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Abstract

Quantum mechanics and game theory were developed at almost the same time,

during the first half of 20th century.

Classical game theory is one of the most developed in mathematics and computer

science. It has many applications in economics, biology, and different kinds of social science.

In computer science, many cryptographic protocols are also based on the elements of game

theory.

Quantum computing is a relatively new branch of computer science. It unites

different aspects of complexity theory and quantum physics.

Our intention is to take it one step further and combine classical game theory with

the acquired knowledge of quantum computing; in particular, to study the effects of using

quantum information in the well-known problems of game theory.

In this thesis, we obtain several bounds on the values of some special classes of

nonlocal quantum games, and we present a new scheme for games quantization.
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Objectives and Results

The main goal of most research in the field of quantum information and quan-

tum computing is to understand the new properties and characteristics of information that

are inherent in a system, the behavior of which can be described by the laws of quantum

mechanics. More importantly, because classical information and classical elements of com-

putation are just special cases of quantum information and quantum computing, the goal

is to find the benefits of the quantum model of computing when comparing it with the

classical one. In this sense, our topic of research — quantum game theory — is not an

exception.

Game theory itself attracts the interest of researchers from different fields of science

primarily as a tool for modeling and studying the laws of interaction between two or more

parties in different real processes, such as the adaptation of a species in its ecological niche,

or traders’ behavior in the market or on a stock exchange. As we know, the behavior

of participants in such processes (in terms of game theory — the behavior of players in

the game), generally speaking, is not the most effective — i.e., beneficial — for either the

individual player, who makes the decision, or for the system as a whole. This inefficiency

usually occurs because of insufficiently coordinated activity of two or more players. However,

in some cases, the manipulation of quantum information leads to better coordination of

players’ behavior and thus, achieves better results.

The goal of this thesis is to identify those cases in which insufficient levels of

coordination between players, who operate with classical information in their actions, can

be improved by the use of quantum information. Particular attention is paid not to the

specific examples of games that are interesting from this point of view, but to entire classes
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of games, where operations with photons or more complex quantum systems could provide

a significant increase in the efficiency of the players’ behavior.
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Part I

Overview of Games and Their

Quantum Models
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Chapter 1

Elements of Game Theory

1.1 Introduction

Game theory as a scientific discipline started to develop in the 1920s. Traditionally,

applications of this theory were characterized as one of two modes: on the one hand, games

were considered as purely mathematical problems, and on the other, they were applied to

study various economic and social problems.

The founder of game theory — eminent mathematician John von Neumann —

considered the description of economic relations as the main task of his theory. However,

the very nature of the tasks that he examined and the methods he used ask for arguments,

which are purely mathematical.

A game, as we understand it, appeared at the same time as Homo sapiens species.

It can be said that the most distinctive feature of the human mind is its capability for

abstract thinking, but the game, from the moment it emerged and until nowadays, is a

method of cognitive perception of the world through its modeling and abstraction from

reality. Thus, any kind of a game is, in a way, a reflection of real life processes.
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1.2 General principles of studying games

1.2.1 Introduction

In practice, there are often cases and situations with of two (or more) participating

parties, each of which has different interests and the ability to apply different strategies

to achieve their goals. Such cases and situations are usually named conflict cases and

situations, or simply conflicts.

As a rule, any conflict situation taken from real life is quite complex. In studying

such situations, additional difficulties are created by numerous very different obstacles,

which do not necessarily provide any substantial influence either on the conflict development

or on its resolution. Therefore, in order to make the analysis of conflict situations possible, it

is necessary to abstract oneself from these secondary factors. Under certain circumstances,

this will allow the to constructin of a simplified formalized conflict model, which is usually

named the game, and which differs from the real conflict situation by the fact that it is

conducted under certain rules.

Game theory uses scientific, i.e., mathematical means to analyze conflicts. In this

chapter, we will present the characteristics of the basic features of games as models of these

conflicts, describing them in mathematical terms and thus, offer formal definitions to the

basic elements of games, which will be used in further chapters.

1.2.2 Uncertainty of the outcome of the game and its sources

Generally, conflicts (and consequently, games that have the character of competi-

tions, which are models of conflicts or their imitations) can be characterized by the uncer-

tainty of their outcome. This circumstance prompts the participants to enter consciously

into the conflict and is attracts witnesses and spectators to it. Therefore, any decision

taken by a player during the process of the game turns out to be a decision made in the

circumstance of uncertainty.

From a purely qualitative point of view, the reasons for the uncertainty of the

outcome of the game may be divided into three groups.

First, the rules of the game might allow such a variety of different plays that an



6

initial prediction of the outcome of the game is practically impossible. The sources of uncer-

tainty of this type might be defined as combinatorial, and those games where the uncertainty

of the result is primarily caused by combinatorial reasons — defined as combinatorial games.

An explicit example of a combinatorial game is chess.

