
UNIVERSITY OF LATVIA

FACULTY OF COMPUTING

TAISIJA MIŠČENKO-SLATENKOVA

QUANTUM QUERY ALGORITHMS

Doctoral Thesis

Area: Computer Science

Sub-Area: Mathematical Foundations of Computer Science

Scientific advisor:
Professor, Dr. habil. math.
Rūsiņš Mārtiņš Freivalds

Riga 2012

This work has been supported by the European Social Fund

within the project «Support for Doctoral Studies at University of Latvia».

Abstract

Quantum computing is a way of computation based on the laws of quantum

mechanics. The main subject of this research is a quantum query algorithm, where we

pursued a major aim to make quantum algorithm design as straightforward as

possible.

This survey presents quantum query algorithms computing Boolean functions

with a small number of queries and algorithms computing multivalued functions.

Numerous quantum algorithms efficient for certain problems are described in the

thesis. Bounded-error quantum algorithms are the most impressive, for example, a

single-query algorithm for conjunction of two bits with the correct answer probability

9/10. Quantum versus classical algorithm complexity gap is discussed thorougly for

each scope of functions.

The last part of the thesis is devoted to Boolean functions with low-degree

representing polynomials. Approaches presented in this work allow to design a

Boolean function with a large gap between the deterministic complexity and the

degree of a representing polynomial.

Anotācija

Kvantu skaitļošana ir datorzinātnes apakšnozare, kas balstās uz kvantu

mehānikas likumiem. Kvantu vaicājošais algoritms ir galvenais pētāmais objekts.

Lielais darba mērķis ir padarīt kvantu algoritma konstruēšanu pēc iespējas

vienkāršāku.

Pētījumā ir aprakstīti kvantu vaicājošie algoritmi, kas rēķina Būla funkcijas

uzdodot maz vaicājumu, un tiek piedāvāti kvantu vaicājošie algoritmi daudzvērtīgu

funkciju aprēķināšanai. Darbā ir aprakstīti vairāki efektīvi kvantu algoritmi konkrētu

uzdevumu veikšanai. Paši nozīmīgākie ir kvantu vaicājošie algoritmi ar ierobežotu

kļūdu, piemēram, piedāvāts algoritms divu bitu AND Būla funkcijai, kas izmanto

vienīgu vaicājumu un izdod pareizu atbildi ar varbūtību 9/10. Katrai aprakstītajai

funkciju kopai ir veikta pamatīga kvantu un klasiskās sarežģītības analīze.

Pēdējā pētījuma daļa ir veltīta Būla funkcijām ar zemas pakāpes polinomiem,

kuri reprezentē dotās funkcijas. Darbā piedāvātie paņēmieni ļauj uzkonstruēt Būla

funkcijas ar pietiekami lielu intervālu starp funkcijas determinētu sarežģītību un

reprezentējošā polinoma pakāpi.

Preface

This thesis assembles the research performed by the author and reflected in the

following publications:

1. A. Dubrovska, T. Mischenko-Slatenkova. "Computing Boolean Functions:

Exact Quantum Query Algorithms and Low Degree Polynomials". Proc. of

SOFSEM 2006, Student Research Forum; MatFyz Press; ISBN 80-903298-4-

5; pp. 91-100, 2006

2. T. Mischenko-Slatenkova. "Low Degree Boolean Functions: Application in

Quantum Computation". Book of Abstracts "The 8th International Conference

on Quantum Communication, Measurement and Computing", NICT and

Tamagawa University, Japan, 2006, p. 220.

3. A. Dubrovska, T. Mischenko-Slatenkova, A. Rivosh. “Quantum Query

Algorithms for Certain Problems and Generalization of Algorithm Designing

Techniques”. Proc. of the Satelite Workshop of DLT 2007, ISBN 978-952-12-

1921-4, Turku, Finland, pp. 65.-80, 2007

4. A. Vasilieva, T. Mischenko-Slatenkova. "Quantum Query Algorithms for

Conjunctions". Proc. of the 9th International Conference UC 2010, Lecture

Notes in Computer Science, Springer Berlin / Heidelberg, vol. 6079/2010,

ISBN: 978-3-642-13522-4, pp. 140-151, 2010

5. A.Vasilieva, T. Mischenko-Slatenkova. "Computing Relations in the Quantum

Query Model". Scientific Papers, University of Latvia, Volume 770, Computer

Science and Information Technologies, ISBN 978-9984-45-377-4, pp. 68-89,

2011

6. T. Mischenko-Slatenkova, A. Skuskovniks, A. Vasilieva, R. Tarasovs, R.

Freivalds. "Quantum queries on permutations". Accepted to publishing in

proceeding of SOFSEM 2013.

The results of the thesis were presented at the following international conferences and

workshops:

1. SOFSEM 2006, 32nd International Conference on Current Trends in Theory

and Practice of Computer Science. Merin, Czech Republic; 21-27 January

2006. Presentation “Computing Boolean Functions: Exact Quantum Query

Algorithms and Low Degree Polynomials”

2. The Ninth Workshop on Quantum Information Processing (QIP 2006), Paris,

France, January 16-20, 2006. Poster "Computing Boolean Functions: Exact

Quantum Query Algorithms and Low Degree Polynomials"

3. The 8th International Conference on Quantum Communication (QCMC 2006),

Measurement and Computing, 28th November - 3rd December, 2006,

Tsukuba, Japan. Poster “Low Degree Boolean Functions: Application in

Quantum Computation”

4. Developments in Language Theory (DLT 2007), Turku, Finland, July 3-6,

2007. Presentation ”Quantum Query Algorithms for Certain Problems and

Generalization of Algorithm Designing Techniques”

5. ACM International Conference on Computing Frontiers (ACM 2010), New

York, USA, March 22 - 26, 2010. Presentation “High Precision Quantum

Query Algorithm for Computing AND-based Boolean Functions”

6. IEEE International Conference on Fuzzy Systems (IEEE 2010), Barcelona,

Spain, July 18-23, 2010. Presentation “An Improved Quantum Query

Algorithm for Computing AND Boolean Function”

7. Unconventional Computation (UC 2010), Tokyo, Japan, June 21-25, 2010.

Presentation “Quantum Query Algorithms for Conjunctions”

8. Computing Frontiers (CF 2010), Bertinoro, Italy, May 17-19, 2010.

Presentation “An Improved Quantum Query Algorithm for Computing AND

Boolean Function”

9. The Sixth Conference on the Theory of Quantum Computation,

Communication and Cryptography (TQC 2011), Madrid, Spain, May 24-26,

2011 Poster “Quantum Query Model: Application to Computing

Mathematical Relations"

Acknowledgements

First I would like to thank my supervisor Rusins Freivalds for familiarizing me

with quantum computation and for his support, straightforward advice and bright

ideas. Secondly I want to thank professor Andris Ambainis and associated professor

Juris Smotrovs for many useful scientific discussions, comments and quick responce

throughout the period of my PhD-ship.

Furthermore I want to thank Alina Vasilieva - my smart, accurate and patient

co-author of papers.

Finally, I gratefully thank my family for various things beyond the scope of

this thesis.

This work has been supported by the European Social Fund within the project

«Support for Doctoral Studies at University of Latvia».

Contents

 1 Introduction..1
 2 Preliminaries...4

 2.1 Quantum Computing ...4
 2.1.1 Quantum States...4
 2.1.2 Unitary Transformation...5
 2.1.3 Measurement...5

 2.2 Query Models...5
 2.2.1 Classical Decision Trees...5
 2.2.2 Quantum Query Model...6

 2.3 The Deutch Algorithm..8
 3 Quantum Query Algorithms for Boolean Functions. Bounded-Error Quantum
Query Algorithms...10

 3.1 Quantum Query Algorithms for 3-, 4- and 6- bit EQUALITY Boolean
Function...13

 3.1.1 Quantum Algorithm for EQUALITY3 Function: Q9/10(EQUALITY3)=1..13
 3.1.2 Quantum Algorithm for EQUALITY4 Function: Q3/4(EQUALITY4) = 1.17
 3.1.3 Quantum Algorithm for EQUALITY6 Function: Q9/16(EQUALITY6)=1..19

 3.2 Quantum Query Algorithms for 2-, 3-, 5- bit Conjunctions.............................22
 3.2.1 Quantum Query Algorithm for AND2: Q9/10(AND2)=1.............................23
 3.2.2 Quantum query algorithm for AND3: Q3/4(AND3)=1................................25
 3.2.3 Quantum query algorithm for AND5: Q9/16(AND5)=1...............................27

 3.3 Quantum Query Algorithm for An Extension of EQUALITY Boolean function,
EOX for 3n, 4n and 6n arguments...30

 3.3.1 Quantum Algorithm for An Extension of EQUALITY3 Boolean function,
EOX3n..30
 3.3.2 Quantum Algorithm for An Extension of EQUALITY4 Boolean Function,
EOX4n..34
 3.3.3 Quantum Algorithm for An Extension of EQUALITY6 Boolean function,
EOX6n..36
 3.3.4 Application of EOX Boolean Functions...39

 3.4 Quantum Query Algorithm for AND2n Boolean Function: Q3/4(AND2n)=n......42
 3.5 Other Bounded-Error Quantum Algorithms...44

 3.5.1 Quantum Algorithm for “All Zeroes or Single One” 6 Argument Boolean
Function..44

 3.6 Conclusion and Open Problems..47
 4 Quantum Query Algorithms for Multivalued Functions..48

 4.1 Multivalued Functions ...49
 4.2 Computing Multifunctions in a Query Model..50
 4.3 Multifunction Example and Its Computation...52

 4.3.1 Multifunction M: QUD(M) = 1 vs. CUD(M) = 3..52
 4.3.2 The First Generalization of The Multifunction M....................................56
 4.3.3 The Second Generalization of The Multifunction M................................58

 4.4 Conclusion and Open Problems..61
 5 Low Degree Boolean Functions...62

 5.1 Definition of A Low Degree Polynomial ...63
 5.1.1 A Polynomial of Degree 2...63

 5.1.2 A Polynomial With The Boolean Value Range...64
 5.1.3 Examples and The General Form Of The Approach64

 5.2 Tripple Function Method..66
 5.3 Conclusion and Open Problems..67

 6 Conclusion..68
Appendix 1. Computation in Wolfram Mathematica. Programs for
EQUALITY3(x1,x2,x3) and AND2(x1,x2) computation..74
Appendix 2. Computation in Wolfram Mathematica. Programs for
EQUALITY4(x1,x2,x3,x4) and AND3(x1,x2,x3) computation..76
Appendix 3. Computation in Wolfram Mathematica. Programs for
EQUALITY6(x1,...,x6) and AND5(x1,...,x5) computation..78
Appendix 4. Computation in Wolfram Mathematica. Program for computing
AZSO6(x1,...,x6) ...83
Appendix 5. A Truth Table for the Boolean function f9(x1,...,x9)86

Chapter 1. Introduction

 1 Introduction

Quantum computing is an alternative way of computation based on the laws of

quantum mechanics. We will be researching quantum query algorithms, which are

proved to solve certain problems faster than their classical counterparts.

Given an explicit definition of some function and a black box oracle

containing the values of the variables as an input of the query algorithm, the goal of

the algorithm is to compute the function's value. The algorithm queries black box

oracle about the values of variables. Queries are asked individually, and the result of

any query influences the next query to be asked or the result to be output. [BW02]

gives a formal definition of quantum query algorithm.

Complexity of a query algorithm is measured by the number of queries to a

black box oracle on the worst case input. The classical version of this model is known

as decision trees [BW02].

Shor's [Sh97] and Grover's [Gr01] fast algorithms are considered legendary

classics, meanwhile a lot of successful quantum query algorithms for certain tasks

have been developed recently ([Am04], [KLM07], [VM10], [ACRSZ10], [KN97]).

A. Ambainis ([Am02], [Am98]) developed powerful methods to prove lower bounds

of quantum query complexity. A good reference is the survey by Buhrman and de

Wolf [BW02].

One of the most important open problems in quantum computing is whether

quantum algorithms could be more advantageous than probabilistic ones. Here we

will concentrate on the case when these advantages are least expected, namely, when

the computing device and the computation time are finite. We will discuss quantum

versus classical query algorithm complexities: we are interested in classical and

quantum algorithm complexity gap as large as possible for the same computational

problem. The largest known gap between quantum exact and classical deterministic

query algorithm complexity is N versus 2N ([BW02], [Am11]), and a long standing

open question is whether it is possible to enlarge this gap with no error allowed. The

first result with a 50% improvement for an exact algorithm was a quantum algorithm

for XOR Boolean function presented in [CEMM98].

1

Chapter 1. Introduction

Meanwhile the best improvements are presented by quantum algorithms with

certain error probability, making quantum computing a subject for numerous

researches.

We classify query algorithms by the probability of returning a correct result:

– exact algorithms always output the correct result with probability p=1

– probabilistic algorithms may be of different types depending on the subject of

the probability: either the result is correct with some probability, or there exists

a probability for the outcome “unknown”, while the correct answer is returned

precisely.

The quantum query model differs from the quantum circuit model ([Am04],

[KLM07], [VM10], [ACRSZ10], [KN97]), and algorithm design techniques for this

model are less developed. There are still no step-by-step instructions to design a

quantum query algorithm for some computational problem – neither exact nor

probabilistic. Given some function, it is a non-trivial task to design a quantum query

algorithm for it, so the goal of this research is to find some new approaches and good

examples of quantum query algorithms.

The research on quantum query algorithms will go in several directions:

– algorithms computing Boolean functions, especially, AND-function

– algorithms computing multivalued functions

In the first part of the research we will construct one-query bounded-error quantum

query algorithms for three-, four- and six-bit equality functions and compare

complexities between classical and quantum versions of these algorithms. We will

construct one-query bounded-error quantum algorithms for the conjunction of two,

three or five bits. We will propose a bounded-error quantum algorithm for the

conjunction of 2n bits by asking n queries.

We will generalize some of the previously described algorithms and get new

fast bounded-error quantum algorithms:

– a bounded-error algorithm with n quantum queries computing a function

dependent on 3n arguments

2

Chapter 1. Introduction

– a bounded-error algorithm with n quantum queries computing a function

dependent on 4n arguments

These algorithms are interesting on their own, but they also can be used as a basis for

definition of another specific computational problem preserving the quantum

algorithm complexity.

In the second part of the research we will focus on multivalued functions,

which could be found in mathematics when observing the inverse of various

functions, for example cos-1 (φ) or sqrt(x). We will present

– a quantum algorithm with n queries for a specific 4n-argument multivalued

function

– a one-query quantum algorithm for a specific multivalued function with N=2n

arguments.

Finally in the third part we will discuss low degree Boolean functions, the

degree of algebraic polynomial representing a Boolean function and its relation to the

complexity of a quantum query algorithm computing the function. We will present

some approaches for definition of Boolean functions with sufficiently large gap

between deterministic complexity and the degree of representing polynomial:

– an approach for a 3k-argument polynomial of degree 2(k-1) and corresponding

Boolean function's deterministic complexity equal to the number of its

arguments 3k

– an approach for building a 3t+1
⋅k -variable Boolean function f with

deterministic complexity D(f)=3t+1
⋅k and the degree of the representing

polynomial equal to deg (f)=2t+1⋅(k−1) , where t≥1 and any odd k.

We hope, algorithm examples presented in the thesis demonstrate some useful

approaches of algorithm design, and will inspire newcomers of this area.

3

Chapter 2. Preliminaries

 2 Preliminaries

In this section we consider notations, definitions and facts, either well-known

or elementary, referenced directly or indirectly throughout the thesis, such as the

classical decision tree, basics of quantum computing and the quantum query model.

We refer to [Am04] for most definitions in sections 2.1 and 2.2.

 2.1 Quantum Computing

In this chapter we briefly outline the basic notions of quantum computing that

are necessary to define the quantum query model. For more details, see ([KLM07],

[ACRSZ10], [Am04]).

 2.1.1 Quantum States

In finite dimensional quantum systems an n-dimensional pure quantum state is

a unit vector in a Hilbert space. Let ∣0 〉 ,∣1〉 , ... ,∣n−1〉 be an orthonormal basis for

ℂ
n

. Then, any state can be expressed as
∣ψ 〉=∑

i=0

n−1

a i∣i 〉 for some a i∈ℂ .

In case of n=2 we have a one-qubit quantum system. A quantum bit, qubit for short, is

a superposition of two basis states ∣0 〉 and ∣1〉 .

Since the norm of ∣ψ 〉 is 1, ∑i=0

n−1

∣ai∣
2
=1

. States ∣0 〉 ,∣1〉 , ... ,∣n−1〉 are called

basis states. Any state of the form ∑i=0

n−1

ai∣i 〉 is called a superposition of

∣0 〉 ,∣1〉 , ... ,∣n−1〉 . The coefficient ai is called amplitude of |i〉.

The quantum state can be changed by applying a unitary transformation or performing

a measurement.

4

Chapter 2. Preliminaries

 2.1.2 Unitary Transformation

A unitary transformation U is a linear transformation on ℂ
n

that maps each vector

of unit norm to a vector of unit norm. Given a state ∣ψ 〉 , the state of the system

after the transformation U is U∣ψ 〉 .

 2.1.3 Measurement

Here we use the simplest case of quantum measurement: the full measurement

in the computational basis. Performing this measurement on a state

∣ψ 〉=a0∣0〉+...+an−1∣n−1〉 gives the outcome i with probability |ai|
2. The

measurement changes state of the system to |i〉 and destroys the original state.

 2.2 Query Models

The query model considers some explicitly defined function

f : {0,1}
n
→ }0,1}

m with its arguments hidden in “black box”. Algorithm has to

output the value of the function correctly for an arbitrary input. The aim is to compute

the value of function while making as less queries to “black box” as possible.

Complexity of the algorithm is measured by number of queries on the worst-case

input.

Decision trees are query algorithms described in terms of classical

computation. For more details, see the survey by Buhrman and de Wolf [BW02] and

Papadimitrou [Pa94].

 2.2.1 Classical Decision Trees

We denote the Hamming weight of some input X by |X|.

A deterministic decision tree is a tree with internal nodes labeled with

variables xi, arrows exiting internal nodes labeled with possible variable values and

leafs labeled with function values. A deterministic decision tree always follows the

5

Chapter 2. Preliminaries

same path for each input and produces the correct result with probability p = 1.

Deterministic complexity of a function f is denoted by D(f).

Definition 2.1. [BW02] The deterministic complexity of a function f, denoted by

D(f), is the maximum number of questions that must be asked on any input by a

deterministic algorithm for f.

Definition 2.2. [BW02] The sensitivity sx(f) of f on input (x1, ... , x i ,... , xN) is the

number of variables xi with the following property:

f (x1, ... , x i ,... , xN)≠ f (x1, ... ,1−x i ,... , x N) . The sensitivity of f is

s(f)=max x s x(f) .

It has been proved that D(f)≥s (f) [BW02]. In particular, if s(f) is equal to the

number of variables n, then D(f)=n.

A power of randomization might be added to decision trees [BW02].

A probabilistic (randomized) decision tree may contain internal nodes with

probabilistic branching, i.e., multiple arrows exiting from the same node, each one

labeled with a probability for algorithm to follow that way. The total probability to

obtain the result r after execution of an algorithm on certain input X equals to the sum

of probabilities for each leaf labeled with r to be reached. Total probability of an

algorithm to produce the correct result is the probability on the worst-case input.

 2.2.2 Quantum Query Model

A quantum query algorithm is the quantum counterpart of the decision tree.

The following quantum query definition is applicable to problems with {0,1}-valued

arguments only:

the black box gets a state ∑
i

ai∣i 〉 as an input and outputs a state ∑
i

ai(−1)x i∣i 〉 ,

where the assignment of xi is arbitrary, corresponding to computational needs of the

algorithm. If the value of the i-th argument is 1, then the sign of the i-th amplitude ai

changes to the opposite. This form of a query is better suited for using in quantum

algorithms, while there is other, more general, definition of a query for functions with

a larger domain set. The first form of a query could be simulated by the second one.

6

Chapter 2. Preliminaries

See [KLM07], [ACRSZ10], [Am04] for detailed description.

