicit parameter. It is

used when a Template MOLA

procedure may be called from a

MOLA procedure. It is used to

describe the type of template

parameter.

Template variable Creates a variable in the generated

MOLA procedure.

186

Image Name Description

Template control

flow

Describes generation of the control

flow explicitly. May be used

between the Template elements and

elements of dual nature: template

rule; template loop, template end

symbol, template text statement,

template call statement, template

external call statement start symbol,

end symbol, call statement (see

Section 6.5.3).

Template end

symbol

Describes generation of the end

symbol in a MOLA procedure (see

Section 6.5.4).

Template text

statement

Text statement generations

Template external

call statement

External call statement generations

MOLA Elements with Modified Semantics

Start symbol Describes start of the procedure and

generation of the start symbol.

End symbol Describes end of the procedure and

generation of the end symbol, if the

current control flow has no end

symbol (see Section 6.5.4).

Call statement Executed as a call to another

procedure and generation of a call

statement to the generated procedure

corresponding to the call. If marked

as inline, the generation is omitted

(see Section 6.5.2).

187

Image Name Description

Control flow Describes the execution logic. If the

template control flows are not

shown explicitly, execution control

flows are used to determine the

template control flows to be

generated (see Section 6.5.3).

6.2 Template MOLA Compared to MOLA as a HOT

A question may arise about the advantages of transformation synthesis in

Template MOLA in comparison with the traditional MOLA. Writing higher-order

transformations for transformation synthesis directly in MOLA requires defining of the

creation of all MOLA metamodel elements explicitly (i.e., according to the abstract

syntax of MOLA). To create one rule, we have to create the rule, all its class elements, all

association links, all their sub-elements, and to map them to the appropriate types from

the metamodel of this transformation. Fig. 69 demonstrates a transformation for the

creation of one rule by using the traditional MOLA as a HOT language. Creation of the

same rule in Template MOLA was demonstrated in Fig. 67 (p.182).

It is easy to see that the code for creation of this rule in Template MOLA is

significantly more readable than in the traditional MOLA. First of all, the size of the rule

creation pattern differs significantly. Note that in this example we considered the creation

of a very simple rule. The difference is even more significant for more complicated rules.

The same situation holds true for loops since they mainly consist of rules.

The same issue of complexity arises in regard to other transformation languages

usable for HOT tasks.

Template MOLA allows to implement the same HOT tasks with much less effort

and with a smaller amount of errors since the structure of the resulting MOLA statements

is clearly visible already in the templates.

188

Fig. 69. Creation of the rule from Fig. 67, using MOLA as a HOT

6.3 Template MOLA Example

A simple Template MOLA example is demonstrated in Fig. 70. In this example

we consider a simplified data migration from a model based repository to the OWL/RDF

[192, 193] based repository built according to the ODM metamodel (see [124]). We

assume that we have an UML class diagram describing the structure of the model based

repository and a mapping information describing the way this model should be modified

when transferring it to the OWL based repository. In particular, this mapping

demonstrates which classes together with their instances should be transferred and the

way the classes should be renamed. The transformation in Fig. 70 iterates through all

classes mapped to OWL. For each such class it creates a rule creating an OWL class and

it creates a loop copying model instances of this class to the OWL instances of this class.

We can run this Template MOLA on a class/mapping model and we will obtain an

efficient data migration tool just for this model. In this example the main template MOLA

statements are demonstrated as well. In the template rule the value of template expression

is assigned to the attribute name. This value will be determined in the generation time and

then used in the generated code. The loophead also contains a class element with the

189

template type that will also be determined in the generation time and replaced with the

appropriate value. On the other hand, the types of other class elements are constant and

the same in all generated transformations from this template MOLA program.

Fig. 70. Template MOLA example: Generator for copying UML class model

instances to OWL instances

The transformation example in Fig. 70 contains also a call statement. This call

statement contains two types of parameters. The parameters “@cm” and “@c” are the

generation time parameters, while “@ce_...” and “@ci_...” are the template parameters.

The generation time parameters are used only for transformation synthesis. The template

parameters will appear in the generated code as well. It means that we will obtain a call in

the generated code only with two parameters. The generation loop creates several rules

and loops in one procedure. These generated rules will contain elements with different

types. We need also different names for the generated elements to distinguish between

them. Therefore the template expressions are used also to determine the generated

element names and reference to them.

A simple example of MOLA transformations obtained by executing the Template

MOLA transformation from Fig. 70 can be seen in Fig. 71. A rule and a loop is generated

Generation loop

Call statement

statement

Template

expresion

Template expresion

as element name

Template

loop

Template

rule

Class element

190

for each class with the mapping. In this case two classes are considered. The class

Department together with its instances is copied without renaming to the OWL

repository. The class Employee is transformed to the OWL class Person. Thus, a specific

transformation has been obtained, for migrating the instance level (M0) data for these two

classes to the OWL repository. We remind that the example illustrates a simplified

instance level data migration, but not the general ontology migration from UML coding to

OWL (as in [124] for example).

Fig. 71. The result of transformation from Fig. 70

In these transformations as in any transformations metamodels are used. In a

generated code, instances of some metamodel are transformed to the OWL metamodel

instances. It means that the metamodel used in the generated code consists of two parts –

the OWL metamodel and the domain metamodel. A fragment of the OWL metamodel,

used in this example, is shown on the left side of Fig. 72.

Fig. 72. A metamodel fragment used in a class model to the OWL transformation

in Fig. 70

According to the task specification the domain metamodel is the UML class

model describing the given repository to be transformed. In Template MOLA this domain

metamodel is used as input data affecting the generated code. It means when generating

191

transformation the domain metamodel is treated as instances of the UML metamodel.

When executing the generated transformation, the domain metamodel is treated as a

metamodel.

In the description of transformation logic besides the domain metamodel also

ClassMapping (on the right of Fig. 72) is used describing how the UML classes should be

transformed to the OWL classes. As a result ClassMapping and Kernel::Class (from the

domain metamodel) are used in the generation time statement (rule).

An input for the Template MOLA transformation is a model defined according to

the metamodel sketch shown on the right side of Fig. 72. When executing this Template

MOLA transformation the result is a MOLA program. The input model consists of the

domain metamodel (the repository structure description) and mappings, describing

representation of this domain metamodel in OWL. From the domain metamodel

description only Kernel::Class is shown in Fig. 72. Instances of Kernel::Class are classes

of the processed domain metamodel. Other classes from the UML class diagram

metamodel are required, for a complete definition of the transformation. Here only the

class mapping is shown from the mapping metamodel. There will be other mapping

classes in the complete transformation definition as well. It should be noted, that the

mapping and the UML class diagram metamodels are related. This relation should be

treated as a part of the mapping metamodel.

The OWL metamodel classes are used in the template rules. The pointer to the

instance of Kernel::Class is used as well, however, here the instances of metamodel are

used. Metamodelling in Template MOLA is discussed in detail in the next section.

6.4 Metamodelling Issues

As in any other transformation language, transformations in MOLA are based on

the appropriate metamodel definition, frequently containing the source and the target part.

The definition of a metamodel for Template MOLA is more complicated because the

relevant HOT level features for defining the generation logic have to be supported. At the

same time, the use of template statements requires the presence of the appropriate parts in

the metamodel.

192

6.4.1 Use of Metamodels Defining Higher-Order Transformations in MOLA

In order to have a deeper understanding of metamodelling issues in Template

MOLA, we start with the comparison to the metamodel structure required for defining a

traditional HOT in MOLA for synthesis of a MOLA transformation (an example of which

is in Section 6.2 above). Fig. 73 demonstrates the structure of this metamodel. The source

of the HOT is the source model (a mapping definition or something similar)

corresponding to the source metamodel. The HOT must create a complete MOLA

transformation definition consisting of a specific metamodel for this transformation

(frequently containing the source and the target parts) and the proper transformation (a set

of MOLA procedures). Similarly, at the metamodel level, the definition of HOT is based

on two metamodel parts that serve as a target metamodel for this HOT. Firstly, there are

MOLA metamodelling facilities named MOLA MOF MM (actually, the Kernel package

mentioned in 2.1). Secondly, the MOLA procedure metamodel (MOLA MM) is required.

Fig. 73. Models to be used if higher-order transformations are written in MOLA

Fig. 74. Models to be used if the domain metamodel is analysed and higher-order

transformations are written in MOLA

Actually, the approach presented in Fig. 73 is a simplified view on metamodels in

HOTs. Very often, besides mapping the domain metamodel is analysed (as in Fig. 70) as

well. This domain metamodel is used in a transformation logic description as instances of

MOLA MOF, however, in the generated code it is used as a metamodel – types of class

elements. Besides this domain metamodel also some constant metamodel could be used

as types of class elements in the generated code. If we consider the example discussed in

the previous section (actually, the generated result), the domain metamodel and the OWL

193

metamodels were used there. The domain metamodel was the transformation source

metamodel and OWL was the transformation target metamodel. In this case OWL plays

the role of a constant metamodel.

It should be noted that there may be cases when one of these metamodels is

empty. For example, the instance cloning, discussed in Section 7.4.1, uses only the

domain metamodel. Generation of transformation between fixed metamodels may use

only a constant metamodel.

6.4.2 Metamodels in Template MOLA

Now we can focus on the differences in a metamodel structure if Template MOLA

is used instead of a standard HOT approach for the same tasks. Fig. 75 shows the general

transformation synthesis by Template MOLA (an analogue of Fig. 73). As a rule the

“runtime” metamodel for the generated transformation (more precisely, its variable part),

must also be provided as an input to the Template MOLA-based HOT implementation.

This situation could certainly occur in the general case of Fig. 73, but in Fig. 75 this

situation is clearly syntactically visible. Such metamodel division was already introduced

in Fig. 74 where MOLA was used as HOT. It is due to the necessity to use template

expressions for accessing the classes of this variable metamodel part in template rules in a

generic way (see Fig. 68, p.183). A typical example of such variable part is the domain

metamodel (as in Fig. 70, p.189). The difference from Fig. 74 is the necessity to provide

the constant part of this “runtime” metamodel for the definition of Template MOLA-

based HOT. This is due to the fact that the classes of this constant part are used to define

“constant” class elements in template rules. Therefore, these classes must be defined

before the definition of Template MOLA rules. Although this constant part of the

metamodel is clearly an instance of the MOLA MOF metamodel, in order to be

referenced in “constant” Template MOLA elements, it must be provided alongside the

MOLA MOF metamodel itself. Metamodel packages, included in a complete

transformation definition in Template MOLA, belong to two adjacent metalevels.

However, it is not confusing since the usage of their elements is clearly distinguished.

Classes form different metamodels may be used in different contexts in Template MOLA.

This issue is discussed in Section 6.4.4.

All different metamodel types used in Template MOLA (given in Fig. 75) are

used in the example discussed in Section 6.3. The Template MOLA transformation for

194

this example was shown in Fig. 70 (p.189) and its metamodel sketch was presented in

Fig. 72 (p.190). The OWL metamodel (the left side of Fig. 72, p.190) is used as a

constant metamodel. The mapping metamodel is used (in this case the class

ClassMapping) as the source metamodel. A UML class diagram is used as a variable

metamodel. In Template MOLA, the MOLA MOF metamodel is used, in the generated

code its instances are used. Only Kernel::Class is given in Fig. 72 (p.190). However,

other classes could be added as well. This metamodel is connected to the mapping

metamodel (the source metamodel). The connection should be treated as a part of the

source metamodel. In fact, this is a typical situation for mapping languages.

Source MM Mola MMMOLA MOF MM

Source

model

Metamodel for

transformation
Transformation

in Mola

MOLA MOF MM
Constant

metamodel

Metamodel for

transformation

Constant

metamodel

copy
copy

Fig. 75. Metamodels and models used for defining transformations in Template

MOLA

The same way as in MOLA, in Template MOLA depending on the task specific

requirements some metamodels could be omitted, as in the example of instance cloning

only the domain metamodel (the metamodel for transformations) is required. In this use

case the source metamodel and the constant metamodels are empty. Building a compiler

for the mapping language MALA4MDSD the constant metamodel is empty. In the DSL

tool building all three metamodel types are required.

6.4.3 Roles of Different Metamodels in DSML Tool Development

A typical application of HOTs in general and Template MOLA in particular is the

generation of transformations from mappings for metamodel-based graphical DSL tool

building. The tool building platforms, really requiring it, are METAclipse [86] and

ViatraDSM [133]. However, the basic ideas can also be demonstrated in the popular

Graphical Modelling Framework (GMF) [172] in Eclipse (we assume for a moment that

transformations are generated in MOLA instead of Java for all actions). Fig. 76 illustrates

the specialisation of the metamodelling situation in Fig. 73, when MOLA transformations

are generated by HOT for a DSL tool – i.e., we assume that the GMF generator is

195

implemented as a HOT instead of being written in Java. The source metamodel now

consists of several parts with different roles. A definition of DSL normally is based on the

relevant domain metamodel (abstract syntax) using, in turn, a version of MOF as a

metamodel (in particular, the MOLA MOF could be used in such a role). Another part of

the metamodel used by GMF and similar platforms is the presentation type metamodel

(named graphical definition metamodel in GMF) and the mapping metamodel. Together

they provide the means for graphical syntax definition of a diagram and mapping

definition from the domain metamodel classes to presentation types in the diagram (by

these means the instances of these classes must be visualized). The generated

transformations in the runtime should use the same domain metamodel; therefore, this

metamodel must be copied by the HOT to the generated transformation. There is also a

constant part of the metamodel – the presentation metamodel (named notation metamodel

in GMF) – which defines possible diagram elements at the runtime. This constant part

should also be created by the HOT. One of the tasks the generated transformation should

do in the runtime is to create a visual diagram element for a new domain class instance

(according to the defined mapping). Thus, two important special features have appeared

in this application: the use of the domain metamodel in two different roles (a part of the

HOT source and a part of the created transformation metamodel), and the constant

(independent of the source) presentation metamodel is included in the created

transformation. In fact, the reuse of a part of the HOT source as a variable part of the

metamodel for the created transformation is quite typical when transformations are

generated by HOTs from mappings (as it was already underlined in the comments to Fig.

74).

Fig. 76. Models used in case MOLA is used as a HOT for tool building

Finally, we analyse the application-to–metamodel-based tool building in Template

MOLA (Fig. 77). The main difference from Fig. 76 is that the presentation metamodel

plays the role of the constant part of the metamodel for transformation. Therefore, it must

196

be provided before the definition of Template MOLA. Note that classes for mappings and

presentation types can only be used in the generation (non-template) rules and loops of

Template MOLA (they play the role of the source metamodel). The domain metamodel is

clearly the variable part of the metamodel for transformation. An example of this kind of

application is presented in Section 7.3.

