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Abstract

The doctoral thesis explores various aspects of electron dynamics in small coherent quantum

systems focusing on adiabatic pumping of electrons, conditions for pumped charge quanti-

zation, and the role of local Coulomb interactions in single- and multi-level transport. The

main body of the work is divided into four chapters that correspond to three published

research articles and the one most recently submitted for publication.

Periodic modulation of the external potential acting on a phase coherent electron system

can result in charge redistribution between the remote reservoirs which are held at equal

chemical potentials. This phenomenon is called quantum pumping, and it is known to be

enhanced in systems that support resonant transmission. Under certain conditions, almost

integer number of electrons on average can be pumped adiabatically through a resonant

system. We explain the mechanism behind this quantization as loading and unloading of

elementary charges onto instantaneous quasi-bound energy states. The role of quantum

interference in this type of quantization is shown to be restricted to the formation of dis-

crete energy states. It is shown that if the linear conductance of the system remains low

throughout the cycle, with a possible exception of distinct resonant peaks, then the total

charge transferred per period can be approximately calculated as a sum of individual peak

contributions (the resonance approximation).

We explore in details the implications of the resonance approximation for a simple tight-

binding model of surface acoustic wave-induced transport in ballistic quasi-1D quantum

wires. The influence of experimentally controllable parameters (acoustic wave power, gate

voltage, source-drain bias, amplitude and phase of a counter-propagating wave) on the

plateau-like structure of the acoustoelectric current is studied. The use of resonance approx-

imation facilitates identification of the relevant model parameters. The results are found

to be in good qualitative agreement with existing experimental observations. However, the

approximation of spinless non-interacting electrons fails to match the characteristic energy

scale of the problem, which can be attributed to the charging energy of a dynamically formed

quantum dot.

In order to extend the tools for calculating the dynamical quantities in the relevant

models beyond the single-particle approximation, a powerful analytical technique, namely,

self-consistent truncation of the equations-of-motion (EOM), is investigated in depth. The
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one-particle Green function of a single localized orbital is considered. The physical spin of

the electrons and a strong on-site Coulomb repulsion between the opposite spin species is

taken into account. We study the EOM hierarchy generated for this Green function by self-

consistently decoupling the hierarchy at high order. Exact analytic solutions of the resulting

coupled integral equations are presented in several limits. In particular, it is found that at

the particle-hole symmetric point the EOM method breaks down due to a discontinuous

change in the imaginary part of the interaction-induced self-energy. Away for this special

point, the solution for the Green function remains physical.

We benchmark the solution of the truncated EOM hierarchy using a set of known exact

results for the Anderson impurity model. Quantities calculated explicitly in the limit of

infinite on-site repulsion include the occupation numbers, the density of states, and the

local spin susceptibility. The latter is a sensitive test for proper description of interaction-

induced correlations, because the spin susceptibility of the Anderson impurity in the single-

occupancy regime should saturate at low temperatures due to Kondo screening effect. The

self-consistent approximation to EOM is found to be very accurate for quantities related

to charge dynamics (e.g., the gate voltage dependence of the accumulated charge). In

contrast, the description of the Kondo effect (which is caused by dynamical screening of spin

fluctuations) is valid on a qualitative level only. We show that the widely used simplified

version of the EOM method, which does not account fully for the correlations on the network,

fails to produce the Kondo correlations even qualitatively.

In the final chapter of the thesis, we consider a two-level model for a quantum dot coupled

to two leads. The model features arbitrary tunnelling matrix elements among the two levels

and the leads and between the levels themselves (including the effect of Aharonov-Bohm

fluxes), as well as inter-level repulsive interactions. A special case — each level coupled to

its own lead plus tunnelling between the levels — corresponds to the two-site version of

the model for quasi-1D channels studied in the absence of many-body interactions in an

earlier chapter. We show that this two-level model is exactly mapped onto a generalized

Anderson model of a single impurity, where the electrons acquire a pseudo-spin degree

of freedom, which is conserved by the tunnelling but not within the dot. Focusing on

the single-occupancy regime, we show that the effective low-energy Hamiltonian is that

of the anisotropic Kondo model in the presence of a tilted magnetic field. For moderate

values of the (renormalized) field, the Bethe ansatz solution of the isotropic Kondo model
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allows us to derive accurate expressions for the dot occupation numbers, and henceforth

its zero-temperature transmission. These formulae cover a large variety of phenomena that

have been previously considered in the literature in different limits: charge oscillations and

population switching, transmission-phase lapses and correlation-induced resonances. We

discuss numerous implications for these phenomena, and emphasize their common physical

origin.
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Chapter 1

General introduction

We begin by defining and explaining the two key concepts announced in the title. These two

concepts are mesoscopic systems and quantum pumping, and they are discussed in Secs. 1.1

and 1.2 respectively. Sec. 1.2 is the key part of this general introduction as it describes

the context and the general direction of the research reported in the thesis. Mini-reviews

for the literature on the main topics brought together in this work are given within the

corresponding subsections of Sec. 1.2.

1.1 Mesoscopic systems with flexible design and con-

trol

The term ‘mesoscopic’ has been traditionally applied ([1], Chapter 1.1) to condensed mat-

ter systems in which the correlation length for the dynamics of the system constituents is

comparable to the sample size. Here we will be interested almost exclusively in electronic

properties of solid state systems at low temperatures, and the corresponding correlation

length can be defined as the distance Lφ over which the charge carriers (electrons) maintain

their quantum-mechanical phase. On the conceptual level, a system is mesoscopic if it is

sufficiently small to behave “quantum-mechanically”. Apparently, the answer to the ques-

tion whether a given system is mesoscopic or not depends on the external parameters (most

notably the temperature) and on the way the quantum mechanical properties are probed. A

very good introduction to defining and measuring quantum coherency in solid state devices

can be found in [1].
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CHAPTER 1. GENERAL INTRODUCTION 2

Over the history of mesoscopic physics there has been a shift of emphasis from systems

with statistically defined properties (such as disordered metals or microgranular composites)

towards individually engineered samples (such as quantum wires, rings and dots). It is this

latter type of systems, namely, nanostructures with specifically engineered and controlled

electronic properties, that the present work addresses. Thus the term “mesoscopic system”

in the title refers more to a quantum dot and less to a piece of a dirty metal.

As for a typical experimental realization, we mention just one (but, perhaps, the most

versatile and well-developed) platform, namely, the mesoscopic structures formed in a two

dimensional electrons gas (2DEG). A great number of detailed reviews of this technique are

available, e.g., in Refs. [1, 2, 3]; the basic idea is explained below.

2DEG can be formed on the interface between two semiconductors, typically GaAs and

AlGaAs. The mismatch in the electronic properties of the two materials generates a po-

tential well for the mobile electrons in the direction perpendicular to the interface plane.

For a sufficiently small electron concentration and at low temperatures, only the lowest

level in that potential well is occupied and the electron motion in the transverse direction

drops out completely from the dynamical (i.e., Schrödinger) equation. Elaborate crystal

growing techniques, such as molecular beam epitaxy, allow for the preparation of 2DEGs

with exceptionally high carrier mobilities, corresponding to mean free paths for the in-plane

electron motion of several micrometers [3]. Even without further structuring, a 2DEG is

an important mesoscopic system in which such effects as localization and the quantum Hall

effect (just to name a few) are actively studied (see, e.g. Refs. [3, 4, 5]).

Additional potential barriers in the plane of a 2DEG can be used to restrict the electron

motion furthermore, and thus to make what can be called a nanostructure. A common tool

for building these extra barriers is the split-gate technique. Narrow metallic gates are formed

on the surface of the GaAs/AlGaAs heterostructure using certain fine resolution lithographic

techniques (e.g., electron beam lithography). Selectively applying negative voltages to these

gates results in potential barriers for the in-plane motion of the electrons. In such a way

the electrons can be confined to one (quantum wire) or zero (quantum dot) dimensions.

A typical experimental setup for a split-gate formed quantum dot is shown in Fig. 1.1.

Lithographically defined quantum dots and channels have been used in the majority of the

experimental studies that are cited in the research papers constituting Chapters 3–6.
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Figure 1.1: Example of a lithographically defined quantum dot [6]. On the right is a scanning

electron micrograph of the dot (top view), and on the left is a schematic drawing of the device.

Electrons are trapped vertically in the interface of a GaAs/AlGaAs heterostructure, and form a

2D electron gas (darker area). Their lateral confinement to the dot region is achieved by applying

a negative voltage to the top metal gate (lighter shade), depleting the electrons underneath. The

dot is coupled to two leads (source and drain) through point contacts. Two gate voltages Vg1 and

Vg2 can be varied to change the number of electrons confined in the dot, and the entrance and exit

barriers are tuned by the voltages VL and VR. This illustration is taken from Ref. [2].
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1.2 Charge pumping in mesoscopic systems: main

challenges and overview of the literature

This section first defines the scope and the motivation for the research presented in the

thesis, and then gives an overview of the relevant developments in the field.

The term ‘pumping’ in the context of charge transport can be understood in a variety

of ways. In the broadest sense, pumping is any charge redistribution between the terminals

of an extended system that is caused by a periodic variation of an external potential. Even

an ordinary ac-to-dc transformer1 falls into the category of pumping devices in this sense.

However, in classical systems for which the usual local ac voltage, current and conductivity

definitions can be applied, the ac-to-dc conversion is usually called rectification.

Crossing into the mesoscopic domain, the wave nature of electrons becomes important.

The phase breaking inelastic processes that are crucial for the establishment of a local

electrochemical potential no longer take place at a sufficient rate on the lengthscale of the

sample size. As a consequence, the effect of a locally applied external perturbation can

no longer be described as a simple rectification, and new routes for understanding and

calculating the electrical response of the mesoscopic systems become necessary.

In a broad perspective, the majority of these new routes follow two main roads defined

by the cases in which quantum effects are relatively easy to incorporate into a theory. The

first road is the case of a system in which (a) the electron-electron Coulomb interaction is

well-screened, and (b) the electron motion is coherent. The single-particle approximation is

adequate in this case, and a set of flexible tools from one-body quantum mechanics becomes

applicable. The most important concept in this approach is the description of transport as

scattering [7]. We discuss the recent developments in quantum pumping theory within the

single-particle approximation in Sec. 1.2.1.

The second case in which much progress can be done is an almost isolated system. If

one takes a finite system and neglects coupling to the external world altogether, the electron

number and energy inside the sample are described by well-defined discrete observables. One

can expect that switching on a weak link to the outside world (e.g., tunnelling into contacts)

does not destroy these quantum numbers immediately. Therefore, a perturbative approach

1For example, the ac adaptor that powers the computer on which this text is typed.
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can be built for describing the fluctuations brought about by the external coupling. This

way of looking at the system can be very fruitful in a certain range of parameters, most

notably in describing the Coulomb blockade phenomenon [8, 9]. We review the Coulomb

blockade and its relation to pumping in Sec. 1.2.2 below.

The most important practical application of pumping would be the development of a

current standard based on pumped charge quantization. If the number of electrons that are

transported between the two terminals can be made sufficiently close to an integer, then

the value of the resulting dc current could be tied to the elementary charge and the driving

frequency only. This is a very desirable but still unattained goal in the field of metrology [10].

Both of the main approaches mentioned above (the scattering theory, Sec. 1.2.1, and

Coulomb-blockade-type approaches, Sec. 1.2.2) have addressed the feasibility and the degree

of pumped charge quantization. The relevant results and open questions are reviewed in

Sec. 1.2.3.

As we shall see in Chapters 3 and 4, a necessary condition for an accurate charge quan-

tization is to have the number of electrons in the device at equilibrium to be as close to an

integer as possible. This requirement has directed the research towards understanding the

systems in which both the charging energy and the single-particle level spacing are large.

A prototypical example of such a system is a sufficiently small quantum dot, because both

energy scales grow with decreasing the spatial size. So the papers in the second part of the

thesis (namely, Chapters 5 and 6) explore the methods of describing quantum dots with a

small number of relevant discrete orbitals but a large charging energy. The latter comes

from the short-range part of the Coulomb interaction which is explicitly taken into account

in the system’s Hamiltonian. (See Sec. 1.2.4 for a more detailed discussion of the models

involved.)

The need for a flexible theoretical method that properly incorporates both quantum

fluctuations and many-body interaction effects for systems with localized degrees of freedom

is by no means confined to the pumping problem. On quite a general level, the quest for

such theoretical methods has been an active field for more than four decades, ever since

the introduction of the Anderson impurity model [11] in 1961. We review briefly the broad

spectrum of theoretical methods accumulated in this field in Sec. 1.2.4. To a large extent

the goal of the second part of the thesis is to pick and sharpen those techniques that are

suitable for the description of transport properties of small quantum dots.
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1.2.1 Pumping due to interference

Two important papers [12, 13], published with an interval of several months in 1998/99,

have addressed the question of pumping in mesoscopic systems with negligible two-body

electron-electron interactions. The physical insight of [12] and the calculational framework

of [13] (being based on an earlier work [14]) have paved the way for a surge in the research

activity related to quantum pumping in mesoscopic systems.

The paper by Zhou, Spivak and Altshuler [12] has for the first time directly related the

physics of conventional mesoscopic effects (such as the universal conductance fluctuations

[1]) and the pumping response. Their physical reasoning can be summarized as follows.

In a phase coherent metallic system, coupled to reservoirs held at the same equilibrium

chemical potentials, the local distribution of charge is determined by standing electronic

waves (eigenmodes of the Hamiltonian). As a result, this distribution is very sensitive

to changes in the potential landscape which confines the electrons. If this landscape is

changed by an external perturbation sufficiently slowly, the electronic distribution will follow

adiabatically the instantaneous configuration of the total confining potential. As a result,

the charge within the system will be re-distributed, and a non-zero charge transfer between

the external reservoirs becomes possible.

The paper by Brouwer [13] essentially addresses the same question — adiabatic pumping

response of a phase coherent system, with a chaotic quantum dot as a potential physical

realization. The most significant result of [13] has been a formula relating the total charge

Q pumped through the system during a single cycle of the modulating potential to a certain

contour integral over the derivatives of the scattering matrix. This Brouwer formula for the

charge pumping is remarkable in the same way as the celebrated Landauer formula [15, 7] for

the conductance – it relates the transport properties to the scattering matrix of the system.

A particularly suggestive result for Q is obtained by applying the Brouwer formula to a

two terminal system with single mode leads [16, 17]:

Q =
e

2π

∮
[1 − T (t)]

dα

dt
dt , (1.1)

where e is the electron charge, T is the transmission probability and α is the phase of the

reflection amplitude; the integral is taken over one period of the external potential. An

explicit dependence on the reflection phase may suggest that pumping in such a system is

an intrinsically quantum effect with no simple interpretation in classical terms (e.g., see the
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discussion in Refs. [12, 16, 18, 17, 19]).

More general scattering-based approaches have followed soon [17, 20]. Reference [17]

develops a systematic expansion of the time-dependent scattering states and extends the

results of Brouwer to include external dc bias voltage. The paper [20] addresses the role

of adiabaticity and develops a general theory for a finite frequency response based on the

Floquet scattering theory. This theory is related to an earlier work on photon-assisted

tunnelling (see, e.g., the discussion in Chapter 9 of [21]).

With the help of these formalisms a host of pumping-related phenomena has been explored

in recent years: mesoscopic fluctuations of the pumping current [16, 22], noise [23, 24], heat

transfer and dissipation [24], symmetries with respect to magnetic field [22, 25, 26]. Several

experiments have been conducted as well [25, 27, 28].

1.2.2 Pumping in Coulomb blockaded systems

An intuitively simple scheme for a charge pump capable of transferring electrons one by one

can be derived from the concept of Coulomb blockade. This development has been mainly

driven by the steady improvement of the experimental techniques in recent decades and

pre-dates the discussion of pumping in mesoscopic systems outlined in the previous section.

The term ‘Coulomb blockade’ [2, 8, 29] is usually invoked when the electron transport

is suppressed by the individual charging energy Ec necessary for the addition/removal of a

single electron to/from the device (let it be a quantum dot for concreteness). A necessary

condition is that the thermal energy2 T will be low enough in order not to smear out the

effect, T � Ec. The degree of electron confinement is regulated by the contacts to the

quantum dot, which are usually quantum point contacts with high tunnelling barriers. The

Coulomb blockade becomes strong, namely, the number N of confined electrons becomes

well-defined, when not only the thermal but also the quantum fluctuations of the electron

energy become smaller than Ec [8]. Quantitatively, requiring the energy uncertainty due to

the finite RC time of the circuit to be smaller than Ec implies that the conductance of the

contacts Gc should be less than the quantum unit of conductance, Gc � e2/(2π�). Note

that the quantum mechanical Planck constant appears in this condition.

2We use energetic units for temperature, kB ≡ 1.
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A typical energy diagram of a Coulomb blockaded quantum dot is shown in Fig. 1.2. The

number of captured electrons corresponds to the highest energy state available below the

chemical potential µ, EN < µ < EN+1. The variation of the voltage Vg on the central gate

shifts linearly the quantum dot’s energy levels EN and can be used to change N in discrete

steps.

A simple pumping cycle employing periodic variations of the gate voltages coupled to a

Coulomb blockaded quantum dot operates as follows (see Fig. 1.3). At the moment when

the (equilibrium) number N of electrons on the dot increases by one, one of the barriers (left

in Fig. 1.3B) is lowered so that the extra electron tunnels in predominantly from the left.

During a later stage of the pumping cycle this additional charge must be released. At this

time (Fig. 1.3D), the other barrier is lowered so that the quantum dot opens to the right.

Such a quasi-static hopping picture ensures that electrons are transferred one per cycle, with

small corrections due to various effects (co-tunnelling, insufficient isolation of the blocked

side of the pump, non-adiabaticity etc. [30]).

Simple schemes of the type shown in Fig. 1.3 can nowadays be easily accessed in ex-

periments with a lithographically defined quantum dot. The first successful work of this

kind [31] has reported measurements of quantized current through a dot held under a con-

stant source-drain bias, with only VL and VR oscillating at the pumping frequency with a

well-defined phase difference. More refined schemes with several quantum dots connected

in series can be implemented using small metallic islands [32, 33] as the tunnelling barrier

heights need not be changed dynamically to achieve the pumping effect [30].

Several theoretical frameworks for a quantitative description of the Coulomb blockage

have been formulated (see [8] and [9], also a general review [2]) and tested experimentally.

The “orthodox” theory [8] is based on master equations for a ceratin tunnelling Hamiltonian

with the charge on the dot described by a continuous collective variable. Alternatively,

the theory of Beenakker [9] constructs a probability distribution of the individual level

occupation numbers of an isolated dot. A master equation is then obtained by including

lowest order tunnelling processes.

A common feature of these theories is that the correlations in the leads induced by tun-

nelling of individual electrons in and out of the dot are assumed to decay rapidly. On a

formal level this assumption means that the density matrix of the leads is not affected by

the presence of the dot and remains determined solely by the properties of the external
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Ec

EN+1

Vg

VL VR

µ

EN

Figure 1.2: Energy diagram of a quantum dot

in the Coulomb blockade regime. The typical

charging energy Ec = e2/C is inversely propor-

tional to the dot’s capacitance C, and for suffi-

ciently small devices defines the energy differ-

ence between the states of fixed electron num-

ber N . The number of electrons is controlled

by the central gate voltage Vg, while the height

of the entrance and the exit barriers depends

on the voltages VL and VR on the respective

gates (cf. Fig. 1.1).

Vg

Vg

A B

D C

Figure 1.3: Pumping cycle for a device with

discrete electronic states. The stages A, B, C,

and D represent the energy diagram at consec-

utive times during one period.
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reservoirs. While this “neglect of correlations in the leads” is well justified for tempera-

tures larger than a typical inverse tunnelling rate Γ [9], quantum effects start to play an

increasingly important role as the temperature is lowered below Γ. The transport through

a Coulomb-blockaded device gets enhanced by co-tunnelling processes [34] which are the

lowest order correlation corrections to the single-electron tunnelling probabilities. At even

lower temperatures more subtle correlation effects [29] come into play. Systematic inclu-

sion of co-tunnelling corrections into a theory of Coulomb-blockade-based charge pumps [35]

improves the agreement for experiments with fixed tunnelling barriers [36], but remains a

rather restrictive approach.

Another approach for building a single electron pump has been put forward in experimen-

tal studies of surface-acoustic-wave (SAW) driven quasi-one-dimensional channels [37, 38].

The original idea [37] has been to construct dynamically a moving quantum dot using the

running electric potential profile induced by SAWs in the direction from the source to the

drain. A qualitative explanation for the observed current quantization has been given in

Ref. [37]. The reader will find a self-contained review of this work in the introduction to

Chapter 4 (see page 36), where we explore an alternative approach [39] which does not

require high tunnelling barriers at all stages of the cycle.

1.2.3 Pumped current quantization

An interesting perspective on charge pumping has been suggested in the work of Thouless

[40]. He has posed the following question: “If the potential [that an electron system is

subject to — VK] is changed slowly in such a way that it returns to its starting value in

time T , is the integrated current of electrons across a boundary quantized?” Thouless has

given a positive answer under certain special circumstances: an infinite system in a periodic

potential, with the electronic bands filled, subject to an adiabatically varying potential in

such a way that the excitation gap never closes. If the above conditions are satisfied, the net

charge transferred per period is strictly an integer, and is dictated by topological arguments

[40].

If an external periodic perturbation acts on a system within a finite region one might

expect that such a precise pumped charge quantization becomes unattainable, similar to

smearing of sharp thermodynamic phase transitions in finite-size systems. Indeed, soon
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after the scattering approach to adiabatic pumping has been formulated (as discussed in

Sec. 1.2.1 above), several equivalent geometrical formulations of the Brouwer formula have

been investigated [41, 42]. Quite generally, as the system parameters are slowly varied due to

external perturbations, the scattering matrix traces a ceratin contour in the corresponding

abstract space of unitary matrices [41, 42]. The charge pumped over one period can be

expressed then in terms of an integral over the area enclosed by this contour [13, 42]. The

absence of a topological quantization means that any such contour can be continuously

shrunken to zero, with no topological constraints. The pumped charge is closest to a non-

zero integer when the integration area inside the contour covers almost the whole space (e.g.,

the surface of a 3D sphere in the simplest case of two single channel leads). This differential

geometry approach provides important general answers, but gives limited insight into the

actual mechanism of the pumped charge quantization, or the choice of physical parameters

that allow to achieve it.

An important connection between pumped charge quantization and resonant transmission

has been observed in Refs. [43, 19]. This observation can be summarized as follows. Let us

draw the pumping contour directly in the space of parameters that are varied in order to

change the Hamiltonian (see an example for two parameters, X1 and X2, in Fig. 1 of Chapter

3 on page 26). The transmission probability for the carriers incident in one of the leads is

a function of the same parameters as well. References [43, 19] have considered particular

models that exhibit sharp peaks in the transmission probability (resonances) as X1 and X2

are varied. Typically, a line of enhanced transmission can be identified in the parameter

space (the dotted line in Fig. 1 on page 26) with the global maximum of the transmission

probability at some point M on that line3. It has been found in Refs. [43, 19] that pumping

contours that (1) enclose the point M , and (2) go for most of the time far from M and from

the resonance line (so that the instantaneous transmission along the contour remains small

during the whole cycle), transfer the same number of electrons per cycle as the contours’

winding number around the point M . The fact that such a protocol should produce on

average almost integer charge per cycle can be anticipated from the formula (1.1) on p. 6.

More subtle is the condition for this integer to be non-zero. This criterion of “encircling the

3The point M corresponds to a vanishing reflection coefficient and thus a singularity of the reflection
phase α [43] which we introduced in Eq. (1.1) on p. 6 [16].
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U

0

µ

VR
VL

Figure 1.4: Schematic drawing of the Anderson model4 (cf. Fig. 1.2).

the point of maximal transmission” also goes in line with the maximal area prescription of

Ref. [42].

Despite the mathematical beauty of these results, the actual mechanism relating resonant

transmission and pumped charge quantization has remained obscure. The simple models of

Refs. [43, 19] that lead to non-trivial contours (quantized transport) include out-of-phase

modulation of tunnelling barriers, not dissimilar to the turnstile mechanism outlined in

Sec. 1.2.2. This similarity is quantitatively explored in Chapter 3.

1.2.4 Strongly interacting dots: models and methods

As we have seen in the previous sections, an interplay between quantum fluctuations and

charging effects makes the dynamics of small electronic systems (such as quantum dots)

complicated. Theoretical methods capable of describing full crossovers between different

regimes of a physical model are quite sophisticated, and usually a delicate trade-off between

the simplicity of a model and the variety of properties accessible for calculation is involved.

A great variety of such methods have been developed in relation to the problem of mag-

netic impurities embedded in a non-magnetic metal. The latter has been actively studied

in the 1960s and 70s. There exists a common paradigm which can be applied both to an

impurity atom coupled to free electrons of the host, and to a quantum dot connected to

leads of a metallic nature.

The main physical components of this paradigm are present in the model of Anderson,

suggested in 1961 for magnetic impurities [11, 44] and successfully applied to quantum dots

since 1988 [45, 46, 47]. Figure 1.4 shows a schematic drawing of the Anderson model.
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We shall describe the model qualitatively below. Some of the Hamiltonians studied in the

present work can be viewed as a direct generalization of the Anderson model; their precise

form is discussed in Sec. 2.2 below and in the corresponding sections of the research papers.

A comprehensive review of the magnetic impurity problem from the theoretical point of view

can be found in the book of Hewson [48].

The Anderson model pertains to a single spin-degenerate energy level ε0 corresponding

to a d-orbital of the impurity5 (e.g., an atom of Fe) or a localized state in the quantum

dot. The “free” electrons of the host form a continuous band, which in the quantum dots’

language describes the leads. Once the impurity atom is placed in the metal, the orbital

state corresponding to ε0 is no longer an eigenstate of the full Hamiltonian. Therefore,

a transition amplitude V between free and localized electrons is to be included into the

model6. In the context of the quantum dots, V has the meaning of a tunnelling amplitude.

A quantum dot is defined by certain potential barriers that confine the electrons. If the

barriers were infinitely high, the states localized in the dot would have remained stationary

forever. A finite height of the surrounding barrier (which is the lowest at the contact points

between the dot and the leads) implies a ceratin amplitude for tunnelling from a localized

state into the continuum. This amplitude is V of the Anderson model 7.

So far the model is a single-particle one, similar to the virtual level model of Friedel [50].

It features a single resonance in the density of states near the energy ε0 (see, e.g., Chapter 1.4

of Ref. [48], or Sec. IV in Chapter 3 of the present thesis).

The crucial component making the Anderson model both challenging and relevant to

strongly interacting systems is the inclusion of the direct Coulomb repulsion between the

4The quantum dot gate voltages VL/R should not be confused with the tunnelling amplitudes V L/R of
the Anderson model.

5In magnetic alloys, more realistic is the case of several degenerate d- or f -orbitals, that can be more
accurately represented by the Coqblin-Schrieffer model [49], see Chapters 7 and 8 of Ref. [48], also Appendix
A of Ref. [11].

6In the context of the impurity problem, it is essential that the “free” electron band comes mainly from
atomic s- and p-states which are “much more extended throughout the unit cell than the localizeable states
near the top of the d-band” [11].

7Possibilities for taking into account the geometry of the mesoscopic structure to which the strongly
correlated dot is connected, are addressed in Chapter 5.
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electrons of opposite spins occupying the same orbital:

Hint = U n↑n↓ (1.2)

(here n↑,↓ are the occupation number operators for the two spin-orbitals). For a quantum

dot, U > 0 corresponds to Ec — the charging energy due to the repulsion between an extra

electron and the electrons already in the dot.

To have a feeling of what kind of physics the Anderson model is able to describe, let us

consider just one typical experiment8: measuring linear conductance of a quantum dot as a

function of the gate voltage Vg (compare Figs. 1.2 and 1.4). Typically, the gate voltage has a

linear capacitative coupling to the localized electrons, therefore one assumes that ε0 ∝ −Vg

(the more negative is the gate voltage, the higher is the energy of the electrons being repelled

by the gate). Increasing the gate voltage from highly negative values corresponds to lowering

ε0. For ε0, U + ε0 � µ, having either two or one electron on the level is energetically

unfavorable. The total occupation number is close to zero. This is the “empty dot regime”

in the terminology of Chapters 5 and 6.

As the gate voltage is raised, ε0 goes down. As ε0 ≈ µ is reached, there forms a convenient

“pad” for an electron near the Fermi energy to hop from one of the leads through the dot

into the other lead. As a result, the conductance is greatly enhanced, and a peak in the

conductance as a function of Vg is observed (the Coulomb blockade peak). The width of

this peak (for sufficiently low temperatures) is of order Γ ∼ ρ|V |2 where ρ is the density of

states in the leads. Γ is an energetic measure of quantum fluctuations between the states

of different occupancy (‘0’ and ‘1’ in this case) but the same energy (= µ at the peak). Γ

is also an inverse of the time it takes an electron to tunnel out of the dot, in line with the

time-energy uncertainty relation.

Further lowering ε0 but still keeping ε0 < µ < ε0+U brings the dot again into a state with

a relatively well-defined number of electrons on the level, which this time is an odd number

(one). The direct sequential tunnelling is energetically unfavorable (“Coulomb-blockaded”)

again, and the conductance drops. The low9 conductance region between the Coulomb peaks

is called the “Coulomb valley”.

8A much more detailed discussion of the various transport regimes in Coulomb blockaded quantum dots
can be found in the review article by Pustilnik and Glazman [51].

9For not too small temperatures, see below the discussion of the Kondo effect.
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Finally, as the doubly-occupied state comes into degeneracy with the singly occupied one,

the conditions for sequential tunnelling are favorable again. A second Coulomb blockade

peak is observed in the conductance at ε0 + U ≈ µ, and the dot enters a double-occupied

state at ε0 + U � µ.

In the above discussion of the Coulomb blockade we have assumed Γ � U (quantum

charge fluctuations are not too strong as to mask the discreteness of the charging energy),

and T � Γ (electric transport is dominated by quantum and not by thermal fluctuations).

Under these conditions there is yet another energy scale, the Kondo temperature TK � Γ,

which can strongly influence the conductance of the dot in the single occupancy (“local

moment”) regime. One electron on a spin-degenerate level means that if the leads are fully

neglected, the quantum dot has a finite spin, S = 1/2 (hence the name “local moment”).

Slight hybridization of the local state with the continuum in the leads makes spin flips

possible. A sequence of such virtual processes generates a cloud of low-energy electron-hole

pair excitations in the leads (“the Kondo cloud”) which are correlated with one another and

with the orientation of the spin on the dot. The eventual result of this dynamical process

at T → 0 is the complete screening of the local moment by the itinerant electrons, and the

formation of a loosely bound many-body state whose energy is equal to the Fermi energy

µ. The typical binding energy of this state is TK . An equivalent way of characterizing the

system [52] is to say that at T = 0 it is a Fermi liquid with a singlet (no magnetic moment!)

ground state. TK is the typical energy of the lowest energy elementary excitations and their

interactions.

Formation of the Kondo cloud has a profound effect on the electron transport. Incident

electrons scatter elastically on the Kondo cloud, which is automatically on resonance, i.e. has

the same energy as the incoming electrons, µ. As a result, the transmission is resonant and

the conductance reaches10 the so-called “unitary limit” 2 e2/(2π�). Thus the odd Coulomb

valley turns ultimately into a Kondo plateau in the whole local moment regime ε0 < µ <

ε0 + U , as the temperature goes to zero. Any external factor that drives the system away

from the idealized singlet ground state, generally reduces the degree of Kondo screening and

brings the conductance in the valley down from the unitary limit. These important factors

include finite temperature, source-drain bias, external magnetic field and dephasing due to

10For a left-right symmetrically coupled quantum dot.
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dynamical environment. The typical size of the perturbations that are capable of dispersing

the Kondo cloud is given by the Kondo temperature TK . The latter can be understood as

the ferromagnetic bonding energy between the coherent cascade of electron-hole pairs in the

leads and the magnetic moment of the localized electron.

The actual models and the physical quantities of interest for modern studies of transport

through small nanostructure go way beyond the canonical Anderson model which has been

very briefly presented above. A number of such important generalizations is discussed and

characterized in the research papers included in this thesis. We note however that most

of the intuitive concepts for modelling correlated electron transport comes from the simple

version of the Anderson model.

A broad variety of methods and tools exist for calculating different quantities for the

Anderson Hamiltonian. Table 1.1 gives a short summary from the author’s subjective point

of view. Only the methods that in one way or another have influenced the present work

are included in the table. Other important techniques, such as slave bosons, non-crossing

approximation, quantum Monte Carlo etc., are not discussed.

Some more details are in place here for the methods ‘d’ and ‘e’ from Table 1.1, since

they are used intensively in Chapters 5 and 6. The equations-of-motion (EOM, method

‘d’) for the Green functions are derived from the time-evolution equation for operators in

the Heisenberg picture [53]. The crucial property of models with many-body interactions is

the coupling between the EOM for the Green functions with different number of operators.

Therefore, the EOM for the single particle Green function become an infinite hierarchy of

coupled equations which is intractable as a whole. The standard way of treating the system

of EOM is to apply a ceratin decoupling approximation which makes the hierarchy finite

[54, 55, 56].

Successful application of the EOM method to quantum dot systems has been pioneered by

Meir, Wingreen and Lee (MWL). In their theory [47] for periodic conductance oscillations,

MWL suggest keeping equations for all the Green functions that involve more than one local

(quantum dot’s) operator, and approximating higher-order Green function using a version

of the mean-field decoupling [53, 54]. This approach can accurately describe the emergence

of Coulomb blockade in the system as the parameters are changed (e.g., Γ is tuned from

Γ � U to Γ � U). However, MWL do not impose the self-consistency requirement in

approximating the thermal averages (mean fields), and therefore miss much of the electron-
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hole pair correlations that are essential for the Kondo effect.

A special but very powerful property of the standard Anderson model is its exact inte-

grability (see [57] for a comprehensive review). This allows for the application of the Bethe

ansatz, and leads to an exact solution (method ‘d’ in Table 1.1). The exact occupation

numbers (for each spin projection separately, if the magnetic field is non-zero), derived from

the Bethe ansatz equations at T = 0, will be of great value in characterizing the two-level

model of Chapter 6.
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Method Pro’s Con’s Refs. Ch.

a. Perturbation in U Analytic, systematic,
usual diagrammatic rules
apply

Breaks down at U/Γ � 1 [58],
Ch. 5 of [48]

b. Perturbation in Γ Analytic, systematic No Wick theorem, break-
down at the charging
points for T � Γ

[59, 60] 5, 6

c. Mean field (Hartee-
Fock)

Analytic, simple Uncontrolled, underesti-
mates correlations

[11, 61] 3
(U =0)

d. Equations of motion Analytic, more accurate
than HF

Uncontrolled, hard to en-
sure self-consistency

[56, 47] 5

e. Bethe ansatz Exact, many explicit ana-
lytic results

No dynamic properties,
challenging at T �= 0

[57],
Ch.6 of [48]

5, 6

f. Fermi liquid theory Simple description in
terms of a few param-
eters, exact analytic
identities

Valid only if excitations
over the ground state are
not too strong

[52],
Ch. 5 of [48]

5

g. Mapping to a spin
model+poor man’s
scaling

Analytic estimates for
Kondo-type effects

Charge fluctuations ne-
glected

[62, 63],
Ch.3 of [48]

6

h. Numerical renor-
malization group

Very accurate, wide pa-
rameter range

Numerics only; high calcu-
lational demand

[64, 65, 61],
Ch.4 of [48]

i. Functional renormal-
ization group

Accurate up to relatively
large U/Γ

Numerical in most cases [66] 6

Table 1.1: Some of the theoretical methods applicable to Anderson model and its deriva-

tives. Only the basic advantages and drawbacks are mentioned. For each method, a few

representative references are given. The last column indicates which chpaters of the thesis

use a particular method (either to derive new results, or as a reference).



Chapter 2

Review of the papers

The following four papers constitute Chapters 3 through 6:

(A) V. Kashcheyevs, A. Aharony, and O. Entin-Wohlman, Resonance approximation and

charge loading and unloading in adiabatic quantum pumping, Physical Review B, vol.

69, p. 195301, 9 pages, published on 6 May 2004;

(B) V. Kashcheyevs, A. Aharony, and O. Entin-Wohlman, Quantized charge pumping by

surface acoustic waves in ballistic quasi-1D channels, European Physical Journal B,

vol. 39, p. 385, 12 pages, published on 12 July 2004;

(C) V. Kashcheyevs, A. Aharony, and O. Entin-Wohlman, Applicability of the equations-

of-motion technique for quantum dots, Physical Review B, vol. 73, p. 125338, 15 pages,

published on 27 March 2006;

(D) V. Kashcheyevs, A. Schiller, A. Aharony, and O. Entin-Wohlman, Unified description

of correlations in double quantum dots, e-print arXiv:cond-mat/0610194, 23 pages,

submitted to Physical Review B on 9 October 2006.

2.1 Logical structure and continuity

The four papers presented in the thesis explore electron dynamics in small coherent quan-

tum systems focusing on adiabatic pumping of electrons, conditions for pumped charge

quantization, and the role of explicit Coulomb interactions. The following describes briefly

19
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the sequence of milestones achieved on this way, and the connections between the results

reported in different papers.

As we explained in Sec. 1.2.3, adiabatic quantum pumping through a structure with sharp

transmission resonances may lead to pumped charge quantization. Our first paper (A) raises

and answers the following question: what is the charge redistribution associated with moving

a system adiabatically through an isolated resonance, and why is it close to one electron

transfer? The main idea has been to cast the expression of the pumping current into a form

which can serve two purposes. On one hand, it is applicable to a generic resonance triggered

by a single level of the nanostructure in question. On the other hand, the instantaneous

current formula can be integrated (in a well-defined limit) into a simple expression with

clear physical meaning.