Second, the source of uncertainty of the result of the game might be the influence

of random factors. Random factors might appear in a game influenced by some kind of

“spontaneous force” (dispersion in shooting, weather conditions, noise in communication

channels, etc.), or as a result of conscious acts of persons participating in the game process,

who conduct specially organized “randomized” activities (tossing coins or dice, using tables

of random numbers, performing a measurement of a qubit, etc.). Games where the result

is uncertain solely due to casual factors are called games of chance. Typical examples of

games of chance are games of dice or roulette. In such games, there is no question of

right or optimal behavior of a player, because the result of the game does not depend on his

activities. The only decisions that he may take concern the reasonability of his participation

or non-participation in this game or another, depending on its rules.

Of course, we can find games that combine features both of combinatorial games

and of games of chance. One such game is backgammon, where the reason for uncertainty

is the casual behavior of the dice, and the combinatorial complexity arises from the config-

urations made of the draughts that are on the board.

The third source of uncertainty of the result of a game has strategic origin; a

player might be unaware of how his adversary acts. Unlike the two previous sources of

uncertainty, this source is part of the game in its essence. It gives uncertainty that comes

from the other participant of the game. Games, the run of which are uncertain owing to

the strategic reason stated above, are named strategic games.

Curiously enough, strategic games in their pure form are not widespread. The

most common example of a strategic game is one of the types of “pitch-and-toss” game,

when two players, independently from each other, put a coin on the table. If the coins are

placed with the same side up, the first player wins; otherwise the second player wins. This

game, for all its primitiveness, is in some aspects “more difficult” than, for example, chess.

In chess, the action takes place on the open board, and we can imagine, at least in the
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mind, an “ideal player” who sees all the possibilities hidden in each position. Every choice,

considered by one of the players, is equally considered by his adversary. Intuitively, it is

clear that such an ideal player could be described by a finite deterministic automaton, or

at least a Turing machine. Unlike chess, in the described “pitch-and-toss” game, the player

in principle cannot know what his adversary has done, and this circumstance makes this

game strategic.

In this case, the question of the right and optimal behavior of the player is much

more difficult than in the previous cases. It is clear that placing a coin with its front or

reverse side uppermost cannot be considered as either good or bad behavior. In reality,

in strategic games random behavior is considered the right behavior. With regard to the

“pitch-and-toss” game, this means that placing a coin with this or that side uppermost is

less reasonable than tossing it up and allowing the coin to fall on either side. In other words,

deterministic behavior makes no sense in such games.

Strategic features of the game might be combined with combinatorial features

(e.g., “sea battle” — a kind of chess, where each player plays on his board and views only

his figures, and an intermediary takes them off when they are captured, announces checks,

fixes mate or draws), with the features of games of chance (e.g., poker), and also with the

features of combinatorial games and games of chance simultaneously (e.g., bridge).

1.2.3 Combinatorial games

As already mentioned, all uncertainties of a combinatorial type may be resolved by

a deterministic automaton. This fact can be illustrated easily for so-called positional games.

These games are where the status of play process may be fully described as a kind of position,

and before taking a decision, each player is completely aware of the current position. (A

classic example of such a game is chess; in reality, any game with open information could

be attributed to this class of games.)

The main idea of this is to describe the set of all positions, for which sound play by

the first player will bring him victory, irrespective of his adversary’s choices. Accordingly,

the complement of this set will be the set of losing positions. Thus, from each winning

position there exists a choice for a player that leads to a losing position for the opponent.
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Conversely, each move from a losing position leads to a winning position for the opponent.

The easiest way to distinguish between these two sets is just the above-mentioned recurrent

definition with the set of base cases consisting of the final positions where no moves are

available.

This solution is not difficult to implement for such games as, for example, the “tic-

tac-toe” game; however, as the combinatorial complexity of the game increases, the explicit

indication of such a set becomes increasingly problematic. For a game such as chess, it

seems practically impossible.

1.2.4 Games of chance

A randomizing factor is determining in all games of chance. A classic example of

such a game is dice. For a long time, different variants of this game have been a major

source of work for probability theory. In addition, dice were used in fortune telling; this fact,

generally speaking, emphasizes human inclination to follow the indications of randomizing

devices in taking decisions.

If the goal of a player in a combinatorial game is to win, and optimal strategies for

a player are those that provide that win, then in the case of a game of chance there are no

such playing skills (of course, not going beyond the rules of play) that could guarantee him

the desired outcome. That is why, receiving a fixed sum of money by a player cannot be

considered as the goal, to achieve which he uses this or that strategy. Here, the goal turns

to be more complex.

It seems most natural for a player to try to maximize the win that he expects

to obtain. The question of the propriety of such an approach lies more in the sphere of

philosophy, but there are some rational arguments in its favor.

Von Neumann and Morgenstern [NM53] describe the attitude to probabilistic

events in such a way. Suppose an individuum has a comprehensive system of preferences,

in other words, for any pair of possible events he has a distinct feeling of preference. That

means, we suppose, that for any two alternative events that are presented to him as possibil-

ities, he can identify the one he prefers. It would be a natural generalization of this picture

to concede that this individuum could compare not only events, but also combinations of
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events with specified probabilities.