Mapping MM,

Presentation type MM Mola MMMOLA MOF MM

Mappings

Presentation types

Domain

metamodel
Transformation

in Mola

MOLA MOF MM
Presentation

metamodel

Domain

metamodel

Presentation

metamodel

copycopy

Fig. 77. Metamodels and models used to define transformations in Template

MOLA for tool building

6.4.4 Use of Metamodel Elements in Template MOLA Transformations

Now, some remarks on the permitted use of metamodel elements in Template

MOLA constructs. The source metamodel elements can be used directly only in the

generation (non-template) statements of Template MOLA. They can also be used inside

the template expressions in template statements. Elements of the variable part of the

metamodel for transformation (the “runtime” metamodel) can be referenced via the

corresponding classes of the MOLA MOF in the generation statements as well. The same

elements can be referenced in template statements only via template expressions for the

types. The elements of the constant part of the metamodel for transformation can only be

used in “constant” class elements in template rules.

6.5 Elements of Dual Nature in Template MOLA

There are some elements in Template MOLA which are used on the one hand for

the description of the transformation generation logic and on the other hand reflected in

the generated code. Such elements are call statements, start symbols, end symbols and

control flows.

The situation with start symbols is very simple. If such an element is come upon it

is created in the generated code and then executed according to its semantics in the

generation process.

Semantics of other elements is described in this section.

197

6.5.1 MOLA Procedure

The most important structuring element in Template MOLA is template

procedure. In some sense it has a dual nature. It structures the generation algorithm into

smaller parts and at the same time is reused to describe the structure of what should be

generated. It should be mentioned that it is possible to generate several MOLA

procedures from one Template procedure. The generated code may depend on the

generation parameter values, therefore it may be required to generate one procedure for

each value used (more precisely, invoked with this parameter value). In such cases we

should distinguish between these procedures and give them different names. It is possible

to use the default name generator or to define a template expression describing how the

procedure name should be created. The default name is generated from the procedure

name and the values of generation time parameters (parameter and type parameter),

however, typically the custom name expressions are used. This is also the case of the

example described in Section 6.3, where the owlname attribute from the cm parameter is

used as a suffix in the generated procedure names. The procedure name expression is

defined by using the property editor, though it is not visualised graphically.

The generated procedure name is also used to determine when a new procedure

should be created and when an existing one could be reused. When a call statement is

processed during the generation, the name expression of the invoked procedure is

evaluated. If the value of the name expression matches the name of an existing procedure,

the existing procedure will be reused. Typically, this name expression contains constants

and values of the generation time parameters. The described mechanism permits to have

the required control over the procedure duplication.

There can also be cases when the amount of the code generated by a template

procedure is very small. So we may want to include the code generated by this procedure

into the procedure it is called from (by replacing the call statement). To solve this

problem we allow the “inline” annotation for call statements. It means that the code

generated by an invoked procedure is embedded in the current one. In the generated code

references to the template parameters are replaced by the values of the corresponding call

parameters.

Besides optimizing the generated procedure structure, the “inline” annotation is

vital for supporting the use of merge mechanism (see Section 6.6).

198

6.5.2 Call Statement and Parameters

Semantics of call statements is similar in this sense. They are used both for calling

of procedures describing the generation logic and at the same time reused in the generated

code. Unless the inline option is used the call statement is generated to invoke the

appropriate procedure (according to the name generation expression in the called template

procedure).

However, a call statement is directly related to the parameters of the called

procedure. The procedure may contain the template parameters and the generation time

parameters. The template parameters are kept in the generated code. The generation time

parameters are used only for the description of the code to be generated by the called

procedure. They are omitted in the generated call statement.

Let us consider the call statement in Fig. 70 (p.189) as an example. It has 4

parameters: 2 generation time (the first and the last) and 2 template parameters. In the

generated transformation example in Fig. 71 (p.190) the generated calls have 2

parameters corresponding to the template parameters. In this case the generation time

parameters are used for the description of how the body of the procedure

SetIndividualDetails should be generated.

6.5.3 Control Flow

As already presented in Table 7, there are two types of control flows in Template

MOLA: template control flow and (MOLA) control flow. Template control flows are

used to explicitly define how control flows should be built in the generated code. Control

flows describe the execution order of Template MOLA elements, however, frequently

they are also used to infer control flows in the generated code.

A typical Template MOLA program describes synthesis of a MOLA

transformation. Typically the synthesis of MOLA elements is described in a top-down

manner (from the start symbol to end symbol). In this case the generation order of MOLA

elements reflects also the way these elements should be connected with control flows. In

this case control flows in the generated code can be easily inferred from the generation

control flows; it means that only control flows describing the generation logic must be

defined in simple case. This typical case is supported in Template MOLA using the

heuristics described bellow. However, if more complicated control flows (e.g., branching)

199

are required then it is necessary to use template control flows to define explicitly the

control flows to be generated or even the merge mechanism to create arbitrary

complicated control flow structures.

Now we will shortly describe the execution semantics of template control flow.

Template control flows can go from one element to another element. Only the forward

control flows are processed. By a forward control flow we understand a control flow

whose outgoing flow end is created before the incoming flow end. If a template control

flow goes from/to a template element then the element generated from this template

element is used as a flow end of the control flow. If a control flow goes from/to a

generation time element then this end of the control flow is moved to the next created

element in the generated code. The only exception is a template control flow from foreach

loop. The outgoing flow end of this control flow is the last element generated by foreach

loop. If nothing is generated by foreach loop, then this control flow is skipped. A template

control flow whose source end is processed, but the target end is not processed is skipped

as well. It should be noted that there are rules restricting the usage of template control

flows, e.g., outgoing template control flows from end statements are prohibited.

If something more specific is required, e.g., backward control flows, the merge

mechanisms described in Section 6.6 should be used.

If all template control flows were defined explicitly the Template MOLA

diagrams would become unnecessary complicated. Therefore, in simple cases the

generated control flows are inferred from the template element execution order. It means,

control flows used for the description of the generation algorithm are used also to decide

what kind of control flows are to be included in the generated code. In fact, some

heuristics are used there to infer how control flows should be created. In most cases the

default principle described below is sufficient.

If there are two template elements in the description of the generation logic

following each other and there are no explicit control flows defined, then a control flow

between them is created in the generated code (more precisely, between the elements

generated from these template elements). The same holds true if instead of one or both of

the template elements a node with dual nature is used. Actually, this rule is more general

when a new element is generated in the code, then a flow from the previously generated

element to the new one is created. The same rule holds true for generation time loops as

well. It means a flow between the last element generated in the previous iteration and the

200

first element of the next iteration is created. For example, in Fig. 71 (p.190) a flow

between the loop dealing with Departments and the rule dealing with Persons is created.

At the beginning of the loop a flow from the previously generated element is created.

After the loop a flow to the next element is created.

This automatic inference of flows simplifies transformation creation in Template

MOLA. A user, creating a transformation generation procedure, does not have to define

additional control flows describing the code to be generated. It should be noted that in all

Template MOLA examples included in the thesis it is possible to define transformation

synthesis using only (MOLA) control flows. However, if it is necessary it is possible to

specify the control flows explicitly. If something even more specific is required, the

merge mechanisms described in Section 6.6 should be used. By using the merge

mechanism it is possible to obtain any control flow structures.

6.5.4 End Symbol

Similarly to control flows there are also a template end symbol and an end

symbol. Template end symbols are used to describe the generation of end symbol:

however, in simple cases the end symbol in the generated code could be inferred from the

end symbol.

In these cases by executing the end symbol it is created in generated code as well.

Here heuristics are used to support typical cases. It is applicable if the last template

element was not an end symbol, it was not merged to the other element (see Section 6.7)

and there were no explicit control flows from the last template element.

If the end symbol should be generated before the generation procedure completes

its execution or multiple end symbols are required, then the template end symbol should

be used. The next template statement following the template end symbol should be the

element with merge (see Section 6.7) or an element with explicit incoming template

control flows defined. Between them many generation time elements could be used. It

should be noted that the outgoing template control flows are not allowed from the

template end symbol.

201

6.6 Graphical Template Languages Versus Textual

Section 6.1 gives the basics of the proposed Template MOLA language for

generation of MOLA programs.

In this section we want to elaborate the discussion on the principles of template-

based languages for generation (both textual and graphical) and the way these principles

influence the constructs chosen for Template MOLA. Textual template based languages

served as a rational for introducing some more advanced constructs in Template MOLA.

We will briefly analyze the principles of those languages where the generation

source is a model. These are the popular textual template languages mof2text [123],

MOFScript [176], Acceleo [164], Xpand [181], TCS [177], a.o. The only specifically

template oriented graphical generation language seems to be Template MOLA, but

similar issues could appear also in languages using a concrete graphical syntax for

transformation definition (ATOM
3
 [96], a.o.).

Template-based languages (textual or graphical) for program generation from a

model consist of two parts – the model navigation part and the generation part. The

generation part specifies the object which has to be created. In fact, only the generation

part is fully based on the template mechanism corresponding to the given concrete syntax

(textual or graphical). The navigation part is based on the control structures for traversing

the source model in the order required by the generation algorithm to be implemented (the

so-called visitor principle). The basic control structures always are sequence, alternative,

some form of loop (iteration) and invocation of a “procedure” (or something similar).

However, this basic set is not always sufficient.

Another part of languages is facilities for data extraction (query) from the model.

The extracted data typically are held in some temporary data structures, including various

collections. They are used for a direct substitution of the relevant variable parts of

templates (variable expressions etc.) and for organizing additional generation loops. This

query part may be more or less incorporated into the model navigation mechanisms or

may be a more independent sublanguage. For most of the considered textual languages,

the query mechanism is an independent one based on OCL or a similar language. This

query mechanism as a rule supports recursion, thus, transitive closure-type queries (such

as all inherited attributes of a class) can also be specified.

202

An essential property of textual template languages is the fact that an appropriate

loop construct can surround any part of a textual template. This permits to create in a

simple natural way any nested iterative structure as a result.

Another feature of textual languages is the concrete syntax for coding a reference

defined in the corresponding metamodel (from a variable usage to its declaration, from a

procedure call to its definition, etc.). In a textual language such a reference as a rule is

coded by using a sort of a name of the referenced object (certainly, it must be unique in

the given namespace). Such a reference name can be easily generated from the model by

using a navigation mechanism (or query in more complicated cases). But in any case the

reference can be created “in-place” from the generation algorithm point of view (no return

to it is required later).

These two features determine that in most cases the above mentioned control

structures are sufficient for defining the generation algorithm. The transformation

algorithms are basically “single-pass” (with various distant data lookups implemented by

queries). Certainly, it is true if the source metamodel contains a fragment which in a sense

is isomorphic to the target object to be generated. Since textual template languages in

practice are not supposed to implement arbitrary model transformations but only perform

the final step of a transformation chain, this is virtually always the case.

However, for the 2D world of graphical languages the situation is not so simple

even in the standard case when the source and target structures are isomorphic. First of

all, it is not always so easy to enclose any part of a graphical template in a generation

loop. In Template MOLA the main “regular” cases are well supported from this point of

view. These include a sequence of rules or loops to be created by a generation loop. Then

a template for such rule or loop is contained in the generation loop body. This case was

illustrated in the example in Fig. 70 (p.189). The only issue there is the convention how

flows should link the results of iteration steps. This case covers a significant part of the

usage of generator loops in Template MOLA.

However, there may be other “iterative” situations, too. The first one is a number

of assignments per class element dependent on some repeating element in the source

model (e.g., see Fig. 79, p.205). A similar situation in textual templates creates no

problems at all. But in Template MOLA it would be quite awkward to define a generation

loop within a template class element.

203

The other big difference is referencing. The name-based referencing is used in

graphical languages as well, but mainly for proper “distant” referencing – such as a

procedure call to its graphical definition. However, frequently graphical edges represent a

“local” reference in the concrete syntax. One such situation has already been presented. A

control flow in the MOLA procedure generated by the Template MOLA example in Fig.

70 (p.189) must go from the loop generated in the previous iteration of the generation

loop to the rule generated in the current iteration. This fact cannot be easily visualized in

Template MOLA; it is an assumption in the generation semantics.

A similar situation can occur also with edges representing association links in a

rule. There may be a necessity to create a variable number of class elements in a rule all

linked by association links forming a chain (see the example in Fig. 81, p.207). It would

be natural to assume that each class element is generated by one iteration of the

corresponding generation loop. The corresponding association link must go from a class

element generated in one iteration to the one generated in the next. No implicit

assumption can be made for association links since they represent specific associations. A

direct graphical notation in Template MOLA for association links, connecting two

iterations of a loop, would also look quite strange.

The described situations (and other similar ones) with the necessity to relate

several graphical template elements appearing in adjacent iterations of a generation loop

require some generic and visually easy readable solution. The merge construct is

proposed for this purpose. This construct is defined not only with Template MOLA in

mind, but also other graphical template language applications.

Another issue worth mentioning relates to the generation part of Template MOLA

– in fact, the normal MOLA language – which has no specific model query sublanguage.

Queries are implemented by means of the standard pattern mechanism in rules. Therefore

recursive queries (of the transitive closure type) require explicit recursive calls of MOLA

procedures. This enforces the requirement that the merge principle should be applicable

not only to generation loops, but also to recursive calls in the generation time.

6.7 Merge Mechanisms

One of the use cases where Template MOLA could be applied is transformations

for generic metamodels. We may consider one simple transformation of such type –

204

instance cloning (instance cloning is discussed in detail in Section 7.4.1). In order to

clone an instance we should create another instance and copy the values of all attributes.

Fig. 78 demonstrates a transformation cloning values of all attributes of a class in

Template MOLA. Functionally, this template MOLA procedure performs the required

task. However, the generated code is a spaghetti code (see the right side of Fig. 78). More

precisely, in a “normal” MOLA all attribute assignments should be placed in the same

class element (and not a new class element generated for each one).

Fig. 78. The left side demonstrates the procedure for copying the property values

of a class instance. On the right side there is an example of the generated transformation.

To solve this problem we introduce a merge mechanism in Template MOLA

which is introduced in a generic way so that it could be applied to synthesis of code in

any graphical language.

6.7.1 Merge Example

The general principle is very simple. We introduce the merge expression for all

template elements. Elements are merged if the value of the merge expression is equal to

the merge expression of a previously generated element (of the same kind). For elements

already containing a unique identifier in a container, it is possible to use this identifier in

a role of the merge expression. For template MOLA it means that the merge expression is

required for the template rule and template loop. For class elements the class element

name is reused in the role of the merge expression.