To this end, we have translated the scattering states formalism of Ref. [17] into a form

involving the local Green function [see Eq. (6) on p. 27]. This form has been applied to a

single level with time-dependent position and coupling strength. As a result, a Breit-Wigner

resonance (simple pole) appears in the Green function, in the scattering matrix, and in the

pumping current formula. What is important is that the transmission is maximal when

the pole crosses the Fermi energy. Therefore, the crossing points between the pumping

contour and the resonance line [the “resonance points”, e.g., points B and D in Fig. 1

on p. 26] correspond to time moments when the instantaneous energy level goes below or

above the Fermi surface. This observation has direct implications for pumping, as discussed

qualitatively in the introduction to Chapter 3 (paper A) and quantitatively in the main

body of that paper.

The analysis of a pumping contour in terms of the individual charge loading and unloading

events is not restricted to a single-level model, or to changing just two parameters. For more

complex structures with several sites, each resonance may involve a different level. Still, if the

system is sufficiently weakly coupled, the resonances are generically well-separated and the

total charge pumped per period can be expressed as a sum of the individual contributions,

see Sec. III.D of Chapter 3 (paper A) and Sec. 2.3 of Chapter 4 (paper B).

The next step in the research program implemented in the thesis has been to apply the

insights of the resonance approximation to a system for which quantized pumping current

has been measured experimentally. This system is a SAW-driven quantum channel that has

been mentioned at the end of Sec. 1.2.2 in the introductory chapter. The main experimental
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observation [38] is the staircase structure of the dc current measured as a function of the

gate voltage (the latter controls the degree of depletion of the electron gas in the channel).

The value of the current at the plateaus in this staircase is to a good accuracy I = e ×
(1, 2, 3 . . .) × f , where f is the frequency of the SAW (typically a few GHz), and e is the

electron charge.

A simple model that captures the basic physics of the quantized current through a SAW-

pump device has been proposed in Ref. [39]. The model features a chain of tight-binding

sites representing the coherent 1D channel. The effect of a SAW on the electrons in the

channel is modelled as a running potential profile, as shown in Fig. 2.1B on p. 24, and

discussed in Sec. 2.1 of Chapter 4 (paper B).

Charge pumping generated by SAWs is investigated in detail in Chapter 4. As the results

of Chapter 3 suggest, the positions of the instantaneous energy levels as a function of time

have to be traced in order to identify the charge loading and unloading events. Each crossing

of a particular eigenvalue with the Fermi level gives rise to an adiabatic transfer of a single

electron between the reservoirs and the central structure. Whether it is (predominantly) the

left or the right reservoir is determined by the shape of the corresponding eigenfunction. This

construction is explained in detail in Sec. 3 of Chapter 4, and illustrated in the respective

Figs. 2 and 3 on p. 40. We show that the whole dependence of the average current on the

gate voltage can be re-constructed from the eigenvalue diagram.

Empowered by the simple framework of the resonance approximation, we investigate the

role of the potential profile parameters — such as the SAW power, the ratio between the

wavelength and the channel length, the shape of the screening function — on the spectrum

of instantaneous eigenvalues, and, subsequently, on the pumped current staircase. A set

of almost equidistant states that are responsible for the plateaux structure is found to be

localized at the minimum of the travelling potential profile. This means that the pumped

electrons are carried adiabatically by a moving potential well. What is important, however,

and what distinguishes the results of paper B from related earlier studies [67, 68], is that the

existence of such a “moving quantum dot” is not assumed a priori. The latter is generated

dynamically only if the SAW amplitude is strong enough.

Several novel features of the quantized acoustoelectric current that had been measured

[69] but not previously addressed theoretically, are explored in Chapter 4. In particular,

classical interference of two counter-propagating SAWs is found to generate in a character-
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istic pattern of change in the pumping current curves (see Fig. 5 on page 43), in accrod with

the experiment [69].

Despite the successful characterization of the basic experimental features, the approx-

imation of spinless non-interacting electrons is limited both from the conceptual and the

practical points of view. The spacing between the current quantization steps is explained

within the model as the single-particle level spacing in an approximately harmonic potential

well. The corresponding number is significantly smaller than that measured experimen-

tally. The other inconsistency concerns the treatment of electron spin. The channels in the

absence of SAW show conductance quantization in units of 2 e2/h, which means that the

electrons are spin-degenerate. On the other hand, there are well-defined plateaus both for

even and for odd number of electrons transported in a cycle, so that the double degeneracy

is effectively lifted for the electrons that are dynamically captured.

Resolution of these difficulties requires a method that takes into account both the local

Coulomb repulsion and the hybridization with extended states in a non-perturbative manner.

One such method, the equations-of-motion (EOM) technique, is investigated in detail in

Chapter 5. Instead of the pumping current, this study concentrates on a more fundamental

quantity which is necessarily involved in any characterization of the dynamical properties of

the system, namely, on the single-particle Green function.

Similarly to paper A, paper C works out an equation for the local electron’s Green

function assuming an arbitrary structure in the leads. The latter can be, for example, a

grid of tight-binding sites with a certain topology. Both chapters (3 and 5) keep track of

the information about the external network by means of the (non-interacting) self-energy

function Σ(z) as explained in Appendix A of Chapter 5.

One of the principal goals for Chapter 5 is to establish accurately to what extent the

EOM method can be trusted. For this sake we pay much attention to the Kondo effect,

and compare extensively with the exact results available for the standard Anderson model.

Quantities related to charge transport, such as the total occupation number or the broad

Lorentzian feature in the local density of state, are captured by the EOM technique remark-

ably well (see, e.g., Fig. 1 on page 54). Strong Coulomb repulsion indeed prevents double

occupancy of the quantum dot, and thus effectively lifts the spin degeneracy. These obser-

vations may be seen as a support for the use of the single resonance spinless model employed

in Chapter 3.
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As discussed qualitatively in the introduction (Sec. 1.2.4), the properties of a quantum dot

with an unpaired spinful electron are dominated by its spin fluctuations. In this regime the

EOM technique is found to be much less accurate. Although respecting the self-consistency

condition improves significantly, the results in the local moment regime fall short of a quan-

titative description of the Kondo effect.

The next and the final step in the sequence of papers is the transition form a single-site

model, considered in papers A and C, to a two-site model, this time with a strong inter-site

Coulomb interaction. A schematic drawing of the model considered in Chapter 6 (paper

D) is shown in Fig. 2.1D. This kind of general two-level model has been actively studied in

recent years within many different contexts, as discussed in the introduction to Chapter 6.

The reason for that is that it is a minimal model in which correlated electron transport

through more than one energy level can be studied.

Chapter 6 puts forward a crucial observation which unlocks the main physics of the

model. The lead and dot degrees of freedom can be independently rotated by a unitary

transformation in such a way that the resulting Hamiltonian is of the Anderson type with a

certain pseudo-spin degree of freedom. This pseudo-spin is conserved in tunnelling but not

necessarily inside the structure, as shown schematically in Fig. 1 on page 66.

Once the new model is mapped to a more familiar Hamiltonian, the experience gained

in Chapter 5 can be applied. There is a finite effective magnetic field in the transformed

model. It comes from the rotation of the original “Zeeman splitting” of the site energies,

and from the renoramlization of the dot levels due to coupling to the leads (the latter

are in general “ferromagnetic”, as explained in Sec. II of Chapter 6). In analogy to the

conventional Kondo effect, we can expect a competition between the dynamical screening of

the local pseudo-spin on one hand, and the polarizing magnetic field on the other hand. As

we learn from Chapter 5, the EOM method is not good for keeping track of spin fluctuations,

therefore a different set of methods has been employed in Chapter 6. These are methods

‘g’ and ‘e’ from Table 1.1. These methods do not give as much dynamical information as

the EOM technique, but at the same time describe accurately the full crossover from strong

to negligible Kondo screening as a function of the effective magnetic field. The latter now

depends on many of the original system parameters in a complicated way which is, however,

traced analytically in full detail. Two important observables are calculated and discussed

extensively in Chapter 6: the occupation numbers and the low-temperature conductance.
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Figure 2.1: An overview of the models studied in the thesis.

In summary, the Chapters 3–6 present a diverse but interconnected picture of the dy-

namical behavior of electrons in mesoscopic systems with a few active local energy levels.

2.2 A guide to the models explored

We supplement the discussion of the overall structure of the thesis by a visual summary of

the models explored. Figures 2.1A through 2.1D relate to Chapters 3 through 6 respectively.

The on-site energies in A and B, as well as the tunnelling couplings in A are time-dependent.

The number of sites N in the chain of Fig. 2.1B is arbitrary, the case of N = 2 is equivalent

to a special case of Fig. 2.1D.

Several different models for the leads are discussed throughout this work. The first two

papers use a semi-infinite tight-binding chain as a model lead. This results in an energy-

dependent self-energy function Σ with a non-vanishing real part (see Sections II and IV.A

in Chapter 3 for the definition and discussion of Σ, and also Section II and Appendix A

of Chapter 5). In the appropriate limit (namely, J2
l;r/J → const and sin ka → 0 in the

notation of Chapters 3 and 4), the self-energy function becomes energy-independent, and

the wide-band limit used in Section IV of Chapter 5, and throughout Chapter 6 is recovered.

Note also that the level broadening Γ in Chapters 3 and 4 is twice the value of Γ in Chapters

5 and 6.



Chapter 3

Resonance approximation and charge

loading and unloading in adiabatic

quantum pumping

The content of this chapter has been previously available as

• a preprint, arXiv.org:cond-mat/0308382 (19 August 2003);

• a journal article, Phys. Rev. B, 69, 195301 (6 May 2004).
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Resonance approximation and charge loading and unloading in adiabatic quantum pumping

Vyacheslavs Kashcheyevs, Amnon Aharony, and Ora Entin-Wohlman
School of Physics and Astronomy, Raymond and Beverly Sackler faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

~Received 19 August 2003; revised manuscript received 17 December 2003; published 6 May 2004!

Quantum pumping through mesoscopic quantum dots is known to be enhanced by resonant transmission.
The pumped charge is close to an integer number of electrons when the pumping contour surrounds a reso-
nance, but the transmission remains small on the contour. For noninteracting electrons, we give a quantitative
account of the detailed exchange of electrons between the dot and the leads~to the electron reservoirs!during
a pumping cycle. Near isolated distinct resonances, we use approximate Breit-Wigner expressions for the dot’s
Green function to discuss the loading/unloading picture of the pumping: the fractional charge exchanged
between the dot and each lead through a single resonance point is related to the relative couplings of the dot
and the leads at this resonance. If each resonance point along the pumping contour is dominated by the
coupling to a single lead~which also implies a very small transmission!, then the crossing of each such
resonance results in a single electron exchange between the dot and that lead, ending up with a net quantized
charge. When the resonance approximation is valid, the fractional charges can also be extracted from the peaks
of the transmissions between the various leads.

DOI: 10.1103/PhysRevB.69.195301 PACS number~s!: 73.23.2b, 73.63.Rt, 72.10.2d, 73.40.Ei

I. INTRODUCTION

There has been much recent experimental1–3 and
theoretical4–17 interest in adiabatic quantum pumping
through mesoscopic electronic devices, such as quantum
channels or quantum dots~QD’s!. Typically, the QD is con-
nected via leads to several electron reservoirs, and is subject
to a slowly varying oscillating potential, with periodT
52p/v. Under appropriate conditions, the device yields a
nonzero dc time-averaged current between pairs of terminals,
even when the terminals have the same chemical potential.
Under ideal conditions, the chargeQ transferred between the
terminals during a periodT may be ‘‘quantized,’’ i.e., very
close to an integer times the electron chargee. Several recent
theoretical studies have considered enhancement of the adia-
batic pumping current due to resonant transmission18 through
the QD, both for noninteracting9,11,16,19,20 and interacting
electrons.21 Connections between pumped charge quantiza-
tion and resonant transmission have been reported in differ-
ent contexts.11,16,19,20,22,23

Usually, the oscillating potential is characterized by sev-
eral time-dependent parameters,$Xi(t)%. As time evolves
during one periodT, these parameters follow a closed con-
tour in the parameter space. A schematic example is shown
in Fig. 1 for two such parameters. In parallel to discussing
pumping, one can also consider the conductance between
pairs of terminals generated by an appropriate bias. This con-
ductance, which depends on the parameters$Xi%, may have
resonance peaks in the same parameter space. In this context,
one freezes the time dependence, and considers the conduc-
tance at some instantaneous values of the$Xi% ’s. It has been
argued11 that the pumped chargeQ will be close to being
quantized if the pumping contour surrounds such a peak
~e.g., at the pointM in Fig. 1!, while staying at points with a
low conductance.

In the present paper we present an approximate theory for
adiabatic pumping of coherent noninteracting spinless elec-
trons, which is valid for discrete and distinct resonances, and

use this approximation to obtain physical insight into the
reasons for this quantization. Given a conductance peak
~e.g., at the pointM in Fig. 1!, one can usually also identify
a ‘‘resonance line,’’ along which the conductance decreases
from its peak more slowly than along other directions.11,16

Such a line is illustrated by the dashed line in Fig. 1. In the
example shown in this figure, the resonance line is crossed
by the pumping contour twice, at pointsB andD. Measuring
the instantaneous biased conductance between the two rel-
evant terminals for each timet during the oscillation period,
one expects two local peaks at these two resonance points.
Under appropriate conditions, which include the limit of
weak QD-terminal coupling, most of the pumped current
arises when the parameters are close to these resonance
points: for example, one can identify a ‘‘loading’’ of the QD
by some chargeDQa

res, coming from terminala, at the point
B, and an ‘‘unloading’’ of the QD, byDQa8

res, into terminal
a8, at the pointD. The resulting total pumped charge per
period approaches a robust, detail-independent valueQR,
which is determinedonly by the ratios of the coupling
strengths between the QD and the different reservoirs at the

FIG. 1. ~Color online!Schematic picture of a two-dimensional
pumping contour, crossing the resonance line at two resonance
points (B andD). The transmission is maximal at the pointM.
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resonance points. We also show thatQR can be related quan-
titatively to the measured values of the peak conductances.
QR is ~almost!quantized~in units of e) when there is one
dominant coupling for each resonance.

Our results can be summarized in a very simple and
physically transparent way, by considering the occupation
numbers of the quasibound state on the QD, corresponding
to each transmission resonance. Each time the energy of such
a state crosses the chemical potentialm ~which is the same in
all reservoirs!, the QD gains or loses one electron, so that the
total pumped charge flowing into it~per period!is quantized.
However, the distribution of the pumped charge between dif-
ferent reservoirs is proportional to the corresponding cou-
pling strengths~tunneling rates!. Therefore the pumping cur-
rent between any two leads can be obtained by summing up
individual resonance contributions, with appropriate signs.

A similar ‘‘shuttling mechanism’’ for pumping has been
used widely to interpret experiments2,3 in the Coulomb
blockade regime, when the energetics on the QD is domi-
nated by the electron-electron interactions.24 In that ap-
proach, electrons are transferred from a lead to the dot and
then from the dot to another lead, whenever such transfers
are favored energetically. In contrast, Refs. 11,15,16,25 and
26 presented explicit quantum-mechanical calculations for
pumping of noninteracting electrons, calculated the total
charge pumped during a full cycle, and emphasized the role
played by quantum interference in such processes. In some
sense, the present paper bridges between these points of
view: in the limit of weak coupling between the QD and the
leads, we do end up with a loading/unloading picture, even
for noninteracting electrons.45 However, the details of the
charge exchanges during a pumping cycle are found to be
more complicated than in the ‘‘shuttling’’ picture: at a given
resonance point, charge can usually be shared by several
leads. Apart from this, the conditions for the applicability of
our loading/unloading picture are similar to those of a single
electron transistor,2 in the sense that the role of quantum
interference is restricted to the definition of independent
single-particle resonances. In view of this, there is room to
conjecture that some of our results may also apply in the
presence of electron interactions.

The paper is organized as follows. In Sec. II we review
the physical assumptions of the model and the formulas used
for the calculation of the adiabatic current. We then use these
formulas to derive the current for a single resonant state, by
approximating the Green function on the QD by a Breit-
Wigner-type formula. In Sec. III we obtain our main result—
the adiabatically pumped charge for a sequence of well-
defined distinct resonances—and discuss possible
applications and experimental verification. To demonstrate
this general picture, Sec. IV presents the analysis of the
pumped charge for a simple model15 of a ‘‘turnstile’’ pump-
ing device. A short summary concludes the paper in Sec. V.

II. ADIABATIC CURRENT

We consider a spatially confined nanostructure~the QD!
connected by ideal leads to the electronic reservoirs with a
common chemical potentialm and temperatureT. The total

Hamiltonian for noninteracting spinless electrons is

H5H d1(
a

~H a
l 1La1La

† !, ~1!

H d5(
mn

hmn~ t !dm
† dn ~dot!, ~2!

H a
l 5(

k
Eakcak

† cak ~ leads!, ~3!

La5la~ t !(
k,n

Jakncak
† dn ~hopping!. ~4!

Here H d is the Hamiltonian of anN-state isolated QD
(n,m51, . . . ,N), the index a51, . . . ,L enumerates the
one-dimensional leads connected to the QD,cak

† creates a
standing waveuwka& with wave numberk and energyEak in
the channela, the operatorLa describes hopping from the
QD into the channela, and thela’s are real dimensionless
coefficients. For pumping we allow variation ofH(t) via the
time-dependent parametershmn andla .

The instantaneous adiabatic current in the channela, di-
rected from a remote reservoir towards the QD, has been
expressed in Ref. 15 as

I a~ t !5
e

2pE dE f8~E!Ia , Ia5
1

\
^xkauḢuxka&, ~5!

where f (E)51/@11e(E2m)/kBT# is the Fermi-Dirac distribu-
tion and uxka& is the instantaneous scattering state normal-
ized to a unit flux,^xkauxk8a&5(2p/vka)d(k2k8), with
vka5]Eka /](\k) being the velocity in the channela.

In Appendix we use standard scattering theory formulas to
rewrite this equation in the form

Ia~E,t !5Trd@Gd
†~Ḣ d1 Ė̂!GdĜa1~Gd1Gd

†!Ġ̂a/2#. ~6!

Here, the operators

Gd5~E1 i02H d2Ŝ !21, ~7!

Ŝ5 Ê2 i Ĝ/2, ~8!

Ĝ5(
a

Ĝa , Ĝa5 iL a
†~Ga

l 2Ga
l†!La , ~9!

Ê5(
a

Êa , 2 Êa5La
†~Ga

l 1Ga
l†!La ~10!

act only on the subspace of the QD. Also,Ga
l denotes the

retarded Green function of an isolated channel,Ga
l 5(E

1 i02H a
l )21. We have separated the self-energy operatorŜ

into a sum of resonance width and shift operators,27 Ĝa and
Êa , which are Hermitian.
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Equation~6! is a generalized version of the pumping cur-
rent formula derived in Ref. 25 for a particular case of
single-mode tight-binding~TB! leads and time-independent
couplings.46

The adiabatic current~6! can be calculated exactly, pro-
vided that one is able to compute the Green function~7! on
the QD. We are interested in the regime when the transport is
dominated by a single nondegenerate orbital state, and in-
stead of Eq.~2! we consider

H res
d 5e~ t !uc&^cu[e~ t !d†d. ~11!

The energy distance to the next resonant stateD will be
assumed to be much larger than all other energies. The Green
function corresponding toH res

d now assumes the Breit-
Wigner-like form28

Gd5
uc&^cu

E2e2^cuŜuc&
. ~12!

The approximation of a single noninteracting energy level,
Eq. ~12!, is valid for resonant tunneling structures with neg-
ligible charging energy, and corresponds to the Breit-Wigner
treatment of mesoscopic electrical transport initiated in Refs.
29 and 30. For example, our results are directly applicable to
the much studied double barrier pumping9,11,14,31,32in the
resonant tunneling regime.9,11 We also list several experi-
mental situations when the charging energy is not small, but
our noninteracting spinless model can still have some rel-
evance. First, it applies when spin degeneracy is removed
either by a constant in-plane magnetic field or by feeding the
device with fully polarized electrons form half metallic fer-
romagnetic leads, e.g., CrO2 ~Ref. 33!. In this case the en-
ergy scaleD is set by the level spacing of the effective de-
vice Hamiltonian H d. Second, the Breit-Wigner
approximation~12! is relevant for the Coulomb blockade
peaks of a strongly pinched quantum dot well above the
Kondo temperature.34,35 Specifically, within the Hartree ap-
proximation, a large on-site Coulomb repulsion energyU
forbids double occupancy of otherwise spin-degenerate en-
ergy levels and sets the interresonance distanceD5U. Ex-
plicit derivation of the Breit-Wigner resonances for a weakly
coupled interacting system can be found in Ref. 36.

Substitution of Eq.~12! into Eq. ~6! gives

Ia5
GaĖ02Ġa~E02E!

~E2E0!21~G/2!2
, ~13!

where E0(E,t)5e1^cuÊuc& and Ga(E,t)5^cuĜauc&.
Since the partial ‘‘width’’Ga is of orderla

2 uJaku2, it repre-
sents a measure for the coupling of the QD with the channel
a. The exact adiabatic current for a single level given by Eq.
~13! will be the starting point for our analysis of the pumped
charge in Sec. III. Breit-Wigner-type expressions for the cur-
rent pumped by a single orbital level have been derived pre-
viously in the weak pumping limit,21 and in the presence of
interactions and Zeeman splitting.22 However, they were not
used to discuss the details of the pumped charge quantiza-
tion.

In the remainder of this section we discuss the physical
interpretation of Eq.~13!. The total currentI 5(aI a repre-
sents changes in the total charge accumulated both on the dot
and in the leads. For small dot-lead couplings, one would
expect that the charge on the QD itself is a well-defined
quantity and a simple picture of single electrons tunneling
between the leads and the QD should apply. In order to
clarify the relation between our quantum calculation and this
‘‘classical shuttling picture,’’ we comment on the localization
of the charge.

Equation~13! implies that the total current in our model is
a full time derivative, I 5dQF(E0 ,G)/dt of some time-
dependent chargeQF(t), where

QF~ t !52eE dE f8~E!H 1

2
1

1

p
arctan

2~E2E0!

G J .

~14!

~We have chosen the integration constant such thatQF/e is
bounded between 0 and 1.! The chargeQF represents the
integrated Breit-Wigner density of states and can be
interpreted37,38as the additional charge induced in the system
by an extra electronic stateuc&.

This delocalized chargeQF is to be compared with the
local equilibrium occupation inside the QD, which is given
by Qocc/e5Tr@ruc&^cu#, where r
5h21*dE f(E)(auxka&^xkau is the equilibrium density ma-
trix corresponding toH(t).47 Using Eqs.~A1!, ~A6!, and
~12! one can show that

Qocc5
e

2pE dE f~E!
G

~E02E!21~G/2!2
. ~15!

If E0 andG were independent ofE, then integration by parts
would yield the equalityQocc5QF. In general,E0 andG do
depend onE, and henceQoccÞQF.

III. RESONANCE APPROXIMATION

The Breit-Wigner form~13! of the pumping current dem-
onstrates a well-established fact9,11,16that pumping is greatly
enhanced near a resonance. The resonance condition isuE0
2mu&D, whereD5max(G,kT) is the energetic width of the
resonance. One option, considered in Ref. 21, is to design the
pumping contour in such a way that the system stays entirely
at resonant transmission. In this case, the Breit-Wigner ap-
proximation does not lead to any pumped charge
quantization.21 Here we focus on a more generic case, when
the resonance condition is satisfied only during a small frac-
tion of the pumping cycle, as the system goes through a
resonance point. As shown in Refs. 11,16,19 and 20, this
situation allows for pumped charge quantization. Specifi-
cally, we assume that the system remains near a resonance
point only during a small fraction of the pumping cycle. This
requires relatively narrow resonances, i.e., small widthsD
and therefore also smallG.

Consider a resonance timetR on the pumping contour,
identified by the resonance conditionE0(m,tR)5m. This
identifies a ‘‘resonance point’’ on the contour. Assume also
that the system ‘‘crosses’’ this resonance point completely
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between timest1 and t2, such that~1! Ga , E0 are energy
independent around the Fermi surface~for uE2mu&kT); ~2!
at the ‘‘boundary’’ times, the system is far from the reso-
nance,D!uE0(m,t1,2)2mu!D; ~3! while at resonance, the
couplings change negligibly,uĠau!uĖ0u.

Under these conditions, we can integrate Eq.~13! and get
the charge transferred from the reservoira in a simple form:

DQa
res5E

t1

t2
dtIa52e

Ga

G
sgnĖ0 ~at E05m!. ~16!

For this particular resonance point, other parts of the pump-
ing contour contribute negligibly to this charge. Equation
~16! is our main result for the pumped charge due to a well-
defined resonance point. We will refer to this result as ‘‘the
resonance approximation.’’ In this approximation, each res-
ervoir contributes on average a fraction of the electronic
charge, which is proportional to the corresponding fractional
decay width or couplingGa /G. The total change in the
charge accumulated in the system due to this particular reso-
nance is thus

DQres[(
a

DQa
res56e. ~17!

This result can be easily generalized for several indepen-
dent resonance points. If the pumping contour can be sepa-
rated into several parts, each containing a single well-defined
resonance point, and if the pumping currents on the rest of
the contour remain negligible, then the total chargeQa

R ,
pumped through the channela, is given by a sum over the
resonances:Qa

R5( resDQa
res. For a periodicH(t), the pump-

ing contour is closed, and charge conservation(aQa
R50 is

ensured by Eq.~17! and the fact that the number of loading
(Ė0,0) and unloading (Ė0.0) resonance points is the
same.

A. Pumped charge quantization

Equation~17! can be interpreted as the loading/unloading
of exactly one electron into/out of the QD, depending on the
sign of Ė0 at the Fermi level. Furthermore, Eq.~16! implies
thatDQres is dominated by the current from a single channel
a, provided thatGa@Ga8 for aÞa8. If the same applies to
all the resonances, then we end up with a ‘‘classical’’ picture,
in which the pumping cycle contains a sequence of indi-
vidual discrete events, of exchanging electrons one by one
between a reservoir and the QD. After a full cycle, the charge
on the QD will remain unchanged, and an integer number of
electrons will have crossed the QD between any pair of res-
ervoirs. This gives a detailed explanation of the pumped
charge quantization within this approximation.

Using the same conditions as used to derive Eq.~16!, one
can show that bothDQF[QF(t2)2QF(t1) and DQocc are
equal to DQres. This means that every time the system
crosses a resonance point, the charge associated with the
resonant state changes by;6e. Therefore we stress that if
one is interested in the total charge pumped by a single reso-
nance@and not, for example, in the line shape of the current,

Eq. ~13!#, then the simple picture of loading/unloading of a
single electron, as reflected in Eq.~16!, is applicable—
regardless of the ratioG/kT.

We also note that for such an ideal quantization (Qa
R→e

3 integer), that is independent of the contour details, one
would need to consider the limitGa'G→0 for each reso-
nance; the resonance approximation becomes exact, with re-
sults which are independent of the details of the contour,
whenG→0, and the charge goes only via channela when
Ga /G→1. As explained in the following section, this im-
plies a vanishing transmission throughout the whole pump-
ing cycle, in accordance with the conclusions of Refs. 11 and
39.

B. Relation to conductance

The criteria for the validity of the resonance approxima-
tion, listed in the preceding section, can bequantitatively
checked in experiments~or in numerical calculations!by
monitoring the conductance between different leads as a
function of parameters along the pumping contour.11,16A de-
finitive signature of the relevant transport regime~for having
a significant nonzero pumped charge! would be the presence
of an even number of well-separated peaks in the conduc-
tance time trace: each resonance (M in Fig. 1! is associated
with two peaks in the instantaneous transmission, encoun-
tered at the two resonance points (B and D) where the
pumping contour crosses the resonance line on each side of
the resonance, as schematically shown in Fig. 1. Note that
this measurement is independent of time: one simply mea-
sures the conductance at different points on the pumping
contour.

The contribution of each particular conductance peak to
the pumped charge can be calculated along the following
lines. Application of the general expression of the transmis-
sion probability27 from channela8 to channela, Taa85

2*dE f8(E)Tr@Gd
†ĜaGdĜa8#, to our resonance model@as

defined in Eq.~11!# gives the standard Breit-Wigner28 result
~see, e.g., Ref. 34!:

Taa852E dE f8~E!
Ga8Ga

~E2E0!21~G/2!2
. ~18!

Let us consider for simplicity an example ofL single-
mode leads. By using the multiterminal Landauer conduc-
tance formula40 for spinless electrons,Gaa85(e2/h)Taa8 , in
Eq. ~18!, we recover well-established34 results for the peak
conductance of a strongly pinched QD, that are related to Eq.
~16! in an extremely simple way:

Gaa8
peak

5
e2

h

4GaGa8
GD

[
4G

hD
DQa

resDQa8
res, ~19!

where

D5H G, kT!G,

~8/p!kT, kT@G.
~20!
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Measurements of the peak conductance at a particular
resonance point for fixed temperature and all possible com-
binations of source and drain leads would give, in principle,
(L22L)/2 experimental values to be used in Eqs.~19!. To-
gether with Eq.~17!, this gives (L22L)/211 equations for
the L11 unknownsDQa

res and G/D. Measurement of the
temperature dependence ofG aa8

peak(T) would yield D(T), and
thus determineG. We see that even forL52 it is possible to
predict the adiabatically pumped charge from the conduc-
tance measurements, and forL.2 different cross checks be-
come feasible.

Additional input of a few bits of information is necessary
to make the solution of Eqs.~19! and ~17! unique. For a
specific resonance ‘‘res,’’ all the chargesDQa

res ~for all a)
have the same sign, determined by the type of the resonance:
‘‘ 1 ’’ for loading and ‘‘2 ’’ for unloading, see Eq.~16!. An
additional sign uncertainty arises in the case of two terminals
(a5 l ,r ): the respective equation for the pumped charge,
DQl(e2DQr)5G lr

peak(hD/4G), is symmetric under inver-
sion, l↔r . The resolution of these uncertainties depends on
the particular experimental situation, and should be easy in
simple cases. We illustrate this point in Sec.~IV! below,
when we discuss a two-terminal example.

C. Adiabaticity condition

One condition for the validity of the adiabatic picture re-
quires that an electron should have enough time to tunnel
under the barriers while the system is at resonance. Thus, the
inverse tunneling rate\/G should be much smaller than the
duration of the resonance,t r5D/uĖ0u, yielding the adiaba-
ticity condition,

\uĖ0u!GD. ~21!

This condition implies that both the amplitude and the fre-
quency of the pumping potential must be sufficiently small
for an adiabatic pump.26 The resonance durationt r can be
extracted from measurements of the conductance as follows:
measuring the variation of the conductance through the reso-
nance, using a very low frequencyv0, would yield the reso-
nance widtht r0 for that frequency. The value oft r relevant
for the pumping experiments can then be found by rescaling,
t r5t r0v0 /v.

At zero temperature,D5G and the condition~21! can be
compared to the adiabaticity criterion for coherent pumping
formulated recently by Moskalets and Bu¨ttiker.31 They con-
sider the number of sidebandsnmax required to describe ad-
equately the Fourier transform of the instantaneous scattering
matrix. In our case the resonant peak of transmission in the
time domain has the widtht r , and the number of relevant
Fourier harmonicsnmax is at least (vt r)

21, wherev is the
cyclic frequency of the pump. The adiabaticity criterion of
Ref. 31 states that the scattering matrix should vary little
with energy over the rangeE6\vnmax. Since our character-
istic energy scale for the scattering matrix isG, the condition
of Ref. 31 takes the formG@\vnmax5\tr

21 , equivalent to
Eq. ~21!.

D. Application to complicated pumping potentials

In the resonance approximation, the pumped charge is ex-
pressed in terms of the resonancepoints, where the pumping
contour crosses the resonance lines, and do not require the
full information on the contour in the parameter space. We
now discuss the conditions under which Eq.~16! can be used
to obtain efficient approximate estimates of the pumped
charge for a model HamiltonianH d, which is complicated
enough to render an exact integration25 of Eq. ~6! impracti-
cal. Even when the validity of the resonance approximation
is marginal, such an approximate estimate could provide a
handy tool for exploring complicated pumping models~e.g.,
Refs. 11,16 and 25!and identifying the relevant physical
parameters. For simplicity, we restrict this discussion to zero
temperature.

To leading order in the coupling strengthsla , the param-
eters of the resonant level in Eq.~11! are given by the eigen-
state of the decoupledH d(t) which is the closest to the
Fermi energym. Therefore, the following algorithm can be
formulated.

~1! DiagonalizeH d(t) ~analytically or numerically! to get
the spectrum$em(t),ucm(t)&%.

~2! Calculate the time-dependent decay widthsGa
m(t)

5^cm(t)uĜa(E5m)ucm(t)& and shifted energy levels
em8 (t)5em(t)1^cm(t)uÊ(E5m)ucm(t)&.

~3! For everym, find all such timestm, j when the reso-
nance conditionem8 (tm, j )5m is satisfied.

~4! At each resonance timet5tm, j , compute the corre-
sponding partial chargeqa

m, j5eGa
m/(a8Ga8

m .
~5! Calculate the total pumped charge as

Qa
R52(

m, j
qa

m, jsgnėm8 ~ tm, j !, ~22!

or setQa
R50 if no resonances were found in step 3.

The application of this algorithm is justified under the
conditions listed in the beginning of this section. The most
important condition is the consistency of the perturbation
expansion,Ga

m(tm, j )!D(tm, j ), whereD(t) is the level spac-
ing of H d(t) at the Fermi surface.

The algorithm will fail for certain values of the adjustable
~not pumping!parameters of the model, for which the num-
ber of resonance points found in step 3 changes. This change
corresponds to the appearance~or annihilation!of a pair of
loading/unloading resonances. Such a crossover is usually
manifested by a sharp change~a step! ~Refs. 16,25!in the
total pumped charge, as function of the model parameters.

IV. EXAMPLE: TURNSTILE MODEL

We illustrate the resonance approximation by a simple
example of a single energy level with adiabatically varying
couplings to the left and right reservoirs~single level turn-
stile model!.15 Applications to more complicated models,
such as pumping by surface acoustic waves,25 will be re-
ported elsewhere.
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A. The turnstile pumping model

The single level turnstile model, discussed in Ref. 15, can
be described as a special case of the general Hamiltonian~1!,
with N51 site ~and a single energyh115e) on the QD and
with L52 leads, denoted bya5 l ,r . It is now convenient to
use a slightly different notation: Consider an infinite chain of
TB sites, enumerated byn50,61, . . . . The site n50,
which represents the QD, has a time-independent energye
and definesH res

d 5ed†d, with eigenstateuc&. The sites with
n.0 (n,0) form the right~left! single-mode TB lead:

H a
l 52 (

n561

6`

J~cn
†cn611cn61

† cn!, ~23!

where the upper sign refers toa5r . The coupling operators
areLa5AXa(t)Jc61

† d, with the two time-dependent pump-
ing parametersXa5la

2 .
The Hamiltonian of the leads~23! is characterized by the

dispersion relationEk522J coska and the retarded Green
function

@Ga
l #nm5

eikaun2mu2eikaum1nu

i2J sinka
, ~24!

wherea is the nearest-neighbor distance. The self-energy op-
erator@Eq. ~8!# is Ŝ52(Xl1Xr)Jeikad†d.

We consider the zero-temperature limit and parametrize
the on-site energy ase5(221d)J coska, where the dimen-
sionless parameterd is a measure of the detuning of the
isolated levele from the Fermi energym522 J coska in
the leads. Near the band bottom one hasd'(e2m)/J.

The resonance parameters at the Fermi surface are

Ga52XaJ sinka,

E05~221d2Xl2Xr !J coska. ~25!

Both Ga andE0 depend on time via the time-dependent cou-
plings Xa , which span the parameter space$Xl ,Xr%. The
resonance conditionE05m defines the resonance line,Xl
1Xr5d. For an explicit calculation, we next choose the
pumping contour to be a square with corners at points
A(X1 ;X1) andC(X2 ;X2), as used in Ref. 15.@This is shown
in Fig. 2~a!, which forms an explicit example of Fig. 1#.

The necessary conditions of Sec. III, for having distinct
resonances, are satisfied only at the bottom of the TB band
(sinka!coska). As we gradually increased from zero, the
resonance line in Fig. 2~a!moves in the direction indicated
by the small arrow. The resonance line crosses the contour
only if 2X1[d1,d,d3[2X2. Therefore, within the reso-
nance approximation we have

QR/e50, if d,d1 or d.d3 . ~26!

For the direction of the contour shown by the arrows in
Fig. 2~a!, the resonance pointB corresponds to loading of the
dot mostly from the left (G l.G r). Its complementary reso-
nance pointD is associated with unloading mostly to the
right (G l,G r). This interpretation is illustrated in Fig. 2~b!.

At the lower left part of the contour,d,d25(d11d3)/2
5X11X2, the resonance points areD(X1 ,d2X1) andB(d
2X1 ,X1). The partial charges pumped from the left@using
Eqs.~16! and ~25!# are

DQl
D52e

2XlJ sinka

2~Xl1Xr !J sinka
52e

X1

d
, ~27!

DQl
B5e

d2X1

d
, ~28!

where we have used sgnE˙
05sgn(d/dt)(2Xl2Xr)511 for

point D. The net pumped charge is thus

QR/e5Ql
R/e5~DQl

D1DQl
B!/e52Qr

R/

e512~d1 /d!, if d1,d,d2 . ~29!

A similar analysis for crossing atD(d2X2 ,X2) and
B(X2 ,d2X2) ~whend2,d,d3) yields

QR/e5~d3 /d!21, if d2,d,d3 . ~30!

Our resonance approximation results forQR/e are shown
for some typical parameters~together with the exact results,
see below!in Fig. 3. These results agree qualitatively with
those of Refs. 11 and 16:QR/e reaches its maximum value
(X22X1)/(X11X2) at d5d2, where the resonance pointsB
andD are farthest away from the resonance pointM, which
occurs at X15X25d/2. Note that QR/e approaches the

FIG. 2. ~Color online! ~a! The pumping contourA-B-C-D-A
and the resonance lineB-D for the single level turnstile model~Ref.
15!. ~b! Interpretation of the pumping cycle on an energy diagram.
~a! The effective energy levelE0 is above the chemical potentialm,
the dot is empty.~b! Loading process with preference to the left-
coming electrons.~c! The levelE0 is belowm, the dot is occupied.
~d! Unloading process with preference to the right-going electrons.
The asymmetry betweenB and D creates the nonvanishing total
pumped charge. The arrows indicate schematically the direction and
the relative magnitude of the current pulses caused by each reso-
nance.
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quantized value 1 whenX2 /X1→`, i.e., when the transmis-
sion at the resonance points@related to 4X1X2 /(X11X2)2,
via Eq.~18!# vanishes. This is consistent with Ref. 11, which
required that ‘‘a large part of the resonance line’’ be sur-
rounded by the pumping contour.