Suppose two events B and C are given, and for simplicity, let us consider the ratio

of their probabilities as 50 : 50. We expect that the given individuum has distinct ideas,

i.e., he prefers event A to an equally probable combination of events B and C, or vice

versa. It is clear that if A is more preferable to him than B and C, A will also be more

preferable than the named combination; similarly, if both B and C are more preferable than

A, he will prefer this combination. However, if for him A is more preferable than B, but less

preferable than C, any assertion that now he prefers A to the combination includes essential

new information. That is, if he currently prefers A to the equally probable combination

of B and C, it gives reasons for quantitative evaluation of the fact that his preference for

A, compared with B, exceeds his preference for C compared with A. In such a way, by

changing the ratio of probabilities, we can quantitatively evaluate the distance between

any two preferences. (It must be said that the same reasoning was provided by Euclid

for disposition of points on a straight line; in fact, exactly this is the basis of its classic

conclusion for the calculation of distances.)

One more argument in favor of considering the expected value as a kind of purpose

can be formulated in the following way. Suppose a situation where a player receives numer-

ous such “purposes” in succession. To be definite, let us take two equally probable events,

for example, the loss of 1e, and the gain of 2e. It would not be difficult to determine that

by performing consecutively a large number of these event combinations will lead to the

average value of each of them being 1
2
e, with an arbitrarily large accuracy. Thereby, the

influence of this feature of games of chance might be minimized.

Incidentally, based on these arguments, the notion of fair play may be formulated

as a game, before the beginning of which the expected value of a win for each player is equal

to zero (or some certain value, in the case where it is not a zero-sum game).

1.2.5 Strategic games and mixed strategies

It has already been said that strategic games suppose a situation where a player

must take a decision in circumstances of incomplete awareness about the status of the game.

In his article, von Neumann [Neu28] ascertains that in fact, players’ strategies are systems
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of possible actions in various informational conditions.

The cases when the number of participants of game N equals 0 or 1 are of no

interest. The case when N = 2 is the simplest of nontrivial cases, but it is of principal

importance for all game theory and is good enough to illustrate the principles of the solution

of strategic games.

In [Neu28], Von Neumann gives a detailed description of a zero-sum game with

two participants, the rules of which he formulated in the following way:

Each of the players S1 and S2 chooses, without knowing the other’s choice, one

of the numbers 1, 2, . . . ,Σ1 and 1, 2, . . . ,Σ2, respectively (where Σi stands for the

number of strategies for player Si). If they have chosen numbers x and y, they receive the

sums g (x, y) and −g (x, y), respectively. Here, the function g (x, y) may be abso-

lutely arbitrary (defined for x = 1, 2, . . . ,Σ1 and y = 1, 2, . . . ,Σ2). This is followed

by quite simple arguments, which constitute the main body of game theory as a separate

discipline.

Player S1, for any choice x receives the gain not less than min
y
g (x, y), and for

this reason he must choose x so as to maximize this minimum, i.e., to provide oneself with

max
x

min
y
g (x, y) received. Player S2, for similar reasoning, is able not to give S1 more gain

than min
y

max
x

g (x, y). The equality

v = max
x

min
y
g (x, y) = min

y
max

x
g (x, y)

does not leave any doubts about optimal strategies; player S1 can provide himself a gain

in the amount of at least v, and player S2 is able not to allow him to win more. This is

obvious for non-strategic games, but this is not always true in the case of strategic games.

This circumstance is overcome in the so-called mixed expansion of the game, i.e., by the

implementation of so-called mixed strategies. Player S1 in a strategic game chooses not

just strategy x, but a combination of several strategies ξ = (ξ1, ξ2, . . . , ξΣ1), where ξi is

the probability of choosing the ith strategy (it is implied, of course, that all ξi > 0, and

that ξ1 + ξ2 + . . . + ξΣ1 = 1). In the same manner, player S2 chooses a mixed strategy

η = (η1, η2, . . . , ηΣ2). (For example, in the above-mentioned “pitch-and-toss” game, mixed

strategy ξopt =
(

1
2 ,

1
2

)
will be the most appropriate for player S1, and optimal strategy
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for player S2 is the same: ηopt =
(

1
2 ,

1
2

)
. If, for example, player S1 chooses any other

strategy ξ = (α, 1 − α) , α ̸= 1
2 , then actually he can be “punished” by player S2’s

pure strategy η = (0, 1) or η = (1, 0) — depending on the definition of the function

g (x, y). In this case, it is clear that the gain (or rather expected value of the gain) of player

S1 in this case will be equal to

h (ξ, η) =
Σ1∑

p=1

Σ2∑
q=1

g (p, q) ξpηq.

One of the most significant theorems in game theory is the equality

max
ξ

min
η
h (ξ, η) = min

η
max

ξ
h (ξ, η). (1.1)

From this equality, it follows that any zero-sum game with two participants has

at least one pure or mixed optimal strategy for each of the players.

1.2.6 Coalitions

To reveal completely the matter of uncertainty in the outcome of games, one more

question should be mentioned. This question arises when more than two players participate

in a game.

For example, consider the game between three players, by the rules of which player

S1 has more privileges than players S2 and S3. Would the “weak” players unite in this case

to resist more successfully the “strong” one, or would one of the “weak” players try to

come to an agreement with the “strong” player, in order to to minimize losses? If one such

coalition happens, what will be the conditions for its participants?

