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Abstract

Quantum computing is a way of computation based on the laws of quantum 

mechanics. The main subject of this research  is a quantum query algorithm, where we 

pursued  a  major  aim  to  make  quantum  algorithm  design  as  straightforward as 

possible.  

This survey presents quantum query algorithms computing Boolean functions 

with  a  small  number  of  queries  and algorithms  computing  multivalued functions. 

Numerous  quantum algorithms  efficient  for  certain  problems are  described  in  the 

thesis.  Bounded-error quantum algorithms are the most impressive,  for example, a 

single-query algorithm for conjunction of two bits with the correct answer probability 

9/10. Quantum versus classical algorithm complexity gap is discussed thorougly for 

each scope of functions.

The last part of the thesis is devoted to  Boolean functions with low-degree 

representing  polynomials.  Approaches  presented in  this  work  allow  to  design  a 

Boolean  function  with  a  large  gap  between  the  deterministic  complexity  and  the 

degree of a representing polynomial.  



Anotācija

Kvantu  skaitļošana  ir  datorzinātnes  apakšnozare,  kas  balstās  uz  kvantu 

mehānikas  likumiem.  Kvantu  vaicājošais  algoritms  ir  galvenais  pētāmais  objekts. 

Lielais  darba  mērķis  ir  padarīt  kvantu  algoritma  konstruēšanu  pēc  iespējas 

vienkāršāku.

Pētījumā ir aprakstīti kvantu vaicājošie algoritmi,  kas rēķina Būla funkcijas 

uzdodot maz vaicājumu, un  tiek piedāvāti kvantu vaicājošie algoritmi daudzvērtīgu 

funkciju aprēķināšanai. Darbā ir aprakstīti vairāki efektīvi kvantu algoritmi konkrētu 

uzdevumu veikšanai.  Paši  nozīmīgākie ir  kvantu vaicājošie algoritmi ar ierobežotu 

kļūdu,  piemēram,  piedāvāts  algoritms  divu  bitu  AND Būla  funkcijai,  kas  izmanto 

vienīgu  vaicājumu un izdod  pareizu  atbildi  ar  varbūtību  9/10.  Katrai  aprakstītajai 

funkciju kopai ir veikta pamatīga kvantu un klasiskās sarežģītības analīze.

Pēdējā pētījuma daļa ir veltīta Būla funkcijām ar zemas pakāpes polinomiem, 

kuri  reprezentē  dotās  funkcijas.  Darbā piedāvātie  paņēmieni  ļauj  uzkonstruēt  Būla 

funkcijas  ar  pietiekami  lielu  intervālu  starp  funkcijas  determinētu  sarežģītību  un 

reprezentējošā polinoma pakāpi.
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Chapter 1. Introduction 

 1 Introduction

Quantum computing is an alternative way of computation based on the laws of 

quantum mechanics.  We will  be researching quantum query algorithms, which are 

proved to solve certain problems faster than their classical counterparts. 

Given  an  explicit  definition  of  some  function  and  a  black  box  oracle 

containing the values of the variables as an input of the query algorithm, the goal of 

the algorithm is to compute the function's  value.  The algorithm queries black box 

oracle about the values of variables. Queries are asked individually, and the result of 

any query influences the next query to be asked or the result to be output.  [BW02] 

gives a formal definition of quantum query algorithm. 

Complexity of a query algorithm is measured by the number of queries to a 

black box oracle on the worst case input. The classical version of this model is known 

as decision trees [BW02].

Shor's  [Sh97] and Grover's  [Gr01] fast algorithms are considered legendary 

classics, meanwhile a lot of successful quantum query algorithms for certain tasks 

have been developed recently ([Am04], [KLM07], [VM10], [ACRSZ10], [KN97]). 

A. Ambainis ([Am02], [Am98]) developed powerful methods to prove lower bounds 

of quantum query complexity. A good reference is the survey by Buhrman and de 

Wolf  [BW02].

One of the most important open problems in quantum computing is whether 

quantum algorithms could be more advantageous than probabilistic ones. Here we 

will concentrate on the case when these advantages are least expected, namely, when 

the computing device and the computation time are finite. We will discuss quantum 

versus  classical  query  algorithm  complexities:  we  are  interested  in  classical  and 

quantum algorithm complexity gap as large as possible for the same computational 

problem. The largest known gap between quantum exact and classical deterministic 

query algorithm complexity is  N versus  2N ([BW02],  [Am11]), and a long standing 

open question is whether it is possible to enlarge this gap with no error allowed. The 

first result with a 50% improvement for an exact algorithm was a quantum algorithm 

for XOR Boolean function presented in [CEMM98].
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Chapter 1. Introduction 

Meanwhile the best improvements are presented by quantum algorithms with 

certain  error  probability,  making  quantum  computing  a  subject  for  numerous 

researches.

We classify query algorithms by the probability of returning a correct result:

– exact algorithms always output the correct result with probability p=1

– probabilistic algorithms may be of different types depending on the subject of 

the probability: either the result is correct with some probability, or there exists 

a probability for the outcome “unknown”, while the correct answer is returned 

precisely.

The quantum query model differs from the quantum circuit model ([Am04], 

[KLM07],  [VM10],  [ACRSZ10],  [KN97]), and algorithm design techniques for this 

model  are  less  developed.  There  are  still  no  step-by-step  instructions  to  design  a 

quantum  query  algorithm  for  some  computational  problem  –  neither  exact  nor 

probabilistic. Given some function, it is a non-trivial task to design a quantum query 

algorithm for it, so the goal of this research is to find some new approaches and good 

examples of quantum query algorithms.

The research on quantum query algorithms will go in several directions: 

– algorithms computing Boolean functions, especially, AND-function

– algorithms computing multivalued functions

In the first part of the research we will construct one-query bounded-error quantum 

query  algorithms  for  three-,  four-  and  six-bit  equality  functions  and  compare 

complexities between classical and quantum versions of these algorithms. We will 

construct one-query bounded-error quantum algorithms for the conjunction of two, 

three  or  five  bits.  We  will  propose  a  bounded-error  quantum  algorithm  for  the 

conjunction of 2n bits by asking n queries.

We will generalize some of the previously described algorithms and get new 

fast bounded-error quantum algorithms:  

– a  bounded-error  algorithm  with  n  quantum  queries  computing  a  function 

dependent on 3n arguments
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Chapter 1. Introduction 

– a  bounded-error  algorithm  with  n  quantum  queries  computing  a  function 

dependent on 4n arguments

These algorithms are interesting on their own, but they also can be used as a basis for 

definition  of  another  specific  computational  problem  preserving  the  quantum 

algorithm complexity.

In the second part  of the research we will  focus on multivalued functions, 

which  could  be  found  in  mathematics  when  observing  the  inverse  of  various 

functions, for example cos-1 (φ) or sqrt(x). We will present 

– a quantum algorithm with n queries for a specific 4n-argument multivalued 

function

– a  one-query quantum algorithm for a specific multivalued function with N=2n 

arguments. 

Finally in the third part  we will discuss low degree Boolean functions,  the 

degree of algebraic polynomial representing a Boolean function and its relation to the 

complexity of a  quantum query algorithm  computing the function. We will  present 

some  approaches  for  definition  of  Boolean  functions  with  sufficiently  large  gap 

between deterministic complexity and the degree of representing polynomial:

– an approach for a 3k-argument polynomial of degree 2(k-1) and corresponding 

Boolean  function's  deterministic  complexity  equal  to  the  number  of  its 

arguments 3k

– an  approach  for  building  a  3t+1
⋅k -variable  Boolean  function f  with 

deterministic complexity D( f )=3t+1
⋅k and the degree of the representing 

polynomial equal to deg ( f )=2t+1⋅(k−1) , where t≥1 and any odd k.

We hope, algorithm examples presented in the thesis demonstrate some useful 

approaches of algorithm design, and will inspire newcomers of this area. 
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Chapter 2. Preliminaries

 2 Preliminaries

In this section we consider notations, definitions and facts, either well-known 

or  elementary,  referenced directly  or  indirectly  throughout  the  thesis,  such as  the 

classical decision tree, basics of quantum computing and the quantum query model.

We refer to [Am04] for most definitions in sections 2.1 and 2.2.

 2.1 Quantum Computing 

In this chapter we briefly outline the basic notions of quantum computing that 

are necessary to define the quantum query model. For more details, see  ([KLM07], 

[ACRSZ10], [Am04]). 

 2.1.1 Quantum States

In finite dimensional quantum systems an n-dimensional pure quantum state is 

a unit vector in a Hilbert space. Let ∣0 〉 ,∣1〉 , ... ,∣n−1〉 be an orthonormal basis for 

ℂ
n

. Then, any state can be expressed as 
∣ψ 〉=∑

i=0

n−1

a i∣i 〉 for some a i∈ℂ . 

In case of n=2 we have a one-qubit quantum system. A quantum bit, qubit for short, is 

a superposition of two basis states ∣0 〉 and ∣1〉 . 

Since the norm of  ∣ψ 〉 is  1,  ∑i=0

n−1

∣ai∣
2
=1

. States  ∣0 〉 ,∣1〉 , ... ,∣n−1〉 are called 

basis  states.  Any  state  of  the  form  ∑i=0

n−1

ai∣i 〉 is  called  a  superposition of 

∣0 〉 ,∣1〉 , ... ,∣n−1〉 . The coefficient ai is called amplitude of |i〉. 

The quantum state can be changed by applying a unitary transformation or performing 

a measurement.

4



Chapter 2. Preliminaries

 2.1.2 Unitary Transformation

A unitary transformation U is a linear transformation on ℂ
n

that maps each vector 

of unit norm to a vector of unit norm. Given a state  ∣ψ 〉 ,  the state of the system 

after the transformation U is U∣ψ 〉 .

 2.1.3 Measurement

Here we use the simplest case of quantum measurement: the full measurement 

in  the  computational  basis.  Performing  this  measurement  on  a  state 

∣ψ 〉=a0∣0〉+...+an−1∣n−1〉  gives   the  outcome  i  with  probability  |ai|
2.  The 

measurement changes state of the system to |i〉 and destroys the original state.

 2.2 Query Models

The  query  model  considers some  explicitly  defined  function 

f : {0,1}
n
→ }0,1}

m with  its  arguments   hidden in  “black  box”.   Algorithm  has  to 

output the value of the function correctly for an arbitrary input. The aim is to compute 

the  value  of  function  while  making  as  less  queries  to  “black  box”  as  possible. 

Complexity of the algorithm is  measured by number of queries on the worst-case 

input. 

Decision  trees  are  query  algorithms  described  in  terms  of  classical 

computation. For more details, see the survey by Buhrman and de Wolf  [BW02] and 

Papadimitrou [Pa94].

 2.2.1 Classical Decision Trees

We denote  the Hamming weight of some input X by |X|.

A deterministic  decision  tree is  a  tree  with  internal  nodes  labeled  with 

variables  xi, arrows exiting internal nodes labeled with possible variable values and 

leafs labeled with function values.  A deterministic decision tree always follows the 

5



Chapter 2. Preliminaries

same path  for  each  input  and  produces  the  correct  result  with  probability  p =  1. 

Deterministic complexity of a function f  is denoted by D(f).

Definition  2.1.  [BW02] The  deterministic  complexity of  a function f,  denoted by  

D(f),  is  the maximum number of questions  that  must  be asked on any input  by a  

deterministic algorithm for f.

Definition 2.2.  [BW02] The sensitivity sx(f) of f on input  (x1, ... , x i ,... , xN ) is the  

number  of  variables  xi  with  the  following  property: 

f (x1, ... , x i ,... , xN )≠ f ( x1, ... ,1−x i ,... , x N ) .  The  sensitivity  of  f  is 

s( f )=max x s x( f ) .

It has been proved that D( f )≥s ( f )  [BW02]. In particular, if  s(f) is equal to the 

number of variables n, then D(f)=n.

A power of randomization might be added to decision trees [BW02].

A probabilistic (randomized) decision tree may contain internal nodes with 

probabilistic branching, i.e., multiple arrows exiting from the same node, each one 

labeled with a probability for algorithm to follow that way. The total probability to 

obtain the result r after execution of an algorithm on certain input X equals to the sum 

of probabilities for each leaf labeled with  r to be reached. Total probability of an 

algorithm to produce the correct result is the probability on the worst-case input.

 2.2.2 Quantum Query Model

A quantum query algorithm is the quantum counterpart of the decision tree. 

The following quantum query definition is applicable to problems with {0,1}-valued 

arguments only:

the black box gets a state ∑
i

ai∣i 〉 as an input and outputs a state ∑
i

ai(−1)x i∣i 〉 , 

where the assignment of  xi  is arbitrary, corresponding to  computational  needs  of the 

algorithm. If the value of the i-th argument  is 1, then the sign of the i-th amplitude ai 

changes to the opposite.  This form of a query is better suited for using in quantum 

algorithms, while there is other, more general, definition of a query for functions with 

a larger domain set. The first form of a query could be simulated by the second one. 

6
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See [KLM07], [ACRSZ10], [Am04] for detailed description.

A quantum algorithm with T queries is a sequence of unitary transformations 

on a finitite-dimensional space ℂ
n

:

U 0→O→U 1→O→ ...→U T−1→O→U T ,

 Ui's can be arbitrary unitary transformations that do not depend on input bits. O's are 

query transformations. The computation starts in the initial state  ∣⃗0 〉 .  Then, we 

apply predefined unitary transformations  U0,Ox,...,Ox,UT and measure the final state. 

We denote the query that corresponds to an input x=(x1,x2,...,xn) by Ox.. Quantum query 

transformation expressed in matrix form is as follows:

O x=(
(−1)ϕ0 0 ... 0

0 (−1)
ϕ1 ... 0

0 0 ⋱ 0
0 0 ...(−1)

ϕn−1
) ,

where ϕi is some xj from the input string X=(x1,x2,...,xn).

Each amplitude of the final state is treated as an output of the algorithm equal 

to some value ri from the range set of the function. Probability to get the output value 

r afer  algorithm execution  on some input  X is  the  sum of  squared  moduli  of  all 

amplitudes of the final state that correspond to outputs with function value r.

The  quantum  algorithm  computes  a  function  f (x1, ... , x N ) if  for  every 

x=(x1,x2,...,xN), for which f is defined, the probability that squared modulus of a certain 

amplitude   of   the  final  state U T O x U T−1 ...O x U 0∣0〉 equals  f (x1, ... , x N ) is  at 

least  1−ϵ for  some fixed  ϵ<1/2 .  The exact  quantum algorithm computes  a 

function with probability 1, i.e. ϵ=0 .

There are several types of quantum algorithms  [BW02]. The present survey 

uses the notion of  an exact and a bounded-error quantum query algorithms.

Definition 2.3. [BW02] A quantum query algorithm computes f exactly if the output  

equals f(X) with probability p=1, for all  X∈{0,1}N . Complexity is equal to the  

number of queries and is denoted by QE(f).

7



Chapter 2. Preliminaries

Definition 2.4. [BW02] A quantum query algorithm computes f with bounded-error if  

the output equals f(X) with probability p>2/3, for all  X∈{0,1}N . Complexity is  

equal to the number of queries and is denoted by Qp(f).

 2.3 The Deutch Algorithm

The most referenced quantum query algorithm is the Deutch algorithm [De85], 

[CEMM98].  It  computes  the  XOR Boolean function  for  two bits exactly  using  a 

single query, while any classical algorithm asks at least two. Next we explain how the 

algorithm works.

The algorithm uses one qubit quantum system with basis states ∣0 〉 ,∣1〉 . We 

begin  in  the  state  ∣φ0 〉=∣0〉 and then apply  H,  then  Q and  then  H,  where  H is 

Hadamard matrix and Q  is the query:

H=(
1
√2

1
√2

1

√2
−

1

√2
) , Q=((−1)x1 0

0 (−1)x2)

The algorithm is a sequence of transformations V x=H⋅Q⋅H . Finally, we perform 

the measurement: if the final state is ∣0 〉 , we output 1, and otherwise 0. 

To see how the described algorithm works, note that H∣0〉=
1

√2
∣0 〉+

1

√2
∣1 〉 , which 

is  a  superposition of two basis  states.  For the input  string  x=00 Q is  the identity 

matrix, but for x=11 Q is minus identity, thus:

V 00∣0〉=H⋅I⋅H∣0〉=∣0 〉
V 11∣0〉=H⋅(−I )⋅H ∣0 〉=−∣0 〉 .

For x = 10 Q⋅H ∣0 〉=
1

√2
(−∣0〉+∣1〉) according to Q definition, so V 10∣0〉=−∣1〉 . 

Similar result holds for the string x = 01: Q⋅H ∣0 〉= 1

√2
(∣0 〉−∣1〉) , V 01∣0〉=∣1〉 .

Therefore for x with all bits equal the final state is V x∣φ0 〉=∣0 〉 with probability p=1. 

8
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For all other input strings the final state is V x∣φ0 〉=∣1〉 up to a phase factor. 

To compute  the general form of  XOR(x1,...,xN)  Boolean function,  we have to 

extend the previous algorithm to the  case of  N=2n arguments:  the  transformation 

sequence  is equal to V x=H⋅Q1⋅...⋅Qn⋅H , where Qi queries values of the i-th and 

the  (i+1)-th arguments, 1≤i≤n .

9



Chapter 3. Quantum Query Algorithms for Boolean Functions  

 3 Quantum Query Algorithms for Boolean Functions. 
Bounded-Error Quantum Query Algorithms.

There are different types of query algorithms, which are mainly classified by 

the probability of returning the correct result:

– exact algorithms are supposed to return  the correct result on any input with 

probability p = 1

– probabilistic  algorithms  either  return  a  result  which  is  correct  with  some 

probability or always return  the correct result,  but there is  a probability of 

returning "unknown"

Quantum  computation  is popular  and  widely  supported  due  to  the 

improvements  in  computation;  the  best  results  were  achieved  with  probabilistic 

algorithms.  A  quadratic  [Gr96] and  exponential  [Sh97] quantum  and  classical 

complexity gap is achieved by means of bounded-error quantum query algorithms. 

Unfortunately,  difficulties  appear  when  there  is  a  need  to  reuse  an  algorithm by 

running it in terms of a more complex algorithm: only exact algorithms allow reusage 

without the huge loss of the correct answer probability.

Meanwhile, for the exact algorithms only N versus 2N quantum and classical 

complexity gap is  known.   There are  lots  of  examples  of  algorithms with  such a 

complexity gap, but the most famous algorithm for XOR Boolean function  [BW02] 

was the first one. Quantum exact algorithm complexity has the following estimation 

in  comparison  with  the  deterministic  algorithm  complexity:  QE( f )≥
1
2

D( f ) , 

which  is  not  proved or  refuted,  but stands  as  an  open  question  and a  subject  of 

numerous researches: nobody managed to get ahead of XOR algorithm and use less 

than N quantum queries as opposed to classical 2N queries.