B. Comparison with exact results

The formula~13! for the resonance current is exact in our
case. Substitution of Eq.~25! into Eq. ~13! and integration
over the contourA-B-C-D gives the total pumped charge in
the form

Q5
e

pE dX@F~X,X1!2F~X,X2!#, ~31!

where

F~X,Z!5
~d22Z!sinka coska

~d2X2Z!2cos2ka1~X1Z!2sin2ka
. ~32!

This result was obtained in Ref. 15 using the time derivatives
of the scattering matrix.

In Fig. 3 we compare the exactQ and the approximate
QR. As the resonance line in Fig. 2~a! moves from pointA to
C, the pumped charge rises from zero to a maximum, close
to (X22X1)/(X21X1), and then falls back towards zero.
Except for the vicinity of the special pointsd5d1 ,d2, and
d3, there is an excellent agreement between Eqs.~26!, ~29!,
and ~30!, and Eq.~31!.

The most significant source for deviations of the exact
pumped chargeQ from the separated resonance resultQR is
the term proportional toĠa in the expression of the pumping
current~13!:

Q2QR'
e

2pE dGa~E02m!

~m2E0!21~G/2!2
. ~33!

In our example, Eq. ~25! yields dGa /dE05Ġa /Ė05
22 tan(ka) when the resonance is on an edge of the contour
curve where onlyXa varies. Thus, the integral in Eq.~33! is
negligibly small as long as the distance between the reso-
nance point and a corner of the square contour is larger than
G/J. Indeed, this agrees with Fig. 3, where the regions
ud2d i u,G/J are indicated by horizontal bars on thed axis.

Figure 4 shows the Breit-Wigner transmission coefficient
Tlr , calculated from Eqs.~18! and~25! as a function of time
~defined homogeneously along the pumping contour! for sev-
eral values ofd. As d is increased from zero, a single peak
develops atd5d1, then splits into two independent reso-
nancesB andD, which move along the pumping contour and
finally merge atd5d3 and disappear. By comparing Fig. 4 to
Fig. 3 one can follow the correlation between the presence of
separate well-defined transmission peaks and the validity of
the resonance approximation for the pumped charge.

C. Relation to transmission

The quantitative relation between the pumped charge and
the transmission~conductance!has been discussed in Sec.
III B. In order to illustrate this discussion, let us assume that
the transmission traces~Fig. 4!are theonly available data for
our two terminal system. One observes two resonances in the
ranged1,d,d3—both giving the same value of the peak
transmissionTmax. One of the resonances represents loading,
contributingDQa

res.0, while the other one necessarily rep-
resents unloading~with DQa

res,0). If we make a mistake at
this stage and take the wrong sign in Eq.~17!, it will only
change the assumed pumping direction,QR→2QR. Let us
treat the first resonance as loading and calculate the partial
charge pumped from the left reservoir,DQl

res.0. Solution of
Eqs. ~17! and ~19! gives two roots, DQres5e(1
6A12Tmax)/2, and one must decide which of the two cor-
responds toDQl

res. The same dilemma holds for the second

FIG. 3. ~Color online!Pumped charge~in units of e) as a func-
tion of d for X151/50, X251/5, andka5p/20, calculated within
the resonance approximation (QR, blue continuous line! and exactly
(Q, dashed line!. Thick bars on thed axis mark the resonance
widths 6G/J around the special pointsd1,2,3, where deviations
from the exact result are anticipated. Inset: Absolute error of the
resonance approximation (QR2Q)/e for the same values ofd. The
thick dotted line corresponds toQR calculated from the transmis-
sion maxima, see text for details.

FIG. 4. Time traces of the transmission coefficientTlr along the
pumping contour for six values ofd, increasing with constant in-
tervals from top to bottom. Two complementary resonancesB and
D ~marked with arrows!are observed ford1,d,d3 when the
pumping contour crosses the resonance line@cf. Fig. 2~a!#. Thick
bars on thed axis mark the regions where the loading/unloading
pumping mechanism fails.
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resonance. Considering all four options yields three possible
answersQR56Q8 and 0, whereQ85eA12Tmax. The cor-
rect result (QR5Q8) may be chosen as the one which gives
the best fit to the data of the pumping calculation/
experiment. Once the uncertain signs have been chosen cor-
rectly, there is no need to repeat this ‘‘trial-and-error’’ pro-
cedure, since the contour changes continuously. Of course, if
some features of the pumping contour design are known
~such as which coupling is dominant in different regions!, the
sign uncertainties are much easier to resolve.

The result of the above calculationuQ2QRu/e is shown in
the inset of Fig. 3 by a thick dotted line. One can see that
both ways of calculatingQR @from the analytic expressions
~26!, ~29!, and~30! and from using the peak transmission#
give similar small deviations from the exact valueQ of the
pumped charge.

We now leave our specific example, and consider Eq.~33!
for a general resonance. As seen in the example, the integral
in Eq. ~33! becomes nonzero wheneverga5Ġa /Ė0 is not a
time-independent constant during the whole resonance. For
nonconstantga , the largest deviationuQ2QRu arises when
ga changes sign exactly at the resonance pointE05m; one
then finds thatu(Q2QR)/QRu,xmaxugau, wherex is a num-
ber of order unity, which depends on the details of the con-
tour. These considerations justify condition~3! in the begin-
ning of Sec. III.

V. CONCLUSIONS

We have considered a general model of adiabatic quantum
pumping of spinless noninteracting electrons, in the coherent
resonant tunneling regime. In the limit of distinct transmis-
sion resonances along the pumping contour, the pumped
charge is given by a sum of individual contributions due to
each resonance. During each resonance one electron either
enters or leaves the system, with the probability distribution
between different reservoirs given by the corresponding tun-
neling ratesGa /\.

We have clarified the role of quantum coherence in the
resonance-assisted pumped charge quantization by showing
that quantization arises due to population of discrete resonant
states with preference to a single reservoir in each resonance.
A quantitative and experimentally verifiable relation between
the pumped charge and the peak conductance has been pro-
posed. The resonance approximation also provides a simple
calculational algorithm for analyzing complex pumping po-
tentials.

Our results remain valid if~1! the spacingD between
different resonant levels is much larger thanGa , kT; ~2! the
relative magnitude of the couplingsGa to different reservoirs
does not change much during a resonance;~3! the condition
\Ė0!max(G,kT) is not violated.

Systematic extension of the resonance approximation to
situations when electron-electron interactions play an essen-
tial role is a topic for further future study.
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APPENDIX: FORMULA FOR THE PUMPED CURRENT

In this appendix, we use standard scattering theory
relations41,27 to derive Eq.~6! from Eq. ~5!. The scattering
statesuxka& can be obtained from the Lippman-Schwinger
equation

uxka&5~11GLa
† !uwka&, ~A1!

where G5(E1 i02H)21 is the retarded Green function
taken at energyE5Eka . The time t enters Eq.~A1! as a
parameter.

Defining projection operatorsP̂d andP̂a onto the QD and
onto leada, one has

H d5 P̂dH dP̂d, Gd5 P̂dGdP̂d, P̂aHP̂a85daa8H a
l ,

La5LaP̂d5 P̂aHP̂d, P̂duwka&50, ~A2!

and therefore

Ma
d[^xkauḢ duxka&5^wkauLaGd

†H ḋGdLa
† uwka&.

~A3!

To derive Eq.~7!, we start from (E2H)G5I , multiply
from the right byP̂d and from the left byP̂a and—using the
identity P̂d1( P̂a5I—obtain the relation P̂aGP̂d

5Ga
l LaGd . A similar multiplication from the left byP̂d then

yields Eq.~7!, with

Ŝ5(
a

La
†Ga

l La , ~A4!

which is equivalent to Eq.~8!.
Similarly, the time dependance of the coupling strengths

la(t) contributes to the currentI a via the matrix element
Ma

l 5(a8^xkauL̇a8uxka&1H.c. Using the trivial relations

L̇a5(l̇a /la)La and P̂a8uwka&5daa8uwka&, a straightfor-
ward calculation gives

Ma
l 5^wkauLaFGd

†Ė̂GdLa
†1

l̇a

la
~Gd1Gd

†!GLa
† uwka&.

~A5!

The normalization to the unit flux ^wkauwk8a&
5(2p/vka)d(k2k8) implies that P̂a5*(dk/
2p)vkauwka&^wkau. Using also the standard relationi (Ga

l

2Ga
l†)5uwka&^wkau/\, we find the relation

\Ĝa5La
† uwka&^wkauLa . ~A6!

Introducing the trace over the QD’s subspace, using Eq.~A6!
in Eqs. ~A3! and ~A5!, and substituting the results intoIa

5(Ma
d1Ma

l )/\, we finally end up with Eq.~6!.
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Abstract. Adiabatic pumping of electrons induced by surface acoustic waves (SAWs) in a ballistic quasi-1D
quantum channel is considered using an exactly solvable tight-binding model for non-interacting electrons.
The single-electron degrees of freedom, responsible for acoustoelectric current quantization, are related
to the transmission resonances. We study the influence of experimentally controllable parameters (SAW
power, gate voltage, source-drain bias, amplitude and phase of a secondary SAW beam) on the plateau-like
structure of the acoustoelectric current. The results are consistent with existing experimental observations.

PACS. 73.23.-b Electronic transport in mesoscopic systems – 73.50.Rb Acoustoelectric
and magnetoacoustic effects – 73.40.Ei Rectification

1 Introduction

Single electron transport through low-dimensional meso-
scopic structures, driven by surface acoustic waves
(SAWs), is a subject of active experimental [1–9] and
theoretical [10–18] research, with potential applications
in metrology [19] and new computation technologies [20].
In a typical experimental setup, a quasi-one dimensional
ballistic channel is defined in a AlGaAs/GaAs heterostruc-
ture and a SAW is launched in the longitudinal direc-
tion at a frequency ω/2π of several GHz. Under appropri-
ate conditions, the acoustoelectric dc current I exhibits
a staircase plateau-like structure as function of the gate
voltage (which controls the depletion of the channel) and
of the SAW power. At the plateaus, the current saturates
at quantized values I = e(ω/2π)m, corresponding to the
transfer of an integer number m of electrons per each pe-
riod of the SAW (here e is the electron charge). The first
plateau is the most flat and robust to changes in the con-
trol parameters; the higher plateaus become less and less
pronounced as the plateau numberm is increased. In addi-
tion, the effect of factors such as source-drain bias [1,2,5],
temperature [1,7], gate geometry [4], a secondary SAW
beam [2,4], and perpendicular magnetic field [5] on the
staircase structure and the quality of the first plateau have
been studied experimentally.

In the experiment, the plateaus are observed below
the conductance pinch-off, when electrons in the source

a e-mail: slava@latnet.lv

and in the drain reservoirs are separated by a potential
barrier. This observation forms the basis for the simple
qualitative explanation of the quantized transport which
has been proposed in the first experimental report [1] and
further refined in references [4,10,11]. They argue that
when the wavelength λ of the SAW is comparable with
the size of the depleted region L (as it is in the exper-
iments [1,2,4]), a single potential well forms on top of
the static barrier. This potential well then acts as a dy-
namic quantum dot, which can hold an integer number
of electrons due to the Coulomb blockade effect. The cap-
tured electrons are transferred from one side of the bar-
rier to the other, with possible quantization errors due
to back-tunnelling [10,11]. In the above description, the
formation of the quantum dot and the transport of the lo-
calized electrons are treated separately. Particular effects
which have been studied theoretically within this picture
are the non-adiabatic effects at the quantum dot’s forma-
tion stage [12], and the classical dynamics of the already
confined interacting electrons [15].

A different perspective on the problem has been sug-
gested in references [16,21]. This approach relates the
acoustoelectric transport to adiabatic quantum pumping
of non-interacting electrons. The external potential, gener-
ated by the SAWs and by the control gates, is viewed as a
perturbation acting on a coherent quantum wire [22]. The
resulting “staircase” structure of the acoustoelectric cur-
rent and its dependence on model parameters within this
approach have been studied in references [16,18], using
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the adiabatic approximation in conjunction with an ex-
actly solvable one-dimensional (1D) tight-binding model.
This theory yields a crossover from a non-quantized acous-
toelectric transport to the quantized limit as the SAW
power and/or the static barrier height are increased. Al-
though this picture requires the Coulomb interaction in
order to set the energy scale of the problem [11,12,15],
the main qualitative features of the experiment can be re-
produced within a model of non-interacting spinless elec-
trons [13,16].

In this paper we extend the results of reference [16].
The mechanism of quantized transport is elucidated by us-
ing a resonance approximation for adiabatic pumping [23].
Both current quantization and transmission resonances
are determined by the quasi-bound states of the electrons
captured by a moving potential well. New effects, includ-
ing the influence of a counter propagating SAW, static
potential asymmetry and source-drain bias on the number
and shape of the quantization steps, are considered. We
compare our qualitative conclusions with the published
theoretical and experimental results. In particular, tuning
the amplitude and the phase of a weak secondary SAW
is found to improve the quantization by accordance with
an earlier experimental report [4]. For this effect, we pro-
pose a new quantitative relation between the phase and
the amplitude of the optimal secondary SAW which can
be easily checked using existing experimental setups.

The results are presented as follows. In Section 2, we
describe the model [16] and the algorithms for calculat-
ing the adiabatic current. In Section 3, we explain the
formation of the integer plateaus and make quantitative
analytic estimates by applying the resonance approxima-
tion [23] to the model of reference [16]. Building on these
results we analyze in Section 4 additional factors, not de-
scribed previously, such as reflected SAWs, source-drain
bias and gradual screening of the pumping potential. Fi-
nally, a discussion of our results in the context of related
work is presented in Section 5, together with several con-
clusions.

2 The model

2.1 The Hamiltonian

The choice of an adequate theoretical model for a meso-
scopic wire is a highly non-trivial task even in the absence
of time-dependent potentials. The nanostructures under
study are narrow constrictions in a two-dimensional (2D)
electron gas, formed either by electrostatic gating [2] or
by shallow etching [5]. A realistic modelling of the corre-
sponding 2D potential field requires a self-consistent nu-
merical calculation [10,12], and thus limits the exploration
of the parameter space. Suitable analytic approximations
(e.g., a saddle-point potential [21] or a combination of
Gaussian functions [15]) for the 2D geometry can be used,
but the necessary calculations of the acoustoelectric effect
are still heavily complicated by the lack of any transla-
tional symmetry.

Fig. 1. One-dimensional discrete model for SAW-induced
pumping.

In contrast, 1D models of SAW-induced pump-
ing [10,13,16] do not account for the details of the ex-
perimental geometry but still capture the basic aspects
of quantized transport. The underlying physical assump-
tion is that only electronic states in the lowest transverse
mode of a quantum wave-guide play an active role in the
transport and the inter-mode scattering can be ignored.
The use of this assumption is indirectly supported by two
experimental observations: (1) in the absence of SAWs,
the samples demonstrate conductance quantization which
means that the gradual change in the gate voltage de-
pletes the transversal modes one by one; (2) the relevant
regime for the SAW-induced current quantization is just
below the depletion threshold where the lowest transversal
mode dominates the transport.

In the present paper, the system is described by the
simple 1D Hamiltonian of reference [16]. The Hamilto-
nian is defined on a discrete chain of points (sites) which
represent the nanostructrure and the two ideal semi-
infinite leads connecting its ends to the electronic reser-
voirs (Fig. 1). The external potentials due to the gates
and the SAWs are assumed to be completely screened in
the leads, and act only in the nanostructure.

The leads are characterized by vanishing on-site ener-
gies and nearest-neighbors hopping amplitudes −J . An
electron moving in the lead has the energy E(k) =
−2J cos ka, where k is the wave vector and a is the inter-
site distance. Note that for ka � π/2 the motion is equiv-
alent to that of a free electron with an effective mass
m∗ = �

2/(2Ja2). The dynamics of the electrons inside
the nanostructure is defined by a three-diagonal N × N
Hamiltonian matrix, H0(t), with nearest-neighbors hop-
ping amplitudes −Jd and diagonal on-site energies εn
(n = 1, 2, . . .N is the site number). The connection be-
tween the ideal leads and the perturbed part of the channel
is introduced through a hopping amplitude −Jl (−Jr) be-
tween the left (right) lead and the site 1 (N) of the nanos-
tructure. The resulting full Hamiltonian of the quantum
wire is:

H =
N∑

n=1

εn |n〉 〈n| −
+∞∑

n=−∞
(Jn |n〉 〈n+ 1| + h.c.) , (1)

where Jn =



Jl, n = 0,
Jd, 1 ≤ n < N,
Jr, n = N,
J, otherwise.

For the special case of Jn = const and εn = 0, equation (1)
describes an ideal 1D wire.
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The effect of the static gate and the SAW-induced
piezoelectric potential is modeled through the space and
time dependence of the on-site energies εn(t). The simplest
case is that of a rectangular barrier and a single running
wave, as introduced in reference [16],

εn(t) = −Vg + P cos (ωt− qxn) . (2)

Here, Vg is the gate voltage (in energy units), q is the
wave-vector of the SAW, and P is the amplitude of the
piezoelectric potential, induced by a SAW running from
left to right (for q > 0). The origin of the spatial coordi-
nate xn = (n− 1)a−L/2 is chosen to be at the middle of
the channel, where L = (N − 1)a is an effective channel
length.

It is important to emphasize that equation (1) is
not a truly microscopic tight-binding description of the
underlying crystalline lattice, but rather a discretized
version of a continuous 1D Hamiltonian H(x, t) =
−(�2/2m∗)(∂2/∂x2)+V (x, t). The matrix elements Jd and
J characterize the kinetic energy of the electrons, but not
the physical tunneling between spatially localized states.
Therefore, it is sufficient to include the time-dependence
only in the diagonal part of H through εn(t) = V (xn, t)
and keep the hopping amplitudes constant1. In view of
this, we expect only the results determined by the lower
part of the tight-binding band to have direct physical im-
plications.

The physical interpretation of Jl and Jr is more sub-
tle, since they characterize the (abrupt) boundary between
the perturbed and the ideal parts of the channel. In prin-
ciple, two physically different situations are possible. One
is the case of Jl = Jr = Jd = J , which means continu-
ity of the effective mass and corresponds to the absence
of any static potential barriers on the boundary between
the leads and the nanostructure. The other possibility is
to consider a closed structure, |Jl;r| � |J |, |Jd|, where
Jl;r have the meaning of physical tunneling amplitudes.
In this case, a SAW-induced time-dependence of Jl;r(t) is
expected to play a significant role as in turnstile pumping
mechanism [22,23].

In the present work, we consider time-independent
hopping amplitudes only and find that the ratios
|J2

l;r/(JJd)| have little influence on the results (see
Sect. 3.1 below). Therefore, the simplest assumption,
|JJd| = |Jl|2 = |Jr|2, will be used in the exact numerical
calculations. The other option, of large and SAW-sensitive
tunnelling barriers at the channel exits, has been recently
considered in experiment [9,24] and constitutes an inter-
esting topic for a separate study.

2.2 The acoustoelectric current

The discrete nature of our model Hamiltonian allows for
an exact calculation of the adiabatic instantaneous cur-

1 One could consider, in principle, a SAW-induced time-
dependence of Jn(t) coming from some microscopic model. The
argumentation of the resonance approximation would still be
applicable (Sect. 3.1), but certain specific results may depend
on the details of the instantaneous spectrum of H0(t).

rent for any strength of the pumping potential. Formally,
the adiabatic approximation is justified when the excita-
tion energy �ω (10µeV for a SAW of several GHz fre-
quency) is less than any other scale governing the energy
dependence of the scattering states [21,22]. In practice,
the validity regime of the adiabatic approximation in open
systems is a rather complicated subject [22,25]. We note
that the experimentally observed acoustoelectric current
is proportional to ω [2,6], which is a property of an adia-
batic current. The next order corrections to the adiabatic
current can be derived analytically [22,18]. However, the
actual calculation for our Hamiltonian is rather involved
and is beyond the scope of the present paper. In view of
this, we restrict the following discussion to the adiabatic
case.

The adiabatically-pumped current flowing between
two reservoirs with equal electrochemical potentials
µl = µr, is usually calculated using the Brouwer for-
mula [26,27]. We use an equivalent formalism, developed
in reference [22], which also includes the effects of a finite
bias eVSD ≡ µl−µr �= 0. The total instantaneous current,
Iα(t), of spinless electrons from the lead α = l, r into the
nanostructure consists of two parts, Iα(t) = Ipump

α + Ibias
α .

These two parts can be conveniently written down us-
ing the instantaneous scattering states |Ψα(t)〉 (normalized
to a unit flux), the instantaneous transmission coefficient
T (t) and the overall scattering phase θ(t) of the nanos-
tructure [22]

Ipump
α =

e

4π�

∫
dE 〈Ψα(t)| Ḣ |Ψα(t)〉 ∂(fl + fr)

∂E
, (3)

Ibias
α =

e

2π�

∫
dE

{
(fl − fr) T +

�

2
∂(fl − fr)

∂E
T θ̇

}
.

(4)

Here fα(E) = 1/[1 + eβ(E−µα)] is the Fermi distribution
with β = 1/kBT (T is the temperature). If the system is
unbiased, then Ibias

α = 0 and equation (3) can be shown
to reproduce [22,23] the Brouwer formula [26,27]. On the
other extreme, if no pumping potential is applied, Ipump

α =
0 and equation (4) leads to the Landauer formula [28] for
the conductance, G = (e2/h)T .

For most of the discussion we assume both the bias
voltage VSD and the temperature T to be zero. In this
case only electrons at the Fermi energy µl = µr = EF

participate in the scattering. Solving the scattering prob-
lem for the potential (2) and using equation (3) yields the
charge Q pumped over one period (the average dc compo-
nent of the current) [16],

Q =
∫ 2π/ω

0

dt Ipump
l (t) =

eJ̃l sin ka
π

∫ 2π/ω

0

dt
N∑

n=1

ε̇n|gn,1|2 ,

(5)[
g−1

]
n,n′ = [EI −H0]n,n′ + δn,n′ eika

(
δn,1J̃l + δn,N J̃r

)
,

(6)



CHAPTER 4. 39

388 The European Physical Journal B

where J̃l;r ≡ J2
l;r/J and k is the Fermi wavenumber, EF ≡

E(k). The instantaneous transmission is

T (t) = 4|gN,1|2 J̃lJ̃r sin2 ka . (7)

The integrand in equation (5) is a meromorphic func-
tion of z = exp(iωt), with 2N pairs of complex conjugate
poles. Therefore, the integration of equation (5) may be
carried out exactly, once the positions of the poles are
determined by solving numerically the corresponding al-
gebraic equation of degree 2N .

2.3 Resonance approximation

The second term on the r.h.s. of equation (6) is the self-
energy addition to the Green’s function of the isolated
channel, due to the coupling to the external leads. When
the latter is sufficiently small, the total pumped charge can
be divided into contributions from separate single-particle
levels of H0. A systematic development of this approach
leads to the resonance approximation for pumping, which
is discussed in detail in reference [23]. Here we summarize
the resulting algorithm for calculating the pumped charge
in the this approximation.

1. Solve the instantaneous eigenvalue problem∑
n′ [H0]n,n′ ψ

(m)
n′ = Em ψ

(m)
n and obtain the ap-

proximate resonance energies Em(t).
2. Calculate the time-dependent decay widths of each res-

onance into each lead,{
Γ

(m)
l , Γ (m)

r

}
=

{
J̃l

∣∣ψ(m)
1

∣∣2, J̃r

∣∣ψ(m)
N

∣∣2} sin ka . (8)

3. For each m, find all such times tm,j at which the res-
onance condition Em(tm,j) = EF is satisfied.

4. At each resonance time t = tm,j , compute the partial
charge transferred between the left lead and the mth
quasibound state in the channel,

∆Qm,j =
e Γ

(m)
l

Γ
(m)
l + Γ

(m)
r

∣∣∣∣∣
t=tm,j

. (9)

5. Calculate the total charge pumped from left to right2:

Qres = −
∑
m,j

∆Qm,jsgnĖm(tm,j) , (10)

or set Qres = 0 if no resonances were found in step 3.

The algorithm has a direct physical interpretation [23].
Whenever the energy Em of a (quasi-)bound state crosses
the Fermi level EF , an electron either occupies (“loading”)
or leaves (“unloading”) this state. The corresponding unit
pulse of current is distributed between the channels pro-
portionally to the Γ (m)

α ’s. Except for specifically designed
2 Due to charge conservation, it is sufficient to calculate the

charge transfer from the left reservoir. Therefore, the channel
index α is fixed to α = l in equations (9, 10).

Hamiltonians H0(t), Qres → Q in the limit of vanishing
couplings Γ (m)

α → 0.
The resonance approximation fails when either (i) the

total width of a particular resonance is larger than the
distance to the next energy level; or (ii) the partial de-
cay widths Γ (m)

l;r change considerably while the system is
at resonance [23]. As discussed in detail in the following
section, these restrictions become significant for the non-
quantized transport, but have little influence on the shape
of the current quantization steps. In all the cases in which
the resonance approximation is inadequate, we rely on the
results of an exact calculation.

3 Formation of quantization steps

3.1 Application of the resonance approximation

The results of a full calculation (as outlined in Sect. 2.2)
show [16] that the pumped charge, Q, follows a staircase-
type dependence on the gate voltage, Vg, and/or on the
SAW amplitude, P , for a wide range of the model param-
eters. This ‘quantization’ can be related to the structure
of the transmission resonances [23,29,30]. We first estab-
lish this relation quantitatively and then use it to analyze
various aspects of the model.

The calculation of the pumping curve can be visualized
using a diagram like the one shown in Figure 2. First, one
plots the instantaneous eigenvalues Em for Vg = 0 as func-
tion of time ωt (curves in the right panel of Fig. 2). The
small circles on the top of each curve show the time evolu-
tion of the corresponding partial charge∆Q: the diameter
of each circle is proportional to |∆Q/e| < 1; shading is de-
termined by the sign — black (•) for Ėm < 0 (“loading”)
and white (◦) for Ėm > 0 (“unloading”). Once the eigen-
value diagram is constructed, the set of resonances for
each particular value Vg of the gate voltage is determined
graphically: a horizontal line with ordinate EF +Vg crosses
the eigenvalue curves in the right panel at the points where
the resonance equation Vg +Em(Vg = 0) = EF is satisfied
(step 3 of the algorithm). The abscissas of the crossing
points determine the resonance times tm,j to be used in
equations (9, 10). (The dashed horizontal lines in Figure 2
mark the extrema of the eigenvalue curves, and thus cor-
respond to particular values of Vg at which the number
of resonances changes.) Finally, the total pumped charge,
Qres(Vg), is calculated by summing up the contributions
to equation (10): the magnitude and the sign of each term
is given by the small circle at the respective crossing point
in the right panel. The resulting pumping curve Qres(Vg)
is plotted in the left panel of Figure 2.

Several aspects of the model are illustrated by the con-
struction in Figure 2. One can see that the quantization
of the pumped charge is caused by electronic (hole) states
with the lowest (highest) energy. When resonances occur,
(namely, at {tm,j}), these states are localized near one
of the channel exits — either Γl/Γr � 1 or Γl/Γr 	 1
— and therefore transfer almost integer charges [Eq. (9)].
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Fig. 2. (Color online) Construction of the pumping curve Qres(Vg) in the resonance approximation. Right panel: instantaneous
energy levels of H0 at Vg = 0 as function of time. Left panel: pumped charge Qres (in units of e) as function of gate voltage.
Horizontal dashed lines show the correspondence between sharp features in the pumping curve (left), and the change in the
number of energy levels at resonance (right); see text for a detailed discussion. All energies are given in units of Jd; the parameters
of the potential are: P = 8Jd, λ = 4L, N = 10.

Fig. 3. (Color online) Pumped charge versus gate voltage for different external parameters: J̃ = 0.16Jd (left panel), J̃ = 1Jd

(right panel), calculated in the resonance approximation (a) and exactly for the bottom of the band (b) and at the band
center (c). Parameters of the potential are the same as in Figure 2.

The number of steps counts the number of localized states
involved.

The exact integration [Eq. (5)] takes into account the
“external” parameters of the model, ka, J̃l and J̃r, which
are ignored in the resonance approximation. In the fol-
lowing, we will consider only symmetric couplings, J̃l =
J̃r ≡ J̃ . We have calculated the exact pumped charge,
Q(Vg), for several values of the “external” parameters,
but with the same pumping potential as in Figure 2. Rep-
resentative results are shown in Figure 3 along with the
approximate Qres(Vg) from Figure 2 [thin (blue) line]. For
sufficiently small J̃ , the exactly calculated curves contain
integer steps and sharp, non-quantized features at large
values of Vg (e.g., the spikes marked by small arrows in
Fig. 3). The first steps are robust and do not change their
positions as J̃ and ka are varied (except for a trivial shift
of EF ). The top of the pumping curve and the spikes are
more vulnerable: as J̃ is increased, the upper steps and the
sharp features shift and become rounded. Narrow spikes

disappear for J̃ = Jd and ka close to the center of the
band [see curve (c) in the right panel of Fig. 3].

The resonance approximation reproduces all the de-
tails of the exact calculation for J̃ � Jd, because the
resonance widths in equation (8) vanish in the limit of
J̃ → 0. The non-generic sharp features are determined by
the surroundings of level anti-crossings (see Fig. 2), where
the corresponding level spacings are tiny. As we expect
form the validity condition (i) in Section 2.3, the finite
resonance width effects are most important in this region.
Indeed, the discrepancies between the exact and the ap-
proximate curves in Figure 3 are well correlated with the
fact that the shifts and the widths of the resonance levels
for a tight-binding model are proportional to J̃ cos ka and
J̃ sin ka, respectively [Eq. (8)].

We have made a similar comparison between the ex-
act integration and the resonance approximation for sev-
eral sets of “internal” parameters, P/Jd, λ/L, and N . The
most important conclusion is that the stair-case structure
of the pumping curve can be reliably estimated using the
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resonance approximation. Hence, we will utilize this useful
technique in the following as a source for various analytic
estimates that will be further checked versus exact calcu-
lations.

3.2 SAW parameters and the number of quantization
steps

For the lowest part of the spectrum (which is relevant
for the quantized transport), the on-site energies (2) can
be treated as a potential function of a continuous spatial
coordinate xn. For λ > L, only one minimum of this po-
tential can be located inside the SAW-affected part of the
channel. The position of this minimum x0(t) = (t − t0)v
moves with the sound velocity v = ω/q and passes through
the middle of the channel at time t0 = ω−1(π + 2π ×
integer). Electronic states localized in this moving poten-
tial well can be approximated by simple harmonic oscil-
lator wave-functions [16]. The corresponding energy spec-
trum is Em = −P − 2Jd +∆(m− 1/2), m = 1, 2, . . ., with
a constant spacing ∆/Jd = qa

√
2P/Jd. The lowest energy

wave-function is approximately a Gaussian,

ψ(1)
n (t) =

(
ξ2 π/2

)−1/4
exp{−[xn − x0(t)]2/ξ2} , (11)

with ξ ≡ 2a
√
Jd/∆. The localization length of the higher

levels can be estimated as ξm = ξ
√
m.

The harmonic approximation is valid as long as the
wave-packet is driven adiabatically by a parabolic well and
is not perturbed neither by the ends of the channel, nor
by the “hills” of the cosine-shaped potential profile. This
implies the validity condition

ξm � min[L/2 − |x0(t)|, λ/2] . (12)

In order to illustrate the above reasoning, we draw the
attention of the reader to a set of constant and equidis-
tant energy levels Em(t) in the right panel of Figure 2,
in the vicinity of ωt = π. The lowest energy level fol-
lows the harmonic approximation as long as the parabolic
minimum is located inside the channel, that is for the
fraction λ/L = 1/4 of the full period. Higher energy
levels remain constant for shorter times, since their re-
spective localization lengths entering equation (12) are
longer. The harmonic structure of the energy levels trans-
lates into a sequence of equidistant steps in the pumping
curve, Q(Vg), with the same energy spacing ∆, as shown
in the left panel of Figure 2. At each value of gate voltage,
V

(m)
g = Em − EF , a new pair of resonances and another

step in the pumping curve emerge. The plateaus are rather
flat because the resonant states at the loading (unloading)
moments are well localized at the entrance (exit) of the
channel.

The number of quantization steps, Nsteps, is limited by
two competing mechanisms. The first limit is set by the
number, N1, of localized states that can be transferred
below the Fermi energy. If xn can be considered as con-
tinuous, the localization condition is roughly the same as

Fig. 4. Instantaneous eigenenergies Em (in units of Jd) for
Vg = 0, N = 10 and (a) P = 8Jd, λ = 4L; (b) P = 32Jd,
λ = 4L; (c) P = 2Jd, λ = 4L; and (d) P = 2Jd, λ = 2L.
Insets: the pumped charge Qres as function of the scaled gate
voltage Vg +EF ; the distance between the ticks on the ordinate
axis is equal to a unit charge.

the validity condition (12) for the harmonic approxima-
tion. For L < λ it follows from ξN1 = L/2 that N1 =
L2∆/(16Jd a

2) = (π
√

2/8)N(L/λ)
√
P/Jd. On the other

hand, for large enough P the discreteness of the tight-
binding grid cannot be neglected. For a rough estimate, we
assume that the continuous approximation breaks down if
it yields an average distance ξm/m between the succes-
sive zeros of the mth wave-function, which is smaller than
the inter-site spacing a. This happens for m > N2, where
N2 = N2/(4N1). Putting the two limits together we es-
timate the number of quantization steps, Nsteps, as the
integer closest to min(N1, N2). By adjusting the parame-
ters one can obtain at best a sequence of N/2 steps. The
optimal parameters L = 0.3λ, N = 6, P = 8Jd of refer-
ence [16] indeed yield Nsteps ≈ N1 = 2.83 ≈ N2 ≈ N/2.
The decrease in the number of steps with increasing L/λ
reported in reference [16] corresponds to the tight-binding
limited regime Nsteps ≈ N2 ∝ λ/L.

Despite a certain inherent uncertainty of our esti-
mates, they prove useful for understanding the effect of
changing the amplitude and the wavelength of the SAW
(Fig. 4). In Figure 4a, the number of steps is close to
optimal, N/2 = 5, and is limited by the localization cri-
terion Nsteps ≈ N1 = 3.9. Increasing P by a factor of
4 (Fig. 4b) reduces the number of steps due to discrete
lattice effects: Nsteps ≈ N2 = 3.2. One can clearly see
that for higher energy levels (close to the band center) the
tight-binding coupling Jd is no longer relevant: Em(t) with
m > N2 follow a sequence of cosine curves P cos(ωt+ δφ)
with equal phase differences qa. These curves correspond
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to the individual on-site energies εn(t). In this regime the
hopping amplitude Jd leads only to tiny anti-crossings be-
tween the energy levels, which in turn give rise to the sharp
peak-like structure in the pumping curve. The effects of
the tight-binding approximation become less pronounced
as P is reduced below the optimum (Fig. 4c). In this case
Nsteps ≈ N1 = 1.96 and the peaks in the pumping curve
are suppressed. The missing steps can be brought back by
shortening the wave-length, as shown in Figure 4d. The es-
timated number of steps is now the same as in the original
case (a). However, the non-parabolic shape of the poten-
tial minimum is more pronounced. Note that in case (d)
the flat region for E0(t) extends over half of the period,
since λ = 2L.

Note that in the physically relevant parameter regime,
the tight-binding effects should not dominate. Therefore,
the condition N1 < N2 ⇒ (L/λ)

√
P/Jd � 1 is obeyed in

the following calculations.

4 Perturbations of the pumping potential

The pumping potential in equation (2) is of a rather high
symmetry. Small perturbations – such as a static impu-
rity or a reflected SAW — can change the shape and the
position of the current quantization steps. In order to ex-
plore these effects, we add to εn(t) a smooth function of
xn and t,

εn(t) = −Vg + P cos(ωt− qxn) + U(xn, t) . (13)

Similarly to the situation discussed above, the structure
of the relevant energy levels can be analyzed using the
harmonic approximation, provided that U(xn, t) changes
slowly and the travelling wave-packet is well localized:
ξm ∂U(x, t)/∂x � ∆. The first-order approximation for
the instantaneous energy,

Em(t) = −P − 2Jd +∆(m− 1/2) + U(x0(t), t) , (14)

is valid for |x0(t)| � L
2 − ξm (we consider the case λ > L).

Note that x0(t) is the position of the potential well min-
imum, and x0(t0) = 0 (the middle of the channel). Now
even within the harmonic approximation Em(t) is explic-
itly time-dependent and this time dependence maps onto
the shape of the current quantization steps. To make a
quantitative statement we note that the instantaneous
wave-function remains unperturbed in first-order; |ψN (t)|
becomes greater than |ψ1(t)| at t = t0. At this point, the
partial decay widths are equal, Γ (m)

l = Γ
(m)
r , and the reso-

nance approximation yields a half-integer pumped charge.
Therefore, the transition between the consecutive plateaus
takes place at the gate voltages V (m)

g = Em(t0) − EF . In
particular, half of the first step in the pumping curve is
reached at the gate voltage

V1/2 ≡ V (1)
g = V0 + U(0, t0) , (15)

such that Q(V1/2) = e/2. Here V0 = −EF −P −2Jd+∆/2
is the threshold voltage for the first step in the absence of
perturbations.

The resonance moment associated with the left-right
transition at Vg = V1/2 is well defined, since the energy
levels Em(t) are in general no longer constant in the vicin-
ity of t = t0. Therefore, the slope of the first quantization
step can be estimated from the resonance approximation.
The value of the total pumped charge at Vg = V1/2 + δV
is dominated by the unloading resonance at t = t0 + δt,
where δV = Ė1(t0)δt. The other resonances contribute
charges exponentially close to an integer; for simplicity, let
us consider only one loading through the left lead (which
gives ∆Q1 ≈ e = const.) before unloading at t0. The con-
tribution of the latter, ∆Q2(t), can be calculated using
the Gaussian wave-function (11) in equations (8, 9). The
resulting total pumped charge ∆Q1 +∆Q2 is

Q ≈ e− e|ψ(1)
1 (t)|2

|ψ(1)
1 (t)|2 + |ψ(1)

N (t)|2
=
e

2

(
1 + tanh

Lvδt

ξ2

)
.