General answers to these questions have not yet been found. There exist more or

less probable theories for games with three, four and partially, with five players. In addition,

the variants are considered where the consolidated gain of the players is a variable quantity,

which depends on strategies chosen by players. In general, the problem of relations among

an arbitrary number of players is not yet resolved.
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1.2.7 Concept of strategy

When speaking about different kinds of players, one usually means how these

players behave in different game situations. In game theory, this behavior is called strategy.

Under a strategy, we understand the following.

We shall consider all possible positions of the given game (under the position, we

shall understand any sequence of choices, starting from the very beginning that does not

contradict the rules of game). In every such position, player P has certain information

regarding the current position of the game, and makes a choice according to the rules. In

games with open information, he is completely aware of the game position. In other cases he

can only affirm that a game is in one of a certain set of positions. We shall name this set of

positions the informational state of a player in position P , and mark it as DP . For example,

in the case of a game with open information, DP = (P ); but in any case P ∈ DP .

The player’s strategy is function S (DP ), which is defined for all DP , whose values

correspond to the choice of a player in the informational state DP . It can be said that

the number of strategies is the number of different programs that can ever be written for

implementation by a player (different — meaning such programs that behave differently

in at least one position of at least one game). If the number of positions is finite, and in

every position, only a finite number of moves is possible, then the number of strategies

in this game is finite, although enormously large as a rule. For example, if in the simple

tick-tack-toe game there exist 255168 different plays, including 549946 different positions,

then the number of different strategies for the first player in this game is about 1030000, and

for the second player — more than 1050000.

For this reason, in most real games, the entire set of strategies is considered from

a purely abstract point of view. However, quite often, there are situations that are modeled

by games with a small number of strategies; among these are the so-called matrix games.
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1.3 Matrix games

1.3.1 Introduction

When studying two-player games it is often convenient to represent the gain func-

tion as a table or matrix, the size of which corresponds to the number of different strategies

for both players.

Consider, for example, a conflict situation, where each of two players has the

following possibilities for choosing his mode of behavior:

• player S1 can choose any of the strategies 1, 2, . . . ,Σ1;

• player S2 can choose any of the strategies 1, 2, . . . ,Σ2.

By sequentially going over all the strategies of player S1 and all the strategies of

player S2, it is possible to complete the table (or matrix) of gains for these players. In this

case, for example, rows and columns answer to the choices of the first and second player,

respectively.

The games, which are representable in such a manner, are called matrix games.

In fact, any game between two players may be represented in the form of such a table; the

only restricting factor is usually the huge number of strategies.

1.3.2 Zero-sum games with two players

The easiest case to analyze is so-called zero-sum games. It means that the total

sum of gains of all the players equals zero. Therefore, if there are two players, the gain of

one of them is equal to the other’s loss.

To illustrate this, we shall consider a modified version of the pitch-and-toss game.

The first player, independently from the second player, thinks of a number — 0 or 1 (i.e.,

“pitch” or “toss”, respectively); the second player does the same thing. In the case where

the numbers do not coincide, the second player wins, the second player wins and if they do

coincide, the first player wins. Additionally, in the case where the two numbers equal 1, the

first player receives double gain.

The outcome function for the first player can be represented as a table:
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Number
of player 2

0 1

N
um

be
r

of
pl

ay
er

1

0 +1 −1

1 −1 +2

or as a matrix:

G =

 1 −1

−1 2


In this case, optimal behavior for the first player would be the choice of strategy

“0” with probability 3
5

and of strategy “1” with probability 2
5

(although this might seem

strange). Then his expected gain will be 1
5

irrespective of the second player’s behavior.

For the second player, optimal behavior would also be strategy “0” with probability 3
5

and

strategy “1” with probability 2
5

, and his expected loss would be 1
5

. That is,

ξopt = ηopt =
(3

5
,
2
5

)
,

and

h (ξopt, ηopt) = 1
5
.

It is easy to see that, in cases of deviation from his optimal strategy, a player could

be punished with a decrease of his expected gain.

Problems of this kind are resolved using methods of linear programming and are

considered completely analyzed for any reasonable number of strategies.

1.3.3 Non-zero-sum games

Previous considerations concerned the games of two participants, in which the

interests of the players were absolutely opposite. Much more frequent are situations when

the interests of the players, although not coincident, do not have to be absolutely opposite.
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That is, sometimes players in such games could achieve better result by combining their

efforts rather than declining the possibility of cooperation.

In this case, every joint choice of the players might be described by two functions.

If player S1 chooses strategy x, and player S2 chooses strategy y, then as a result, the gain

of player S1 would equal a certain number g1 (x, y), and generally, the gain of player S2

would equal a certain other number g2 (x, y). (Remember that in the case of zero-sum games

g2 (x, y) = −g1 (x, y).) The outcome function for the first and for the second players could

be represented as two tables (or two matrices1).