Speaking about query algorithm complexity, we should mention algorithms for 

promise  problems  ([DJ92],  [CEMM98],  [Si94],  [FI09]):  these  are  exact  quantum 

algorithms with restricted domain; behaviour of the algorithm outside the domain has 

to be neglected.  Restriction of this kind allows to widen the complexity gap up to 

exponential, see Deutch-Jozsa algorithm description [DJ92].   

10
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Let  us  return  to  the  main  object  of  this  research  section.  Bounded-error 

algorithms  output  correct  answer  with  some  probability,  consequently  these 

algorithms  should  be  compared  to  classical  probabilistic  query  algorithms  for 

estimation of the complexity gap.

The first subsection introduces an EQUALITY Boolean function for three, 

four and six arguments and offers a bounded-error one-query quantum algorithm for 

each case. Correct answer probabilities are 9/10, 3/4 and 9/16 correspondingly.

The second subsection presents a shift from n-bit EQUALITY function and its 

algorithm to (n-1)-bit conjunction and its algorithm preserving the same correct 

answer probability and asking one query: Q9/10(AND2)=1, Q3/4(AND3)=1 and 

Q9/16(AND5)=1.

The third subsection presents a Boolean function EOX (Equality Of XORs) 

designed on the basis of EQUALITY function, and its algorithm with 3n, 4n or 6n 

arguments and n quantum queries, preserving the correct answer probability of the 

basic algorithm. Some interesting applications of EOX-type function are offered in 

this subsection.

The fourth subsection stands apart from previous ones, but continues the 

research on effective algorithms for conjunctions. It shows a very unique quantum 

query algorithm for 2n-argument AND Boolean function with n quantum queries and 

the correct answer probability p = 3/4. 

The fifth subsection presents a stand-alone quantum query algorithm for 

AZSO (All Zeroes or Single One) Boolean function of 6 arguments: true if the 

Hamming weight of the input string is 0 or 1.  The algorithm has correct answer 

probability p = 9/16 and uses one quantum query.

A technical moment of a bounded-error algorithm design: while in case of an 

exact quantum algorithm we expect the measurement to give either 0 or 1 for the 

squared amplitude value, the situation is a bit different for a bounded-error algorithm. 

If we measure a quantum state |0>, we observe an amplitude of the first element of the 

result vector. Suppose the amplitude is equal to some v (less or equal to 1; the sum of 

squared amplitudes over the vector are 1), then the algorithm's output is: 

11
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– 1 with the correct answer probability v2, if v2
≥

1
2 ,

– 0 with error probability v2, if v2
<

1
2  . 

All results have been checked using Wolfram Mathematica tool. See 

Appendices 1-5 for program code examples.
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 3.1 Quantum Query Algorithms for 3-, 4- and 6- 
bit EQUALITY Boolean Function

In this section we define an EQUALITY Boolean function, which is equal to 1 

on all-ones  or  all-zeroes  input  strings,  otherwise  function  is  equal  to  0.  We offer 

bounded-error  quantum  query  algorithms  for  the  case  of  three,  four  and  six 

arguments.

 3.1.1 Quantum Algorithm for EQUALITY3 Function: 
Q9/10(EQUALITY3)=1

This section is partly based on the author's Master Thesis [Mi07] . We define a 

3-argument  Boolean  function  EQUALITY3 equal  to  1 on  vectors  000 and  111, 

otherwise  function is equal to 0: EQUALITY 3(x1 , x2 , x3)=1⇔[ x1=x2= x3]

Theorem  3.1.  There  is  a  bounded-error  quantum query  algorithm computing  the 

Boolean function EQUALITY3 (x1,x2,x3) with one quantum query and error probability  

p = 1/10: Q9 /10(EQUALITY 3)=1

Proof.  The  algorithm  for  EQUALITY3  Boolean  function  uses  2-qubit  quantum 

system with basis states {∣0 〉 ,∣1〉 ,∣2〉 ,∣3〉} .

Define unitary matrices U0 and U1 by

U 0=H 4x4=
1
2(

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 −1

) ,U 1=(
1

√10
1

√10 √ 2
5 √ 2

5
1
2

−
1
2

1
2

−
1
2

√ 2
5 √ 2

5
−

1

√10
−

1

√10
1
2

−
1
2

−
1
2

1
2

)
respectively.  U0 is a 4x4 Hadamard matrix here. Define a query matrix Q by

13
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Q=(
(−1)

x1 0 0 0
0 (−1)x1 0 0
0 0 (−1)x2 0
0 0 0 (−1)x3

)
.

We begin in the state ∣φ0 〉=∣0〉 and then apply U0, then Q, and then U1. Finally, we 

perform  the  measurement  consisting  of  a  projection  onto  the  state ∣0 〉 and  its 

orthogonal  complement.  If  the  output  is ∣0 〉 ,  we  output  1,  otherwise  0. 

Consequently,  the  final  quantum  state,  the state  after  applying  a  transformation 

sequence on the initial quantum state, is ∣φ 〉=U 1⋅Q⋅U 0∣0 〉 .

The claim is that the sequence  V x=U 1⋅Q⋅U 0 leaves  ∣φ0 〉 unchanged up 

to the phase factor, when input string has all bits equal, otherwise maps ∣φ0 〉 into a 

subspace  orthogonal  to  ∣φ0 〉 .  To  see  that  the  claim  is  correct,  note  first  that 

U 0∣0〉=
1
2
∑
i=0

3

∣i 〉 , since U0 is Hadamard matrix. For the input string x=000 Q is the 

identity matrix, but for x=111 Q is minus identity.

V 000∣0〉=U 1⋅I⋅U 0∣0 〉=( 3

√10
0

1

√10
0)

T

,

V 111∣0〉=U 1⋅(−I )⋅U 0∣0〉=(− 3

√10
0 −

1

√10
0)

T

,

which is the quantum state ∣0 〉 with probability 9/10 after the measurement. 

For x = 100 we get Q⋅U 0∣0 〉=
1
2
(−∣0〉−∣1〉+∣2 〉+∣3 〉) according to Q definition , so 

V 100∣0〉=( 1

√10
0 −

3

√10
0)

T

, which is not the quantum state ∣2 〉 (or not the 

state  ∣0 〉 )with probability 9/10. Similar result holds for the string x = 011 :

Q⋅U 0∣0 〉=
1
2
(∣0 〉+∣1 〉−∣2〉−∣3〉) , V 011∣0〉=(− 1

√10
0

3

√10
0)

T

.

 For x  = 001 :

Q⋅U 0∣0 〉=
1
2
(∣0 〉+∣1 〉+∣2〉−∣3〉) ,  V 001∣0〉=( 1

√10
1
2

2

√10
−

1
2)

T

,  which  is 
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not the state ∣0 〉 with probability 9/10. Similar result holds for the string x = 010.

Thus, for x with all bits equal the final state is V x∣φ0 〉=∣0 〉 with probability 9/10. For 

all other input strings the final state is a superposition of states ∣1〉 ,∣2 〉 ,∣3〉 with the 

sum of squared amplitudes equal to 9/10. Such a state is orthogonal to the initial state, 

proving our claim.   

All  results  have  been  checked  using  Wolfram  Mathematica program  (see 

Appendix 1 for program code and output values)

What is the benefit of the quantum algorithm in comparison to the  classical 

deterministic  or  probabilistic  algorithm?  By  sensitivity  on  the  input  000

D(EQUALITY 3)=3 , which means there is no deterministic algorithm computing 

EQUALITY3   by asking less than 3 questions  .  However, it is unfair to compare a 

bounded-error quantum algorithm with a deterministic one. 

Let us find the highest possible probability for a classical randomized decision 

tree which computes this function with one query.

Theorem 3.2. The Boolean function EQUALITY3 (x1,x2,x3) is computable by a 

randomized classical decision tree with one query with maximum probability p=½.

Proof. The general form of the optimal randomized decision tree is shown in Fig. 3.1.

Let us denote 

– Pr(r|X) to be the probability of an answer r∈{0,1} after  execution of the 

algorithm on the input string X 

– p0  to be the probability to reach the answer 1 in case one argument is known 

and equal to 0 

– p1 to be the probability to reach the answer 1 in case one argument is known 

and equal to 1

Due to symmetry of the function p0= p1 , denote both of them by p. 

Then: Pr (1∣X=000∪X=111)=3⋅
1
3

q p=q⋅p

15
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Pr (0∣X=001∪X=010∪X=100)
...=Pr (0∣X=011∪X=101∪X=110)

...=1−q+
1
3

q(1−p)+
1
3

q (1− p)+
1
3

q (1− p)

...=1−q+q⋅(1− p)=1−q⋅p

The probability of the correct answer is the minimum of Pr(0) and Pr(1), 

min(qp, 1-qp), which has to be as large as possible to make the algorithm efficient. 

The highest probability is obtained in case when both answers are equally probable, 

qp = 1 – qp, qp = ½, which is the probability of the described algorithm.    

Fig. 3.1 The general form of the optimal classical randomized decision tree computing 

EQUALITY3 (x1,x2,x3). p0 is the probability to reach answer 1 if one argument is known and 

equal to 0, similarly for p1. 

1-p1

0

1-q q

x1

x2

x3

1/3 1/31/3

0 10 1

0

0 1

p0 1-p0

1

0

p1

1

1-p1

0

1

p0 1-p0

01

p0 1-p0

01

1

p1 1-p1

01

p1

0
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 3.1.2 Quantum Algorithm for EQUALITY4 Function: 
Q3/4(EQUALITY4) = 1

We define a 4-argument Boolean function EQUALITY4 equal to 1 on vectors 

0000 and  1111,  otherwise  function  is  equal  to  0:

EQUALITY 4( x1 , x2 , x3 , x4)=1⇔[ x1=x2= x3=x4]

Theorem  3.3.  There  is  a  bounded-error  quantum query  algorithm computing  the 

Boolean function EQUALITY4 with one quantum query. Error probability is no more  

than ¼: Q3 /4(EQUALITY 4)=1

Proof.  The  algorithm  for  EQUALITY4  Boolean  function  uses  2-qubit  quantum 

system with basis states {∣0 〉 ,∣1〉 ,∣2〉 ,∣3〉} .

Define a unitary matrix U0, which is a 4x4 Hadamard matrix, and U1 by

U 0=
1
2(

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

) ,U 1=
1
2 (

1 1 1 1
1 −1 −1 1
1 1 −1 −1
−1 1 −1 1

)
 respectively. Define a query matrix Q by

Q=(
(−1)

x1 0 0 0
0 (−1)x2 0 0
0 0 (−1)x3 0
0 0 0 (−1)x4

)
We begin in the state ∣φ0 〉=∣0〉 and apply U0, then Q, and then apply U1. Finally, we 

perform the  measurement  consisting  of  a  projection  onto  the  state   ∣0 〉 and  its 

orthogonal complement. If the output is  ∣0 〉 , we output 1, otherwise 0.  The final 

quantum state is ∣φ 〉=U 1⋅Q⋅U 0∣0 〉 .

We  claim  that  the  sequence  V x=U 1⋅Q⋅U 0 leaves  ∣φ0 〉 unchanged  up  to  the 

phase  factor,  when  input  string  has  all  bits  equal,  otherwise  maps  ∣φ0 〉 into  a 

subspace orthogonal to ∣φ0 〉 . 

The proof below is very similar to one presented in the section 3.1.1. Here we just 

repeat it shortly.
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Since U 0∣0〉=
1
2
∑
i=0

3

∣i 〉 , for the input string x=0000 Q is the identity matrix, but for 

x=1111 Q is minus identity: 

V 0000∣0〉=U 1⋅I⋅U 0∣0〉=∣0 〉 ,
V 1111∣0 〉=U 1⋅(−I )⋅U 0∣0 〉=−∣0 〉 .

For the input string x = 1100: 

Q⋅U 0∣0 〉=
1
2
(−∣0〉−∣1〉+∣2〉+∣3〉) , therefore V 1100∣0 〉=∣2〉 . 

Similar results, the state ∣1〉 ,  ∣2 〉 or ∣3〉  up to the phase factor,   hold for the 

other strings with Hamming weight 2.

For the input string x = 1000:

Q⋅U 0∣0 〉=
1
2
(−∣0〉+∣1〉+∣2 〉+∣3 〉) , V 1000∣0 〉=

1
2
(∣0〉−∣1〉−∣2〉+∣3〉) . 

Easy  to  see  that  for  the  input  x=0111 the  outcome  is 

V 0111∣0 〉=−
1
2
(∣0 〉−∣1 〉−∣2〉+∣3〉) ,  which  is  not  the  state  ∣0 〉 and  therefore 

orthogonal to  ∣0 〉  with error probability  p = 1/4. For all other input strings with 

Hamming weight 1 or 3 results are similar and lie in the span of ∣0 〉 ,∣1〉 ,∣2 〉 ,∣3〉 , 

where all coefficients are  positive or negative ½ .

Thus, for x with all bits equal the final state is V x∣φ0 〉=∣0 〉 with probability 

p = 1. For all other input strings the result is orthogonal to the initial state, although 

with error probability p = 1/4, proving our claim.    

All  results  have  been  checked  using  Wolfram  Mathematica program  (see 

Appendix 2 for program code and output values)

Let  us  now  discuss  the  benefit  of  the  quantum algorithm  versus classical 

deterministic. By sensitivity on the input 0000, D(EQUALITY 4)=4 , which means 

a deterministic algorithm computing EQUALITY4  requires 4 questions . 
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 3.1.3 Quantum Algorithm for EQUALITY6 Function: 
Q9/16(EQUALITY6)=1

We define a 6-argument Boolean function EQUALITY6 equal to 1 on vectors 

000000 and  111111, otherwise   function  is  equal  to  0:

EQUALITY 6( x1 , x2 , x3 , x4 , x5 , x6)=1⇔[ x1=x2=x3=x4=x5=x6]

Theorem  3.4.  There  is  a  bounded-error  quantum query  algorithm computing  the 

Boolean function EQUALITY6 (x1,x2,x3,x4,x5,x6) with one quantum query and correct  

answer probabilty p = 9/16: Q9 /16(EQUALITY 6)=1 .

Proof.  The  algorithm  for  EQUALITY6 Boolean  function  uses  3-qubit  quantum 

system with basis states {∣0 〉 ,∣1〉 ,∣2〉 ,∣3〉 ,∣4 〉 ,∣5 〉 ,∣6 〉 ,∣7〉 } .

Define a unitary matrix U0 and U1 by

U 0=H 8x8=
1
√8(

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

),
U 1=

1
√8(

1 1 1 1 1 1 1 −1
1 1 −1 −1 −1 −1 1 −1
1 1 1 1 −1 −1 −1 1
−1 −1 1 1 −1 −1 1 −1
2 −2 0 0 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 0 0 2 2

)
respectively. Define a query matrix Q by
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Q=(
(−1)x1 0 0 0 0 0 0 0

0 (−1)x2 0 0 0 0 0 0
0 0 (−1)x3 0 0 0 0 0

0 0 0 (−1)
x4 0 0 0 0

0 0 0 0 (−1)
x5 0 0 0

0 0 0 0 0 (−1)x6 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

)
We begin in the state ∣φ0 〉=∣0〉 , apply U0, then Q, and then apply U1. Finally, we 

perform  the  measurement  consisting  of  a  projection  onto  the  state ∣0 〉 and  its 

orthogonal  complement.  If  the  output  is  ∣0 〉 ,  we  output  1,  otherwise  0. 

Consequently, the final quantum state, that is a state after applying a transformation 

sequence on the initial quantum state, is equal to ∣φ 〉=U 1⋅Q⋅U 0∣0 〉 .

The claim is that the sequence  V x=U 1⋅Q⋅U 0 leaves  ∣φ0 〉 unchanged up 

to the phase factor, when the  input string has all bits equal, otherwise maps  ∣φ0 〉

into a subspace orthogonal to ∣φ0 〉 . 

Firstly, U 0∣0〉=
1
√8
∑
i=0

7

∣i 〉 ,  since  U0 is  Hadamard  matrix.  For  the  input  string 

x=000000 Q is the identity matrix, then

V 000000∣0 〉=U 1⋅I⋅U 0∣0〉=(34 −
1
4

1
4
−

1
4

0 0 0
1
2)

T

.

While for x = 111111 

Q⋅U 0∣0 〉=
1

√8
(−∣0 〉−∣1〉−∣2 〉−∣3〉−∣4 〉−∣5〉+∣6 〉+∣7 〉)

V 111111∣0〉=(−3
4

1
4
−

1
4

1
4

0 0 0
1
2 )

T

.

After the measurement it is the quantum state ∣0 〉  with probability 9/16.  

Running the algorithm on any other input vector results in  a quantum state 

orthogonal to ∣0 〉 with error probability no more than ¼ , proving our claim.  See 

Appendix 3 for other input and output vector correspondence.   
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By sensitivity on the input 000000, D(EQUALITY 6)=6  .  

Theorem 3.5. The Boolean function EQUALITY6 (x1,...,x6) is computable by a 

randomized classical decision tree with one query with maximum probability p= ½.

Proof. The general form of the optimal randomized decision tree is shown in Fig. 3.2.

Let us denote the probability of an answer r∈{0,1} after execution of the algorithm 

on the input string X by Pr(r|X). Due to symmetry of the function,  probabilities for 

both outputs  0 and  1 are equal after one query, denote both of them by p. 

Then: Pr (1∣X=000000∪X=111111)=6⋅
1
6

q p=q⋅p

Pr (0∣X≠000000∪X≠111111)=1−q+6⋅
1
6

q (1− p)=1−q+q⋅(1− p)=1−q⋅p

The probability of the correct answer is min(qp, 1-qp). The highest probability is 

obtained in case when both answers are equally probable, qp = 1 – qp, qp = ½, 

consequently, the probability of the described algorithm is ½.    

Fig. 3.2 The general form of the optimal classical randomized decision tree for computing

EQUALITY6 (x1,...,x6) 

1-p

0

1-q q

x1 x6

1/6 1/6

0 10 1 0 1

p 1-p

01

p 1-p

01 1

p 1-p

01

p

0

1/6 1/6 1/6 1/6

         ...
x2, x3, x4, x5
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 3.2 Quantum Query Algorithms for 2-, 3-, 5- bit 
Conjunctions

Since  every Boolean  function  is  expressed  as  a  logical  formula,  it  can  be 

normalized  and rewritten  in  CNF(conjunctive  normal  form )  or  DNF (disjunctive 

normal form).

Conjunctive  normal  form is  a  conjunction  of  disjunctions  of  arguments  or 

negated  arguments,  disjunctive  normal  form  is  a  disjunction  of  conjunctions  of 

arguments or negated arguments. AND and OR Boolean functions are basic elements 

which are used in every formula several times. 