(16)

We define the steepness of the first step, S, as

S ≡ dQ

dVg

∣∣∣
Vg=V1/2

≈ eLv

ξ2

[∣∣∣∣v ∂U∂x +
∂U

∂t

∣∣∣∣
−1

]
t=t0
x=0

. (17)

The pre-factor in equation (17) is the least accurate, since
the applicability of equation (11) at the ends of the chan-
nel is marginal. Taking the absolute value in equation (17)
makes the result valid for both signs of Ė1 at t = t0.
Our derivation is not justified for perturbations that yield
small values of the denominator in equation (17). Then,
the steepness remains bounded due to the finite resonance
width.

The quantization accuracy can be estimated along sim-
ilar lines. However, the results are less transparent since
the energy levels involved are beyond the simple harmonic
approximation.

4.1 Sensitivity to the second SAW

For a particular example of a perturbation which mimics
the experimental situation, consider the following poten-
tial

U(xn, t) = P− cos (ωt+ qxn + ϕ) + b xn/L . (18)

Here P− and ϕ are the amplitude and the phase of a sec-
ond SAW, propagating in the negative direction. It can be
generated either due to reflections of the main beam [2] or
by a second transducer [4]. We also include a simple static
perturbation [proportional to b in Eq. (18)] which breaks
the left-right symmetry of the channel in the absence of
the SAW. The estimates in equations (15, 17) become

V1/2 = V0 − P− cosϕ , (19)

S =
4N1e

|b+ 2qLP− sinϕ| . (20)

[We have used the relation N1 = L2/(4ξ2) in Eq. (20).]
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Fig. 5. Interference of two counter-propagating SAWs with an
amplitude ratio P−/P = 0.2. The phase difference ϕ is changed
from 0 to 7π/6, in steps of π/6, as indicated. Solid curves
show the pumped charge (in units of e) versus the gate voltage
(in units of Jd), the dotted lines mark the best quantization
conditions achieved at ϕ = 0 and ϕ = π. For ϕ ∈ [π, 2π] the
pumping curves repeat the same sequence in reverse order (not
shown). The parameters used are: P = 8Jd, λ = 4L, N = 10.
Curves are computed using the resonance approximation.

First we consider the case of a reflected wave only
(b = 0). A series of pumping curves for different values
of the phase difference is presented in Figure 5. As can be
seen from equation (19), the threshold voltage changes pe-
riodically in ϕ, reaching extremal values at ϕ = 0 and π.
Between these special values of ϕ, the staircase structure
is more smooth, and the steps are more symmetric: the
convex and the concave parts of a step become almost
congruent. The pumping curves are identical for ±ϕ due
to the symmetry of the potential (13) with b = 0.

For a quantitative characterization of the second SAW
effect we have determined numerically the positions and
the slope of the pumping curves at Q = e/2 without any
approximations in equation (5). The results are shown in
Figure 6. Tuning the phase difference ϕ for a fixed ampli-
tude ratio P−/P to the values at which the r.h.s. of equa-
tion (20) diverges enhances the steepness of the first step
by orders of magnitude. The sharpest steps are achieved
at the extrema of the threshold voltage V1/2, as shown in
the inset in Figure 6 and qualitatively in Figure 5.

The above example shows that a symmetric pump-
ing potential is favorable for quantization: the steepest
plateaus are achieved without a secondary SAW or with
P− �= 0 and ϕ = 0, π, when the total SAW poten-
tial V (xn, t) ≡ εn(t) is invariant under xn → −xn,
t→ −t+ const.

Further reduction of symmetry is achieved by choos-
ing b �= 0 and P− �= 0. Here two regimes are possible. For
small b, the situation is similar to the previous case: the
steepness is greatly enhanced at two values of ϕ between 0
and 2π, when the denominator in equation (20) vanishes.
In contrast, for b > 2qLP− it is the static asymmetry of
the channel that determines the slope of the steps, which
now has only one wide maximum as function of ϕ. This

Fig. 6. (Color online) The steepness of the first step S =
dQ/dVg at Q = e(1/2), in units of e J−1

d for P−/P =
0.05, 0.1, 0.2 as function of the phase difference ϕ. The curve
for P−/P = 0.2 corresponds to the data presented in Figure 5.
Inset: threshold voltage V1/2(ϕ) − V0 versus ϕ, in units of Jd.
Curves are computed exactly from equation (5). Thick dashed
(blue) lines show analytic estimates, given by equations (19–20)
for the smallest amplitude ratio P−/P = 0.05; the pre-factor
N1 in equation (20) has been treated as a free fitting param-
eter. The parameters used are: P = 8Jd, λ = 4L, N = 10,
ka = π/5, J̃ = 1.

Fig. 7. (Color online) The steepness of the first step for P =
2Jd, λ = 2L, N = 10, b = 1Jd, as function of P−/P and ϕ.
The dashed (blue) line marks the combinations of amplitude
and phase at which the first order estimate [Eq. (20)] diverges.
Note the logarithmic grey-coding scale. The steepness without
the perturbation (P− = b = 0) is S = 613 e/Jd.

behavior is illustrated in Figure 7, which shows the slope
of the first step as a function of the second SAW ampli-
tude and phase. The initial steepness at P− = 0, b = 1Jd

is S = 12.2(e/Jd) for the selected model parameters. That
is more than an order of magnitude less than in the un-
perturbed (P− = b = 0) case. Increasing the amplitude of
the second SAW improves the steepness for π � ϕ � 2π
with a single wide maximum at ϕ ≈ 3π/2, in agreement
with equation (20). At P− ≈ b/(2qL) the steepness peaks
sharply, almost reaching the unperturbed value. Further
increase of P− reduces the steepness gradually, which now
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has two maxima in ϕ, approaching ϕ = π and ϕ = 2π for
large P−, similarly to Figure 6. This example shows that
a weak counter-propagating SAW with properly chosen
amplitude and phase is able to compensate for the static
asymmetry of the pumping potential and significantly im-
proves the sharpness of the current quantization steps.

Available experimental data are consistent with our
conclusions. Periodic oscillations of V1/2 have been ob-
served in experiments with one active SAW transducer
when the frequency of the SAW was varied. The period of
these oscillations was found to match a full 2π phase shift
between the main SAW and a weak wave reflected from the
other (inactive) transducer [2]. Later experiments, with
two active transducers on both sides of the constriction,
have confirmed this scenario, and a sequence of pumping
curves similar to our Figure 5 has been reported [4]. Tun-
ing of the second SAW amplitude and phase has enabled
the authors of reference [4] to improve the flatness of the
first quantization plateau.

The key argument leading to equation (20) concerns
the gate voltage dependence of the potential profile at
the point where capture/release of an electron happens
with equal probabilities from either side of the barrier.
Therefore, the phase and amplitude dependence of the
steepness, S(ϕ, P−), is expected to be insensitive to the
particular choice of the pumping potential, as long as it
leads to a clear sequence of current quantization steps. We
suggest the following generic scenario of the plateau qual-
ity improvement, that can be checked by detailed mea-
surements using existing experimental setups. One should
measure the traces of the first step steepness S(ϕ) as func-
tion of the reflected wave phase ϕ for a set of gradually
increasing secondary beam amplitudes P−. At small am-
plitudes, P− < P−

c , the steepness is expected to have one
broad maximum at some ϕ = ϕ0. As P− is increased, the
value at the maximum, S(ϕ0), increases and at P− = P−

c ,
the maximum splits into two, S(ϕ1) and S(ϕ2), with
ϕ1,2 = ϕ0 ± arccos(P−

c /P
−), as shown in Figure 7 by

the dashed line [for our model calculation ϕ0 = 3π/2 and
P−

c ≈ b/(2qL)].

4.2 Source-drain bias and variations of screening

Experimentally, acoustoelectric current can be studied
along the full crossover, from the depleted to the transmis-
sive state of the quantum wire, by changing the voltage on
the depleting gate. Our discussion so far has been concen-
trated on the quantized single-electron transport, which
is observed in the depleted regime. As the first conduc-
tion channel opens, the shape of the pumping potential
in real space as well as screening effects become increas-
ingly important [21] and the usefulness of our simplified
1D spinless electron model is very limited. Keeping these
limitations in mind, we will choose model parameters that
most closely correspond to a point contact near the deple-
tion threshold, and illustrate the breakdown of quantized
transport.

For P > Jd = J̃ , the tight-binding band is significantly
deformed (see Fig. 4), therefore we choose a relatively

small SAW amplitude P = 0.5Jd, but a large number
of sites N = 24 to maintain Nsteps > 1 for λ = 2L. The
ratio (L/λ)

√
P/Jd = 0.35 is less than 1 (see Sect. 3.2),

and we expect the discrete approximation to be adequate.
The Fermi wave number ka = π/12 is taken close to the
band bottom.

Consider first the situation before the SAW is applied
(P = 0). The zero-bias dc conductance of the channel is
determined by the transmission coefficient T (Landauer
formula, see Sect. 2.2). There is a potential barrier be-
tween the left and the right reservoirs for −Vg > 0, there-
fore the value of Vg + EF = −2Jd cos ka ≈ −2Jd is
expected to be the borderline between transmissive and
blocked states of our channel. This corresponds to the
depletion threshold of a true point contact. We plot the
transmission coefficient in the absence of SAW versus gate
voltage, T (Vg), in Figure 8a with a thin (blue) line. For
Vg < 0, the transmission is exponentially blocked by a
rectangular barrier of height ≈ −Vg and length L, while
above the depletion threshold a Fabry-Perot-like pattern
of high transmission is observed due to multiple reflections
at the sharp ends of the constriction.

At a non-zero SAW amplitude, the transmission co-
efficient T (t) becomes time-dependent and the adiabatic
formula [Eq. (4)] should be used to relate it to the con-
ductance. In the linear response regime, the second term
in the curly brackets in equation (4) is proportional to
∂2f/∂E2 and can be neglected [22]. This results in a gen-
eralized Landauer formula [22], G = (e2/h) Tav, where
Tav ≡ (ω/2π)

∫ 2π/ω

0 dt T (t) is the time average of the in-
stantaneous transmission coefficient T (t). This quantity is
plotted in Figure 8a with a thick black line. One can see
that switching on the SAW smears the sharp step in the
conductance over the range of ±P around the depletion
threshold. Qualitatively similar smoothing of the conduc-
tance quantization steps due to SAW has been observed
experimentally [1,2].

Figure 8a also shows some additional structure below
the depletion threshold. This structure is correlated with
the pumping curve shown by a thick (red) line in Fig-
ure 8b. Comparing Q(Vg) and Tav(Vg) we see that each
step in the acoustoelectric current is associated with a
peak in the time averaged transmission as indicated by
arrows in Figure 8a (the first two peaks are too small to
be seen on a linear scale). It is easy to explain the origin of
these peaks using the resonance approximation diagram
(see Fig. 2). At gate voltages between the quantization
plateaus the system remains at resonant transmission for a
considerable fraction of the period, therefore Tav becomes
greatly enhanced.

In the presence of both SAW and source-drain bias,
the total charge transfer per period, Qtot ≡

∫ 2π/ω

0
dt Il(t),

becomes
Qtot = Q+ (e2VSD/�ω) Tav (21)

(in the linear response regime). The result is a sum of the
two terms: pure pumping contribution [thick (red) curve
in Fig. 8b]; and the average transmission (thick curve in
Fig. 8a), multiplied by a constant. Equation (21) suggests
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Fig. 8. (Color online) Crossover between the depleted and open regimes of the conduction channel for N = 24, ka = π/12,
J̃ = Jd. (a) Time-averaged transmission coefficient Tav in the absence [thin (blue) line] and presence (thick black line) of a SAW
with P = 0.5Jd, λ = 2L. (b) The pumped charge Q [thick (red) line] and the total charge Qtot (thin black lines) for bias voltages
eVSD/(�ω) changing from −3 to 3 in steps of one. The dashed-dotted line shows Qres at no bias [resonance approximation,
Eq. (10)]. (c, d) The same as in (a, b), but with an exponentially screened pumping potential [Eq. (22)]. A sequence of snap-shots
in panels (a, b) and (c, d) shows the corresponding pumping potential in real space for Vg in the middle of the first plateau;
time increases from top to bottom, ωt ∈ [ωt0 − π/2ω; ωt0 + π/2].

that �ω is a natural unit for the source-drain energy mis-
match eVSD. In the quantized pumping region, the con-
tribution of the bias, Ibias, becomes comparable to that
of pumping, Ipump, if the bias voltage source transports
several electrons per cycle. When Tav is of order one, this
regime is attained for eV equal to several �ω. Thus for a
qualitative picture of the pumping curve in the presence of
bias, we have plotted Qtot for the bias voltage eVSD/�ω
ranging from −3 to 3 by thin black lines in Figure 8b.
The main observation is that the higher is the step num-
ber the more sensitive it is to the bias (as one can already
appreciate form the average transmission curve). Similar
behavior is reported in experimental studies [1,2].

The main results of the above discussion remain
unchanged if a phenomenological screening [13,21] is
introduced:

εn(t) = [−Vg + P cos (ωt− qxn)] exp
(
−x2

n/L
2
s

)
. (22)

We have repeated the previous calculation using the same
values of parameters but modified the pumping poten-
tial (22) with Ls = L/4 = λ/8. The results are shown in
Figures 8c and 8d. The main qualitative difference is the
disappearance of the interference pattern in the transmis-
sion curve both with and without the SAW. The number

of steps is reduced to one (shown separately in Fig. 8d′),
since the effective amplitude of the SAW is decreased by
the screening factor in equation (22). Calculations with
larger values of P produce more steps, along the same
lines as discussed in Section 3.2 for the unscreened poten-
tial (2). We have also checked that the behavior of the first
step steepness S(P−, ϕ) as function of reflected SAW am-
plitude and phase, follows the general scenario suggested
in Section 4.1.

We note that in the above example (Fig. 8) the
resonance approximation still holds below the depletion
threshold, when a moving quantum well is isolated from
the Fermi sea in the leads.

5 Discussion and conclusions

Quantized electronic transport, driven by SAW’s, has been
considered in several recent theoretical studies [10–15,17].
Here we discuss our approach in relation to those works.

Several models [10–12,15] make a distinction between
electrons already localized in a moving potential well (dy-
namic quantum dot) and those belonging to the Fermi
sea. The current is then calculated by considering the
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loss of electrons from the dynamic quantum dot at the
stage of its formation [12,15] and/or its subsequent mo-
tion [10–12,15]. This approach presupposes the formation
of the dynamic quantum dot, but does not require it to be
at thermodynamic equilibrium with the reservoirs at all
times. Moreover, all the quantization error mechanisms
within these models (gradual back-tunneling [10–12],
non-adiabaticity at the formation stage [12] and non-
equilibrium dynamics during the transfer [15]) consider
electrons with energies that can significantly exceed the
Fermi energy in the remote reservoirs.

Our adiabatic quantum calculation [16] differs from
these studies in two significant aspects: (i) The forma-
tion of a dynamic quantum dot is not a necessary con-
dition for the calculation of the acoustoelectric current.
We do identify, however, the localized electronic states
(whenever such states are present) via the resonance ap-
proximation and confirm that they are responsible for the
quantized transport. (ii) In the adiabatic pumping approx-
imation [22], the time-dependent potential never excites
the carrier by a finite amount of energy away from the
Fermi level [25]. Therefore, we never observe quantization
steps when the moving potential well rises above the Fermi
level upon passing through the middle of the channel.

We find the numerical calculations by Maksym [13]
to be the closest to our study. He considers a 1D single-
particle model with a pumping potential similar to our
equation (22). The current at the quantization plateaus
is found to be carried by the lowest energy states of the
local potential minimum, in accordance with our results.

The quantization accuracy in our approach is deter-
mined by two factors which we expect to become exper-
imentally relevant for sufficiently low tunnelling barriers.
The first one is the possibility of both reservoirs to par-
ticipate in the capture/release of an electron. This error
mechanism is covered by the resonance approximation and
leads to simple estimates like our formulas for the first
step steepness discussed in Section 4.1. The second factor
concerns mixing of the localized states with the contin-
uum in the leads, which can give significant width to the
quasi-stationary states in the moving quantum dot. Com-
pared to the predictions of the loading/unloading scenario
(Sect. 2.3), this effect further degrades the flatness of the
quantization (see, e.g., Figs. 3b, 6 and 8d) and eventually
leads to the breakdown of the quantized transport as the
channel opens (Sect. 4.2).

We have not considered explicit Coulomb interactions
between electrons in the depleted part of the channel,
which set the energy scale of the problem. One can make
a naive estimate of the level spacing ∆, which in the con-
tinuous limit is [16] ∆ = �q

√
P/m∗. Using typical experi-

mental values [4] for the SAW amplitude P = 20 meV,
wavelength λ = 1 µm and GaAs bulk effective mass
m∗ = 0.067m0, one gets ∆ = 1 meV, which is an order of
magnitude less that the distance between the quantization
steps observed in experiments [1,2,4]. This discrepancy
can be qualitatively understood on a mean-field level: if
an electron is captured by the moving potential minimum,
its unscreened electric field makes the potential well seen

by the other electrons much shallower, and thus increases
the spacing ∆ between resonances by the amount of the
charging energy [31,32]. Such a picture is also supported
by the numerical calculation of a two-electron problem
by Gumbs and co-workers [11]. It is plausible that the
effective values for the parameters of our model can be
estimated from a self-consistent realistic calculation.

In conclusion, we have considered a simple model
for SAW-driven adiabatic pumping of electrons through
a quasi-1D quantum wire. A stair-case structure of the
acoustoelectric current has been mapped onto the in-
stantaneous energy spectrum of the pumping potential.
Numerical calculations and analytic estimates confirm
the experimentally observed behavior of the acoustoelec-
tric current as function of the SAW amplitude, wave-
length, source-drain bias, and the parameters of a weak
counter-propagating beam. Quantitative measurements of
the plateau quality as a function of the second SAW am-
plitude and phase are proposed to probe the relevance of
our model. The presented single-electron picture captures
all the main features of the quantized transport.

This project was carried out in a center of excellence supported
by the Israel Science Foundation.
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The equations-of-motion �EOM� hierarchy satisfied by the Green functions of a quantum dot embedded in an
external mesoscopic network is considered within a high-order decoupling approximation scheme. Exact ana-
lytic solutions of the resulting coupled integral equations are presented in several limits. In particular, it is
found that at the particle-hole symmetric point the EOM Green function is temperature independent due to a
discontinuous change in the imaginary part of the interacting self-energy. However, this imaginary part obeys
the Fermi liquid unitarity requirement away from this special point, at zero temperature. Results for the
occupation numbers, the density of states, and the local spin susceptibility are compared with exact Fermi
liquid relations and the Bethe ansatz solution. The approximation is found to be very accurate far from the
Kondo regime. In contrast, the description of the Kondo effect is valid on a qualitative level only. In particular,
we find that the Friedel sum-rule is considerably violated, up to 30%, and the spin susceptibility is underesti-
mated. We show that the widely used simplified version of the EOM method, which does not account fully for
the correlations on the network, fails to produce the Kondo correlations even qualitatively.

DOI: 10.1103/PhysRevB.73.125338 PACS number�s�: 75.20.Hr, 72.15.Qm, 73.21.�b, 73.23.Hk

I. INTRODUCTION

Quantum dots embedded in mesoscopic structures are cur-
rently of great experimental and theoretical interest, because
such systems allow for detailed and controlled studies of the
effects of electronic correlations.1 The theoretical description
of these systems is usually based on the Anderson model,2,3

in which the electronic correlations are confined to few im-
purities that represent the quantum dots. Although a rich va-
riety of techniques has been developed over the years to treat
the Anderson model,4 their applications to the quantum dot
systems are not straightforward. In such systems one would
like to be able to study dynamical properties �e.g., transport�
as function of the impurity characteristics �which can be
tuned experimentally� over a wide range of parameters. This
is not easily accomplished by the Bethe ansatz solution, for
example.

The theoretical difficulty can be pinned down to the abil-
ity to derive a reliable, easy-to-handle, expression for the
single-electron Green function on the quantum dot. Because
the electronic interactions in the Anderson model take place
solely on the dot, this Green function can be shown to deter-
mine, under certain conditions, the charge or the spin trans-
mission through the quantum dot, the charge accumulated on
it, etc.3,5 Consequently, much effort has been devoted to find-
ing faithful analytic approximations for this object. Alterna-
tive treatments rely on numerical techniques, such as quan-
tum Monte Carlo,6 or the numerical renormalization group
�NRG� method.7 NRG in particular is considered to be ca-
pable of providing accurate estimates of the Green function
over a wide parameter range, although at the cost of running
iterative diagonalizations for each parameter set, and a lim-
ited resolution at high energies and high magnetic fields.

A ubiquitous method to derive an analytical expression
for the Green functions is to use the equations-of-motion

�EOM�.8 In the case of the single-impurity Anderson model,
the EOM of the �single-particle� impurity Green function
gives rise to an infinite hierarchy of EOM of higher-order
Green functions. A well-known approximation procedure is
then to truncate this hierarchy, thus producing certain ther-
mal averages representing various correlation functions. The
latter need to be found self-consistently from the resulting
closed set of equations. The level at which the EOM are
truncated is chosen such that most of the interaction effects
are captured.9–12 This scheme has been applied to the original
Anderson model a long time ago,9–11,13,14 yielding approxi-
mate expressions for the resistivity,9,10 the spin
susceptibility,10,13 and the magnetotransport14 of dilute mag-
netic alloys. For temperatures above the Kondo temperature,
TK, these results agree with perturbation theory calculations.4

Although several limitations of these self-consistent ap-
proaches are known �such as underestimation of the Kondo
temperature or the absence of �T /TK�2 terms in the low-
temperature expansion of the results�, they still can form a
basis for a qualitative analytic treatment of the Kondo effect.

The application of the EOM technique to a quantum dot
system has been undertaken by Meir, Wingreen, and Lee5

�MWL�. Neglecting certain correlation functions, they have
obtained a closed analytic expression for the dot Green func-
tion. Several subsequent studies have employed their scheme
to describe various effects of the Kondo correlations in quan-
tum dots in different settings, e.g., ac response of a biased
quantum dot,15 nonequilibrium Andreev tunneling,16 and
coupling to magnetic leads.17 As we show below, the ap-
proximation of MWL fails in various aspects. Recent at-
tempts to improve on that solution turned out to be not com-
pletely satisfactory: either requiring further approximations
on top of the self-consistent truncation18 or leading to itera-
tive numerical solutions.19–22 The truncation of the EOM at
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an even higher order has been recently investigated numeri-
cally in Ref. 23. It is therefore of interest to examine whether
an exact solution of the self-consistency equations of the
EOM method will improve on the previous results, and will
be capable of producing a reliable approximation for the
Green function that can be used in the analysis of quantum
dot systems.

In this paper we consider a quantum dot embedded in a
general complex network, and obtain and solve the truncated
EOM for its Green function. This EOM contains all the next-
order correlation functions, which we decouple and calculate
self-consistently. We first derive �in Sec. II� an integral equa-
tion for the Green function, allowing for arbitrary values of
the on-site Coulomb interaction, U. We then analyze �in Sec.
III� the properties of this EOM solution. We find that in the
case of a particle-hole symmetric Hamiltonian the resulting
Green function is temperature independent �a point which is
overlooked in previous treatments of quantum dots, see for
example Ref. 5�. However, we show that this is a singular
point in the parameter space. We also investigate the zero-
temperature limit of the EOM solution, and show that it fails
to satisfy the Friedel sum-rule. We then turn to the infinite U
case �in Sec. IV�, and derive an exact analytical solution to
the integral equation for the Green function. In Sec. V we
use this solution to obtain the total occupation number on the
dot, and compare it with the exact solution supplied by the
Bethe ansatz. This comparison shows that the EOM solution
is faithful outside the Kondo regime, but fails in the regime
where Kondo correlations play a dominant role. In particular,
the Friedel sum-rule is violated by �30%, invalidating the
assumptions made in previous studies.11,19,21 We then derive
the local spin susceptibility on the dot and demonstrate that
the full self-consistent solution of the EOM, as used in this
work, is required in order to obtain quantitatively correct
results. We also examine the local density of states at the
Fermi level, and find that it shows the expected universal
behavior as function of T /TK, though the EOM Kondo tem-
perature lacks a factor of 2 in the exponential dependence on
the single-energy level on the dot. Finally, we examine the
EOM technique from another point of view �Sec. VI�: We
expand the Green function derived from the EOM to second
order in the dot-network coupling, and compare the results
with those obtained from a straightforward perturbation
theory.24,25 This comparison shows again the necessity to in-
clude in the EOM solution the full self-consistent calculation
of all the correlations. A short summary in Sec. VII con-
cludes the paper.

II. THE GREEN FUNCTION ON THE DOT

As mentioned above, several properties of the Anderson
model can be expressed in terms of the Green function on the
dot. Here we examine the determination of this function us-
ing the EOM method. Our discussion is limited to a single
interacting impurity embedded in a general noninteracting
network, for which the Hamiltonian can be written in the
form

H = Hdot + Hnet + Hnet-dot. �1�

Here, the dot Hamiltonian is given by

Hdot = �
�

��0 + �h�nd� + Und↑nd↓, nd� = d�
†d�, �2�

where d�
† �d�� is the creation �annihilation� operator of an

electron of spin index �= ±1/2 on the dot, �0 is the single-
particle energy there, h is the Zeeman splitting, and U de-
notes the Coulomb repulsion energy. The noninteracting net-
work is described by the tight-binding Hamiltonian

Hnet = �
n�

�n�an�
† an� − �

mn�

Jmnam�
† an�, �3�

where an�
† �an�� is the creation �annihilation� operator of an

electron of spin index � on the nth site on the network,
whose on-site energy is �n�, and Jmn=Jnm

* are the hopping
amplitudes on the network. Finally, the coupling between the
dot and the network is given by

Hnet-dot = − �
n�

Jn�d�
†an� + H.c. �4�

We have allowed for spin-dependent on-site energies on the
network, as well as spin-dependent hopping amplitudes be-
tween the dot and the network. In this way, our model in-
cludes also the case of spin-polarized leads connected to a
quantum dot �see, for example, Refs. 5 and 21�. The entire
system is assumed to be at equilibrium with a reservoir held
at temperature T �in energy units� and chemical potential �
=0.

Adopting the notations of Ref. 8, we write a general
Green function in the form

��A;B���±i� � � i�
−	

+	


�±t��	A�t�;B
+�ei��±i��tdt , �5�

where A and B are operators, 
 is the Heaviside function,
and �→0+. The Green function on the dot is then

G��z� � ��d�;d�
†��z, z � � ± i� . �6�

In conjunction with the definition �5�, a thermal average,
�BA�, is related to the corresponding Green function by

�BA� = i�
C

dz

2�
f�z���A;B��z, f�z� �

1

1 + ez/T , �7�

where the contour C runs clockwise around the real axis.
The EOM for the dot Green function is given in Appendix

A 	see Eq. �A2�
. As is shown there, that equation includes a
higher-order Green function, whose EOM gives rise to addi-
tional Green functions. The resulting infinite hierarchy of
EOM is then truncated according to a scheme proposed
originally by Mattis26 and subsequently used in Refs. 9–11,
13, 14, 18–21, and 27: Each Green function of the type
��A†BC ;d†�� in the EOM hierarchy is replaced by

��A†BC;d†�� Þ �A†B���C;d†�� − �A†C���B;d†�� �8�
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if at least two of the operators A, B, and C are network
operators an�. Explicitly, the Green functions which are
decoupled are ��an�d�̄

†am�̄ ;d�
†��, ��an�̄

† d�̄am� ;d�
†��, and

��an�̄
† am�̄d� ;d�

†�� �with �̄=−��.28 Upon calculating the aver-

ages �am�
† am��� and �d�

†am�� using Eq. �7�, the set of EOM is
closed, and can be therefore solved. The details of this cal-
culation are presented in Appendix A. In particular, the re-
sulting equation determining the dot Green function is

G��z� =
u�z� − �nd�̄� − P�̄�z1� − P�̄�z2�

u�z�	z − �0 − �h − ���z�
 + 	P�̄�z1� + P�̄�z2�
���z� − Q�̄�z1� + Q�̄�z2�
, �9�

where

u�z� � U−1	U − z + �0 + �h + ���z� + ��̄�z1� − ��̄�z2�
 ,

�10�

and z1�z−2�h, z2�−z+2�0+U. The functions P and Q are
given in terms of the noninteracting self-energy on the dot,
���z�, brought about by its coupling to the network 	namely,
the self-energy of the noninteracting dot, see Eq. �A7�
, and
the dot Green function itself 	see Eqs. �A25�
,

P��z� = F�z	G
, Q��z� = F�z	1 + �G
 , �11�

where the notation F�z	g
 stands for

F�z	g
 �
i

2�
�

C

f�w�g��w�
���w� − ���z�

z − w
dw . �12�

Equation �9� generalizes the result of Ref. 11 �see also Refs.
18–21� for the case in which the interaction on the dot is
finite, and the entire system is subject to an external mag-
netic field. Our generalization also corrects a few details in
Lacroix’s earlier treatment of finite U.12

III. PROPERTIES OF THE EOM APPROXIMATION
AT FINITE U

As is evident from Eq. �9�, the solution of the dot Green
function within the EOM scheme cannot be easily obtained
over the entire parameter range. However, there are certain
limiting cases in which this Green function can be analyzed
analytically. We examine those in the subsequent sections.

A. Particle-hole symmetry

Upon replacing the particle operators by the hole ones,

d̃�
† �d� , ãn�

† �an�, the Anderson Hamiltonian �1� attains its
original structure, with

�̃0 + �h̃ = − �0 − �h − U, Ũ = U ,

J̃n� = − Jn�
* , �̃n� = − �n�, J̃nm = − Jmn. �13�

�Hole quantities are denoted by a tilde.� The dot Green func-
tion in terms of the hole operators is then related to the
particle Green function by

G̃��z� � ��d̃�; d̃�
†��z = − G��− z� . �14�

One may check that this equivalence holds by introducing

the definitions �13� into Eq. �9�. Since �̃��z�=−���−z� and
ũ�z�=1−u�−z�, one finds that 	see Eqs. �A25� and �A26�

P̃��z�=−P��−z� and Q̃��z�=Q��−z�−���−z�, reconfirming
Eq. �14�.

From now on we shall assume that ���z�=−���−z�. This
relation is realized, for example, when the network to which
the dot is coupled has a wide band spectrum, with the Fermi
level at the middle. We next discuss the particular point
where 2�0+U=0 and h=0. At this point, the Anderson
Hamiltonian becomes particle-hole symmetric. Then G��z�
=−G��−z�, P��z�+ P��−z�=0, Q��z�−Q��−z�=���z�, and
�nd��=1/2. As a result, Eq. �9� becomes

	G��z�
−1 = z − ���z� −
U2

4	z − ���z� − 2��̄�z�

. �15�

Namely, at the particle-hole symmetry point of the Anderson
model, the EOM results in a temperature-independent dot
Green function. This implies that the EOM technique at the
particle-hole symmetric point cannot produce the Kondo sin-
gularity. This property of the EOM scheme has been reported
a long time ago,10,29,30 but was ignored in more modern uses
of it,5 which are designed to study the Kondo peak in the
density of states.

The failure of the EOM method to describe faithfully the
Anderson model at its symmetric point, where the Fermi
level lies exactly between the states of single and double
occupancies, is a very severe drawback of this method. An
important question is whether this point is either a singular
or a continuous domain, which the EOM method fails totally.
We return to this problem in the next section.

B. Zero-temperature relations

The zero-temperature limit is of special importance since
the Green function at the Fermi energy at T=0 satisfies the
Fermi-liquid relations4,31

Im 	G�
+�0�
−1 = 
�, �16�
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Re	G�
+�0�
−1 = − 
� cot��ñd�� . �17�

Here and below we use A±���� lim�→±0A��+ i��, so that
G�

+���= 	G�
−���
* is the usual retarded Green function. In

Eqs. �16� and �17�, 
� is the level broadening,


� � − Im ��
+�0� . �18�

The first relation, Eq. �16�, implies31 number conservation,
and therefore is sometimes referred to as the “unitarity” con-
dition. The second one, Eq. �17�, is the Friedel sum-rule, in
which ñd� is the total number of spin � electrons introduced
by the quantum dot,31

ñd� = −
1

�
Im � f����1 −

���
+���
��


G�
+���d� . �19�

When the self-energy �� does not depend on the energy, ñd�

coincides with the single-spin occupation number on the dot,
�nd��.

It is evident that the EOM solution for the Green function
at the particle-hole symmetric point, Eq. �15�, violates the
unitarity condition �16�. On the Fermi level, the particle-hole
symmetric Green function is

	G�
+�0�
−1 = i
� + i

U2

4�
� + 2
�̄�
, �20�

and therefore the imaginary part of 	G�
+�0�
−1 is not deter-

mined solely by the noninteracting self-energy �as implied by
the unitarity condition�, but has also a contribution coming
from the interaction. This is contrary to the result of
Lacroix,12 whose EOM differs from our Eq. �9� in several
places. On the other hand, the Friedel sum-rule is satisfied by
the Green function �15�, which yields ñd�= 1

2 . This follows
from Eq. �19�: The imaginary parts of both G���� and �����
are even in �, while �at the symmetric point� the real parts
are odd in it. However, G������−1 at large frequencies,
whereas ������ /����−2. As a result, the second term in
the square brackets of Eq. �19� does not contribute. With
ñd�= 1

2 , the Friedel sum-rule gives Re	G�
+�0�
−1=0, which is

fulfilled by Eq. �20�.
It is rather intricate to study the full EOM solution, Eq.

�9�, at T=0, even on the Fermi level. However, there are
cases in which this can be accomplished without construct-
ing the full solution. The investigation of these cases will
also allow us to examine the behavior of G��0� as the
particle-hole symmetric point is approached. To this end we
note that at T=0 the functions P��� and Q��� acquire loga-
rithmic singularities as �→0,

P�
±��� � −

1

�

�G�

��0�ln��� + O�1� ,

Q�
±��� � −

1

�

�	1 + ��

��0�G�
��0�
ln��� + O�1� . �21�

Therefore, we may examine special points at which the func-
tions P and Q are divergent, keeping only the divergent
terms in Eq. �9�. Then, that equation reduces to an algebraic

one, which can be easily solved to yield G� at those special
points.

Let us first consider the case in which the Zeeman field h
on the dot vanishes, but 2�0+U�0. Using Eqs. �21� in Eq.
�9� yields

	G�
+�0�
−1 + ��

+�0� = 	G�̄
−�0�
−1 + ��̄

−�0� . �22�

By writing the Green function in the general form

	G��z�
−1 = z − �0 − �h − ���z� − ��
int�z� , �23�

in which �int is the self-energy due to the interaction, Eq.
�22� takes the form

��
int+�0� − ��̄

int−�0� = 0. �24�

When the network is not spin polarized, the spin indices �
and �̄ are indistinguishable. Then Eq. �22� implies that
Im �int�0� vanishes, namely the unitarity condition is satis-
fied. �In the more general case of possibly ferromagnetic
leads, it is only the imaginary part of 	G�

+�0�
−1− 	G�̄
−�0�
−1

which is determined by the noninteracting self-energy alone.�
Had we now sent 2�0+U to zero, we would have found that
the EOM result at the particle-hole symmetric point does
satisfy the unitarity condition, in contradiction to our finding,
Eq. �20�, above. We thus conclude that the failure of the
EOM to obey the Fermi-liquid relation �16� at the symmetric
point is confined to the symmetric point alone, namely, the
imaginary part of �int on the Fermi level has a discontinuity.

Next we consider the case where 2�0+U=0, but h�0.
Using Eqs. �21� in Eq. �9� we now find the relation

	G�
+�0�
−1 + ��

+�0� = − �	G�̄
+�0�
−1 + ��̄

+�0�� . �25�

Inserting here expression �23�, we rewrite this relation in the
form

��
int+�0� + ��̄

int+�0� = U . �26�

Therefore, Im �int�0�=0, in agreement with the unitarity con-
dition. Sending now the Zeeman field on the dot to zero,
yields the result 2Re �int�0�=U, which agrees with the real
part of Eq. �20�. Thus the EOM result for the real part of �int

on the Fermi energy does not have a discontinuity. We hence
conclude that the EOM technique’s failure at the symmetric
point is confined to the imaginary part of the interacting
self-energy alone and to the symmetric point alone.

Our considerations in this subsection are confined to �
=0, and therefore do not allow us to investigate the Friedel
sum-rule easily. We carry out such an analysis for the
infinite-U case below. Alternatively, one may attempt, as has
been done in Ref. 21, to impose the Friedel sum-rule on the
EOM result, assuming that Eq. �17� holds, with ñd���nd��.
This is a dangerous procedure, which leads in some cases to
unphysical results, as is demonstrated in Sec. V.