As an example we shall consider probably the most popular game from experimen-

tal economics. In this game each player is asked to make a choice: take from the organizer

of the game either 1e for himself or 100e for a partner. This game may be described in

the following two tables:

First player’s
outcome function

g1

Second player Second player’s
outcome function

g2

Second player

100e 1e 100e 1e

Fi
rs

t
pl

ay
er 100e 100e 0e

Fi
rs

t
pl

ay
er 100e 100e 101e

1e 101e 1e 1e 0e 1e

However, the results would be more obviously demonstrated as one table:

Second player

100e 1e

Fi
rs

t
pl

ay
er 100e

100e to First player
100e to Second player

0e to First player
101e to Second player

1e
101e to First player
0e to Second player

1e to First player
1e to Second player

Suppose that player S1 chooses strategy “100e to partner” with probability p

and strategy “1e to oneself” with probability 1−p. Similarly, player S2 chooses strategy
1Such games are known as bimatrix games.
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“100e to partner” with probability q and strategy “1e to oneself” with probability

1 − q. That is, ξ = (p, 1 − p) and η = (q, 1 − q).

Then, the expected gain of player S1 would equal

h1 (p, q) = g1 (0, 0) pq + g1 (0, 1) p (1 − q) + g1 (1, 0) (1 − p) q + g1 (1, 1) (1 − p) (1 − q) ,

and the expected gain of player S2 would equal

h2 (p, q) = g2 (0, 0) pq + g2 (0, 1) p (1 − q) + g2 (1, 0) (1 − p) q + g2 (1, 1) (1 − p) (1 − q)

(0 ≤ p, q ≤ 1; instead of the names of the strategies “100e to partner” and “1e to oneself”,

they are given numbers 0 and 1, respectively).

1.3.4 Points of equilibrium

Non-zero-sum games are a popular subject for discussion in economic and social

philosophy, mainly because of their relation to issues of self-interest and cooperation (and

for the same reasons, they often are confused with cooperative games). These topics will

be illustrated and considered in more detail in further chapters (in Section 3.4, and then

in Chapter 13), where we compare some non-zero-sum games with their quantum analogs.

In this subsection, we introduce one important solution concept for non-zero-sum games,

which prepares the ground for this kind of comparison and which will be used throughout

most of the sections of Part III.

Let us consider a game, where both players S1 and S2 have a choice between

strategy 0 and strategy 1. The probabilities of choosing strategy 0, as in the previous

considerations, are marked as p and q, respectively, for players S1 and S2. That is, their

mixed strategies would equal ξ = (p, 1 − p) and η = (q, 1 − q).

We shall say that a pair of numbers

(p∗, q∗) , 0 ≤ p∗, q∗ ≤ 1

defines an equilibrium situation, if for any p and q (0 ≤ p, q ≤ 1) the following two

inequalities are simultaneously true:

h1 (p, q∗) ≤ h1 (p∗, q∗) , and h2 (p∗, q) ≤ h2 (p∗, q∗) .
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These inequalities mean the following; a situation, defined by mixed strategy

(p∗, q∗), is an equilibrium if a deviation from it by one of the players (assuming that

the other player keeps his choice) cannot result in an increase of the gain of the player who

deviated from the strategy. Therefore, it turns out that, if an equilibrium situation exists,

deviation from it is not advantageous to any player himself.

Could such situations appear in a non-zero-sum game? According to the theorem

on the points of equilibrium, proved by John Nash,

any non-zero-sum game has at least one equilibrium situation (point of equilibrium)

in mixed strategies.

For example, in the game described in the end of the previous subsection (1.3.3),

the only equilibrium situation would be choosing the pure strategy “1e to oneself” for both

players, that is, p = q = 0. In all other situations, for each of the players, it makes sense

to deviate towards the strategy “1e to oneself”.

In other games, strategies in equilibrium situations might really be mixed, but we

shall not dwell on proving this fact, as we shall not use it in our further analysis.

Equilibrium situations are interesting because they provide a rather good descrip-

tion of fixed points in the behavior of economic systems (recall that John Nash received his

Nobel Memorial Prize in economic sciences.)

Like the von Neumann–Morgenstern theorem (1.1) for two-player zero-sum games,

the Nash equilibrium is treated as the most important solution concept for non-zero-sum

games. Finding the Nash equilibrium for different kinds of games is a topical problem in

game theory. We refer to the book by Nisan, Roughgarden, Tardos, and Vazirani [NRTV07]

for the latest achievements in solving this and related problems.
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Chapter 2

Quantum Systems and Their States

2.1 Introduction

When studying different kinds of interactions, one usually bears in mind the fact

that each participant possesses some amount of information. According to this information,

the participant performs his actions. In particular, players in a game have some information

about the choices of the other players. Furthermore, performing a move in the game is

usually nothing more than announcing an appropriate decision, i.e., providing others with

some information.

As we are studying interactions with the principles of the quantum mechanics

involved, let us briefly describe what information is from the quantum mechanical point of

view. An extended study on quantum information and related linear algebra can be found

in [Sha80] or any other textbook in a similar area.

2.2 Quantum bits

2.2.1 States of qubits

Traditionally information is being measured (and sometimes represented) by binary

digits or, shorter, bits. The basic unit of quantum information is called the quantum bit

or, shorter, the qubit. The fundamental differences between these two kinds of information
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are of special interest in the field known as quantum information processing.

A bit can have one of two values — 0 or 1. Similarly, a qubit can also be in one

of two states. In the case of a qubit these two states are usually labeled as |0⟩ and |1⟩.