According to  [Wo01], N queries are required in N-bit case of AND and OR, 

which is  a  proved lower bound. Improving  the computation of  primary functions, 

which are used to stick parts of a Boolean function in CNF/DNF to each other, will 

boost the computation of any complex formula.

Grover's  search  algorithm  [Gr96] is  one  of  the  most  well-known quantum 

algorithms, it computes N-bit OR by asking O(√N ) queries. As far as 

AND(x1,x2) = NOT OR(NOT x1, NOT x2), 

we can transform Grover's algorithm to compute AND Boolean function, which is 

obviously effective on sufficiently large N.  In case of AND/OR defined on a small 

number of arguments much quicker algorithms exist there. Meanwhile, the number of 

AND/OR  calls  in  one  complex  Boolean  function  might  be  large  enough, 

consequently, the speed up of its computation is going to be significant. 

This section presents algorithms for AND Boolean function for 2,  3 and 5 

arguments. All quantum query algorithms are bounded-error, use one quantum query 

only  having higher  correct  answer  probability  than  their  classical  counterparts  – 

randomized  probabilistic  algorithms.  All  algorithms  operate  faster  than  Grover's 

algorithm for the particular number of arguments.
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 3.2.1 Quantum Query Algorithm for AND2: Q9/10(AND2)=1

This  section  is  partly  based  on  the  article  [VM10] and  demonstrates  a 

bounded-error quantum query algorithm for AND2(x1,x2) Boolean function  with the 

best ever achieved correct answer probability p = 9/10.

According  to [KW04],  the  proof of Lemma 1, there exists an algorithm for 

computing an arbitrary two-argument Boolean function  with probability  p=11/14. 

The same paper makes a contribution about an optimal probability equal to 9/10.

Theorem 3.6.  There is a quantum query algorithm computing the Boolean function  

AND2(x1,x2)  with  one  quantum  query  and  correct  answer  probability  p  =  9/10:

Q9 /10(AND2)=1 .

Proof. Both  function  and  algorithm  are  obtained  from  the  function 

EQUALITY3(x1,x2,x3) and its quantum algorithm respectively. Setting x3 argument to 

be a constant value 1,  we force EQUALITY3(x1,x2,1)=1  and  therefore x1 = x2 = 1. 

For  x1x2 equal  to  00  or  01,  or  10,  EQUALITY3(x1,x2,1)=0  exactly  as  function 

AND(x1,x2) does. We get a quantum algorithm for AND(x1,x2) by redefining the query 

operator in the EQUALITY3 algorithm and leaving everything else unchanged: 

– the algorithm uses 2-qubit quantum system, starts with  |0> quantum state and 

stops   in  a  state  ∣φ 〉=U 1⋅Q⋅U 0∣0 〉 after  application  of  a  transformation 

sequence on the initial quantum state

– finally, we measure the quantum state |0>, which probability is the probability 

of the correct value of AND(x1,x2), i.e.  p=9/10.

– U0 is a 4x4 Hadamard matrix and U1 is defined as follows

U 1=(
1

√10
1

√10 √ 2
5 √ 2

5
1
2

−
1
2

1
2

−
1
2

√ 2
5 √ 2

5
−

1

√10
−

1

√10
1
2

−
1
2

−
1
2

1
2

)  .
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The new query  matrix  Q is:

Q=(
(−1)x1 0 0 0

0 (−1)
x1 0 0

0 0 (−1)x2 0
0 0 0 −1

) .

All  the  processing repeats one from the section 3.1.1 with the only difference – the 

last of three arguments is constantly set to 1.   

All  results  have  been  checked  using  Wolfram  Mathematica program  (see 

Appendix 1 for program code and output values)

Next,  let  us  discuss  the  classical  counterpart  and compare  quantum versus 

classical  complexity. D(AND2)=2 ,  which  is  obvious,  however,  the  classical 

counterpart of our bounded-error quantum algorithm is a randomized decision tree.  

Theorem  3.7. The  Boolean  function  AND2  (x1,x2) is computable by  a  classical  

randomized decision tree with one query with the maximum probability p= 2/3.

Proof. The general form of the optimal randomized decision tree is shown in Fig. 3.3.

Fig. 3.3 The general form of the optimal classical randomized decision tree for computing  

AND2 (x1,x2). 

The  probability  to  get  the  correct  answer  on  the  input  11  is 

Pr (1∣X=11)=2⋅
1
2

q p=q⋅p .  The  probability  to  get  the  correct  answer  on  all 

other inputs is as follows:

1-p

0

1-q q

x1 x2

1/2 1/2

1
0

1
0

1

00 1

p 1-p

01

p

0
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Pr (0∣X=00)=1−q+
1
2
⋅q+

1
2
⋅q=1

Pr (0∣X=01∪X=10)=1−q+
1
2
⋅q+

1
2
⋅q⋅(1− p)=1−

1
2
⋅q⋅p

.

The probability of  the correct  answer is  the  minimum of  Pr(0) and  Pr(1), 

min(qp, 1- ½ qp). The highest probability is obtained in case when both answers are 

equally probable, qp = 1 – ½ qp, qp = 2/3, which is the probability of the described 

algorithm.    

 3.2.2 Quantum query algorithm for AND3: Q3/4(AND3)=1

This section demonstrates a bounded-error quantum query algorithm for  the 

Boolean function AND3(x1,x2,x3) with the correct answer probability p=3/4.

Theorem 3.8.  There is a quantum query algorithm computing the Boolean function  

AND3(x1,x2,x3) with one quantum query and  the  correct answer probability  p=3/4:

Q3 /4(AND3)=1

Proof. Both  function  and  algorithm  are  obtained  from  the  function 

EQUALITY4(x1,x2,x3,x4) and its quantum algorithm, correspondingly.

Setting x4 argument to be a constant value  1,   we force EQUALITY4(x1,x2,x3,1)=1 

and   therefore x1=x2=x3=1.  For  the  input  string  x1x2x3 not  equal  to  111 

EQUALITY4(x1,x2,x3,1)=0 exactly as function AND3(x1,x2,x3) does. We get a quantum 

algorithm for  AND3(x1,x2,x3) by redefining the query operator  in the EQUALITY4 

algorithm, leaving everything else unchanged: 

– the algorithm uses 2-qubit quantum system and starts with  |0> quantum state, 

and stops  in a state ∣φ 〉=U 1⋅Q⋅U 0∣0 〉 after application of a transformation 

sequence on the initial quantum state

– finally, we get the algorithm's value by measuring the quantum state |0>. Error 

probability is no more than p=1/4.

– U0 is a 4x4 Hadamard matrix and
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U 1=
1
2(

1 1 1 1
1 −1 −1 1
1 1 −1 −1
−1 1 −1 1

) .

The new query  matrix  Q is:

Q=(
(−1)x1 0 0 0

0 (−1)
x2 0 0

0 0 (−1)x3 0
0 0 0 −1

)
All the processing repeats one from section 3.1.2 with the only difference – the last of 

four bits is constantly set to 1.   

All  results  have  been  checked  using  Wolfram  Mathematica program  (see 

Appendix 2 for program code and output values).

It is obvious, D(AND3)=3 .

Theorem  3.9. The Boolean  function  AND3  (x1,x2,x3) is computable by  a  classical  

randomized decision tree with one query with the maximum probability p= 3/5.

Proof. The general form of the optimal randomized decision tree is shown in Fig. 3.4.

The  probability  to  get  the  correct  answer  on  the  input  111  is

Pr (1∣X=111)=3⋅
1
3

q p=q⋅p .

The  probability to get the correct answer on all other inputs is as follows:

Pr (0∣X=000)=1−q+3⋅
1
3
⋅q=1

Pr (0∣X=001∪X=010∪X=100)=1−q+
1
3

q⋅(3−p)=1−
1
3

qp

Pr (0∣X=011∪X=101∪X=110)=1−q+
1
3

q⋅(3−2p)=1−
2
3

qp

Pr (0)=min(1,1−
1
3

qp ,1−
2
3

qp)=1−
2
3

qp , qp≤1

The probability of the correct answer is the minimum of Pr(0) and Pr(1), 

min(qp, 1 - 2/3 qp), the highest probability is obtained in case when both answers are 

equally probable, qp = 1 – 2/3 qp,  consequently, qp = 3/5, which is the probability of 
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the described algorithm.    

Fig. 3.4 The general form of the optimal classical randomized decision tree 

for computing  AND3 (x1,x2,x3) Boolean function 

 3.2.3 Quantum query algorithm for AND5: Q9/16(AND5)=1

This  section  demonstrates  a  bounded-error  quantum  query  algorithm  for 

AND5(x1,x2,x3,x4,x5) Boolean function  with the correct answer probability p = 9/16.

Theorem 3.10.  There is a quantum query algorithm computing the Boolean function  

AND5(x1,x2,x3,x4,x5) with  one  quantum  query  and  the  correct  answer  probability  

p= 9/16: Q9 /16(AND5)=1

Proof. Both  function  and  algorithm  are  obtained  from  the  function 

EQUALITY6(x1,x2,x3,x4,x5,x6) and its quantum algorithm respectively.

Setting x6 argument to be a constant value 1,  we force the value of the function to be

EQUALITY6(x1,x2,x3,x4,x5,1) =1,  and  therefore x1=x2=x3=x4=x5=1. For x1x2x3x4x5 not 

equal to 11111, the value of the function is EQUALITY6(x1,x2,x3,x4,x5,1)=0 exactly as 

function AND5(x1,x2,x3,x4,x5). We get the quantum algorithm for AND5(x1,x2,x3,x4,x5) 

by redefining the query operator in the EQUALITY6 algorithm, leaving everything 

else unchanged: 

1-p

0

1-q q

x1 x3

1/3 1/3

0 1
0 1

00
1

p 1-p

01

p

0
x2

0 1

0 1

p 1-p

0

1/3

27



Chapter 3. Quantum Query Algorithms for Boolean Functions  

– the algorithm uses 3-qubit quantum system and starts with  the quantum state |

0>,  and  stops   in  the state  ∣φ 〉=U 1⋅Q⋅U 0∣0 〉 after  application  of  a 

transformation sequence on the initial quantum state

– finally, we get the function's value by measuring  the quantum state |0>.  The 

correct answer  probability is p=9/16.

– U0 is 8x8 Hadamard matrix and U1 is the following:

U 1=
1
√8(

1 1 1 1 1 1 1 −1
1 1 −1 −1 −1 −1 1 −1
1 1 1 1 −1 −1 −1 1
−1 −1 1 1 −1 −1 1 −1
2 −2 0 0 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 0 0 2 2

)
The new query  matrix  Q is:

Q=(
(−1)

x1 0 0 0 0 0 0 0
0 (−1)x2 0 0 0 0 0 0
0 0 (−1)x3 0 0 0 0 0
0 0 0 (−1)x4 0 0 0 0

0 0 0 0 (−1)
x5 0 0 0

0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

)
All  the  processing repeats one from the  section 3.1.3 with the only difference – the 

last of six bits is constantly set to 1. 

All  results  have  been  checked  using  Wolfram  Mathematica program  (see 

Appendix 3 for program code and output values)

Let  us  evaluate  the  classical  algorithm's  complexity.  First,  it  is  obvious 

D(AND5)=5 .  

Theorem 3.11. The Boolean function AND5(x1,x2,x3,x4,x5) is computable by a classical  

randomized decision tree with one query and the maximum probability p= 5/9.

Proof. The general form of the optimal randomized decision tree for 5-argument AND 
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Boolean function is shown in Fig. 3.5.

Fig. 3.5 The general form of the optimal classical randomized decision tree for

computing AND5(x1,...,x5).

The probability to get the correct answer on the input 11111 is:

Pr (1∣X=11111)=5⋅
1
5

q p=q⋅p .

The probability to get the correct answer on all other inputs:

Pr (0∣X=00000)=1−q+5⋅
1
5

q=1

Pr (0∣X :∣X ∣=1)=1−q+
1
5

q⋅(5−p)=1−
1
5

qp

Pr (0∣X :∣X ∣=2)=1−q+
1
5

q⋅(5−2p)=1−
2
5

qp

Pr (0∣X :∣X ∣=3)=1−q+
1
5

q⋅(5−3p)=1−
3
5

qp

Pr (0∣X :∣X ∣=4)=1−q+
1
5

q⋅(5−4p)=1−
4
5

qp

.

Pr (0)=min(1,1−
1
5

qp ,1−
2
5

qp ,1−
3
5

qp ,1−
4
5

qp)=1−
4
5

qp

The probability of the correct answer is the minimum of Pr(0) and Pr(1), 

min(qp, 1-4/5 qp). The highest probability is obtained in case when both answers are 

equally probable,  qp = 1 – 4/5 qp.  Then  qp = 5/9, which is the probability of the 

described algorithm.    

1-p

0

1-q q

x1 x5

1/5 1/5

1
0

1 0 1

00 1

p 1-p

01

p

0

1/51/5 1/5

      ...
x2, x3, x4
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 3.3 Quantum Query Algorithm for An Extension 
of EQUALITY Boolean function, EOX for 3n, 4n 
and 6n arguments

This section offers a set of Boolean functions and quantum algorithms, each 

based on the corresponding EQUALITY algorithm.  

 3.3.1 Quantum Algorithm for An Extension of EQUALITY3 Boolean 
function, EOX3n

This section is partly based on the author's Master Thesis [Mi07] . We define a 

3n-argument Boolean function EOX3n (short for Equality Of  XORs) as follows:

EOX 3n(x1 , x2 , x3 ,… , x3i+1 , x3i+2 , x3i+3 ,… , x3n−2 , x3n−1 , x3n)=...

...=EQUALITY 3(XOR
i=0

n−1

(x3i+1) , XOR
i=0

n−1

( x3i+2) , XOR
i=0

n−1

(x3i+3))
.

For example, for n=2,  Boolean function EOX6 is defined by it's truth table, see  the 

Table 3.1 for details.

X EOX6 X EOX6

000000 1 011011 1

000111 1 011100 1

111000 1 100011 1

111111 1 100100 1

001001 1 101010 1

001110 1 101101 1

010010 1 110001 1

010101 1 110110 1

Otherwise 0

Table 3.1. Boolean function EOX6

Theorem  3.12.  There is a bounded-error quantum query algorithm computing the  

Boolean function  EOX3n(X)  with n quantum queries and error probability p=1/10: 

Q9 /10(EOX 3n)=n .

Proof.  The  algorithm  for  EOX3n Boolean  function  is  very  similar  to  one  that 
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computes EQUALITY3 function (see section 3.1.1 for details). The only difference is 

in the query.  The  current algorithm asks values of  3n arguments  by executing   n 

queries one after another,

∀i=0,… , n−1:

Qi=(
(−1)x3i+1 0 0 0

0 (−1)x3i+1 0 0

0 0 (−1)
x3i+2 0

0 0 0 (−1)x3i+3
) .

Everything except for the query remains the same: 

– the initial quantum state is  |0>,

– the  final  state  is  reached  by  execution  of  a transformation  sequence 

∣φ 〉=U 1⋅Qn⋅…⋅Q1⋅U 0∣0〉 where U0   and U1 are exactly the same as in  the 

section 3.1.1.

To prove that the described quantum algorithm computes the function, observe 

the product of all query matrices:

Q=(
(−1)

∑
i=0

n−1

x3i+1

0 0 0

0 (−1)
∑
i=0

n−1

x3i+1

0 0

0 0 (−1)
∑
i=0

n−1

x3i+2

0

0 0 0 (−1)
∑
i=0

n−1

x3i+3

)
EOX 3n(x1, ... , x3n)=EQUALITY 3(∑

i=0

n−1

x3i+1 ,∑
i=0

n−1

x3i+2 ,∑
i=0

n−1

x3i+3) ,where∑ is modulo 2

Finally, we measure the quantum state |0>, which squared amplitude is the probability 

of  the value EOX3n(X) = 1.  The error probability is no more than p=1/10.

All  results  could  be  observed using  Wolfram  Mathematica program  for 

EQUALITY3 Boolean function (Appendix 1) by defining more queries in the program 

body and adding them to the transformation sequence.   

For example, in case of 6 arguments two queries are:
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Q1=(
(−1)

x1 0 0 0
0 (−1)x1 0 0
0 0 (−1)x2 0
0 0 0 (−1)x3

), Q2=(
(−1)

x4 0 0 0
0 (−1)x4 0 0
0 0 (−1)x5 0
0 0 0 (−1)x6

) .

Running the algorithm on 000000 and 15 other  input strings  from Table 3.1, 

the quantum state |0>  is reached  with probability  
9
10

, which is equivalent to the 

algorithm's output 1 with probability 9/10. 

By the  definition of the function, EOX3n(000...0) = 1. Changing only one bit 

value  to  1  changes  the function's  value  to  0.  Consequently,  the  sensitivity  of 

EOX3n(000...0)  is equal to 3n, and D(EOX 3n)=3n .

Fig. 3.6 The general form of the optimal classical randomized decision tree for computing 

EOX6 (x1,...,x6).  

Lemma  3.1. Given  the  general  optimal  randomized  decision  tree  of  depth  n 

computing  EOX3n(X)  ,  the  probability  of  getting  the  answer  1  is  equal  for  each  

combination of randomly chosen n values.

Proof.  All 3n arguments of the function EOX3n are divided into 3  non intersecting 

subsets according to the structure of the function: 

0

1-q q

X1
x4

1/15 1/15

1/4 3/4

01

X2
x5

X3
x6

1/15 1/15

X1
x2

X5
x6

1/15

...

1/4 3/4

01

1/4 3/4

01

1/4 3/4

01

1/4 3/4

01
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{x1,...,xn}, {xn+1,...,x2n}, {x2n+1,...,x3n}. 

Suppose we are given k1, k2, k3 – numbers of queried arguments in the first, the second 

and the third subset, such that n=k1+k2+k3.

Having n queried arguments, we have a probabilistic randomized decision tree 

of depth n. There are 22n different combinations of the remaining unqueried argument 

values.  Let us count all possible strings of unquestioned arguments that give the value 

EOX3n (x1,...,x3n)=1.

Step 1. It  is important to notice, that  the  number of all possible  binary strings  X of 

length  K for which XORK(X)=0 is exactly the same as  the  number of all possible 

binary strings Y of length K for which XORK(Y)=1. This statement follows from the 

properties of the Binomial coefficients:

• to get XORK(X)=0, all strings with the even number of “1” should be count, 

c0=C K
0
+C K

2
+...+C K

2j , 2j≤K ,

• to get XORK(X)=1, all strings with the odd number of “1” should be count, 

c1=C K
1
+CK

3
+...+C K

2j−1 ,2j−1≤K . 