IV. EXACT SOLUTION IN THE U\� LIMIT

In this section we present an exact solution of the self-
consistently truncated EOM, and obtain the dot Green func-
tion, in the limit U→	. For this solution, we assume that the
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bandwidth D� is larger than the other energies in the problem
�except U�. In the next section we use this function to calcu-
late several physical quantities, and compare the results with
those of the Bethe ansatz technique and other calculations.
For simplicity, we also assume that the noninteracting self-
energy may be approximated by an energy-independent reso-
nance width, i.e.,

��
± = � i
�, �27�

for all the energies in the band, −D����D� �the extension
to the case where there is also an energy-independent real
part to the self-energy is straightforward�. This assumption is
certainly reasonable for a range of energies near the center of
the band. However, using it for the whole band introduces
corrections of order �� /D��, thus restricting the solution to
�� /D���1. Then, Eq. �9� for the Green function, together
with the definitions �10�–�12�, takes the form

	G�
±���
−1G�

±�� + �h� = 1 − �nd�̄� − P�̄
±�� + �̄h� , �28�

where

G�
±��� = 	� − �0 ± i
� − I�̄

±�� + �̄h�

� i�
�̄ + 
��P�̄
±�� + �̄h�
−1. �29�

Note the shift of energies by �h, compared to Eq. �9�. The
function I� introduced here contains the Kondo singularity,32

I�
±��� =


�

�
�

−D�

D�

d��
f����

� ± i� − ��
. �30�

To order O�� /D��, one has

�I�
±���/
� = − ��1

2
�

i�

2�T
� + ln

D�

2�T
�

i�

2
, �31�

where � is the digamma function. Equation �28� for the
Green function also contains the function P�, which, using
the assumption �27�, is given by

P�
±��� =


�

�
�

−D�

D�

d��
f����G�

�����
� ± i� − ��

d��. �32�

Physically, all the integrals which contain �� must be calcu-
lated between −D� and D�, and the resulting Green function
is calculated only for energies inside the band, ����D�.
However, the integral P�

±��� converges even when one takes
the limit D�→	, because G�����1/� at large ��� 	see, e.g.,
Eq. �28�
. If D� is sufficiently large, so that this asymptotic
behavior becomes accurate and since f����1 for ��−D�,
it is convenient to extend the range of this integral �and all
the related integrals below, unless otherwise specified� to the
range −	���	. This introduces errors of order 
� /D� or
� /D� in the results, which we neglect.

We have thus found that the equation for G�
+ involves an

integral containing the function G�̄
−, and thus the two func-

tions G�
+ and G�̄

− are coupled. In addition, the occupations
�nd�� have to be determined self-consistently from the Green
functions themselves. Our solution for the Green function
follows the method introduced in Refs. 10 and 33. This

method allows one to turn the integral equations into alge-
braic ones, at the cost of additional quantities which have to
be determined self-consistently from the Green function.
First, one introduces the functions

���z� = z − �0 + i
� − I�̄�z + �̄h� − i�
�̄ + 
��

�̄

�

�� d��
f����G�̄

−����

z + �̄h − ��
,

�̃��z� = z − �0 − i
�̄ − I��z + �h� + i�
�̄ + 
��

�

�

�� d��
f����G�

+����
z + �h − ��

. �33�

Note that ��
+��� is identical to 	G�

+���
−1 and �̃�
−���

�	G�̄
−���
−1, while ��

−��� and �̃�
+��� are different from

	G�
−���
−1 and 	G�̄

+���
−1, respectively. The knowledge of ��
±

is sufficient to determine G�̄
−, since

��
+��� − ��

−��� = 2i
�̄f�� + �̄h�	1 + i�
�̄ + 
��G�̄
−�� + �̄h�
 .

�34�

Similarly, the functions �̃�
± determine G�

+, through the rela-
tion

�̃�
+��� − �̃�

−��� = 2i
�f�� + �h�	1 − i�
�̄ + 
��G�
+�� + �h�
 .

�35�

Returning now to Eq. �28�, we eliminate the Green functions
by using Eqs. �34� and �35�, and the functions P by using the
definitions �33�. In this way we find

��
+���

�̃�
+��� − �̃�

−���
2i
�f�� + �h�

= X�
+��� ,

�̃�
−���

��
+��� − ��

−���
2i
�̄f�� + �̄h�

= X̃�
−��� , �36�

where

X��z� = − i�
� + 
�̄��1 − �nd�̄�� + z − �0 + i
� − I�̄�z + �̄h� ,

X̃��z� = i�
� + 
�̄��1 − �nd��� + z − �0 − i
�̄ − I��z + �h� .

�37�

So far, we have not achieved much simplification over the
original problem at hand. However, noting that

X�
+��� − X�

−��� = 2i
�̄f�� + �̄h� ,

X̃�
+��� − X̃�

−��� = 2i
�f�� + �h� , �38�

Eqs. �36� yield the remarkable result
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��
+����̃�

+��� − X�
+���X̃�

+��� = ��
−����̃�

−��� − X�
−���X̃�

−��� .

�39�

Therefore, the combination

R�z� � ���z��̃��z� − X��z�X̃��z� �40�

is nonsingular across the real axis. In fact, the only singular
point of this combination is at z=	. This means that R�z� can
be written as a polynomial with non-negative powers of z.

Moreover, since �, �̃, X, and X̃ grow only linearly as z
→	, that polynomial includes only two terms, r0+r1z. The
details of this calculation are given in Appendix B. The result

�39� allows one to express the �unknown� functions � and �̃

in terms of the �known� functions X, X̃, and R,

��
+

��
− =

R + X�
+X̃�

−

R + X�
−X̃�

−
� H����,

�̃�
+

�̃�
−

=
R + X�

+X̃�
+

R + X�
+X̃�

−
� H̃���� .

�41�

This reduces our problem into two independent linear
Reimann-Hilbert problems, for which a rigorous solution is
available,33,34

���z� = �z − a�eM��z�, M��z� =� �−
d�

2�i
� ln H����

z − �
,

�̃��z� = �z − ã�eM̃��z�, M̃��z� =� �−
d�

2�i
� ln H̃����

z − �
.

�42�

This is a valid solution as long as ln H��� and ln H̃��� can
be chosen to be continuous in � and to vanish at both ends of
the integration interval.35 All the cases studied in this paper
obey this requirement, although we could not prove the ab-
sence of solutions other than �42� for a general case with no
spin symmetry. The form of the polynomial prefactors, �z
−a� and �z− ã�, in Eq. �42� is dictated by the fact that the

leading term in ���z� and �̃��z� must be z 	see Eqs. �33�
.
The determination of the coefficients a and ã, as well as
other self-consistent quantities, is detailed in Appendix C.

V. PHYSICAL PROPERTIES IN THE U\� LIMIT

Once the functions � and �̃ are found, then the Green
function is determined from Eq. �34� or Eq. �35�. This
knowledge enables us to compute various physical quanti-
ties, and compare them with the results of other calculations.
The first quantity we consider is the total occupation on the
dot, n0��nd↑+nd↓�, at zero temperature. This calculation is
carried out for the spin-symmetric case, h=0 and spin-
independent self-energy. We also denote D�D�, 
�
�. The
result is plotted as function of Ed /
, where

Ed � �0 + �
/��ln�D/
� , �43�

and is portrayed in Fig. 1 �full line�. It agrees within 3% with
the exact universal curve n0�Ed /
�, as found from the Bethe

ansatz,36 �open circles�. Thus, the EOM solution conforms
with Haldane’s scaling.37 On the other hand, the EOM solu-
tion fails to satisfy the Friedel sum-rule, as has been already
discussed above.38 The total occupation calculated from
Eq. �17� �dashed line� deviates systematically from the
self-consistent values, in particular in the Kondo regime
�n0→1�. Note that Eq. �27� implies that ñd�= �nd�� 	see
Eq. �19�
.

As mentioned above, the Fermi-liquid relations are con-
nected with unitarity. In particular, at zero temperature the
linear conductance of a symmetrically coupled quantum dot
is given by3,5 −2�e2 /h�
� Im G���=0�. Thus, the unitary
limit 2e2 /h is reached only if Re	G�

+�0�
→0 and the Fermi
liquid relation �16� holds. As implied by the dashed line in
the figure, the first of these criteria is not obeyed by the
self-consistent solution.

Next we consider the local spin susceptibility on the dot.
When the leads are nonmagnetic, this quantity is given by
�= 1

2 �g�B�2��nd↓−nd↑� /�h, with h=−g�BB. Here B is the ex-
ternal magnetic field and g�B is the gyromagnetic ratio of
electrons in the quantum dot. 	The spin susceptibility of the
leads adds to the local susceptibility the usual Pauli term, and
O�
� /D�� corrections.4
 We have calculated ��Ed /
 ,T� by
differentiating the self-consistent equations for �nd�� with re-
spect to h, and evaluating the integrals numerically. This pro-
cedure is similar to the one which has been used for the
Wolff model in Ref. 10�b�, but is free from numerical accu-
racy problems reported there.

The zero-temperature susceptibility derived from the
EOM is found to be in a good quantitative agreement with
the Bethe ansatz results in the mixed valence ��Ed /
��1�
and empty orbital �Ed�
� regimes, as is shown in Fig. 2. In
the local moment regime, Ed�−
, a screening cloud is ex-
pected to form due to the Kondo effect at4,37 T�TK
�
e�Ed/�2
�, leading to a crossover from a high-temperature
Curie law, ���g�B�2 /T, to a finite ground state value, �
��g�B�2 /TK. The latter is underestimated by our self-
consistent solution, as is manifested by the deviation from
the exact Bethe ansatz results depicted in Fig. 2.

Indeed, had we defined the Kondo temperature through
the inverse of the zero-temperature susceptibility, we would

FIG. 1. The zero-temperature occupation number n0 as function
of the renormalized energy Ed calculated self-consistently by the
EOM method �solid line�, and from the Friedel sum-rule, Eq. �17�
�dashed line�. Open circles show the exact Bethe ansatz results
�Ref. 36�.
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have found that the EOM method overestimates that tem-
perature. However, within EOM, the relevant energy scale is
determined from the leading �real� terms in the denominator
of the Green function, i.e., by the temperature at which the
real part of G, Eq. �29�, vanishes. Using for I�z�, Eq. �31�, the
approximate form9 I�z��−�
 /��ln	�z+ i�T� /D
 where � is a
number of order unity, we find that the leading terms are

� − Ed +



�
ln

D



+




�
ln

��2 + �2T2

D
, �44�

yielding for the temperature scale

TK
* � 
e�Ed/
, �45�

such that the leading terms are

� +



�
ln ���/TK

* �2 + ��T/TK
* �2. �46�

The logarithm in Eq. �46� dominates the properties of the
solution close to the Fermi energy at temperatures T�TK

* .
The same energy scale TK

* has been determined from the
analysis of the truncated EOM in Refs. 11 and 18. Note that
TK

* is smaller than the true Kondo temperature TK.
The local spin susceptibility at finite temperatures, calcu-

lated from our EOM solution, is shown in the inset of Fig. 2.
Indeed, ��T� /��0� scales with T /TK

* , but instead of crossing
over to the Curie law, a region of intermediate behavior in
which ��Tx with −1�x�0 is observed. The high-
temperature asymptotic ��T��1/T is approached only for
T�
. Such a behavior in the intermediate temperature range
TK

* �T�
 is not supported by NRG or Bethe ansatz
calculations,4 which scale with TK,39 and has thus to be at-
tributed to the deficiency of the EOM method.

In contrast, neither the Lacroix approximation, as imple-
mented in Ref. 18, nor the MWL5 approximate Green func-
tion leads to comparable results when used to calculate the
local spin susceptibility. The Lacroix approximation be-
comes intrinsically inconsistent at finite magnetic fields,
since it results in a logarithmic divergence of G��z� as z
→�h. Even when ignoring this inconsistency, the zero-
temperature spin susceptibility calculated in that approxima-
tion attains negative and divergent values regardless of the
quantum dot parameters. The MWL approximation leads to
finite, but quite unphysical values of � for T�
, as we dem-
onstrate in Fig. 3. That approximation gives reasonable re-
sults at T=
: the susceptibility follows roughly the Curie
law �1/T�=1/
� or the zero-temperature value, whichever
is smaller. At lower temperatures one would have expected a
gradual increase in the susceptibility in the Kondo region.
Instead, a window of a negative susceptibility opens, which
is widened as the temperature is decreased. At strictly zero
temperature � is negative for all values of Ed. This example
shows the necessity of using the full self-consistency of the
EOM solution in order to obtain the qualitatively correct
behavior.

Finally, we examine the local density of states on the dot,
given by

���,T� � − Im �
�

G�
+���/� , �47�

as calculated from the EOM. The inset of Fig. 4 shows the
Kondo peak at temperatures T�TK

* . The local density of
states at the Fermi energy follows the universal temperature
dependence, as can be seen in Fig. 4, with the same scaling
factor TK

* as the spin susceptibility �compare to the inset of
Fig. 2�. The appearance of a single scale determining the
low-energy properties of the system is another hallmark4 of
the Kondo effect which is captured by the fully self-
consistent EOM technique.

FIG. 2. The local spin susceptibility � as function of the renor-
malized energy level Ed, for T=0. The EOM result �solid line� is
close to the Bethe ansatz one �Ref. 36� �circles� in the empty orbital
and mixed valence regimes, but deviates significantly in the
strongly correlated region �large negative values of Ed /
�. Inset:
The scaling of the susceptibility with T /TK

* at three fixed energy
level positions �marked by arrows in the main graph�. The solid
lines indicate the high-temperature asymptotic behavior, ��T�
= �g�B�2 / �6T�.

FIG. 3. Data from Fig. 2 compared to the spin susceptibility
given by the MWL approximation in the temperature range from
T=1
 down to T=10−4
. The inset shows the MWL susceptibilities
only, on a linear scale, allowing for the negative values.
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CHAPTER 5. 56

VI. PERTURBATION EXPANSION
IN THE DOT-NETWORK COUPLINGS

The EOM technique is unfortunately not a systematic ex-
pansion. It is therefore very interesting to compare its results
with those given by a direct expansion. Here we expand the
EOM Green function up to second order in the dot-network
couplings Jn�. For compactness, we confine ourselves to the
case U→	, and assume for simplicity that the noninteract-
ing self-energy has just an energy-independent imaginary
part, i.e., �����=−i
�. By comparing with the direct pertur-

bation theory expansion24,25 we find that, up to second order
in Jn�, our EOM result for the dot Green function is exact.
�See also Ref. 23.� On the other hand, the Green function
derived in Ref. 5 �which does not include all correlations
resulting from the truncated EOM� violates the second-order
perturbation theory result, and in fact, predicts a Kondo
anomaly in this order �which should not be there�.

The U→	 Green function of the EOM is given by Eqs.
�28�–�30� and �32�. Since the noninteracting self-energy ��,
and consequently the width 
� are second order in the cou-
pling Jn�, the expansion of the Green function reads

G�
�0��z� =

�n�̄
�0�

z − ��

, �48�

and

G�
�2��z� =

�n�̄
�2� − P�̄

�2��z1�

z − ��

+ G�
�0��z�

I�̄�z1� + ���z�

z − ��

, �49�

where we have denoted

�n�̄� � 1 − �n�̄, �� = �0 + �h �50�

and where the superscript �k� denotes the contribution of
order k in the couplings. The function P�2� is found by using
the zeroth-order of the Green function in Eq. �32�,

P�
�2��z� = G�

�0��z�	I��z� − I�
−���� − f�������z� + f������

−����
 .

�51�

Using the identities

I�
−���� − f������

−���� = Re	I����� − f����������
 �52�

and

G�̄
�0��z1� = �n�

�0�G�
�0��z�/�n�̄

�0�, �53�

Eq. �49� takes the form

G�
�2��z� =

�n�̄
�2�

z − ��

+
− �n�

�0�	I�̄�z1� − f���̄���̄�z1� − Re�I�̄���̄� − f���̄���̄���̄��
 + �n�̄
�0�	I�̄�z1� + ���z�


�z − ���2 . �54�

In order to complete the second-order calculation, we need to find the occupation numbers �n�
�0� and �n�

�2� 	see Eq. �50�
. From
Eq. �48� we find

�n���0� =
f����	1 − f���̄�


1 − f����f���̄�
. �55�

The second-order correction to the occupation number, �n�
�2��−�n���2�, is obtained by integrating over the Fermi function

multiplied by the second-order correction to the density of states, ��
�2����. The latter reads

��
�2���� �

G�
+�2���� − G�

−�2����
− 2�i

= ��� − �����n�̄
�2� + 	�n���0� − �n�̄��0�


� Re I�̄���̄�

��0
� − ���� − ����n�̄

�0� Re I�̄���̄�

+

� + �
�̄ − 
���n�̄��0� + 
�̄f�� − �� + ��̄�	�n���0� − �n�̄��0�


��� − ���2 . �56�

FIG. 4. �Color online� The scaling of the local density of states
at the Fermi level as function of the reduced temperature T /TK

* , is
demonstrated by plotting ���=0,T� for three different values of the
renormalized single-electron energy on the dot, Ed 	Eq. �43�
. The
dashed line at �=2/ ��
� corresponds to the limit dictated by the
Friedel sum-rule at Ed /
�−1. The inset shows the melting of the
Kondo peak as the temperature is increased at fixed Ed /
=−5.
Temperature values represented in the inset are marked by arrows in
the main graph.
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CHAPTER 5. 57

Apart from the terms representing the second-order modifi-
cations of the singularity at �� 	the first and second members
of Eq. �56�
, our result reproduces the one of Ref. 24, for the
case where the width 
� is spin independent, i.e., 
�=
�̄.

Note that this density of states remains finite at all tempera-
tures. The Kondo divergence of ��

�k��0� in the limit T→0
appears only at k�4 �see Ref. 24�. Using the second-order
correction to the density of states, we find

�n���2� =� f�����
�2����d� = ��n�̄��0� − 1�Re

�I�����
���

+
��n���0�

���

Re I�̄���̄� +
��n���0�

���̄

Re I����� . �57�

This result is identical to the U→	 limit of Eq. �5� in Ref.
25 which was obtained by a direct perturbation expansion.
Figure 5 depicts the total occupation, n0=���n��, as function
of �0, as found from the EOM technique, and as computed
from Eqs. �55� and �57� to first order in the width. The two
curves differ by a few percents. The comparison with the
exact result is carried out in Sec. IV.

VII. CONCLUSIONS

We have presented a solution for the Green function of an
interacting quantum dot embedded in a general noninteract-
ing network. Our solution is derived within the EOM tech-
nique, taking into account exactly all resulting correlations
once those equations are truncated. We have tested our solu-
tion by analyzing several limiting cases, and by comparing
several physical properties derived from that solution with
other results available by the Bethe ansatz method and by
NRG computations.

We have found that the EOM Green function is tempera-
ture independent at the particle-hole symmetric point �where
h=0 and 2�0+U=0�. We have found that this deficiency of

the EOM is related to a discontinuity in the imaginary part of
the interacting self-energy at that particular point. However,
this imaginary part obeys the Fermi-liquid unitarity require-
ment away from this special point, at zero temperature. In
contrast, even away from the particle-hole symmetric point,
the EOM result fails to satisfy the Friedel sum-rule deep
inside the Kondo regime, as we have shown explicitly in the
infinite interaction limit.

Albeit these problems, the EOM solution reproduces
faithfully the low-temperature scaling of the spin susceptibil-
ity and the density of states at the Fermi level, though with
an energy scale TK

* which differs from the true Kondo tem-
perature 	cf. Eq. �45�
. Zero-temperature results are in excel-
lent agreement with the exact Bethe ansatz solution, except
for the Kondo correlated regime. As the temperature is
raised, the EOM results become more and more quantita-
tively correct, and approach high-temperature asymptotics
known rigorously from perturbation theory and NRG studies.
We have expanded the EOM Green function to second order
in the dot-network coupling and found an exact agreement
with direct calculations by perturbation theory. Most impor-
tantly, we have found that it is crucial to include in the EOM
solution all the correlations emerging from the truncated
scheme. Ignoring part of these correlations, as is ubiqui-
tously done in such studies, results in erroneous behaviors of
various physical quantities.

Hence we conclude that the method examined in this pa-
per can provide a reasonable description of a quantum dot
system over a wide parameter range, provided that the self-
consistency conditions inherent to this technique are fully
taken into account.
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APPENDIX A: EOM FOR THE FINITE U CASE

Here we extend the derivations of Refs. 9, 13, and 18,
carried out for an infinite repulsive interaction, to the case in
which U is finite. In addition, we allow for a Zeeman field,
assuming that the quantization axes of the spins are the same
on the dot and on the leads �but the g factors may be differ-

FIG. 5. The equilibrium occupation number n0=���n�� for the
same parameters as in Fig. 1, and D=100
 �since second-order
perturbation theory does not scale with Ed, the bandwidth has to be
specified�, calculated from the self-consistently truncated EOM
�solid lines�, and by perturbation theory to first order in 
, Eqs. �55�
and �57� �dashed line�. The perturbational result diverges at �0=0.

APPLICABILITY OF THE EQUATIONS-OF-MOTION¼ PHYSICAL REVIEW B 73, 125338 �2006�

125338-9



CHAPTER 5. 58

ent�. The Hamiltonian of the our system is given in Eq. �1�.
The Fourier transform of the EOM for the Green function

defined in Eq. �5� can be written in two alternative forms8

�both will be used in the following�,

z��A;B��z = �	A,B
+� + ��	A,H
−;B��z

= �	A,B
+� − ��A;	B,H
−��z. �A1�

It follows that the EOM for the dot Green function is

	z − �0 − �h
G� = 1 + U��nd�̄d�;d�
†�� − �

n

Jn���an�;d�
†�� ,

�A2�

where �̄ is the spin direction opposite to �. Here and in the
following we frequently omit for brevity explicit indications
of the argument z. We first consider the last term on the
right-hand side of Eq. �A2�. The EOM for the Green function
appearing there is

�z − �n����an�;d�
†�� = − �

m

Jnm��am�;d�
†�� − Jn�

* G�.

�A3�

Introducing the inverse matrix

Mnm��z� � 	�z − Hnet
� �−1
nm, �A4�

where Hnet
� is the part of Hnet pertaining to the spin direction

�, we find

��an�;d�
†�� = − �

m

Mnm��z�Jm�
* G�. �A5�

Note that M is the Green function matrix of the network in
the absence of the coupling to the dot. Using Eq. �A5�, we
find that the last term on the right-hand side of Eq. �A2� can
be put in the form

− �
n

Jn���an�;d�
†�� = ��G�, �A6�

where

���z� � �
nm

Jn�Mnm��z�Jm�
* �A7�

is the self-energy of the dot Green function coming from the
coupling to the �noninteracting� network. Namely, it is the
dot self-energy for the U=0 case.18 As such, it can always be
calculated, at least in principle �see, for example, Refs. 18
and 40�.

We now turn to the interacting part of the EOM for the
dot Green function 	the second term on the right-hand side of
Eq. �A2�
. The EOM for the four-operator Green function
appearing there reads

	z − �0 − �h − U
��nd�̄d�;d�
†�� = �nd�̄� − �

n

	Jn���an�nd�̄;d�
†�� + Jn�̄��d�̄

†an�̄d�;d�
†�� − Jn�̄

* ��an�̄
† d�̄d�;d�

†��
 , �A8�

and gives rise to three new four-operator Green functions �on the right-hand side here�. Their EOM are

	z − �n�
��an�nd�̄;d�
†�� = − �

m

Jnm��am�nd�̄;d�
†�� − Jn�

* ��nd�̄d�;d�
†�� − �

m

	Jm�̄��an�d�̄
†am�̄;d�

†�� − Jm�̄
* ��am�̄

† d�̄an�;d�
†��
 ,

�A9�

	z1 − �n�̄
��d�̄
†an�̄d�;d�

†�� = �d�̄
†an�̄� − �

m

Jnm��d�̄
†am�̄d�;d�

†�� − Jn�̄
* ��nd�̄d�;d�

†�� + �
m

	Jm�̄
* ��am�̄

† an�̄d�;d�
†��

− Jm���d�̄
†an�̄am�;d�

†��
 , �A10�

	− z2 + �n�̄
��an�̄
† d�̄d�;d�

†�� = �an�̄
† d�̄� + �

m

Jnm
* ��am�̄

† d�̄d�;d�
†�� + Jn�̄��nd�̄d�;d�

†�� − �
m

	Jm���an�̄
† d�̄am�;d�

†��

− Jm�̄��an�̄
† d�am�̄;d�

†��
 , �A11�

where we have introduced the definitions

z1 � z − 2�h, z2 � − z + 2�0 + U . �A12�

The EOM �A9�–�A11� include four-operator Green functions in which only two of the operators are dot operators. Those are
decoupled as detailed in Eq. �8�. One then finds

− �
n

Jn���an�n�̄;d�
†�� = ����n�̄d�;d�

†�� + �
nmm�

Jn�Mnm���am�;d�
†��	Jm��̄�d�̄

†am��̄� − Jm��̄
* �am��̄

† d�̄�
 , �A13�

− �
n

Jn�̄��d�̄
†an�̄d�;d�

†�� = �1 + ��G��P�̄�z1� + ��̄�z1���n�̄d�;d�
†�� − G�Q�̄�z1� , �A14�

KASHCHEYEVS, AHARONY, AND ENTIN-WOHLMAN PHYSICAL REVIEW B 73, 125338 �2006�

125338-10



CHAPTER 5. 59

�
n

Jn�̄
* ��an�̄

† d�̄d�;d�
†�� = �1 + ��G��P�̄�z2� − ��̄�z2���n�̄d�;d�

†�� + G�Q�̄�z2� , �A15�

where we have introduced

P��z� � − �
nm

Jn�Mnm��z��d�
†am��

= − �
mn

�am�
† d��Mmn��z�Jn�

* , �A16�

Q��z� � �
nmm�

Jn�Mnm��z��am��
† am��Jm��

*

= �
nmm�

Jm���am�
† am���Mmn��z�Jn�

* . �A17�

The second equality in each of Eqs. �A16� and �A17� is
justified below.

Examining Eqs. �A13�, �A16�, and �A17� reveals that one
needs to find thermal averages of two types, the ones belong-
ing to two network operators, �am�

† am���, and the ones con-
sisting of a dot and a network operator, �d�

†am��. These are
found 	see Eq. �7�
 from the corresponding Green’s func-
tions, whose EOM are given by Eq. �A3� and

�z − �n����d�;an�
† �� = − �

m

��d�;am�
† ��Jmn − Jn�G�,

�A18�

�z − �m����am�;an�
† ��

= �mn − �
m�

Jmm���am��;an�
† �� − Jm�

* ��d�;an�
† �� .

�A19�

Their solutions in terms of the inverse matrix Mnm� 	see Eq.
�A4�
 are

��d�;an�
† �� = − �

m

Jm�Mmn�G�, �A20�

��am�;an�
† �� = Mmn� + �

ln�

Mml�Jl�
* Jn��Mn�n�G�.

�A21�

Employing these solutions to obtain the thermal averages
appearing in Eq. �A13�, we find

�
m�

Jm��̄�d�̄
†am��̄� = �

m�

Jm��̄
* �am��̄

† d�̄� .

Consequently, the terms in the square brackets of Eq. �A13�
are cancelled. Next, we use the first equality in each of the
definitions �A16� and �A17� together with the auxiliary
Green functions �A5� and �A21�, to find P and Q in terms of
the dot Green function G,

P��z� = i�
C

dz�

2�
f�z��G��z��

��
nm

Jn�Jm�
* 	�z − Hnet

� �−1�z� − Hnet
� �−1
nm,

�A22�

Q��z� = i�
C

dz�

2�
f�z��	1 + ���z��G��z��


��
nm

Jn�Jm�
* 	�z − Hnet

� �−1�z� − Hnet
� �−1
nm,

�A23�

where we have used Eq. �A4�. Since

�z − Hnet
� �−1�z − Hnet

� �−1 =
�z� − Hnet

� �−1 − �z − Hnet
� �−1

z − z�
,

�A24�

we can use Eq. �A7� for the noninteracting self-energy, to
write the functions P and Q in terms of that self-energy,

P��z� = lim
��→0

i

2�
� d�

f���
z − �

�G��� + i���	���� + i��� − ���z�
 − G��� − i���	���� − i��� − ���z�
�

�
i

2�
�

C

f�w�G��w�
���w� − ���z�

z − w
dw ,

Q��z� = lim
��→0

i

2�
� d�

f���
z − �

�	1 + ���� + i���G��� + i���
	���� + i��� − ���z�
 − 	1 + ���� − i���G��� − i���


�	���� − i��� − ���z�
� �
i

2�
�

C

f�w�	1 + ���w�G��w�

���w� − ���z�

z − w
dw . �A25�
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Here and elsewhere the imaginary part of z is always greater
than ��, so that the contour C never encircles the pole at w
=z. Note that using the same procedure employing the sec-
ond equalities in Eqs. �A16� and �A17� gives again Eqs.
�A22� and �A23�, thus proving that the two definitions of P
and Q in Eqs. �A16� and �A17� are equivalent. Equation �A8�
can be now easily solved. Inserting the solution into Eq. �A2�
leads to the expression for the dot Green function, Eq. �9�.

In treating the functions P and Q in Sec. III A we have
employed several properties of the complex integrals appear-
ing in Eqs. �A25�. Consider, for example, the integral

i

2�
�

C

G�w�
��w� − ��z�

z − w
dw . �A26�

Since G�w� and ��w� have no singularities except for a cut
along the real axis, it is expedient to complete each half of
the contour C by a large-radius semicircle in the upper and
lower half-planes. Then, by the residue theorem, Eq. �A26�
vanishes provided that G�w� falls as w−1 or faster at w→	.
This means that the Fermi function f�w� in the definition of
P can be replaced by f�w�+const. Another important case is

when G�w� is replaced by 1 in Eq. �A26�. In this case the
contribution of the semicircles does not vanish, and the inte-
gral �A26� gives ��z�.

An alternative to the fully self-consistent treatment inves-
tigated in this paper has been proposed in Ref. 5. There, the
averages of the form �d�

†am�� were ignored, and those of the
type �am�

† am��� were approximated by �mm��am�
† am��.

Namely, Hnet-dot was put to zero in the calculation of the
averages. Upon such an approximation, P��z��0, and

Q��z� � � Im����� − i��
�


 f���
z − �

d� , �A27�

reproducing Eq. �8� of Ref. 5. Another approximation of Eqs.
�A22� and �A23�, originally due to Lacroix,11 has been re-
cently analyzed in the context of quantum dots in Ref. 18. In
this approximation one assumes the dot Green function to
vary smoothly enough over the integration regimes in Eqs.
�A22� and �A23�, so that it can be taken out of the integrals.
This ansatz reduces Eq. �9� of the text to a quadratic form.
These two approximate solutions are discussed in Secs. III
and IV.

APPENDIX B: DERIVATION OF THE POLYNOMIAL FUNCTION R

As explained in Sec. IV, the function

R�z� � ���z��̃��z� − X��z�X̃��z� = i�
� + 
�̄�	z − �0 − i
�̄ − I��z + �h�
��1 − nd�̄� −

�̄

�
� d�

f���G�̄
−���

z + �̄h − �



− i�
� + 
�̄�	z − �0 + i
� − I�̄�z + �̄h�
��1 − nd�� −

�

�
� d�

f���G�
+���

z + �h − �

 − �
� + 
�̄�2��1 − nd�̄��1 − nd��

−

�̄

�
� d�

f���G�̄
−���

z + �̄h − �


�

�
� d�

f���G�
+���

z + �h − �

 �B1�

is nonsingular across the real axis, and its only singular point
is at z=	. This observation enables one to solve for the

Green function in terms of the functions � and �̃. Here we
examine R�z� in some detail, and also derive the first two
terms of its polynomial expansion.

In the limit z→	, the function I��z�, Eq. �31�, is given by

I��z� �

�

�
ln

D�

z
. �B2�

The z→	 limit of the integrals appearing in Eq. �B1�
has to be taken with care. We write the Green functions
appearing in the integrands there in the form
G�

±���=Re G�
+���± i Im G�

+���, and use �nd��=−�1/��
��d�f���Im G�

+��� to obtain


�

�
� d�

f���G�
±���

z − �
� � i


��nd��
z

+ A��z� , �B3�

where

A��z� =

�

�
� d�

f���Re G�
+���

z − �
. �B4�

Inserting Eqs. �B2� and �B3� into Eq. �B1�, the terms which
survive the z→	 limit are

R�z� � �
� + 
�̄�2��nd�� + �nd�̄� − �nd���nd�̄��

+ i�
� + 
�̄��z − �0��nd� − nd�̄�

+ i�
� + 
�̄��z	A��z� − A�̄�z�
 − �1 − nd�̄�

�

�
ln

D�

z
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+ �1 − nd��

�̄

�
ln

D�̄

z
� . �B5�

According to the discussion in Sec. IV, the terms logarithmic
in z have to disappear. The integral giving A��z�, Eq. �B4�, is
well behaved on the positive � axis, since then for large �
the Fermi function makes it convergent. For very large nega-
tive � values, Re G�

+���→ �1−nd�̄� /�, and as a result, the
contribution from that part of the integration to A��z� is �1
−nd�̄��
� /���1/z�ln��� /z�, where ���D�. Hence, the terms
logarithmic in z are canceled. In our calculations, we have
used

A��z� � −

�

�
�1 − nd�̄�ln

z

D�

+
b�

z
, �B6�

and have determined the coefficient b� self-consistently �see
Appendix C�. In this way we find

R�z� = �
� + 
�̄�2	�nd�� + �nd�̄� − �nd���nd�̄�


+ i�
� + 
�̄�	�z − �0��nd� − nd�̄� + b� − b�̄
 .

�B7�

APPENDIX C: DETAILS OF THE EXACT SOLUTION

This appendix is devoted to the analysis of the exact so-
lution for the self-consistent EOM, and in particular to the
determination of the unknown coefficients b� 	see Eqs. �B6�
and �B7�
, a and ã 	see Eqs. �42�
. This is accomplished by
expanding the solution at large frequencies, and equating the

coefficients with those of the desired functions � and �̃. We
give the details for �; those of the “tilde” solution are ob-
tained analogously.

As has been the case for the integral �B3�, the large nega-
tive part of the integral defining M��z� has to be taken with
care. To this end we write

M��z� � � �−
d�

2�i
� ln H����

z − �
= �

−	

+	 �−
d�

2�i
� ln H���� − 
�− D�̄ − ��F�����− 2�i�

z − �
+ �

−	

−D�̄ F����d�

z − �
, �C1�

where the function F���� is defined in such a way that the use of the geometric series 1 / �z−��=z−1+z−2�+O�z−3� in the first
integral of Eq. �C1� results in convergent integrals. It is sufficient to include in F���� the most slowly decaying terms of
ln H��� / �−2�i�, which are obtained by expanding H��� for large negative �,

F���� = −

�̄

��
−


�̄

��2�
�̄

�
ln

D�̄

���
+ �0 − i�
� + 
�̄��nd�� + i
�̄
 . �C2�

	In this expansion one has to include terms of the order O��−2� because of the linear term in the prefactor in Eq. �42�.
 Using
Eq. �C2�, the second integral in Eq. �C1� is obtained explicitly, and then expanded up to order z−2,

�
−	

−D�̄ F����d�

z − �
�


�̄

�z
ln

z

D�̄

−
1

2
�
�̄

�z
ln

z

D�̄
�2

+

�̄

2

�2D�̄z
−


�̄
2

6z2 +
D�̄
�̄

�z2 −

�̄

�
	�0 − i�
� + 
�̄��nd�� + i
�̄
� 1

zD�̄

−
1

z2 ln
z

D�̄

 .

�C3�

As a result, the asymptotic expansion of the function M��z� becomes

M��z� � 	�� + �
�̄/��ln�z/D�̄�
/z + ��� + �
�̄/��	�0 − i�
� + 
�̄��nd�� + i
�̄
ln�z/D�̄� − �
�̄/��2�1/2�ln2�z/D�̄��/z2, �C4�

where the coefficients �� and �� are given by

�� =

�̄

2

�2D�̄

−

�̄

�D�̄

	�0 − i�
� + 
�̄��nd�� + i
�̄


+ �
−	

+	

	i ln H����/�2�� − 
�− D�̄ − ��F����
d� ,

�C5�

�� = −

�̄

2

6
+


�̄D�̄

�

+ �
−	

+	

�	i ln H����/�2�� − 
�− D�̄ − ��F����
d� .

�C6�

An analogous calculation gives F̃����=F�̄���*, leading to
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M̃��z� � 	�̃� + �
�/��ln�z/D��
/z

+ ��̃� + �
�/��	�0 + i�
� + 
�̄��nd�̄� − i
�


�ln�z/D�� − �
�/��2�1/2�ln2�z/D���/z2, �C7�

�̃� =

�

2

�2D�

−

�

�D�

	�0 + i�
� + 
�̄��nd�̄� − i
�


+ �
−	

+	

	i ln H̃����/�2�� − 
�− D� − ��F̃����
d� ,

�C8�

�̃� = −

�

2

6
+


�D�

�

+ �
−	

+	

�	i ln H̃����/�2�� − 
�− D� − ��F̃����
d� .

�C9�

Finally, we use Eqs. �C4� and �C7� in Eq. �42�, and then
compare term by term with the expansion of Eq. �33�. This
procedure determines the coefficients a and ã,

a = �� + �0 − i
�, ã = �̃� + �0 + i
�̄, �C10�

and gives the self-consistency equations

b�̄ + i
�̄�nd�̄� = i�
� + 
�̄�−1	�� − a�� + ��
2/2 + 
�̄h/�2��
 ,

�C11�

b� − i
��nd�� = − i�
� + 
�̄�−1	�̃� − ã�̃� + �̃�
2/2 − 
�h/�2��
 .

�C12�

In the case of a full spin symmetry �including h=0�, one has

�̃=�*, �̃=�*, and ã=a*, and then Eq. �C11� and Eq. �C12�
become complex conjugate.

For a given set of parameters, Eqs. �C11� and �C12� are
solved numerically for b� and �nd�� by an iterative Newton-
Raphson algorithm. The initial values are chosen from the
solution of the noninteracting �U=0� problem.
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Unified description of correlations in double quantum dots
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The two-level model for a double quantum dot coupled to two leads, which is ubiquitously used
to describe charge oscillations, transmission-phase lapses and correlation-induced resonances, is
considered in its general form. The model features arbitrary tunnelling matrix elements among the
two levels and the leads and between the levels themselves (including the effect of Aharonov-Bohm
fluxes), as well as inter-level repulsive interactions. We show that this model is exactly mapped onto
a generalized Anderson model of a single impurity, where the electrons acquire a pseudo-spin degree
of freedom, which is conserved by the tunnelling but not within the dot. Focusing on the local-
moment regime where the dot is singly occupied, we show that the effective low-energy Hamiltonian
is that of the anisotropic Kondo model in the presence of a tilted magnetic field. For moderate
values of the (renormalized) field, the Bethe ansatz solution of the isotropic Kondo model allows us
to derive accurate expressions for the dot occupation numbers, and henceforth its zero-temperature
transmission. Our results are in excellent agreement with those obtained from the Bethe ansatz
for the isotropic Anderson model, and with the functional and numerical renormalization-group
calculations of Meden and Marquardt [Phys. Rev. Lett. 96, 146801 (2006)], which are valid for
the general anisotropic case. In addition we present highly accurate estimates for the validity of the
Schrieffer-Wolff transformation (which maps the Anderson Hamiltonian onto the low-energy Kondo
model) at both the high- and low-magnetic field limits. Perhaps most importantly, we provide a
single coherent picture for the host of phenomena to which this model has been applied.