A quantum algorithm with T queries is a sequence of unitary transformations

on a finitite-dimensional space ℂ
n

:

U 0→O→U 1→O→ ...→U T−1→O→U T ,

 Ui's can be arbitrary unitary transformations that do not depend on input bits. O's are

query transformations. The computation starts in the initial state ∣⃗0 〉 . Then, we

apply predefined unitary transformations U0,Ox,...,Ox,UT and measure the final state.

We denote the query that corresponds to an input x=(x1,x2,...,xn) by Ox.. Quantum query

transformation expressed in matrix form is as follows:

O x=(
(−1)ϕ0 0 ... 0

0 (−1)
ϕ1 ... 0

0 0 ⋱ 0
0 0 ...(−1)

ϕn−1
) ,

where ϕi is some xj from the input string X=(x1,x2,...,xn).

Each amplitude of the final state is treated as an output of the algorithm equal

to some value ri from the range set of the function. Probability to get the output value

r afer algorithm execution on some input X is the sum of squared moduli of all

amplitudes of the final state that correspond to outputs with function value r.

The quantum algorithm computes a function f (x1, ... , x N) if for every

x=(x1,x2,...,xN), for which f is defined, the probability that squared modulus of a certain

amplitude of the final state U T O x U T−1 ...O x U 0∣0〉 equals f (x1, ... , x N) is at

least 1−ϵ for some fixed ϵ<1/2 . The exact quantum algorithm computes a

function with probability 1, i.e. ϵ=0 .

There are several types of quantum algorithms [BW02]. The present survey

uses the notion of an exact and a bounded-error quantum query algorithms.

Definition 2.3. [BW02] A quantum query algorithm computes f exactly if the output

equals f(X) with probability p=1, for all X∈{0,1}N . Complexity is equal to the

number of queries and is denoted by QE(f).

7

Chapter 2. Preliminaries

Definition 2.4. [BW02] A quantum query algorithm computes f with bounded-error if

the output equals f(X) with probability p>2/3, for all X∈{0,1}N . Complexity is

equal to the number of queries and is denoted by Qp(f).

 2.3 The Deutch Algorithm

The most referenced quantum query algorithm is the Deutch algorithm [De85],

[CEMM98]. It computes the XOR Boolean function for two bits exactly using a

single query, while any classical algorithm asks at least two. Next we explain how the

algorithm works.

The algorithm uses one qubit quantum system with basis states ∣0 〉 ,∣1〉 . We

begin in the state ∣φ0 〉=∣0〉 and then apply H, then Q and then H, where H is

Hadamard matrix and Q is the query:

H=(
1
√2

1
√2

1

√2
−

1

√2
) , Q=((−1)x1 0

0 (−1)x2)

The algorithm is a sequence of transformations V x=H⋅Q⋅H . Finally, we perform

the measurement: if the final state is ∣0 〉 , we output 1, and otherwise 0.

To see how the described algorithm works, note that H∣0〉=
1

√2
∣0 〉+

1

√2
∣1 〉 , which

is a superposition of two basis states. For the input string x=00 Q is the identity

matrix, but for x=11 Q is minus identity, thus:

V 00∣0〉=H⋅I⋅H∣0〉=∣0 〉
V 11∣0〉=H⋅(−I)⋅H ∣0 〉=−∣0 〉 .

For x = 10 Q⋅H ∣0 〉=
1

√2
(−∣0〉+∣1〉) according to Q definition, so V 10∣0〉=−∣1〉 .

Similar result holds for the string x = 01: Q⋅H ∣0 〉= 1

√2
(∣0 〉−∣1〉) , V 01∣0〉=∣1〉 .

Therefore for x with all bits equal the final state is V x∣φ0 〉=∣0 〉 with probability p=1.

8

Chapter 2. Preliminaries

For all other input strings the final state is V x∣φ0 〉=∣1〉 up to a phase factor.

To compute the general form of XOR(x1,...,xN) Boolean function, we have to

extend the previous algorithm to the case of N=2n arguments: the transformation

sequence is equal to V x=H⋅Q1⋅...⋅Qn⋅H , where Qi queries values of the i-th and

the (i+1)-th arguments, 1≤i≤n .

9

Chapter 3. Quantum Query Algorithms for Boolean Functions

 3 Quantum Query Algorithms for Boolean Functions.
Bounded-Error Quantum Query Algorithms.

There are different types of query algorithms, which are mainly classified by

the probability of returning the correct result:

– exact algorithms are supposed to return the correct result on any input with

probability p = 1

– probabilistic algorithms either return a result which is correct with some

probability or always return the correct result, but there is a probability of

returning "unknown"

Quantum computation is popular and widely supported due to the

improvements in computation; the best results were achieved with probabilistic

algorithms. A quadratic [Gr96] and exponential [Sh97] quantum and classical

complexity gap is achieved by means of bounded-error quantum query algorithms.

Unfortunately, difficulties appear when there is a need to reuse an algorithm by

running it in terms of a more complex algorithm: only exact algorithms allow reusage

without the huge loss of the correct answer probability.

Meanwhile, for the exact algorithms only N versus 2N quantum and classical

complexity gap is known. There are lots of examples of algorithms with such a

complexity gap, but the most famous algorithm for XOR Boolean function [BW02]

was the first one. Quantum exact algorithm complexity has the following estimation

in comparison with the deterministic algorithm complexity: QE(f)≥
1
2

D(f) ,

which is not proved or refuted, but stands as an open question and a subject of

numerous researches: nobody managed to get ahead of XOR algorithm and use less

than N quantum queries as opposed to classical 2N queries.

Speaking about query algorithm complexity, we should mention algorithms for

promise problems ([DJ92], [CEMM98], [Si94], [FI09]): these are exact quantum

algorithms with restricted domain; behaviour of the algorithm outside the domain has

to be neglected. Restriction of this kind allows to widen the complexity gap up to

exponential, see Deutch-Jozsa algorithm description [DJ92].

10

Chapter 3. Quantum Query Algorithms for Boolean Functions

Let us return to the main object of this research section. Bounded-error

algorithms output correct answer with some probability, consequently these

algorithms should be compared to classical probabilistic query algorithms for

estimation of the complexity gap.

The first subsection introduces an EQUALITY Boolean function for three,

four and six arguments and offers a bounded-error one-query quantum algorithm for

each case. Correct answer probabilities are 9/10, 3/4 and 9/16 correspondingly.

The second subsection presents a shift from n-bit EQUALITY function and its

algorithm to (n-1)-bit conjunction and its algorithm preserving the same correct

answer probability and asking one query: Q9/10(AND2)=1, Q3/4(AND3)=1 and

Q9/16(AND5)=1.

The third subsection presents a Boolean function EOX (Equality Of XORs)

designed on the basis of EQUALITY function, and its algorithm with 3n, 4n or 6n

arguments and n quantum queries, preserving the correct answer probability of the

basic algorithm. Some interesting applications of EOX-type function are offered in

this subsection.

The fourth subsection stands apart from previous ones, but continues the

research on effective algorithms for conjunctions. It shows a very unique quantum

query algorithm for 2n-argument AND Boolean function with n quantum queries and

the correct answer probability p = 3/4.

The fifth subsection presents a stand-alone quantum query algorithm for

AZSO (All Zeroes or Single One) Boolean function of 6 arguments: true if the

Hamming weight of the input string is 0 or 1. The algorithm has correct answer

probability p = 9/16 and uses one quantum query.

A technical moment of a bounded-error algorithm design: while in case of an

exact quantum algorithm we expect the measurement to give either 0 or 1 for the

squared amplitude value, the situation is a bit different for a bounded-error algorithm.

If we measure a quantum state |0>, we observe an amplitude of the first element of the

result vector. Suppose the amplitude is equal to some v (less or equal to 1; the sum of

squared amplitudes over the vector are 1), then the algorithm's output is:

11

Chapter 3. Quantum Query Algorithms for Boolean Functions

– 1 with the correct answer probability v2, if v2
≥

1
2 ,

– 0 with error probability v2, if v2
<

1
2 .

All results have been checked using Wolfram Mathematica tool. See

Appendices 1-5 for program code examples.

12

Chapter 3. Quantum Query Algorithms for Boolean Functions

 3.1 Quantum Query Algorithms for 3-, 4- and 6-
bit EQUALITY Boolean Function

In this section we define an EQUALITY Boolean function, which is equal to 1

on all-ones or all-zeroes input strings, otherwise function is equal to 0. We offer

bounded-error quantum query algorithms for the case of three, four and six

arguments.

 3.1.1 Quantum Algorithm for EQUALITY3 Function:
Q9/10(EQUALITY3)=1

This section is partly based on the author's Master Thesis [Mi07] . We define a

3-argument Boolean function EQUALITY3 equal to 1 on vectors 000 and 111,

otherwise function is equal to 0: EQUALITY 3(x1 , x2 , x3)=1⇔[x1=x2= x3]

Theorem 3.1. There is a bounded-error quantum query algorithm computing the

Boolean function EQUALITY3 (x1,x2,x3) with one quantum query and error probability

p = 1/10: Q9 /10(EQUALITY 3)=1

Proof. The algorithm for EQUALITY3 Boolean function uses 2-qubit quantum

system with basis states {∣0 〉 ,∣1〉 ,∣2〉 ,∣3〉} .

Define unitary matrices U0 and U1 by

U 0=H 4x4=
1
2(

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 −1

) ,U 1=(
1

√10
1

√10 √ 2
5 √ 2

5
1
2

−
1
2

1
2

−
1
2

√ 2
5 √ 2

5
−

1

√10
−

1

√10
1
2

−
1
2

−
1
2

1
2

)
respectively. U0 is a 4x4 Hadamard matrix here. Define a query matrix Q by

13

Chapter 3. Quantum Query Algorithms for Boolean Functions

Q=(
(−1)

x1 0 0 0
0 (−1)x1 0 0
0 0 (−1)x2 0
0 0 0 (−1)x3

)
.

We begin in the state ∣φ0 〉=∣0〉 and then apply U0, then Q, and then U1. Finally, we

perform the measurement consisting of a projection onto the state ∣0 〉 and its

orthogonal complement. If the output is ∣0 〉 , we output 1, otherwise 0.

Consequently, the final quantum state, the state after applying a transformation

sequence on the initial quantum state, is ∣φ 〉=U 1⋅Q⋅U 0∣0 〉 .

The claim is that the sequence V x=U 1⋅Q⋅U 0 leaves ∣φ0 〉 unchanged up

to the phase factor, when input string has all bits equal, otherwise maps ∣φ0 〉 into a

subspace orthogonal to ∣φ0 〉 . To see that the claim is correct, note first that

U 0∣0〉=
1
2
∑
i=0

3

∣i 〉 , since U0 is Hadamard matrix. For the input string x=000 Q is the

identity matrix, but for x=111 Q is minus identity.

V 000∣0〉=U 1⋅I⋅U 0∣0 〉=(3

√10
0

1

√10
0)

T

,

V 111∣0〉=U 1⋅(−I)⋅U 0∣0〉=(− 3

√10
0 −

1

√10
0)

T

,

which is the quantum state ∣0 〉 with probability 9/10 after the measurement.

For x = 100 we get Q⋅U 0∣0 〉=
1
2
(−∣0〉−∣1〉+∣2 〉+∣3 〉) according to Q definition , so

V 100∣0〉=(1

√10
0 −

3

√10
0)

T

, which is not the quantum state ∣2 〉 (or not the

state ∣0 〉)with probability 9/10. Similar result holds for the string x = 011 :

Q⋅U 0∣0 〉=
1
2
(∣0 〉+∣1 〉−∣2〉−∣3〉) , V 011∣0〉=(− 1

√10
0

3

√10
0)

T

.

 For x = 001 :

Q⋅U 0∣0 〉=
1
2
(∣0 〉+∣1 〉+∣2〉−∣3〉) , V 001∣0〉=(1

√10
1
2

2

√10
−

1
2)

T

, which is

14

Chapter 3. Quantum Query Algorithms for Boolean Functions

not the state ∣0 〉 with probability 9/10. Similar result holds for the string x = 010.

Thus, for x with all bits equal the final state is V x∣φ0 〉=∣0 〉 with probability 9/10. For

all other input strings the final state is a superposition of states ∣1〉 ,∣2 〉 ,∣3〉 with the

sum of squared amplitudes equal to 9/10. Such a state is orthogonal to the initial state,

proving our claim. 

All results have been checked using Wolfram Mathematica program (see

Appendix 1 for program code and output values)

What is the benefit of the quantum algorithm in comparison to the classical

deterministic or probabilistic algorithm? By sensitivity on the input 000

D(EQUALITY 3)=3 , which means there is no deterministic algorithm computing

EQUALITY3 by asking less than 3 questions . However, it is unfair to compare a

bounded-error quantum algorithm with a deterministic one.

Let us find the highest possible probability for a classical randomized decision

tree which computes this function with one query.

Theorem 3.2. The Boolean function EQUALITY3 (x1,x2,x3) is computable by a

randomized classical decision tree with one query with maximum probability p=½.

Proof. The general form of the optimal randomized decision tree is shown in Fig. 3.1.

Let us denote

– Pr(r|X) to be the probability of an answer r∈{0,1} after execution of the

algorithm on the input string X

– p0 to be the probability to reach the answer 1 in case one argument is known

and equal to 0

– p1 to be the probability to reach the answer 1 in case one argument is known

and equal to 1

Due to symmetry of the function p0= p1 , denote both of them by p.

Then: Pr (1∣X=000∪X=111)=3⋅
1
3

q p=q⋅p

15

Chapter 3. Quantum Query Algorithms for Boolean Functions

Pr (0∣X=001∪X=010∪X=100)
...=Pr (0∣X=011∪X=101∪X=110)

...=1−q+
1
3

q(1−p)+
1
3

q (1− p)+
1
3

q (1− p)

...=1−q+q⋅(1− p)=1−q⋅p

The probability of the correct answer is the minimum of Pr(0) and Pr(1),

min(qp, 1-qp), which has to be as large as possible to make the algorithm efficient.

The highest probability is obtained in case when both answers are equally probable,

qp = 1 – qp, qp = ½, which is the probability of the described algorithm. 

Fig. 3.1 The general form of the optimal classical randomized decision tree computing

EQUALITY3 (x1,x2,x3). p0 is the probability to reach answer 1 if one argument is known and

equal to 0, similarly for p1.

1-p1

0

1-q q

x1

x2

x3

1/3 1/31/3

0 10 1

0

0 1

p0 1-p0

1

0

p1

1

1-p1

0

1

p0 1-p0

01

p0 1-p0

01

1

p1 1-p1

01

p1

0

16

Chapter 3. Quantum Query Algorithms for Boolean Functions

 3.1.2 Quantum Algorithm for EQUALITY4 Function:
Q3/4(EQUALITY4) = 1

We define a 4-argument Boolean function EQUALITY4 equal to 1 on vectors

0000 and 1111, otherwise function is equal to 0:

EQUALITY 4(x1 , x2 , x3 , x4)=1⇔[x1=x2= x3=x4]

Theorem 3.3. There is a bounded-error quantum query algorithm computing the

Boolean function EQUALITY4 with one quantum query. Error probability is no more

than ¼: Q3 /4(EQUALITY 4)=1

Proof. The algorithm for EQUALITY4 Boolean function uses 2-qubit quantum

system with basis states {∣0 〉 ,∣1〉 ,∣2〉 ,∣3〉} .

Define a unitary matrix U0, which is a 4x4 Hadamard matrix, and U1 by

U 0=
1
2(

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

) ,U 1=
1
2 (

1 1 1 1
1 −1 −1 1
1 1 −1 −1
−1 1 −1 1

)
 respectively. Define a query matrix Q by

Q=(
(−1)

x1 0 0 0
0 (−1)x2 0 0
0 0 (−1)x3 0
0 0 0 (−1)x4

)
We begin in the state ∣φ0 〉=∣0〉 and apply U0, then Q, and then apply U1. Finally, we

perform the measurement consisting of a projection onto the state ∣0 〉 and its

orthogonal complement. If the output is ∣0 〉 , we output 1, otherwise 0. The final

quantum state is ∣φ 〉=U 1⋅Q⋅U 0∣0 〉 .

We claim that the sequence V x=U 1⋅Q⋅U 0 leaves ∣φ0 〉 unchanged up to the

phase factor, when input string has all bits equal, otherwise maps ∣φ0 〉 into a

subspace orthogonal to ∣φ0 〉 .

The proof below is very similar to one presented in the section 3.1.1. Here we just

repeat it shortly.

17

Chapter 3. Quantum Query Algorithms for Boolean Functions

Since U 0∣0〉=
1
2
∑
i=0

3

∣i 〉 , for the input string x=0000 Q is the identity matrix, but for

x=1111 Q is minus identity:

V 0000∣0〉=U 1⋅I⋅U 0∣0〉=∣0 〉 ,
V 1111∣0 〉=U 1⋅(−I)⋅U 0∣0 〉=−∣0 〉 .

For the input string x = 1100:

Q⋅U 0∣0 〉=
1
2
(−∣0〉−∣1〉+∣2〉+∣3〉) , therefore V 1100∣0 〉=∣2〉 .

Similar results, the state ∣1〉 , ∣2 〉 or ∣3〉 up to the phase factor, hold for the

other strings with Hamming weight 2.

For the input string x = 1000:

Q⋅U 0∣0 〉=
1
2
(−∣0〉+∣1〉+∣2 〉+∣3 〉) , V 1000∣0 〉=

1
2
(∣0〉−∣1〉−∣2〉+∣3〉) .

Easy to see that for the input x=0111 the outcome is

V 0111∣0 〉=−
1
2
(∣0 〉−∣1 〉−∣2〉+∣3〉) , which is not the state ∣0 〉 and therefore

orthogonal to ∣0 〉 with error probability p = 1/4. For all other input strings with

Hamming weight 1 or 3 results are similar and lie in the span of ∣0 〉 ,∣1〉 ,∣2 〉 ,∣3〉 ,

where all coefficients are positive or negative ½ .

Thus, for x with all bits equal the final state is V x∣φ0 〉=∣0 〉 with probability

p = 1. For all other input strings the result is orthogonal to the initial state, although

with error probability p = 1/4, proving our claim. 

All results have been checked using Wolfram Mathematica program (see

Appendix 2 for program code and output values)

Let us now discuss the benefit of the quantum algorithm versus classical

deterministic. By sensitivity on the input 0000, D(EQUALITY 4)=4 , which means

a deterministic algorithm computing EQUALITY4 requires 4 questions .

18

Chapter 3. Quantum Query Algorithms for Boolean Functions

 3.1.3 Quantum Algorithm for EQUALITY6 Function:
Q9/16(EQUALITY6)=1

We define a 6-argument Boolean function EQUALITY6 equal to 1 on vectors

000000 and 111111, otherwise function is equal to 0:

EQUALITY 6(x1 , x2 , x3 , x4 , x5 , x6)=1⇔[x1=x2=x3=x4=x5=x6]

Theorem 3.4. There is a bounded-error quantum query algorithm computing the

Boolean function EQUALITY6 (x1,x2,x3,x4,x5,x6) with one quantum query and correct

answer probabilty p = 9/16: Q9 /16(EQUALITY 6)=1 .

Proof. The algorithm for EQUALITY6 Boolean function uses 3-qubit quantum

system with basis states {∣0 〉 ,∣1〉 ,∣2〉 ,∣3〉 ,∣4 〉 ,∣5 〉 ,∣6 〉 ,∣7〉 } .

Define a unitary matrix U0 and U1 by

U 0=H 8x8=
1
√8(

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

),
U 1=

1
√8(

1 1 1 1 1 1 1 −1
1 1 −1 −1 −1 −1 1 −1
1 1 1 1 −1 −1 −1 1
−1 −1 1 1 −1 −1 1 −1
2 −2 0 0 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 0 0 2 2

)
respectively. Define a query matrix Q by

19

Chapter 3. Quantum Query Algorithms for Boolean Functions

Q=(
(−1)x1 0 0 0 0 0 0 0

0 (−1)x2 0 0 0 0 0 0
0 0 (−1)x3 0 0 0 0 0

0 0 0 (−1)
x4 0 0 0 0

0 0 0 0 (−1)
x5 0 0 0

0 0 0 0 0 (−1)x6 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

)
We begin in the state ∣φ0 〉=∣0〉 , apply U0, then Q, and then apply U1. Finally, we

perform the measurement consisting of a projection onto the state ∣0 〉 and its

orthogonal complement. If the output is ∣0 〉 , we output 1, otherwise 0.