205

Fig. 79. The left side demonstrates the procedure for copying the property values

of a class instance with a merge. On the right side there is an example of the generated

transformation.

Now we can take a look at the previous example with the merge mechanism

enabled. The left side of Fig. 79 demonstrates the transformation from Fig. 78 with the

merge annotations. In this case the rules created in the first loop are merged, since their

merge expressions all are equal. Each rule contains one class element and their class

element name (which is used in the role of merge expression) is equal. Therefore the class

elements are merged – all attribute assignments are placed in the same compartment.

Consequently, we generate the transformation on the right side of Fig. 79. This is evident

in the case when all instances of rule R1 are generated in the same loop. However, since

the template definition contains a recursive call to the same procedure, it is possible that

instances are generated by a loop in another procedure instance. To ensure that instances

generated in all invocations are merged together, the procedure call should be marked

with inline annotation. It means that all elements generated by this call will be included in

this procedure. Since in the generated code all elements are included in the same

procedure, we can use merge mechanisms also for them. In this case the rules generated

by a recursive call will have the same merge expression. It means we can merge them

with the existing rules. Class elements will also be of the same type and with the same

name (used as the merge expression). (Actually, this procedure has one more generation

parameter when compared to the procedure in Fig. 78. This parameter is introduced to

enable the element merge so that they will have the same type in all recursive calls

instead of cast to a super class in recursive calls in Fig. 78.) It means we can merge also

the class elements. As a result all assignments will be placed in one class element. We

206

should also consider the assignment merge, as there can be inheritance diamonds and in

such a case one attribute will have multiple assignments. Assignments are merged by the

attribute, keeping the first assignment, the others are ignored.

6.7.2 Rule Merge

There are also other cases when the merge construct is useful. For example, it is

the case when the set of class elements in a rule should vary depending on some

condition. Such a case can occur when we have to iterate through some data and create a

class element for each instance. We consider a case when we want to obtain a star-shaped

rule of class elements. Fig. 80 demonstrates the way of obtaining such a rule by using the

merge mechanism. We merge the rules and the class element at the centre of the star.

Using a generation loop we can create as many peripheral nodes as needed in our star

shaped rule. The basic semantics of the merge operation determines that all generated

association links go to this merged centre node.

Fig. 80. Creation of a star shaped rule by using merge mechanisms

Similarly to the star structure described above we can also obtain an element chain

in a rule. A chain example is given in Fig. 81. Combining the chain and star mechanisms

we can obtain any rule structure by using merge mechanisms.

The question may arise: “Why should we create rules partially?” It is because not

all elements that should be used in a rule can be created at the same time. There are no

other ways to add new elements to an existing rule. Of course, we may try to split the

207

rules in smaller ones. However, in this case we will end up with a spaghetti code. It can

also affect the efficiency of the generated code. This is because each rule is matched at

once in MOLA while splitting it may cause some elements to be matched repeatedly and

spoil the pattern matching optimization.

Fig. 81. Creation of a chain shaped rule by using merge mechanisms

Fig. 82. Merge of loops and rules obtaining different control structures

The same mechanism, demonstrated for the rule merge to obtain different

patterns, could be reused for obtaining different control structures between the loops and

the rules. For this purpose it is possible to repeat an empty rule or loop only with the

merge name defined. In this case it will be used to define the outgoing point of the control

208

flow. Fig. 82 demonstrates how such construct works. In this case the default control flow

semantics defined in Section 6.5.3 is redefined.

6.7.3 Merge Semantics

A brief description of the merge semantics is given in this subsection. Two rules

are merged if the merge expression of a rule to be created is the same as the merge

expression of an existing rule in this procedure. Rule merge means that class elements

and association links to be created in the new rule will be included in the rule it is merged

with according to the merge semantics of elements and links. Semantics of loop merge is

similar, only instead of class elements the loop elements (rules, call statements, etc.) are

treated the same way. Loop elements are created in the merged loop according to their

merge semantics.

Class elements are merged if the name of the new class element is equal to the

name of some existing class element in this rule. When merging class elements their types

are also checked. If their types are different a merge process error message is generated

and the creation of this class element and its association links is skipped. Assignments are

the most important part of class element from the merge perspective. New assignments

are added to the relevant existing element. If the element already contains an assignment

to this attribute, the new assignment is ignored and a warning is produced. If the merged

class element has a condition while the original one does not, the condition is added. If

the original element already has a condition, then the condition in the merged element is

ignored and a warning is produced. The same principle is applied to other features of

class element. When defining a merge of class elements users should take care to avoid

generation errors.

Concerning association links, it is possible only to add new association links by

using the merge mechanism. If there is no link between these two class elements in the

rule, then a new link is added. Otherwise the link is ignored. Association link properties

are not merged.

Flow merge in a sense is similar to the association link merge. Always new flows

are added. However, it is not checked whether such flow already exists.

209

6.8 Implementation

To implement Template MOLA, we have to consider two aspects – editing and

processing of Template MOLA.

The Template MOLA editor was built as a part of the Master Thesis of Janis

Iraids [60] and it has been built in a METAclipse framework using the MOLA editor as a

basis. Model transformations, implementing the traditional MOLA language within a

METAclipse framework, have been extended to support the desired functionality in the

new editor. Since Template MOLA reuses the syntax from the traditional MOLA

language, many of the MOLA procedures implementing the editing actions can be reused.

The template elements can be regarded as subclasses of their related “regular” elements,

thus inheriting all their required editing behaviour. A template text statement, for

example, is almost equivalent to the traditional text statement from the editor’s point of

view. New and unique functionality can be easily included where appropriate. So even

though a substantial number of new diagram elements have been introduced, the volume

of the code has not grown proportionally, but much less than that. In addition, the sub-

classing approach eliminates any need for non-trivial migration when converting pure

MOLA transformation models to the Template MOLA transformation models.

Another aspect is the execution of Template MOLA. Several solutions were

considered, including an interpreter and a Template MOLA pre-processor.

The author of the present Thesis proposes to use the pre-processor that converts

Template MOLA to traditional MOLA with a later reuse of the MOLA compiler to obtain

transformations for generation. This approach is similar to pre-processing of macros in

C++ environments. The pre-processor replaces the Template MOLA statements with

traditional MOLA rules that create corresponding instances of MOLA statements. For

example, the template rule in Fig. 67 (p.182) is replaced with the MOLA rule in Fig. 69

(p.183). The newly-created MOLA transformation is compiled by using the compiler of

the traditional MOLA language. Finally, the obtained transformation is used as a HOT.

An experimental implementation of a pre-processor was built. The experiments

confirmed that it is possible to build a pre-processor. The most complicated part was

work with multiple meta-levels at the same time.

In the Master Thesis of Janis Iraids [60] the Template MOLA interpreter was

considered. To create the Template MOLA interpreter, a MOLA interpreter is required.

210

The creation of a MOLA interpreter is the most time consuming task. Extension of a

MOLA interpreter to the Template MOLA interpreter is not very labour intensive. In the

MOLA interpreter the most important and also the most complicated part is the

implementation of pattern matching. Currently there is only a compiler available for

MOLA. The MOLA interpreter would be valuable per se, as by using an interpreter it

could be possible to debug the MOLA programs.

Evaluation has revealed that the implementation of the pre-processor solution

requires less effort. However, the interpreter solution is also feasible and it has other

advantages.

Another issue to be considered is the readability of the MOLA sources, generated

by using Template MOLA. The easiest solution is to create transformations, using only

the abstract syntax of MOLA. The abstract syntax is sufficient if we want to execute these

transformations without a manual extension. However, to obtain a concrete graphical

syntax for the generated transformations, an abstract-to-concrete syntax transformation

and an automatic diagram layout generator must be used. Some experiments have been

performed in the field practice by Edgars Didrihsons, confirming that it is technically

feasible to automatically create a usable concrete syntax of the generated MOLA

transformations.

Note that the transformations in Template MOLA actually contain some layout

information for the MOLA procedures to be generated. For example, the layout of

elements in a template rule could be reused in the generated transformation. However,

this issue requires further research.

6.9 Conclusions

A new graphical template-based language Template MOLA for the MOLA

transformation synthesis is proposed in this section. This language leverages the

advantage of template-based model-to-text languages (easy specification of the language

elements to be generated) to graphical languages. These are the graphical template

statements of Template MOLA – template rules and template loops that are transferred to

the new transformation to be generated. Certainly, they can contain variable elements –

template expressions to be replaced in the generation process which itself depends on the

input model and is defined by means of the generation statements – ordinary MOLA

211

statements included in Template MOLA. These generation statements are executed in a

standard way during the generation process.

The merge mechanism for templates is proposed, enabling the possibilities to

define the generation of nested graphical structures in a simple way. Even the generation

of large text compartments in graphical elements (such as an attribute compartment in a

class symbol) requires this mechanism in a general case. Still this mechanism has a much

wider application – a graphical element has to be extended by several steps of the

generation process everywhere.

It is described that it is much easier to specify a transformation synthesis task in

Template MOLA than to specify the same task in the traditional HOT style (using MOLA

as a HOT).

Implementation of Template MOLA is under development. The editor has already

been built. For the execution of Template MOLA an interpreter is selected due to its

positive side effects (e.g., the MOLA interpreter). Implementation of the interpreter is

under development.

Template MOLA applications are discussed in CHAPTER 7. These applications

were used to validate the applicability of Template MOLA language. The experimental

usage confirmed that Template MOLA is suitable for the definition of synthesis

transformations.

212

213

CHAPTER 7

Template MOLA Applications

The chapter dedicated to the discussion of Template MOLA applications focuses

on the two main application areas: the mapping language compilation and the

development of transformation libraries.

7.1 Mapping Language Compilation Using HOTs

In addition to the mapping language definition facilities an interpreter or a

compiler is required for mapping languages. As stated in CHAPTER 4 domain-specific

mapping languages could be incomplete, therefore integration with transformation

languages is needed. One of the ways for achieving the integration is compilation of

mapping languages to transformation languages. In this case it could be possible to extend

the code generated by mapping in the transformation language.

Higher-order transformations (of synthesis type) could be used to compile

mapping languages to transformation languages. Such approach was also used in AMW

[39] proposing to compile mapping languages using ATL [63]. As a result it is not

surprising that most of HOTs have been implemented in ATL [183], although it is

possible to define HOT in any transformation language.

Thus, defining HOTs can also be done in the model transformation language

MOLA, although the HOT definition using the abstract syntax of MOLA is not very

suitable. The Template MOLA language defined in CHAPTER 6 is more appropriate for

this task, as it was shown in Section 6.2.

Similarly, instead of standard ATL for transformation synthesis it is proposed to

use ATL extension [182], by means of which the lines of code in ATL synthesis

transformation could be reduced by 43.81% [182].

These specialised languages, like Template MOLA and ATL extension, are the

best choices for the development of mapping language compilers. In a mapping language

compiler to model transformation the mapping model should be analysed and

transformations should be synthesised. We have selected to use Template MOLA for the

214

mapping language compilation as in both studied mapping domains integration with

MOLA transformations is required. Ideas for the development of mapping language

compilers are described in the following sections.

7.2 Implementation of Mapping Languages for MDSD

As it was described in Section 4.6 it is planned to implement MALA4MDSD and

the mapping language family by using higher-order transformations for the development

of both – the editor and the compiler and each of them will contain the static part

common to all languages in the family and the specific part. The latter will be generated

by analyzing the language definition.

7.2.1 Editor of the Mapping Language Family

The mapping language definition will be used as an input for this higher-order

transformation, generating the editor of a language. The definition will be analysed to

find the graphical primitives in a language, as well as palette elements. This will be

concluded from the tree type elements and their concrete syntax definition, as well as

used for deciding for which elements the recursive elements could be used.

The possible child elements of the tree node will also be concluded from the tree

type definition. It will be used to generate transformations for checking whether one

element can be used as a child of another element.

Processing of the mapping part of the language is metamodel independent and

predefined transformations will be used there. The only thing to be checked from the

language definition will be whether the modifiers “copy” and “copyAttributes” are

supported (whether the tree types are the same).

When creating a new mapping diagram in a mapping language, the root nodes are

always included in the diagram. For each node in the diagram there are context menu

points for creating child elements of the appropriate type. The list of context menu points

depends on the tree type.

7.2.2 Mapping Language Family Compilation Schema

Another issue relates to the compiler development of mapping languages. Like the

editor, part of the compiler could be developed in a generic way for the entire mapping

215

language family. In addition to the specified mappings the mapping language definition

will be used by these parts of compiler.

The mapping language compiler should transform the mapping defined in terms of

tree types to a transformation defined in terms of the domain metamodel. The tree type

definition could be used for the purpose. This definition states the way each tree type

element is represented in terms of the domain metamodel. This information is widely

used in the mapping language compiler.

As already stated above, the compiler defined in Template MOLA is used for the

compilation of the mapping language family. The metamodels described in Section 4.4

are used as the source metamodel of Template MOLA transformation. There is used the

metamodel describing the mapping language definition, as well as the mapping

metamodel. Metamodels corresponding to the source and the target trees should be used

as the domain metamodel.

Fig. 83. Compilation of mapping language family

There are ordered mapping diagrams in the mapping program. Diagrams should

be executed according to this ordering. Each mapping diagram consists of multiple

mappings that are ordered in the diagram. Mappings are executed in a top-down manner,

if the ordering is not specified explicitly. When executing the mapping, all instances,

216

corresponding to the constraints defined for the source of the mapping, are processed. It

means we can process each mapping separately according to the mapping ordering.

Transformation defining the mapping execution order is given in Fig. 83. It should be

noted that some mappings are not defined explicitly; we assume that these mappings have

already been inserted in the pre-processing step.

Compilation of a mapping is discussed in the next section with some mapping

compilation aspects dwelt on in detail in the other following sections.

7.2.3 Mapping Compilation

The main ideas on mapping compilation are presented in this section. A

transformation implementing the application of the mapping is created from each

mapping. This transformation is generated by using higher-order transformations. We

define the transformation generation algorithm in Template MOLA.

The first thing the generated transformation should do is to select an instance set

for the transformation to be applied. If we think in terms of tree instances, then instances

of the source node of the current mapping should be transformed. Besides, these instances

should satisfy constraints defined for this node and should have as ancestors instances

satisfying constraints defined for the ancestor nodes. We can treat the tree as a pattern,

describing an appropriate instance set. In this pattern all nodes (and their constraints)

between the root and the source node of the current mapping should be included.