Unlike a bit, a qubit can generally exist in a so-called superposition state, which is a linear

combination of the basic states |0⟩ and |1⟩. Generally, a state of a qubit can be represented

as

α|0⟩ + β|1⟩, (2.1)

where α and β are called amplitudes, and their values are some complex numbers.

2.2.2 Measurement of qubits

One of the most intriguing features of quantum information is that given a qubit,

an observer cannot determine its state; however, he can learn some information about it by

performing a measurement on it.

If the qubit was in state (2.1) before, then after the measurement, it collapses

to one of two states — |0⟩ or |1⟩, and the observer can recognize which of the two events

occurred. The ratio of probabilities of collapsing to |0⟩ and collapsing to |1⟩, according to

the laws of quantum mechanics, is |α|2 : |β|2. In order to fit probability theory, the following

restriction must be applied on the values of amplitudes α and β:

|α|2 + |β|2 = 1. (2.2)

Complex vector
(α
β

)
which meets condition (2.2), is called a unit vector.

2.2.3 Unitary operations on qubits

In addition to the measurement, there are operations of another kind that change

the state of a qubit. These operations are linear transformations defined on the set of 2-

dimensional unit vectors. If such a linear transformation preserves the unity of a vector,

then it is called unitary. Unitary transformations (or unitary operators), defined on the set

2-dimensional unit vectors, can naturally be described by 2 × 2 matrices, which also are

called unitary.
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For example, one very important set of four unitary operators in quantum com-

puting is known as the Pauli operators. Probably the most common notation for them is

σ0, σx, σy and σz. These operators act on the basic states of a qubit |0⟩ and |1⟩ in the

following way:

• σ0|0⟩ = |0⟩; σ0|1⟩ = |1⟩;

• σx|0⟩ = |1⟩; σx|1⟩ = |0⟩;

• σy|0⟩ = −i|1⟩; σy|1⟩ = i|0⟩;

• σz|0⟩ = |0⟩; σz|1⟩ = −|1⟩.

We can also represent σ0, σx, σy and σz as 2 × 2 unitary matrices:

σ0 =

1 0

0 1

 ; σx =

0 1

1 0

 ; σy =

0 −i

i 0

 ; σz =

1 0

0 −1

 .
Another example is one special subset of unitary transformations described in

[EWL99], which can be defined by the following two-parametric set of matrices:Û (θ, ϕ) =

 eiϕ cos θ sin θ

− sin θ e−iϕ cos θ

 : θ, ϕ ∈ R

 .
2.3 Larger quantum systems

2.3.1 Quantum digits

In Subsection 2.2.1 we described the set of states for qubits, the simplest type of

quantum systems, with just two basic states, |0⟩ or |1⟩. However, there are more complex

quantum systems with more than two basic states.

For example, the so-called qutrits are three-level quantum systems with three basic

states |0⟩, |1⟩, and |2⟩; the general superposition state of a qutrit can be described as

α|0⟩ + β|1⟩ + γ|2⟩, and of course, vector

αβ
γ

 should be unit: |α|2 + |β|2 + |γ|2 = 1.
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Generally, an M -level quantum system has M basic states: |0⟩, |1⟩, . . . , |M⟩.

Analogously, its state can be described by
∑M

i=1 αi|i⟩, and vector
α1
α2
...
αM

 (2.3)

should be a unit vector:
∑M

i=1 |αi|2 = 1. Such a quantum system is sometimes called a

quantum digit or, shorter, qudit (as it is a quantum analog of the classical digit from

{1, 2, . . . ,M}).

2.3.2 Multipartite quantum systems

Sometimes it is useful to emphasize that a multilevel quantum system comprises

several quantum subsystems.

For example, if a quantum system consists of two qubits, then its four basic states

are four different tensor products of the qubits’ basic states:

|0⟩ ⊗ |0⟩, |0⟩ ⊗ |1⟩, |1⟩ ⊗ |0⟩, and |1⟩ ⊗ |1⟩.

Usually, they are labeled as

|00⟩, |01⟩, |10⟩, and |11⟩, respectively.

Its state can then be described as α00|00⟩ + α01|01⟩ + α10|10⟩ + α11|11⟩, or by the unit

vector
(α00
α01
α10
α11

)
of length |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1.

If a quantum system consists of more than two qubits, say N qubits, then its 2N

basic states are usually labeled as |b1b2 . . . bN ⟩, where bi ∈ {0, 1}.

2.3.3 Unitary operations on quantum systems

As mentioned in Subsection 2.3.1, an M -level quantum system could be repre-

sented as a unit vector in form (2.3). Unitary operations on such a quantum system could

then be represented as M ×M unitary matrices.
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There is a large variety of such matrices, and in the next subsection, we shall

describe a specific example of a 4 × 4 unitary matrix, which will demonstrate an unusual

effect of quantum mechanics.

2.3.4 Quantum entanglement

Another phenomenon of the quantum world, which sometimes does not fit in clas-

sical communication theory, is called quantum entanglement.

The simplest illustration of this phenomenon requires a two-qubit quantum system.