Consequently, the final quantum state, that is a state after applying a transformation

sequence on the initial quantum state, is equal to ∣φ 〉=U 1⋅Q⋅U 0∣0 〉 .

The claim is that the sequence V x=U 1⋅Q⋅U 0 leaves ∣φ0 〉 unchanged up

to the phase factor, when the input string has all bits equal, otherwise maps ∣φ0 〉

into a subspace orthogonal to ∣φ0 〉 .

Firstly, U 0∣0〉=
1
√8
∑
i=0

7

∣i 〉 , since U0 is Hadamard matrix. For the input string

x=000000 Q is the identity matrix, then

V 000000∣0 〉=U 1⋅I⋅U 0∣0〉=(34 −
1
4

1
4
−

1
4

0 0 0
1
2)

T

.

While for x = 111111

Q⋅U 0∣0 〉=
1

√8
(−∣0 〉−∣1〉−∣2 〉−∣3〉−∣4 〉−∣5〉+∣6 〉+∣7 〉)

V 111111∣0〉=(−3
4

1
4
−

1
4

1
4

0 0 0
1
2)

T

.

After the measurement it is the quantum state ∣0 〉 with probability 9/16.

Running the algorithm on any other input vector results in a quantum state

orthogonal to ∣0 〉 with error probability no more than ¼ , proving our claim. See

Appendix 3 for other input and output vector correspondence. 

20

Chapter 3. Quantum Query Algorithms for Boolean Functions

By sensitivity on the input 000000, D(EQUALITY 6)=6 .

Theorem 3.5. The Boolean function EQUALITY6 (x1,...,x6) is computable by a

randomized classical decision tree with one query with maximum probability p= ½.

Proof. The general form of the optimal randomized decision tree is shown in Fig. 3.2.

Let us denote the probability of an answer r∈{0,1} after execution of the algorithm

on the input string X by Pr(r|X). Due to symmetry of the function, probabilities for

both outputs 0 and 1 are equal after one query, denote both of them by p.

Then: Pr (1∣X=000000∪X=111111)=6⋅
1
6

q p=q⋅p

Pr (0∣X≠000000∪X≠111111)=1−q+6⋅
1
6

q (1− p)=1−q+q⋅(1− p)=1−q⋅p

The probability of the correct answer is min(qp, 1-qp). The highest probability is

obtained in case when both answers are equally probable, qp = 1 – qp, qp = ½,

consequently, the probability of the described algorithm is ½. 

Fig. 3.2 The general form of the optimal classical randomized decision tree for computing

EQUALITY6 (x1,...,x6)

1-p

0

1-q q

x1 x6

1/6 1/6

0 10 1 0 1

p 1-p

01

p 1-p

01 1

p 1-p

01

p

0

1/6 1/6 1/6 1/6

 ...
x2, x3, x4, x5

21

Chapter 3. Quantum Query Algorithms for Boolean Functions

 3.2 Quantum Query Algorithms for 2-, 3-, 5- bit
Conjunctions

Since every Boolean function is expressed as a logical formula, it can be

normalized and rewritten in CNF(conjunctive normal form) or DNF (disjunctive

normal form).

Conjunctive normal form is a conjunction of disjunctions of arguments or

negated arguments, disjunctive normal form is a disjunction of conjunctions of

arguments or negated arguments. AND and OR Boolean functions are basic elements

which are used in every formula several times.

According to [Wo01], N queries are required in N-bit case of AND and OR,

which is a proved lower bound. Improving the computation of primary functions,

which are used to stick parts of a Boolean function in CNF/DNF to each other, will

boost the computation of any complex formula.

Grover's search algorithm [Gr96] is one of the most well-known quantum

algorithms, it computes N-bit OR by asking O(√N) queries. As far as

AND(x1,x2) = NOT OR(NOT x1, NOT x2),

we can transform Grover's algorithm to compute AND Boolean function, which is

obviously effective on sufficiently large N. In case of AND/OR defined on a small

number of arguments much quicker algorithms exist there. Meanwhile, the number of

AND/OR calls in one complex Boolean function might be large enough,

consequently, the speed up of its computation is going to be significant.

This section presents algorithms for AND Boolean function for 2, 3 and 5

arguments. All quantum query algorithms are bounded-error, use one quantum query

only having higher correct answer probability than their classical counterparts –

randomized probabilistic algorithms. All algorithms operate faster than Grover's

algorithm for the particular number of arguments.

22

Chapter 3. Quantum Query Algorithms for Boolean Functions

 3.2.1 Quantum Query Algorithm for AND2: Q9/10(AND2)=1

This section is partly based on the article [VM10] and demonstrates a

bounded-error quantum query algorithm for AND2(x1,x2) Boolean function with the

best ever achieved correct answer probability p = 9/10.

According to [KW04], the proof of Lemma 1, there exists an algorithm for

computing an arbitrary two-argument Boolean function with probability p=11/14.

The same paper makes a contribution about an optimal probability equal to 9/10.

Theorem 3.6. There is a quantum query algorithm computing the Boolean function

AND2(x1,x2) with one quantum query and correct answer probability p = 9/10:

Q9 /10(AND2)=1 .

Proof. Both function and algorithm are obtained from the function

EQUALITY3(x1,x2,x3) and its quantum algorithm respectively. Setting x3 argument to

be a constant value 1, we force EQUALITY3(x1,x2,1)=1 and therefore x1 = x2 = 1.

For x1x2 equal to 00 or 01, or 10, EQUALITY3(x1,x2,1)=0 exactly as function

AND(x1,x2) does. We get a quantum algorithm for AND(x1,x2) by redefining the query

operator in the EQUALITY3 algorithm and leaving everything else unchanged:

– the algorithm uses 2-qubit quantum system, starts with |0> quantum state and

stops in a state ∣φ 〉=U 1⋅Q⋅U 0∣0 〉 after application of a transformation

sequence on the initial quantum state

– finally, we measure the quantum state |0>, which probability is the probability

of the correct value of AND(x1,x2), i.e. p=9/10.

– U0 is a 4x4 Hadamard matrix and U1 is defined as follows

U 1=(
1

√10
1

√10 √ 2
5 √ 2

5
1
2

−
1
2

1
2

−
1
2

√ 2
5 √ 2

5
−

1

√10
−

1

√10
1
2

−
1
2

−
1
2

1
2

) .

23

Chapter 3. Quantum Query Algorithms for Boolean Functions

The new query matrix Q is:

Q=(
(−1)x1 0 0 0

0 (−1)
x1 0 0

0 0 (−1)x2 0
0 0 0 −1

) .

All the processing repeats one from the section 3.1.1 with the only difference – the

last of three arguments is constantly set to 1. 

All results have been checked using Wolfram Mathematica program (see

Appendix 1 for program code and output values)

Next, let us discuss the classical counterpart and compare quantum versus

classical complexity. D(AND2)=2 , which is obvious, however, the classical

counterpart of our bounded-error quantum algorithm is a randomized decision tree.

Theorem 3.7. The Boolean function AND2 (x1,x2) is computable by a classical

randomized decision tree with one query with the maximum probability p= 2/3.

Proof. The general form of the optimal randomized decision tree is shown in Fig. 3.3.

Fig. 3.3 The general form of the optimal classical randomized decision tree for computing

AND2 (x1,x2).

The probability to get the correct answer on the input 11 is

Pr (1∣X=11)=2⋅
1
2

q p=q⋅p . The probability to get the correct answer on all

other inputs is as follows:

1-p

0

1-q q

x1 x2

1/2 1/2

1
0

1
0

1

00 1

p 1-p

01

p

0

24

Chapter 3. Quantum Query Algorithms for Boolean Functions

Pr (0∣X=00)=1−q+
1
2
⋅q+

1
2
⋅q=1

Pr (0∣X=01∪X=10)=1−q+
1
2
⋅q+

1
2
⋅q⋅(1− p)=1−

1
2
⋅q⋅p

.

The probability of the correct answer is the minimum of Pr(0) and Pr(1),

min(qp, 1- ½ qp). The highest probability is obtained in case when both answers are

equally probable, qp = 1 – ½ qp, qp = 2/3, which is the probability of the described

algorithm. 

 3.2.2 Quantum query algorithm for AND3: Q3/4(AND3)=1

This section demonstrates a bounded-error quantum query algorithm for the

Boolean function AND3(x1,x2,x3) with the correct answer probability p=3/4.

Theorem 3.8. There is a quantum query algorithm computing the Boolean function

AND3(x1,x2,x3) with one quantum query and the correct answer probability p=3/4:

Q3 /4(AND3)=1

Proof. Both function and algorithm are obtained from the function

EQUALITY4(x1,x2,x3,x4) and its quantum algorithm, correspondingly.

Setting x4 argument to be a constant value 1, we force EQUALITY4(x1,x2,x3,1)=1

and therefore x1=x2=x3=1. For the input string x1x2x3 not equal to 111

EQUALITY4(x1,x2,x3,1)=0 exactly as function AND3(x1,x2,x3) does. We get a quantum

algorithm for AND3(x1,x2,x3) by redefining the query operator in the EQUALITY4

algorithm, leaving everything else unchanged:

– the algorithm uses 2-qubit quantum system and starts with |0> quantum state,

and stops in a state ∣φ 〉=U 1⋅Q⋅U 0∣0 〉 after application of a transformation

sequence on the initial quantum state

– finally, we get the algorithm's value by measuring the quantum state |0>. Error

probability is no more than p=1/4.

– U0 is a 4x4 Hadamard matrix and

25

Chapter 3. Quantum Query Algorithms for Boolean Functions

U 1=
1
2(

1 1 1 1
1 −1 −1 1
1 1 −1 −1
−1 1 −1 1

) .

The new query matrix Q is:

Q=(
(−1)x1 0 0 0

0 (−1)
x2 0 0

0 0 (−1)x3 0
0 0 0 −1

)
All the processing repeats one from section 3.1.2 with the only difference – the last of

four bits is constantly set to 1. 

All results have been checked using Wolfram Mathematica program (see

Appendix 2 for program code and output values).

It is obvious, D(AND3)=3 .

Theorem 3.9. The Boolean function AND3 (x1,x2,x3) is computable by a classical

randomized decision tree with one query with the maximum probability p= 3/5.

Proof. The general form of the optimal randomized decision tree is shown in Fig. 3.4.

The probability to get the correct answer on the input 111 is

Pr (1∣X=111)=3⋅
1
3

q p=q⋅p .

The probability to get the correct answer on all other inputs is as follows:

Pr (0∣X=000)=1−q+3⋅
1
3
⋅q=1

Pr (0∣X=001∪X=010∪X=100)=1−q+
1
3

q⋅(3−p)=1−
1
3

qp

Pr (0∣X=011∪X=101∪X=110)=1−q+
1
3

q⋅(3−2p)=1−
2
3

qp

Pr (0)=min(1,1−
1
3

qp ,1−
2
3

qp)=1−
2
3

qp , qp≤1

The probability of the correct answer is the minimum of Pr(0) and Pr(1),

min(qp, 1 - 2/3 qp), the highest probability is obtained in case when both answers are

equally probable, qp = 1 – 2/3 qp, consequently, qp = 3/5, which is the probability of

26

Chapter 3. Quantum Query Algorithms for Boolean Functions

the described algorithm. 

Fig. 3.4 The general form of the optimal classical randomized decision tree

for computing AND3 (x1,x2,x3) Boolean function

 3.2.3 Quantum query algorithm for AND5: Q9/16(AND5)=1

This section demonstrates a bounded-error quantum query algorithm for

AND5(x1,x2,x3,x4,x5) Boolean function with the correct answer probability p = 9/16.

Theorem 3.10. There is a quantum query algorithm computing the Boolean function

AND5(x1,x2,x3,x4,x5) with one quantum query and the correct answer probability

p= 9/16: Q9 /16(AND5)=1

Proof. Both function and algorithm are obtained from the function

EQUALITY6(x1,x2,x3,x4,x5,x6) and its quantum algorithm respectively.

Setting x6 argument to be a constant value 1, we force the value of the function to be

EQUALITY6(x1,x2,x3,x4,x5,1) =1, and therefore x1=x2=x3=x4=x5=1. For x1x2x3x4x5 not

equal to 11111, the value of the function is EQUALITY6(x1,x2,x3,x4,x5,1)=0 exactly as

function AND5(x1,x2,x3,x4,x5). We get the quantum algorithm for AND5(x1,x2,x3,x4,x5)

by redefining the query operator in the EQUALITY6 algorithm, leaving everything

else unchanged:

1-p

0

1-q q

x1 x3

1/3 1/3

0 1
0 1

00
1

p 1-p

01

p

0
x2

0 1

0 1

p 1-p

0

1/3

27

Chapter 3. Quantum Query Algorithms for Boolean Functions

– the algorithm uses 3-qubit quantum system and starts with the quantum state |

0>, and stops in the state ∣φ 〉=U 1⋅Q⋅U 0∣0 〉 after application of a

transformation sequence on the initial quantum state

– finally, we get the function's value by measuring the quantum state |0>. The

correct answer probability is p=9/16.

– U0 is 8x8 Hadamard matrix and U1 is the following:

U 1=
1
√8(

1 1 1 1 1 1 1 −1
1 1 −1 −1 −1 −1 1 −1
1 1 1 1 −1 −1 −1 1
−1 −1 1 1 −1 −1 1 −1
2 −2 0 0 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 0 0 2 2

)
The new query matrix Q is:

Q=(
(−1)

x1 0 0 0 0 0 0 0
0 (−1)x2 0 0 0 0 0 0
0 0 (−1)x3 0 0 0 0 0
0 0 0 (−1)x4 0 0 0 0

0 0 0 0 (−1)
x5 0 0 0

0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

)
All the processing repeats one from the section 3.1.3 with the only difference – the

last of six bits is constantly set to 1. 

All results have been checked using Wolfram Mathematica program (see

Appendix 3 for program code and output values)

Let us evaluate the classical algorithm's complexity. First, it is obvious

D(AND5)=5 .

Theorem 3.11. The Boolean function AND5(x1,x2,x3,x4,x5) is computable by a classical

randomized decision tree with one query and the maximum probability p= 5/9.

Proof. The general form of the optimal randomized decision tree for 5-argument AND

28

Chapter 3. Quantum Query Algorithms for Boolean Functions

Boolean function is shown in Fig. 3.5.

Fig. 3.5 The general form of the optimal classical randomized decision tree for

computing AND5(x1,...,x5).

The probability to get the correct answer on the input 11111 is:

Pr (1∣X=11111)=5⋅
1
5

q p=q⋅p .

The probability to get the correct answer on all other inputs:

Pr (0∣X=00000)=1−q+5⋅
1
5

q=1

Pr (0∣X :∣X ∣=1)=1−q+
1
5

q⋅(5−p)=1−
1
5

qp

Pr (0∣X :∣X ∣=2)=1−q+
1
5

q⋅(5−2p)=1−
2
5

qp

Pr (0∣X :∣X ∣=3)=1−q+
1
5

q⋅(5−3p)=1−
3
5

qp

Pr (0∣X :∣X ∣=4)=1−q+
1
5

q⋅(5−4p)=1−
4
5

qp

.

Pr (0)=min(1,1−
1
5

qp ,1−
2
5

qp ,1−
3
5

qp ,1−
4
5

qp)=1−
4
5

qp

The probability of the correct answer is the minimum of Pr(0) and Pr(1),

min(qp, 1-4/5 qp). The highest probability is obtained in case when both answers are

equally probable, qp = 1 – 4/5 qp. Then qp = 5/9, which is the probability of the

described algorithm. 

1-p

0

1-q q

x1 x5

1/5 1/5

1
0

1 0 1

00 1

p 1-p

01

p

0

1/51/5 1/5

 ...
x2, x3, x4

29

Chapter 3. Quantum Query Algorithms for Boolean Functions

 3.3 Quantum Query Algorithm for An Extension
of EQUALITY Boolean function, EOX for 3n, 4n
and 6n arguments

This section offers a set of Boolean functions and quantum algorithms, each

based on the corresponding EQUALITY algorithm.

 3.3.1 Quantum Algorithm for An Extension of EQUALITY3 Boolean
function, EOX3n

This section is partly based on the author's Master Thesis [Mi07] . We define a

3n-argument Boolean function EOX3n (short for Equality Of XORs) as follows:

EOX 3n(x1 , x2 , x3 ,… , x3i+1 , x3i+2 , x3i+3 ,… , x3n−2 , x3n−1 , x3n)=...

...=EQUALITY 3(XOR
i=0

n−1

(x3i+1) , XOR
i=0

n−1

(x3i+2) , XOR
i=0

n−1

(x3i+3))
.

For example, for n=2, Boolean function EOX6 is defined by it's truth table, see the

Table 3.1 for details.

X EOX6 X EOX6

000000 1 011011 1

000111 1 011100 1

111000 1 100011 1

111111 1 100100 1

001001 1 101010 1

001110 1 101101 1

010010 1 110001 1

010101 1 110110 1

Otherwise 0

Table 3.1. Boolean function EOX6

Theorem 3.12. There is a bounded-error quantum query algorithm computing the

Boolean function EOX3n(X) with n quantum queries and error probability p=1/10:

Q9 /10(EOX 3n)=n .

Proof. The algorithm for EOX3n Boolean function is very similar to one that

30

Chapter 3. Quantum Query Algorithms for Boolean Functions

computes EQUALITY3 function (see section 3.1.1 for details). The only difference is

in the query. The current algorithm asks values of 3n arguments by executing n

queries one after another,

∀i=0,… , n−1:

Qi=(
(−1)x3i+1 0 0 0

0 (−1)x3i+1 0 0

0 0 (−1)
x3i+2 0

0 0 0 (−1)x3i+3
) .

Everything except for the query remains the same:

– the initial quantum state is |0>,

– the final state is reached by execution of a transformation sequence

∣φ 〉=U 1⋅Qn⋅…⋅Q1⋅U 0∣0〉 where U0 and U1 are exactly the same as in the

section 3.1.1.

To prove that the described quantum algorithm computes the function, observe

the product of all query matrices:

Q=(
(−1)

∑
i=0

n−1

x3i+1

0 0 0

0 (−1)
∑
i=0

n−1

x3i+1

0 0

0 0 (−1)
∑
i=0

n−1

x3i+2

0

0 0 0 (−1)
∑
i=0

n−1

x3i+3

)
EOX 3n(x1, ... , x3n)=EQUALITY 3(∑

i=0

n−1

x3i+1 ,∑
i=0

n−1

x3i+2 ,∑
i=0

n−1

x3i+3) ,where∑ is modulo 2

Finally, we measure the quantum state |0>, which squared amplitude is the probability

of the value EOX3n(X) = 1. The error probability is no more than p=1/10.

All results could be observed using Wolfram Mathematica program for

EQUALITY3 Boolean function (Appendix 1) by defining more queries in the program

body and adding them to the transformation sequence. 

For example, in case of 6 arguments two queries are:

31

Chapter 3. Quantum Query Algorithms for Boolean Functions

Q1=(
(−1)

x1 0 0 0
0 (−1)x1 0 0
0 0 (−1)x2 0
0 0 0 (−1)x3

), Q2=(
(−1)

x4 0 0 0
0 (−1)x4 0 0
0 0 (−1)x5 0
0 0 0 (−1)x6

) .

Running the algorithm on 000000 and 15 other input strings from Table 3.1,

the quantum state |0> is reached with probability
9
10

, which is equivalent to the

algorithm's output 1 with probability 9/10.

By the definition of the function, EOX3n(000...0) = 1. Changing only one bit

value to 1 changes the function's value to 0. Consequently, the sensitivity of

EOX3n(000...0) is equal to 3n, and D(EOX 3n)=3n .

Fig. 3.6 The general form of the optimal classical randomized decision tree for computing

EOX6 (x1,...,x6).

Lemma 3.1. Given the general optimal randomized decision tree of depth n

computing EOX3n(X) , the probability of getting the answer 1 is equal for each

combination of randomly chosen n values.