As a transformation should be defined in terms of model, not tree, it means that

the tree pattern should be translated in a MOLA rule defined in terms of the source

metamodel elements (metamodel corresponding to the source tree). It is possible to

translate a pattern defined in terms of tree in a pattern defined in terms of model by using

the tree type definition. This issue is discussed in detail in Section 7.2.4.

Our mapping language has the semantics “create if does not exist”. Next we

should create a rule checking whether this instance has not been processed before. In

creation of this rule traceability information is used. Special attention should be paid here

to mappings with the check modifier. This issue is discussed in detail in Section 7.2.5.

If no instance is found, then an appropriate instance in the target should be

created. To create an instance in the target, it is necessary to find the appropriate parent

instance. The parent node of the current mappings target node should have a mapping to

some already processed source tree node. Besides, this source tree node should be in the

217

tree between the source node of the current mapping and the root node. An instance of the

source tree node could be located by using a pattern similar to the one used for the

selection of instance set (or even using reference to the already found instance in this

pattern). To locate the appropriate target instance again traceability could be used. The

parent finding is discussed in detail in Section 7.2.6.

Finally, it is possible to implement creation of the target tree node instance. Here a

rule is created by translating the target tree node creation in terms of model element

creation; traceability creation should be added as well. This issue is discussed in detail in

Section 7.2.7.

The last thing is processing of the copy or copyAttributes modifiers if they are

used. To solve these tasks a universal instance copy library is created. In mapping

compilation only a call to the library is added, if required. The library uses the tree type

definition to create appropriate transformations for the tree node types.

In the following sections details regarding mapping compilation are discussed. A

description is given on what should be generated in each compilation step to result in the

MOLA procedure. For some steps the generation algorithm description in Template

MOLA is given as well. We focus on the algorithm supporting typical cases; the other

issues are only slightly touched upon.

7.2.4 Source Tree Pattern Compilation to MOLA

In this section we consider the creation of transformation that selects an

appropriate instance set for the mapping application. As already stated above, this

instance set should satisfy conditions defined by a tree fragment from the root node to the

source node of the current mapping. The tree fragment should be translated in the MOLA

program defined in terms of the source metamodel (a metamodel corresponding to the

source tree) elements.

We are interested in all distinct instances of the source node of the current

mapping. To process the instance set we should create foreach loop in the generated code,

where a class element corresponding to the source node of the current mapping is used as

a loop variable.

We assume here that there are no recursive tree nodes in the source tree, therefore

it is possible to transform the whole pattern defined by the source tree in a loophead rule.

Each tree node type is replaced with a class element. The type of the class element should

218

be the domain class associated with the tree node type in the tree type definition. If the

domain class in the tree node type definition is restricted by using the OCL constraint,

then this OCL constraint is added to the appropriate class element.

Parent-child relations in the tree should be replaced with appropriate association

links in the generated loophead rule. If classes corresponding to the parent and the child

nodes are directly related by using the parent-child association, then an association link is

simply added. If a longer OCL path is used, then intermediate class elements are added as

well.

If expressions are used for some tree nodes, then these expressions are translated

in terms of metamodel and added to appropriate class elements. It is required to translate

these constraints as they were defined in terms of tree elements.

A simplified version of Template MOLA procedure processing mappings is given

in Fig. 84. This procedure processes the current mapping that is received as a parameter.

Here the source tree node of the current mapping is found by using the MOLA rule.

Fig. 84. Template MOLA procedure processing the current mapping

The Template MOLA procedure FindTreeNodeDomainClass is used to find the

domain class corresponding to this tree node by using the tree type definition. This

procedure has one input parameter – the source tree node – and two output parameters:

the domain class corresponding to the tree node and constraints. The values of the output

219

parameters are stored in two variables. The domain class is used as a type of the loop

variable in the template loop. Constraints are used in the class element corresponding to

this tree node. Constraints used in the node type definition as well as constraints used in

the tree node, defined in terms of domain metamodel, are included in the returned

constraint string. In the given procedure only the local constraints are supported. To

support more complicated constraints, adding of additional elements to the loophead rule

is required.

The next element in the procedure is the template loop. It generates a loop

processing all appropriate instances of the source node of the current mapping. The

generated loop will iterate through all instances of the source tree node. It means the type

of the loop variable will be the domain class corresponding to the source node (the class

found by using the procedure FindTreeNodeDomainClass). If required, then constraints

are added to the loop variable as well. They are found by using the procedure

FindTreeNodeDomainClass.

Other tree pattern elements are added to the loophead rule by using inline call to

the procedure AddParentsToLoophead (given in Fig. 85). This procedure adds elements

one by one to the loophead recursively processing the tree upwards. Elements to the

loophead are added by using the merge mechanism. Therefore, the merge expressions for

the template loop and the loophead are defined in Fig. 84. When the loophead rule

defining the instance set has been created, the procedure implementing the semantics

“find if does not exist” is called in the template loop in Fig. 84. It completes the

processing of the current mapping.

The procedure AddParentsToLoophead (given in Fig. 85) is used to add the other

tree elements to the loophead rule. We remind that here we still assume that there are no

recursive nodes in the source tree. This procedure is recursive, it processes the parent of

the current tree node and calls itself on the parent of this tree node. When the root node is

reached, nothing is done.

In the first rule the parent of a tree node is found. If there is no parent (the root has

been reached), the procedure completes its work. If the parent is found, the domain class

and constraints corresponding to this parent are found by using the procedure

FindTreeNodeDomainClass. After that the association relating the parent and the child

tree nodes in the domain metamodel is found by using the procedure

findChildRelationAssociation. It should be noted that only navigation expressions of

220

length one (direct associations) are supported in the Template MOLA procedure given in

Fig. 85, however, it could be easily extended to support more complicated navigation

paths. In this case intermediate class elements (nodes in the path from parent to child) and

multiple associations should be added to the loophead rule.

Fig. 85. Procedure AddParentsToLoophead recursively creates the loophead rule

Finally, the parent element is added to the loophead of the template loop. This is

done by using the merge mechanism. This procedure was called using the inline mode

and the merge expression of the template loop and the loophead rule are equal to the

merge expressions used in the procedure processing mappings (Fig. 84). As a result all

elements appearing in the loophead in this procedure will actually appear in the loophead

iterating through the source tree node instances (Fig. 84).

It should be reminded that there is also a merge of class elements where the

element name is used as a merge expression. When executing the loophead given in Fig.

85, actually only one class element is added to the merged loophead as the class element

corresponding to the child node has already been added previously. The element added to

the loophead is connected by using the association link to the child element previously

created in the loophead. This link corresponds to the parent-child relation in the domain

metamodel. The association implementing the parent-child relation was found by using

the procedure findChildRelationAssociation.

221

To create the loophead from the source tree pattern a merge was very appropriate

as here the rule has to be created recursively.

To support recursive nodes the loophead pattern is split in several patterns and

recursive calls are used. Constraints to the supported instance set are added gradually.

Consequently, the Template MOLA program becomes quite complicated.

7.2.5 Implementation of “Create if Does not Exist”

In MALA4MDSD the semantics “create if does not exist” is used. The instance is

created if it has not been created previously by the mapping with the same name. To

support this feature it is required to generate a simple rule with three class elements:

reference to the processed instance (a loop variable in the previous section), a class

element with the type traceability class and the domain representation of the target node.

For the traceability class element constraint is added checking whether the trace name is

equal to the mapping name. The domain representation of the target node is obtained

similarly to the way the domain representation of the source node has been obtained.

Control flows are generated from this rule. If the rule fails, then the transformation

should go on with instance creation, however, prior to that the parent instance in the

target model should be found. If the rule succeeds, the mapping execution should be

completed. A special issue are mappings with the “check” modifier. If they fail, error is

produced.

7.2.6 Finding of Parent Instance in the Target Tree

To create an instance in the target model, it is required to find the appropriate

target instance to which the newly created instance should be attached.

It is done by finding a mapping from the parent node in the target model and by

finding the appropriate instances of this mapping. In the MOLA pattern generated in the

loophead (see Section 7.2.4) the source instance of this mapping should already be found.

The source instance and traceability links are used to find the appropriate target instance.

It should succeed as this mapping should already be processed according to our ordering

of mappings.

222

7.2.7 Element Creation

Finally we are able to generate a transformation for the creation of target instance.

A simplified version of this transformation is given in Fig. 86.

This procedure has two template parameters: one of them contains reference to the

source node instance being processed and the other – reference to the instance to be used

as the parent in the target model. At first the appropriate association is found relating the

child to the parent. (Here again only simple relations are supported, similarly to the

loophead creation in Section 7.2.4.)

Then the MOLA rule is created. It has four elements: reference to the source

instance, traceability instance creation, target instance creation and reference to the parent

instance in the target model. We assume that traceability is implemented by using the

constant class Trace in the Template MOLA rule given in Fig. 86.

Fig. 86. Template MOLA procedure implementing the element creation

223

If for mapping the modifier copy or copyAttributes is used, then a call to the copy

library is created, respectively copying all child elements or only the attribute values. The

copy library supports copying of the tree node instances. It is implemented in a generic

way, however, for each node type the appropriate copy transformation is generated by

using the tree type definition. It is similar to the copy library discussed in Section 7.4.1. If

only the attribute values should be processed, the procedure copyAttributes could be

called directly.

The explicitly defined assignments are performed after the copy operations to

replace the default values set by the copy. Here the assignment defined in terms of tree

nodes is translated into the assignment defined in terms of metamodel elements. Each

assignment is processed separately and it is done by using the Template MOLA

procedure PerformAssignemnt.

7.2.8 Evaluation

Only the main ideas used in the compilation algorithm have been presented here.

It is described what should be generated in each compilation step. The Template MOLA

procedures implementing the creation of the loophead and the element creation are given

as well. The use of merge is demonstrated in the loophead creation; the merge mechanism

is required here as the loophead creation algorithm is recursive. On the other hand the

creation of the element is very simple and is defined by using one template rule.

In the described solution, many details and exceptional cases were skipped;

however, a complete compiler requires support also for these cases. Full implementation

of the compiler is left for the future. Nonetheless, the experiments have confirmed that the

proposed approach is technically feasible and that Template MOLA is appropriate for this

task.

The overall conclusion is that Template MOLA seems appropriate for the

development of a mapping language compiler. The only inconvenient issue concerns the

limited OCL expression support in MOLA. It requires performing a complicated

transformation of the OCL expressions to the MOLA patterns. There are two possible

solutions: one is to restrict the supported OCL subset used in the mapping language (and

its definition) to the subset used in MOLA; the other is to extend the MOLA constraint

language with a complete coverage of OCL features.

224

7.3 Implementation of Mapping Language for DSL Tool Building

In this section a simplified example of tool building is presented. It is a sort of

continuation of the topics discussed in Section 5.3.

As stated in Section 5.3, there are approaches combining mappings and

transformations. In this case mappings are used to generate transformations. The

transformation synthesis required there provides a perfect opportunity for application of

Template MOLA.

We use a specific task from the tool building field as an example in this section.

We assume that we have instances of some graphical DSL in the abstract syntax (a

domain model), and we want to generate the corresponding visualisation (instances of the

presentation metamodel). We can certainly write manually a MOLA transformation,

solving the task for this concrete DSL.

In our tool building environment we have means for the domain metamodel

definition, as well as for the mapping and the presentation type definition; therefore,

visualisation transformation for each DSL can be created in a generic way. It means we

can build a generic transformation in Template MOLA from which the transformation for

visualisation creation in a concrete DSL can be generated automatically. It should be

noted that here only one tool building aspect is considered. In the complete mapping

language compiler the other aspects, discussed in CHAPTER 5, e.g. property dialogs,

palette elements, element update, etc., should be supported as well.

To write the transformation, we need the corresponding metamodels (built

according to the general schema in Fig. 77, p.196). A simplified metamodel version is

used in this example. The domain metamodel is defined using a small subset of UML (see

the upper left side of Fig. 87). Presentation types and a mapping metamodel are also

needed. Instances of this metamodel are used as the input in the generation time. Here we

present a very simple integrated mapping and presentation type metamodel where

minimal information on the intended graphical form is included directly in the mapping

definition (see Fig. 87, the upper right side). Instances of a domain class can be visualised

as a box (ClassToBox) or as a line (ClassToLine). If the class is visualised as a box it may

contain several text fields in which the values of some class properties are usually

displayed (PropertyToField). The user syntax of this simple mapping language could be

built in a way similar to the property mapping language, discussed in Section 5.3.4.

225

During the visualization of classes, the generated transformation has to create

instances of a fixed presentation metamodel supported by the tool (see the lower part of

Fig. 87). These instances appear only in the generated transformations. Therefore, the

presentation metamodel is the constant part of the metamodel for the generated

transformation (compare to Fig. 75, p.194 and Fig. 77, p.196). It describes a graph

diagram with Nodes and Edges. There are CompositeNodes containing other Nodes and

Labels for text visualization.

Fig. 87. A simplified domain (upper left side), mapping (upper right side) and

presentation (lower part) metamodel

When metamodels and their roles are specified, we can move on to transformation

definition in Template MOLA (see Fig. 88). We remind that the proper input for this

generation transformation is a specific domain metamodel and a related mapping model.

The transformation starts with the loop iterating through all instances of the class to box

mapping. This loop is a generation loop and is executed in the generation time. As a

result, a traditional MOLA procedure is built, containing a loop for each such mapping

instance (generated from the template loop which constitutes the body of the generation

226

time loop). The generated loops simply follow each other linked by control flows. The

template loop contains the loop variable with the name being generated. The loop variable

name is a concatenation of the letter “i” and the name of the appropriate class given by

the template expression <%@c.name%>. The type of the loop variable is defined by the

template expression <%@c:Class%>. In each generated loop the type (@c) is replaced

with the concrete domain class corresponding to the mapping instance this loop is

generated from. In each loop the value assigned to shapeType attribute is explicitly

defined. This value is calculated in the generation time using the corresponding mapping

data (the template expression <%@cm.boxType%> directly references the boxType

attribute of the current mapping instance). Now in runtime each generated loop iterates

over all instances of the corresponding domain class and creates a box for each of them.

Fig. 88. Mapping implementation for tool building in Template MOLA

We must also generate transformations to create fields and set their values.

Therefore, a rule for processing each field has to be generated in the loop body. To ensure

this, in the template loop a generation time loop is included. This loop checks which field

227

mappings are included into the given class mapping. A rule is created for each such field

which adds a label to the box and sets its value. To set the value of the label, the relevant

property value of the runtime instance should be used. To access this property, the

template expression <%@p.name%> is used within the assignment in the template rule.