We get  c0 = c1.  This property says that its not important which values  do queried 

arguments  ki   have.  By the  property of  the  Binomial  coefficients,  ∑
i=0

n

C K
i=2K , 

consequently   c0=c1=2K-1.

Step 2.  Let us make an assignment K=n-ki. Then calculate c for each of ki , mark it as 

cki= 2n-ki-1
 . Calculate the product ck1·ck2·ck3 , which is the number of strings, where XOR 

over each subset is equal to 0.  The same stands for 1. By definition of the function, 

the  number  of  all  strings  for   EOX3n(x1,...,x3n)=1 is 

2⋅2n−k1−1
⋅2n−k2−1

⋅2n−k3−1
=22n−2

=22 (n−1) ,which  does  not  depend on the  choice  of 

k1+k2+k3=n.

Step 3.  Overall, the number of all different strings of length 2n is 22n. Consequently, 

the  probability  to  get  the answer  1  at  the  end  of  the  branch  of  the probabilistic 

randomized decision tree is   

22(n−1)

22n =
1
4 
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Theorem 3.13. The Boolean function EOX3n (x1,...,x3n) is computable by a randomized

classical decision tree with n queries with the maximum probability p= ½.

Proof. The optimal randomized decision tree for EOX6 is shown in Fig. 3.6. The 

general form of an algorithm has n queries. According to Lemma 3.1, all tree's leafs 

with value 1 have the same probability. There are 3n⋅(3n−1)⋅...⋅(2n+1)

possibilities to choose n arguments out of 3n, which coincides with the number of 

arrows exiting from the root of the randomized tree:

Pr (1∣X : EOX 3n(X )=1)=3n⋅(3n−1)⋅...⋅(2n+1)⋅
1

3n⋅(3n−1)⋅...⋅(2n+1)
q⋅p=q⋅p

Pr (0∣X : EOX 3n(X )=0)

...=1−q+3n⋅(3n−1)⋅...⋅(2n+1)⋅
1

3n⋅(3n−1)⋅...⋅(2n+1)
q⋅(1−p)

...=1−q+q⋅(1− p)=1−q⋅p

The probability of the correct answer is the minimum of Pr(0) and Pr(1), 

min(qp, 1-qp). It has to be as large as possible to make the algorithm effective. The 

highest probability is obtained in case when both answers are equally probable:        

qp = 1 – qp, qp = ½, 

which is the probability of the described algorithm.    

 3.3.2 Quantum Algorithm for An Extension of EQUALITY4 
Boolean Function, EOX4n

We define a 4n-argument Boolean function EOX4n (short for Equality Of  XORs):

EOX 4n( x1 , x2 , x3 , x 4 ,… , x4i+1 , x 4i+2 , x4i+3 , x4i+4 ,… , x4n−3 , x4n−2 , x4n−1 , x 4n)=...

...=EQUALITY 4(XOR
i=0

n−1

( x4i+1) , XOR
i=0

n−1

( x4i+2) , XOR
i=0

n−1

( x4i+3) , XOR
i=0

n−1

( x4i+4))

Theorem  3.14.  There is a bounded-error quantum query algorithm computing the  

Boolean function EOX4n(X) with n quantum queries, the algorithm outputs the value 1  

exactly and the value 0 with error probability p = 1/4: Q3 /4(EOX 4n)=n

Proof.  The  algorithm  for  EOX4n Boolean  function  is  very  similar  to  one  that 

computes the EQUALITY4 function (see the section 3.1.4 for details). Instead of one 

query matrix the new algorithm uses n matrices one by one, each query of the form:
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∀i=0,… , n−1:

Qi=(
(−1)x4i+1 0 0 0

0 (−1)x4i+2 0 0

0 0 (−1)
x4i+3 0

0 0 0 (−1)x4i+4
) .

All other parts of the algorithm remain the same: 

– the initial quantum state is  |0> ,

– the  final  state  is  acquired  after  applying a transformation  sequence 

∣φ 〉=U 1⋅Qn⋅…⋅Q1⋅U 0∣0〉 ,  where U0  and U1 are exactly the same as in  the 

section 3.1.4.

To prove that the described quantum algorithm computes the function, observe 

the product of all query matrices:

Q=(
(−1)

∑
i=0

n−1

x4i+1

0 0 0

0 (−1)
∑
i=0

n−1

x4i+2

0 0

0 0 (−1)
∑
i=0

n−1

x4i+3

0

0 0 0 (−1)
∑
i=0

n−1

x4i+4

)
EOX 4n( x1, ... , x4n)=EQUALITY 4(∑

i=0

n−1

x4i+1 ,∑
i=0

n−1

x4i+2 ,∑
i=0

n−1

x4i+3 ,∑
i=0

n−1

x4i+4) ,

where∑ is modulo 2

Finally, we measure the quantum state |0>.  Error probability is no more than p=1/4.

All  results  could  be  observed using  Wolfram  Mathematica program  for 

EQUALITY4  Boolean function (Appendix 2) by defining more queries in the program 

body and adding them to the transformation sequence. 

For example, in case of 8 arguments two queries are:

Q1=(
(−1)

x1 0 0 0
0 (−1)x2 0 0
0 0 (−1)x3 0
0 0 0 (−1)x4

) ,Q2=(
(−1)

x5 0 0 0
0 (−1)x6 0 0
0 0 (−1)x7 0
0 0 0 (−1)x8

)
The algorithm outputs the correct result with the maximum error probability ¼ . 
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By definition of the function EOX4n, EOX4n(000...0) = 1. Changing only one 

bit  value  to  1  changes  the  function's  value  to  0.  Consequently,  the  sensitivity  of 

EOX4n(000...0)  is equal to 4n, therefore D(EOX 4n)=4n .

Lemma  3.2. Given  the  general  optimal  randomized  decision  tree  of  depth  n 

computing EOX4n with n queries, the probability of getting the answer 1 is equal for  

each combination of randomly chosen n values.

Proof.  To prove this lemma it is necessary to divide  4n arguments of the function 

EOX4n into  4 non  intersecting  subsets  according  to  the  structure  of  the  function: 

{x1,...,xn}, {xn+1,...,x2n}, {x2n+1,...,x3n},  {x3n+1,...,x4n}.  All other steps of the proof repeat 

ones from the proof of Lemma 3.1. 

Theorem 3.15. The Boolean function EOX4n (x1,...,x4n) is computable by a randomized

classical decision tree with n queries with the maximum probability p= ½.

Proof.  The proof repeats the proof of Theorem 3.13 very closely. The general form 

of  an optimal randomized decision tree has n queries. According to Lemma 3.2, all 

tree's leafs with value 1 have the same probability, therefore: 

Pr (1∣X : EOX 4n(X )=1)=4n⋅(4n−1)⋅...⋅(3n+1)⋅
1

4n⋅(4n−1)⋅...⋅(3n+1)
q⋅p=q⋅p

Pr (0∣X : EOX 4n(X )=0)

...=1−q+4n⋅(4n−1)⋅...⋅(3n+1)⋅
1

4n⋅(4n−1)⋅...⋅(3n+1)
q⋅(1−p)

...=1−q+q⋅(1− p)=1−q⋅p

The  probability  of  the  correct  answer  is  the  minimum  of  Pr(0) and  Pr(1), 

min(qp, 1-qp). The highest probability is obtained, when both answers are equally 

probable. This means, qp = 1 – qp, then qp = ½. Consequently, the probability of the 

described algorithm is ½.    

 3.3.3 Quantum Algorithm for An Extension of EQUALITY6 
Boolean function, EOX6n

We define a  6n-argument Boolean function  EOX6n (short  for  Equality Of  XORs):

EOX 6n(x1 , x2 , x3 , x4 , x5 , x6 ,… , x6n−5 , x6n−4 , x6n−3 , x6n−2 , x6n−1 , x6n)=...

...=EQUALITY 6(XOR
i=0

n−1

(x6i+1) , XOR
i=0

n−1

(x6i+2) ,... , XOR
i=0

n−1

(x6i+6))
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Theorem  3.16.  There is a bounded-error quantum query algorithm computing the  

Boolean function  EOX6n(X)  with probability p=9/16, that asks n quantum queries :

Q9 /16(EOX 6n)=n .

Proof.  The algorithm for the EOX6n  Boolean function  is very similar to one that 

computes EQUALITY6 function (see section 3.1.7 for details).  Instead of one query 

matrix the algorirthm uses n matrices one by one. Each query matrix is of the form:

∀i=0,… , n−1:

Qi=(
(−1)x6i+1 0 0 0 0 0 0 0

0 (−1)
x6i+2 0 0 0 0 0 0

0 0 (−1)x6i+3 0 0 0 0 0
0 0 0 (−1)x6i+4 0 0 0 0
0 0 0 0 (−1)x6i+5 0 0 0
0 0 0 0 0 (−1)x6i+6 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

) .

All other parts of the algorithm remain the same: 

– the initial quantum state is  |0> ,

– the  final  state  is  acquired  by  applying a transformation  sequence 

∣φ 〉=U 1⋅Qn⋅…⋅Q1⋅U 0∣0〉 where U0   and U1 are exactly the same as in  the 

section 3.1.7. 

To prove that the described quantum algorithm computes the function,  observe the 

product  of  all  query  matrices:
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Q=(
(−1)

∑
i=0

n−1

x6i+1

0 0 0 0 0 0 0

0 (−1)
∑
i=0

n−1

x6i+2

0 0 0 0 0 0

0 0 (−1)
∑
i=0

n−1

x6i+3

0 0 0 0 0

0 0 0 (−1)
∑
i=0

n−1

x6i+4

0 0 0 0

0 0 0 0 (−1)
∑
i=0

n−1

x6i+5

0 0 0

0 0 0 0 0 (−1)
∑
i=0

n−1

x6i+6

0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

)
EOX 6n(x1, ... , x6n)=EQUALITY 6(∑

i=0

n−1

x6i+1 ,∑
i=0

n−1

x6i+2 , ... ,∑
i=0

n−1

x6i+6) ,

where∑ is modulo 2

Finally, we measure the quantum state |0>.  The correct answer probability is p=9/16.

All  results  could  be  observed using  Wolfram  Mathematica program  for 

EQUALITY6  Boolean function (Appendix 3) by defining more queries in the program 

body and adding them to the transformation sequence. 

By definition of the function EOX6n, EOX6n(000...0) = 1. Changing only one bit value 

to 1 changes function's value to 0, consequently, sensitivity of EOX6n(000...0)  is equal 

to 6n, therefore D(EOX 6n)=6n .

Lemma  3.3. Given  the  general  optimal  randomized  decision  tree  of  depth  n  

computing the function EOX6n, the probability of getting the answer 1 is the same for  

each combination of randomly chosen n values.

Proof.  To prove this lemma it is necessary to divide 6n arguments of the function 

EOX6n into  6  non intersecting  subsets  according  to  the  structure  of  the  function: 

{x1,...,xn},  {xn+1,...,x2n},  {x2n+1,...,x3n},   {x3n+1,...,x4n},{x4n+1,...,x5n},{x5n+1,...,x6n}.  All 

other steps of the proof repeat ones from the proof of Lemma 3.1. 

Theorem 3.17. The Boolean function EOX6n (x1,...,x6n) is computable by a randomized

classical decision tree with n queries with the maximum probability p= ½.

Proof.  The proof repeats the proof of the Theorem 3.13 very closely.
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The general form of an optimal randomized decision tree has n queries. According to 

Lemma 3.3, all tree's leafs with  the value 1 have the same probability, then

Pr (1∣X : EOX 6n(X )=1)=6n⋅(6n−1)⋅...⋅(5n+1)⋅
1

6n⋅(6n−1)⋅...⋅(5n+1)
q⋅p=q⋅p  

Pr (0∣X : EOX 6n (X )=0)

...=1−q+6n⋅(6n−1)⋅...⋅(5n+1)⋅
1

6n⋅(6n−1)⋅...⋅(5n+1)
q⋅(1−p)

...=1−q+q⋅(1− p)=1−q⋅p

The  probability  of  the  correct  answer  is  the  minimum  of  Pr(0)  and  Pr(1), 

min(qp,  1-qp). The highest  probability is  obtained when both answers are  equally 

probable, qp = 1 – qp, qp = ½, thus the probability of the described algorithm is ½.    

      

 3.3.4 Application of EOX Boolean Functions

All  algorithms for EOX Boolean functions described in sections 3.3.1, 3.3.2, 

3.3.3 are examples of very effective quantum algorithms. This section contains a list 

of useful Boolean functions formed on the basis of the EOX function of 3n, 4n or 6n 

arguments, which algorithms are constructed on the basis of the algorithm for  EOX3n, 

EOX4n or EOX6n respectively.

Let us define a set of Boolean functions and call it AOX (short for  And Of  

XORs). Similarly to EOX set of functions, AOX2n algorithm is built of AND2  query 

algorithm by adding more queries in the body of the algorithm. The same stands for 

AOX3n  and  AOX5n  algorithms  based  on  algorithms  for AND3 and  AND5 

correspondingly. All AOX-type algorithms have n queries, the structure of each query 

has to be the same as in its basic ANDk algorithm. The AOXkn algorithm is in fact a 

shortened EOXkn algorithm – one argument in each of n queries is fixed as a constant 

value, so all complexity estimations could be proved using the same approaches.   

For example, having some particular requirements to the function, it might be 

very useful to restrict XOR(x1,...,xn)=XOR(xn+1,...,x2n)=XOR(x2n+1,...,x3n) =0 in case of 

3n arguments.  This could be done using  the definition of the  AOX3n function as a 

basis. As a result we are not supposed to think out a specific quantum algorithm for 

the  problem,  but  already  have  a  quantum  query  algorithm  which  has  a  prooved 
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number  of queries.

Let us note that any of our AND function algorithms are easily transformed to 

All-Zeroes function ( function is equal to 1 if all input bits are zeroes, otherwise 0)  by 

setting a constant of each query to zero, not one.

The  general  algorithm for  EOX or  AOX gives  an  opportunity to  define  a 

similar, but very specific Boolean function for particular n arguments with guaranteed 

query complexity of the algorithm and its error probability. We can get a new function 

by reducing the number of arguments of the basic function (EOXkn  or AOX(k-1)n  , k 

from {3, 4, 6}) by setting some of them by constants, or by asking the value of the 

same argument in different queries. This function might have no scientific value, but it 

is required at the specific moment for the specific purpose, so we have to be quick 

enough in producing the algorithm. 

Example 1. Code verification, a short example: each bit of the input string is repeated 

twice, the output string is checked for pairs of bits to know if all data is received 

without losses or changes. It helps to discover a low quality transfer channel,  which 

can be applied in cryptography.

AOX6  and  AOX10  are  exactly  such  functions  based  on  AND3 and  AND5,  both 

algorithm quantum complexity is 2:   

– AOX6 = AND3(XOR(x1,x2), XOR(x3,x4), XOR(x5,x6) )  is equal to 1, if  and 

only if x1=x2 & x3=x4 & x5=x6. The query algorithm for the function AOX6 is 

the EOX8 query algorithm with the 4th and the 8th arguments set to 0

– AOX10=AND5(XOR(x1,x2),  XOR(x3,x4), XOR(x5,x6), XOR(x7,x8), 

XOR(x9,x10)) is equal to 1, if  and only if x1=x2 & x3=x4 & x5=x6  & x7=x8  & 

x9=x10.  The  query  algorithm  for  the  function  AOX10  is  the  EOX12  query 

algorithm with the 6th and the 12th arguments set to 0

Example 2. Code verification, a more general approach: by AOX function definition, 

for example AOX3n,  all 3n arguments are divided into 3 non intersecting subsets of 

size n. The function has the value 1 if XORn  of every subset are equal to each other 

and equal to 1. An expression XOR(x1,...,xn) = 1 is equivalent to an expression 

xi = XOR(x1,..., xi-1,xi+1,...,xn,1) for an arbirary i. This could be used in verification of 
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data transmission: AOX3n returns 1 if the string is sent correctly, asking only n queries 

with error probability ¼ .

Example 3.  Define a function 

F(x1,...,x7) = XOR(x1,x2,x3) AND XOR(x1,x4,x5) AND XOR(x1,x6,x7).

The algorithm for this function is AOX3n for  n = 3 with query matrices

Q1=(
(−1)x1 0 0 0

0 (−1)
x1 0 0

0 0 (−1)x1 0
0 0 0 −1

) ,Q2=(
(−1)x2 0 0 0

0 (−1)
x4 0 0

0 0 (−1)x6 0
0 0 0 −1

) ,
Q3=(

(−1)
x3 0 0 0

0 (−1)x5 0 0
0 0 (−1)x7 0
0 0 0 −1

)
 

Example 4.  Define a function 

F(x1,...,x10) = XOR(x1 x2,x3) AND  XOR(x1,x4,x5) AND 

XOR(x6,x7,x8) AND  XOR(x6,x9,x10) OR 

NOT XOR(x1 x2,x3) AND  NOT XOR(x1,x4,x5) AND 

NOT XOR(x6,x7,x8) AND  NOT XOR(x6,x9,x10).

The algorithm for this function is EOX4n algorithm for  n = 3 with query matrices

Q1=(
(−1)

x1 0 0 0
0 (−1)x1 0 0
0 0 (−1)x6 0
0 0 0 (−1)x6

) ,Q2=(
(−1)

x2 0 0 0
0 (−1)x4 0 0
0 0 (−1)x7 0
0 0 0 (−1)x9

) ,
Q3=(

(−1)x3 0 0 0
0 (−1)x5 0 0

0 0 (−1)
x8 0

0 0 0 (−1)x10
)
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 3.4 Quantum Query Algorithm for 2n-bit AND 
Boolean Function: Q3/4(AND2n)=n

Theorem 3.18.  There is a quantum query algorithm computing the Boolean function  

AND2n(x1,...,x2n) with n quantum queries and maximum error probability p=1/4 :

Q3 /4(AND2n)=n

Proof. In fact, the algorithm is supposed to recognize  the  all-ones input string from 

any other string of the length 2n for the given n.

Quantum query description. The behavior of the quantum black box of this section 

differs from other algorithms' queries. Let us introduce two internal reference tables 

placed inside the black box , that are used in transforming  the quantum state before 

the query.  The size of both tables depends on n.

The first reference table (Table 3.2) consists of  2n  rows  - all possible  n-bit 

strings.  Index  k  is  assigned to each table row, being in fact  the same number in 

decimal notation as the binary string contained in the current row.

Row 
index

Value

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Table 3.2. The first reference table for AND2n algorithm, an example for n = 3

The second internal reference table is a 2n x 2n Hadamard matrix.

Inner mechanism of the black box. 

1. The black box inspects both n-bit input strings and discovers two indeces from the 

first reference table in parallel: k1 – the index of the first n-bit string, k2 – the index of 
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the last n-bit string.   