Proof. All 3n arguments of the function EOX3n are divided into 3 non intersecting

subsets according to the structure of the function:

0

1-q q

X1
x4

1/15 1/15

1/4 3/4

01

X2
x5

X3
x6

1/15 1/15

X1
x2

X5
x6

1/15

...

1/4 3/4

01

1/4 3/4

01

1/4 3/4

01

1/4 3/4

01

32

Chapter 3. Quantum Query Algorithms for Boolean Functions

{x1,...,xn}, {xn+1,...,x2n}, {x2n+1,...,x3n}.

Suppose we are given k1, k2, k3 – numbers of queried arguments in the first, the second

and the third subset, such that n=k1+k2+k3.

Having n queried arguments, we have a probabilistic randomized decision tree

of depth n. There are 22n different combinations of the remaining unqueried argument

values. Let us count all possible strings of unquestioned arguments that give the value

EOX3n (x1,...,x3n)=1.

Step 1. It is important to notice, that the number of all possible binary strings X of

length K for which XORK(X)=0 is exactly the same as the number of all possible

binary strings Y of length K for which XORK(Y)=1. This statement follows from the

properties of the Binomial coefficients:

• to get XORK(X)=0, all strings with the even number of “1” should be count,

c0=C K
0
+C K

2
+...+C K

2j , 2j≤K ,

• to get XORK(X)=1, all strings with the odd number of “1” should be count,

c1=C K
1
+CK

3
+...+C K

2j−1 ,2j−1≤K .

We get c0 = c1. This property says that its not important which values do queried

arguments ki have. By the property of the Binomial coefficients, ∑
i=0

n

C K
i=2K ,

consequently c0=c1=2K-1.

Step 2. Let us make an assignment K=n-ki. Then calculate c for each of ki , mark it as

cki= 2n-ki-1
 . Calculate the product ck1·ck2·ck3 , which is the number of strings, where XOR

over each subset is equal to 0. The same stands for 1. By definition of the function,

the number of all strings for EOX3n(x1,...,x3n)=1 is

2⋅2n−k1−1
⋅2n−k2−1

⋅2n−k3−1
=22n−2

=22 (n−1) ,which does not depend on the choice of

k1+k2+k3=n.

Step 3. Overall, the number of all different strings of length 2n is 22n. Consequently,

the probability to get the answer 1 at the end of the branch of the probabilistic

randomized decision tree is

22(n−1)

22n =
1
4 

33

Chapter 3. Quantum Query Algorithms for Boolean Functions

Theorem 3.13. The Boolean function EOX3n (x1,...,x3n) is computable by a randomized

classical decision tree with n queries with the maximum probability p= ½.

Proof. The optimal randomized decision tree for EOX6 is shown in Fig. 3.6. The

general form of an algorithm has n queries. According to Lemma 3.1, all tree's leafs

with value 1 have the same probability. There are 3n⋅(3n−1)⋅...⋅(2n+1)

possibilities to choose n arguments out of 3n, which coincides with the number of

arrows exiting from the root of the randomized tree:

Pr (1∣X : EOX 3n(X)=1)=3n⋅(3n−1)⋅...⋅(2n+1)⋅
1

3n⋅(3n−1)⋅...⋅(2n+1)
q⋅p=q⋅p

Pr (0∣X : EOX 3n(X)=0)

...=1−q+3n⋅(3n−1)⋅...⋅(2n+1)⋅
1

3n⋅(3n−1)⋅...⋅(2n+1)
q⋅(1−p)

...=1−q+q⋅(1− p)=1−q⋅p

The probability of the correct answer is the minimum of Pr(0) and Pr(1),

min(qp, 1-qp). It has to be as large as possible to make the algorithm effective. The

highest probability is obtained in case when both answers are equally probable:

qp = 1 – qp, qp = ½,

which is the probability of the described algorithm. 

 3.3.2 Quantum Algorithm for An Extension of EQUALITY4
Boolean Function, EOX4n

We define a 4n-argument Boolean function EOX4n (short for Equality Of XORs):

EOX 4n(x1 , x2 , x3 , x 4 ,… , x4i+1 , x 4i+2 , x4i+3 , x4i+4 ,… , x4n−3 , x4n−2 , x4n−1 , x 4n)=...

...=EQUALITY 4(XOR
i=0

n−1

(x4i+1) , XOR
i=0

n−1

(x4i+2) , XOR
i=0

n−1

(x4i+3) , XOR
i=0

n−1

(x4i+4))

Theorem 3.14. There is a bounded-error quantum query algorithm computing the

Boolean function EOX4n(X) with n quantum queries, the algorithm outputs the value 1

exactly and the value 0 with error probability p = 1/4: Q3 /4(EOX 4n)=n

Proof. The algorithm for EOX4n Boolean function is very similar to one that

computes the EQUALITY4 function (see the section 3.1.4 for details). Instead of one

query matrix the new algorithm uses n matrices one by one, each query of the form:

34

Chapter 3. Quantum Query Algorithms for Boolean Functions

∀i=0,… , n−1:

Qi=(
(−1)x4i+1 0 0 0

0 (−1)x4i+2 0 0

0 0 (−1)
x4i+3 0

0 0 0 (−1)x4i+4
) .

All other parts of the algorithm remain the same:

– the initial quantum state is |0> ,

– the final state is acquired after applying a transformation sequence

∣φ 〉=U 1⋅Qn⋅…⋅Q1⋅U 0∣0〉 , where U0 and U1 are exactly the same as in the

section 3.1.4.

To prove that the described quantum algorithm computes the function, observe

the product of all query matrices:

Q=(
(−1)

∑
i=0

n−1

x4i+1

0 0 0

0 (−1)
∑
i=0

n−1

x4i+2

0 0

0 0 (−1)
∑
i=0

n−1

x4i+3

0

0 0 0 (−1)
∑
i=0

n−1

x4i+4

)
EOX 4n(x1, ... , x4n)=EQUALITY 4(∑

i=0

n−1

x4i+1 ,∑
i=0

n−1

x4i+2 ,∑
i=0

n−1

x4i+3 ,∑
i=0

n−1

x4i+4) ,

where∑ is modulo 2

Finally, we measure the quantum state |0>. Error probability is no more than p=1/4.

All results could be observed using Wolfram Mathematica program for

EQUALITY4 Boolean function (Appendix 2) by defining more queries in the program

body and adding them to the transformation sequence. 

For example, in case of 8 arguments two queries are:

Q1=(
(−1)

x1 0 0 0
0 (−1)x2 0 0
0 0 (−1)x3 0
0 0 0 (−1)x4

) ,Q2=(
(−1)

x5 0 0 0
0 (−1)x6 0 0
0 0 (−1)x7 0
0 0 0 (−1)x8

)
The algorithm outputs the correct result with the maximum error probability ¼ .

35

Chapter 3. Quantum Query Algorithms for Boolean Functions

By definition of the function EOX4n, EOX4n(000...0) = 1. Changing only one

bit value to 1 changes the function's value to 0. Consequently, the sensitivity of

EOX4n(000...0) is equal to 4n, therefore D(EOX 4n)=4n .

Lemma 3.2. Given the general optimal randomized decision tree of depth n

computing EOX4n with n queries, the probability of getting the answer 1 is equal for

each combination of randomly chosen n values.

Proof. To prove this lemma it is necessary to divide 4n arguments of the function

EOX4n into 4 non intersecting subsets according to the structure of the function:

{x1,...,xn}, {xn+1,...,x2n}, {x2n+1,...,x3n}, {x3n+1,...,x4n}. All other steps of the proof repeat

ones from the proof of Lemma 3.1. 

Theorem 3.15. The Boolean function EOX4n (x1,...,x4n) is computable by a randomized

classical decision tree with n queries with the maximum probability p= ½.

Proof. The proof repeats the proof of Theorem 3.13 very closely. The general form

of an optimal randomized decision tree has n queries. According to Lemma 3.2, all

tree's leafs with value 1 have the same probability, therefore:

Pr (1∣X : EOX 4n(X)=1)=4n⋅(4n−1)⋅...⋅(3n+1)⋅
1

4n⋅(4n−1)⋅...⋅(3n+1)
q⋅p=q⋅p

Pr (0∣X : EOX 4n(X)=0)

...=1−q+4n⋅(4n−1)⋅...⋅(3n+1)⋅
1

4n⋅(4n−1)⋅...⋅(3n+1)
q⋅(1−p)

...=1−q+q⋅(1− p)=1−q⋅p

The probability of the correct answer is the minimum of Pr(0) and Pr(1),

min(qp, 1-qp). The highest probability is obtained, when both answers are equally

probable. This means, qp = 1 – qp, then qp = ½. Consequently, the probability of the

described algorithm is ½. 

 3.3.3 Quantum Algorithm for An Extension of EQUALITY6
Boolean function, EOX6n

We define a 6n-argument Boolean function EOX6n (short for Equality Of XORs):

EOX 6n(x1 , x2 , x3 , x4 , x5 , x6 ,… , x6n−5 , x6n−4 , x6n−3 , x6n−2 , x6n−1 , x6n)=...

...=EQUALITY 6(XOR
i=0

n−1

(x6i+1) , XOR
i=0

n−1

(x6i+2) ,... , XOR
i=0

n−1

(x6i+6))

36

Chapter 3. Quantum Query Algorithms for Boolean Functions

Theorem 3.16. There is a bounded-error quantum query algorithm computing the

Boolean function EOX6n(X) with probability p=9/16, that asks n quantum queries :

Q9 /16(EOX 6n)=n .

Proof. The algorithm for the EOX6n Boolean function is very similar to one that

computes EQUALITY6 function (see section 3.1.7 for details). Instead of one query

matrix the algorirthm uses n matrices one by one. Each query matrix is of the form:

∀i=0,… , n−1:

Qi=(
(−1)x6i+1 0 0 0 0 0 0 0

0 (−1)
x6i+2 0 0 0 0 0 0

0 0 (−1)x6i+3 0 0 0 0 0
0 0 0 (−1)x6i+4 0 0 0 0
0 0 0 0 (−1)x6i+5 0 0 0
0 0 0 0 0 (−1)x6i+6 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

) .

All other parts of the algorithm remain the same:

– the initial quantum state is |0> ,

– the final state is acquired by applying a transformation sequence

∣φ 〉=U 1⋅Qn⋅…⋅Q1⋅U 0∣0〉 where U0 and U1 are exactly the same as in the

section 3.1.7.

To prove that the described quantum algorithm computes the function, observe the

product of all query matrices:

37

Chapter 3. Quantum Query Algorithms for Boolean Functions

Q=(
(−1)

∑
i=0

n−1

x6i+1

0 0 0 0 0 0 0

0 (−1)
∑
i=0

n−1

x6i+2

0 0 0 0 0 0

0 0 (−1)
∑
i=0

n−1

x6i+3

0 0 0 0 0

0 0 0 (−1)
∑
i=0

n−1

x6i+4

0 0 0 0

0 0 0 0 (−1)
∑
i=0

n−1

x6i+5

0 0 0

0 0 0 0 0 (−1)
∑
i=0

n−1

x6i+6

0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

)
EOX 6n(x1, ... , x6n)=EQUALITY 6(∑

i=0

n−1

x6i+1 ,∑
i=0

n−1

x6i+2 , ... ,∑
i=0

n−1

x6i+6) ,

where∑ is modulo 2

Finally, we measure the quantum state |0>. The correct answer probability is p=9/16.

All results could be observed using Wolfram Mathematica program for

EQUALITY6 Boolean function (Appendix 3) by defining more queries in the program

body and adding them to the transformation sequence. 

By definition of the function EOX6n, EOX6n(000...0) = 1. Changing only one bit value

to 1 changes function's value to 0, consequently, sensitivity of EOX6n(000...0) is equal

to 6n, therefore D(EOX 6n)=6n .

Lemma 3.3. Given the general optimal randomized decision tree of depth n

computing the function EOX6n, the probability of getting the answer 1 is the same for

each combination of randomly chosen n values.

Proof. To prove this lemma it is necessary to divide 6n arguments of the function

EOX6n into 6 non intersecting subsets according to the structure of the function:

{x1,...,xn}, {xn+1,...,x2n}, {x2n+1,...,x3n}, {x3n+1,...,x4n},{x4n+1,...,x5n},{x5n+1,...,x6n}. All

other steps of the proof repeat ones from the proof of Lemma 3.1. 

Theorem 3.17. The Boolean function EOX6n (x1,...,x6n) is computable by a randomized

classical decision tree with n queries with the maximum probability p= ½.

Proof. The proof repeats the proof of the Theorem 3.13 very closely.

38

Chapter 3. Quantum Query Algorithms for Boolean Functions

The general form of an optimal randomized decision tree has n queries. According to

Lemma 3.3, all tree's leafs with the value 1 have the same probability, then

Pr (1∣X : EOX 6n(X)=1)=6n⋅(6n−1)⋅...⋅(5n+1)⋅
1

6n⋅(6n−1)⋅...⋅(5n+1)
q⋅p=q⋅p

Pr (0∣X : EOX 6n (X)=0)

...=1−q+6n⋅(6n−1)⋅...⋅(5n+1)⋅
1

6n⋅(6n−1)⋅...⋅(5n+1)
q⋅(1−p)

...=1−q+q⋅(1− p)=1−q⋅p

The probability of the correct answer is the minimum of Pr(0) and Pr(1),

min(qp, 1-qp). The highest probability is obtained when both answers are equally

probable, qp = 1 – qp, qp = ½, thus the probability of the described algorithm is ½.

 

 3.3.4 Application of EOX Boolean Functions

All algorithms for EOX Boolean functions described in sections 3.3.1, 3.3.2,

3.3.3 are examples of very effective quantum algorithms. This section contains a list

of useful Boolean functions formed on the basis of the EOX function of 3n, 4n or 6n

arguments, which algorithms are constructed on the basis of the algorithm for EOX3n,

EOX4n or EOX6n respectively.

Let us define a set of Boolean functions and call it AOX (short for And Of

XORs). Similarly to EOX set of functions, AOX2n algorithm is built of AND2 query

algorithm by adding more queries in the body of the algorithm. The same stands for

AOX3n and AOX5n algorithms based on algorithms for AND3 and AND5

correspondingly. All AOX-type algorithms have n queries, the structure of each query

has to be the same as in its basic ANDk algorithm. The AOXkn algorithm is in fact a

shortened EOXkn algorithm – one argument in each of n queries is fixed as a constant

value, so all complexity estimations could be proved using the same approaches.

For example, having some particular requirements to the function, it might be

very useful to restrict XOR(x1,...,xn)=XOR(xn+1,...,x2n)=XOR(x2n+1,...,x3n) =0 in case of

3n arguments. This could be done using the definition of the AOX3n function as a

basis. As a result we are not supposed to think out a specific quantum algorithm for

the problem, but already have a quantum query algorithm which has a prooved

39

Chapter 3. Quantum Query Algorithms for Boolean Functions

number of queries.

Let us note that any of our AND function algorithms are easily transformed to

All-Zeroes function (function is equal to 1 if all input bits are zeroes, otherwise 0) by

setting a constant of each query to zero, not one.

The general algorithm for EOX or AOX gives an opportunity to define a

similar, but very specific Boolean function for particular n arguments with guaranteed

query complexity of the algorithm and its error probability. We can get a new function

by reducing the number of arguments of the basic function (EOXkn or AOX(k-1)n , k

from {3, 4, 6}) by setting some of them by constants, or by asking the value of the

same argument in different queries. This function might have no scientific value, but it

is required at the specific moment for the specific purpose, so we have to be quick

enough in producing the algorithm.

Example 1. Code verification, a short example: each bit of the input string is repeated

twice, the output string is checked for pairs of bits to know if all data is received

without losses or changes. It helps to discover a low quality transfer channel, which

can be applied in cryptography.

AOX6 and AOX10 are exactly such functions based on AND3 and AND5, both

algorithm quantum complexity is 2:

– AOX6 = AND3(XOR(x1,x2), XOR(x3,x4), XOR(x5,x6)) is equal to 1, if and

only if x1=x2 & x3=x4 & x5=x6. The query algorithm for the function AOX6 is

the EOX8 query algorithm with the 4th and the 8th arguments set to 0

– AOX10=AND5(XOR(x1,x2), XOR(x3,x4), XOR(x5,x6), XOR(x7,x8),

XOR(x9,x10)) is equal to 1, if and only if x1=x2 & x3=x4 & x5=x6 & x7=x8 &

x9=x10. The query algorithm for the function AOX10 is the EOX12 query

algorithm with the 6th and the 12th arguments set to 0

Example 2. Code verification, a more general approach: by AOX function definition,

for example AOX3n, all 3n arguments are divided into 3 non intersecting subsets of

size n. The function has the value 1 if XORn of every subset are equal to each other

and equal to 1. An expression XOR(x1,...,xn) = 1 is equivalent to an expression

xi = XOR(x1,..., xi-1,xi+1,...,xn,1) for an arbirary i. This could be used in verification of

40

Chapter 3. Quantum Query Algorithms for Boolean Functions

data transmission: AOX3n returns 1 if the string is sent correctly, asking only n queries

with error probability ¼ .

Example 3. Define a function

F(x1,...,x7) = XOR(x1,x2,x3) AND XOR(x1,x4,x5) AND XOR(x1,x6,x7).

The algorithm for this function is AOX3n for n = 3 with query matrices

Q1=(
(−1)x1 0 0 0

0 (−1)
x1 0 0

0 0 (−1)x1 0
0 0 0 −1

) ,Q2=(
(−1)x2 0 0 0

0 (−1)
x4 0 0

0 0 (−1)x6 0
0 0 0 −1

) ,
Q3=(

(−1)
x3 0 0 0

0 (−1)x5 0 0
0 0 (−1)x7 0
0 0 0 −1

)

Example 4. Define a function

F(x1,...,x10) = XOR(x1 x2,x3) AND XOR(x1,x4,x5) AND

XOR(x6,x7,x8) AND XOR(x6,x9,x10) OR

NOT XOR(x1 x2,x3) AND NOT XOR(x1,x4,x5) AND

NOT XOR(x6,x7,x8) AND NOT XOR(x6,x9,x10).

The algorithm for this function is EOX4n algorithm for n = 3 with query matrices

Q1=(
(−1)

x1 0 0 0
0 (−1)x1 0 0
0 0 (−1)x6 0
0 0 0 (−1)x6

) ,Q2=(
(−1)

x2 0 0 0
0 (−1)x4 0 0
0 0 (−1)x7 0
0 0 0 (−1)x9

) ,
Q3=(

(−1)x3 0 0 0
0 (−1)x5 0 0

0 0 (−1)
x8 0

0 0 0 (−1)x10
)

41

Chapter 3. Quantum Query Algorithms for Boolean Functions

 3.4 Quantum Query Algorithm for 2n-bit AND
Boolean Function: Q3/4(AND2n)=n

Theorem 3.18. There is a quantum query algorithm computing the Boolean function

AND2n(x1,...,x2n) with n quantum queries and maximum error probability p=1/4 :

Q3 /4(AND2n)=n

Proof. In fact, the algorithm is supposed to recognize the all-ones input string from

any other string of the length 2n for the given n.

Quantum query description. The behavior of the quantum black box of this section

differs from other algorithms' queries. Let us introduce two internal reference tables

placed inside the black box , that are used in transforming the quantum state before

the query. The size of both tables depends on n.

The first reference table (Table 3.2) consists of 2n rows - all possible n-bit

strings. Index k is assigned to each table row, being in fact the same number in

decimal notation as the binary string contained in the current row.

Row
index

Value

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Table 3.2. The first reference table for AND2n algorithm, an example for n = 3

The second internal reference table is a 2n x 2n Hadamard matrix.

Inner mechanism of the black box.

1. The black box inspects both n-bit input strings and discovers two indeces from the

first reference table in parallel: k1 – the index of the first n-bit string, k2 – the index of

42

Chapter 3. Quantum Query Algorithms for Boolean Functions

the last n-bit string.

2. The black box changes signs of the first 2n amplitudes of the quantum state

according to signs of the k1-th column of 2n x 2n Hadamard matrix, and changes signs

of the last 2n amplitudes of the quantum state according to signs of the k2-th column

of 2n x 2n Hadamard matrix.

Let us note, that every Hadamard matrix's row/column has an even number of

positive/negative elements. This property has a great impact on the result.