During generation the generation time loop ensures that the template expression is

replaced with the relevant property each time. It is not difficult to see that the generated

sequence of rules will do exactly the required label creation. The structure of the

generated procedure is given in Fig. 89.

Fig. 89. A MOLA procedure generated for Fig. 88

7.4 Transformation Libraries

Another application area of synthesis transformations is the development of

transformation libraries. It is important for the model transformation languages which do

not support the work with multiple metalevels. In these languages model transformations

are attached to the metamodel they are defined for. As a result it is not possible to define

metamodel independent transformations. HOTs could be used to solve this problem. It is

possible to define a transformation which reads the metamodel and creates the appropriate

transformation for this metamodel. When using this approach, it is possible to create

metamodel independent transformation libraries. The given HOT application is discussed

in this section.

7.4.1 Transformations for Generic Metamodels

Template MOLA can be used to write transformations for generic metamodels

(the metamodel is unknown at the time of writing). For example, we can write a generic

instance cloning procedure. More precisely, we can write an instance cloning generator in

228

Template MOLA, then execute it for a concrete metamodel and run the generated

traditional MOLA to clone instances of this metamodel.

Such approach can be used to create reusable transformation libraries. Model

transformation reuse has been considered an important topic [34]. One of the obstacles is

the complete dependency of the transformation definition on the used metamodel.

Generic transformations (transformation generators) in Template MOLA could be used to

create a reusable library of common metamodel independent algorithms for model

processing.

This approach is less important if the transformation language contains features

for work with several meta-levels at a time. However, it is useful for transformation

languages like MOLA (and most of others that include the OMG standard MOF QVT

[122]), which have no support for work with different meta-levels.

Generic Template MOLA procedures can be combined with the traditional

MOLA. The analogy with C++ templates and Java generics is used here. For example, it

is also possible to write such a template based cloning procedure in C++ (see Listing 4).

Listing 4. Template based cloning procedure in C++

template <class T> void Clone (T orig, T& copy) {...}.

In C++ this template procedure can be called with parameters of a concrete type.

To process this template procedure, the pre-processor generates an instance of this

procedure for every type it is called with. The same idea is used to combine MOLA with

Template MOLA. This feature is required if we want to invoke reusable transformations

from a transformation library.

Calls to template procedures can be used in ordinary MOLA transformations. In

Fig. 90 calls to the template procedure Clone are demonstrated. The same pre-processor

technology is applied when combining MOLA with Template MOLA as in C++ when

generating procedures for each type they are called with.

Since several MOLA procedures should be generated from one template

procedure, the procedure names should be generated, too (several procedures with the

same name are not allowed in MOLA). Here the default name generation is used. For a

template procedure, it is possible to define an expression of how the procedure name

should be generated exactly, however, the default naming conventions are also provided.

229

One of the pre-processor tasks in combining MOLA and Template MOLA is to replace

calls to the template procedure with calls to the appropriate generated procedures.

Fig. 90. An example where the traditional MOLA and Template MOLA are

combined. A MOLA procedure calling the template procedure Clone from Fig. 91 is

illustrated

Fig. 91. The Clone procedure

Fig. 91 demonstrates the content of the template procedure Clone. It contains two

template parameters. It means that two parameters will be created in the generated

procedure. Instead of the type, these parameters contain the template expression

<%@type:Class%>. This template expression is evaluated in the generation time and

replaced with the appropriate values in the generated procedures. The procedure contains

one more kind of parameter – a type parameter (the parameter @type). This parameter

has an analogy to C++ code, where the template parameter T was explicitly defined in the

procedure definition. In the same way as in C++, the value of the parameter is not defined

in a call, but it is inferred from other parameters. Note that the type parameter is used for

this type of transformations only (transformations for generic metamodels) and is not

required for typical HOT use cases. Since this template procedure is invoked from the

ordinary MOLA, the referenced metamodel must be MOLA MOF itself (the Kernel

package).

230

In the Clone procedure one rule and one call is generated. In the rule, the template

expressions (which specify types of class elements) are replaced with their generation

time values in the same way as in the template parameters. The call statement contains

one generation time parameter and two template parameters. The template parameters are

kept in the generated call. Actually, instead of a call to the template procedure, a call to

the appropriate instance of the procedure generated from the template procedure is

created (taking into account the name generation).

The template procedure in Fig. 92 generates the procedure to copy instance

properties. It contains two template parameters and one generation time parameter. The

generated procedure will have two parameters created from the template parameters.

Generation time parameter is only used in the generation time.

Fig. 92. The copyProperties procedure

The procedure copyProperties contains two generation time loops. The first loop

(on the left in Fig. 92) iterates through all direct attributes of the class. For each attribute,

it generates a rule containing a class element with an assignment in it. The value of the

same attribute in the instance orig is assigned to this attribute. In the generated class

element, all template expressions are replaced with their values. The template expressions

are used for the class element type, for the attribute to be assigned and for the assigned

expression. A remark on the template expression syntax: the left hand side of the

assignment must be an attribute reference in MOLA. Formally, both the notation @p (the

reference to the attribute) and @p.name (a string expression equal to the attribute name)

231

could be used here. Our choice is @p since it expresses more directly that the left hand

side is a reference (it is preferred for the implementation as well).

The second loop (on the right in Fig. 92) iterates trough all immediate super-

classes of this class. For each super-class, it generates a call to a procedure that copies

direct attributes of this super-class. In this way, using recursion in Template MOLA,

values of all attributes are finally copied. It should be noted that the generated MOLA

procedures are not recursive due to the fact that procedure names are generated when

several MOLA procedures are created from one template procedure. Fig. 94 and Fig. 95

explain this situation by means of an example.

Fig. 93. A metamodel example describing information processed by a company.

The class IndividualCustomer is used to describe the generated code in Fig. 94 and Fig.

95

Fig. 94. MOLA procedure generated from the template procedure Clone

Now let us consider MOLA procedures generated from the Clone algorithm as

described above by using Template MOLA. We will demonstrate the generated result for

the first call of the procedure Clone in Fig. 90. The type of the instance to be cloned is

Company::IndividualCustomer. The metamodel for this fragment is described in Fig. 93

(the package containing the fragment is assumed to be Company). This could be a

simplified metamodel describing the information processed by a company. Fig. 94

presents the code generated form the template procedure Clone. The type parameter value

232

is the type of the instance the call statement was invoked with. In this case, it is the class

Company::IndividualCustomer. In the generated code, the type parameter @type is

replaced with this class. The procedure call is replaced with a call to the generated

procedure with appropriate types. Note that procedure names are generated in Template

MOLA as well (according to the default name generation rules, which can be modified if

required). The procedure name here will be appended by the class name from the type

parameter. The procedure name generation is necessary because the generated procedure

code depends on the type (or generation) parameter value (as shown in Fig. 95). The type

parameter itself is not included in the generated code.

Fig. 95. MOLA procedure generated from the template procedure copyProperties

Fig. 95 presents the structure of a MOLA procedure generated from the

copyProperties procedure in Fig. 92 (p.230) when the class specified by the generation

time parameter is Company::IndividualCustomer (i.e., it is the procedure copyProperties_

IndividualCustomer). The left side shows two of the generated rules for assigning direct

attribute values of the IndividualCustomer class (to the attributes level and

loyaltyCardNumber). The attribute assignments are followed by calls to the

copyProperties procedures generated for the superclasses of IndividualCustomer (calls

for the superclasses Person and Customer are shown). Note that the generated names of

the procedures include the class name from the generation time parameter, thus there is

no recursion in the generated code.

In this example the generated MOLA source is a kind of spaghetti code. However,

it would be sufficient to have one class element containing assignments for each property.

This issue could be solved using the merge mechanism described in Section 6.7. A

233

solution of the same task using the merge mechanism is described in Section 6.7.1, the

Template MOLA procedure and an example of generated code is given in Fig. 79 (p.205).

7.4.2 Transformation Design Patterns

The higher-order transformations could be used to apply transformation design

patterns. It means it could be possible to generate the initial transformation code

according to the transformation design pattern using HOTs, e.g., to apply some design

pattern for one specific case according to the defined parameters.

It should be reminded that using HOTs it is also possible to read the

transformation sources. It means it should be possible to adapt some existing

transformation according to the selected design pattern.

In this way it is also possible to implement transformation refactoring and merge

of several transformations.

When using higher-order transformations, we could automatically get a transitive

closure according to some associations. It should be noted that there is no direct support

for a transitive closure of an association in the MOLA patterns, while some other

transformation languages have this feature. The TTC 2011 Reengineering challenge [54]

demonstrates that there are tasks where a transitive closure could be widely used. The

MOLA solution of this task used higher-order transformations to generate concrete

transformations [155]. Here higher-order transformations were defined in MOLA;

however, Template MOLA could be even a more adequate solution. Thus, Template

MOLA can be used to add the missing language features to MOLA in a generic way.

The mapping operators proposed in [198] could also be treated as transformation

design patterns with one type of the operators being the Copy operator, which copies the

data from one model to another. Copy was also widely used in the mapping language

MALA4MDSD. The Copy operation is very popular in model transformations and it

would be useful to obtain a metamodel independent copy library. In [198] other mapping

operators have been considered. However, these operators were very simple and therefore

do not seem so useful in the context of this research.

On the whole the identification of reusable transformation design patterns is an

interesting issue and the author of the given thesis believes that it has not been studied

enough and therefore offers a perspective direction of future research.

234

7.5 Conclusions

There are several application areas for Template MOLA. First of all it is

metamodel-based tool building for graphical DSL. More precisely, it is the generation of

transformations that determine the tool behaviour according to mappings that define the

tool functionality in a static way (as, for example, in GMF).

A related application could be generation of transformations from a more general

kind of mappings between models. This is the area where HOTs are widely used,

especially in ATL. The development of experimental mapping language compiler has

confirmed that Template MOLA is applicable to solve this task. Detailed conclusions

were already given in Section 7.2.

Another important application is the building of transformations for unknown

metamodels. In this way reusable transformation libraries for performing typical model

processing tasks could be created. Afterwards transformations from such libraries could

be used in the ordinary MOLA transformations for a specific metamodel. A very simple

example from this area is also provided in this chapter.

A future research direction could be an extension of Template MOLA for defining

templates in other graphical languages, e.g., UML activity diagrams. Then the

corresponding template statements would be defined by the graphical syntax of the

generated language. Generation statements controlling the generation process would

certainly remain in MOLA. This approach could be applied, e.g., for building of various

process generators. This requires more research because the implementation could turn

out to be more complicated than that for Template MOLA.

235

CHAPTER 8

Conclusions

This PhD thesis presents a research on model transformation development. Three

domain-specific transformation application areas have been studied: transformations for

Model-Driven Software Development, transformations for graphical DSL tool building

and transformations synthesising transformations.

It is concluded that a domain-specific language is more convenient and efficient

for transformation development in a specific domain. Each selected domain area

confirmed this conclusion and for each domain area a domain-specific language has been

built. The thesis confirms that transformation development in these specific languages is

more convenient compared to transformation development in traditional model

transformation languages.

The given domain-specific transformation languages should support

transformation development for typical cases; however, it is not necessary to support all

exceptional cases. A domain-specific language should be well integrated with general-

purpose transformation languages then the processing of an exceptional case can be

implemented in a transformation language. Support for processing of all exceptional cases

in the domain-specific language would make this language excessively complicated.

The above given conclusions are based on research in the three selected domain

areas. However, proving the general validity of these statements is a task for future

research.

It should be noted that the development of domain-specific language is not free of

charge. Language development pays off only at a big enough amount of transformations

to be developed. In case of requiring only one small transformation the development of a

new domain-specific language is very likely to be unproductive. In this case one of the

existing languages should be used as the time demanded for developing a new language

will be greater than the time spent developing transformations. One of directions for

future research could focus on elaboration of cost-effectiveness evaluation of a new

domain-specific language for a particular domain.

236

The transformation domains discussed in the PhD thesis are big enough to have a

potential for developing many similar transformations, therefore creation of a domain-

specific language will pay off.

It should be underlined that two of the specialised domain-specific transformation

languages proposed in the thesis are based on mappings that are the most comprehensible

means for transformation development. However, it is not possible to define

transformations by using only mappings. This explains why only mapping elements are

used in model transformation languages. Nevertheless, if mappings are adapted for a

specific domain, then most of transformation logic could be defined by using mappings.

In fact, the approach used for MALA4MDSD could be generalised for a wider

class of transformations. This approach could be used to build other similar mapping

languages for other domains. Another direction of future research is studying the

applicability in different domains and limitations of this approach. It would be interesting

to find out whether this approach could be applied for graphical DSL tool development.

A tool for developing a mapping language compiler is also proposed in the thesis.

In the given case the Template MOLA language for transformation synthesis is

applicable. Mapping and the transformation integration problem is solved by using the

Template MOLA for the mapping language compilation. Mappings are compiled to

transformations and to accomplish the integration only calls to the appropriate MOLA

procedures should be created.

The Template MOLA is suitable for MOLA transformation synthesis. Synthesis

of code in other graphical languages might provide a very interesting direction of future

research as it is likely that the approach similar to the one used in the Template MOLA

could be used, namely, to synthesize diagram fragments in concrete syntax.

237

BIBLIOGRAPHY

[1] Link specification language, Available:

http://www.assembla.com/wiki/show/silk/Link_Specification_Language (online,

2011.10.29)

[2] ReDSeeDS, Available: http://sourceforge.net/projects/redseeds/ (online,

2011.10.06)

[3] ReDSeeDS –Requirements-Driven Software Development System, Available:

http://www.redseeds.eu (online, 2011.10.06)

[4] SHARE demo related to the paper Saying Hello World with MOLA - A Solution

to the TTC 2011 Instructive Case, Available:

http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-

TUe_TTC11_MOLA.vdi (online, 2011.10.06)

[5] Transformation Tool Contest 2011, Available: http://planet-

research20.org/ttc2011 (online, 2011.10.05)

[6] The MOLA language. Reference Manual, Version 2.0 final (December 2007),

Available: http://mola.mii.lu.lv/mola2fin_refmanual.pdf (online, 2011.09.27)

[7] Agrawal, A., Karsai, G., Shi, F.: Graph transformations on domain-specific

models. Tech. Rep. ISIS-03-403, Institute for Software Integrated Systems,

Vanderbilt University http://repo.isis.vanderbilt.edu/tools/get_tool?GReAT (2003)

[8] Ambroziewicz, A., Straszak, T., Schwarz, H., Nowakowski, W., Brogan, J.P.,

Kalnina, E., Celms, E., Sostaks, A., Bildhauer, D., Nick, M., Schneickert, S.,

Kalnins, A., Bojarski, J., Hotz, L.: Research-oriented software artefacts. Project

Deliverable D5.1, ReDSeeDS Project www.redseeds.eu (2007)

[9] Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced

concepts and tools for in-place EMF model transformations. In: Petriu, D.,

Rouquette, N., Haugen, y. (eds.) Model Driven Engineering Languages and

Systems, Lecture Notes in Computer Science, vol. 6394, pp. 121–135. Springer

Berlin / Heidelberg http://dx.doi.org/10.1007/978-3-642-16145-2_9 (2010)

[10] AUTOSAR Consortium: The AUTOSAR standard, Available:

http://www.autosar.org/ (online, 2011.09.01)

[11] Barzdins, J., Barzdins, G., Balodis, R., Cerans, K., Kalnins, A., Opmanis, M.,

Podnieks, K.: Towards semantic Latvia. In: Vasilecas, O. (ed.) Proceedings of

DB&IS. pp. 203–218. Vilnius, Technika (2006)

[12] Barzdins, J., Cerans, K., Kozlovics, S., Lace, L., Liepins, R., Rencis, E., Sprogis,

A., Zarins, A.: An MDE-based graphical tool building framework. In: Scientific

Papers, University of Latvia (2010)

[13] Barzdins, J., Kalnins, A., Rencis, E., Rikacovs, S.: Model transformation

languages and their implementation by bootstrapping method. In: Avron, A.,

Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol.