PACS numbers: 73.63.Kv,72.15.Qm,75.20.Hr,73.23.Hk
Keywords: quantum dots, multi-level transport, Kondo effect, Bethe ansatz, singular value decomposition

I. INTRODUCTION

The ongoing technological progress in the fabrication
and control of nanoscale electronic circuits, such as quan-
tum dots, has stimulated detailed studies of various
quantum-impurity models, where a few local degrees of
freedom are coupled to a continuum. Of particular in-
terest are models with experimentally verifiable univer-
sal properties. One of the best studied examples is the
Anderson single impurity model,1 which describes suc-
cessfully electronic correlations in small quantum dots.2,3
The experimental control of most of the parameters of
this model, e.g., the impurity energy level position or the
level broadening due to hybridization with the contin-
uum, allows for detailed investigations4,5 of the universal
low-temperature behavior of the Anderson model.

In this paper we study the low-energy behavior of a
generic model, depicted in Fig. 1a, which pertains ei-
ther to a single two-level quantum dot or to a double
quantum dot where each dot harbors only a single level.
The spin degeneracy of the electrons is assumed to be
lifted by an external magnetic field. Several variants of
this model have been studied intensely in recent years, in
conjunction with a plethora of phenomena, such as many-
body resonances in the spectral density,6 phase lapses
in the transmission phase,7,8 charge oscillations,9,10 and
correlation-induced resonances in the conductance.11,12
Albeit being described by the same model, no clear link-

age has been established between these seemingly differ-
ent effects. The reason is in part due to the large num-
ber of model parameters involved, which so far obscured
a clear physical picture. While some exact statements
can be made, these are restricted to certain solvable lim-
its,6 and are apparently nongeneric.11 Here we construct
a framework which encompasses all parameter regimes of
the model, and enables a unified description of the var-
ious phenomena alluded to above, exposing their com-
mon physical origin. For the most interesting regime of
strong fluctuations between the two levels, we are able to
give: (i) explicit analytical conditions for the occurrence
of transmission phase lapses; (ii) an explanation of the
population inversion and the charge oscillations9,10,13 (in-
cluding a Kondo enhancement of the latter); (iii) a com-
plete account of the correlation-induced resonances11 as
a disguised Kondo phenomenon.

After introducing the details of the double-dot Hamil-
tonian in Sec. II A, we begin our analysis by constructing
a linear transformation of the dot operators, and a simul-
taneous (generally different) linear transformation of the
lead operators, such that the 2×2 tunnelling matrix be-
tween the two levels on the dot and the leads becomes
diagonal (with generally different eigenvalues). As a re-
sult, the electrons acquire a pseudo-spin degree of free-
dom which is conserved upon tunnelling between the dot
and the continuum, as shown schematically in Fig. 1b.
Concomitantly, the transformation generates a local Zee-
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FIG. 1: A schematic representation of the double-dot system, along with its reduction in the local-moment regime to an effective
Kondo model with a tilted magnetic field. (a) The model system: two localized levels coupled by tunnelling matrix elements
to one another and to two separate leads. A constant magnetic flux induces phase factors on those elements. Spinless electrons
residing on the two levels experience a repulsive interaction. (b) The mapping onto a spinful generalized Anderson model, with
a tilted magnetic field and different tunnelling elements for spin-up and spin-down electrons. (c) The low-energy behavior of

the generalized Anderson model is mapped onto an anisotropic Kondo model with a tilted magnetic field, �htot.

man magnetic field. In this way the original double-dot
model system is transformed into a generalized Anderson
impurity model in the presence of a (generally tilted)
external magnetic field. This first stage is detailed in
Sec. II B and Appendix A.

We next analyze in Sec. III the low-energy properties
of our generalized Anderson model. We confine ourselves
to the local moment regime, in which there is a single
electron on the impurity. The fluctuations of the pseudo-
spin degree of freedom (which translate into charge fluc-
tuations between the two localized levels in the original
model) are determined by two competing effects: the po-
larizing effect of the local magnetic field, and the Kondo
screening by the itinerant electrons. In order to quanti-
tatively analyze this competition, we derive an effective
low-energy Kondo Hamiltonian, using Haldane’s scaling
procedure,14 together with the Schrieffer-Wolff15 trans-
formation and Anderson’s poor man’s scaling.16 This
portion of the derivation resembles recent studies of the
Kondo effect in the presence of ferromagnetic leads,17 al-
though the physical context and implications are quite
different.

As is mentioned above, the tunnelling between the im-
purity and the continuum in the generalized Anderson
model is (pseudo) spin dependent. This asymmetry re-
sults in two important effects: (a) different renormal-
izations of the two local levels, which in turn generates
an additional local magnetic field.17 This field is not
necessarily aligned with the original Zeeman field that
is present in the generalized Anderson model. (b) An
anisotropy of the exchange coupling between the con-
duction electrons and the local moment in the Kondo
Hamiltonian. However, since the scaling equations for
the anisotropic Kondo model16,18 imply a flow towards
the isotropic strong coupling fixed point, the low-energy
behavior of the generalized Anderson model can be still
described in terms of two competing energy scales, the
Kondo temperature, TK , and the renormalized magnetic
field, htot. Our two-stage mapping, double-dot ⇒ gener-
alized Anderson model ⇒ anisotropic Kondo model (see
Fig. 1), allows us to obtain analytic expressions for the
original model properties in terms of those of the Kondo

model. We derive in Sec. IV the occupation numbers on
the two localized levels by employing the Bethe ansatz
solution of the magnetization of a Kondo spin in a finite
magnetic field.19,20 This solution also results in a highly
accurate expression for the conductance based upon the
Friedel-Langreth sum rule.21 Perhaps most importantly,
it provides a single coherent picture for the host of phe-
nomena to which our model has been applied.

Examples of explicit results stemming from our general
analysis are presented in Sec. V. First, we consider the
case in which the tunnelling is isotropic, being the same
for spin-up and spin-down electrons. Then the model is
exactly solvable by direct application of the Bethe ansatz
to the Anderson Hamiltonian.20,22 We solve the result-
ing equations22,23 numerically and obtain the occupation
numbers for arbitrary parameter values of the model, and
in particular, for arbitrary values of the local Zeeman
field. By comparing with the occupation numbers ob-
tained in Sec. IV from the Kondo version of the model,
we are able to test the accuracy of the Schrieffer-Wolff
mapping onto the Kondo Hamiltonian. We find that this
mapping yields extremely precise results over the entire
local-moment regime. This exactly solvable example has
another virtue. It clearly demonstrates the competition
between the Kondo screening of the local spin, which is
governed by TK , and the polarizing effect of the local field
htot. This competition is reflected in the charging pro-
cess of the quantum dot described by the original Hamil-
tonian. We next proceed to apply our general method to
the features for which the anisotropy in the tunnelling is
relevant, notably the transmission phase lapses and the
correlation-induced resonances.11 In particular, we derive
analytical expressions for the occupation numbers and
the conductance employing the mapping onto the Kondo
Hamiltonian. These analytical expressions give results
which are in a very good agreement with the data pre-
sented by Meden and Marquardt,11 which was obtained
by the functional and numerical renormalization-group
methods applied to the original model.

As our treatment makes extensive usage of the exact
Bethe ansatz solutions for the impurity magnetization in
the isotropic Kondo and Anderson models with a finite
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magnetic field, all relevant details of the solutions are
concisely gathered for convenience in Appendix B.

II. THE DOUBLE-DOT SYSTEM AS A
GENERALIZED ANDERSON MODEL

A. The model

We consider spinless electrons in a system of two dis-
tinct energy levels (a ‘quantum dot’), labelled i = 1, 2,
which are connected by tunnelling to two leads, labelled
α = L, R. This quantum dot is penetrated by a (con-
stant) magnetic flux. The total Hamiltonian of the sys-
tem reads

H = Hl + Hd + Hld , (1)

in which Hl is the Hamiltonian of the leads, Hd is the
Hamiltonian of the isolated dot, and Hld describes the
coupling between the dot and the leads. The system is
portrayed schematically in Fig. 1a.

Each of the leads is modelled by a continuum of nonin-
teracting energy levels lying within a band of width 2D,
with a constant density of states ρ.24 The corresponding
Hamiltonian is given by

Hl =
∑

kα

εkc†kαckα , (2)

where c†kα (ckα) creates (annihilates) an electron of wave
vector k on lead α. The two leads are connected to two
external reservoirs, held at the same temperature T and
having different chemical potentials, µL and µR, respec-
tively. We take the limit µL →µR = 0 in considering
equilibrium properties and the linear conductance.

The isolated dot is described by the Hamiltonian

Hd =
[

d†1 d†2
] · Êd ·

[
d1

d2

]
+ U n1n2 , (3)

where

Êd =
1
2

[
2 ε0 + ∆ b ei(ϕL−ϕR)/2

b e−i(ϕL−ϕR)/2 2 ε0 − ∆

]
. (4)

Here, d†i (di) creates (annihilates) an electron on the
ith level, ni ≡ d†idi are the occupation-number opera-
tors (representing the local charge), U > 0 denotes the

Coulomb repulsion between electrons that occupy the
two levels, ε0 ± ∆/2 are the (single-particle) energies on
the levels, and b/2 is the amplitude for tunnelling be-
tween them. The phases ϕL and ϕR, respectively, rep-
resent the Aharonov-Bohm fluxes (measured in units of
the flux quantum 2π�c/e) in the left and in the right
hopping loops, such that the total flux in the two loops
is ϕ ≡ ϕL + ϕR [see Fig. 1a].

Gauge invariance grants us the freedom to distribute
the Aharonov-Bohm phases among the inter-dot coupling
b and the couplings between the dot levels and the leads.
With the convention of Eq. (4), the coupling between the
quantum dot and the leads is described by the Hamilto-
nian

Hld =
∑

k

[
c†kL c†kR

] · Â ·
[

d1

d2

]
+ H.c. , (5)

where

Â =
[

aL1e
iϕ/2 aL2

aR1 aR2e
iϕ/2

]
, ϕ = ϕL + ϕR . (6)

Here the real (possibly negative) coefficients aαi are the
tunnelling amplitudes for transferring an electron from
the level i to lead α. Note that the Hamiltonian de-
pends solely on the total Aharonov-Bohm flux ϕ when
the interdot coupling b vanishes. Also, the tunnelling ma-
trix Â is assumed to be independent of the wave vector
k. This assumption considerably simplifies the analysis
while keeping the main physical picture intact.

B. Mapping onto a generalized Anderson model

The analysis of the model defined in Sec. II A employs
an exact mapping of the Hamiltonian of Eq. (1) onto a
generalized Anderson Hamiltonian, which pertains to a
single-level quantum dot, coupled to a spin-degenerate
band of conduction electrons. We show in Appendix A
that the model depicted in Fig. 1a is fully described by
the Hamiltonian

H =
∑

k,σ

εk c†kσckσ +
∑

σ

(
ε0 − σ

h

2
cos θ

)
nσ − (

d†↑d↓ + d†↓d↑
) h

2
sin θ + Un↑n↓ +

∑

k,σ

Vσ

(
c†kσdσ + H.c.

)
, (7)

schematically sketched Fig. 1b, which generalizes the
original Anderson model1 in two aspects. Firstly, it al-

lows for spin-dependent coupling between the dot and
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the conduction band. A similar variant of the Ander-
son model has recently attracted much theoretical and
experimental attention in connection with the Kondo ef-
fect for ferromagnetic leads.17,25–28 Secondly, it allows for
a Zeeman field whose direction is inclined with respect
to the “anisotropy” axis z. For spin-independent tun-
nelling, one can easily realign the field along the z axis
by a simple rotation of the different operators about the
y axis. This is no longer the case once V↑ �= V↓, which
precludes the use of some of the exact results available
for the Anderson model. As we show below, the main
effect of spin-dependent tunnelling is to modify the effec-
tive field seen by electrons on the dot, by renormalizing
its z-component.

The derivation of Eq. (7) is accomplished by a trans-
formation known as the singular-value decomposition,29
which allows one to express the tunnelling matrix Â in
the form

Â = R†
l ·

[
V↑ 0
0 V↓

]
· Rd . (8)

Here Rl and Rd are unitary 2×2 matrices, which are used
to independently rotate the lead and the dot operators
according to

[
d↑
d↓

]
≡ Rd ·

[
d1

d2

]
,

[
ck↑
ck↓

]
≡ Rl ·

[
ckL

ckR

]
. (9)

To make contact with the conventional Anderson impu-
rity model, we have labelled the linear combinations of
the original operators [defined through Eqs. (9)] by the
“spin” index σ =↑ (+1) and σ =↓ (−1).

The transformation (9) generalizes the one in which
the same rotation R is applied to both the dot and the
lead operators. It is needed in the present, more general,
case since the matrix Â generically lacks an orthogonal
basis of eigenvectors. The matrices Rd and Rl can always
be chosen uniquely (up to a common overall phase) such
that30 (a) the tunnelling between the dot and the contin-
uum is diagonal in the spin basis (so that the tunnelling
conserves the spin); (b) the amplitudes V↑ ≥ V↓ ≥ 0
are real; and (c) the part of the Hamiltonian of Eq. (7)
pertaining to the dot has only real matrix elements with
h sin θ ≥ 0. The explicit expressions for the rotation ma-
trices Rd and Rl as well as for the model parameters
appearing in Eq. (7) in terms of those of the original
Hamiltonian are given in Appendix A.

It should be emphasized that partial transformations
involving only one rotation matrix, either Rd or Rl, have
previously been applied in this context (see, e.g., Refs. 6
and 31). However, excluding special limits, both Rd and
Rl are required to expose the formal connection to the
Anderson model. A first step in this direction was re-
cently taken by Golosov and Gefen,8 yet only on a re-
stricted manifold for the tunnelling amplitudes aαi. In
the following section we discuss in detail the low-energy
physics of the Hamiltonian of Eq. (7), focusing on the
local-moment regime. Explicit results for the conduc-

tance and the occupations of the levels are then presented
in Secs. IV and V.

III. THE LOCAL-MOMENT REGIME

There are two limits where the model of Eq. (1) has
an exact solution:6 (i) when the spin-down state is de-
coupled in Eq. (7), i.e., when V↓ = h sin θ = 0; (ii) when
the coupling is isotropic, i.e., V↑ = V↓. In the former
case, n↓ is conserved. The Hilbert space separates then
into two disconnected sectors with n↓ = 0 and n↓ = 1.
Within each sector, the Hamiltonian can be diagonalized
independently as a single-particle problem. In the lat-
ter case, one can always align the magnetic field h along
the z axis by a simple rotation of the different operators
about the y axis. The model of Eq. (7) reduces then to
a conventional Anderson model in a magnetic field, for
which an exact Bethe ansatz solution is available.20 (This
special case will be analyzed in great detail in Sec. V A.)

In terms of the model parameters appearing in the orig-
inal Hamiltonian, the condition V↓ = 0 corresponds to

|aL1aR2| = |aR1aL2|, and ϕ = β mod 2π, (10)

whereas V↑ = V↓ = V corresponds to

|aL1| = |aR2|, |aL2| = |aR1|, and ϕ = (π + β) mod 2π .
(11)

Here

β =






0 if aL1aL2aR1aR2 > 0

π if aL1aL2aR1aR2 < 0
(12)

records the combined signs of the four coefficients aαi.32
Excluding the two cases mentioned above, no exact

solutions to the Hamiltonian of Eq. (1) are known. Nev-
ertheless, we shall argue below that the model displays
generic low-energy physics in the “local-moment” regime,
corresponding to the Kondo effect in a finite magnetic
field. To this end we focus hereafter on Γ↑, Γ↓, h �
−ε0, U + ε0, and derive an effective low-energy Hamil-
tonian for general couplings. Here Γσ = πρV 2

σ is half the
tunnelling rate between the spin state σ and the leads.

A. Effective low-energy Hamiltonian

As is mentioned above, when V↑ = V↓ one is left with
a conventional Kondo effect in the presence of a finite
magnetic field. Asymmetry in the couplings, V↑ �= V↓,
changes this situation in three aspects. Firstly, the ef-
fective magnetic field seen by electrons on the dot is
modified, acquiring a renormalized z-component. Sec-
ondly, the elimination of the charge fluctuations by
means of a Schrieffer-Wolff transformation,15 results in
an anisotropic spin-exchange interaction. Thirdly, a new
interaction term is produced, coupling the spin and the
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charge. Similar aspects have been previously discussed
in the context of the Kondo effect in the presence of fer-
romagnetic leads,17 where the source of the asymmetry
is the inequivalent density of states for conduction elec-
trons with opposite spin.28 Below we elaborate on the
emergence of these features in the present case.

Before turning to a detailed derivation of the effec-
tive low-energy Hamiltonian, we briefly comment on the
physical origin of the modified magnetic field. As is well
known, the coupling to the continuum renormalizes the
bare energy levels of the dot. For Γ↑, Γ↓, h � −ε0, U +ε0,
these renormalizations can be accurately estimated using
second-order perturbation theory in Vσ . For V↑ �= V↓,
each of the bare levels εσ = ε0 − 1

2σh cos θ is shifted by a
different amount, which acts in effect as an excess mag-
netic field. Explicitly, for T = 0 and D 	 |ε0|, U one
obtains13,17

∆hz =
Γ↑ − Γ↓

π
ln

ε0 + U

|ε0| . (13)

As ε0 is swept across −U/2, ∆hz ∝ Γ↑−Γ↓ changes sign.
Had |Γ↑−Γ↓| exceeded h this would have dictated a sign-
reversal of the z-component of the combined field as ε0 is
tuned across the Coulomb-blockade valley. As originally
noted by Silvestrov and Imry,13 this simple but insightful
observation underlies the population inversion discussed
in Refs.9,10 and13 for a singly occupied dot. We shall
return to this important point in greater detail later on.

A systematic derivation of the effective low-energy
Hamiltonian for Γ↑, Γ↓, h � −ε0, U + ε0 involves the
combination of Anderson’s poor-man’s scaling16 and the
Schrieffer-Wolff transformation.15 For |ε0| ∼ U + ε0, the
elimination of high-energy excitations proceeds in three
steps. First Haldane’s perturbative scaling approach14

is applied to progressively reduce the bandwidth from
its bare value D down to DSW ∼ |ε0| ∼ U + ε0. Next
a Schrieffer-Wolff transformation is carried out to elim-
inate charge fluctuations on the dot. At the conclusion
of this second step one is left with a generalized Kondo
Hamiltonian [Eq. (16) below], featuring an anisotropic
spin-exchange interaction and an additional interaction
term that couples spin and charge. The Kondo Hamilto-
nian also includes a finite magnetic field whose direction
is inclined with respect to the anisotropy axis z. In the
third and final stage, the Kondo Hamiltonian is treated
using Anderson’s poor-man’s scaling16 to expose its low-
energy physics.

The above procedure is further complicated in the case
where |ε0| and U + ε0 are well separated in energy. This
situation requires two distinct Schrieffer-Wolff transfor-
mations: one at Dup

SW ∼ max{|ε0|, U + ε0} and the other
at Ddown

SW ∼ min{|ε0|, U + ε0}. Reduction of the band-
width from Dup

SW to Ddown
SW is accomplished using yet

another (third) segment of the perturbative scaling. It
turns out that all possible orderings of |ε0| and U + ε0
produce the same Kondo Hamiltonian, provided that Γ↑,
Γ↓ and h are sufficiently small. To keep the discussion as
concise as possible, we therefore restrict the presentation

to the case |ε0| ∼ U + ε0.
Consider first the energy window between D and DSW,

which is treated using Haldane’s perturbative scaling.14
Suppose that the bandwidth has already been lowered
from its initial value D to some value D′ = De−l with
0 < l < ln(D/DSW ). Further reducing the bandwidth
to D′(1 − δl) produces a renormalization of each of the
energies ε↑, ε↓, and U . Specifically, the z-component of
the magnetic field, hz ≡ ε↓ − ε↑, is found to obey the
scaling equation

dhz

dl
=

Γ↑ − Γ↓
π

[
1

1 − elε0/D
− 1

1 + el(U + ε0)/D

]
.

(14)
Here we have retained ε0 and U + ε0 in the denomina-
tors, omitting corrections which are higher-order in Γ↑,
Γ↓, and h (these include also the small renormalizations
of εσ and U that are accumulated in the course of the scal-
ing). The x-component of the field, hx = h sin θ, remains
unchanged throughout the procedure. Upon reaching
D′ = DSW, the renormalized field hz becomes

h∗
z = h cos θ +

Γ↑ − Γ↓
π

ln
DSW + U + ε0

DSW − ε0
, (15)

where we have assumed D 	 |ε0|, U .
Once the scale DSW is reached, charge fluctuations on

the dot are eliminated via a Schrieffer-Wolff transforma-
tion,15 which generates among other terms also further
renormalizations of εσ. Neglecting h in the course of the
transformation, one arrives at the following Kondo-type
Hamiltonian,

HK =
∑

k,σ

εkc†kσckσ + J⊥ (Sxsx + Sysy) + JzSzsz

+ vscS
z

∑

k,k′,σ

:c†kσck′σ : +
∑

k,k′,σ

(v+ + σv−) :c†kσck′σ :

− h̃zSz − h̃xSx. (16)

Here we have represented the local moment on the dot
by the spin- 1

2 operator

�S =
1
2

∑

σ,σ′
�τσσ′d†σdσ′ (17)

(�τ being the Pauli matrices), while

�s =
1
2

∑

k,k′

∑

σ,σ′
�τσσ′c

†
kσck′σ′ (18)

are the local conduction-electron spin densities. The
symbol : c†kσck′σ: = c†kσck′σ − δk,k′θ(−εk) stands for nor-
mal ordering with respect to the filled Fermi sea. The
various couplings that appear in Eq. (16) are given by
the explicit expressions

ρJ⊥ =
2
√

Γ↑Γ↓
π

(
1
|ε0| +

1
U + ε0

)
, (19)
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ρJz =
Γ↑ + Γ↓

π

(
1
|ε0| +

1
U + ε0

)
, (20)

ρvsc =
Γ↑ − Γ↓

4π

(
1
|ε0| +

1
U + ε0

)
, (21)

ρv± =
Γ↑ ± Γ↓

4π

(
1
|ε0| −

1
U + ε0

)
, (22)

h̃z = h cos θ +
Γ↑ − Γ↓

π
ln

U + ε0
|ε0| , (23)

and

h̃x = h sin θ. (24)

Equations (19)–(24) are correct to leading order in Γ↑,
Γ↓, and h, in accordance with the inequality Γ↑, Γ↓, h �
|ε0|, U + ε0. In fact, additional terms are generated in
Eq. (16) when h is kept in the course of the Schrieffer-
Wolff transformation. However, the neglected terms
are smaller than the ones retained by a factor of
h/ min{|ε0|, U + ε0} � 1, and are not expected to al-
ter the low-energy physics in any significant way. We
also note that h̃z accurately reproduces the second-order
correction to hz detailed in Eq. (13). As emphasized
above, the same effective Hamiltonian is obtained when
|ε0| and U + ε0 are well separated in energy, although
the derivation is notably more cumbersome. In unify-
ing the different possible orderings of |ε0| and U + ε0,
the effective bandwidth in Eq. (16) must be taken to be
D0 ∼ min{|ε0|, U + ε0}.

B. Reduction to the Kondo effect in a finite
magnetic field

In addition to spin-exchange anisotropy and a tilted
magnetic field, the Hamiltonian of Eq. (16) contains a
new interaction term, vsc, which couples spin and charge.
It also includes spin-dependent potential scattering, rep-
resented by the term v− above. As is well known, spin-
exchange anisotropy is irrelevant for the conventional
spin- 1

2 single-channel Kondo problem. As long as one
lies within the confines of the antiferromagnetic domain,
the system flows to the same strong-coupling fixed point
no matter how large the exchange anisotropy is. SU(2)
spin symmetry is thus restored at low energies. A fi-
nite magnetic field h cuts off the flow to isotropic cou-
plings, as does the temperature T . However, the resid-
ual anisotropy is negligibly small if h, T and the bare
couplings are small. That is, low-temperature thermo-
dynamic and dynamic quantities follow a single generic
dependence on T/TK and h/Tk, where TK is the Kondo
temperature. All relevant information on the bare spin-
exchange anisotropy is contained for weak couplings in
the microscopic form of TK .

The above picture is insensitive to the presence of
weak potential scattering, which only slightly modifies
the conduction-electron phase shift at the Fermi energy.
As we show below, neither is it sensitive to the pres-
ence of the weak couplings vsc and v− in Eq. (16). This
observation is central to our discussion, as it enables a
very accurate and complete description of the low-energy
physics of HK in terms of the conventional Kondo model
in a finite magnetic field. Given the Kondo temperature
TK and the direction and magnitude of the renormalized
field pertaining to Eq. (16), physical observables can be
extracted from the exact Bethe ansatz solution of the
conventional Kondo model. In this manner, one can ac-
curately compute the conductance and the occupation of
the levels, as demonstrated in Secs. IV and V.

To establish this important point, we apply poor-
man’s scaling16 to the Hamiltonian of Eq. (16). Of
the different couplings that appear in HK , only Jz , J⊥,
and h̃z are renormalized at second order. Converting
to the dimensionless exchange couplings J̃z = ρJz and
J̃⊥ = ρJ⊥, these are found to obey the standard scaling
equations16,18

dJ̃z

dl
= J̃2

⊥ , (25)

dJ̃⊥
dl

= J̃zJ̃⊥ , (26)

independent of vsc and v±. Indeed, the couplings vsc and
v± do not affect the scaling trajectories in any way, other
than through a small renormalization to h̃z:

dh̃z

dl
= D0 e−l

(
J̃z ṽ− + 2ṽscṽ+

)
8 ln 2. (27)

Here ṽµ are the dimensionless couplings ρvµ (µ = sc,±),
and l equals ln(D0/D′) with D′ the running bandwidth.

As stated above, the scaling equations (25)–(26)
are identical to those obtained for the conventional
anisotropic Kondo model. Hence, the Kondo couplings
flow toward strong coupling along the same scaling tra-
jectories and with the same Kondo temperature as in the
absence of vsc and v±. Straightforward integration of
Eqs. (25)–(26) yields

TK = D0 exp
(
− 1

ρ ξ
tanh−1 ξ

Jz

)
(28)

with ξ =
√

J2
z − J2

⊥. Here we have exploited the hierar-
chy Jz ≥ J⊥ > 0 in deriving Eq. (28). In terms of the
original model parameters appearing in Eq. (7), Eq. (28)
takes the form

TK = D0 exp
[

πε0(U + ε0)
2U(Γ↑ − Γ↓)

ln
Γ↑
Γ↓

]
. (29)

Equation (29) was obtained within second-order scaling,
which is known to overestimate the pre-exponential fac-
tor that enters TK . We shall not seek an improved ex-
pression for TK encompassing all parameter regimes of
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Eq. (7). More accurate expressions will be given for the
particular cases of interest, see Sec. V below. Much of
our discussion will not depend, though, on the precise
form of TK . We shall only assume it to be sufficiently
small such that the renormalized exchange couplings can
be regarded isotropic starting at energies well above TK .

The other competing scale which enters the low-energy
physics is the fully renormalized magnetic field: �htot =
hx

tot x̂ + hz
tot ẑ. While the transverse field hx

tot remains
given by h sin θ, the longitudinal field hz

tot is obtained by
integration of Eq. (27), subject to the initial condition
of Eq. (23). Since the running coupling J̃z is a slowly
varying function of l in the range where Eqs. (25)–(27)
apply, it can be replaced for all practical purposes by its
bare value in Eq. (27). Straightforward integration of
Eq. (27) then yields

hz
tot = h cos θ +

Γ↑ − Γ↓
π

ln
U + ε0
|ε0|

+ 3 ln(2)D0

Γ2
↑ − Γ2

↓
π2

× U(U + 2ε0)
(U + ε0)2ε20

, (30)

where we have used Eqs. (20)–(22) for Jz, vsc, and
v±. Note that the third term on the right-hand side
of Eq. (30) is generally much smaller than the first two
terms, and can typically be neglected.

To conclude this section, we have shown that the
Hamiltonian of Eq. (7), and thus that of Eq. (1), is equiv-
alent at sufficiently low temperature and fields to the
ordinary isotropic Kondo model with a tilted magnetic
field, provided that Γ↑, Γ↓ � |ε0|, U + ε0. The relevant
Kondo temperature is approximately given by Eq. (29),
while the components of �htot = hx

tot x̂ + hz
tot ẑ are given

by hx
tot = h sin θ and Eq. (30).

IV. PHYSICAL OBSERVABLES

Having established the intimate connection between
the generalized Anderson Hamiltonian, Eq. (7), and the
standard Kondo model with a tilted magnetic field, we
now employ well-known results of the latter model in or-
der to obtain a unified picture for the conductance and
the occupation of the levels of our original model, Eq. (1).
The analysis extends over a rather broad range of pa-
rameters. For example, when U + 2ε0 = 0, then the
sole requirement for the applicability of our results is for√

∆2 + b2 to be small. The tunnelling matrix Â can be
practically arbitrary as long as the system lies deep in the
local-moment regime. The further one departs from the
middle of the Coulomb-blockade valley the more restric-
tive the condition on Â becomes in order for �htot to stay
small. Still, our approach is applicable over a surpris-
ingly broad range of parameters, as demonstrated below.
Unless stated otherwise, our discussion is restricted to
zero temperature.

A. Conductance

At zero temperature, a local Fermi liquid is formed in
the Kondo model. Only elastic scattering takes place at
the Fermi energy, characterized by the scattering phase
shifts for the two appropriate conduction-electron modes.
For a finite magnetic field h in the z-direction, single-
particle scattering is diagonal in the spin index. The
corresponding phase shifts, δ↑(h) and δ↓(h), are given by
the Friedel-Langreth sum rule,21,33 δσ(h) = π〈nσ〉, which
when applied to the local-moment regime takes the form

δσ(h) =
π

2
+ σπM(h) . (31)

Here M(h) is the spin magnetization, which reduces34 in
the scaling regime to a universal function of h/TK ,

M(h) = MK(h/TK) . (32)

Thus, Eq. (31) becomes δσ(h) = π/2 + σπMK(h/TK),
where MK(h/TK) is given by Eq. (B1)

To apply these results to the problem at hand, one first
needs to realign the tilted field along the z axis. This is
achieved by a simple rotation of the different operators
about the y axis. Writing the field �htot in the polar form

�htot ≡ htot (sin θhx̂ + cos θhẑ)

≈ h sin θ x̂ +
(

h cos θ +
Γ↑ − Γ↓

π
ln

U + ε0
|ε0|

)
ẑ ,

(33)

the lead and the dot operators are rotated according to
[

c̃k↑
c̃k↓

]
= Rh ·

[
ck↑
ck↓

]
= RhRl ·

[
ckL

ckR

]
(34)

and
[

d̃↑
d̃↓

]
= Rh ·

[
d↑
d↓

]
= RhRd ·

[
d1

d2

]
, (35)

with

Rh = ei(θh/2)τy =
[

cos(θh/2) sin(θh/2)
− sin(θh/2) cos(θh/2)

]
. (36)

Here Rl and Rd are the unitary matrices used in Eq. (9)
to independently rotate the lead and the dot operators.
Note that since sin θ ≥ 0, the range of θh is θh ∈ [0; π].

The new dot and lead degrees of freedom have their
spins aligned either parallel (d̃↑ and c̃k↑) or antiparallel
(d̃↓ and c̃k↓) to the field �htot. In this basis the single-
particle scattering matrix is diagonal,

S̃ = −
[

ei2πMK(htot/TK) 0
0 e−i2πMK(htot/TK)

]
. (37)

The conversion back to the original basis set of left- and
right-lead electrons is straightforward,

S = R†
l R

†
hS̃RhRl ≡

[
r t′
t r′

]
, (38)
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providing us with the zero-temperature conductance G =
(e2/2π�)|t|2.

Equations (37) and (38) were derived employing the
mapping of Eq. (1) onto an effective isotropic Kondo
model with a tilted magnetic field, in the vsc, v± → 0
limit. Within this framework, Eqs. (37) and (38) are
exact in the scaling regime, TK/D0 � 1. The extent
to which these equations are indeed valid can be appreci-
ated by considering the special case h sin θ = 0, for which
there exists an exact (and independent) solution for the
scattering matrix S in terms of the dot “magnetization”
M = 〈n↑ − n↓〉/2 [see Eq. (41) below]. That solution,
which is based on the Friedel-Langreth sum rule21 ap-
plied directly to a spin-conserving Anderson model, re-
produces Eqs. (37) and (38) in the Kondo regime.

1. Zero Aharonov-Bohm fluxes

Of particular interest is the case where no Aharonov-
Bohm fluxes are present, where further analytic progress
can be made. For ϕL = ϕR = 0, the parame-
ters that appear in the Hamiltonian of Eq. (1) are
all real. Consequently, the rotation matrices Rd and
Rl acquire the simplified forms given by Eqs. (A29)
and (A32) (see Appendix A for details). Under
these circumstances, the matrix product RhRl becomes
±eiτy(θh+sR θl)/2eiπτz(1−sR)/4, and the elements of the
scattering matrix [see Eq. (38)] are

t = t′ = − i sin[2πMK(htot/TK)] sin(θl + sRθh) ,

r = (r′)∗ = − cos[2πMK(htot/TK)]
− i sin[2πMK(htot/TK)] cos(θl + sRθh) .

(39)

Hence, the conductance is

G =
e2

2π�
sin2[2πMK(htot/TK)] sin2(θl + sRθh) , (40)

where the sign sR and angle θl are given by Eqs. (A31)
and (A23), respectively. All dependencies of the con-
ductance on the original model parameters that enter
Eq. (1) are combined in Eq. (40) into two variables alone,
θl + sRθh and the reduced field htot/TK . In particular,
θl is determined exclusively by the tunnelling matrix Â,
while sR depends additionally on the two dot parameters
∆ and b.

The conditions for a phase lapse to occur are particu-
larly transparent from Eq. (40). These lapses correspond
to zeroes of t, and, in turn, of the conductance. There
are two possibilities for G to vanish: either htot is zero,
or θl +sRθh equals an integer multiple of π. For example,
when the Hamiltonian of Eq. (7) is invariant under the
particle-hole transformation dσ → d†σ and ckσ → −c†kσ

(which happens to be the case whenever
√

∆2 + b2 = 0
and U + 2ε0 = 0), then htot vanishes, and consequently
the conductance vanishes as well. A detailed discussion
of the ramifications of Eq. (40) is held in Sec. VB below.

2. Parallel-field configuration

For h sin θ = 0, spin is conserved by the Hamiltonian
of Eq. (7). We refer to this case as the “parallel-field”
configuration, since the magnetic field is aligned with the
anisotropy axis z. For a parallel field, one can easily gen-
eralize the Friedel-Langreth sum rule21 to the Hamilto-
nian of Eq. (7).25 Apart from the need to consider each
spin orientation separately, details of the derivation are
identical to those for the ordinary Anderson model,21 and
so is the formal result for the T = 0 scattering phase
shift: δσ = π∆Nσ, where ∆Nσ is the number of dis-
placed electrons in the spin channel σ. In the wide-band
limit, adopted throughout our discussion, ∆Nσ reduces
to the occupancy of the corresponding dot level, 〈nσ〉.
The exact single-particle scattering matrix then becomes

S = eiπ〈n↑+n↓〉R†
l ·

[
ei2πM 0

0 e−i2πM

]
· Rl , (41)

where M = 〈n↑ − n↓〉/2 is the dot “magnetization.”
Equation (41) is quite general. It covers all physical

regimes of the dot, whether empty, singly occupied or
doubly occupied, and extends to arbitrary fluxes ϕL and
ϕR. Although formally exact, it does not specify how
the dot “magnetization” M and the total dot occupancy
〈n↑ + n↓〉 relate to the microscopic model parameters
that appear in Eq. (7). Such information requires an ex-
plicit solution for these quantities. In the Kondo regime
considered above, 〈n↑ + n↓〉 is reduced to one and M is
replaced by ±MK(htot/TK). Here the sign depends on
whether the field �htot is parallel or antiparallel to the
z axis (recall that htot ≥ 0 by definition). As a result,
Eq. (41) reproduces Eqs. (37)–(38).

To carry out the rotation in Eq. (41), we rewrite it in
the form

S = eiπ〈n↑+n↓〉R†
l [cos(2πM) + i sin(2πM)τz] Rl . (42)

Using the general form of Eq. (A3) for the rotation matrix
Rl, the single-particle scattering matrix is written as S =
eiπ〈n↑+n↓〉S̄, where

S̄ = cos(2πM) + i sin(2πM) cos θl τz

+ i sin(2πM) sin θl [cosφl τx + sin φl τy] . (43)

The zero-temperature conductance, G = (e2/2π�)|t|2,
takes then the exact form

G =
e2

2π�
sin2(2πM) sin2 θl . (44)

Two distinct properties of the conductance are appar-
ent form Eq. (44). Firstly, G is bounded by sin2 θl times
the conductance quantum unit e2/2π�. Unless θl hap-
pens to equal ±π/2, the maximal conductance is smaller
than e2/2π�. Secondly, G vanishes for M = 0 and is
maximal for M = ±1/4. Consequently, when M is tuned
from M ≈ −1/2 to M ≈ 1/2 by varying an appropriate
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control parameter (for example, ε0 when Γ↑ 	 Γ↓), then
G is peaked at the points where M = ±1/4. In the Kondo
regime, when M → ±MK(htot/TK), this condition is sat-
isfied for htot ≈ 2.4TK . As we show in Sec. VB, this is the
physical origin of the correlation-induced peaks reported
by Meden and Marquardt.11 Note that for a given fixed
tunnelling matrix Â in the parallel-field configuration,
the condition for a phase lapse to occur is simply for M
to vanish.