Algorithm description. The algorithm uses 2(n+1) -qubit quantum system, the initial

state is
1

√2n+1 ∑
i=0

2n+1
−1

∣i 〉 . After the query we apply a unitary transformation, which is

2(n+1) x 2(n+1) Hadamard matrix, and then we measure the quantum state ∣2n−1〉 .

- In case k1 and k2 both are equal to some k, the quantum state before the measurement

is ∣k 〉

- In case k1 and k2 are not equal, quantum state before the measurement is

1
2
(∣k 1〉+∣k 2〉+∣2

n
+k1〉−∣2

n
+k 2〉) , that follows from the properties of the

Hadamard matrix and the way the current black box works. Suppose, k1 = 2n-1 and

some other k2, for example k2=0, then the quantum state is

1
2
(∣2n
−1〉+∣0 〉+∣2n+1

−1〉−∣2n〉) . After the measurement we have the state

∣2n
−1〉 with probability ¼. The function has value 0 on such an input, therefore we

recognize it as an output 0 with probability p=1/4 . The same error probability holds

for k2 = 2n-1 and some other k1. In cases when both k1 and k2 are not equal to 2n-1,

after the measurement the system is in the state ∣2n
−1〉 with probability p = 0.

Thus, for the all-ones input string we have k1=k2=2n-1. We measure the state

∣2n
−1〉 and obtain the value 1 with probability p = 1, otherwise algorithm outputs

0 with error probability p = 1/4. 

43

Chapter 3. Quantum Query Algorithms for Boolean Functions

 3.5 Other Bounded-Error Quantum Algorithms

 3.5.1 Quantum Algorithm for “All Zeroes or Single One”
6 Argument Boolean Function

We define a 6-argument Boolean function AZSO (All Zeroes or Single One)

equal to 1 on vectors 000000 and 000001, 000010, 000100, 001000, 010000, 100000,

as follows from the name, otherwise the function is equal to 0.

Theorem 3.19. There is a bounded-error quantum query algorithm computing the

Boolean function AZSO6 (x1,...,x6) with one quantum query and the correct answer

probabilty p = 9/16: Q9 /16(AZSO6)=1 .

Proof. The algorithm for AZSO6 Boolean function uses 3-qubit quantum system with

basis states {∣0 〉 ,∣1〉 ,∣2〉 ,∣3〉 ,∣4 〉 ,∣5 〉 ,∣6 〉 ,∣7〉 } .

Define a unitary matrix U0 as a 8x8 Hadamard matrix, and U1 by

U 0=
1
√8(

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

),
U 1=

1
√8(

1 1 1 1 1 1 1 1
1 1 −1 −1 −1 −1 1 1
1 1 1 1 −1 −1 −1 −1
−1 −1 1 1 −1 −1 1 1
2 −2 0 0 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2
0 0 2 −2 0 0 0 0

)
respectively. Define a query matrix Q by

44

Chapter 3. Quantum Query Algorithms for Boolean Functions

Q=(
(−1)x1 0 0 0 0 0 0 0

0 (−1)x2 0 0 0 0 0 0
0 0 (−1)x3 0 0 0 0 0

0 0 0 (−1)
x4 0 0 0 0

0 0 0 0 (−1)
x5 0 0 0

0 0 0 0 0 (−1)x6 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

) .

We begin in the state ∣φ0 〉=∣0〉 , apply U0, then Q, and then U1. Finally, we

perform the measurement consisting of a projection onto the state ∣0 〉 and its

orthogonal complement. If the output is the state ∣0 〉 , we output 1, otherwise 0.

Consequently, the final quantum state, a state after applying a transformation

sequence on the initial quantum state, is ∣φ 〉=U 1⋅Q⋅U 0∣0 〉 .

We claim that the sequence V x=U 1⋅Q⋅U 0 leaves ∣φ0 〉 unchanged up to

the phase factor, when the input string has all bits equal, otherwise maps ∣φ0 〉 into a

subspace orthogonal to ∣φ0 〉 .

First, U 0∣0〉=
1
√8
∑
i=0

7

∣i 〉 , since U0 is Hadamard matrix. For the input string

x=000000 Q is the identity matrix, thus

V 000000∣0 〉=U 1⋅I⋅U 0∣0〉=(1 0 0 0 0 0 0 0)
T

.

For other input strings, for example, for x = 100000

Q⋅U 0∣0 〉=
1

√8
(−∣0 〉+∣1〉+∣2 〉+∣3〉+∣4 〉+∣5〉+∣6 〉+∣7 〉)

V 100000∣0 〉=(34 −1
4
−

1
4

1
4
−

1
2

0 0 0)
T

,

which is the quantum state ∣0 〉 after the measurement, with probability 9/16.

Running the algorithm on any other input vector, except for those vectors with

all zeroes but one one, results in quantum state orthogonal to ∣0 〉 with error

probability no more than ¼ , proving our claim.

See Appendix 4 for other input and output vector correspondence. 

45

Chapter 3. Quantum Query Algorithms for Boolean Functions

Theorem 3.20. The Boolean function AZSO6 (x1,...,x6) is computable by a randomized

classical decision tree with one query with the maximum probability p= ½.

Proof. The general form of the optimal randomized decision tree is shown in Fig. 3.7.

Let us denote the probability of an answer r∈{0,1} after execution of the algorithm

on the input string X by Pr(r|X).

Then: Pr (1∣X=000000∪X=100000 ...∪X=000001)=qp

Pr (0∣X≠000000∪...∪X≠000001)=1−qp

The probability of the correct answer is min(qp, 1-qp). The highest probability

is obtained in case when both answers are equally probable, qp = 1 – qp, qp = ½,

consequently, the probability of the described algorithm is ½. 

Unfortunately, no interesting extensions of this algorithm have been found.

Fig. 3.7 The general form of the optimal classical randomized decision

tree for computing AZSO6 (x1,...,x6)

1-p

0

1-q q

x1 x6

1/6 1/6

0 10 1 0 1

p 1-p

01

p 1-p

01 1

p 1-p

01

p

0

1/6 1/6 1/6 1/6

 ...
x2, x3, x4, x5

46

Chapter 3. Quantum Query Algorithms for Boolean Functions

 3.6 Conclusion and Open Problems

This section contains a wide range of bounded-error quantum query algorithms. The

most interesting are algorithms for conjunctions – for particular n = 2, 3, 5 using one

query with correct answer probability
9
10

,
3
4

and
9

16
correspondingly, and a

common algorithm for conjunction of 2n bits with n queries and error probability

1
4

.

Unfortunately, bounded-error algorithms are hardly used as subroutines of

more complex ones because of pushing down the correct answer probability of the

whole algorithm. Nonetheless, bounded-error algorithms offer more freedom in

designing approaches, and the upper bound of possible speedup in comparison with

classical algorithm is never known.

The major further goal of this research is to work out approaches for step-by-

step construction of an efficient query algorithm for an arbitrary Boolean function.

47

Chapter 4. Quantum Query Algorithms for Multivalued Functions

 4 Quantum Query Algorithms for Multivalued
Functions

This chapter is based on the following paper:

T. Miscenko-Slatenkova, A. Vasilieva. Computing Relations in the Quantum

Query Model. Scientific Papers, University of Latvia, 2011 [VM11]

A binary relation is a more general type of problem than a function. A relation

is a set of ordered pairs that associates values from a domain set with values from a

range set. Difference from a function is in element mapping: each element from a

domain set may be mapped to multiple elements from a range set. So, a function is

simply a special case of a relation, where each value from a domain set is mapped to

no more than one value from a range set. An alternative way is to consider relations as

multivalued functions.

The study of query complexity of multifunctions has been inspired by the book

on communication complexity by Kushilevitz and Nisan [KN97]. The main part of

this book discusses communication complexity of functions, but Chapter 5 is devoted

exactly to the communication complexity of relations.

We apply the traditional query model to compute multifunctions. In classical

deterministic settings, however, it does not seem to be possible to employ the

difference between multivalued and single-valued functions to obtain new interesting

results. A deterministic decision tree always follows one and the same fixed path for

each certain input and outputs one and the same value each time. The situation is

different in the quantum case. A quantum state before the measurement is in a

superposition of the basis states, so it is not determined to which exactly basis state

quantum system collapses after the measurement.

Significant difficulty in designing quantum query algorithm is making it exact

(i.e. to output a correct result with probability p = 1 on all input strings). The largest

complexity separation between the classical deterministic and the quantum exact

query algorithm complexity for the same total function known for today is N versus

N/2. However, in the case of a multifunction we are allowed to output values from a

fixed set instead of one fixed value for the certain input. We assert that in such case

48

Chapter 4. Quantum Query Algorithms for Multivalued Functions

the task of designing a non-trivial exact quantum query algorithm is achievable more

easily. That could help to construct examples, where number of queries required by a

quantum algorithm is more than two times less than it is required by a classical

algorithm for the same computational problem.

We adapt the query model for computing multifunctions. First, we give the

definitions related to multivalued functions. We define several types of query

algorithms that may compute multifunctions in different manners. Then we

demonstrate examples of computing multifunctions in classical and quantum query

models, where a quantum algorithm achieves a speed-up in comparison with a

classical algorithm. Finally, we discuss the chances of achieving good results in

enlarging the complexity gap between the classical and the quantum query complexity

for multifunctions.

 4.1 Multivalued Functions

Definition 4.1. [We12] A multivalued function (also known as a multiple-valued

function [Kn96], multifunction, many-valued function, set-valued function, set-valued

map, multi-valued map, multimap, correspondence, carrier) is a "function" that

assumes two or more distinct values in its range for at least one point in its domain.

Although these "functions" are not functions in the normal sense of being one-

to-one or many-to-one, the usage is so common that there is no way to dislodge it.

When considering multivalued functions, it is therefore necessary to refer to usual

"functions" as single-valued functions.

While the trigonometric, hyperbolic, exponential, and integer power functions

are all single-valued functions, their inverses are multivalued. For example, the

function z2 maps each complex number z to a well-defined number z2, while its inverse

function √ z maps, for example, the value z = 1 to √1=±1 . A unique principal

value can be chosen for such functions (in this case, the principal square root is the

positive one), the choices cannot be made continuous over the whole complex plane.

Instead, lines of discontinuity must occur. The discontinuities of multivalued

functions in the complex plane are commonly handled through the adoption of branch

cuts, but use of Riemann surfaces is another possibility.

49

Chapter 4. Quantum Query Algorithms for Multivalued Functions

Multivalued function is the subject of this research. Using function's notation,

multifunction's definition looks like M (X): {0,1}n→ℕ : the domain set consists of

all possible binary strings of length n, X=(x1,x2,...,xn), each bit xi of the input string is

an argument of the multifunction, while the output – a result set M(X) - is a subset of

the range set ℕ .

We consider left-total multifunctions only, when the result set is not empty for

each element from the domain set. A function is a special case of relation and it

uniquely associates each value from the domain set with one value from the range set.

Fig. 4.1 graphically demonstrates this difference.

Fig. 4.1 Example of a multivalued and a single-valued functions

Various functions can be selected in such a way from a single multifunction.

We denote by Func(M) the set of all total functions that can be selected from the

multifunction M.

Example. The graph on the left side on Fig. 4.1 defines a multifunction:

M = { (1,{a,c}),(2,{b}),(3,{a,b}),(4,{c}) }.

The set Func(M) consists of four total functions:

Func(M)= { f1 = { (1,a),(2,b),(3,a),(4,c) } , f2 = { (1,a),(2,b),(3,b),(4,c) } ,

f3 = { (1,c),(2,b),(3,a),(4,c) } , f4 = { (1,c),(2,b),(3,b),(4,c) }}.

 4.2 Computing Multifunctions in a Query Model

Computation of functions in a query model is studied well enough, however, it

is not obvious how to extend a query model to compute multifunctions. For the first

1

2

3

4

a

b

c

1

2

3

4

a

b

c

Multifunction M Function F∈Func(M)

50

Chapter 4. Quantum Query Algorithms for Multivalued Functions

time this question has been discussed in [Va10].

We propose three different options to describe the way a query algorithm

computes a relation and define three types of query algorithms based on these options.

Definition 4.2. [Va10] Query algorithm computes multifunction M in a definite

manner, if for each X it outputs one certain correct value from a result set with

probability p = 1. Classical query complexity is denoted by CD(M). Quantum query

complexity is denoted by QD(M).

A type of a classical decision tree which computes a multifunction in a definite

manner is a deterministic decision tree. In settings of the quantum model, the

corresponding algorithm type is an exact quantum query algorithm.

Definition 4.3. [Va10] Query algorithm computes multifunction M in a randomly

distributed manner, if for each X it outputs arbitrary values from a result set with

arbitrary probabilities (for each value such probability has to be positive) and never

outputs incorrect value. Classical query complexity is denoted by CRD(M). Quantum

query complexity is denoted by QRD(M).

This definition is a more natural and takes into account the essence of a

multifunction as a mathematical object. In a classical query model probabilistic

decision trees should be used to produce the described behavior. Quantum query

algorithms seem to be better suited for computing multifunctions in a distributed

manner because of the superposition principle. To achieve the goal we need to bring a

quantum system in such a superposition, where only basis states associated with

values from result set have non-zero amplitude values. After the measurement

quantum system collapses to one of these basis states with probability determined by

its amplitude value.

Definition 4.4. [Va10] Query algorithm computes multifunction M in a uniformly

distributed manner, if for each X it outputs each value from the result set with equal

probability and never outputs the incorrect value. Classical query complexity is

denoted by CUD(M). Quantum query complexity is denoted by QUD(M).

This definition adds a serious constraint to design of a query algorithm.

51

Chapter 4. Quantum Query Algorithms for Multivalued Functions

However, in our opinion this definition is the most reasonable in a terms of computing

a multifunction.

Each definition may be applied to solving specific real-world computational

problems. Most of all we are interested in comparing complexity of computing

multifunctions in the same manners in classical and quantum query models. Our goal

is to analyze algorithm implementation special features and differences to produce

examples with a large gap between the classical and the quantum query complexity.

 4.3 Multifunction Example and Its Computation

In this section we present some results in designing efficient quantum query

algorithms for computing multifunctions. Our approach is searching for interesting

algorithms that would compute multifunctions with specific properties. In each

example we demonstrate a quantum query algorithm for computing a specific

multifunction and then prove the classical complexity lower bound.

 4.3.1 Multifunction M: QUD(M) = 1 vs. CUD(M) = 3

Table 4.5 defines a four-argument multifunction with Boolean domain set and four-

valued range set: M :{0,1}4→{1,2,3 ,4} .

X M(X) X M(X)

0000 {1} 1000 {1,2,3,4}

0001 {1,2,3,4} 1001 {4}

0010 {1,2,3,4} 1010 {2}

0011 {3} 1011 {1,2,3,4}

0100 {1,2,3,4} 1100 {3}

0101 {2} 1101 {1,2,3,4}

0110 {4} 1110 {1,2,3,4}

0111 {1,2,3,4} 1111 {1}

Table 4.5 Definition of the multifunction M

Theorem 4.1. There exists a quantum query algorithm, which computes the

multifunction M with one query: QUD(M) = 1.

52

Chapter 4. Quantum Query Algorithms for Multivalued Functions

Proof. The algorithm for computation of the multifunction M in the uniformly

distributed manner with one query uses 2-qubit quantum system with basis states

{∣0 〉 ,∣1〉 ,∣2〉 ,∣3〉} . Define a unitary matrix U0 and U1 as 4x4 Hadamard matrices:

U 0=U 1=
1
2(

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

)
Define a query matrix Q as follows:

Q=(
(−1)

x1 0 0 0
0 (−1)x2 0 0
0 0 (−1)x3 0
0 0 0 (−1)x4

)
We begin in the state ∣φ0 〉=∣0〉 and then apply U0, then Q and then U1.

Finally, we measure all basis states at once:

– if the output is ∣i 〉 , we output the answer {i+1}

– if the output is a superposition of all four basis states, we output {0, 1, 2, 3}

The final state ∣φ 〉=U 1⋅Q⋅U 0∣0 〉 is a state after applying a transformation

sequence V x=U 1⋅Q⋅U 0 on the initial quantum state. We claim that the sequence Vx

changes the initial state according to the definition of the multifunction M.

To see that the claim is correct, note first that U 0∣0〉=
1
2
∑
i=0

3

∣i 〉 , since U0 is a

Hadamard matrix. For the input string x=0000 Q is the identity matrix, but for x=1111

Q is minus identity:

V 0000∣0〉=U 1⋅I⋅U 0∣0〉=∣0 〉 ,V 1111∣0〉=U 1⋅(−I)⋅U 0∣0〉=−∣0〉 .

For the input string x=0011 and x=1100 Q⋅U 0∣0 〉 is

1
2
(∣0 〉+∣1〉−∣2 〉−∣3〉) or −

1
2
(∣0〉+∣1〉−∣2〉−∣3〉) , respectively. Then,

V 0011∣0 〉=∣3〉 ,V 1100∣0〉=−∣3〉 .

For the input string x=0101 and x=1010 Q⋅U 0∣0 〉 is

53

Chapter 4. Quantum Query Algorithms for Multivalued Functions

1
2
(∣0 〉−∣1〉+∣2 〉−∣3〉) or −

1
2
(∣0〉−∣1〉+∣2〉−∣3〉) , respectively. Then,

V 0101∣0 〉=∣2〉 , V 1010∣0 〉=−∣2 〉 .

For the input string x=0110 and x=1001 Q⋅U 0∣0 〉 is

1
2
(∣0 〉−∣1〉−∣2 〉+∣3〉) or −

1
2
(∣0〉−∣1〉−∣2〉+∣3〉) , respectively. Then,

V 0110∣0〉=∣4 〉 ,V 1001∣0〉=−∣4〉 .

For all input strings with Hamming weight 1 (1000, 0100, 0010, 0001) or their

inverse, i.e. strings with Hamming weight 3, V X∣0〉=
1
2
(±∣0〉±∣1〉±∣2〉±∣3〉) . 

Theorem 4.2. CUD(M) = 3.

Proof. The proof of this theorem consists of two steps. First, we show that it is

impossible to build a classical randomized decision tree of depth d = 2, which

computes M in a uniformly distributed manner. Second, we present a tree, which

computes M using three queries.

Lemma 4.1. It is impossible to build a classical randomized decision tree of depth

d= 2, which computes M in a uniformly distributed manner, CUD(M)≥3 .

Proof. Let us assume there exists a tree where all paths from root to leaves contain no

more than two variables. When executing algorithm on the input X = 0000 result "1"

has to be output with probability p = 1. It means that there exists a path from the root

to a leaf with output value "1", which goes through some two variables: xA = 0 and xB

= 0. This path is depicted in Fig. 4.2. The fact is that it is not possible to select A and

B to avoid contradictions with other inputs.

54

Chapter 4. Quantum Query Algorithms for Multivalued Functions

Fig. 4.2. Path for the input X=0000 in a potential classical randomized decision

tree of depth d = 2 for computing M

For any choice of indices A and B there are four inputs that pass through the path

depicted in Fig. 4.2 and finish in a leaf with output value "1". We denote

X i=x A xB xC x D , A , B ,C , D∈{1,2 ,3,4} , A≠B≠C≠D , then these four inputs are

as follows:

• X1: xA=0, xB=0, xC=0, xD=0

• X2: xA=0, xB=0, xC=0, xD=1

• X3: xA=0, xB=0, xC=1, xD=0

• X4: xA=0, xB=0, xC=1, xD=1

Let us consider the last input X4, which has exactly two bits equal to "1". From

Table 4.5 it is easy to see that for any input with exactly two "1" a value set M(X)

consists of exactly one output value, which is always different from "1". We obtained

a contradiction: input X4 passes through the path depicted in Fig. 4.2 and the

algorithm outputs incorrect value "1". 

Lemma 4.2. There exists a classical randomized decision tree, which computes M in

a uniformly distributed manner using three queries.

Proof. A classical probabilistic decision tree that computes M in a uniformly

distributed manner is shown in Fig. 4.3. 

55

Chapter 4. Quantum Query Algorithms for Multivalued Functions

Fig. 4.3. The probabilistic decision tree that computes M in a uniformly distributed manner

 4.3.2 The First Generalization of The Multifunction M

In this subsection, we generalize the multifunction M to the case of 4N

arguments. The generalized multifunction is

M ' :{0,1}4N
→{1,2 ,3,4 } .