2.  The  black  box  changes  signs  of  the  first  2n amplitudes  of  the  quantum state 

according to signs of the k1-th column of  2n x 2n Hadamard  matrix, and changes signs 

of the last 2n amplitudes of the quantum state  according to signs of  the k2-th column 

of  2n x 2n Hadamard  matrix.

Let  us  note,  that  every  Hadamard  matrix's  row/column  has  an  even  number  of 

positive/negative elements. This property has a great impact on the result.

Algorithm description. The algorithm uses 2(n+1)  -qubit  quantum system, the initial 

state is 
1

√2n+1 ∑
i=0

2n+1
−1

∣i 〉 .  After the query we apply  a unitary transformation, which is 

2(n+1) x 2(n+1) Hadamard matrix, and then we measure the quantum state  ∣2n−1〉 . 

- In case k1 and k2 both are equal to some k, the quantum state before the measurement 

is ∣k 〉

-  In  case  k1 and   k2 are  not  equal,  quantum  state  before  the  measurement  is 

1
2
(∣k 1〉+∣k 2〉+∣2

n
+k1〉−∣2

n
+k 2〉) ,  that  follows  from  the  properties  of  the 

Hadamard matrix and the way the current black box works. Suppose, k1 = 2n-1 and 

some  other  k2,  for  example  k2=0,  then  the  quantum  state  is 

1
2
(∣2n
−1〉+∣0 〉+∣2n+1

−1〉−∣2n〉) .  After  the  measurement  we  have the  state 

∣2n
−1〉 with probability ¼. The function has value 0 on such an input, therefore we 

recognize it as an output 0 with probability p=1/4  . The same error probability holds 

for k2 = 2n-1 and some other k1. In cases when both k1 and k2 are not equal to 2n-1, 

after the measurement the system is in the state ∣2n
−1〉  with probability p = 0.

Thus,  for  the  all-ones  input  string  we  have  k1=k2=2n-1.   We  measure the  state 

∣2n
−1〉 and obtain the value 1  with probability p = 1, otherwise algorithm outputs 

0 with error probability p = 1/4. 
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 3.5 Other Bounded-Error Quantum Algorithms

 3.5.1 Quantum Algorithm for “All Zeroes or Single One” 
6 Argument Boolean Function

We define a  6-argument Boolean function AZSO (All Zeroes or Single One) 

equal to 1 on vectors  000000 and 000001, 000010, 000100, 001000, 010000, 100000, 

as follows from the name, otherwise the function is equal to 0.

Theorem  3.19.  There is a  bounded-error  quantum query algorithm computing  the 

Boolean function  AZSO6 (x1,...,x6)  with one quantum query and the correct answer  

probabilty p = 9/16: Q9 /16(AZSO6)=1 .

Proof.  The algorithm for AZSO6 Boolean function uses 3-qubit quantum system with 

basis states {∣0 〉 ,∣1〉 ,∣2〉 ,∣3〉 ,∣4 〉 ,∣5 〉 ,∣6 〉 ,∣7〉 } .

Define a unitary matrix U0 as a 8x8 Hadamard matrix, and U1 by

U 0=
1
√8(

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

),
U 1=

1
√8(

1 1 1 1 1 1 1 1
1 1 −1 −1 −1 −1 1 1
1 1 1 1 −1 −1 −1 −1
−1 −1 1 1 −1 −1 1 1
2 −2 0 0 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2
0 0 2 −2 0 0 0 0

)
respectively. Define a query matrix Q by
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Q=(
(−1)x1 0 0 0 0 0 0 0

0 (−1)x2 0 0 0 0 0 0
0 0 (−1)x3 0 0 0 0 0

0 0 0 (−1)
x4 0 0 0 0

0 0 0 0 (−1)
x5 0 0 0

0 0 0 0 0 (−1)x6 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

) .

We begin in the state ∣φ0 〉=∣0〉 , apply U0, then Q, and then U1. Finally, we 

perform the  measurement  consisting  of  a  projection  onto  the  state   ∣0 〉 and  its 

orthogonal complement. If the output is the state  ∣0 〉 , we output 1, otherwise 0. 

Consequently,  the  final  quantum  state,  a  state  after  applying  a  transformation 

sequence on the initial quantum state, is ∣φ 〉=U 1⋅Q⋅U 0∣0 〉 .

We claim that the sequence  V x=U 1⋅Q⋅U 0 leaves  ∣φ0 〉 unchanged up to 

the phase factor, when the input string has all bits equal, otherwise maps ∣φ0 〉 into a 

subspace orthogonal to ∣φ0 〉 . 

First, U 0∣0〉=
1
√8
∑
i=0

7

∣i 〉 ,  since  U0 is  Hadamard  matrix.  For  the  input  string 

x=000000 Q is the identity matrix, thus 

V 000000∣0 〉=U 1⋅I⋅U 0∣0〉=(1 0 0 0 0 0 0 0)
T

.

For other input strings, for example, for x = 100000

Q⋅U 0∣0 〉=
1

√8
(−∣0 〉+∣1〉+∣2 〉+∣3〉+∣4 〉+∣5〉+∣6 〉+∣7 〉)

V 100000∣0 〉=(34 −1
4
−

1
4

1
4
−

1
2

0 0 0)
T

, 

which is the quantum state ∣0 〉 after the measurement, with probability 9/16.  

Running the algorithm on any other input vector, except for those vectors with 

all  zeroes  but  one  one, results  in  quantum  state  orthogonal  to  ∣0 〉 with  error 

probability no more than ¼ , proving our claim. 

See Appendix 4 for other input and output vector correspondence.   
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Theorem 3.20. The Boolean function AZSO6 (x1,...,x6) is computable by a randomized

classical decision tree with one query with the maximum probability p= ½.

Proof. The general form of the optimal randomized decision tree is shown in Fig. 3.7.

Let us denote the probability of an answer r∈{0,1} after execution of the algorithm 

on the input string X by Pr(r|X). 

Then: Pr (1∣X=000000∪X=100000 ...∪X=000001)=qp

Pr (0∣X≠000000∪...∪X≠000001)=1−qp

The probability of the correct answer is min(qp, 1-qp). The highest probability 

is obtained in case when both answers are equally probable, qp = 1 – qp, qp = ½, 

consequently, the probability of the described algorithm is ½.    

Unfortunately, no interesting extensions of this algorithm have been found.

Fig. 3.7 The general form of the optimal classical randomized decision 

tree for computing  AZSO6 (x1,...,x6) 
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 3.6 Conclusion and Open Problems

This section contains a wide range of bounded-error quantum query algorithms. The 

most interesting are algorithms for conjunctions – for particular n  = 2, 3, 5 using one 

query with correct answer probability 
9
10

, 
3
4

and  
9

16
correspondingly, and a 

common algorithm for conjunction of 2n bits  with n queries and error probability 

1
4

.   

Unfortunately,  bounded-error  algorithms  are  hardly  used  as  subroutines  of 

more complex ones because of  pushing down the correct answer probability of the 

whole  algorithm.  Nonetheless,  bounded-error  algorithms  offer  more  freedom  in 

designing approaches, and the upper bound of possible speedup in comparison with 

classical algorithm is never known.

The major further goal of this research is to work out approaches for step-by-

step construction of an efficient query algorithm for an arbitrary Boolean function.
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 4 Quantum Query Algorithms for Multivalued 
Functions

This chapter is based on the following paper: 

T. Miscenko-Slatenkova, A. Vasilieva. Computing Relations in the Quantum 

Query Model. Scientific Papers, University of Latvia, 2011 [VM11]

A binary relation is a more general type of problem than a function. A relation 

is a set of ordered pairs that associates values from a domain set with values from a 

range set.  Difference from a function is in element mapping: each element from a 

domain set may be mapped to multiple elements from a range set. So, a function is 

simply a special case of a relation, where each value from a domain set is mapped to 

no more than one value from a range set. An alternative way is to consider relations as 

multivalued functions.

The study of query complexity of multifunctions has been inspired by the book 

on communication complexity by Kushilevitz and Nisan  [KN97]. The main part of 

this book discusses communication complexity of functions, but Chapter 5 is devoted 

exactly to the communication complexity of relations.

We apply the traditional query model to compute  multifunctions. In classical 

deterministic  settings,  however,  it  does  not  seem  to  be  possible  to  employ  the 

difference between multivalued and single-valued functions to obtain new interesting 

results. A deterministic decision tree always follows one and the same fixed path for 

each certain input and outputs one and the same value each time. The situation is 

different  in  the  quantum  case.  A quantum  state  before  the  measurement  is  in  a 

superposition of the basis states, so it is not determined to which exactly basis state 

quantum system collapses after the measurement.

Significant difficulty in designing quantum query algorithm is making it exact 

(i.e. to output a correct result with probability p = 1 on all input strings). The largest 

complexity  separation  between  the  classical  deterministic  and  the  quantum exact 

query algorithm complexity for the same total function known for today is  N versus 

N/2. However, in the case of a multifunction we are allowed to output values from a 

fixed set instead of one fixed value for the certain input. We assert that in such case 
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the task of designing a non-trivial exact quantum query algorithm is achievable more 

easily. That could help to construct examples, where number of queries required by a 

quantum algorithm is  more  than  two times  less  than  it  is  required  by a  classical 

algorithm for the same computational problem.

We adapt the query model for computing  multifunctions. First,  we give the 

definitions  related  to  multivalued  functions.  We  define  several  types  of  query 

algorithms  that  may  compute  multifunctions in  different  manners.  Then  we 

demonstrate examples of computing  multifunctions in classical and quantum query 

models,  where  a  quantum  algorithm  achieves  a  speed-up  in  comparison  with  a 

classical  algorithm.  Finally,  we  discuss  the  chances  of  achieving  good  results  in 

enlarging the complexity gap between the classical and the quantum query complexity 

for multifunctions.

 4.1 Multivalued Functions 

Definition  4.1.  [We12] A multivalued function (also known as a multiple-valued 

function [Kn96], multifunction, many-valued function, set-valued function, set-valued 

map,  multi-valued  map,  multimap,  correspondence,  carrier) is  a  "function"  that  

assumes two or more distinct values in its range for at least one point in its domain. 

Although these "functions" are not functions in the normal sense of being one-

to-one or  many-to-one, the usage is so common that there is no way to dislodge it. 

When considering multivalued functions, it  is therefore necessary to refer to usual 

"functions" as single-valued functions.

While the trigonometric, hyperbolic, exponential, and integer power functions 

are  all  single-valued  functions,  their  inverses  are  multivalued.  For  example,  the 

function z2 maps each complex number z to a well-defined number z2, while its inverse 

function √ z maps, for example, the value z = 1 to √1=±1 . A unique principal 

value can be chosen for such functions (in this case, the principal square root is the 

positive one), the choices cannot be made continuous over the whole complex plane. 

Instead,  lines  of  discontinuity  must  occur.  The  discontinuities  of  multivalued 

functions in the complex plane are commonly handled through the adoption of branch 

cuts, but use of Riemann surfaces is another possibility.
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Multivalued function is the subject of this research. Using function's notation, 

multifunction's definition looks like M (X ): {0,1}n→ℕ : the domain set consists of 

all possible binary strings of length n, X=(x1,x2,...,xn), each bit xi of the input string is 

an argument of the multifunction, while the output – a result set M(X) - is a subset of 

the range set ℕ .

We consider left-total multifunctions only, when the result set is not empty for 

each element  from the domain set.  A function is  a  special  case of relation and it  

uniquely associates each value from the domain set with one value from the range set. 

Fig. 4.1 graphically demonstrates this difference.

Fig. 4.1 Example of a multivalued and a single-valued functions

Various functions can be selected in such a way from a single multifunction. 

We denote by  Func(M) the set of all total functions that can be selected from the 

multifunction M.

Example. The graph on the left side on Fig. 4.1 defines a multifunction:

M = { (1,{a,c}),(2,{b}),(3,{a,b}),(4,{c}) }.

The set Func(M) consists of four total functions:

Func(M)= { f1 = { (1,a),(2,b),(3,a),(4,c) } , f2 = { (1,a),(2,b),(3,b),(4,c) } ,

f3 = { (1,c),(2,b),(3,a),(4,c) } , f4 = { (1,c),(2,b),(3,b),(4,c) }}.

 4.2 Computing Multifunctions in a Query Model

Computation of functions in a query model is studied well enough, however, it 

is not obvious how to extend a query model to compute multifunctions. For the first 
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time this question has been discussed in [Va10]. 

We propose  three  different  options  to  describe  the  way a  query algorithm 

computes a relation and define three types of query algorithms based on these options.

Definition  4.2. [Va10] Query  algorithm  computes  multifunction  M in  a  definite 

manner, if  for  each X it  outputs  one certain correct  value from a result  set  with  

probability p = 1. Classical query complexity is denoted by CD(M). Quantum query  

complexity is denoted by QD(M).

A type of a classical decision tree which computes a multifunction in a definite 

manner  is  a  deterministic  decision  tree.  In  settings  of  the quantum  model, the 

corresponding algorithm type is an exact quantum query algorithm.

Definition  4.3. [Va10] Query algorithm computes  multifunction M in a  randomly 

distributed manner, if for each X it outputs arbitrary values from a result set with  

arbitrary probabilities (for each value such probability has to be positive) and never  

outputs incorrect value. Classical query complexity is denoted by CRD(M). Quantum 

query complexity is denoted by QRD(M).

This  definition  is  a  more  natural  and  takes  into  account  the  essence  of  a 

multifunction as  a  mathematical  object.  In  a  classical  query  model  probabilistic 

decision  trees  should  be  used  to  produce  the  described  behavior.  Quantum query 

algorithms seem to  be  better  suited  for  computing  multifunctions in  a  distributed 

manner because of the superposition principle. To achieve the goal we need to bring a 

quantum system in  such  a  superposition,  where  only  basis  states  associated  with 

values  from  result  set  have  non-zero  amplitude  values.  After  the  measurement 

quantum system collapses to one of these basis states with probability determined by 

its amplitude value. 

Definition  4.4. [Va10] Query algorithm computes  multifunction M in  a uniformly 

distributed manner, if for each X it outputs each value from the result set with equal  

probability  and  never  outputs  the  incorrect  value.  Classical  query  complexity  is  

denoted by CUD(M). Quantum query complexity is denoted by QUD(M).

This  definition  adds  a  serious  constraint  to  design  of  a  query  algorithm. 

51



Chapter 4. Quantum Query Algorithms for Multivalued Functions  

However, in our opinion this definition is the most reasonable in a terms of computing 

a multifunction.

Each definition may be applied  to solving specific real-world computational 

problems.  Most  of  all  we  are  interested  in  comparing  complexity  of  computing 

multifunctions in the same manners in classical and quantum query models. Our goal 

is to analyze algorithm implementation special features and differences to produce 

examples with a large gap between the classical and the quantum query complexity.

 4.3 Multifunction Example and Its Computation

In this section we present some results in designing efficient quantum query 

algorithms for computing multifunctions. Our approach is searching for interesting 

algorithms  that  would  compute  multifunctions  with  specific  properties.  In  each 

example  we  demonstrate  a  quantum  query  algorithm  for  computing  a  specific 

multifunction and then prove the classical complexity lower bound.

 4.3.1 Multifunction M: QUD(M) = 1 vs. CUD(M) = 3

Table  4.5 defines a four-argument multifunction with Boolean domain set and four-

valued range set: M :{0,1}4→{1,2,3 ,4} .

X M(X) X M(X)

0000 {1} 1000 {1,2,3,4}

0001 {1,2,3,4} 1001 {4}

0010 {1,2,3,4} 1010 {2}

0011 {3} 1011 {1,2,3,4}

0100 {1,2,3,4} 1100 {3}

0101 {2} 1101 {1,2,3,4}

0110 {4} 1110 {1,2,3,4}

0111 {1,2,3,4} 1111 {1}

 
Table 4.5 Definition of the multifunction M

Theorem  4.1.  There  exists  a  quantum  query  algorithm,  which  computes  the 

multifunction M with one query: QUD(M) = 1.
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Proof.   The  algorithm for  computation  of  the  multifunction  M in  the  uniformly 

distributed manner  with one query  uses  2-qubit  quantum system with basis  states 

{∣0 〉 ,∣1〉 ,∣2〉 ,∣3〉} . Define a unitary matrix U0 and U1 as 4x4 Hadamard matrices:

U 0=U 1=
1
2(

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

)
Define a query matrix Q as follows:

Q=(
(−1)

x1 0 0 0
0 (−1)x2 0 0
0 0 (−1)x3 0
0 0 0 (−1)x4

)
We begin in the state ∣φ0 〉=∣0〉 and then apply U0, then Q and then U1. 

Finally, we measure all basis states at once:

– if the output is ∣i 〉 , we output the answer {i+1}

– if the output is a superposition of all four basis states, we output {0, 1, 2, 3}

The final state ∣φ 〉=U 1⋅Q⋅U 0∣0 〉  is  a state  after applying a  transformation 

sequence V x=U 1⋅Q⋅U 0 on the initial quantum state. We claim that the sequence Vx 

changes the initial state  according to the definition of the multifunction M. 

To see that the claim is correct, note first that U 0∣0〉=
1
2
∑
i=0

3

∣i 〉 , since U0 is a 

Hadamard matrix. For the input string x=0000 Q is the identity matrix, but for x=1111 

Q is minus identity: 

V 0000∣0〉=U 1⋅I⋅U 0∣0〉=∣0 〉 ,V 1111∣0〉=U 1⋅(−I )⋅U 0∣0〉=−∣0〉 .

For  the  input  string  x=0011 and   x=1100  Q⋅U 0∣0 〉 is 

1
2
(∣0 〉+∣1〉−∣2 〉−∣3〉)  or  −

1
2
(∣0〉+∣1〉−∣2〉−∣3〉) ,  respectively.  Then,

V 0011∣0 〉=∣3〉 ,V 1100∣0〉=−∣3〉 .

For  the  input  string  x=0101 and   x=1010  Q⋅U 0∣0 〉 is 
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1
2
(∣0 〉−∣1〉+∣2 〉−∣3〉)  or  −

1
2
(∣0〉−∣1〉+∣2〉−∣3〉) ,  respectively.  Then,

V 0101∣0 〉=∣2〉 , V 1010∣0 〉=−∣2 〉 .

For  the  input  string  x=0110 and   x=1001  Q⋅U 0∣0 〉 is 

1
2
(∣0 〉−∣1〉−∣2 〉+∣3〉)  or  −

1
2
(∣0〉−∣1〉−∣2〉+∣3〉) ,  respectively.  Then,

V 0110∣0〉=∣4 〉 ,V 1001∣0〉=−∣4〉 .