B. Occupation of the dot levels

Similar to the zero-temperature conductance, one can
exploit exact results of the standard Kondo model to ob-
tain the occupation of the levels at low temperatures and
fields. Defining the two reduced density matrices

Od =
[〈d†1d1〉 〈d†2d1〉
〈d†1d2〉 〈d†2d2〉

]
(45)

and

Õd =

[
〈d̃†↑d̃↑〉 〈d̃†↓d̃↑〉
〈d̃†↑d̃↓〉 〈d̃†↓d̃↓〉

]
, (46)

these are related through

Od = R†
dR

†
hÕdRhRd . (47)

Here RhRd is the overall rotation matrix pertaining to
the dot degrees of freedom, see Eq. (35).

At low temperatures, the mapping onto an isotropic
Kondo model implies

Õd =
[〈ñ↑〉 0

0 〈ñ↓〉
]

, (48)

where

〈ñσ〉 = ntot/2 + σM̃ . (49)

Here we have formally separated the occupancies 〈ñσ〉
into the sum of a spin component and a charge compo-
nent. The spin component involves the magnetization M̃

along the direction of the total effective field �htot. The
latter is well described by the universal magnetization
curve MK(htot/TK) of the Kondo model [see Eq. (B1)].
As for the total dot occupancy ntot, deep in the local-
moment regime charge fluctuations are mostly quenched
at low temperatures, resulting in the near integer valance
ntot ≈ 1. One can slightly improve on this estimate of
ntot by resorting to first-order perturbation theory in Γσ

(and zeroth order in h):

ntot ≈ 1 +
Γ↑ + Γ↓

2π

(
1
ε0

+
1

U + ε0

)
= 1 − 2ρv+ . (50)

This low-order process does not enter the Kondo effect,
and is not contained in MK(htot/TK).35 With the above
approximations, the combination of Eqs. (47) and (48)
yields a general formula for the reduced density matrix

Od = ntot/2 + MK(htot/TK)R†
dR

†
hτzRhRd . (51)

1. Zero Aharonov-Bohm fluxes

As in the case of the conductance, Eq. (51) con-
siderably simplifies in the absence of Aharonov-Bohm
fluxes, when the combined rotation RhRd equals
(sRsθ)1/2eiτy(θh+sθθd)/2eiπτz(1−sθ)/4 [see Eqs. (36) and
(A29)]. Explicitly, Eq. (51) becomes

Od = ntot/2 + MK(htot/TK) cos(θd + sθθh)τz

+ MK(htot/TK) sin(θd + sθθh)τx ,(52)

where the sign sθ and angle θd are given by Eqs. (A30)
and (A23), respectively.

Several observations are apparent from Eq. (52).
Firstly, when written in the original “spin” basis d†1
and d†2, the reduced density matrix Od contains the
off-diagonal matrix element MK(htot/TK) sin(θd +sθθh).
The latter reflects the fact that the original “spin” states
are inclined with respect to the anisotropy axis dynam-
ically selected by the system. Secondly, similar to the
conductance of Eq. (40), Od depends on two variables
alone: θd + sθθh and the reduced field htot/TK . Here,
again, the angle θd depends solely on the tunnelling ma-
trix Â, while the sign sθ depends additionally on ∆ and b.
Thirdly, the original levels d†1 and d†2 have the occupation
numbers

〈n1〉 = ntot/2 + MK(htot/TK) cos(θd + sθθh) , (53a)
〈n2〉 = ntot/2 − MK(htot/TK) cos(θd + sθθh) . (53b)

In particular, equal populations 〈n1〉 = 〈n2〉 are found
if either htot is zero or if θd + sθθd equals π/2 up to
an integer multiple of π. This provides one with a clear
criterion for the occurrence of population inversion,9,10,13
i.e., the crossover from 〈n1〉 > 〈n2〉 to 〈n2〉 > 〈n1〉 or vice
versa.

2. Parallel-field configuration

In the parallel-field configuration, the angle θh is either
zero or π, depending on whether the magnetic field �htot is
parallel or antiparallel to the z axis (recall that h sin θ =
htot sin θh = 0 in this case). The occupancies 〈n1〉 and
〈n2〉 acquire the exact representation

〈n1〉 = ntot/2 + M cos θd , (54a)
〈n2〉 = ntot/2 − M cos θd , (54b)

where ntot is the exact total occupancy of the dot and
M = 〈n↑−n↓〉/2 is the dot “magnetization,” defined and
used previously (not to be confused with M̃ = ±M). As
with the conductance, Eqs. (54) encompass all regimes of
the dot, and extend to arbitrary Aharonov-Bohm fluxes.
They properly reduce to Eqs. (53) in the Kondo regime,
when ntot ≈ 1 [see Eq. (50)] and M → ±MK(htot/TK).
[Note that Eqs. (53) have been derived for zero Aharonov-
Bohm fluxes.]
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One particularly revealing observation that follows
from Eqs. (54) concerns the connection between the phe-
nomena of population inversion and phase lapses in the
parallel-field configuration. For a given fixed tunnelling
matrix Â in the parallel-field configuration, the condi-
tion for a population inversion to occur is identical to the
condition for a phase lapse to occur. Both require that
M = 0. Thus, these seemingly unrelated phenomena are
synonymous in the parallel-field configuration. This is
not generically the case when hx

tot �= 0, as can be seen,
for example, from Eqs. (40) and (53). In the absence of
Aharonov-Bohm fluxes, the conductance is proportional
to sin2(θl + sRθh). It therefore vanishes for hx

tot �= 0
only if θl + sRθh = 0 mod π. By contrast, the difference
in populations 〈n1 − n2〉 involves the unrelated factor
cos(θd + sθθh), which generally does not vanish together
with sin(θl + sRθh).

Another useful result which applies to the parallel-field
configuration is an exact expression for the T = 0 con-
ductance in terms of the population difference 〈n1 −n2〉.
It follows from Eqs. (54) that M = 〈n1 − n2〉/(2 cos θd).
Inserting this relation into Eq. (44) yields

G =
e2

2π�
sin2

(
π〈n1 − n2〉

cos θd

)
sin2 θl . (55)

This expression will be used in Sec. V for analyzing the
conductance in the presence of isotropic couplings, and
for the cases considered by Meden and Marquardt.11

V. RESULTS

Up until this point we have developed a general frame-
work for describing the local-moment regime in terms
of two competing energy scales, the Kondo temperature
TK and the renormalized magnetic field htot. We now
turn to explicit calculations that exemplify these ideas.
To this end, we begin in Sec. VA with the exactly solv-
able case V↑ = V↓, which corresponds to the conventional
Anderson model in a finite magnetic field.6 Using the ex-
act Bethe ansatz solution of the Anderson model,20 we
present a detailed analysis of this special case with three
objectives in mind: (i) to benchmark our general treat-
ment against rigorous results; (ii) to follow in great detail
the delicate interplay between the two competing energy
scales that govern the low-energy physics; (iii) to set the
stage for the complete explanation of the charge oscilla-
tions9,10,13 and the correlation-induced resonances in the
conductance of this device.11,12

We then proceed in Sec. VB to the generic anisotropic
case V↑ �= V↓. Here a coherent explanation is pro-
vided for the ubiquitous phase lapses,8 population in-
version,9,10 and correlation-induced resonances11,12 that
were reported recently in various studies of two-level
quantum dots. In particular, we expose the latter res-
onances as a disguised Kondo phenomenon. The general
formulae of Sec. IV are quantitatively compared to the
numerical results of Ref.11. The detailed agreement that

is obtained nicely illustrates the power of the analytical
approach put forward in this paper.

A. Exact treatment of V↑ = V↓

As emphasized in Sec. III, all tunnelling matrices Â
which satisfy Eq. (11) give rise to equal amplitudes
V↑ = V↓ = V within the Anderson Hamiltonian descrip-
tion of Eq. (7). Given this extra symmetry, one can al-
ways choose the unitary matrices Rl and Rd in such a
way that the magnetic field h points along the z direc-
tion [namely, cos θ = 1 in Eq. (7)]. Perhaps the simplest
member in this class of tunnelling matrices is the case
where aL1 = −aL2 = aR1 = aR2 = V/

√
2, ϕL = ϕR = 0

and b = 0. One can simply convert the conduction-
electron operators to even and odd combinations of the
two leads, corresponding to choosing θl = π/2 + θd. De-
pending on the sign of ∆, the angle θd is either zero (for
∆ < 0) or π (for ∆ > 0), which leaves us with a conven-
tional Anderson impurity in the presence of the magnetic
field �h = |∆| ẑ. All other rotation angle that appear in
Eqs. (A2) and (A2) (i.e., χ’s and φ’s) are equal to zero.
For concreteness we shall focus hereafter on this particu-
lar case, which represents, up to a simple rotation of the
d†σ and c†kσ operators, all tunnelling matrices Â in this
category of interest. Our discussion is restricted to zero
temperature.

1. Impurity magnetization

We have solved the exact Bethe anstaz equations nu-
merically using the procedure outlined in Appendix B.
Our results for the occupation numbers 〈nσ〉 and the
magnetization M = 〈n↑ − n↓〉/2 are summarized in
Figs. 2 and 3. Figure 2 shows the magnetization of the
Anderson impurity as a function of the (average) level
position ε0 in a constant magnetic field, h = ∆ = 10−3U .
The complementary regime ε0 < −U/2 is obtained by
a simple reflection about ε0 = −U/2, as follows from
the particle-hole transformation dσ → d†−σ and ckσ →
−c†k−σ. The Bethe ansatz curve accurately crosses over
from the perturbative domain at large ε0 	 Γ (when
the dot is almost empty) to the local-moment regime
with a fully pronounced Kondo effect (when the dot is
singly occupied). In the latter regime, we find excel-
lent agreement with the analytical magnetization curve
of the Kondo model, Eq. (B1), both as a function of ε0
and as a function of the magnetic field ∆ (lower left in-
set to Fig. 2). The agreement with the universal Kondo
curve is in fact quite surprising in that it extends nearly
into the mixed-valent regime. As a function of field, the
Kondo curve of Eq. (B1) applies up to fields of the order
of h ∼ √

ΓU 	 TK .
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FIG. 2: (Color online) Magnetization of the isotropic case as a
function of ε0: exact Bethe ansatz curve and comparison with
different approximation schemes. Black symbols show the
magnetization M derived from the exact Bethe ansatz equa-
tions; the dashed (red) line marks the result of first-order per-
turbation theory in Γ (Ref.9, divergent at ε0 = 0); the thick
(blue) line is the analytical formula for the magnetization in
the Kondo limit, Eq. (B1), with TK given by Eq. (B4). The
model parameters are Γ/U = 0.05, ∆/U = 10−3 and T = 0.
The upper right inset shows the same data but on a linear
scale. The lower left inset shows the magnetization M as a
function of the magnetic field h = ∆ at fixed ε0/U = −0.2.
The universal magnetization curve of the Kondo model well
describes the exact magnetization up to M ≈ 0.42 (lower
fields not shown), while first-order perturbation theory in Γ
fails from M ≈ 0.46 downwards.

2. Occupation numbers and charge oscillations

Figure 3 displays the individual occupation numbers
〈n1〉 and 〈n2〉 as a function of ε0, for a series of con-
stant fields h = ∆. In going from large ε0 	 Γ to large
−(ε0 + U) 	 Γ, the total charge of the quantum dot
increases monotonically from nearly zero to nearly two.
However, the partial occupancies 〈n1〉 and 〈n2〉 display
nonmonotonicities, which have drawn considerable theo-
retical attention lately.9,10,13 As seen in Fig. 3, the non-
monotonicities can be quite large, although no popula-
tion inversion occurs for Γ↑ = Γ↓.

Our general discussion in Sec. III makes it is easy to in-
terpret these features of the partial occupancies 〈ni〉. In-
deed, as illustrated in Fig. 3, there is excellent agreement
in the local-moment regime between the exact Bethe
ansatz results and the curves obtained from Eqs. (53)
and (50) based on the mapping onto the Kondo Hamil-
tonian. We therefore utilize Eqs. (53) for analyzing the
data. To begin with we note that, for Γ↑ = Γ↓, there is no
renormalization of the effective magnetic field. The lat-
ter remains constant and equal to h = ∆ independent of
ε0. Combined with the fact that cos(θd + sθθh) ≡ −1
in Eqs. (53), the magnetization M = 〈n↑ − n↓〉/2 =
〈n2 − n1〉/2 depends exclusively on the ratio ∆/TK . The
sole dependence on ε0 enters through TK , which varies
according to Eq. (B4). Thus, M is positive for all gate
voltages ε0, excluding the possibility of a population in-
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FIG. 3: (Color online) The occupation numbers 〈n1〉 [solid
(blue) lines] and 〈n2〉 [dotted (red) lines] versus ε0, as obtained
from the solution of the exact Bethe ansatz equations. In go-
ing from the inner-most to the outer-most pairs of curves, the
magnetic field h = ∆ increases by a factor of 10 between each
successive pair of curves, with the inner-most (outer-most)
curves corresponding to ∆/U = 10−5 (∆/U = 0.1). The re-
maining model parameters are Γ/U = 0.05 and T = 0. Non-
monotonicities are seen in the process of charging. These are
most pronounced for intermediate values of the field. The evo-
lution of the nonmonotonicities with increasing field is tracked
by arrows. The dashed black lines show the approximate val-
ues calculated from Eqs. (53) and (50) based on the mapping
onto the Kondo Hamiltonian (here θh = 0 and θd = π).

version.
The nonmonotonicities in the individual occupancies

stem from the explicit dependence of TK on the gate
voltage ε0. According to Eq. (B4), TK is minimal in the
middle of the Coulomb-blockade valley, increasing mono-
tonically as a function of |ε0 + U/2|. Thus, ∆/TK , and
consequently M , is maximal for ε0 = −U/2, decreasing
monotonically the farther ε0 departs from −U/2. Since
ntot ≈ 1 is nearly a constant in the local-moment regime,
this implies the following evolution of the partial occu-
pancies: 〈n1〉 decreases (〈n2〉 increases) as ε0 is lowered
from roughly zero to −U/2. It then increases (decreases)
as ε0 is further lowered toward −U . Combined with the
crossovers to the empty-impurity and doubly occupied
regimes, this generates a local maximum (minimum) in
〈n1〉 (〈n2〉) near ε0 ∼ 0 (ε0 ∼ −U).

Note that the local extremum in 〈ni〉 is most pro-
nounced for intermediate values of the field ∆. This can
be understood by examining the two most relevant en-
ergy scales in the problem, namely, the minimal Kondo
temperature T min

K = TK |ε0=−U/2 and the hybridization
width Γ. These two energies govern the spin susceptibil-
ity of the impurity in the middle of the Coulomb-blockade
valley (when ε0 = −U/2) and in the mixed-valent regime
(when either ε0 ≈ 0 or ε ≈ −U), respectively. The charg-
ing curves of Fig. 3 stem from an interplay of the three
energy scales ∆, T min

K and Γ as described below.
When ∆ � T min

K , exemplified by the pair of curves cor-
responding to the smallest field ∆ = 10−5U ≈ 0.24T min

K
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FIG. 4: (Color online) The exact conductance G [in units
of e2/(2π�)] versus ε0, as obtained from the Bethe ansatz
magnetization M and Eq. (55) with θl = 3π/2 and θd = π.
Here ∆/U equals 10−5 [full (black) line], 10−4 [dotted (red)
line], 10−3 [dashed (green) line] and 0.1 [dot-dashed (blue)
line]. The remaining model parameters are Γ/U = 0.05 and
T = 0. Once ∆ exceeds the critical field hc ≈ 2.4Tmin

K , the
single peak at ε0 = −U/2 is split into two correlation-induced
peaks, which cross over to Coulomb-blockade peaks at large
∆.

in Fig. 3, the magnetic field remains small throughout
the Coulomb-blockade valley and no significant magne-
tization develops. The two levels are roughly equally
populated, showing a plateaux at 〈n1〉 ≈ 〈n2〉 ≈ 1/2
in the regime where the dot is singly occupied. As ∆
grows and approaches T min

K , the field becomes sufficiently
strong to significantly polarize the impurity in the vicin-
ity of ε0 = −U/2. A gap then rapidly develops between
〈n1〉 and 〈n2〉 near ε0 = −U/2 as ∆ is increased. Once
∆ reaches the regime T min

K � ∆ � Γ, a crossover from
h 	 TK (fully polarized impurity) to h � TK (unpo-
larized impurity) occurs as ε0 is tuned away from the
middle of the Coulomb-blockade valley. This leads to
the development of a pronounced maximum (minimum)
in 〈n1〉 (〈n2〉), as marked by the arrows in Fig. 3. Fi-
nally, when h � Γ, the field is sufficiently large to keep
the dot polarized throughout the local-moment regime.
The extremum in 〈ni〉 degenerates into a small bump in
the vicinity of either ε0 ≈ 0 or ε0 ≈ −U , which is the non-
monotonic feature first discussed in Ref.9. This regime
is exemplified by the pair of curves corresponding to the
largest field ∆ = 0.1U = 2Γ in Fig. 3, whose parameters
match those used in Fig. 2 of Ref.9. Note, however, that
the perturbative calculations of Ref.9 will inevitably miss
the regime T min

K � ∆ � Γ where this feature is large.36

3. Conductance

The data of Fig. 3 can easily be converted to conduc-
tance curves by using the exact formula of Eq. (55) with
θl = 3π/2 and θd = π. The outcome is presented in
Fig. 4. The evolution of G(ε0) with increasing ∆ is quite
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FIG. 5: (Color online) The exact occupation numbers 〈ni〉
and conductance G [in units of e2/(2π�)] as a function of ε2,
for T = 0, Γ/U = 0.2 and fixed ε1/U = −1/2. The population
inversion at ε2 = ε1 leads to a sharp transmission zero (phase
lapse). Note the general resemblance between the functional
dependence of G on ε2 and the correlation-induced resonances
reported by Meden and Marquardt11 for Γ↑ �= Γ↓ (see Fig. 6).

dramatic. When ∆ is small, the conductance is likewise
small with a shallow peak at ε0 = −U/2. This peak
steadily grows with increasing ∆ until reaching the uni-
tary limit, at which point it is split in two. Upon further
increasing ∆, the two split peaks gradually depart, ap-
proaching the peak positions ε0 ≈ 0 and ε0 ≈ −U for
large ∆. The conductance at each of the two maxima
remains pinned at all stages at the unitary limit.

These features of the conductance can be naturally un-
derstood based on Eqs. (55) and (53). When ∆ � T min

K ,
the magnetization M ≈ ∆/(2πTK) and the conductance
G ≈ (∆/TK)2e2/(2π�) are uniformly small, with a peak
at ε0 = −U/2 where TK is the smallest. The conductance
monotonically grows with increasing ∆ until reaching the
critical field ∆ = hc ≈ 2.4T min

K , where M |ε0=−U/2 = 1/4
and G|ε0=−U/2 = e2/(2π�). Upon further increasing ∆,
the magnetization at ε0 = −U/2 exceeds 1/4, and the as-
sociated conductance decreases. The unitarity condition
M = 1/4 is satisfied at two gate voltages ε±max symmetric
about −U/2, defined by the relation TK ≈ ∆/2.4. From
Eq. (B4) one obtains

εmax
± = −U

2
±

√
U2

4
− Γ2 +

2ΓU

π
ln

(
π∆

2.4
√

2ΓU

)
. (56)

The width of the two conductance peaks, ∆ε, can be
estimated for T min

K � ∆ � Γ from the inverse of the
derivative d(∆/TK)/dε0, evaluated at ε0 = ε±max. It yields

∆ε ∼ ΓU

π|ε±max + U/2| . (57)

Finally, when ∆ > Γ, the magnetization exceeds 1/4
throughout the local-moment regime. The resonance
condition M = 1/4 is met only as charge fluctuations be-
come strong, namely, for either ε0 ≈ 0 or ε0 ≈ −U . The
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resonance width ∆ε evolves continuously in this limit to
the standard result for the Coulomb-blockade resonances,
∆ε ∼ Γ.

Up until now the energy difference ∆ was kept constant
while tuning the average level position ε0. This proto-
col, which precludes population inversion as a function
of the control parameter, best suits a single-dot realiza-
tion of our model, where both levels can be uniformly
tuned using a single gate voltage. In the alternative re-
alization of two spatially separated quantum dots, each
controlled by its own separate gate voltage, one could
fix the energy level ε1 = ε0 + ∆/2 and sweep the other
level, ε2 = ε0−∆/2. This setup amounts to changing the
field h externally, and is thus well suited for probing the
magnetic response of our effective impurity.

An example for such a protocol is presented in Fig. 5,
where ε1 is held fixed at ε1 = −U/2. As ε2 is swept
through ε1, a population inversion takes place, leading
to a narrow dip in the conductance. The width of the
conductance dip is exponentially small due to Kondo cor-
relations. Indeed, one can estimate the dip width, ∆εdip,
from the condition |ε1 − ε2| = TK |ε2=ε1 , which yields

∆εdip ∼
√

UΓexp
(
−πU

8Γ

)
. (58)

B. Anisotropic couplings, Γ↑ �= Γ↓

As demonstrated at length in Sec. VA, the occur-
rence of population inversion and a transmission zero for
Γ↑ = Γ↓ requires an external modulation of the effec-
tive magnetic field. Any practical device will inevitably
involve, though, some tunnelling anisotropy, V↑ �= V↓.
The latter provides a different route for changing the
effective magnetic field, through the anisotropy-induced
terms in Eq. (30). Implementing the same protocol as
in Sec. V A2 (that is, uniformly sweeping the average
level position ε0 while keeping the difference ∆ constant)
would now generically result both in population inversion
and a transmission zero due to the rapid change in direc-
tion of the total field �htot. As emphasized in Sec. IVB 2,
the two phenomena will generally occur at different gate
voltages when V↑ �= V↓.

1. Degenerate levels, ∆ = b = 0

We begin our discussion with the case where ∆ = b =
0, which was extensively studied in Ref.11. It corre-
sponds to a particular limit of the parallel-field config-
uration where h = 0. In the parallel-field configuration,
the conductance G and occupancies 〈ni〉 take the exact
forms specified in Eqs. (44) and (54), respectively. These
expressions reduce in the Kondo regime to Eqs. (40) and
(53), with θh either equal to zero or π, depending on the
sign of hz

tot.
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FIG. 6: The occupation numbers 〈ni〉 and conductance G
[in units of e2/(2π�)] as a function of ε0 + U/2 [in units of
Γtot = (Γ↑ + Γ↓)], calculated from Eqs. (40) and (53) based
on the mapping onto the Kondo model. The model param-
eters are identical to those used in Fig. 2 of Ref.11, lower
left panel: h = ϕ = 0, U/Γtot = 6, Γ↑/Γtot = 0.62415 and
T = 0. The explicit tunnelling matrix elements are detailed in
Eq. (59), corresponding to the rotation angles θl = 2.1698 and
θd = −0.63434 (measured in radians). The angle θh equals
zero. The inset shows functional renormalization-group (fRG)
data as defined in Ref.11, corrected for the renormalization
of the two-particle vertex.12,37 The small symbols in the in-
set show the conductance as calculated from the fRG occu-
pation numbers using our Eq. (55). The horizontal dotted
lines in each plot mark the maximal conductance predicted
by Eq. (55), (e2/2π�) sin2 θl.

Figure 6 shows the occupation numbers and the con-
ductance obtained from Eqs. (40) and (53), for ∆ = b = 0
and the particular tunnelling matrix used in Fig. 2 of
Ref.11:

Â = A0

[√
0.27

√
0.16√

0.33 −√
0.24

]
. (59)

Here A0 equals
√

Γtot/(πρ), with Γtot = Γ↑+Γ↓ being the
combined hybridization width. The Coulomb repulsion U
is set equal to 6Γtot, matching the value used in the lower
left panel of Fig. 2 in Ref.11. For comparison, the cor-
responding functional renormalization-group (fRG) data
of Ref.11 is shown in the inset, after correcting for the
renormalization of the two-particle vertex.12,37 The accu-
racy of the fRG has been established11,12 up to moderate
values of U/Γtot ∼ 10 through a comparison with Wil-
son’s numerical renormalization-group method.38 Includ-
ing the renormalization of the two-particle vertex further
improves the fRG data as compared to that of Ref.11, as
reflected, e.g., in the improved position of the outer pair
of conductance resonances.

The agreement between our analytical approach and
the fRG is evidently very good in the local-moment
regime, despite the rather moderate value of U/Γtot

used. Noticeable deviations develop in 〈ni〉 only as the
mixed-valent regime is approached (for ε0 � −Γtot or
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ε+U � Γtot), where our approximations naturally break
down. In particular, our approach accurately describes
the phase lapse at ε0 = −U/2, the inversion of popula-
tion at the same gate voltage, the location and height of
the correlation-induced resonances, and even the location
and height of the outer pair of conductance resonances.
Most importantly, our approach provides a coherent an-
alytical picture for the physics underlying these various
features, as elaborated below.

Before proceeding to elucidate the underlying physics,
we briefly quote the relevant parameters that appear
in the conversion to the generalized Anderson model of
Eq. (7). Using the prescriptions detailed in Appendix A,
the hybridization widths Γσ = πρV 2

σ come out to be

Γ↑/Γtot = 0.62415 , Γ↓/Γtot = 0.36585 , (60)

while the angles of rotation equal

θl = 2.1698 , θd = −0.63434 . (61)

Here θl and θd are quoted in radians. Using the exact
conductance formula of Eq. (44), G is predicted to be
bounded by the maximal conductance

Gmax =
e2

2π�
sin2 θl = 0.68210

e2

2π�
, (62)

obtained whenever the magnetization M = 〈n↑ − n↓〉/2
is equal to ±1/4. The heights of the fRG resonances are
in excellent agreement with Eq. (62). Indeed, as demon-
strated in the inset to Fig. 6, the fRG occupancies and
conductance comply to within extreme precision with the
exact relation of Eq. (55). As for the functional form of
the Kondo temperature TK , its exponential dependence
on ε0 is very accurately described by Eq. (29). In the
absence of a precise expression for the pre-exponential
factor when Γ↑ �= Γ↓, we employ the expression

TK = (
√

UΓtot/π) exp
[

πε0(U + ε0)
2U(Γ↑ − Γ↓)

ln
Γ↑
Γ↓

]
, (63)

which properly reduces to Eq. (B4) (up to the small Γ2

correction in the exponent) when Γ↑ = Γ↓ = Γ.
The occupancies and conductance of Fig. 6 can be fully

understood from our general discussion in Sec. III. Both
quantities follow from the magnetization M , which van-
ishes at ε0 = −U/2 due to particle-hole symmetry. As
a consequence, the two levels are equally populated at
ε0 = −U/2 and the conductance vanishes [see Eqs. (44)
and (54)]. Thus, there is a simultaneous phase lapse and
an inversion of population at ε0 = −U/2, which is a fea-
ture generic to ∆ = b = 0 and arbitrary Â. As soon as the
gate voltage is removed from −U/2, i.e., ε0 = −U/2 + δε
with δε �= 0, a finite magnetization develops due to the
appearance of a finite effective magnetic field �htot = hz

totẑ
with

hz
tot ≈

Γ↑ − Γ↓
π

ln
1 + 2δε/U

1 − 2δε/U
(64)

[see Eq. (33)]. Note that the sign of hz
tot coincides with

that of δε, hence M is positive (negative) for ε0 > −U/2
(ε0 < −U/2). Since cos θd > 0 for the model parameters
used in Fig. 6, it follows from Eq. (54) that 〈n1〉 > 〈n2〉
(〈n1〉 < 〈n2〉) for ε0 > −U/2 (ε0 < −U/2), as is indeed
found in Fig. 6. Once again, this result is generic to
∆ = b = 0, except for the sign of cos θd which depends
on details of the tunnelling matrix Â.

In contrast with the individual occupancies, the con-
ductance G depends solely on the magnitude of M , and
is therefore a symmetric function of δε. Similar to the
rich structure found for Γ↑ = Γ↓ and ∆ > 0 in Fig. 4, the
intricate conductance curve in Fig. 6 is the result of the
interplay between hz

tot and TK , and the nonmonotonic
dependence of G on |M |. The basic physical picture is
identical to that in Fig. 4, except for the fact that the
effective magnetic field hz

tot is now itself a function of the
gate voltage ε0.

As a rule, the magnetization |M | first increases with
|δε| due to the rapid increase in hz

tot. It reaches its max-
imal value Mmax at some intermediate |δε| before de-
creasing again as |δε| is further increased. Inevitably |M |
becomes small again once |δε| exceeds U/2. The shape
of the associated conductance curve depends crucially on
the magnitude of Mmax, which monotonically increases
as a function of U . When Mmax < 1/4, the conductance
features two symmetric maxima, one on each side of the
particle-hole symmetric point. Each of these peaks is
analogous to the one found in Fig. 4 for ∆ < hc. Their
height steadily grows with increasing U until the unitar-
ity condition Mmax = 1/4 is met. This latter condition
defines the critical repulsion Uc found in Ref.11. For
U > Uc, the maximal magnetization Mmax exceeds one
quarter. Hence the unitarity condition M = ±1/4 is
met at two pairs of gate voltages, one pair of gate volt-
ages on either side of the particle-hole symmetric point
ε0 = −U/2. Each of the single resonances for U < Uc is
therefore split in two, with the inner pair of peaks evolv-
ing into the correlation-induced resonances of Ref.11.
The point of maximal magnetization now shows up as
a local minimum of the conductance, similar to the point
ε0 = −U/2 in Fig. 4 when ∆ > hc.

For large U 	 Γtot, the magnetization |M | grows
rapidly as one departs from ε0 = −U/2, due to the expo-
nential smallness of the Kondo temperature TK |ε0=−U/2.
The dot remains polarized throughout the local-moment
regime, loosing its polarization only as charge fluctua-
tions become strong. In this limit the inner pair of reso-
nances lie exponentially close to ε0 = −U/2 (see below),
while the outer pair of resonances approach |δε| ≈ U/2
(the regime of the conventional Coulomb blockade).

The description of this regime can be made quantita-
tive by estimating the position ±δεCIR of the correlation-
induced resonances. Since M → MK(hz

tot/TK) deep in
the local-moment regime, and since δεCIR � Γtot for
Γtot � U , the correlation-induced resonances are peaked
at the two gate voltages where hz

tot ≈ ±2.4TK|ε0=−U/2.
Expanding Eq. (64) to linear order in δεCIR/U � 1 and
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using Eq. (63) one finds

δεCIR ≈ 0.6
πU

Γ↑ − Γ↓
TK |ε0=−U/2

= 0.6
U
√

UΓtot

Γ↑ − Γ↓
exp

[−πU ln(Γ↑/Γ↓)
8(Γ↑ − Γ↓)

]
. (65)

Here the pre-exponential factor in the final expression for
δεCIR is of the same accuracy as that in Eq. (63).

We note in passing that the shape of the correlation-
induced resonances and the intervening dip can be conve-
niently parameterized in terms of the peak position δεCIR

and the peak conductance Gmax. Expanding Eq. (64) to
linear order in δε/U � 1 and using Eq. (44) one obtains

G(δε) = Gmax sin2

[
2πMK

(
2.4δε

δεCIR

)]
, (66)

where MK(h/TK) is the universal magnetization curve of
the Kondo model [given explicitly by (B1)]. This param-
eterization in terms of two easily extractable parameters
may prove useful for analyzing future experiments.

It is instructive to compare Eq. (65) for δεCIR with the
fRG results of Ref.11, which tend to overestimate δεCIR.
For the special case where aL1 = aR1 and aL2 = −aR2,
an analytic expression was derived for δεCIR based on
the fRG.11 The resulting expression, detailed in Eq. (4) of
Ref.11, shows an exponential dependence nearly identical
to that of Eq. (65), but with an exponent that is smaller
in magnitude by a factor of π2/8 ≈ 1.23.39 The same
numerical factor appears to distinguish the fRG and the
numerical renormalization-group data depicted in Fig. 3
of Ref.11, supporting the accuracy of our Eq. (65). It
should be emphasized, however, that Fig. 3 of Ref.11
pertains to the tunnelling matrix of Eq. (59) rather than
the special case referred to above.

We conclude the discussion of the case where ∆ = b =
0 with accurate results on the renormalized dot levels
when the dot is tuned to the peaks of the correlation-
induced resonances. The renormalized dot levels, ε̃↑ and
ε̃↓, can be defined through the T = 0 retarded dot Green
functions at the Fermi energy:

Gσ(ε = 0) =
1

−ε̃σ + iΓσ
. (67)

Here, in writing the Green functions of Eq. (67), we
have made use of the fact that the imaginary parts of
the retarded dot self-energies, −Γσ, are unaffected by
the Coulomb repulsion U at zero temperature at the
Fermi energy. The energies ε̃σ have the exact repre-
sentation21 ε̃σ = Γσ cot δσ in terms of the associated
phase shifts δσ = π〈nσ〉. Since M = ±1/4 at the peaks
of the correlation-induced resonances, this implies that
δσ = π/2 ± σπ/4, where we have set ntot = 1.40 Thus,
the renormalized dot levels take the form ε̃σ = ∓σΓσ,
resulting in

ε̃↑ε̃↓ = −Γ↑Γ↓ . (68)

The relation specified in Eq. (68) was found in Ref.11,
for the special case where aL1 = aR1 and aL2 = −aR2.39
Here it is seen to be a generic feature of the correlation-
induced resonances for ∆ = b = 0 and arbitrary Â.

2. Nondegenerate levels: arbitrary ∆ and b

Once
√

∆2 + b2 �= 0, the conductance and the partial
occupancies can have a rather elaborate dependence on
the gate voltage ε0. As implied by the general discus-
sion in Sec. III, the underlying physics remains driven by
the competing effects of the polarizing field htot and the
Kondo temperature TK . However, the detailed depen-
dencies on ε0 can be quite involving and not as revealing.
For this reason we shall not seek a complete characteri-
zation of the conductance G and the partial occupancies
〈ni〉 for arbitrary couplings. Rather, we shall focus on the
case where no Aharonov-Bohm fluxes are present and ask
two basic questions: (i) under what circumstances is the
phenomenon of a phase lapse generic? (ii) under what
circumstances is a population inversion generic?

When ϕL = ϕR = 0, the conductance and the partial
occupancies are given by Eqs. (40) and (53), respectively.
Focusing on G and on 〈n1 − n2〉, these quantities share a
common form, with factorized contributions of the mag-
netization MK and the rotation angles. The factors con-
taining MK(htot/TK) never vanish when h sin θ �= 0,
since htot always remains positive. This distinguishes the
generic case from the parallel-field configuration consid-
ered above, where phase lapses and population inversions
are synonymous with M = 0. Instead, the conditions for
phase lapses and population inversions to occur become
distinct once h sin θ �= 0, originating from the indepen-
dent factors where the rotation angles appear. For a
phase lapse to develop, the combined angle θl+sRθh must
equal an integer multiple of π. By contrast, the inver-
sion of population requires that θd + sθθh = π/2 mod π.
Here the dependence on the gate voltage ε0 enters solely
through the angle θh, which specifies the orientation of
the effective magnetic field �htot [see Eq. (33)]. Since the
rotation angles θl and θd are generally unrelated, this im-
plies that the two phenomena will typically occur, if at
all, at different gate voltages.

For phase lapses and population inversions to be ubiq-
uitous, the angle θh must change considerably as ε0
is swept across the Coulomb-blockade valley. In other
words, the effective magnetic field �htot must nearly flip its
orientation in going from ε0 ≈ 0 to ε0 ≈ −U . Since the x
component of the field is held fixed at hx

tot = h sin θ > 0,
this means that its z component must vary from hz

tot 	
hx

tot to −hz
tot 	 hx

tot as a function of ε0. When this
requirement is met, then both a phase lapse and an in-
version of population are essentially guaranteed to occur.
Since hz

tot crudely changes by

∆hz
tot ∼

2
π

(Γ↑ − Γ↓) ln(U/Γtot) (69)
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as ε0 is swept across the Coulomb-blockade valley, this
leaves us with the criterion

(Γ↑ − Γ↓) ln(U/Γtot) 	
√

∆2 + b2 . (70)

Conversely, if
√

∆2 + b2 	 (Γ↑ − Γ↓) ln(U/Γtot), then
neither a phase lapse nor an inversion of population will
occur unless parameters are fine tuned. Thus, the larger
U is, the more ubiquitous phase lapses become.8,11

Although the logarithm ln(U/Γtot) can be made quite
large, in reality we expect it to be a moderate factor of
order one. Similarly, the difference in widths Γ↑ − Γ↓
is generally expected to be of comparable magnitude to
Γ↑. Under these circumstances, the criterion specified
in Eq. (70) reduces to Γ↑ 	 √

∆2 + b2. Namely, phase
lapses and population inversions are generic as long as
the (maximal) tunnelling rate exceeds the level spacing.
This conclusion is in line with that of a recent numerical
study of multi-level quantum dots.41

Finally, we address the effect of nonzero h =
√

∆2 + b2

on the correlation-induced resonances. When h 	
Γ↑ ln(U/Γtot), the effective magnetic field htot ≈ h is
large throughout the local-moment regime, always ex-
ceeding Γ↑ and Γ↓. Consequently, the dot is nearly fully
polarized for all −U < ε0 < 0, and the correlation-
induced resonances are washed out. Again, for practical
values of U/Γtot this regime can equally be characterized
by h 	 Γ↑.11

The picture for Γ↑ ln(U/Γtot) 	 h is far more elabo-
rate. When TK |ε0=−U/2 	 h, the magnetic field is uni-
formly small, and no significant modifications show up
as compared with the case where h = 0. This leaves us
with the regime TK |ε0=−U/2 � h � Γ↑, where various
behaviors can occur. Rather than presenting an exhaus-
tive discussion of this limit, we settle with identifying
certain generic features that apply when both compo-
nents |h cos θ| and h sin θ exceed TK |ε0=−U/2. To begin
with, whatever remnants of the correlation-induced res-
onances that are left, these are shifted away from the
middle of the Coulomb-blockade valley in the direction
where |hz

tot| acquires its minimal value. Consequently,
htot and TK no longer obtain their minimal values at the
same gate voltage ε0. This has the effect of generating
highly asymmetric structures in place of the two sym-
metric resonances that are found for h = 0. The heights
of these features are governed by the “geometric” factors
sin2(θl +sRθh) at the corresponding gate voltages. Their
widths are controlled by the underlying Kondo tempera-
tures, which can differ substantially in magnitude. Since
the entire structure is shifted away from the middle of the
Coulomb-blockade valley where TK is minimal, all fea-
tures are substantially broadened as compared with the
correlation-induced resonances for h = 0. Indeed, similar
tendencies are seen in Fig. 5 of Ref.11, even though the
model parameters used in this figure lie on the borderline
between the mixed-valent and the local-moment regimes.