Imagine that 4N arguments are put on four vertical lines, v-lines, in such a way that:

∀i∈{0,... , N−1},∀ k∈{1,2 ,3 ,4}: x4i+k belongs to v-line number k. For example,

x1,x5, x9, x13,... are placed on the 1st v-line, x2,x6,x10,x14,... - on the 2nd, and so on.

A result set for each input X of the multifunction is defined as follows:

1. M'(X)={1}, if all four v-lines of X contain either odd or even number of "1".

For example, for the next input strings the multifunction's result set is {1}:

◦ the input string 00000000 has zero "1" on each v-line

◦ the input 00010001 has zero "1" on the first, the second and the third v-

line and two "1" on the fourth v-line

◦ the input 00001111 has one "1" on each v-line

◦ the input 11111111 has exactly two "1" on each v-line

2. M'(X)={2}, if the 1st and the 3rd v-lines of X have odd numbers of "1", and the

2nd and the 4th have even numbers of "1", or vice versa: the 1st and the 3rd -

even and the 2nd and the 4th - odd. For example, input strings 00000101,

00001010, 01011111, 11011000 have the result set {2}.

3. M'(X)={3}, if the 1st and the 2nd v-lines of X have odd numbers of "1", and the

3rd and the 4th have even numbers of "1", or vice versa: the 1st and the 2nd –

even, and the 3rd and the 4th - odd. For example, input strings 00000011,

00001100, 00111111, 10001011 have the result set {3}.

56

Chapter 4. Quantum Query Algorithms for Multivalued Functions

4. M'(X)={4}, if the 1st and the 4th v-lines of X have odd numbers of "1", and the

2nd and the 3rd have even numbers of "1", or vice versa: the 1st and the 4th –

even, and the 2nd and the 3rd - odd. For example, input strings 00000110,

00001001, 00111010, 10011111 have the result set {4}.

5. In all other cases M'(X)={1,2,3,4}.

Theorem 4.3. QUD(M ')≤N .

Proof. Quantum algorithm for the multifunction M' is very similar to the algorithm

computing M in a uniformly distributed manner: we use a 2-qubit quantum system,

apply a Hadamard operation to the initial quantum state |0> and apply one more

Hadamard transformation right before the measurement. The difference is in the query

between two Hadamard transformations: there are n query matrices applied to

quantum state U0|0> one by one, each query Qi is defined by the matrix

i∈{0...N−1}:Qi=(
(−1)

x4i+1 0 0 0
0 (−1)x4i+2 0 0
0 0 (−1)x4i+3 0
0 0 0 (−1)x4i+4

)
.

The product of all query matrices is equal to

(
(−1)

r1 0 0 0
0 (−1)r 2 0 0
0 0 (−1)r3 0
0 0 0 (−1)r4

),
r 1=XOR

i=0

N−1

x4i+1 , r 2=XOR
i=0

N−1

x4i+2 ,

r 3=XOR
i=0

N−1

x4i+3 , r 4=XOR
i=0

N−1

x 4i+4

Let us note, that ri is equal to XOR over the i-th v-line's arguments. As discussed in

the proof of Theorem 4.1,

– the answer {1} is obtained when r1r2r3r4 equals to 0000 or 1111. This is

equivalent to the demand to have all v-lines with either odd or even number of

1's

– the answer {2}, when r1r2r3r4 is equal to 0101 or 1010. This is equivalent to

the demand to have the 1st and the 3rd v-line's parity different from the the 2nd

and the 4th v-line's parity.

57

Chapter 4. Quantum Query Algorithms for Multivalued Functions

– the answer {3}, when r1r2r3r4 is equal to 0011 or 1100. This is equivalent to

the demand to have the 1st and the 2nd v-line's parity different from the the 3rd

and the 4th v-line's parity.

– the answer {4}, when r1r2r3r4 is equal to 0110 or 1001. This is equivalent to

the demand to have the 1st and the 4th v-line's parity different from the 2nd and

the 3rd v-line's parity.

– the answer {1,2,3,4} is obtained, when r1r2r3r4 has exactly one or three 1's in

the input string.

These statements fully repeats the definition of the multifunction M' . 

Theorem 4.4. 3N≤C UD(M ')≤4N .

Proof. Let us assume there exists a classical decision tree that computes the

multifunction M by asking 3N-1 questions. We use the all-zeroes input X = 0...0 to

demonstrate a contradiction. Suppose we have queried arbitrary 3N-1 variables, N+1

variables remain unquestioned.

On the 4N-zeroes input X = 0...0 the tree has to output the value "1" because

all v-lines contain zero number of "1". Then, we consider only such inputs that have

"0" in all queried 3N-1 variables and exactly two "1" among remaining unquestioned

variables. For all such inputs algorithm follows the same path and finishes in leaves

with the output value "1". However, all N+1 unquestioned variables cannot be located

on one v-line, simply because each v-line consists of N variables. So, there is an input

for which two "1" among unquestioned variables are located on different v-lines. As

we know, the result set in such a case is {2} or {3} or {4}. Thus, the algorithm

outputs an incorrect value for this input. This fact contradicts with the initial

assumption and implies CUD(M ')≥3N .

 

 4.3.3 The Second Generalization of The Multifunction M

In this subsection we demonstrate the second way to generalize the

multifunction M. In the previous generalization we added more queries. This time we

extend the quantum system and put more variables in single query.

Suppose we are given a multifunction of N variables

58

Chapter 4. Quantum Query Algorithms for Multivalued Functions

M ' ' : {0,1}N→{1,2 ,... , N } , where N is a power of 2. We do not provide the full

definition of the multifunction; it follows from properties of quantum algorithm

described below. We just would like to demonstrate that such generalization is

technically possible.

This time we consider computing multifunction in a randomly distributed

manner. Algorithm is allowed to output any value from result set with an arbitrary

probability, but the probability for each value has to be positive: p > 0.

Theorem 4.5. There exists a quantum query algorithm, which computes a specific

multifunction M'' in a randomly distributed manner asking one question only.

QRD(M'') = 1.

Proof. The algorithm for M'' is analogous to one for M, we just add more qubits and

arguments: given N=2k , k∈ℕ , the quantum algorithm starts with k-qubit zero

state ∣0 〉 in a k-qubit quantum system, then applies a N x N Hadamard matrix, then

runs a N-variable query, and finally applies a N x N Hadamard matrix once again.

The query matrix Q is as follows:

Q=(
(−1)

x1 0 ... 0 0
0 (−1)x2 ... 0 0
⋮ 0 ⋱ 0 ⋮

0 0 ... (−1)xN−1 0
0 0 ... 0 (−1)xN

) .

Finally, we measure all basis states at once:

– if the output is ∣i 〉 , we output the answer {i+1}

– if the output is a superposition of all four basis states, we output {1, ..., N}

The final state ∣φ 〉=U 1⋅Q⋅U 0∣0 〉 is a state after applying a transformation

sequence V x=U 1⋅Q⋅U 0 on the initial quantum state. The definition of the

multifunction M'' follows directly from the way the sequence Vx changes the initial

state.

First, U 0∣0〉=
1
√N
∑
i=0

N−1

∣i 〉 , since U0 is a Hadamard matrix. For the input

string x=00...0N Q is the identity matrix, but for x=11...1N Q is minus identity:

59

Chapter 4. Quantum Query Algorithms for Multivalued Functions

V X∣0〉=±∣0〉 , respectively. According to properties of Hadamard matrix, input

strings with an odd Hamming weight end up in some state ∣i 〉 , i∈{0, ... , N−1} ,

while input strings with an even Hamming weight end up in a state like

V X∣0〉=
1

√N
(±∣0 〉±∣1〉 ...±∣N−1〉) . 

Theorem 4.6.
N
2
+1≤C RD(M ' ')≤N .

Proof. Let us analyze a multifunction that is computable by the quantum algorithm.

Imagine the first element of the quantum algorithm result vector (amplitude of the

quantum basis state ∣0 〉) right before the quantum measurement. It can be

described by the formula:

α1=
(−1)x1+(−1)x2+...+(−1)xN

N

If all xi = 0, then α1=1 , so for the input X=00...0N the algorithm outputs "1" with

the probability p = 1. Let us suppose, exactly
N
2

variables are "1" and
N
2

are

"0". In this case α1 is precisely zero for all possible combinations. It means that the

probability to observe the result value "1" for any such input is p = 0.

Classical algorithm has to behave in the same way: for the input X=00...0

value "1" has to be produced with the probability p = 1, but for all inputs with exactly

N
2

"1"s the result value "1" is not allowed to be output at all. This implies we are

unable to recognize the multifunction classically by asking only
N
2

variable values,

at least
N
2
+1 queries are required. 

60

Chapter 4. Quantum Query Algorithms for Multivalued Functions

 4.4 Conclusion and Open Problems

In this paper we continued the research initiated in [Va10] on computing

multivalued instead of single-valued functions in a query model and presented new

results. We presented three examples of computing multifunctions in different

manners – in a uniformly distributed manner and in a randomly distributed manner.

When computing multifunctions in either uniformly or randomly distributed manner,

the error probability is also not allowed. In this regard the quantum query model

appears to be more suitable for computing multifunctions.

Main results of this research sub-direction are the following:

• an algorithm for MN with the quantum query complexity three times fewer

than the classical query complexity for the same multifunction. This is an

example of computing a multifunction in a uniformly distributed manner

• algorithm for MN with one quantum query and the classical query complexity

N
2
+1≤C (M N)≤N . This is an example of computing a multifunction in a

randomly distributed manner.

Discussing specifics of computing multifunctions in a definite manner led us

to conclusion that the task of computing multifunctions in a distributed manner is

more promising for enlarging classical and quantum query complexity gap.

Further work is to continue the research and to produce more interesting

results regarding computing multifunctions in a query model. We are planning to

analyze and generalize current examples to develop a general approach for designing

efficient quantum query algorithms for computing multifunctions. Important work

direction is to develop efficient techniques for proving complexity lower bounds for

computing multifunctions in a classical query model.

61

Chapter 5. Low Degree Boolean Functions

 5 Low Degree Boolean Functions

This chapter is based on the following paper:

T. Miscenko-Slatenkova, A. Dubrovska. Computing Boolean Functions: Exact

Quantum Query Algorithms and Low Degree Polynomials. Proc. of SOFSEM 2006,

Student Research Forum; MatFyz Press; ISBN 80-903298-4-5; pp. 91-100, 2006,

[DM06]

In this part of the thesis we study the complexity of quantum query algorithms

computing the value of Boolean function and its relation to the degree of algebraic

polynomial representing this function. We pay special attention to Boolean functions

with quantum query algorithm complexity lower than the deterministic one.

Definition 5.1. The degree of Boolean function is the degree of the representing

polynomial and is denoted as deg(f).

We have the following lower and upper bound estimations for the degree of

the representing polynomial, which is unique for particular Boolean function:

deg (f)≤D(f) [NS02] and deg (f)≥2QE (f) [BW02].

A wish to improve the best ever achieved complexity of a quantum algorithm means

to leave the sign “less” instead of “less or equal” in the expression QE(f)≤
D (f)

2

for a Boolean function f. This is true for those functions f with deg(f)<D(f). This

shows the importance of functions with low polynomial degree in terms of quantum

computing, unfortunately, there are few examples of quantum algorithms to illustrate

theoretical evaluation of the complexity. Here we describe polynomials with relation

between the number of variables and the degree of the polynomial greater than 2

times in the best case.

The main purpose of this work was to design new approaches to construct

Boolean functions with a large gap between the deterministic complexity and the

degree of the representing polynomial.

62

Chapter 5. Low Degree Boolean Functions

 5.1 Definition of A Low Degree Polynomial

To define a polynomial we have to pass the following two steps:

1. we present a polynomial of degree 2 with non-Boolean range of values

2. choose an appropriate polynomial and transfer the non-Boolean range of

values to {0,1}.

It is therefore obvious, that we solve the problem from the other side - we find out a

polynomial with Boolean values, and then define a Boolean function by matching

each possible input with the corresponding value of the previously defined

polynomial. Unfortunately, the problem is not trivial, so the design of a polynomial

for a given Boolean function remains one of the directions for our future work.

 5.1.1 A Polynomial of Degree 2

For the first step we define some set S and then define a polynomial of degree

2. To define a set S we split N variables in three non-empty sets and choose pairs of

1-valued variables.

Restrictions for S are the following:

• variables in each pair should come from different sets

• if variables x and y are from sets I and J, and a pair (x,y) is in S, then there is

no other x0 from I or y0 from J, such that (x0,y) or (x,y0) are in S

The polynomial is p (x1, ... , x N)=∑
i∈[N]

x i− ∑
i , j :i≠ j ,(i , j)∈S

x i x j ,

where

• S is a specially defined set of pairs of numbers from a given range [1..N]

• ∑
i∈[N]

x i=∣x∣ is the Hamming weight of the input x

• ∑
i , j :i≠ j ,(i , j)∈S

x i x j is the number of pairs where xi=xj=1and (i,j) belongs to S

Assume that N variables are divided into three sets with n1, n2 and n3 variables

63

Chapter 5. Low Degree Boolean Functions

correspondingly: N=n1+n2+n3 . Let nmax=max(n1, n2, n3) . Then the

polynomial obeys the restriction:

Lemma 5.1. 0≤p (x1, ... , x N)≤nmax

Proof. Let us take an arbitrary input x, such that ∣x∣=k=k 1+k 2+k 3 ,

where k1 is the number of „1” in the first set, correspondingly, k2 and k3 are the

numbers of “1” in other two, k 1≥k 2≥k3 . Take the smallest of the three, k3, it is

the number of pairs corresponding set has with each of two other, 2k3 in all. Then,

a set with k2 “1” has k2 pairs with the largest group. Thus, number of pairs is

∑
i , j :i≠ j ,(i , j)∈S

x i x j=2k3+k 2 for an arbitrary x. As far as ∑
i∈[n]

x i=k 1+k 2+k 3=∣x∣ ,

the polynomial p(x) value is restricted from both left and right:

p (x)=(k 1+k 2+k 3)−(2k3+k 2)=k 1−k 3

0≤k 1−k3≤k 1≤nmax
. 

 5.1.2 A Polynomial With The Boolean Value Range

For the second step we define a polynomial with the Boolean value range: for

any odd k there is a polynomial of degree (k-1) that transforms a set {0,…,k} to {0,1},

which is known from algebra course.

 5.1.3 Examples and The General Form Of The Approach

Example 1.

An advantageous example is a polynomial p (x1, ... , x9)=∑
i∈[9]

x i− ∑
i , j : i≠ j ,(i , j)∈S

x i x j ,

where variables are divided into 3 sets, so 0≤p (x)≤3 , and S contains 9 pairs, for

example,

S=(x1, x4) ,(x1, x9) ,(x2, x5) ,(x2, x8) ,(x3, x6) ,(x3, x7) ,(x4, x9) ,(x5, x8) ,(x6, x7) .

The polynomial p then is equal to

64

Chapter 5. Low Degree Boolean Functions

p (x1, x2, x3, x4, x5, x6, x7, x8, x9)=...
...= x1+ x2+x3+ x4+ x5+x6+x7+x8+x9−...
...−(x1⋅x4+x1⋅x9+ x2⋅x5+x2⋅x8+x3⋅x6+ x3⋅x7+x 4⋅x9+x5⋅x8+ x6⋅x7)

Next we find an appropriate polynomial pb of degree 2 that would transform the set

{0,1,2,3} to {0,1}, for example , pb(z)=
1
2

z2
−

3
2

z+1 , pb(0)= pb (3)=1,

pb (1)= pb (2)=0.

Hence, the polynomial pb(p(x)) has Boolean values and the degree

deg(pb(p(x))) = 4.

Finally, we define a Boolean function

f 9(x1, ... , x9)=pb(p(x1, ... , x9)) .

The degree of the polynomial is a product of the degrees of p and pb, deg(f9)=4.

For the input |x|=0 the value of the polynomial is pb(p(x))=1. Flipping any zero

variable to 1 will change the polynomial's value to 0. Hence, D(f9)=9.

See Appendix 5 for the truth table for the Boolean function f9(x1,...,x9).

Example 2.

To show another example of low-degree function, let us take a polynomial p(x1,...,x21)

with the range of values {0,1,2,3,4,5,6,7}:

polynomial p (x1, ... , x21)=∑
i∈[21]

x i− ∑
i , j : i≠ j ,(i , j)∈S

xi x j ,

where variables are divided into 3 sets, so 0≤p (x)≤7 ,

and S contains of 21 pairs, for example,

(x1, x8) ,(x2, x9) ,(x3, x10) ,(x4, x11) ,(x5, x12) ,(x6, x13) ,(x7, x14) ,
(x8, x15) ,(x9, x16) ,(x10, x17) ,(x11, x18) ,(x12, x19) ,(x13, x20) ,(x14, x21) ,
(x1, x15) ,(x2, x16) ,(x3, x17) ,(x 4, x18) ,(x5, x19) ,(x6, x20) ,(x7, x21)

.

There is a polynomial of degree 6 that we will use to transfer a set

{0,1,2,3,4,5,6,7} to {0,1},

pb(x)=−
1

144
x6
+

7
48

x5
−1

19
144

x4
+3

15
16

x3
−5

31
36

x2
+2

11
12

x .

65

Chapter 5. Low Degree Boolean Functions

pb(p(x)) values are from the range {0,1}. For the corresponding Boolean function

f21(x) = pb(p(x)): deg(f21)=12. D(f21)=21 by sensitivity on the input x: |x|=0.

Let us generalize the idea described earlier. We will enlarge the number of

variables, but still divide them in 3 groups. It appears that the best results come from

the case of N = n+n+n variable functions (n variables in each set), but it is not

forbidden to define S assimmetrically.

General form of this method is formulated as

Lemma 5.2. For each odd k>1 there exists a 3k-variable Boolean function f with

D(f)=3k and deg(f)=2(k-1).

Proof. Follows directly from the definition of the Boolean function f: the

representing polynomial is obtained as described in sections 5.1.1 and 5.1.2, the the

function is defined by its representing polynomial.

 5.2 Tripple Function Method

Example 1. A 12-variable Boolean function f12(x1,...,x12) with D(f12)=12 and

deg(f12)=6.

First, define a 4-variable polynomial of degree 3:

p4(x1, x2, x3, x 4)=(x1 x2+x2 x3+x3 x4+ x1 x4)−(x1 x2 x3+ x1 x2 x4+x1 x3 x4+ x2 x3 x4)

p4(x) range of values is {0,1}. Next, define a polynomial

p12(x1,... , x12)= p4(x1, x2, x3, x4)+ p4(x5, x6, x7, x8)+ p4(x9, x10, x11, x12) with values

from the range {0,1,2,3}. The last step is to choose an appropriate polynomial of

degree 2 to transform elements from the set {0,1,2,3} to {0,1}. For example,

S (z)=
1
2

z2
−

3
2

z+1 . Then deg(S(p12(x)))=6. Finally, define the corresponding

Boolean function f12(x)=S(p12(x)):

D(f12)=12 by its block sensitivity on the input x, |x|=12, s(f(x))=12.

A function of the similar form has been described in [OFI05]. Here we will

gneralize the approach described in the previous example to the case of N variables.

66

Chapter 5. Low Degree Boolean Functions

Take N=3r variables polynomial, where we subdivide all variables into 3 sets each

containing r variables. Then we define a polynomial

P3r(x1,...,xr,xr+1,...,x2r,x2r+1,...,x3r)=Pr(x1,...,xr)+Pr(xr+1,...,x2r)+Pr(x2r+1,...,x3r).

Lemma 5.3. For each odd k>1 and for each t>1 there exists 3t+1
⋅k -variable

Boolean function f: D(f)=3t+1
⋅k and deg (f)=2t+1

⋅(k−1) .

Proof.

Step 1. Choose an odd k and define a polynomial according to Lemma 5.2. in the

form
p2 [deg (p2)=2] : {0,1}

3k
→ {0, ... , k }

pk−1 [deg (pk−1)=(k−1)]: {0, ... , k }→ {0,1}
.

Its degree equals to 2(k-1) while the number of variables is 3k.