For all input strings with Hamming weight 1 (1000, 0100, 0010, 0001) or their 

inverse, i.e. strings with Hamming weight 3,  V X∣0〉=
1
2
(±∣0〉±∣1〉±∣2〉±∣3〉) .   

Theorem 4.2. CUD(M) = 3.

Proof. The  proof  of  this  theorem consists  of  two steps.  First,  we show that  it  is  

impossible  to  build  a  classical  randomized  decision  tree  of  depth  d  =  2,  which 

computes  M  in a uniformly distributed manner. Second, we present a tree, which 

computes M using three queries.

Lemma 4.1. It is  impossible to build a classical randomized decision tree of depth  

d= 2, which computes M in a uniformly distributed manner, CUD(M )≥3 .

Proof. Let us assume there exists a tree where all paths from root to leaves contain no 

more than two variables. When executing algorithm on the input X = 0000 result "1" 

has to be output with probability p = 1. It means that there exists a path from the root 

to a leaf with output value "1", which goes through some two variables: xA = 0 and xB 

= 0. This path is depicted in Fig. 4.2. The fact is that it is not possible to select A and 

B to avoid contradictions with other inputs.
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Fig. 4.2. Path for the input X=0000 in a potential classical randomized decision 

tree of depth d = 2 for computing M

For any choice of indices A and B there are four inputs that pass through the path 

depicted  in  Fig.  4.2 and  finish  in  a  leaf  with  output  value  "1".  We  denote 

X i=x A xB xC x D , A , B ,C , D∈{1,2 ,3,4} , A≠B≠C≠D , then these four inputs are 

as follows:

• X1: xA=0, xB=0, xC=0, xD=0

• X2: xA=0, xB=0, xC=0, xD=1

• X3: xA=0, xB=0, xC=1, xD=0

• X4: xA=0, xB=0, xC=1, xD=1 

Let us consider the last input X4, which has exactly two bits equal to "1". From 

Table  4.5 it is easy to see that for any input with exactly two "1"  a  value set  M(X) 

consists of exactly one output value, which is always different from "1".  We obtained 

a  contradiction:  input  X4 passes  through  the  path  depicted  in  Fig.  4.2 and  the 

algorithm outputs incorrect value "1".   

Lemma 4.2. There exists a classical randomized decision tree, which computes M in 

a uniformly distributed manner using three queries.

Proof. A  classical probabilistic  decision  tree  that  computes  M in  a  uniformly 

distributed manner is shown in Fig. 4.3. 
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Fig. 4.3. The probabilistic decision tree that computes M in a uniformly distributed manner 

 4.3.2 The First Generalization of The Multifunction M

In  this  subsection,  we  generalize  the  multifunction M to  the  case  of  4N 

arguments. The generalized multifunction is 

M ' :{0,1}4N
→{1,2 ,3,4 } . 

Imagine that 4N arguments are put on four vertical lines, v-lines, in such a way that:

∀i∈{0,... , N−1},∀ k∈{1,2 ,3 ,4}: x4i+k belongs to v-line number k. For example, 

x1,x5, x9, x13,... are placed on the 1st v-line, x2,x6,x10,x14,... - on the 2nd, and so on.

A result set for each input X of the multifunction is defined as follows:

1. M'(X)={1}, if all four v-lines of X contain either odd or even number of "1". 

For example, for the next input strings the multifunction's result set is {1}:

◦ the input string 00000000 has zero "1" on each v-line 

◦ the input 00010001 has zero "1" on the first, the second and the third v-

line and two "1" on the fourth v-line

◦ the input 00001111 has one "1" on each v-line 

◦ the input 11111111 has exactly two "1" on each v-line

2. M'(X)={2}, if the 1st and the 3rd v-lines of X have odd numbers of "1", and the 

2nd and  the 4th have even numbers of "1", or vice versa:  the 1st and the 3rd - 

even  and  the  2nd and  the  4th -  odd.  For  example,  input  strings  00000101, 

00001010, 01011111, 11011000 have the result set {2}.

3. M'(X)={3}, if the 1st and the 2nd v-lines of X have odd numbers of "1", and the 

3rd and the 4th have even numbers of "1", or vice versa:  the 1st and the 2nd – 

even,  and  the  3rd and  the  4th -  odd.  For  example,  input  strings  00000011, 

00001100, 00111111, 10001011 have the result set {3}.
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4. M'(X)={4}, if the 1st and the 4th v-lines of X have odd numbers of "1", and the 

2nd and the 3rd have even numbers of "1", or vice versa:  the 1st and the 4th – 

even,  and  the  2nd and  the  3rd -  odd.  For  example,  input  strings  00000110, 

00001001, 00111010, 10011111 have the result set {4}.

5. In all other cases M'(X)={1,2,3,4}.

Theorem 4.3. QUD(M ')≤N .

Proof. Quantum algorithm for the multifunction M' is very similar to the algorithm 

computing M in a uniformly distributed manner: we use a 2-qubit quantum system, 

apply a  Hadamard operation to  the  initial  quantum state  |0> and apply one more 

Hadamard transformation right before the measurement. The difference is in the query 

between  two  Hadamard  transformations:  there  are  n  query  matrices  applied  to 

quantum state U0|0> one by one, each query Qi is defined by the matrix 

i∈{0...N−1}:Qi=(
(−1)

x4i+1 0 0 0
0 (−1)x4i+2 0 0
0 0 (−1)x4i+3 0
0 0 0 (−1)x4i+4

)
.

The product of all query matrices is equal to

(
(−1)

r1 0 0 0
0 (−1)r 2 0 0
0 0 (−1)r3 0
0 0 0 (−1)r4

),
r 1=XOR

i=0

N−1

x4i+1 , r 2=XOR
i=0

N−1

x4i+2 ,

r 3=XOR
i=0

N−1

x4i+3 , r 4=XOR
i=0

N−1

x 4i+4

Let us note, that ri is equal to XOR over the i-th  v-line's arguments. As discussed in 

the proof of Theorem 4.1, 

– the  answer  {1}  is  obtained  when  r1r2r3r4  equals  to  0000  or  1111.  This  is 

equivalent to the demand  to have all v-lines with either odd or even number of 

1's 

– the answer {2}, when  r1r2r3r4  is equal to  0101 or 1010. This is equivalent to 

the demand to have the 1st and the 3rd v-line's parity different from the the 2nd 

and the 4th v-line's parity.
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– the answer {3}, when  r1r2r3r4  is equal to  0011 or 1100. This is equivalent to 

the demand to have the 1st and the 2nd  v-line's parity different from the the 3rd 

and the 4th v-line's parity.

– the answer {4}, when  r1r2r3r4  is equal to  0110 or 1001. This is equivalent to 

the demand to have the 1st  and the 4th v-line's parity different from the 2nd and 

the 3rd v-line's parity.

– the answer {1,2,3,4} is obtained, when  r1r2r3r4  has exactly one or three 1's in 

the input string.

These statements fully repeats the definition of the multifunction M' . 

Theorem 4.4. 3N≤C UD(M ' )≤4N .

Proof.   Let  us  assume  there  exists  a  classical  decision  tree  that  computes  the 

multifunction  M by asking  3N-1 questions. We use  the  all-zeroes input  X = 0...0 to 

demonstrate a contradiction. Suppose we have queried arbitrary 3N-1 variables, N+1 

variables remain unquestioned. 

On the 4N-zeroes input X = 0...0 the tree has to output the value "1" because 

all v-lines contain zero number of "1". Then, we consider only such inputs that have 

"0" in all queried 3N-1 variables and exactly two "1" among remaining unquestioned 

variables. For all such inputs algorithm follows the same path and finishes in leaves 

with the output value "1". However, all N+1 unquestioned variables cannot be located 

on one v-line, simply because each v-line consists of N variables. So, there is an input 

for which two "1" among unquestioned variables are located on different v-lines. As 

we know,  the  result  set  in such  a  case is  {2} or {3} or {4}. Thus,  the  algorithm 

outputs  an  incorrect  value  for  this  input.  This  fact  contradicts  with  the  initial 

assumption and implies CUD(M ')≥3N .

      

 4.3.3 The Second Generalization of The Multifunction M

In  this  subsection  we  demonstrate  the  second  way  to  generalize  the 

multifunction M. In the previous generalization we added more queries. This time we 

extend the quantum system and put more variables in single query.

Suppose  we  are  given  a  multifunction of  N variables 
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M ' ' : {0,1}N→{1,2 ,... , N } , where  N is  a  power of 2. We do not provide  the  full 

definition  of  the  multifunction;  it  follows  from  properties  of  quantum  algorithm 

described  below.  We  just  would  like  to  demonstrate  that  such  generalization  is 

technically possible.

This  time  we  consider  computing  multifunction in  a  randomly  distributed 

manner. Algorithm is allowed to output any value from result set with  an  arbitrary 

probability, but the probability for each value has to be positive: p > 0.

Theorem  4.5. There exists a quantum query algorithm, which computes  a  specific  

multifunction M''  in  a  randomly  distributed  manner  asking  one  question  only.  

QRD(M'') = 1.

Proof. The algorithm for M'' is analogous to one for M, we just add more qubits and 

arguments:  given  N=2k , k∈ℕ ,  the  quantum algorithm starts  with  k-qubit  zero 

state ∣0 〉 in a k-qubit quantum system, then applies a N x N  Hadamard matrix, then 

runs a N-variable query, and finally applies a N x N Hadamard matrix once again. 

The query matrix Q is as follows:

Q=(
(−1)

x1 0 ... 0 0
0 (−1)x2 ... 0 0
⋮ 0 ⋱ 0 ⋮

0 0 ... (−1)xN−1 0
0 0 ... 0 (−1)xN

) .

Finally, we measure all basis states at once:

– if the output is ∣i 〉 , we output the answer {i+1}

– if the output is a superposition of all four basis states, we output {1, ..., N}

The final state ∣φ 〉=U 1⋅Q⋅U 0∣0 〉  is  a state  after applying a  transformation 

sequence  V x=U 1⋅Q⋅U 0 on  the  initial  quantum  state.  The  definition  of  the 

multifunction M'' follows directly from the way  the sequence  Vx changes the initial 

state. 

First,  U 0∣0〉=
1
√N
∑
i=0

N−1

∣i 〉 ,  since  U0 is  a  Hadamard matrix.  For  the  input 

string  x=00...0N  Q is  the  identity  matrix,  but  for  x=11...1N Q is  minus  identity: 
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V X∣0〉=±∣0〉 ,  respectively.  According  to  properties  of  Hadamard  matrix,  input 

strings with  an  odd Hamming weight end up in some state  ∣i 〉 , i∈{0, ... , N−1} , 

while  input  strings  with  an  even  Hamming  weight  end  up  in  a  state  like 

V X∣0〉=
1

√N
(±∣0 〉±∣1〉 ...±∣N−1〉) .  

Theorem 4.6. 
N
2
+1≤C RD(M ' ')≤N .

Proof. Let us analyze a multifunction that is computable by the quantum algorithm. 

Imagine the first element of the quantum algorithm result vector (amplitude of the 

quantum  basis  state  ∣0 〉 )  right  before  the  quantum  measurement.  It  can  be 

described by the formula:

α1=
(−1)x1+(−1)x2+...+(−1)xN

N

If all xi = 0, then  α1=1 , so for the input X=00...0N the algorithm outputs "1" with 

the  probability  p = 1. Let us suppose, exactly  
N
2

variables are "1" and 
N
2

are 

"0". In this case α1 is precisely zero for all possible combinations. It means that the 

probability to observe the result value "1" for any such input is p = 0.

Classical  algorithm has to behave in the same way:  for  the  input  X=00...0 

value "1" has to be produced with the probability p = 1, but for all inputs with exactly 

N
2

"1"s the result value "1" is not allowed to be output at all. This implies we are 

unable to recognize the multifunction classically by asking only
N
2

variable values, 

at least 
N
2
+1 queries are required.  
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 4.4 Conclusion and Open Problems

In  this  paper  we  continued  the  research  initiated  in  [Va10] on  computing 

multivalued instead of  single-valued  functions in a query model and presented new 

results.  We  presented  three  examples  of  computing  multifunctions in  different 

manners – in a  uniformly distributed  manner and in a  randomly distributed  manner. 

When computing multifunctions in either uniformly or randomly distributed manner, 

the  error  probability is  also not  allowed.  In this  regard  the  quantum query model 

appears to be more suitable for computing multifunctions. 

Main results of this research sub-direction are the following:

• an algorithm for MN  with the quantum query complexity three times fewer 

than the classical query complexity for the same multifunction.  This is  an 

example of computing a multifunction in a uniformly distributed manner

• algorithm for MN with one quantum query and the classical query complexity 

N
2
+1≤C (M N )≤N . This is an example of computing a multifunction in a 

randomly distributed manner.

Discussing specifics of computing multifunctions in a definite manner led us 

to  conclusion that the task of computing multifunctions in a distributed manner is 

more promising for enlarging classical and quantum query complexity gap.

Further  work  is  to  continue  the  research  and  to  produce  more  interesting 

results  regarding computing  multifunctions in  a  query model.  We are  planning to 

analyze and generalize current examples to develop a general approach for designing 

efficient  quantum query algorithms  for  computing  multifunctions.  Important  work 

direction is to develop efficient techniques for proving complexity lower bounds for 

computing multifunctions in a classical query model.
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 5 Low Degree Boolean Functions

This chapter is based on the following paper: 

T. Miscenko-Slatenkova, A. Dubrovska. Computing Boolean Functions: Exact 

Quantum Query Algorithms and Low Degree Polynomials.  Proc. of SOFSEM 2006,  

Student  Research  Forum;  MatFyz  Press;  ISBN 80-903298-4-5;  pp.  91-100,  2006, 

[DM06]

In this part of the thesis we study the complexity of quantum query algorithms 

computing the value of Boolean function and its relation to the degree of algebraic 

polynomial representing this function. We pay special attention to Boolean functions 

with quantum query algorithm complexity lower than the deterministic one. 

Definition  5.1. The degree  of  Boolean function  is  the  degree  of  the  representing  

polynomial and is denoted as deg(f). 

We have  the following lower and upper bound estimations for the degree of 

the representing polynomial, which is unique for particular Boolean function:

deg ( f )≤D( f ) [NS02] and deg ( f )≥2QE ( f ) [BW02].

A wish to improve the best ever achieved complexity of a quantum algorithm means 

to leave the sign “less” instead of “less or equal” in the expression QE( f )≤
D ( f )

2

for a  Boolean function  f.  This is  true for those functions  f with  deg(f)<D(f).  This 

shows the importance of functions with low polynomial degree in terms of quantum 

computing, unfortunately, there are few examples of quantum algorithms to illustrate 

theoretical evaluation of the complexity. Here we describe polynomials with relation 

between the number of variables and the degree of the polynomial  greater  than 2 

times in the best case.

The main purpose of this  work was to design new approaches  to construct 

Boolean functions  with  a  large gap between  the  deterministic  complexity and  the 

degree of the representing polynomial. 
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 5.1 Definition of A Low Degree Polynomial 

To define a polynomial we have to pass the following two steps: 

1. we present a polynomial of degree 2 with non-Boolean range of values 

2. choose  an appropriate  polynomial  and  transfer  the  non-Boolean  range  of 

values to {0,1}. 

It is therefore obvious, that we solve the problem from the other side -  we find out a 

polynomial with Boolean values,  and then define  a  Boolean function by matching 

each  possible  input  with  the  corresponding  value  of  the  previously  defined 

polynomial.  Unfortunately, the problem is not trivial, so the design of a polynomial 

for a given Boolean function remains one of the directions for our future work.

 5.1.1 A Polynomial of Degree 2

For the first step we define some set S and then define a polynomial of degree 

2. To define a set S we split N variables in three non-empty sets and choose pairs of 

1-valued variables. 

Restrictions for S are the following: 

• variables in each pair should come from different sets 

• if variables x and y are from sets I and J, and a pair (x,y) is in S, then there is 

no other x0 from I or y0 from J, such that (x0,y) or (x,y0) are in S

The polynomial is p (x1, ... , x N)=∑
i∈[N ]

x i− ∑
i , j :i≠ j ,(i , j)∈S

x i x j , 

where 

• S is a specially defined set of pairs of numbers from a given range [1..N]

• ∑
i∈[N ]

x i=∣x∣ is the Hamming weight of the input x

• ∑
i , j :i≠ j ,(i , j)∈S

x i x j is the number of pairs where xi=xj=1and (i,j) belongs to S 

Assume that  N  variables  are  divided  into  three  sets  with  n1,  n2 and  n3 variables 
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correspondingly: N=n1+n2+n3 .  Let   nmax=max(n1, n2, n3) .  Then  the 

polynomial obeys the restriction:

Lemma 5.1. 0≤p (x1, ... , x N)≤nmax

Proof. Let us take an arbitrary input x, such that ∣x∣=k=k 1+k 2+k 3 ,

where  k1  is the number of „1” in  the first set,  correspondingly,  k2 and  k3  are the 

numbers of “1” in other two, k 1≥k 2≥k3  . Take the smallest of the three,  k3, it is 

the number of pairs corresponding set has with each of two other, 2k3  in all. Then, 

a  set with  k2   “1” has  k2 pairs with  the  largest  group.  Thus,  number  of  pairs  is 

∑
i , j :i≠ j ,(i , j)∈S

x i x j=2k3+k 2 for an arbitrary x. As far as ∑
i∈[n]

x i=k 1+k 2+k 3=∣x∣ , 

the polynomial p(x) value is restricted from both left and right:

p (x )=(k 1+k 2+k 3)−(2k3+k 2)=k 1−k 3

0≤k 1−k3≤k 1≤nmax
.   

 5.1.2 A Polynomial With The Boolean Value Range

For the second step we define a polynomial with the Boolean value range: for 

any odd k there is a polynomial of degree (k-1) that transforms a set {0,…,k} to {0,1}, 

which is known from algebra course. 

 5.1.3 Examples and The General Form Of The Approach 

Example 1. 

An advantageous example is a polynomial p (x1, ... , x9)=∑
i∈[9]

x i− ∑
i , j : i≠ j ,(i , j )∈S

x i x j , 

where variables are divided into 3 sets, so  0≤p (x)≤3 , and  S contains 9 pairs, for 

example,

S=(x1, x4) ,( x1, x9) ,(x2, x5) ,(x2, x8) ,( x3, x6) ,(x3, x7) ,( x4, x9) ,(x5, x8) ,(x6, x7) .