4800, pp. 130–145. Springer-Verlag, Berlin, Heidelberg (2008)

[14] Barzdins, J., Kozlovics, S., Rencis, E.: The Transformation-Driven Architecture.

In: Proceedings of DSM’08 Workshop of OOPSLA 2008. pp. 60–63. Nashville,

Tennessee, USA (2008)

[15] Barzdins, J., Zarins, A., Cerans, K., Kalnins, A., Rencis, E., Lace, L., Liepins, R.,

Sprogis, A.: GrTP: Transformation based graphical tool building platform. In:

Proceedings of MDDAUI 2007 Workshop of MODELS 2007. Nashville,

Tennessee, USA (2007)

238

[16] Bauer, C., King, G.: Java Persistence with Hibernate. Manning Publications Co.,

Greenwich, CT, USA (2006)

[17] Bezivin, J.: Broadening application area (November 2010), Available:

http://modelseverywhere.wordpress.com/2010/11/05/broadening-application-area/

(online, 2011.09.15)

[18] Bézivin, J., Gerbé, O.: Towards a precise definition of the OMG/MDA

framework. In: Proceedings of the 16th IEEE international conference on

Automated software engineering. pp. 273–. ASE ’01, IEEE Computer Society,

Washington, DC, USA (2001)

[19] Bildhauer, D., Ebert, J., Riediger, V., Krebs, T., Nick, M., Schwarz, H., Kalnins,

A., Kalnina, E., Schneickert, S., Celms, E., Wolter, K., Ambroziewicz, A.,

Bojarski, J.: Repository selection report. Project Deliverable D4.4, ReDSeeDS

Project www.redseeds.eu (2007)

[20] Bizer, C.: D2R MAP - database to RDF mapping language and processor,

Available: http://www4.wiwiss.fu-berlin.de/bizer/d2rmap/d2rmap.htm (online,

2011.10.29)

[21] BLU AGE: Model2Code, Available: http://www.model2code.com/ (online,

2011.10.13)

[22] Būmans, G., Čerāns, K.: DB2OWL: Mapping relational databases into OWL

ontologies - a practical approach. In: J. Barzdins, M.K. (ed.) Databases and

Information Systems. Proceedings of the Ninth International Baltic Conference

Baltic DB&IS 2010. pp. 393 – 408. University of Latvia, Riga, Latvia (July 2010)

[23] Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A

language and toolset for program transformation. Science of Computer

Programming 72(1-2), 52–70 (2008)

[24] Brown, A.W.: Model driven architecture: Principles and practice. Software and

Systems Modeling 3, 314–327 http://dx.doi.org/10.1007/s10270-004-0061-2

(2004)

[25] Budapest University of Technology and Economics, Department of Automation

and Applied Informatics: Visual Modeling and Transformation System (VMTS),

Available: http://www.aut.bme.hu/Portal/Vmts.aspx (online, 2011.08.26)

[26] Celms, E., Kalnins, A., Lace, L.: Diagram definition facilities based on

metamodel mappings. In: Proceedings of the 3rd OOPSLA Workshop on Domain-

Specific Modeling. pp. 23–32. University of Jyvaskyla (2003)

[27] CityRailTransit: Rail transit maps > Paris (France), Available:

http://www.cityrailtransit.com/maps/paris_map.htm (online, 2011.09.13)

[28] Cook, S., Jones, G., Kent, S., Wills, A.C.: Domain-Specific Development with

Visual Studio DSL Tools. Addison-Wesley (2007)

[29] Cordy, J.R.: The TXL source transformation language. Sci. Comput. Program. 61,

190–210 (August 2006)

[30] Cordy, J.R.: Eating our own dog food. Slides of SLE 2009 Keynote (2009),

Available: http://planet-sl.org/sle-conference/sle-

organization/7z36rz47aezerz6er3434h/organization/sle2009/jim_cordy_sle09_key

note.pdf (online, 2011.09.27)

[31] Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varró, D.: VIATRA:

Visual automated transformations for formal verification and validation of UML

models. In: Proceedings of the 17th IEEE international conference on Automated

software engineering. p. 267–270. ASE ’02, IEEE Computer Society,

Washington, DC, USA (2002)

239

[32] Cuadrado, J., Molina, J., Tortosa, M.: RubyTL: A practical, extensible

transformation language. In: Rensink, A., Warmer, J. (eds.) Model Driven

Architecture - Foundations and Applications, Lecture Notes in Computer Science,

vol. 4066, pp. 158–172. Springer Berlin / Heidelberg

http://dx.doi.org/10.1007/11787044_13 (2006)

[33] Cuadrado, J.S., Guerra, E., de Lara, J.: Generic model transformations: Write

Once, Reuse Everywhere. In: Cabot, J., Visser, E. (eds.) Theory and Practice of

Model Transformations, Lecture Notes in Computer Science, vol. 6707, pp. 62–

77. Springer Berlin / Heidelberg http://dx.doi.org/10.1007/978-3-642-21732-6_5

(2011)

[34] Cuadrado, J.S., Molina, J.G.: Approaches for model transformation reuse:

Factorization and composition. In: Proceedings of ICMT 2008. LNCS, vol. 5063,

p. 168–182. Springer, Zürich, Switzerland (2008)

[35] DSTC: Tefkat: The EMF Transformation Engine, Available:

http://tefkat.sourceforge.net/ (online, 2011.08.29)

[36] Dumas, M.: Case study : BPMN to BPEL model transformation. Oryx pp. 6–9

http://is.ieis.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2008translationca

se.pdf (2008)

[37] Ermel, C., Ehrig, K., Taentzer, G., Weiss, E., Ermel, C., Ehrig, K., Taentzer, G.,

Weiss, E.: Object oriented and rule-based design of visual languages using Tiger.

In: Proceedings of GraBaTs’06. p. 12 (2006)

[38] European Commission: ReDSeeDS: Requirements-driven software development

system, Available:

http://cordis.europa.eu/fetch?CALLER=PROJ_ICT&ACTION=D&DOC=40&CA

T=PROJ&QUERY=01312ff3409f:cf83:56f807cb&RCN=79442 (online,

2011.10.06)

[39] del Fabro, M.D., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: a generic

model weaver. In: Proceedings of the 1ère Journée sur l’Ingénierie Dirigée par les

Modèles (2005)

[40] Favre, L.: Model driven architecture for reverse engineering technologies:

strategic directions and system evolution. Hershey: IGI Global, New York, USA

(2010)

[41] Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8106 (1998)

[42] Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph

rewrite language based on the unified modeling language and Java. In: Ehrig, H.,

Engels, G., Kreowski, H., Rozenberg, G. (eds.) Proceedings of TAGT. LNCS, vol.

1764, p. 296–309. Springer (1998)

[43] Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph

rewrite language based on the unified modeling language and Java. In: Selected

papers from the 6th International Workshop on Theory and Application of Graph

Transformations. pp. 296–309. TAGT’98, Springer-Verlag, London, UK (2000)

[44] Freie Universität Berlin: Language specification, Available:

http://www4.wiwiss.fu-berlin.de/bizer/d2rq/spec/#specification (online,

2011.10.29)

[45] Fujaba Tool Suite Developer Team, University of Paderborn: Fujaba tool suite,

Available: http://www2.cs.uni-paderborn.de/cs/ag-schaefer/Lehre/PG/FUJABA/

(online, 2011.09.28)

240

[46] Fujaba Tool Suite Developer Team, University of Paderborn: Incremental model

transformation and synchronization with Triple Graph Grammars, Available:

http://www.fujaba.de/projects/triple-graph-grammars.html (online, 2011.09.28)

[47] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of

Reusable Object-Oriented Software. Addison Wesley, Reading, Mass. (1995)

[48] Geiß, R., Batz, G., Grund, D., Hack, S., Szalkowski, A.: Grgen: A fast spo-based

graph rewriting tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L.,

Rozenberg, G. (eds.) Graph Transformations, Lecture Notes in Computer Science,

vol. 4178, pp. 383–397. Springer Berlin / Heidelberg (2006)

[49] Grønmo, R., Møller-Pedersen, B.: From sequence diagrams to state machines by

graph transformation. In: Tratt, L., Gogolla, M. (eds.) Theory and Practice of

Model Transformations. Lecture Notes in Computer Science, vol. 6142, pp. 93–

107. Springer Berlin / Heidelberg (2010)

[50] Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F., dos Santos, O.M.: transML: A

family of languages to model model transformations. In: Petriu, D., Rouquette, N.,

Haugen, y. (eds.) Model Driven Engineering Languages and Systems. Lecture

Notes in Computer Science, vol. 6394, pp. 106–120. Springer Berlin / Heidelberg

(2010)

[51] Hausmann, J.H., Kent, S.: Visualizing model mappings in UML. In: Proceedings

of the 2003 ACM symposium on Software visualization. pp. 169–178. SoftVis

’03, ACM, New York, NY, USA (2003)

[52] Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - automating coupled

evolution of metamodels and models. In: Drossopoulou, S. (ed.) ECOOP 2009 –

Object- Oriented Programming. LNCS, vol. 5653, p. 52–76. Springer, Heidelberg

(2009)

[53] Hillairet, G., Bertrand, F., Lafaye, J.Y.: MDE for publishing data on the semantic

web. In: Parreiras, F.S., Pan, J.Z., Aßmann, U., Henriksson, J. (eds.) Proceedings

of the 1st International Workshop on Transforming and Weaving Ontologies in

Model Driven Engineering TWOMDE 2008, Toulouse, France, September 28,

2008. CEUR Workshop Proceedings, vol. 395, pp. 32–46. CEUR-WS.org (2008)

[54] Horn, T.: Program understanding: A reengineering case for the transformation tool

contest. In: Van Gorp et al. [187]

[55] Horn, T., Ebert, J.: The GReTL transformation language. In: Cabot, J., Visser, E.

(eds.) Theory and Practice of Model Transformations, Lecture Notes in Computer

Science, vol. 6707, pp. 183–197. Springer Berlin / Heidelberg

http://dx.doi.org/10.1007/978-3-642-21732-6_13 (2011)

[56] IBM: Model Transformation Framework (MTF), Available:

http://www.alphaworks.ibm.com/tech/mtf (online, 2011.08.29)

[57] IKV++ Technologies AG: medini qvt project, Available: http://projects.ikv.de/qvt/

(online, 2011.10.28)

[58] Institut fur Informatik der Technischen Universitat Munchen: The bidirectional

object oriented transformation language (BOTL), Available:

http://botl.sourceforge.net/ (online, 2011.08.29)

[59] Institute of Mathematics and Computer Science, University of Latvia: Mola pages,

Available: http://mola.mii.lu.lv (online, 2011.08.28)

[60] Iraids, J.: Template MOLA realizācija. Master’s thesis, University of Latvia

(2011)

241

[61] Jackson, M.: Some basic tenets of description. Software and Systems Modeling 1,

5–9 http://dx.doi.org/10.1007/s10270-002-0005-7 (2002), 10.1007/s10270-002-

0005-7

[62] Jouault, F., Bézivin, J.: KM3: A DSL for metamodel specification. In: Gorrieri,

R., Wehrheim, H. (eds.) FMOODS’06: Proceedings of the 8th IFIP WG 6.1

International Conference on Formal Methods for Open Object-Based Distributed

Systems. LNCS, vol. 4037, p. 171–185. Springer Berlin / Heidelberg, Bologna,

Italy (2006)

[63] Jouault, F., Kurtev, I.: Transforming models with the ATL. Lecture Notes in

Computer Science 3844, 128–138 (October 2005)

[64] Kahle, S.: JGraLab: Konzeption, Entwurf und Implementierung einer Java-

Klassenbibliothek für TGraphen. Diplomarbeit, University of Koblenz-Landau,

Institute for Software Technology (2006)

[65] Kaindl, H., Smiałek, M., Wagner, P., Svetinovic, D., Ambroziewicz, A., Bojarski,

J., Nowakowski, W., Straszak, T., Schwarz, H., Bildhauer, D., Falb, J., Brogan,

J.P., Mukasa, K.S., Wolter, K., Kavaldjian, S., Szép, A., Kalnina, E., Kalnins, A.:

Requirements specification language definition. Project Deliverable D2.4.2,

ReDSeeDS Project www.redseeds.eu (2009)

[66] Kaindl, H., Smiałek, M., Svetinovic, D., Ambroziewicz, A., Bojarski, J.,

Nowakowski, W., Straszak, T., Schwarz, H., Bildhauer, D., Brogan, J.P., Mukasa,

K.S., Wolter, K., Krebs, T.: Requirements specification language definition.

Project Deliverable D2.4.1, ReDSeeDS Project www.redseeds.eu (2007)

[67] Kalnina, E.: DSL tool development with transformations and static mappings. In:

Pretschner, A. (ed.) Models 2008, Toulouse, France, 28 September - 3 October

2008, Doctoral Symposium. ETH Zürich Technical Report, vol. 606, pp. 9–14

(September 2008)

[68] Kalnina, E., Kalnins, A.: DSL tool development with transformations and static

mappings. In: Chaudron, M.R.V. (ed.) Models in Software Engineering,

Workshops and Symposia at MODELS 2008, Toulouse, France. Reports and

Revised Selected Papers. LNCS, Programming and Software Engineering, vol.