Step 2. Define 3r-variable polynomial (variables are divided in 3 sets of r variables):

P(x1,...,xr,xr+1,...,x2r,x2r+1,...,x3r)=Pr(x1,...,xr)+Pr(xr+1,...,x2r)+Pr(x2r+1,...,x3r), where Pr has

Boolean values and the degree d. P(x) has a range of values {0,1,2,3} that can be

transformed to {0,1} by an appropriate polynomial of the degree 2, thus deg(P) =2d.

This type of a polynomial can be iterated, as a result we get deg (P)=2t
⋅d and the

number of variables 3t
⋅r for any t>0.

Step 3.Take r=3k and d=2(k-1). The Boolean function f(x) represented by P(x) has

D(f)=3t⋅3k=3t+1 k and deg (f)=2t⋅2(k−1)=2t+1(k−1) . 

Lemma 5.3. leads to the definition of a 9n-variable Boolean function f with D(f) =

9n and deg(f) = 4n-4 for n>1; a 27n-variable Boolean function f with D(f) = 27n and

deg(f) = 8n-8 for n>1 and so forth.

 5.3 Conclusion and Open Problems

The aim of our future work in this area is to create quantum query algorithms for

described functions with advantages over classical counterparts; and to be able to

design a low-degree polynomial for a given Boolean function.

67

Chapter 6. Conclusion

 6 Conclusion

In the conclusion we will summarize all the items that were discussed in the

thesis. The work was held in three directions:

– quantum query algorithms for Boolean functions

– quantum query algorithms for multivallued functions

– low degree Boolean functions

In the chapter devoted to algoritghms for Boolean functions we presented a

wide range of bounded-error quantum query algorithms. It was of interest to find a

“good” algorithm for conjunctions of several bits and the following results were

achieved:

– a one-query quantum algorithm for conjunction of two bits with correct

answer probability p=
9

10

– a one-query quantum algorithm for conjunction of three bits with correct

answer probability p=
3
4

– a one-query quantum algorithm for conjunction of five bits with correct

answer probability p=
9

16

Moreover, algorithms mentioned above are transformed from algorithms for

bit equality Boolean function: each of them preserves the same correct answer

probability and asks correspondingly 3, 4 and 6 arguments in a single quantum query.

EQUALITYk Boolean function (k is the number of arguments) described

previously is generalized to EOXkn (Equality Of k n-argument XOR's) function. As

for the algorithm, we just added n-1 more queries to the initial EQUALIYk algorithm

saving the correct answer probability. Using the same contributions, we defined

AOXkn (AND Of k n-argument XOR's) Boolean function and computing the function

quantum query algorithm.

68

Chapter 6. Conclusion

One more specific quantum algorithm for the conjunction of 2n bits using n

quantum queries with error probability
1
4

is presented in this chapter.

Although we did not come to our major goal, which is working out approaches

for step-by-step algorithm design for an arbitrary function, we hope that the steps we

have made are to the right direction.

In the chapter devoted to multivalued functions we considered computing a

multivalued function in a query model. The main achievements are the following:

– an algorithm for a multifunction MN with quantum query complexity three

times fewer than classical query complexity for the same multifunction

– algorithm for a multifunction MN with one quantum query and classical query

complexity
N
2
+1≤C (M N)≤N

Obviously, there is an additional piece of work to prove complexity lower bounds for

computing multifunctions in a classical query model.

 In the chapter devoted to low degree Boolean functions we discussed the

degree of algebraic polynomial representing a Boolean function and its relation to the

complexity of a quantum query algorithm computing the function. We presented

some approaches for definition of Boolean functions with a large gap between

deterministic complexity and degree of representing polynomial. Polynomials

described have an attractive relation between the number of variables and the degree

of the polynomial, which is greater than 2 times in the best case.

We hope that algorithm examples presented in the thesis demonstrate some

useful approaches of algorithm design, and will inspire newcomers of this area.

However, we believe that serious improvements of results achieved during the

research are possible.

First of all, an idea to use a larger quantum system for algorithms computing

either Boolean functions or multifunctions seems to be promising.

Secondly, to analyze real-life problems, especially those with inborn

symmetry: quantum query algorithms have a certain advantage for symmetric

functions, that comes from the properties of quantum query algorithms.

69

Chapter 6. Conclusion

Thirdly, to develop some useful tools for easy programmatic analysis of a

function and further construction of an efficient quantum query algorithm.

And finally, imagine a situation when using a bounded-error algorithm as a

subroutine in a complex algorithm is required. The aim is to work out an approach to

reduce losses of the correct answer probability of the whole complex algorithm. This

would make bounded-error algorithms to be even more popular subject of researches.

70

Bibliography

Bibliography

[BW02] H. Buhrman, R. de Wolf. Complexity Measures and Decision Tree

Complexity: A Survey. Theoretical Computer Science, v. 288(1), pp.21–43, 2002.

[Sh97] P. Shor. Polynomial time algorithms for prime factorization and discrete

logarithmson a quantum computer. SIAM Journal on Computing, 26(5), pp.1484-

1509, 1997.

[Gr01] L. Grover . From Schrödinger's equation to quantum search algorithm.

American Journal of Physics, 69(7): 769-777, 2001.

[Am04] A. Ambainis. Quantum query algorithms and lower bounds (survey article).

In Proceedings of FOTFS III, Trends on Logic, vol. 23, pp. 15-32, 2004.

[KLM07] R. Kaye, R. Laflamme, M. Mosca. An Introduction to Quantum

Computing. Oxford, 2007.

[VM10] A. Vasilieva, T. Mischenko-Slatenkova. Quantum Query Algorithms for

Conjunctions. Proc. of the 9th International Conference UC 2010, Lecture Notesin

Computer Science, Springer Berlin / Heidelberg, vol. 6079/2010, ISBN: 978-3-642-

13522-4, pp. 140-151, 2010.

[ACRSZ10] A. Ambainis, A.M. Childs, B.W. Reichardt, R. Spalek, S. Zhang. Any

AND-OR Formula of Size N Can Be Evaluated in Time N1/2+o(1) on a Quantum

Computer. SIAM J. Comput. Volume 39, Issue 6, pp. 2513-2530, 2010.

[KN97] E. Kushilevitz, N. Nisan. Communication complexity. Cambridge

UniversityPress, 1997.

[Am02] A. Ambainis. Quantum lower bounds by quantum arguments. Journal of

Computer and System Sciences, vol. 64(4), p.750-767, 2002.

71

Bibliography

[Am98] A. Ambainis. Polynomial degree vs. quantum query complexity. Proceedings

of FOCS 98, p.230-240, 1998.

[Am11] A. Ambainis. Personal communication, 2011.

[CEMM98] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca. Quantum algorithms

revisited. Proc. of the Royal Society of London, vol. A 454, pp.339–354, 1998.

[Pa94] C. Papadimitriou. Computational Complexity. Addison-Wesley, Rading,

500pp., 1994.

[De85] D. Deutch. Quantum theory, the Church-Turing principle and theuniversal

quantum computer. In proc. of the Royal Society, London, A400:97{117, 1985.

[Gr96] L. Grover. A fast quantum mechanical algorithm for database search. In

Proceedings of28th STOC'96, pp. 212. –219, 1996.

[DJ92] D. Deutsch, R. Jozsa. Rapid solutions of problems by quantum computation.

Proc. ofthe Royal Society of London, vol. A 439, pp.553-558, 1992.

[Si94] I. Simon. String matching algorithms and automata. Lecture Notes in

ComputerScience, vol. 814, pp.386-395, 1994.

[FI09] R. Freivalds, K. Iwama. Quantum Queries on Permutations with a Promise.

Implementation and Application of Automata, Lecture Notes in Computer Science,

vol. 5642/2009, pp.208-216, 2009.

[Mi07] T. Miscenko-Slatenkova. Quantum Query Algorithms for Computation of

Boolean Functions. Master Thesis, 2007.

[Wo01] R. de Wolf. Quantum Computing and Communication Complexity.

University of Amsterdam, 2001.

72

Bibliography

[KW04] R. Kerenidis, R. de Wolf. Exponential Lower Bound for 2-Query Locally

DecodableCodes via a Quantum Argument. Journal of Computer and System

Sciences, pp.395-420, 2004.

[VM11] A.Vasilieva, T. Mischenko-Slatenkova. Computing Relations in the Quantum

Query Model. Scientific Papers, University of Latvia, Volume 770, Computer Science

andInformation Technologies, ISBN 978-9984-45-377-4, pp. 68-89, 2011.

[We12] Eric W. Weisstein. Multivalued Function. MathWorld - A Wolfram Web

Resource, 2012.

[Kn96] K. Knopp. Multiple-Valued Functions. Section II in Theory of Functions

Parts I and II, Two Volumes Bound as One. New York: Dover, Part I p. 103 and Part II

pp. 93-146, 1996.

[Va10] A. Vasilieva. Quantum Query Algorithms for Relations. Randomized and

Quantum Computation. MFCS and CSL 2011 satellite workshop, ISBN 978-80-

87342-08-4, pp. 78-89, 2010.

[DM06] A. Dubrovska, T. Mischenko-Slatenkova. Computing Boolean Functions:

Exact Quantum Query Algorithms and Low Degree Polynomials. Proc. of SOFSEM

2006, Student Research Forum; MatFyz Press; ISBN 80-903298-4-5; pp. 91-100,

2006.

[NS02] N. Nisan, M. Szegedi. On the degree of Boolean functions as real

polynomials. Computational complexity, v. 288(1): 21-43, 2002.

[OFI05] R.Ozols, R. Freivalds, J.Ivanovs et al. Boolean functions with a low

polynomial degree and quantum query algorithms. Proc. of SOFSEM 2005, 2005.

73

74

Appendix 1. Computation in Wolfram Mathematica.
Programs for EQUALITY3(x1,x2,x3) and AND2(x1,x2)
computation

(*Definition of unitary transformations*)

H4=1/2{{1,1,1,1},

{1,-1,1,-1},

{1,1,-1,-1},

{1,-1,-1,1}};

U={

{1/Sqrt[10],1/Sqrt[10],Sqrt[2/5],Sqrt[2/5]},

{1/2,-1/2,1/2,-1/2},

{Sqrt[2/5],Sqrt[2/5],-1/Sqrt[10],-Sqrt[2/5]},

{0,1/Sqrt[2],0,-1/Sqrt[2]}

};

(*The algorithm for EQUALITY(x1,x2,x3)*)

START={1,0,0,0};

For[X1=0,X1<=1,X1++,

For[X2=0,X2<=1,X2++,

For[X3=0,X3<=1,X3++,

QUERY1={

{(-1)^X1,0,0,0},

{0,(-1)^X1,0,0},

{0,0,(-1)^X2,0},

{0,0,0,(-1)^X3}};

RESULT=U.QUERY1.H4.START;

Print[X1,X2,X3," | ",RESULT];

];];];

(*output*)

000 | {3/Sqrt[10],0,1/(2 Sqrt[10]),0}

001 | {1/Sqrt[10],1/2,Sqrt[5/2]/2,1/Sqrt[2]}

010 | {1/Sqrt[10],-(1/2),3/(2 Sqrt[10]),0}

011 | {-(1/Sqrt[10]),0,7/(2 Sqrt[10]),1/Sqrt[2]}

100 | {1/Sqrt[10],0,-(7/(2 Sqrt[10])),-(1/Sqrt[2])}

101 | {-(1/Sqrt[10]),1/2,-(3/(2 Sqrt[10])),0}

110 | {-(1/Sqrt[10]),-(1/2),-(Sqrt[(5/2)]/2),-(1/Sqrt[2])}

111 | {-(3/Sqrt[10]),0,-(1/(2 Sqrt[10])),0}

75

(*The algorithm for AND(x1,x2)*)

START={1,0,0,0};

For[X1=0,X1<=1,X1++,

For[X2=0,X2<=1,X2++,

QUERY1={{(-1)^X1,0,0,0},{0,(-1)^X1,0,0},{0,0,(-1)^X2,0},{0,0,0,-
1}};

RESULT=U.QUERY1.H4.START;

Print[X1,X2," | ",RESULT];

];];

(*output*)

00 | {1/Sqrt[10],1/2,Sqrt[5/2]/2,1/Sqrt[2]}

01 | {-(1/Sqrt[10]),0,7/(2 Sqrt[10]),1/Sqrt[2]}

10 | {-(1/Sqrt[10]),1/2,-(3/(2 Sqrt[10])),0}

11 | {-(3/Sqrt[10]),0,-(1/(2 Sqrt[10])),0}

76

Appendix 2. Computation in Wolfram Mathematica.
Programs for EQUALITY4(x1,x2,x3,x4) and
AND3(x1,x2,x3) computation

(*Definition of unitary transformations*)

H4=1/2{{1,1,1,1},

{1,-1,1,-1},

{1,1,-1,-1},

{1,-1,-1,1}};

 U={

 {1/2,1/2,1/2,1/2},

 {1/2,-(1/2),-(1/2),1/2},

 {1/2,1/2,-(1/2),-(1/2)},

 {-(1/2),1/2,-(1/2),1/2}};

(*The algorithm for EQUALITY(x1,x2,x3,x4)*)

START={1,0,0,0};

For[X1=0,X1<=1,X1++,

 For[X2=0,X2<=1,X2++,

 For[X3=0,X3<=1,X3++,

 For[X4=0,X4<=1,X4++,

 QUERY1={

 {(-1)^X1,0,0,0},

 {0,(-1)^X2,0,0},

 {0,0,(-1)^X3,0},

 {0,0,0,(-1)^X4}};

 RESULT=U.QUERY1.H4.START;

 Print[X1,X2,X3,X4," | ",RESULT];

];];];];

(*output*)

0000 | {1,0,0,0}

0001 | {1/2,-(1/2),1/2,-(1/2)}

0010 | {1/2,1/2,1/2,1/2}

0011 | {0,0,1,0}

0100 | {1/2,1/2,-(1/2),-(1/2)}

0101 | {0,0,0,-1}

0110 | {0,1,0,0}

0111 | {-(1/2),1/2,1/2,-(1/2)}

77

1000 | {1/2,-(1/2),-(1/2),1/2}

1001 | {0,-1,0,0}

1010 | {0,0,0,1}

1011 | {-(1/2),-(1/2),1/2,1/2}

1100 | {0,0,-1,0}

1101 | {-(1/2),-(1/2),-(1/2),-(1/2)}

1110 | {-(1/2),1/2,-(1/2),1/2}

1111 | {-1,0,0,0}

(*The algorithm for AND(x1,x2,x3)*)

START={1,0,0,0};

For[X1=0,X1<=1,X1++,

 For[X2=0,X2<=1,X2++,

 For[X3=0,X3<=1,X3++,

 QUERY1={

 {(-1)^X1,0,0,0},

 {0,(-1)^X2,0,0},

 {0,0,(-1)^X3,0},

 {0,0,0,-1}};

 RESULT=U.QUERY1.H4.START;

 Print[X1,X2,X3," | ",RESULT];

];];];

(*output*)

000 | {1/2,-(1/2),1/2,-(1/2)}

001 | {0,0,1,0}

010 | {0,0,0,-1}

011 | {-(1/2),1/2,1/2,-(1/2)}

100 | {0,-1,0,0}

101 | {-(1/2),-(1/2),1/2,1/2}

110 | {-(1/2),-(1/2),-(1/2),-(1/2)}

111 | {-1,0,0,0}

78

Appendix 3. Computation in Wolfram Mathematica.
Programs for EQUALITY6(x1,...,x6) and AND5(x1,...,x5)
computation

(*Definition of unitary transformations*)

(* 8 x 8 Hadamard matrix*)

H8=1/Sqrt[8]{

 {1,1,1,1,1,1,1,1},

 {1,-1,1,-1,1,-1,1,-1},

 {1,1,-1,-1,1,1,-1,-1},

 {1,-1,-1,1, 1,-1,-1,1},

 {1,1,1,1,-1,-1,-1,-1},

 {1,-1,1,-1,-1,1,-1,1},

 {1,1,-1,-1,-1,-1,1,1},

 {1,-1,-1,1,-1,1,1,-1}

 };

U=1/(2 Sqrt[2]){

{1,1,1,1,1,1,1,-1},

{1,1,-1,-1,-1,-1,1,-1},

{1,1,1,1,-1,-1,-1,1},

{-1,-1,1,1,-1,-1,1,-1},

{2,-2,0,0,0,0,0,0},

{0,0,0,0,2,-2,0,0},

{0,0,2,-2,0,0,0,0},

{0,0,0,0,0,0,2,2}};

(*Query matrix defined as a function*)

F[x1_,x2_,x3_,x4_,x5_,x6_]:={

{(-1)^x1,0,0,0,0,0,0,0},

{0,(-1)^x2,0,0,0,0,0,0},

{0,0,(-1)^x3,0,0,0,0,0},

{0,0,0,(-1)^x4,0,0,0,0},

{0,0,0,0,(-1)^x5,0,0,0},

{0,0,0,0,0,(-1)^x6,0,0},

{0,0,0,0,0,0,1,0},

{0,0,0,0,0,0,0,1}

};

(*The algorithm for EQUALITY(x1,...,x6)*)

START={1,0,0,0,0,0,0,0};

For[X1=0,X1<=1,X1++,

79

 For[X2=0,X2<=1,X2++,

 For[X3=0,X3<=1,X3++,

 For[X4=0,X4<=1,X4++,

 For[X5=0,X5<=1,X5++,

 For[X6=0,X6<=1,X6++,

 FQ=F[X1,X2,X3,X4,X5,X6];

 RESULT=U.FQ.H8.START;

 Print[X1,X2,X3,X4,X5,X6," | ",RESULT];

];];];];];];

(*output*)