The polynomial p then is equal to
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p (x1, x2, x3, x4, x5, x6, x7, x8, x9)=...
...= x1+ x2+x3+ x4+ x5+x6+x7+x8+x9−...
...−(x1⋅x4+x1⋅x9+ x2⋅x5+x2⋅x8+x3⋅x6+ x3⋅x7+x 4⋅x9+x5⋅x8+ x6⋅x7)

Next we find an appropriate polynomial pb of degree 2 that would transform the set 

{0,1,2,3} to {0,1}, for example , pb(z )=
1
2

z2
−

3
2

z+1 ,  pb(0)= pb (3)=1, 

pb (1)= pb (2)=0.

Hence,  the  polynomial  pb(p(x)) has  Boolean  values  and  the  degree 

deg(pb(p(x))) = 4. 

Finally, we define a Boolean function 

f 9(x1, ... , x9)=pb( p(x1, ... , x9)) .

The degree of the polynomial is a product of the degrees of p and pb,  deg(f9)=4.

For  the  input  |x|=0  the  value  of  the  polynomial  is  pb(p(x))=1.  Flipping  any zero 

variable to 1 will change the polynomial's value to 0. Hence, D(f9)=9. 

See Appendix 5 for the truth table for the Boolean function f9(x1,...,x9).

Example 2. 

To show another example of low-degree function, let us take a polynomial p(x1,...,x21) 

with the range of values {0,1,2,3,4,5,6,7}:

polynomial p (x1, ... , x21)=∑
i∈[21]

x i− ∑
i , j : i≠ j ,(i , j )∈S

xi x j , 

where variables are divided into 3 sets, so  0≤p (x)≤7 , 

and  S contains of 21 pairs, for example,

(x1, x8) ,(x2, x9) ,( x3, x10) ,(x4, x11) ,(x5, x12) ,(x6, x13) ,(x7, x14) ,
(x8, x15) ,(x9, x16) ,(x10, x17) ,(x11, x18) ,( x12, x19) ,(x13, x20) ,( x14, x21) ,
(x1, x15) ,(x2, x16) ,(x3, x17) ,(x 4, x18) ,( x5, x19) ,( x6, x20) ,( x7, x21)

.

There  is  a  polynomial  of  degree  6  that  we  will  use  to  transfer  a  set 

{0,1,2,3,4,5,6,7} to {0,1},  

pb(x )=−
1

144
x6
+

7
48

x5
−1

19
144

x4
+3

15
16

x3
−5

31
36

x2
+2

11
12

x .
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pb(p(x)) values are from the range {0,1}. For the corresponding Boolean function 

f21(x) = pb(p(x)): deg(f21)=12. D(f21)=21 by sensitivity on the input x: |x|=0. 

Let us generalize the idea described earlier.  We will  enlarge the number of 

variables, but still divide them in 3 groups. It appears that the best results come from 

the case  of  N = n+n+n variable  functions  (n variables  in  each  set),  but  it  is  not 

forbidden to define S assimmetrically.

General form of this method is formulated as 

Lemma 5.2. For each odd k>1 there exists a 3k-variable Boolean function f with  

D(f)=3k and deg(f)=2(k-1).

Proof. Follows  directly  from  the  definition  of  the  Boolean  function  f:  the 

representing polynomial is obtained as described in sections 5.1.1 and 5.1.2, the the 

function is defined by its representing polynomial.

 5.2 Tripple Function Method

Example  1. A  12-variable  Boolean  function  f12(x1,...,x12)  with  D(f12)=12  and 

deg(f12)=6.

First, define a 4-variable polynomial of degree 3:

p4(x1, x2, x3, x 4)=(x1 x2+x2 x3+x3 x4+ x1 x4)−(x1 x2 x3+ x1 x2 x4+x1 x3 x4+ x2 x3 x4)

p4(x) range of values is {0,1}. Next, define a polynomial 

p12( x1,... , x12)= p4(x1, x2, x3, x4)+ p4( x5, x6, x7, x8)+ p4( x9, x10, x11, x12) with  values 

from the range {0,1,2,3}.  The last  step is  to choose an appropriate  polynomial of 

degree 2 to transform elements from the set {0,1,2,3} to {0,1}. For example, 

S (z )=
1
2

z2
−

3
2

z+1 .  Then  deg(S(p12(x)))=6.  Finally,  define  the  corresponding 

Boolean function f12(x)=S(p12(x)):

D(f12)=12 by its block sensitivity on the input x, |x|=12, s(f(x))=12.

A function of the similar form has been described in  [OFI05]. Here we will 

gneralize the approach described in the previous example to the case of N variables.
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Take  N=3r variables polynomial, where we subdivide all variables into 3 sets each 

containing r variables. Then we define a polynomial 

P3r(x1,...,xr,xr+1,...,x2r,x2r+1,...,x3r)=Pr(x1,...,xr)+Pr(xr+1,...,x2r)+Pr(x2r+1,...,x3r).

Lemma  5.3.  For  each odd k>1 and for  each t>1 there exists  3t+1
⋅k -variable  

Boolean function f: D( f )=3t+1
⋅k and deg ( f )=2t+1

⋅(k−1) .

Proof. 

Step 1.  Choose an odd  k and define a polynomial according to Lemma 5.2. in the 

form 
p2 [deg ( p2)=2] : {0,1}

3k
→ {0, ... , k }

pk−1 [deg ( pk−1)=(k−1)]: {0, ... , k }→ {0,1}
. 

Its degree equals to 2(k-1) while the number of variables is 3k.

Step 2. Define 3r-variable polynomial (variables are divided in 3 sets of r variables):

P(x1,...,xr,xr+1,...,x2r,x2r+1,...,x3r)=Pr(x1,...,xr)+Pr(xr+1,...,x2r)+Pr(x2r+1,...,x3r),  where  Pr has 

Boolean values and the degree  d.  P(x) has a range of values {0,1,2,3} that can be 

transformed to {0,1} by an appropriate polynomial of the degree 2, thus deg(P) =2d. 

This type of a polynomial can be iterated, as a result we get deg (P)=2t
⋅d and the 

number of variables 3t
⋅r for any t>0.

Step 3.Take  r=3k and  d=2(k-1). The Boolean function  f(x) represented by  P(x)  has 

D( f )=3t⋅3k=3t+1 k and deg ( f )=2t⋅2(k−1)=2t+1(k−1) .   

Lemma 5.3. leads to the definition of a 9n-variable Boolean function f with   D(f) = 

9n and deg(f) = 4n-4 for  n>1; a 27n-variable Boolean function f with   D(f) = 27n and 

deg(f) = 8n-8 for  n>1 and so forth.

 5.3 Conclusion and Open Problems

The aim of our future work in this area is to create quantum query algorithms for 

described functions  with advantages  over  classical  counterparts;  and to  be able  to 

design a low-degree polynomial for a given Boolean function.
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 6 Conclusion

In the conclusion we will summarize all the items that were discussed in the 

thesis. The work was held in three directions:

– quantum query algorithms for Boolean functions

– quantum query algorithms for multivallued functions

– low degree Boolean functions

In the chapter devoted to algoritghms  for Boolean functions we presented a 

wide range  of bounded-error quantum query algorithms. It was of interest to find a 

“good”  algorithm for  conjunctions  of  several  bits  and  the  following  results  were 

achieved:

– a  one-query  quantum  algorithm  for  conjunction  of  two  bits  with  correct 

answer probability p=
9

10

– a  one-query  quantum algorithm for  conjunction  of  three  bits  with  correct 

answer probability p=
3
4

– a  one-query  quantum  algorithm  for  conjunction  of  five bits  with  correct 

answer probability p=
9

16

Moreover, algorithms mentioned above are transformed  from  algorithms for 

bit  equality  Boolean  function:  each  of  them  preserves  the  same  correct  answer 

probability and asks correspondingly 3, 4 and 6 arguments in a single quantum query. 

EQUALITYk Boolean  function  (k  is  the  number  of  arguments)  described 

previously is generalized to EOXkn  (Equality Of  k n-argument XOR's) function. As 

for the algorithm, we just added n-1 more queries to the initial EQUALIYk algorithm 

saving  the  correct  answer  probability.   Using the  same  contributions,  we  defined 

AOXkn (AND Of k n-argument XOR's) Boolean function and computing the function 

quantum query algorithm.   
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One more specific quantum algorithm for the conjunction of 2n bits using n 

quantum queries with error probability 
1
4

is presented in this chapter. 

Although we did not come to our major goal, which is working out approaches 

for step-by-step algorithm design for an arbitrary function, we hope that the steps we 

have made are to the right direction.

In the chapter devoted to multivalued functions  we  considered computing a 

multivalued function in a query model. The main achievements are the following:

– an algorithm for  a  multifunction  MN  with  quantum query complexity three 

times fewer than classical query complexity for the same multifunction

– algorithm for a multifunction MN with one quantum query and classical query 

complexity 
N
2
+1≤C (M N )≤N

Obviously, there is an additional piece of work to prove complexity lower bounds for 

computing multifunctions in a classical query model. 

 In the chapter  devoted to  low degree  Boolean functions we  discussed  the 

degree of algebraic polynomial representing a Boolean function and its relation to the 

complexity of  a  quantum query algorithm  computing  the function.  We presented 

some  approaches  for  definition  of  Boolean  functions  with  a  large  gap  between 

deterministic  complexity  and  degree  of  representing  polynomial.  Polynomials 

described have an attractive relation between the number of variables and the degree 

of the polynomial, which is greater than 2 times in the best case.

We hope  that algorithm examples presented in the thesis demonstrate some 

useful  approaches  of  algorithm design,  and  will  inspire  newcomers  of  this  area. 

However,  we  believe  that  serious  improvements  of  results  achieved  during  the 

research are possible. 

First of all,  an idea to use a larger quantum system for algorithms computing 

either Boolean functions or multifunctions seems to be promising. 

Secondly, to  analyze  real-life  problems,  especially  those  with  inborn 

symmetry:  quantum  query  algorithms  have  a  certain  advantage  for  symmetric 

functions, that comes from the properties of quantum query algorithms. 
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Thirdly, to  develop some useful  tools  for  easy programmatic  analysis  of  a 

function and further construction of an efficient quantum query algorithm.

And finally,  imagine a situation when using a bounded-error algorithm as a 

subroutine in a complex algorithm is required. The aim is to work out an approach to 

reduce losses of the correct answer probability of the whole complex algorithm. This 

would make bounded-error algorithms to be even more popular subject of researches.
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Appendix 1. Computation in Wolfram Mathematica.  
Programs for EQUALITY3(x1,x2,x3) and AND2(x1,x2) 
computation

(*Definition of unitary transformations*)

H4=1/2{{1,1,1,1},

{1,-1,1,-1},

{1,1,-1,-1},

{1,-1,-1,1}};

U={

{1/Sqrt[10],1/Sqrt[10],Sqrt[2/5],Sqrt[2/5]},

{1/2,-1/2,1/2,-1/2},

{Sqrt[2/5],Sqrt[2/5],-1/Sqrt[10],-Sqrt[2/5]},

{0,1/Sqrt[2],0,-1/Sqrt[2]}

};

(*The algorithm for EQUALITY(x1,x2,x3)*)

START={1,0,0,0};

For[X1=0,X1<=1,X1++,

For[X2=0,X2<=1,X2++,

For[X3=0,X3<=1,X3++,

QUERY1={

{(-1)^X1,0,0,0},

{0,(-1)^X1,0,0},

{0,0,(-1)^X2,0},

{0,0,0,(-1)^X3}};

RESULT=U.QUERY1.H4.START;

Print[X1,X2,X3," | ",RESULT];

];];];

(*output*)

000 | {3/Sqrt[10],0,1/(2 Sqrt[10]),0}

001 | {1/Sqrt[10],1/2,Sqrt[5/2]/2,1/Sqrt[2]}

010 | {1/Sqrt[10],-(1/2),3/(2 Sqrt[10]),0}

011 | {-(1/Sqrt[10]),0,7/(2 Sqrt[10]),1/Sqrt[2]}

100 | {1/Sqrt[10],0,-(7/(2 Sqrt[10])),-(1/Sqrt[2])}

101 | {-(1/Sqrt[10]),1/2,-(3/(2 Sqrt[10])),0}

110 | {-(1/Sqrt[10]),-(1/2),-(Sqrt[(5/2)]/2),-(1/Sqrt[2])}

111 | {-(3/Sqrt[10]),0,-(1/(2 Sqrt[10])),0}
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(*The algorithm for AND(x1,x2)*)

START={1,0,0,0};

For[X1=0,X1<=1,X1++,

For[X2=0,X2<=1,X2++,

QUERY1={{(-1)^X1,0,0,0},{0,(-1)^X1,0,0},{0,0,(-1)^X2,0},{0,0,0,-
1}};

RESULT=U.QUERY1.H4.START;

Print[X1,X2," | ",RESULT];

];];

(*output*)

00 | {1/Sqrt[10],1/2,Sqrt[5/2]/2,1/Sqrt[2]}

01 | {-(1/Sqrt[10]),0,7/(2 Sqrt[10]),1/Sqrt[2]}

10 | {-(1/Sqrt[10]),1/2,-(3/(2 Sqrt[10])),0}

11 | {-(3/Sqrt[10]),0,-(1/(2 Sqrt[10])),0}



76

Appendix 2. Computation in Wolfram Mathematica.  
Programs for EQUALITY4(x1,x2,x3,x4) and 
AND3(x1,x2,x3) computation

(*Definition of unitary transformations*)

H4=1/2{{1,1,1,1},

{1,-1,1,-1},

{1,1,-1,-1},

{1,-1,-1,1}};

 U={

   {1/2,1/2,1/2,1/2},

   {1/2,-(1/2),-(1/2),1/2},

   {1/2,1/2,-(1/2),-(1/2)},

   {-(1/2),1/2,-(1/2),1/2}};

(*The algorithm for EQUALITY(x1,x2,x3,x4)*)

START={1,0,0,0};

For[X1=0,X1<=1,X1++,

  For[X2=0,X2<=1,X2++,

    For[X3=0,X3<=1,X3++,

      For[X4=0,X4<=1,X4++,

        QUERY1={

          {(-1)^X1,0,0,0},

          {0,(-1)^X2,0,0},

          {0,0,(-1)^X3,0},

          {0,0,0,(-1)^X4}};

        RESULT=U.QUERY1.H4.START;

        Print[X1,X2,X3,X4," | ",RESULT];

        ];];];];

(*output*)

0000 | {1,0,0,0}

0001 | {1/2,-(1/2),1/2,-(1/2)}

0010 | {1/2,1/2,1/2,1/2}

0011 | {0,0,1,0}

0100 | {1/2,1/2,-(1/2),-(1/2)}

0101 | {0,0,0,-1}

0110 | {0,1,0,0}

0111 | {-(1/2),1/2,1/2,-(1/2)}
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1000 | {1/2,-(1/2),-(1/2),1/2}

1001 | {0,-1,0,0}

1010 | {0,0,0,1}

1011 | {-(1/2),-(1/2),1/2,1/2}

1100 | {0,0,-1,0}

1101 | {-(1/2),-(1/2),-(1/2),-(1/2)}

1110 | {-(1/2),1/2,-(1/2),1/2}

1111 | {-1,0,0,0}

(*The algorithm for AND(x1,x2,x3)*)

START={1,0,0,0}; 

For[X1=0,X1<=1,X1++,

  For[X2=0,X2<=1,X2++,

    For[X3=0,X3<=1,X3++,

      QUERY1={

        {(-1)^X1,0,0,0},

        {0,(-1)^X2,0,0},

        {0,0,(-1)^X3,0},

        {0,0,0,-1}};

      RESULT=U.QUERY1.H4.START;

      Print[X1,X2,X3," | ",RESULT];

      ];];];

(*output*)

000 | {1/2,-(1/2),1/2,-(1/2)}

001 | {0,0,1,0}

010 | {0,0,0,-1}

011 | {-(1/2),1/2,1/2,-(1/2)}

100 | {0,-1,0,0}

101 | {-(1/2),-(1/2),1/2,1/2}

110 | {-(1/2),-(1/2),-(1/2),-(1/2)}

111 | {-1,0,0,0}
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Appendix 3. Computation in Wolfram Mathematica. 
Programs for EQUALITY6(x1,...,x6) and AND5(x1,...,x5) 
computation

(*Definition of unitary transformations*)

(* 8 x 8 Hadamard matrix*) 

H8=1/Sqrt[8]{

    {1,1,1,1,1,1,1,1},

    {1,-1,1,-1,1,-1,1,-1},

    {1,1,-1,-1,1,1,-1,-1},

    {1,-1,-1,1, 1,-1,-1,1},

    {1,1,1,1,-1,-1,-1,-1},

    {1,-1,1,-1,-1,1,-1,1},

    {1,1,-1,-1,-1,-1,1,1},

    {1,-1,-1,1,-1,1,1,-1}

    };

U=1/(2 Sqrt[2]){

{1,1,1,1,1,1,1,-1},

{1,1,-1,-1,-1,-1,1,-1},

{1,1,1,1,-1,-1,-1,1},

{-1,-1,1,1,-1,-1,1,-1},

{2,-2,0,0,0,0,0,0},

{0,0,0,0,2,-2,0,0},

{0,0,2,-2,0,0,0,0},

{0,0,0,0,0,0,2,2}};

(*Query matrix defined as a function*)

F[x1_,x2_,x3_,x4_,x5_,x6_]:={

{(-1)^x1,0,0,0,0,0,0,0},

{0,(-1)^x2,0,0,0,0,0,0},

{0,0,(-1)^x3,0,0,0,0,0},

{0,0,0,(-1)^x4,0,0,0,0},

{0,0,0,0,(-1)^x5,0,0,0},

{0,0,0,0,0,(-1)^x6,0,0},

{0,0,0,0,0,0,1,0},

{0,0,0,0,0,0,0,1}

};

(*The algorithm for EQUALITY(x1,...,x6)*)

START={1,0,0,0,0,0,0,0}; 

For[X1=0,X1<=1,X1++,
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  For[X2=0,X2<=1,X2++,

    For[X3=0,X3<=1,X3++,

      For[X4=0,X4<=1,X4++,

        For[X5=0,X5<=1,X5++,

          For[X6=0,X6<=1,X6++,

            FQ=F[X1,X2,X3,X4,X5,X6];

            RESULT=U.FQ.H8.START;

            Print[X1,X2,X3,X4,X5,X6," | ",RESULT];

            ];];];];];];

(*output*)