VI. CONCLUDING REMARKS

We have presented a comprehensive investigation of
the general two-level model for quantum-dot devices. A
proper choice of the quantum-mechanical representation
of the dot and the lead degrees of freedom reveals an ex-
act mapping onto a generalized Anderson model. In the
local-moment regime, the latter Hamiltonian is reduced
to an anisotropic Kondo model with a tilted effective
magnetic field. As the anisotropic Kondo model flows
to the isotropic strong-coupling fixed point, this enables
a unified description of all coupling regimes of the origi-
nal model in terms of the universal magnetization curve
of the conventional isotropic Kondo model, for which ex-
act results are available. Various phenomena, such as
phase lapses in the transmission phase,7,8 charge oscilla-
tions,9,10 and correlation-induced resonances11,12 in the
conductance, can thus be accurately and coherently de-
scribed within a single physical framework.

The enormous reduction in the number of parameters
in the system was made possible by the key observation
that a general, possibly non-Hermitian tunnelling matrix
Â can always be diagonalized with the help of two si-
multaneous unitary transformations, one pertaining the
dot degrees of freedom, and the other applied to the lead
electrons. This transformation, known as the singular-
value decomposition, should have applications in other
physical problems involving tunnelling or transfer matri-
ces without any special underlying symmetries.

As the two-level model for transport is quite general,
it can potentially be realized in many different ways. As
already noted in the main text, the model can be used to
describe either a single two-level quantum dot or a double
quantum dot where each dot harbors only a single level.
Such realizations require that the spin degeneracy of the
electrons will be lifted by an external magnetic field. Al-
ternative realizations may directly involve the electron
spin. For example, consider a single spinful level coupled
to two ferromagnetic leads with non-collinear magneti-
zations. Written in a basis with a particular ad hoc local
spin quantization axis, the Hamiltonian of such a system
takes the general form of Eq. (1), after properly combin-
ing the electronic degrees of freedom in both leads. As is
evident from our discussion, the local spin will therefore
experience an effective magnetic field that is not aligned
with either of the two magnetizations of the leads. This
should be contrasted with the simpler configurations of
parallel and antiparallel magnetizations, as considered,
e.g., in Refs.17,25 and 27.

Another appealing system for the experimental obser-
vation of the subtle correlation effects discussed in the
present paper is a carbon nanotube-based quantum dot.
In such a device both charging energy and single-particle
level spacing can be sufficiently large42 to provide a set of
well-separated discrete electron states. Applying exter-
nal magnetic field either perpendicular43 or/and paral-
lel44 to the nanotube gives great flexibility in tuning the
energy level structure, and thus turns the system into a
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valuable testground for probing the Kondo physics ad-
dressed in this study.

Throughout this paper we confined ourselves to spin-
less electrons, assuming that spin degeneracy has been
lifted by an external magnetic field. Our mapping can
equally be applied to spinful electrons by implementing
an identical singular-value decomposition to each of the
two spin orientations separately (assuming the tunnelling
term is diagonal in and independent of the spin orienta-
tion). Indeed, there has been considerable interest lately
in spinful variants of the Hamiltonian of Eq. (1), whether
in connection with lateral quantum dots,45,46 capaci-
tively coupled quantum dots,47–49 or carbon nanotube
devices.50 Among the various phenomena that have been
discussed in these contexts, let us mention SU(4) variants
of the Kondo effect,47,48,50 and singlet-triplet transitions
with two-stage screening on the triplet side.45,46

Some of the effects that have been predicted for the
spinful case were indeed observed in lateral semiconduc-
tor quantum dots51,52 and in carbon nanotube quantum
dots.44 Still, there remains a distinct gap between the
idealized models that have been employed, in which sim-
plified symmetries are often imposed on the tunnelling
term, and the actual experimental systems that obviously
lack these symmetries. Our mapping should provide a
much needed bridge between the idealized models and
the actual experimental systems. Similar to the present
study, one may expect a single unified description encom-
passing all coupling regimes in terms of just a few basic
low-energy scales. This may provide valuable guidance
for analyzing future experiments on such devices.
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APPENDIX A: MAPPING PARAMETERS

In this Appendix we give the details of the mapping
of the original Hamiltonian, Eq. (1), onto the generalized
Anderson Hamiltonian of Eq. (7).

The first step is the diagonalization of the matrix Â,
Eq. (6), which describes the coupling between the dot
and the leads in the original model. Since Â is generally
complex and of no particular symmetry, it cannot be di-
agonalized by a single similarity transformation. Rather,

two (generally different) unitary matrices, Rd and Rl, are
required to achieve a diagonal form,

[
V↑ 0
0 V↓

]
= Rl Â R†

d . (A1)

This representation, known as the singular-value de-
composition, is a standard routine in numerical pack-
ages. Here we provide a fully analytical treatment of the
2 × 2 case relevant to our discussion. To this end we
parametrize the two rotation matrices in the form

Rd = eiχAei(χd/2)τzU(θd, φd) , (A2)

Rl = ei(χl/2)τz U(θl, φl) , (A3)

where

U(θ, φ) ≡
[

cos(θ/2) e−iφ sin(θ/2)
−eiφ sin(θ/2) cos(θ/2)

]
(A4)

describes a rotation by angle θ about the axis − sin(φ) x̂+
cos(φ) ŷ.

The various parameters that enter Eqs. (A2) and (A3)
have simple geometrical interpretations. The two sets
of angles, (θd, φd) and (θl, φl), are the longitudinal and
the azimuthal angles of the vectors pointing along the
direction of the z axis which defines the corresponding
spin variables in Eq. (7), see Fig. 7. The three angles
χA, χd, and χl correspond to the choice of the phases
of the single-particle operators d†σ and c†kσ. The lat-
ter angles are chosen such that the matrix elements of
the transformed Hamiltonian, Eq. (7), will be real with
h sin θ ≥ 0. Note that Rd and Rl are determined up
to a common overall phase. This degree of freedom has
been exhausted in Eqs. (A2) and (A3) by requiring that
detRl = 1.

In order to determine the rotation matrices Rd and Rl,
one diagonalizes the hermitian matrices ÂÂ† and Â†Â,
whose eigenvalues are evidently real and equal to |Vσ|2.
This calculation determines the matrices U(θd, φd) and
U(θl, φl), and yields the values of |Vσ |. Indeed, using
Eqs. (A1), (A2), and (A3), one obtains

[ |V↑|2 0
0 |V↓|2

]
= U(θl, φl) ÂÂ† U †(θl, φl)

= U(θd, φd) Â†Â U †(θd, φd). (A5)

Assuming |V↑| > |V↓| (the case where |V↑| = |V↓| is
treated separately in Sec. A 2), these two equations give

|Vσ|2 = X ± Y , (A6)

θd/l = 2 arctan

√
Y − Zd/l

Y + Zd/l
, (A7)

φd = arctan
(

aL1aL2 − aR1aR2

aL1aL2 + aR1aR2
tan

ϕ

2

)
+ π ηd , (A8)
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FIG. 7: The original dot degrees of freedom, d†
1 and d†

2, define
a pseudo-spin- 1

2
representation with the axes x′, y′, and z′.

The level indices 1 and 2 are identified in this representation
with ± 1

2
spin projections on the z′ axis. The energy splitting

∆ and the hopping b combine to define the magnetic-field
vector hm̂′. The unitary matrix Rd takes the spin to a new
coordinate system whose axes are labelled with x, y, and z.
The new “spin” labels σ =↑ and σ =↓ represent ± 1

2
spin

projections on the new z axis, whose direction is defined by
the longitudinal and the azimuthal angles θd and φd. The new
x axis lies in the plane of vectors ẑ and hm̂′. A similar picture
applies to the conduction-electron degrees of freedom, where
the lead index α = L, R plays the same role as the original
level index i = 1, 2.

φl = arctan
(

aL2aR2 − aL1aR1

aL2aR2 + aL1aR1
tan

ϕ

2

)
+ π ηl , (A9)

where

X =
1
2

∑

αi

a2
αi , (A10)

Y =
√

X2 − | det Â|2 , (A11)

Zd =
1
2

∑

α=L,R

(a2
α1 − a2

α2) , (A12)

Zl =
1
2

∑

i=1,2

(a2
Li − a2

Ri) , (A13)

and

2 ηd = 1 − sgn
[
(aL1aL2 + aR1aR2) cos

ϕ

2

]
, (A14)

2 ηl = 1 − sgn
[
(aL1aR1 + aL2aR2) cos

ϕ

2

]
. (A15)

The plus sign in Eq. (A6) corresponds to V↑, since the
spin-up direction is defined as the one with the larger cou-
pling, |V↑|2 > |V↓|2. The longitudinal angles 0 ≤ θd, θl ≤
π are uniquely defined by Eq. (A7), while the quadrants
for the azimuthal angles −π/2 < φd, φl ≤ 3π/2 must be

chosen according to Eqs. (A14) and (A15). The auxil-
iary quantities in Eqs. (A10)–(A13) obey the inequalities
X ≥ Y and Y ≥ |Zd/l|.

The next step is to determine the angles χA, χd, and χl

which come to assure, among other things, that V↑ > V↓
are both real and non-negative. Let us begin with χA.
When det Â �= 0, i.e., for V↓ > 0, the angle χA is uniquely
determined by taking the determinants of both sides of
Eq. (A1) and equating their arguments. This yields

χA =
1
2

arg det Â . (A16)

When det Â = 0, the angle χA can take arbitrary values.
This stems from the fact that V↓ = 0, and therefore ck↓
can be attached an arbitrary phase without affecting the
form of Eq. (7). In this case we choose χA = 0.

Next we rotate the Hamiltonian term Êd, which is the
first term of the isolated dot Hamiltonian, Eq. (3). Upon
converting to the rotated dot operators d†↑ and d†↓, the
single-particle term Êd transforms according to

Êd → Rd Êd R†
d . (A17)

Consider first the partial rotation U(θd, φd)ÊdU
†(θd, φd)

[see Eq. (A2)]. Writing Êd [as defined in Eq. (4)] in the
form

Êd = ε0 − h

2
m̂′ · �τ (A18)

with

h =
√

∆2 + b2 (A19)

and

m̂′ = − b

h
cos

ϕL − ϕR

2
x̂+

b

h
sin

ϕL − ϕR

2
ŷ−∆

h
ẑ , (A20)

the partial rotation U(θd, φd)ÊdU
†(θd, φd) gives

ε0 − h

2
m̂ · �τ , (A21)

where m̂ is the unit vector obtained by rotating m̂′ by an
angle −θd about the axis − sin(φd) x̂+cos(φd) ŷ. Defining
the angle θ ∈ [0, π] which appears in Eq. (7) according
to cos θ = mz, it follows from simple geometry that

cos θ = − ∆
h

cos θd

− b

h
sin θd cos[φd + (ϕL − ϕR)/2] . (A22)

The full transformation RdÊdR
†
d corresponds to yet an-

other rotation of m̂ by an angle −χd about the z axis.
The angle χd is chosen such that the projection of m̂
onto the xy plane is brought to coincide with the x di-
rection. This fixes χd uniquely, unless h sin θ happens to
be zero (whether because h = 0 or because θ is an integer
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multiple of π). When h sin θ = 0, the angle χd can take
arbitrary values. Physically this stems from the fact that
spin-up and spin-down degrees of freedom can be gauged
separately within Eq. (7). We choose χd = 0 in this case.
The explicit expression for χd when h sin θ �= 0 is quite
cumbersome and will not be specified. As for the remain-
ing angle χl, it is fixed by the requirement that Vσ will
be real and non-negative.

Note that the conditions for the two exactly solvable
cases quoted in the main text, Eqs. (10) and (11), are
readily derived from our expressions for the eigenvalues
Vσ. The first case, Eq. (10), corresponds to V↓ = 0,
which requires det Â = eiϕaL1aR2 − aL2aR1 = 0. This
immediately leads to Eq. (10). The second solvable case,
Eq. (11), corresponds to equal eigenvalues, which implies
Y = 0 [Eqs. (A6), (A10) and (A11) remain intact for
|V↑| = |V↓|]. By virtue of the inequalities Y ≥ |Zd/l|, this
necessitates that Zd and Zl are both zero, which gives
rise to the first two conditions in Eq. (11). The remaining
condition on the Aharonov-Bohm phase ϕ follows from
substituting the first two conditions into the definition of
Y and equating Y to zero.

1. No Aharonov-Bohm fluxes

Of particular interest is the case where no Aharonov-
Bohm fluxes are present, ϕL = ϕR = 0. In the absence
of a real magnetic field that penetrates the structure, the
parameters that appear in the Hamiltonian of Eq. (1) are
all real. This greatly simplifies the resulting expressions
for the rotation matrices Rd and Rl, as well as for the
model parameters that appear in Eq. (7). In this subsec-
tion, we provide explicit expression for these quantities
in the absence of Aharonov-Bohm fluxes, focusing on the
case where V↑ > V↓. The case where V↑ = V↓ is treated
separately in Sec. A 2.

As is evident from Eqs. (A8) and (A9), each of the az-
imuthal angles φd and φl is either equal to 0 or π when
ϕ = 0. (The corresponding y′ and y axes are parallel
in Fig. 7.) It is therefore advantageous to set both az-
imuthal angles to zero at the expense of extending the
range for the longitudinal angles θd and θl from [0, π]
to (−π, π]. Within this convention, Eq. (A7) is replaced
with

θd/l = 2 sd/l arctan

√
Y − Zd/l

Y + Zd/l
, (A23)

where

sd = sgn (aL1aL2 + aR1aR2) , (A24)
sl = sgn (aL1aR1 + aL2aR2) . (A25)

Similarly, the unit vector m̂′ of Eq. (A20) reduces to

m̂′ = − b

h
x̂ − ∆

h
ẑ , (A26)

which results in

m̂ =
[
− b

h
cos θd +

∆
h

sin θd

]
x̂

−
[

b

h
sin θd +

∆
h

cos θd

]
ẑ (A27)

and

θ = π − arccos
(

b

h
sin θd +

∆
h

cos θd

)
. (A28)

Since the rotated unit vector m̂ has no y component,
the angle χd is either equal to 0 or π, depending on the
sign of mx. Assuming det Â �= 0 and using Eqs. (A4) and
(A16), one can write Eq. (A2) in the form

Rd =
(
sgndet Â

)1/2
eiπ(1−sθ)τz/4 ei(θd/2)τy , (A29)

sθ = sgnmx = sgn (∆ sin θd − b cos θd) . (A30)

Note that the first exponent in Eq. (A29) is equal to 1
for sθ = +1, and is equal to ei(π/2)τz for sθ = −1. If
det Â = 0 we set sgndet Â → 1 in Eq. (A29), while for
∆ sin θd = b cos θd we select sθ = +1.

Proceeding to the remaining angle χl, we note that Rd

of Eq. (A29) is either purely real or purely imaginary,
depending on whether

sR = sθ sgndet Â (A31)

is positive or negative. Since both ei(θl/2)τy and Â are
real matrices, then ei(χl/2)τz must also be either purely
real or purely imaginary in tandem with Rd in order for
the eigenvalues V↑ and V↓ to be real. This consideration
dictates that χl is an integer multiple of π, with an even
(odd) integer for positive (negative) sR. The end result
for Rl is therefore

Rl = ηR eiπ(1−sR)τz/4 ei(θl/2)τy , (A32)

Here ηR = ±1 is an overall phase which comes to assure
that the eigenvalues V↑ and V↓ are non-negative.

2. Isotropic couplings, V↑ = V↓

Our general construction of the rotation matrices Rd

and Rl fails when |V↑| = |V↓| = V . Equations (A6),
(A10) and (A11) remain in tact for |V↑| = |V↓|, however
the angles θd/l and φd/l are ill-defined in Eqs. (A7)–(A9).
This reflects the fact that the matrices Â†Â and ÂÂ† are
both equal to V 2 times the unit matrix, hence any rota-
tion matrix U(θ, φ) can be used to “diagonalize” them.
There are two alternatives for treating the isotropic case
where |V↑| = |V↓|. The first possibility is to add an in-
finitesimal matrix ηB̂ that lifts the degeneracy of |V↑|
and |V↓|: Â → Â + ηB̂. Using the general construc-
tion outlined above and implementing the limit η → 0, a
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proper pair of rotation matrices Rd and Rl are obtained.
The other alternative is to directly construct the rota-
tion matrices Rd and Rl pertaining to this case. Below
we present this second alternative.

A key observation for the isotropic case pertains to the
“reduced” matrix

T̂ =
(
det Â

)−1/2
Â , (A33)

which obeys

T̂ †T̂ = T̂ T̂ † = 1 , det T̂ = 1 . (A34)

As a member of the SU(2) group, T̂ can be written in
the form

T̂ = U(θT , φT ) ei(χT /2)τz (A35)

with θT ∈ [0, π]. Explicitly, the angles θT , φT and χT are
given by

θT = 2 arccos
(| det Â|−1/2 |aL1|

)
, (A36)

χT = 2 arg
[
(det Â)−1/2 aL1

]
, (A37)

and

φT = arg
[
(det Â)−1/2 aR1

] − π − χT /2 . (A38)

Exploiting the fact that det Â = V 2, the matrix Â takes
then the form

Â = V R†
l Rd = V eiχA U(θT , φT ) ei(χT /2)τz , (A39)

where the angle χA is defined in Eq. (A16).
Equation (A39) determines the matrix product R†

l Rd.
Any two rotation matrices that satisfy the right-most
equality in Eq. (A39) transform the tunnelling matrix
Â to V times the unit matrix, as is required. The rota-
tion matrix Rd is subject to yet another constraint, which
stems from the requirement that h sin θ ≥ 0 in Eq. (7).
We note that this constraint as well does not uniquely
determine the matrix Rd.30 Perhaps the simplest choice
for Rd is given by

Rd = eiχAei(χd/2)τz (A40)

with

χd =
1
2
(ϕL − ϕR) +

π

2
(1 − sgn b) , (A41)

which corresponds to

h cos θ = −∆ , h sin θ = |b| . (A42)

Adopting the choice of Eq. (A40), the rotation matrix Rl

takes the form

Rl = eiτz(χd−χT )/2 U(θT ,−φT ) , (A43)

where θT , φT , χT and χd are listed above.

APPENDIX B: BETHE ANSATZ FORMULAE

In this appendix we gather for convenience all relevant
details of the exact Bethe ansatz solutions for the impu-
rity magnetization in the isotropic Kondo and Anderson
models in the presence of a finite magnetic field. Exten-
sive reviews of these solutions (including the anisotropic
Kondo model) are available in the literature.19,20,22 Here
we only summarize the main results of relevance to our
analysis, and briefly comment on the numerical proce-
dure. We confine ourselves to zero temperature, al-
though explicit equations do exist also at finite temper-
ature. Throughout the Appendix we employ units in
which µBg = 1.

1. Isotropic Kondo model

We begin the presentation with the case of a Kondo
impurity, before turning to the more elaborate case of an
Anderson impurity. As a function of the magnetic field h,
the magnetization of an isotropic spin- 1

2 Kondo impurity
is given by the explicit expression [see, e.g., Eq. (6.23) of
Ref.22]

M(h) =

−i

4
√

π

∫ +∞

−∞
dω

(iω + 0)iω/2π sech
(

ω
2

)

(ω − i0)Γ(1
2 + i ω

2π )

(
h

2πTK

)iω/π

. (B1)

Here Γ(z) is the complex gamma function. The Kondo
temperature, TK , is defined via the inverse of the spin
susceptibility,

T−1
K ≡ 2π lim

h→0
M(h)/h . (B2)

Evidently, Eq. (B1) is a universal function of the ratio
h/TK , which is denoted in the main text by MK(h/TK).
It has the asymptotic expansion

M(h) �
{

h/(2πTK) , h � TK ,
1
2 − 1

4 ln(h/TH) − ln ln(h/TH)
8 ln2(h/TH)

, h 	 TK ,

(B3)

where TH ≡ √
π/eTK .

2. Isotropic Anderson model

In contrast to the Kondo model, there are no closed-
form expressions for the total impurity occupancy ntot =
〈n↑ + n↓〉 and magnetization M = 〈n↑ − n↓〉/2 in the
isotropic Anderson model. The exact Bethe anstaz solu-
tion of the model provides a set of coupled linear integral
equations from which ntot and M can be computed. Be-
low we summarize the equations involved and comment
on the numerical procedure that is required for solving
these equations. The expressions detailed below apply to



CHAPTER 6. 85

21

arbitrary ε0, U , h, and Γ at zero temperature. In terms
of the Hamiltonian of Eq. (7), we restrict the discussion
to Γ = Γ↑ = Γ↓ (isotropic Anderson model) and sin θ = 0
(parallel-field configuration). The case sin θ �= 0 follows
straightforwardly from a simple rotation of the dot and
the conduction-electron operators about the y axis.

a. Kondo temperature

The most accurate analytical expression that is avail-
able for the Kondo temperature of the isotropic Anderson
model can be written as

TK = (
√

2UΓ/π) exp
[
π

(
Γ2 + ε0 U + ε20

)
/(2 U Γ)

]
,

(B4)
where Γ = πρ|V |2. This expression for TK exactly repro-
duces Eq. (6.22) of Ref.22 for the symmetric Anderson
model, ε0 = −U/2. It also coincides with Eq. (7.11)
of Ref.22 for the Kondo temperature of the asymmetric
model when U 	 Γ. Note that the Γ2 term in the expo-
nent is usually omitted from Eq. (B4) on the basis of it
being small. It does in general improve the estimate for
TK .

In the local-moment regime, where Eq. (B4) is valid,
the impurity magnetization of the isotropic Anderson
model is dominated by the universal magnetization curve
of Eq. (B1) up to fields of the order of h ∼ √

ΓU 	 TK

(see, e.g., lower left inset to Fig. 2). At yet larger fields,
h 	 √

ΓU , the magnetization of the Anderson model can
no longer be described by that of the Kondo model, as
charge fluctuations become exceedingly more important
than spin flips. Rather, M is well described by perturba-
tion theory in Γ. Importantly, the asymptotic expansion
of Eq. (B3) properly matches (to leading order in Γ/U)
the perturbative result9 for M when h ∼ √

ΓU . Thus,

the two approaches combine to cover the entire range in
h for the Anderson model.

b. Bethe ansatz equations for the occupancy and
magnetization

The Bethe ansatz solution of the Anderson model fea-
tures four key quantities, which are the distributions of
the charge and spin rapidities, ρ̃i/h(k) and σ̃i/h(λ), re-
spectively, for the impurity (i) and the host (h) band.
The total impurity occupancy and magnetization are ex-
pressed as integrals over the distributions of the charge
and spin rapidities for the impurity:

M =
1
2

∫ B

−∞
ρ̃i(k) dk , (B5)

nd = 1 −
∫ Q

−∞
σ̃i(λ) dλ . (B6)

The upper limits of integration in Eqs. (B5) and (B6)
are determined through implicit conditions on the corre-
sponding distribution functions for the host band,

h

2π
=

∫ B

−∞
ρ̃h(k) dk , (B7)

U + 2ε0
2π

=
∫ Q

−∞
σ̃h(λ) dλ . (B8)

As for the distributions of the rapidities for the impu-
rity and the host, these are determined by the same pair
of linear integral equations, only with different inhomo-
geneous parts:

ρ̃(k) +
dg(k)
dk

∫ B

−∞
R[g(k) − g(k′)] ρ̃(k′) dk′ +

dg(k)
dk

∫ Q

−∞
S[g(k) − λ] σ̃(λ)dλ = ρ̃(0)(k) , (B9)

σ̃(λ) −
∫ Q

−∞
R(λ − λ′) σ̃(λ′) dλ′ +

∫ B

−∞
S[λ − g(k)] ρ̃(k) dk = σ̃(0)(λ) , (B10)

where54

S(x) =
1

2 cosh(πx)
, (B11)

R(x) =
1
2π

Re
[
Ψ

(
1 + i

x

2

)
−Ψ

(
1
2

+ i
x

2

)]
, (B12)

g(k) =
(k − ε0 − U/2)2

2UΓ
(B13)

(here Ψ is the digamma function). The inhomogeneous

parts in Eqs. (B9) and (B10) are given in turn by

ρ̃
(0)
i (k) = ∆̃(k) +

dg(k)
dk

∫ +∞

−∞
R[g(k) − g(k′)] ∆̃(k′) dk′ ,

(B14)

ρ̃
(0)
h (k) =

1
2π

{
1 +

dg(k)
dk

∫ +∞

−∞
R[g(k) − g(k′)] dk′

}
,

(B15)
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σ̃
(0)
i (λ) =

∫ +∞

−∞
S[λ − g(k)] ∆̃(k) dk , (B16)

σ̃
(0)
h (λ) =

1
2π

∫ +∞

−∞
S[λ − g(k)] dk , (B17)

where ∆̃(k) is the Lorentzian function

∆̃(k) =
1
π

Γ
Γ2 + (k − ε0)2

. (B18)

c. Details of the numerical procedure

The main obstacle faced with in a numerical solution
of the Bethe ansatz equations is the self-consistent de-
termination of the upper integration bounds that appear
in Eqs. (B5)–(B10). These are computed iteratively ac-
cording to the scheme

ρ̃
(n−1)
h , σ̃

(n−1)
h ⇒ B(n) , Q(n) ⇒ ρ̃

(n)
h , σ̃

(n)
h . (B19)

Starting with ρ̃
(n−1)
h and σ̃

(n−1)
h as input for the nth it-

eration, B(n) and Q(n) are extracted from Eqs. (B7) and
(B8). Using the updated values for B and Q, ρ̃

(n)
h (k) and

σ̃
(n)
h (λ) are then obtained from the solution of Eqs. (B9)

and (B10). This cycle is repeated until convergence is
reached. The first iteration in this procedure is usually
initialized with ρ̃

(0)
h (k) and σ̃

(0)
h (λ) as input. Standard

techniques are then used to ensure rapid convergence of
the iterative solution. Typically 15 to 30 iterations are
required to achieve a relative accuracy of 10−4 for the
vector (B, Q).

The core of this cycle is the solution of Eqs. (B9) and
(B10). These are solved (for given values of B and Q)
by discretizing the integration interval with adaptively
chosen 500 ÷ 1000 mesh points. Once a self-consistent
solution is reached for B, Q, ρ̃h(k) and σ̃h(λ), the corre-
sponding distributions of rapidities for the impurity are
obtained from a single solution of Eqs. (B9) and (B10).
The impurity occupancy and magnetization are calcu-
lated in turn from Eqs. (B5) and (B6).

To test the accuracy of our numerical results, we have
extensively checked them against the analytical solution
for the zero-field occupancy nd(h = 0) and the zero-field
susceptibility dM/dh|h=0. In suitable parameter regimes,
we have also compared our results to perturbation the-
ory in both U and Γ. In all cases tested the relative
errors in nd and M were less than 0.05% and 0.5%, re-
spectively. This accuracy can be systematically improved
by increasing the number of discretization points used in
solving Eqs. (B9) and (B10) for the distributions. Our
results were also in full agreement with those reported by
Okiji and Kawasaki,23 except for M(h) where up to 10%
differences were found. Considering the extensive set of
checks that were applied to our results, it appears that
the discrepancy is due to lower numerical accuracy in the
solution of Ref. 23.
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Chapter 7

Results and discussion

The main new results reported in the thesis can be summarized as follows:

� Scattering states formalism for adiabatic transport is translated into a convenient

Green function form, and applied to a generic single-level (Breit-Wigner) resonance.

� The pumped charge quantization in resonant structures is explained in terms of dynam-

ical loading and unloading of quasi-bound states, and a quantitative approximation

based on this insight (the resonance approximation for quantum pumping) is proposed.

� The resonance approximation is applied to a model of surface acoustic wave driven

quasi-1D channels. All main qualitative features of the experimental data are repro-

duced, and the influence of each of the control parameters is clarified.

� A self-consistent equation for the local Green function of a small quantum dot embed-

ded in a general mesoscopic network is derived and solved exactly in several physically

relevant limits, including an explicit analytic solution for the asymmetric Anderson

model. The solution demonstrates correct physical behavior in a wide parameter range.

� The role of self-consistency in the widely used equations-of-motion technique is clarified

by calculating different properties of a single level quantum dot with and without

the self-consistency condition. Breakdown of the simplified approximation in the the

strongly correlated regime is quantified.

� A new way of analyzing a generic two-site model with strong inter-site Coulomb re-

pulsion is proposed. The model is mapped exactly onto a generalized Anderson model
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using a singular value decomposition of the tunnelling matrix. The low-energy prop-

erties of the physically most interesting regime of single total occupancy are described

by a further mapping onto an anisotropic Kondo model in a title effective magnetic

field.

� Based on the mapping to an effective magnetic impurity model, analytical expressions

for the population numbers and the conductance of the two-site model are put forward.

The results are shown to be extremely accurate in a wide parameter range.

� Conditions for the population switching, transmission-phase lapses and correlation-

induced resonances in strongly interacting quantum dots are formulated analytically,

and explained in numerous examples.

� High-accuracy numerical solution to the exact equations for the accumulated charge

and magnetization of the standard Anderson model in the presence of an external

magnetic field is constructed for the first time. The results are used as a reference to

quantify the accuracy of the Schrieffer-Wolff transformation.

These results may have strong implications for a number of active research areas in the

field of correlated transport in nanostructure. Bearing in mind that guesses of this kind are

necessarily speculative, we expect the following insights to have to strongest impact:

• The results concerning the resonance approximation imply that the notion of “interfe-

rence-induced quantization”, which had been often seen as a contraintuitive quantum

phenomenon, can be understood in simple physical terms.

• The in-depth investigation of the equations-of-motion technique has clearly shown that

the simple non-self-consistent version of the method fails to describe even the most

basic features of the Kondo effect. This has implications for numerous studies that

attempt drawing conclusions for non-conventional Kondo physics using this technique.

• All previous studies of the correlated two-level transport had either to assume some

degree of fine-tuned symmetry for the dot-lead couplings, or to explore numerically

a prohibitively large parameter space. The singular value decomposition technique

applied to the tunnelling matrix in Chapter 6 dramatically reduces the number of
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parameters, and facilitates identification of universal physics. We expect this trans-

formation to be useful for other models involving tunnelling and transfer matrices.

The convenient calculational framework presented in Chapter 3 together with the physical

understanding of the pumping mechanism (Chapter 4) and of the role of inter-site capacita-

tive interactions (Chapter 6) has stimulated new experiments on pumping through double

quantum dot devices that are currently underway [70] at the National Physics Laboratory

in Teddington, UK, and at PTB Institute in Braunschweig, Germany. Preliminary results in

the regime of strong tunnelling coupling between the dots show very good agreement with

the models explored in the thesis. Prospects for experimental investigation of the strongly

correlated regime (Chapter 6) in a double quantum dot are being investigated.
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[70] B. Kästner and J. T. Janssen (2006), private communication.



התכונה האחרונה היא המיוחד רגישה לטיב התיאור של קורלציות אלקטרוניות מכיוון שסוספטיביליות . הממוקמת

 של משוואות הקירוב הקונסיסטנטי. ב תופעת קונדוהספין של אטום אנדרסון נעשית רוויה בטמפרטורות נמוכות עק

). התלות במתח השער של אכלוס הרמה, לדוגמא ( התנועה נמצא מדויק מאד עבור תכונות הקשורות לדינמיקת המטען

 אנו .הוא אמין רק באופן איכותי) הנגרמת עקב סיכוך דינמי של פלוקטואציות הספין(תיאור תופעת קונדו , לעומת זאת

י הגרסה הפשטנית הנפוצה של טכניקת משוואות התנועה נכשלת בתיאור קורלציות קונדו אפילו באופן מראים כ

  .איכותי

  

אנו מניחים צימודים . במודל שתי רמות לנקודה קוונטית הצמודה לשני מובילים בפרק האחרון של התיזה אנו דנים

אנו מאפשרים גם שטף מגנטי הגורם לתופעת  (כלליים של מנהור בין שתי הרמות למובילים ובין הרמות לבין עצמן

וקיים מנהור ,  המקרה המיוחד שבו כל רמה צמודה למוביל שלה .יה קולונית בין שתי הרמותיוכן דח, )בוהם-אהרונוב

ללא אינטראקציות (ממדי עבור שני אתרים אשר הוצג -חד-תואם גרסה של המודל הקווזי, בין שתי הרמות

אנו מראים  כי מודל שתי הרמות ממופה במדויק על מודל אנדרסון המוכלל שבו  .בפרק קודם) אלקטרוניות

 אנו .אשר נשמרת בתהליך המנהור אך לא בתוך הנקודה הקוונטית, ספין-האלקטרונים רוכשים דרגת חופש של קווזי

 מעוטי אנרגיה ומראים כי ההמילטוניאן התואם עירורים, מתמקדים בתחום בו הנקודה מאוכלסת על ידי אלקטרון בודד

,  זה) מנורמל( עבור ערכים מתונים של שדה .איזוטרופי בנוכחות שדה מגנטי מוטה-הוא זה של מודל קונדו הלא

, הפתרון המשתמש בהנחת בתה של מודל קונדו האיזוטרופי מאפשר לנו להשיג ביטוים מדויקים  עבור אכלוס הנקודה

אשר קודם , נוסחאות אלה כוללות בחובן תופעות רבות ושונות .ומתוך כך גם את מקדם ההעברה שלה באפס המוחלט

 ותודות ,קפיצות מופע מקדם ההעברה, תנודות מטען ושינויי אכלוס: לכן נחשבו בספרות כמייצגות גבולות שונים

  .ומדגישים את מקורן המשותף, אנו דנים במספר היבטים של תופעות אלה. הנגרמות עקב קורלציות

  

 



  תקציר
  

תוך שהיא מתמקדת   ,התיזה עוסקת בהיבטים שונים של דינמיקת אלקטרונים במערכות קוונטיות קטנות וקוהרנטיות

ותפקידן של איטראקציות קולון , במיוחד נחקרים התנאים לשאיבה מקוונטטת. בשאיבה אדיאבטית של אלקטרונים

התואמים את שלושת המאמרים , ולק לארבעה פרקים גוף העבודה מח.ממוקמות בתובלה דרך רמה אחת או מספר רמות

  .ואת המאמר הרביעי שהוגש לפרסום, שכבר פורסמו

  

שינוי מחזורי של פוטנציאל חיצוני הפועל על מערכת אלקטרונים קוהרנטיים גורר חלוקה מחדש של המטען בה 

והיא נכרת , את שאיבה קוונטיתפעה זו נקרתו. )ים המוחזקים באותו פוטנציאל כימיהמערכת מחוברת לאמבטי חלקיק(

 תחת תנאים מסוימים המספר הממוצע של האלקטרונים .במיוחד כאשר מקדם ההעברה של המערכת הוא בעל תהודה

  כהעמסה ופריקה של  זהוטנטויורים את אופן הפעולה הנמצא ברקע ק אנו מסבי.הנשאבים  אדיאבטית הוא כמעט שלם

 תפקיד ההתאבכות הקוונטית בקווינטוט המטען מוגבל ליצירת  .ורות רגעיתרמות קש-מטענים אלמנטרים לתוך קווזי

למעט מספר , אנו מראים כי אם המוליכות הלינארית של המערכת נשארת נמוכה במשך רוב המחזור. רמות אלו-קווזי

( נפרד אזי המטען הכולל העובר במשך מחזור אחד יכול להיות מחושב מתוך סכום תרומות השיאים ב, שיאי תהודה

  ).קירוב התהודה

  

ימוד לגלים חזק פשוט עבור תובלה הנגרמת עקב צ-אנו חוקרים בפירוט את ההשלכות של קירוב התהודה במודל קשר

ההשפעה של גורמים הניתנים לשליטה בניסיון . ממדיים בליסטיים-אקוסטיים של פני השטח בתילים קוונטים חד

-על מבנה המדרגות של הזרם החשמלי)  משרעת ומופע הגלים החוזרים,ספיגה-מתח מקור, מתח השער, עוצמת הגלים(

אולם ההנחה של אלקטרונים חסרי .  התוצאות  מתאימות באופן איכותי לתצפיות הניסיוניות.אקוסטי נלמדת בפרוטרוט

יות זו האחרונה יכולה לה. ספין וללא אינטראקציות ביניהם נכשלת בהתאמת סקאלת האנרגיה האופיינית של הבעיה

  .מיוחסת לאנרגית הטעינה של הנקודה הקוונטית הנוצרת באופן דינאמי

  

, כדי להרחיב את מגוון הכלים המתאימים לחישוב תכונות דינאמיות של מודלים הכוללים אינטראקציות אלקטרוניות

יקית של חלק-במיוחד התרכזנו בפונקצית גרין החד. בחנו לעומק את השיטה המבוססת על קטיעת משוואות התנועה

 חקרנו את היררכית .ה אינטראקצית הדחייה החזקה על הרמכאשר אנו מביאים בחשבון את הספין ואת , רמה ממוקמת

פתרנו במדויק את המשוואות . תוך כדי קטיעתן באופן קונסיסטנטי, המשוואות של פונקצית גרין זו עד לסדר גבוה

השיטה  נכשלת עקב קפיצה בחלק , טריה בין אלקטרון לחורבמיוחד מצאנו כי בנקודת הסימ. שהתקבלו במספר גבולות

אולם מנקודה זו והלאה השיטה נותנת פתרון פיסיקאלי . הדמיוני של האנרגיה העצמית הנובעת מאינטראקציות

  .לפונקצית גרין

  

, ושבוהגדלים שח. השווינו את הפתרון שלנו למשוואות התנועה לתוצאות מדויקות המצויות בספרות למודל אנדרסון

וסוספטיביליות ספין על הרמה , צפיפות המצבים, כללו את האכלוס, בגבול בו האינטראקציה הדוחה היא אינסופית
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