000000 | {3/4,-(1/4),1/4,-(1/4),0,0,0,1/2}

000001 | {1/2,0,1/2,0,0,1/2,0,1/2}

000010 | {1/2,0,1/2,0,0,-(1/2),0,1/2}

000011 | {1/4,1/4,3/4,1/4,0,0,0,1/2}

000100 | {1/2,0,0,-(1/2),0,0,1/2,1/2}

000101 | {1/4,1/4,1/4,-(1/4),0,1/2,1/2,1/2}

000110 | {1/4,1/4,1/4,-(1/4),0,-(1/2),1/2,1/2}

000111 | {0,1/2,1/2,0,0,0,1/2,1/2}

001000 | {1/2,0,0,-(1/2),0,0,-(1/2),1/2}

001001 | {1/4,1/4,1/4,-(1/4),0,1/2,-(1/2),1/2}

001010 | {1/4,1/4,1/4,-(1/4),0,-(1/2),-(1/2),1/2}

001011 | {0,1/2,1/2,0,0,0,-(1/2),1/2}

001100 | {1/4,1/4,-(1/4),-(3/4),0,0,0,1/2}

001101 | {0,1/2,0,-(1/2),0,1/2,0,1/2}

001110 | {0,1/2,0,-(1/2),0,-(1/2),0,1/2}

001111 | {-(1/4),3/4,1/4,-(1/4),0,0,0,1/2}

010000 | {1/2,-(1/2),0,0,1/2,0,0,1/2}

010001 | {1/4,-(1/4),1/4,1/4,1/2,1/2,0,1/2}

010010 | {1/4,-(1/4),1/4,1/4,1/2,-(1/2),0,1/2}

010011 | {0,0,1/2,1/2,1/2,0,0,1/2}

010100 | {1/4,-(1/4),-(1/4),-(1/4),1/2,0,1/2,1/2}

010101 | {0,0,0,0,1/2,1/2,1/2,1/2}

010110 | {0,0,0,0,1/2,-(1/2),1/2,1/2}

010111 | {-(1/4),1/4,1/4,1/4,1/2,0,1/2,1/2}

011000 | {1/4,-(1/4),-(1/4),-(1/4),1/2,0,-(1/2),1/2}

011001 | {0,0,0,0,1/2,1/2,-(1/2),1/2}

011010 | {0,0,0,0,1/2,-(1/2),-(1/2),1/2}

011011 | {-(1/4),1/4,1/4,1/4,1/2,0,-(1/2),1/2}

011100 | {0,0,-(1/2),-(1/2),1/2,0,0,1/2}

80

011101 | {-(1/4),1/4,-(1/4),-(1/4),1/2,1/2,0,1/2}

011110 | {-(1/4),1/4,-(1/4),-(1/4),1/2,-(1/2),0,1/2}

011111 | {-(1/2),1/2,0,0,1/2,0,0,1/2}

100000 | {1/2,-(1/2),0,0,-(1/2),0,0,1/2}

100001 | {1/4,-(1/4),1/4,1/4,-(1/2),1/2,0,1/2}

100010 | {1/4,-(1/4),1/4,1/4,-(1/2),-(1/2),0,1/2}

100011 | {0,0,1/2,1/2,-(1/2),0,0,1/2}

100100 | {1/4,-(1/4),-(1/4),-(1/4),-(1/2),0,1/2,1/2}

100101 | {0,0,0,0,-(1/2),1/2,1/2,1/2}

100110 | {0,0,0,0,-(1/2),-(1/2),1/2,1/2}

100111 | {-(1/4),1/4,1/4,1/4,-(1/2),0,1/2,1/2}

101000 | {1/4,-(1/4),-(1/4),-(1/4),-(1/2),0,-(1/2),1/2}

101001 | {0,0,0,0,-(1/2),1/2,-(1/2),1/2}

101010 | {0,0,0,0,-(1/2),-(1/2),-(1/2),1/2}

101011 | {-(1/4),1/4,1/4,1/4,-(1/2),0,-(1/2),1/2}

101100 | {0,0,-(1/2),-(1/2),-(1/2),0,0,1/2}

101101 | {-(1/4),1/4,-(1/4),-(1/4),-(1/2),1/2,0,1/2}

101110 | {-(1/4),1/4,-(1/4),-(1/4),-(1/2),-(1/2),0,1/2}

101111 | {-(1/2),1/2,0,0,-(1/2),0,0,1/2}

110000 | {1/4,-(3/4),-(1/4),1/4,0,0,0,1/2}

110001 | {0,-(1/2),0,1/2,0,1/2,0,1/2}

110010 | {0,-(1/2),0,1/2,0,-(1/2),0,1/2}

110011 | {-(1/4),-(1/4),1/4,3/4,0,0,0,1/2}

110100 | {0,-(1/2),-(1/2),0,0,0,1/2,1/2}

110101 | {-(1/4),-(1/4),-(1/4),1/4,0,1/2,1/2,1/2}

110110 | {-(1/4),-(1/4),-(1/4),1/4,0,-(1/2),1/2,1/2}

110111 | {-(1/2),0,0,1/2,0,0,1/2,1/2}

111000 | {0,-(1/2),-(1/2),0,0,0,-(1/2),1/2}

111001 | {-(1/4),-(1/4),-(1/4),1/4,0,1/2,-(1/2),1/2}

111010 | {-(1/4),-(1/4),-(1/4),1/4,0,-(1/2),-(1/2),1/2}

111011 | {-(1/2),0,0,1/2,0,0,-(1/2),1/2}

111100 | {-(1/4),-(1/4),-(3/4),-(1/4),0,0,0,1/2}

111101 | {-(1/2),0,-(1/2),0,0,1/2,0,1/2}

111110 | {-(1/2),0,-(1/2),0,0,-(1/2),0,1/2}

111111 | {-(3/4),1/4,-(1/4),1/4,0,0,0,1/2}

(*The algorithm for EQUALITY(x1,...,x5)*)

START={1,0,0,0,0,0,0,0};

For[X1=0,X1<=1,X1++,

81

 For[X2=0,X2<=1,X2++,

 For[X3=0,X3<=1,X3++,

 For[X4=0,X4<=1,X4++,

 For[X5=0,X5<=1,X5++,

 FQ=F[X1,X2,X3,X4,X5,1];

 RESULT=U.FQ.H8.START;

 Print[X1,X2,X3,X4,X5," | ",RESULT];

];];];];];

(*output*)

00000 | {1/2,0,1/2,0,0,1/2,0,1/2}

00001 | {1/4,1/4,3/4,1/4,0,0,0,1/2}

00010 | {1/4,1/4,1/4,-(1/4),0,1/2,1/2,1/2}

00011 | {0,1/2,1/2,0,0,0,1/2,1/2}

00100 | {1/4,1/4,1/4,-(1/4),0,1/2,-(1/2),1/2}

00101 | {0,1/2,1/2,0,0,0,-(1/2),1/2}

00110 | {0,1/2,0,-(1/2),0,1/2,0,1/2}

00111 | {-(1/4),3/4,1/4,-(1/4),0,0,0,1/2}

01000 | {1/4,-(1/4),1/4,1/4,1/2,1/2,0,1/2}

01001 | {0,0,1/2,1/2,1/2,0,0,1/2}

01010 | {0,0,0,0,1/2,1/2,1/2,1/2}

01011 | {-(1/4),1/4,1/4,1/4,1/2,0,1/2,1/2}

01100 | {0,0,0,0,1/2,1/2,-(1/2),1/2}

01101 | {-(1/4),1/4,1/4,1/4,1/2,0,-(1/2),1/2}

01110 | {-(1/4),1/4,-(1/4),-(1/4),1/2,1/2,0,1/2}

01111 | {-(1/2),1/2,0,0,1/2,0,0,1/2}

10000 | {1/4,-(1/4),1/4,1/4,-(1/2),1/2,0,1/2}

10001 | {0,0,1/2,1/2,-(1/2),0,0,1/2}

10010 | {0,0,0,0,-(1/2),1/2,1/2,1/2}

10011 | {-(1/4),1/4,1/4,1/4,-(1/2),0,1/2,1/2}

10100 | {0,0,0,0,-(1/2),1/2,-(1/2),1/2}

10101 | {-(1/4),1/4,1/4,1/4,-(1/2),0,-(1/2),1/2}

10110 | {-(1/4),1/4,-(1/4),-(1/4),-(1/2),1/2,0,1/2}

10111 | {-(1/2),1/2,0,0,-(1/2),0,0,1/2}

11000 | {0,-(1/2),0,1/2,0,1/2,0,1/2}

11001 | {-(1/4),-(1/4),1/4,3/4,0,0,0,1/2}

11010 | {-(1/4),-(1/4),-(1/4),1/4,0,1/2,1/2,1/2}

11011 | {-(1/2),0,0,1/2,0,0,1/2,1/2}

11100 | {-(1/4),-(1/4),-(1/4),1/4,0,1/2,-(1/2),1/2}

11101 | {-(1/2),0,0,1/2,0,0,-(1/2),1/2}

82

11110 | {-(1/2),0,-(1/2),0,0,1/2,0,1/2}

11111 | {-(3/4),1/4,-(1/4),1/4,0,0,0,1/2}

83

Appendix 4. Computation in Wolfram Mathematica.
Program for computing AZSO6(x1,...,x6)

(*Definition of unitary transformations*)

(* 8 x 8 Hadamard matrix*)

H8=1/Sqrt[8]{

{1,1,1,1,1,1,1,1},

{1,-1,1,-1,1,-1,1,-1},

{1,1,-1,-1,1,1,-1,-1},

{1,-1,-1,1, 1,-1,-1,1},

{1,1,1,1,-1,-1,-1,-1},

{1,-1,1,-1,-1,1,-1,1},

{1,1,-1,-1,-1,-1,1,1},

{1,-1,-1,1,-1,1,1,-1}

};

U=1/(2 Sqrt[2]){

{1,1,1,1,1,1,1,1},

{1,1,-1,-1,-1,-1,1,1},

{1,1,1,1,-1,-1,-1,-1},

{-1,-1,1,1,-1,-1,1,1},

{2,-2,0,0,0,0,0,0},

{0,0,0,0,2,-2,0,0},

{0,0,0,0,0,0,2,-2},

{0,0,2,-2,0,0,0,0}};

(*Query matrix defined as a function*)

F[x1_,x2_,x3_,x4_,x5_,x6_,x7_,x8_]:={

{(-1)^x1,0,0,0,0,0,0,0},

{0,(-1)^x2,0,0,0,0,0,0},

{0,0,(-1)^x3,0,0,0,0,0},

{0,0,0,(-1)^x4,0,0,0,0},

{0,0,0,0,(-1)^x5,0,0,0},

{0,0,0,0,0,(-1)^x6,0,0},

{0,0,0,0,0,0,(-1)^x7,0},

{0,0,0,0,0,0,0,(-1)^x8}

};

(*The algorithm for AZSO(x1,...,x6)*)

START={1,0,0,0,0,0,0,0};

84

For[X1=0,X1<=1,X1++,

For[X2=0,X2<=1,X2++,

For[X3=0,X3<=1,X3++,

For[X4=0,X4<=1,X4++,

For[X5=0,X5<=1,X5++,

For[X6=0,X6<=1,X6++,

FQ=F[X1,X2,X3,X4,X5,X6,0,0];

RESULT=U.FQ.H8.START;

Print[X1,X2,X3,X4,X5,X6," | ",RESULT];

];];];];];];

000000 | {1,0,0,0,0,0,0,0}

000001 | {3/4,1/4,1/4,1/4,0,1/2,0,0}

000010 | {3/4,1/4,1/4,1/4,0,-(1/2),0,0}

000011 | {1/2,1/2,1/2,1/2,0,0,0,0}

000100 | {3/4,1/4,-(1/4),-(1/4),0,0,0,1/2}

000101 | {1/2,1/2,0,0,0,1/2,0,1/2}

000110 | {1/2,1/2,0,0,0,-(1/2),0,1/2}

000111 | {1/4,3/4,1/4,1/4,0,0,0,1/2}

001000 | {3/4,1/4,-(1/4),-(1/4),0,0,0,-(1/2)}

001001 | {1/2,1/2,0,0,0,1/2,0,-(1/2)}

001010 | {1/2,1/2,0,0,0,-(1/2),0,-(1/2)}

001011 | {1/4,3/4,1/4,1/4,0,0,0,-(1/2)}

001100 | {1/2,1/2,-(1/2),-(1/2),0,0,0,0}

001101 | {1/4,3/4,-(1/4),-(1/4),0,1/2,0,0}

001110 | {1/4,3/4,-(1/4),-(1/4),0,-(1/2),0,0}

001111 | {0,1,0,0,0,0,0,0}

010000 | {3/4,-(1/4),-(1/4),1/4,1/2,0,0,0}

010001 | {1/2,0,0,1/2,1/2,1/2,0,0}

010010 | {1/2,0,0,1/2,1/2,-(1/2),0,0}

010011 | {1/4,1/4,1/4,3/4,1/2,0,0,0}

010100 | {1/2,0,-(1/2),0,1/2,0,0,1/2}

010101 | {1/4,1/4,-(1/4),1/4,1/2,1/2,0,1/2}

010110 | {1/4,1/4,-(1/4),1/4,1/2,-(1/2),0,1/2}

010111 | {0,1/2,0,1/2,1/2,0,0,1/2}

011000 | {1/2,0,-(1/2),0,1/2,0,0,-(1/2)}

011001 | {1/4,1/4,-(1/4),1/4,1/2,1/2,0,-(1/2)}

011010 | {1/4,1/4,-(1/4),1/4,1/2,-(1/2),0,-(1/2)}

011011 | {0,1/2,0,1/2,1/2,0,0,-(1/2)}

85

011100 | {1/4,1/4,-(3/4),-(1/4),1/2,0,0,0}

011101 | {0,1/2,-(1/2),0,1/2,1/2,0,0}

011110 | {0,1/2,-(1/2),0,1/2,-(1/2),0,0}

011111 | {-(1/4),3/4,-(1/4),1/4,1/2,0,0,0}

100000 | {3/4,-(1/4),-(1/4),1/4,-(1/2),0,0,0}

100001 | {1/2,0,0,1/2,-(1/2),1/2,0,0}

100010 | {1/2,0,0,1/2,-(1/2),-(1/2),0,0}

100011 | {1/4,1/4,1/4,3/4,-(1/2),0,0,0}

100100 | {1/2,0,-(1/2),0,-(1/2),0,0,1/2}

100101 | {1/4,1/4,-(1/4),1/4,-(1/2),1/2,0,1/2}

100110 | {1/4,1/4,-(1/4),1/4,-(1/2),-(1/2),0,1/2}

100111 | {0,1/2,0,1/2,-(1/2),0,0,1/2}

101000 | {1/2,0,-(1/2),0,-(1/2),0,0,-(1/2)}

101001 | {1/4,1/4,-(1/4),1/4,-(1/2),1/2,0,-(1/2)}

101010 | {1/4,1/4,-(1/4),1/4,-(1/2),-(1/2),0,-(1/2)}

101011 | {0,1/2,0,1/2,-(1/2),0,0,-(1/2)}

101100 | {1/4,1/4,-(3/4),-(1/4),-(1/2),0,0,0}

101101 | {0,1/2,-(1/2),0,-(1/2),1/2,0,0}

101110 | {0,1/2,-(1/2),0,-(1/2),-(1/2),0,0}

101111 | {-(1/4),3/4,-(1/4),1/4,-(1/2),0,0,0}

110000 | {1/2,-(1/2),-(1/2),1/2,0,0,0,0}

110001 | {1/4,-(1/4),-(1/4),3/4,0,1/2,0,0}

110010 | {1/4,-(1/4),-(1/4),3/4,0,-(1/2),0,0}

110011 | {0,0,0,1,0,0,0,0}

110100 | {1/4,-(1/4),-(3/4),1/4,0,0,0,1/2}

110101 | {0,0,-(1/2),1/2,0,1/2,0,1/2}

110110 | {0,0,-(1/2),1/2,0,-(1/2),0,1/2}

110111 | {-(1/4),1/4,-(1/4),3/4,0,0,0,1/2}

111000 | {1/4,-(1/4),-(3/4),1/4,0,0,0,-(1/2)}

111001 | {0,0,-(1/2),1/2,0,1/2,0,-(1/2)}

111010 | {0,0,-(1/2),1/2,0,-(1/2),0,-(1/2)}

111011 | {-(1/4),1/4,-(1/4),3/4,0,0,0,-(1/2)}

111100 | {0,0,-1,0,0,0,0,0}

111101 | {-(1/4),1/4,-(3/4),1/4,0,1/2,0,0}

111110 | {-(1/4),1/4,-(3/4),1/4,0,-(1/2),0,0}

111111 | {-(1/2),1/2,-(1/2),1/2,0,0,0,0}

86

Appendix 5. A Truth Table for the Boolean function
f9(x1,...,x9)

The function f9(x1,...,x9) is defined in section 5.1.3. Here we list those inputs on which

the function's value is 1, on all other inputs the value is zero.

000000000 000000111 000001011 000001111 000010101 000010111

000011001 000011011 000011101 000011101 000011111 000100110

000100111 000101010 000101011 000101110 000101111 000110100

000110101 000110110 000110111 000111000 000111001 000111010

000111011 000111100 000111101 000111110 000111111 001000011

001000111 001001011 001001100 001010001 001010011 001010101

001010111 001011001 001011011 001100010 001100011 001100110

001100111 001101010 001101011 001110000 001110001 001110010

001110011 001110100 001110101 001110110 001110111 001111000

001111001 001111010 001111011 010000101 010000111 010001001

010001011 010001101 010001101 010010010 010010101 010011001

010011101 010100100 010100101 010100110 010100111 010101000

010101001 010101010 010101011 010101100 010101101 010101110

010101111 010110100 010110101 010111000 010111001 010111100

010111101 011000001 011000011 011000101 011000111 011001001

011001011 011010001 011010101 011011001 011011110 011100000

011100001 011100010 011100011 011100100 011100101 011100110

011100111 011101000 011101001 011101010 011101011 011110000

011110001 011110100 011110101 011111000 011111001 100000110

100000111 100001010 100001011 100001110 100001111 100010100

100010101 100010110 100010111 100011000 100011001 100011010

100011011 100011100 100011101 100011110 100011111 100100001

100100110 100101010 100101110 100110100 100110110 100111000

100111010 100111100 100111110 101000010 101000011 101000110

87

101000111 101001010 101001011 101010000 101010001 101010010

101010011 101010100 101010101 101010110 101010111 101011000

101011001 101011010 101011011 101100010 101100110 101101010

101101101 101110000 101110010 101110100 101110110 101111000

101111010 110000100 110000101 110000110 110000111 110001000

110001001 110001010 110001011 110001100 110001101 110001110

110001111 110010100 110010101 110011000 110011001 110011100

110011100 110100100 110100110 110101000 110101010 110101100

110101110 110110011 110110100 110111000 110111100 111000000

111000001 111000010 111000011 111000100 111000101 111000110

111000111 111001000 111001001 111001010 111001011 111010000

111010001 111010100 111010101 111011000 111011001 111100000

111100010 111100100 111100110 111101000 111101010 111110000

111110100 111111000 111111111

Table app5.1. Boolean function f9(x1,...,x9): inputs for the function's value 1

	Abstract
	Anotācija
	Preface
	Acknowledgements
	1 Introduction
	2 Preliminaries
	2.1 Quantum Computing
	2.1.1 Quantum States
	2.1.2 Unitary Transformation
	2.1.3 Measurement

	2.2 Query Models
	2.2.1 Classical Decision Trees
	2.2.2 Quantum Query Model

	2.3 The Deutch Algorithm

	3 Quantum Query Algorithms for Boolean Functions. Bounded-Error Quantum Query Algorithms.
	3.1 Quantum Query Algorithms for 3-, 4- and 6- bit EQUALITY Boolean Function
	3.1.1 Quantum Algorithm for EQUALITY3 Function: Q9/10(EQUALITY3)=1
	3.1.2 Quantum Algorithm for EQUALITY4 Function: Q3/4(EQUALITY4) = 1
	3.1.3 Quantum Algorithm for EQUALITY6 Function: Q9/16(EQUALITY6)=1

	3.2 Quantum Query Algorithms for 2-, 3-, 5- bit Conjunctions
	3.2.1 Quantum Query Algorithm for AND2: Q9/10(AND2)=1
	3.2.2 Quantum query algorithm for AND3: Q3/4(AND3)=1
	3.2.3 Quantum query algorithm for AND5: Q9/16(AND5)=1

	3.3 Quantum Query Algorithm for An Extension of EQUALITY Boolean function, EOX for 3n, 4n and 6n arguments
	3.3.1 Quantum Algorithm for An Extension of EQUALITY3 Boolean function, EOX3n
	3.3.2 Quantum Algorithm for An Extension of EQUALITY4 Boolean Function, EOX4n
	3.3.3 Quantum Algorithm for An Extension of EQUALITY6 Boolean function, EOX6n
	3.3.4 Application of EOX Boolean Functions

	3.4 Quantum Query Algorithm for 2n-bit AND Boolean Function: Q3/4(AND2n)=n
	3.5 Other Bounded-Error Quantum Algorithms
	3.5.1 Quantum Algorithm for “All Zeroes or Single One” 6 Argument Boolean Function

	3.6 Conclusion and Open Problems

	4 Quantum Query Algorithms for Multivalued Functions
	4.1 Multivalued Functions
	4.2 Computing Multifunctions in a Query Model
	4.3 Multifunction Example and Its Computation
	4.3.1 Multifunction M: QUD(M) = 1 vs. CUD(M) = 3
	4.3.2 The First Generalization of The Multifunction M
	4.3.3 The Second Generalization of The Multifunction M

	4.4 Conclusion and Open Problems

	5 Low Degree Boolean Functions
	5.1 Definition of A Low Degree Polynomial
	5.1.1 A Polynomial of Degree 2
	5.1.2 A Polynomial With The Boolean Value Range
	5.1.3 Examples and The General Form Of The Approach

	5.2 Tripple Function Method
	5.3 Conclusion and Open Problems

	6 Conclusion
	Appendix 1. Computation in Wolfram Mathematica. Programs for EQUALITY3(x1,x2,x3) and AND2(x1,x2) computation
	Appendix 2. Computation in Wolfram Mathematica. Programs for EQUALITY4(x1,x2,x3,x4) and AND3(x1,x2,x3) computation
	Appendix 3. Computation in Wolfram Mathematica. Programs for EQUALITY6(x1,...,x6) and AND5(x1,...,x5) computation
	Appendix 4. Computation in Wolfram Mathematica. Program for computing AZSO6(x1,...,x6)
	Appendix 5. A Truth Table for the Boolean function f9(x1,...,x9)