5421, p. 356–370. Springer (2009)

[69] Kalnina, E., Kalnins, A., Celms, E., Sostaks, A.: Graphical template language for

transformation synthesis. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE

2009. LNCS, vol. 5969, pp. 244–253. Springer, Heidelberg (2010)

[70] Kalnina, E., Kalnins, A., Celms, E., Sostaks, A., Iraids, J.: Generation

mechanisms in graphical template language. In: Osis, J., Nikiforova, O. (eds.)

Proceedings of MDA&MTDD 2010 2nd International Workshop on Model-

Driven Architecture and Modeling Theory-Driven Development. In conjuction

with ENASE 2010. pp. 43–52. SciTePress, Portugal, Athens, Greece (July 2010)

[71] Kalnina, E., Kalnins, A., Celms, E., Sostaks, A., Iraids, J.: Transformation

synthesis language – Template MOLA. Scientific Papers, University of Latvia,

vol. 756, p. 77–98 (2010)

[72] Kalnina, E., Kalnins, A., Iraids, J., Sostaks, A., Celms, E.: Model migration with

MOLA. In: Mazanek, S., Rensink, A., Van Gorp, P. (eds.) Proceedings of

Transformation Tools Contest 2010 (TTC), co-located with the International

Conference on Objects, Models, Components and Patterns (TOOLS Europe). pp.

38–60. Online Proceedings http://www.ctit.utwente.nl/library/proceedings/wp10-

03.pdf (2010)

242

[73] Kalnina, E., Kalnins, A., Sostaks, A., Celms, E., Iraids, J.: Tree based domain-

specific mapping languages (2012), to appear in SOFSEM 2012 LNCS

proceedings

[74] Kalnina, E., Kalnins, A., Sostaks, A., Iraids, J., Celms, E.: Saying hello world

with MOLA - a solution to the TTC 2011 instructive case. In: Van Gorp et al.

[187], pp. 236–251

[75] Kalnins, A., Barzdins, J., Celms, E.: Basics of model transformation language

MOLA. In: Workshop on Model Driven Development (WMDD 2004) (2004)

[76] Kalnins, A., Barzdins, J., Celms, E.: Model transformation language MOLA. In:

Proceedings of MDAFA 2004. pp. 14–28. Linkoeping, Sweden (2004)

[77] Kalnins, A., Barzdins, J., Celms, E.: MOLA language: Methodology sketch. In:

Second European Workshop on Model Driven Architecture (MDA), EWMDA-2

(2004)

[78] Kalnins, A., Celms, E., Kalnina, E., Sostaks, A.: Behaviour modelling notation for

information system design. In: BM-MDA ’09: Proceedings of the 1st Workshop

on Behaviour Modelling in Model-Driven Architecture. pp. 1–7. ACM, New

York, NY, USA (2009)

[79] Kalnins, A., Kalnina, E., Celms, E., Sostaks, A.: From requirements to code in a

model driven way. In: Grundspenkis, J., Kirikova, M., Manolopoulos, Y.,

Novickis, L. (eds.) Advances in Databases and Information Systems. Lecture

Notes in Computer Science, vol. 5968, pp. 161–168. Springer Berlin / Heidelberg

(2010), 10.1007/978-3-642-12082-4_21

[80] Kalnins, A., Kalnina, E., Celms, E., Sostaks, A.: A model-driven path from

requirements to code. Computer Science and Information Technologies, vol. 756,

pp. 33–57. Scientific Papers, University of Latvia (2010)

[81] Kalnins, A., Kalnina, E., Celms, E., Sostaks, A., Schwarz, H., Ambroziewicz, A.,

Bojarski, J., Nowakowski, W., Straszak, T., Kavaldjian, S., Falb, J.: Reusable case

transformation rule specification. Project Deliverable D3.3, ReDSeeDS Project

www.redseeds.eu (2007)

[82] Kalnins, A., Smialek, M., Kalnina, E., Celms, E., Nowakowski, W., Straszak, T.:

Model-Driven Domain Analysis and Software Development: Architectures and

Functions, chap. Domain-Driven Reuse of Software Design Models, pp. 177–200.

IGI Global, Hershey (2011)

[83] Kalnins, A., Sostaks, A., Celms, E., Kalnina, E., Ambroziewicz, A., Bojarski, J.,

Nowakowski, W., Straszak, T., Riediger, V., Schwarz, H., Bildhauer, D.,

Kavaldjian, S., Popp, R., Falb, J.: Reuse-oriented modelling and transformation

language definition. Project Deliverable D3.2.1, ReDSeeDS Project

www.redseeds.eu (2007)

[84] Kalnins, A., Sostaks, A., Celms, E., Kalnina, E., Ambroziewicz, A., Bojarski, J.,

Nowakowski, W., Straszak, T., Riediger, V., Schwarz, H., Bildhauer, D.,

Kavaldjian, S., Popp, R., Falb, J.: Final reuse-oriented modelling and

transformation language definition. Project Deliverable D3.2.2, ReDSeeDS

Project www.redseeds.eu (2009)

[85] Kalnins, A., Sostaks, A., Kalnina, E., Celms, E., Vilitis, O.: MOLA 2 Tool. In:

ECMDA Tools and Services Session (2008)

[86] Kalnins, A., Vilitis, O., Celms, E., Kalnina, E., Sostaks, A., Barzdins, J.: Building

tools by model transformations in Eclipse. In: Proceedings of DSM’07 Workshop

of OOPSLA 2007. pp. 194–207. Jyvaskyla University Printing House, Montreal,

Canada (2007)

243

[87] Kavaldjian, S., Kaindl, H., Mukasa, K.S., Falb., J.: Transformations between

specifications of requirements and user interfaces. In: 4th Int. Workshop

MDDAUI. p. 37–40 (2009)

[88] Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling. Wiley (2008)

[89] Kühne, T.: Matters of (meta-) modeling. Software and Systems Modeling 5, 369–

385 http://dx.doi.org/10.1007/s10270-006-0017-9 (2006)

[90] Kleppe, A.G., Warmer, J.B., Wim, B.: MDA Explained, The Model Driven

Architecture: Practice and Promise. Addison-Wesley, Boston (2003)

[91] Kolovos, D., Paige, R., Polack, F.: The Epsilon Object Language (EOL). In:

Rensink, A., Warmer, J. (eds.) Model Driven Architecture – Foundations and

Applications, Lecture Notes in Computer Science, vol. 4066, pp. 128–142.

Springer Berlin / Heidelberg http://dx.doi.org/10.1007/11787044_11 (2006),

10.1007/11787044_11

[92] Kolovos, D., Paige, R., Polack, F.: The Epsilon transformation language. In:

Vallecillo, A., Gray, J., Pierantonio, A. (eds.) Theory and Practice of Model

Transformations, Lecture Notes in Computer Science, vol. 5063, pp. 46–60.

Springer Berlin / Heidelberg http://dx.doi.org/10.1007/978-3-540-69927-9_4

(2008)

[93] Kolovos, D.: A brief history of Epsilon (2007), Available:

http://epsilonblog.wordpress.com/2007/11/11/a-brief-history-of-epsilon/ (online,

2011.10.28)

[94] Krebs, T., Nowakowski, W., Kalnins, A., Kalnina, E.: Modelling and

transformation language validation report. Project Deliverable D3.4, ReDSeeDS

Project www.redseeds.eu (2007)

[95] Lano, K., Kolahdouz-Rahimi, S.: Model-driven development of model

transformations. In: Cabot, J., Visser, E. (eds.) Theory and Practice of Model

Transformations, Lecture Notes in Computer Science, vol. 6707, pp. 47–61.

Springer Berlin / Heidelberg http://dx.doi.org/10.1007/978-3-642-21732-6_4

(2011)

[96] de Lara, J., Vangheluwe, H.: AToM
3
: A tool for multi-formalism and meta-

modelling. In: FASE ’02: Proceedings of the 5th International Conference on

Fundamental Approaches to Software Engineering. LNCS, vol. 2306, pp. 174–

188. Springer-Verlag, London, UK (2002)

[97] Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development. Prentice Hall, Englewood Cliffs,

NJ, second edn. (2004)

[98] Lawley, M., Steel, J.: Practical declarative model transformation with Tefkat. In:

Bruel, J.M. (ed.) Satellite Events at the MoDELS 2005 Conference, Lecture Notes

in Computer Science, vol. 3844, pp. 139–150. Springer Berlin / Heidelberg

http://dx.doi.org/10.1007/11663430_15 (2006)

[99] Levendovszky, T., Lengyel, L., Mezei, G., Charaf, H.: A systematic approach to

metamodeling environments and model transformation systems in VMTS.

Electronic Notes in Theoretical Computer Science 127(1), 65 – 75

http://www.sciencedirect.com/science/article/pii/S1571066105001155 (2005)

[100] Liepiņš, R.: lQuery: A model query and transformation library. Scientific Papers,

University of Latvia 770, 27–45 (2011)

[101] Šlihte, A.: The specific text analysis tasks at the beginning of MDA life cycle. In:

Barzdins, G., Selavo, L. (eds.) Databases and Information Systems Doctoral

244

Consortium. Latvijas Universitātes raksti, vol. 757, pp. 11 – 22. University of

Latvia, Latvija, Riga (July 5-7 2010)

[102] Lopes, D., Hammoudi, S., Bézivin, J., Jouault, F.: Generating transformation

definition from mapping specification: Application to web service platform. In:

ADVANCED INFORMATION SYSTEMS ENGINEERING. Lecture Notes in

Computer Science, vol. 3520, pp. 309–325 (2005)

[103] Ludewig, J.: Models in software engineering - an introduction. Software and

Systems Modeling 2, 5–14 http://dx.doi.org/10.1007/s10270-003-0020-3 (2003)

[104] Marinscu, F.: EJB Design Patterns. John Wiley (2002)

[105] Marschall, F., Braun, P.: Model transformations for the MDA with BOTL. Tech.

rep., University of Twente (2003)

[106] Mazanek, S.: Hello World! An instructive case for the transformation tool contest.

In: Van Gorp et al. [187]

[107] McGill University, Modelling, Simulation and Design Lab: AToM
3
: A tool for

multi-formalism meta-modelling, Available: http://atom3.cs.mcgill.ca/ (online,

2011.08.29)

[108] Mehta., V.P.: Pro LINQ Object Relational Mapping with C# 2008. Apress (2008)

[109] MetaCase: Metaedit+, Available: http://www.metacase.com/ (online, 2011.09.01)

[110] Microsoft: Visual studio visualization and modeling sdk, Available:

http://archive.msdn.microsoft.com/vsvmsdk;

http://www.microsoft.com/download/en/details.aspx?id=23025 (online,

2011.08.26)

[111] Miller, J., Mukerji, J. (eds.): MDA Guide Version 1.0.1, omg/03-06-01. Object

Management Group (2003)

[112] Minsky, M.: Matter, Mind and Models. In: Proceedings of IFIP Congress 65. pp.

45–49 http://groups.csail.mit.edu/medg/people/doyle/gallery/minsky/mmm.html

(Jan 1965)

[113] Modeling Languages: MDE Glossary – modeling and model-driven engineering

terms, Available: http://modeling-languages.com/glossary-modeling-and-model-

driven-engineering-terms/ (online, 2011.09.15)

[114] Nilsson, J.: Applying Domain-Driven Design and Patterns: With Examples in C#

and .NET. Addison Wesley (2006)

[115] No Magic, Inc.: MagicDraw, Available: https://www.magicdraw.com/ (online,

2011.10.05)

[116] Object Management Group: Model Driven Architecture, Draft 3.2, omg/00-11-05

(2000)

[117] Object Management Group: Model Driven Architecture (MDA), Draft ormsc/01-

07-01 (2001)

[118] Object Management Group: Meta Object Facility, V1.4, formal/2002-04-03

http://www.omg.org/spec/MOF/1.4/ (2002)

[119] Object Management Group: Request for Proposal: MOF 2.0 Query / Views /

Transformations, OMG document ad/2002-04-10. (2002)

[120] Object Management Group: Meta Object Facility Core Specification, version 2.0,

formal/2006-01-01 (2006)

[121] Object Management Group: Unified Modeling Language: Superstructure, version

2.1.1, formal/07-02-05 (2007)

[122] Object Management Group: Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification, version 1.0, formal/08-04-03 (2008)

245

[123] Object Management Group: MOF Model to Text Transformation Language,

version 1.0, formal/2008-01-16 http://www.omg.org/docs/formal/08-01-16.pdf

(2008)

[124] Object Management Group: Ontology Definition Metamodel (ODM), V1.0,

formal/2009-05-01 http://www.omg.org/spec/ODM/1.0/ (2009)

[125] Object Management Group: Meta Object Facility, V2.4 - Beta 2, Beta2/2010-12-

08 http://www.omg.org/spec/MOF/2.4/Beta2 (2010)

[126] Object Management Group: Object Constraint Language, V2.3 - Beta 2, ptc/2010-

11-42 http://www.omg.org/spec/OCL/2.3/Beta2/ (2010)

[127] Object Management Group: Unified Modeling Language: Infrastructure, version

2.4 - Beta 2, ptc/10-11-16 (2010)

[128] Object Management Group: Meta Object Facility (MOF) 2.0

Query/View/Transformation (QVT) Specification, version 1.1, formal/11-01-01

(2011)

[129] Object Management Group: Meta Object Facility, V2.4.1, formal/2011-08-07

http://www.omg.org/spec/MOF/2.4.1/ (2011)

[130] Šostaks, A.: Implementation of model transformation languages. Ph.D. thesis,

University of Latvia (2010)

[131] Oxford University Press: Model, Available:

http://oxforddictionaries.com/definition/model?view=uk (online, 2011.09.07)

[132] Progress Software Corporation: XSLT Mapper, Available:

http://www.stylusstudio.com/xslt_mapper.html (online, 2011.10.06)

[133] Ráth, I., Varró, D.: Challenges for advanced domain-specific modeling

frameworks. In: Proceedings of Workshop on Domain-Specific Program

Development (DSPD), ECOOP 2006. France (2006)

[134] Rein, M., Ambroziewicz, A., Bojarski, J., Nowakowski, W., Straszak, T., Kalnins,

A., Celms, E., Kalnina, E., Bildhauer, D., Szymański, T.: Initial ReDSeeDS

prototype. Project Deliverable D5.4.2, ReDSeeDS Project www.redseeds.eu

(2008)

[135] Rein, M., Ambroziewicz, A., Bojarski, J., Nowakowski, W., Straszak, T., Kalnins,

A., Celms, E., Kalnina, E., Bildhauer, D., Szymański, T., Mukasa, K.S., Ünalan,

z.: Final ReDSeeDS prototype. Implementing the ReDSeeDS engine prototype –

2nd iteration. Project Deliverable D5.4.3, ReDSeeDS Project www.redseeds.eu

(2009)

[136] Rein, M., Ambroziewicz, A., Bojarski, J., Nowakowski, W., Straszak, T., Kalnins,

A., Celms, E., Kalnina, E., Szymański, T.: Initial ReDSeeDS prototype. Project

Deliverable D5.4.1, ReDSeeDS Project www.redseeds.eu (2008)

[137] Rencis, E.: Model transformation languages L1, L2, L3 and their implementation.