000000 | {3/4,-(1/4),1/4,-(1/4),0,0,0,1/2}

000001 | {1/2,0,1/2,0,0,1/2,0,1/2}

000010 | {1/2,0,1/2,0,0,-(1/2),0,1/2}

000011 | {1/4,1/4,3/4,1/4,0,0,0,1/2}

000100 | {1/2,0,0,-(1/2),0,0,1/2,1/2}

000101 | {1/4,1/4,1/4,-(1/4),0,1/2,1/2,1/2}

000110 | {1/4,1/4,1/4,-(1/4),0,-(1/2),1/2,1/2}

000111 | {0,1/2,1/2,0,0,0,1/2,1/2}

001000 | {1/2,0,0,-(1/2),0,0,-(1/2),1/2}

001001 | {1/4,1/4,1/4,-(1/4),0,1/2,-(1/2),1/2}

001010 | {1/4,1/4,1/4,-(1/4),0,-(1/2),-(1/2),1/2}

001011 | {0,1/2,1/2,0,0,0,-(1/2),1/2}

001100 | {1/4,1/4,-(1/4),-(3/4),0,0,0,1/2}

001101 | {0,1/2,0,-(1/2),0,1/2,0,1/2}

001110 | {0,1/2,0,-(1/2),0,-(1/2),0,1/2}

001111 | {-(1/4),3/4,1/4,-(1/4),0,0,0,1/2}

010000 | {1/2,-(1/2),0,0,1/2,0,0,1/2}

010001 | {1/4,-(1/4),1/4,1/4,1/2,1/2,0,1/2}

010010 | {1/4,-(1/4),1/4,1/4,1/2,-(1/2),0,1/2}

010011 | {0,0,1/2,1/2,1/2,0,0,1/2}

010100 | {1/4,-(1/4),-(1/4),-(1/4),1/2,0,1/2,1/2}

010101 | {0,0,0,0,1/2,1/2,1/2,1/2}

010110 | {0,0,0,0,1/2,-(1/2),1/2,1/2}

010111 | {-(1/4),1/4,1/4,1/4,1/2,0,1/2,1/2}

011000 | {1/4,-(1/4),-(1/4),-(1/4),1/2,0,-(1/2),1/2}

011001 | {0,0,0,0,1/2,1/2,-(1/2),1/2}

011010 | {0,0,0,0,1/2,-(1/2),-(1/2),1/2}

011011 | {-(1/4),1/4,1/4,1/4,1/2,0,-(1/2),1/2}

011100 | {0,0,-(1/2),-(1/2),1/2,0,0,1/2}
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011101 | {-(1/4),1/4,-(1/4),-(1/4),1/2,1/2,0,1/2}

011110 | {-(1/4),1/4,-(1/4),-(1/4),1/2,-(1/2),0,1/2}

011111 | {-(1/2),1/2,0,0,1/2,0,0,1/2}

100000 | {1/2,-(1/2),0,0,-(1/2),0,0,1/2}

100001 | {1/4,-(1/4),1/4,1/4,-(1/2),1/2,0,1/2}

100010 | {1/4,-(1/4),1/4,1/4,-(1/2),-(1/2),0,1/2}

100011 | {0,0,1/2,1/2,-(1/2),0,0,1/2}

100100 | {1/4,-(1/4),-(1/4),-(1/4),-(1/2),0,1/2,1/2}

100101 | {0,0,0,0,-(1/2),1/2,1/2,1/2}

100110 | {0,0,0,0,-(1/2),-(1/2),1/2,1/2}

100111 | {-(1/4),1/4,1/4,1/4,-(1/2),0,1/2,1/2}

101000 | {1/4,-(1/4),-(1/4),-(1/4),-(1/2),0,-(1/2),1/2}

101001 | {0,0,0,0,-(1/2),1/2,-(1/2),1/2}

101010 | {0,0,0,0,-(1/2),-(1/2),-(1/2),1/2}

101011 | {-(1/4),1/4,1/4,1/4,-(1/2),0,-(1/2),1/2}

101100 | {0,0,-(1/2),-(1/2),-(1/2),0,0,1/2}

101101 | {-(1/4),1/4,-(1/4),-(1/4),-(1/2),1/2,0,1/2}

101110 | {-(1/4),1/4,-(1/4),-(1/4),-(1/2),-(1/2),0,1/2}

101111 | {-(1/2),1/2,0,0,-(1/2),0,0,1/2}

110000 | {1/4,-(3/4),-(1/4),1/4,0,0,0,1/2}

110001 | {0,-(1/2),0,1/2,0,1/2,0,1/2}

110010 | {0,-(1/2),0,1/2,0,-(1/2),0,1/2}

110011 | {-(1/4),-(1/4),1/4,3/4,0,0,0,1/2}

110100 | {0,-(1/2),-(1/2),0,0,0,1/2,1/2}

110101 | {-(1/4),-(1/4),-(1/4),1/4,0,1/2,1/2,1/2}

110110 | {-(1/4),-(1/4),-(1/4),1/4,0,-(1/2),1/2,1/2}

110111 | {-(1/2),0,0,1/2,0,0,1/2,1/2}

111000 | {0,-(1/2),-(1/2),0,0,0,-(1/2),1/2}

111001 | {-(1/4),-(1/4),-(1/4),1/4,0,1/2,-(1/2),1/2}

111010 | {-(1/4),-(1/4),-(1/4),1/4,0,-(1/2),-(1/2),1/2}

111011 | {-(1/2),0,0,1/2,0,0,-(1/2),1/2}

111100 | {-(1/4),-(1/4),-(3/4),-(1/4),0,0,0,1/2}

111101 | {-(1/2),0,-(1/2),0,0,1/2,0,1/2}

111110 | {-(1/2),0,-(1/2),0,0,-(1/2),0,1/2}

111111 | {-(3/4),1/4,-(1/4),1/4,0,0,0,1/2}

(*The algorithm for EQUALITY(x1,...,x5)*)

START={1,0,0,0,0,0,0,0}; 

For[X1=0,X1<=1,X1++,
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  For[X2=0,X2<=1,X2++,

    For[X3=0,X3<=1,X3++,

      For[X4=0,X4<=1,X4++,

        For[X5=0,X5<=1,X5++,

          FQ=F[X1,X2,X3,X4,X5,1];

          RESULT=U.FQ.H8.START;

          Print[X1,X2,X3,X4,X5," | ",RESULT];

          ];];];];];

(*output*)

00000 | {1/2,0,1/2,0,0,1/2,0,1/2}

00001 | {1/4,1/4,3/4,1/4,0,0,0,1/2}

00010 | {1/4,1/4,1/4,-(1/4),0,1/2,1/2,1/2}

00011 | {0,1/2,1/2,0,0,0,1/2,1/2}

00100 | {1/4,1/4,1/4,-(1/4),0,1/2,-(1/2),1/2}

00101 | {0,1/2,1/2,0,0,0,-(1/2),1/2}

00110 | {0,1/2,0,-(1/2),0,1/2,0,1/2}

00111 | {-(1/4),3/4,1/4,-(1/4),0,0,0,1/2}

01000 | {1/4,-(1/4),1/4,1/4,1/2,1/2,0,1/2}

01001 | {0,0,1/2,1/2,1/2,0,0,1/2}

01010 | {0,0,0,0,1/2,1/2,1/2,1/2}

01011 | {-(1/4),1/4,1/4,1/4,1/2,0,1/2,1/2}

01100 | {0,0,0,0,1/2,1/2,-(1/2),1/2}

01101 | {-(1/4),1/4,1/4,1/4,1/2,0,-(1/2),1/2}

01110 | {-(1/4),1/4,-(1/4),-(1/4),1/2,1/2,0,1/2}

01111 | {-(1/2),1/2,0,0,1/2,0,0,1/2}

10000 | {1/4,-(1/4),1/4,1/4,-(1/2),1/2,0,1/2}

10001 | {0,0,1/2,1/2,-(1/2),0,0,1/2}

10010 | {0,0,0,0,-(1/2),1/2,1/2,1/2}

10011 | {-(1/4),1/4,1/4,1/4,-(1/2),0,1/2,1/2}

10100 | {0,0,0,0,-(1/2),1/2,-(1/2),1/2}

10101 | {-(1/4),1/4,1/4,1/4,-(1/2),0,-(1/2),1/2}

10110 | {-(1/4),1/4,-(1/4),-(1/4),-(1/2),1/2,0,1/2}

10111 | {-(1/2),1/2,0,0,-(1/2),0,0,1/2}

11000 | {0,-(1/2),0,1/2,0,1/2,0,1/2}

11001 | {-(1/4),-(1/4),1/4,3/4,0,0,0,1/2}

11010 | {-(1/4),-(1/4),-(1/4),1/4,0,1/2,1/2,1/2}

11011 | {-(1/2),0,0,1/2,0,0,1/2,1/2}

11100 | {-(1/4),-(1/4),-(1/4),1/4,0,1/2,-(1/2),1/2}

11101 | {-(1/2),0,0,1/2,0,0,-(1/2),1/2}
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11110 | {-(1/2),0,-(1/2),0,0,1/2,0,1/2}

11111 | {-(3/4),1/4,-(1/4),1/4,0,0,0,1/2}
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Appendix 4. Computation in Wolfram Mathematica. 
Program for computing AZSO6(x1,...,x6) 

(*Definition of unitary transformations*)

(* 8 x 8 Hadamard matrix*) 

H8=1/Sqrt[8]{

{1,1,1,1,1,1,1,1},

{1,-1,1,-1,1,-1,1,-1},

{1,1,-1,-1,1,1,-1,-1},

{1,-1,-1,1, 1,-1,-1,1},

{1,1,1,1,-1,-1,-1,-1},

{1,-1,1,-1,-1,1,-1,1},

{1,1,-1,-1,-1,-1,1,1},

{1,-1,-1,1,-1,1,1,-1}

};

U=1/(2 Sqrt[2]){

{1,1,1,1,1,1,1,1},

{1,1,-1,-1,-1,-1,1,1},

{1,1,1,1,-1,-1,-1,-1},

{-1,-1,1,1,-1,-1,1,1},

{2,-2,0,0,0,0,0,0},

{0,0,0,0,2,-2,0,0},

{0,0,0,0,0,0,2,-2},

{0,0,2,-2,0,0,0,0}};

(*Query matrix defined as a function*)

F[x1_,x2_,x3_,x4_,x5_,x6_,x7_,x8_]:={

{(-1)^x1,0,0,0,0,0,0,0},

{0,(-1)^x2,0,0,0,0,0,0},

{0,0,(-1)^x3,0,0,0,0,0},

{0,0,0,(-1)^x4,0,0,0,0},

{0,0,0,0,(-1)^x5,0,0,0},

{0,0,0,0,0,(-1)^x6,0,0},

{0,0,0,0,0,0,(-1)^x7,0},

{0,0,0,0,0,0,0,(-1)^x8}

};

(*The algorithm for AZSO(x1,...,x6)*)

START={1,0,0,0,0,0,0,0}; 
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For[X1=0,X1<=1,X1++,

For[X2=0,X2<=1,X2++,

For[X3=0,X3<=1,X3++,

For[X4=0,X4<=1,X4++,

For[X5=0,X5<=1,X5++,

For[X6=0,X6<=1,X6++,

FQ=F[X1,X2,X3,X4,X5,X6,0,0];

RESULT=U.FQ.H8.START;

Print[X1,X2,X3,X4,X5,X6," | ",RESULT];

];];];];];];

000000 | {1,0,0,0,0,0,0,0}

000001 | {3/4,1/4,1/4,1/4,0,1/2,0,0}

000010 | {3/4,1/4,1/4,1/4,0,-(1/2),0,0}

000011 | {1/2,1/2,1/2,1/2,0,0,0,0}

000100 | {3/4,1/4,-(1/4),-(1/4),0,0,0,1/2}

000101 | {1/2,1/2,0,0,0,1/2,0,1/2}

000110 | {1/2,1/2,0,0,0,-(1/2),0,1/2}

000111 | {1/4,3/4,1/4,1/4,0,0,0,1/2}

001000 | {3/4,1/4,-(1/4),-(1/4),0,0,0,-(1/2)}

001001 | {1/2,1/2,0,0,0,1/2,0,-(1/2)}

001010 | {1/2,1/2,0,0,0,-(1/2),0,-(1/2)}

001011 | {1/4,3/4,1/4,1/4,0,0,0,-(1/2)}

001100 | {1/2,1/2,-(1/2),-(1/2),0,0,0,0}

001101 | {1/4,3/4,-(1/4),-(1/4),0,1/2,0,0}

001110 | {1/4,3/4,-(1/4),-(1/4),0,-(1/2),0,0}

001111 | {0,1,0,0,0,0,0,0}

010000 | {3/4,-(1/4),-(1/4),1/4,1/2,0,0,0}

010001 | {1/2,0,0,1/2,1/2,1/2,0,0}

010010 | {1/2,0,0,1/2,1/2,-(1/2),0,0}

010011 | {1/4,1/4,1/4,3/4,1/2,0,0,0}

010100 | {1/2,0,-(1/2),0,1/2,0,0,1/2}

010101 | {1/4,1/4,-(1/4),1/4,1/2,1/2,0,1/2}

010110 | {1/4,1/4,-(1/4),1/4,1/2,-(1/2),0,1/2}

010111 | {0,1/2,0,1/2,1/2,0,0,1/2}

011000 | {1/2,0,-(1/2),0,1/2,0,0,-(1/2)}

011001 | {1/4,1/4,-(1/4),1/4,1/2,1/2,0,-(1/2)}

011010 | {1/4,1/4,-(1/4),1/4,1/2,-(1/2),0,-(1/2)}

011011 | {0,1/2,0,1/2,1/2,0,0,-(1/2)}
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011100 | {1/4,1/4,-(3/4),-(1/4),1/2,0,0,0}

011101 | {0,1/2,-(1/2),0,1/2,1/2,0,0}

011110 | {0,1/2,-(1/2),0,1/2,-(1/2),0,0}

011111 | {-(1/4),3/4,-(1/4),1/4,1/2,0,0,0}

100000 | {3/4,-(1/4),-(1/4),1/4,-(1/2),0,0,0}

100001 | {1/2,0,0,1/2,-(1/2),1/2,0,0}

100010 | {1/2,0,0,1/2,-(1/2),-(1/2),0,0}

100011 | {1/4,1/4,1/4,3/4,-(1/2),0,0,0}

100100 | {1/2,0,-(1/2),0,-(1/2),0,0,1/2}

100101 | {1/4,1/4,-(1/4),1/4,-(1/2),1/2,0,1/2}

100110 | {1/4,1/4,-(1/4),1/4,-(1/2),-(1/2),0,1/2}

100111 | {0,1/2,0,1/2,-(1/2),0,0,1/2}

101000 | {1/2,0,-(1/2),0,-(1/2),0,0,-(1/2)}

101001 | {1/4,1/4,-(1/4),1/4,-(1/2),1/2,0,-(1/2)}

101010 | {1/4,1/4,-(1/4),1/4,-(1/2),-(1/2),0,-(1/2)}

101011 | {0,1/2,0,1/2,-(1/2),0,0,-(1/2)}

101100 | {1/4,1/4,-(3/4),-(1/4),-(1/2),0,0,0}

101101 | {0,1/2,-(1/2),0,-(1/2),1/2,0,0}

101110 | {0,1/2,-(1/2),0,-(1/2),-(1/2),0,0}

101111 | {-(1/4),3/4,-(1/4),1/4,-(1/2),0,0,0}

110000 | {1/2,-(1/2),-(1/2),1/2,0,0,0,0}

110001 | {1/4,-(1/4),-(1/4),3/4,0,1/2,0,0}

110010 | {1/4,-(1/4),-(1/4),3/4,0,-(1/2),0,0}

110011 | {0,0,0,1,0,0,0,0}

110100 | {1/4,-(1/4),-(3/4),1/4,0,0,0,1/2}

110101 | {0,0,-(1/2),1/2,0,1/2,0,1/2}

110110 | {0,0,-(1/2),1/2,0,-(1/2),0,1/2}

110111 | {-(1/4),1/4,-(1/4),3/4,0,0,0,1/2}

111000 | {1/4,-(1/4),-(3/4),1/4,0,0,0,-(1/2)}

111001 | {0,0,-(1/2),1/2,0,1/2,0,-(1/2)}

111010 | {0,0,-(1/2),1/2,0,-(1/2),0,-(1/2)}

111011 | {-(1/4),1/4,-(1/4),3/4,0,0,0,-(1/2)}

111100 | {0,0,-1,0,0,0,0,0}

111101 | {-(1/4),1/4,-(3/4),1/4,0,1/2,0,0}

111110 | {-(1/4),1/4,-(3/4),1/4,0,-(1/2),0,0}

111111 | {-(1/2),1/2,-(1/2),1/2,0,0,0,0}
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Appendix 5. A Truth Table for the Boolean function 
f9(x1,...,x9) 

The function f9(x1,...,x9) is defined in section 5.1.3. Here we list those inputs on which 

the function's value is 1, on all other inputs the value is zero.

000000000 000000111 000001011 000001111 000010101 000010111

000011001 000011011 000011101 000011101 000011111 000100110

000100111 000101010 000101011 000101110 000101111 000110100

000110101 000110110 000110111 000111000 000111001 000111010

000111011 000111100 000111101 000111110 000111111 001000011

001000111 001001011 001001100 001010001 001010011 001010101

001010111 001011001 001011011 001100010 001100011 001100110

001100111 001101010 001101011 001110000 001110001 001110010

001110011 001110100 001110101 001110110 001110111 001111000

001111001 001111010 001111011 010000101 010000111 010001001

010001011 010001101 010001101 010010010 010010101 010011001

010011101 010100100 010100101 010100110 010100111 010101000

010101001 010101010 010101011 010101100 010101101 010101110

010101111 010110100 010110101 010111000 010111001 010111100

010111101 011000001 011000011 011000101 011000111 011001001

011001011 011010001 011010101 011011001 011011110 011100000

011100001 011100010 011100011 011100100 011100101 011100110

011100111 011101000 011101001 011101010 011101011 011110000

011110001 011110100 011110101 011111000 011111001 100000110

100000111 100001010 100001011 100001110 100001111 100010100

100010101 100010110 100010111 100011000 100011001 100011010 

100011011 100011100 100011101 100011110 100011111 100100001

100100110 100101010 100101110 100110100 100110110 100111000

100111010 100111100 100111110 101000010 101000011 101000110
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101000111 101001010 101001011 101010000 101010001 101010010

101010011 101010100 101010101 101010110 101010111 101011000

101011001 101011010 101011011 101100010 101100110 101101010

101101101 101110000 101110010 101110100 101110110 101111000

101111010 110000100 110000101 110000110 110000111 110001000

110001001 110001010 110001011 110001100 110001101 110001110

110001111 110010100 110010101 110011000 110011001 110011100

110011100 110100100 110100110 110101000 110101010 110101100

110101110 110110011 110110100 110111000 110111100 111000000

111000001 111000010 111000011 111000100 111000101 111000110

111000111 111001000 111001001 111001010 111001011 111010000

111010001 111010100 111010101 111011000 111011001 111100000

111100010 111100100 111100110 111101000 111101010 111110000

111110100 111111000 111111111

Table app5.1. Boolean function f9(x1,...,x9): inputs for the function's value 1
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