Let us observe two qubits, both in basic state |0⟩, as a single quantum system. As stated

in Subsection 2.3.2, the state of such a quantum system is denoted as |00⟩ and can be

represented by the four-dimensional vector
(1

0
0
0

)
.

Let us now apply the linear unitary operator, which is represented by the unitary

matrix 1√
2

(
1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

)
:



1√
2 0 0 1√

2

0 1√
2

1√
2 0

0 1√
2 − 1√

2 0
1√
2 0 0 − 1√

2





1

0

0

0

 =



1√
2

0

0
1√
2

 .

As one can follow, the resulting state is then the following sum: 1√
2 |00⟩ + 1√

2 |11⟩.

This is the so-called Bell state 1, and a pair of qubits in such a state is called the EPR pair

(after the famous Einstein, Podolsky and Rosen paradox).

When measuring one qubit of the EPR pair, one will make it collapse equiprobably

to one of the two basic states, |0⟩ or |1⟩. Surprisingly, measurement of another qubit will

cause it to collapse to exactly the same state as the first measured qubit. Therefore, one

could say that the two qubits of the EPR pair are entangled.

The effects of quantum entanglement have been studied extensively in quantum

information science and in particular, they play a key role in quantum game theory.

1A similar state for ≥ 3 qubits — 1√
2 |00 . . . 0⟩+ 1√

2 |11 . . . 1⟩ — is called the GHZ state (after Greenberger,
Horne and Zeilinger, who discovered the extremely non-classical properties of such states in their joint work
[GHZ89]).
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Chapter 3

Overview and Examples of

Quantum Games

3.1 Introduction

As many elements and ideas of game theory and quantum mechanics have some

common ground, there have been several attempts to find interconnections between these

topics. We could establish some of the reasons for such interest.

The element of uncertainty in many games is raised by some random events, and

can be described in terms of probabilities. On the other hand, the concept of probabil-

ity underlies quantum mechanics. Thus, quantum probability could be used to describe

quantum versions of games that assume some classical randomness.

Correlations between measurement results within an entangled quantum system

could be used for better cooperation between players. Apart from the fact that this serves

as a great demonstration of the properties of the quantum world, it could also have also

some useful applications.

There are some more interesting aspects in studying correlations between game

theory and the behavior of quantum particles. However, this interest lies rather in the area

of physics (e.g., crystallography). In this work, we shall concentrate mainly on information-

theoretic aspects and ideas brought by the properties of quantum states.
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The concept of quantum games has been developed since the late 1990s [Vai99,

Mey99]. Many examples of them have been invented to illustrate how different are the

circumstances in the microcosm from the classical. In this chapter we shall study several

quantum games, which represent the most significant ideas in this area.

3.2 Vaidman’s game

Vaidman [Vai99] was probably the first to speak about quantum protocol in terms

of games. He illustrated the Greenberger-Horne-Zeilinger (GHZ) proof of the nonexistence

of local hidden variables by presenting a 3-player game that cannot be won with confidence

without using quantum theory.

Imagine three players are taken to three remote locations A, B and C. Then, at

the same moment, each of them is asked one of two possible questions:

• What is X?

or

• What is Y ?

Whatever question a player was asked, he could only answer either “1” or “−1”.

The rules of this game assume only two possible types of scenario:

1. All players are asked “What is X?”.

In this case, the players must answer with three numbers with product −1. That is,

up to permutations, either with 1,1,−1 or with −1,−1,−1.

2. One player is asked “What is X?” and the other two players are asked “What is Y ?”.

In this case, the players must answer with three numbers with product 1. That is, up

to permutations, either with 1,1,1 or with 1,−1,−1.

3.2.1 Classical version

Actually, here, each player has only four possible choices:
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1. Asked X, answer 1; asked Y , answer 1.
2. Asked X, answer 1; asked Y , answer −1.
3. Asked X, answer −1; asked Y , answer 1.
4. Asked X, answer −1; asked Y , answer −1.

Let us denote the answers to the question “What is X?” chosen by players A, B

and C, as XA, XB and XC , respectively, and the answers to the question “What is Y?”

chosen by players A, B and C, as YA, YB and YC , respectively.

If there was a winning strategy {XA, XB, XC , YA, YB, YC} for the players, the

following set of conditions should be satisfied:

XAXBXC = −1

XAYBYC = 1

YAXBYC = 1

YAYBXC = 1

Of course, it is impossible to satisfy all four conditions. The product of left-hand

sides of these equations is positive, as it is the product of squares:

X2
AX

2
BX

2
CY

2
AY

2
BY

2
C = 1.

On the other hand, the product of the left-hand side of these equations is, evidently,

−1.

This contradiction shows that there is no 100%-winning classical strategy.

3.2.2 Quantum version

In order to demonstrate quantum strategy for his game, Vaidman [Vai99] considers

the following scenario:

1. Players are given an entangled three-qubit quantum system in initial state:

|GHZ⟩ = 1√
2

(|000⟩ − |111⟩)
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2. Players are asked their questions.

3. Each player performs a measurement on his qubit in some basis — according to the

type of question he received.