Computer Science and Information Technologies 733, Scientific Papers,

University of Latvia (2008)

[138] Richardson, C.: POJOs in Action. Manning (2006)

[139] Rose, L., Guerra, E., de Lara, J., Etien, A., Kolovos, D., Paige, R.: Genericity for

model management operations. Software and Systems Modeling

http://dx.doi.org/10.1007/s10270-011-0203-2pp. 1–19

[140] Rose, L., Herrmannsdoerfer, M., Mazanek, S., Gorp, P.V., Buchwald, S., Horn,

T., Kalnina, E., Koch, A., Lano, K., Schatz, B., Wimmer, M.: Graph and model

transformation tools for model migration (2011), submitted to "Software and

Systems Modeling" journal

246

[141] Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model migration with

Epsilon Flock. In: Tratt, L., Gogolla, M. (eds.) Theory and Practice of Model

Transformations, Third International Conference, ICMT 2010, Malaga, Spain,

June 28-July 2, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6142,

pp. 184–198. Springer (2010)

[142] Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.: Model migration case for

TTC 2010. In: TTC’10: Transformation Tool Contest (2010)

[143] Rothenberg, J.: Artificial intelligence, simulation & modeling, chap. The Nature

of Modeling, pp. 75–92. John Wiley & Sons, Inc., New York, NY, USA (1989)

[144] Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES approach: language and

environment. World Scientific Publishing Co. 2, 487–550 (1999)

[145] Schürr, A.: PROGRESS: A VHL-language based on graph grammars. In:

Proceedings of the 4th International Workshop on Graph-Grammars and Their

Application to Computer Science. pp. 641–659. Springer-Verlag, London, UK

(1991)

[146] Schürr, A.: Specification of graph translators with triple graph grammars. In:

Tinhofer (ed.) WG’94 Int. Workshop on Graph-Theoretic Concepts in Computer

Science. LNCS, vol. 903, p. 151–163. Springer-Verlag (1994)

[147] Seidewitz, E.: What models mean. Software, IEEE 20(5), 26 – 32 (sept-oct 2003)

[148] Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20, 19–25

(September 2003)

[149] Sipser, M.: Introduction to the theory of computation. Thomson Course

Technology http://books.google.com/books?id=VJ1mQgAACAAJ (2006)

[150] SmartQVT: SmartQVT - a QVT implementation, Available:

http://sourceforge.net/projects/smartqvt/ (online, 2011.10.28)

[151] Smiałek, M., Ambroziewicz, A., Bojarski, J., Nowakowski, W., Straszak, T.,

Wolter, K., Hotz, L., Mukasa, K.S., Jedlitschka, A., Bildhauer, D., Falkowski, K.,

Haas, J., Horn, T., Riediger, V., Schwarz, H., Kalnins, A., Kalnina, E., Sostaks,

A., Celms, E., Rein, M., Drejewicz, S., Knab, S., Falb, J., Çetin, S., Tüfekçi, O.,

Çokkeçeci, I.: Case-driven software development. Project Deliverable D8.2.2,

ReDSeeDS Project www.redseeds.eu (2009)

[152] Smiałek, M., Bojarski, J., Nowakowski, W., Ambroziewicz, A., Straszak, T.:

Complementary use case scenario representations based on domain vocabularies.

Lecture Notes in Computer Science 4735, 544–558 (2007)

[153] Smiałek, M., Kalnins, A., Kalnina, E., Ambroziewicz, A., Straszak, T., Wolter,

K.: Comprehensive system for systematic case-driven software reuse. In: van

Leeuwen, J., Muscholl, A., Peleg, D., Pokorn’y, J., Rumpe, B. (eds.) SOFSEM

2010: Theory and Practice of Computer Science. Lecture Notes in Computer

Science, vol. 5901, pp. 697–708. Springer Berlin / Heidelberg (2010)

[154] SoftProject GmbH: xsl:easy 4.0, Available: http://xsl-easy.com/ (online,

2011.10.06)

[155] Sostaks, A., Kalnina, E., Kalnins, A., Celms, E., Iraids, J.: Solving the TTC 2011

reengineering case with MOLA and higher-order transformations. In: Van Gorp

et al. [187], pp. 159–167

[156] Sparx Systems Pty Ltd: Sparx Systems Enterprise Architect User Guide (2007)

[157] Sprogis, A.: The Configurator in DSL Tool Building. In: Scientific Papers,

University of Latvia. vol. 756, pp. 173–192 (2010)

[158] Sriganesh, R., Brose, G., Silverman., M.: Mastering Enterprise JavaBeans 3.0.

Wiley Publishing (2006)

247

[159] Stahl, T., Voelter, M.: Model-Driven Software Development (Technology,

Engeneering, Management). John Wiley & Sons (2006)

[160] Steinmüller, W.: Informationstechnologie und Gesellschaft: Einfuhrung in die

angewandte Informatik. Wissenschaftliche Buchgesellschaft (1993)

[161] Swithinbank, P., Chessell, M., Gardner, T., Griffin, C., Man, J., Wylie, H., Yusuf,

L.: Patterns : Model-Driven Development Using IBM Rational Software

Architect. IBM http://www.redbooks.ibm.com/abstracts/sg247105.html (2005)

[162] Taentzer, G., Crema, A., Schmutzler, R., Ermel, C.: Generating domain-specific

model editors with complex editing commands. In: Proc. AGTIVE 2007.

Universität Kassel, Germany (October 2007)

[163] Taentzer, G.: AGG: A tool environment for algebraic graph transformation. In:

Nagl, M., Schürr, A., Münch, M. (eds.) Proceedings of AGTIVE. LNCS, vol.

1779. Springer, 481–488 (1999)

[164] The Eclipse Foundation: Acceleo, Available: http://www.eclipse.org/acceleo/

(online, 2011.08.29)

[165] The Eclipse Foundation: ATL, Available: http://eclipse.org/atl/ (online,

2011.09.28)

[166] The Eclipse Foundation: Eclipse Modeling Framework Project (EMF), Available:

http://www.eclipse.org/modeling/emf/ (online, 2011.08.29)

[167] The Eclipse Foundation: Eclipse.org, Available: http://www.eclipse.org/ (online,

2011.08.27)

[168] The Eclipse Foundation: Edapt, Available: http://www.eclipse.org/edapt/ (online,

2011.08.04)

[169] The Eclipse Foundation: Epsilon, Available: http://www.eclipse.org/gmt/epsilon/

(online, 2011.08.29)

[170] The Eclipse Foundation: EuGENia, Available:

http://www.eclipse.org/gmt/epsilon/doc/eugenia/ (online, 2011.08.29)

[171] The Eclipse Foundation: Graphical Editor Framework (GEF, Eclipse Tools

Subproject), Available: http://www.eclipse.org/gef (online, 2011.08.29)

[172] The Eclipse Foundation: Graphical Modeling Framework (GMF, Eclipse

Modeling subproject), Available: http://www.eclipse.org/gmf (online, 2011.08.29)

[173] The Eclipse Foundation: Henshin, Available:

http://www.eclipse.org/modeling/emft/henshin/ (online, 2011.08.29)

[174] The Eclipse Foundation: Jet, Available:

http://www.eclipse.org/modeling/m2t/?project=jet (online, 2011.08.29)

[175] The Eclipse Foundation: Model to model (m2m), Available:

http://www.eclipse.org/m2m/ (online, 2011.08.29)

[176] The Eclipse Foundation: Mofscript, Available:

http://www.eclipse.org/gmt/mofscript/ (online, 2011.08.29)

[177] The Eclipse Foundation: TCS (Textual Concrete Syntax), Available:

http://www.eclipse.org/gmt/tcs/ (online, 2011.08.29)

[178] The Eclipse Foundation: UML2, Available:

http://www.eclipse.org/modeling/mdt/?project=uml2 (online, 2011.09.28)

[179] The Eclipse Foundation: UMLX, Available: http://www.eclipse.org/gmt/umlx/

(online, 2011.08.29)

[180] The Eclipse Foundation: Viatra2, Available:

http://www.eclipse.org/gmt/VIATRA2/ (online, 2011.09.01)

[181] The Eclipse Foundation: Xpand, Available:

http://www.eclipse.org/modeling/m2t/?project=xpand (online, 2011.08.29)

248

[182] Tisi, M., Cabot, J., Jouault, F.: Improving higher-order transformations support in

ATL. In: Tratt, L., Gogolla, M. (eds.) Theory and Practice of Model

Transformations, Third International Conference, ICMT 2010, Malaga, Spain,

June 28-July 2, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6142,

pp. 184–198. Springer (2010)

[183] Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order

model transformations. In: Proceedings of the 5th European Conference on Model

Driven Architecture - Foundations and Applications. ECMDA-FA ’09, vol. 5562,

pp. 18–33. Springer-Verlag, Berlin, Heidelberg (2009)

[184] TTC 2010: Winners / Awards 2010 (2010), Available: http://planet-

research20.org/ttc2010/index.php?option=com_content&view=article&id=103&It

emid=128 (online, 2011.10.16)

[185] Universidad de Murcia: Agile Generative Environment (AGE), Available:

http://gts.inf.um.es/trac/age (online, 2011.08.29)

[186] Van Gorp, P., Mazanek, S.: SHARE: a web portal for creating and sharing

executable research papers. Procedia Computer Science 4, 589–597

http://linkinghub.elsevier.com/retrieve/pii/S1877050911001207 (2011)

[187] Van Gorp, P., Mazanek, S., Rose, L. (eds.): TTC 2011: Fifth Transformation Tool

Contest, Zürich, Switzerland, June 29-30 2011, Post-Proceedings. EPTCS (2011)

[188] Vilitis, O.: Metamodel-based transformation-driven graphical tool building

platform. Ph.D. thesis, University of Latvia (2009)

[189] Völter, M.: MD*/DSL Best Practices update march 2011 (April, 2011), Available:

http://www.voelter.de/data/pub/DSLBestPractices-2011Update.pdf (online,

2011.09.15)

[190] Völter, M., Bettin, J.: Patterns for model-driven software-development (May

2004), Available: http://www.voelter.de/data/pub/MDDPatterns.pdf (online,

2011.09.15)

[191] W3C: RDB2RDF working group, Available: http://www.w3.org/2001/sw/rdb2rdf/

(online, 2011.10.29)

[192] W3C: OWL Web Ontology Language Overview http://www.w3.org/TR/owl-

features (February 2004), http://www.w3.org/TR/owl-features

[193] W3C: Resource Description Framework (RDF): Concepts and Abstract Syntax

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ (February 2004)

[194] W3C: XSL Transformations (XSLT) Version 2.0 (January 2007)

[195] W3C: R2RML: RDB to RDF Mapping Language, w3c working draft edn.

(September 2011)

[196] Wikimedia: File:carte métro de paris.jpg, Available:

http://en.wikipedia.org/wiki/File:Carte_M%C3%A9tro_de_Paris.jpg (online,

2011.10.28)

[197] Willink, E.D.: A concrete UML-based graphical transformation syntax: The UML

to RDBMS example in UMLX. In: Workshop on Metamodelling for MDA.

University of York, England (2003)

[198] Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J.,

Schwinger, W.: Surviving the heterogeneity jungle with composite mapping

operators. In: Tratt, L., Gogolla, M. (eds.) Proceedings of the Third international

conference on Theory and practice of model transformations. Lecture Notes in

Computer Science, vol. 6142, pp. 260–275. Springer-Verlag, Berlin, Heidelberg

(2010)

249

[199] Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards model

transformation generation by-example. In: Proceedings of the 40th Annual Hawaii

International Conference on System Sciences. pp. 285b–. HICSS ’07, IEEE

Computer Society, Washington, DC, USA (2007)

250

251

APPENDIX A

List of Acronyms

A

API – Application Programming Interface

ATL – Atlas Transformation Language

AMW – Atlas Model Weaver

B

BPEL – Business Process Execution Language

BPMN – Business Process Modelling Notation

C

CIM – Computation Independent Model

CRUD – create-reade-update-delete

CTE – Code Template Framework

D

DSL – Domain-Specific Language

DSM – Domains-Specific Modelling

DSML – Domains-Specific Modelling Language

E

EA – Enterprise Architect

EOL – Epsilon Object Language

EMF – Eclipse Modeling Framework

EMOF – Essential MOF

G

GEF – Graphical Editing Framework

252

GMF – Graphical Modeling Framework

H

HOT – Higher-Order Transformation

J

JSP – JavaServer Pages

L

LUMII – Latvijas Univeristātes Matemātikas un informātikas institūts (Institute of

Mathematics and Computer Science University of Latvia)

M

MALA4MDSD – Mapping Language for MDSD

MDA – Model-Driven Architecture

MDD – Model-Driven Development

MDE – Model-Driven Engineering

MDSD – Model-Driven Software Development

MD* – Model-Driven Everything

MOF – Meta Object Facility

MOLA – MOdel transformation Language

MOps – Mapping Operators

MTBE – Model Transformation By Example

MVC – Model-View-Controller

N

NAC – Negative Application Condition

O

OCL – Object Constraint Language

ODM – Ontology Definition Metamodel

OMG – Object Management Group

253

OOP – Object-Oriented Programming

OOPL – Object-Oriented Programming Language

ORM – Object-Relational Mapping

OWL – Web Ontology Language

P

PIM – Platform Independent Model

POJO – Plain Old Java Object

PSM – Platform Specific Model

Q

QVT – Query/View/Transformation

R

RDB – Relational DataBases

RDF – Resource Description Framework

RDFS – RDF Schema

RDP – Remote Desktop Protocol

ReDSeeDS – Requirement Driven Software Development System

RFP – Request For Proposal

RSL – Requirement Specification Language

T

TDA – Transformation-Driven Architecture

U

UI – User Interface

UL IMCS (LUMII) – Institute of Mathematics and Computer Science University

of Latvia

UML – Unified Modelling Language

254

W

W3C – World Wide Web Consortium

WSDL – Web Services Description Language

X

XML – eXtensible Markup Language

XSLT – eXtensible Stylesheet Language Transformations

XSD – XML Schema Definition