4. Each player answers with (−1)[result of the measurement: 0 or 1]

Let us look on this process from a slightly different point of view. For our further

purposes, it will be suitable to consider local qubit operations instead of measuring them

in different bases.

The precise quantum strategies for players could be defined as follows:

• Asked “What is X?”, a player “flips” his qubit using transformation matrix

X̂ =


− 1√

2
− 1√

2

− 1√
2

1√
2

 .

• Asked “What is Y ?”, a player “flips” his qubit using transformation matrix

Ŷ =


− i√

2
1√
2

− 1√
2

− i√
2

 .

• After performing the respective transformations, each player measures his qubit in

computational basis and answers with (−1)[result of the measurement: 0 or 1].

It is easy to check that the finite state after three local operations will be equal to

X̂ ⊗ X̂ ⊗ X̂

( 1√
2

|000⟩ − 1√
2

|111⟩
)

= 1
2

(|001⟩ + |010⟩ + |100⟩ + |111⟩)

or (up to permutations of players)

X̂ ⊗ Ŷ ⊗ Ŷ

( 1√
2

|000⟩ − 1√
2

|111⟩
)

= 1
2

(|000⟩ − |011⟩ + |101⟩ + |110⟩)

In each case, the parity of 1’s corresponds to the right answer, so this quantum

strategy is 100%-winning.
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3.3 CHSH game

Another cooperative game, which probably is the most studied in physical exper-

iments (starting with [AGR81]), was initially described in [CHSH69]. This is a game

between a referee from one side and players from the other side. The referee gives one bit

to each player. Then he expects equal answers if at least one input bit was 0. If both

input bits were 1, he expects different answers. Formally, the rules of this game could be

expressed by the table:
INPUT Right answer

0, 0 0, 0 or 1, 1

0, 1 0, 0 or 1, 1

1, 0 0, 0 or 1, 1

1, 1 0, 1 or 1, 0

or by the formula:

XOR (OUTPUT ) = AND (INPUT )

3.3.1 Classical version

Assume that the referee gives to the players randomized (uniformly distributed)

inputs from {(0, 0) , (0, 1) , (1, 0) , (1, 1)}. For any pair of fixed (deterministic) players’ strate-

gies

(A : {0, 1} → {0, 1} , B : {0, 1} → {0, 1})

the sum of their answers for all four different inputs

(A (0) +B (0)) + (A (0) +B (1)) + (A (1) +B (0)) + (A (1) +B (1))

is evidently even.

However, as the sum of right answers must be odd, any strategy pair will lead

to at least one error in these four cases. (One might think that some kind of randomized

strategy could give better results, but the answer is no; an average result of a randomized

strategy is calculated as an average result of some set of fixed strategies.)
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Therefore, the provably best average result is 3
4

= 0.75. This can be achieved

by answering 0 and ignoring the input.

3.3.2 Quantum version

Surprisingly, there is a way to improve the classical result of 0.75 by permitting

players to use an entangled quantum system before the start of the game.

Imagine players share a two-qubit system in entangled state

|ψ⟩ = 1√
2

|00⟩ + 1√
2

|11⟩

Again, it is sufficient for players to use the same strategy:

• Given input x (0 or 1), a player “flips” his qubit using transformation matrix



e
1−4x

8 πi

√
2

− 1√
2

1√
2

e
4x−1

8 πi

√
2


.

• Then he measures his qubit in computational basis and answers with the result of the

measurement.

Let us estimate the outcome of the game in the case where players get input “a, b”

(from the set {(0, 0), (0, 1), (1, 0), (1, 1)}). The product of the transformation matrices Â

and B̂ is then equal to
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Â⊗ B̂ =



e
2−4a−4b

8 πi

2
−e

1−4a
8 πi

2
−e

1−4b
8 πi

2
1
2

e
1−4a

8 πi

2
e

4b−4a
8 πi

2
−1

2
−e

4b−1
8 πi

2

e
1−4b

8 πi

2
−1

2
e

4a−4b
8 πi

2
−e

4a−1
8 πi

2

1
2

e
4b−1

8 πi

2
e

4a−1
8 πi

2
e

4a+4b−2
8 πi

2


In fact, there is no need to do all those boring calculations. Actually, it is sufficient

for our further purposes to consider only the corner values of this matrix (these four values

are marked with boxes).

As the initial state
( 1√

2
|00⟩ + 1√

2
|11⟩

)
has only two non-zero amplitudes, we are

actually only interested in two rows of matrix Â ⊗ B̂; namely, in the first and the last

ones.

Let us now consider amplitudes of |00⟩ and |11⟩ of the final state. They depend

only on two columns of matrix Â⊗ B̂; namely, the first and the last ones.

If A = B = 1, they both are equal to e± 6
8 πi + 1
2
√

2
, and the probability of getting

losing measurement results (0, 0) or (1, 1) is equal to

2 ×
∣∣∣∣∣e± 6

8 πi + 1
2
√

2

∣∣∣∣∣
2

= cos2 3
8
π = 0.146 . . .

In the opposite case, if a + b ≤ 1, they are both equal to e± 2
8 πi + 1
2
√

2
, and the

probability of getting winning measurement results (0, 0) or (1, 1) is equal to

2 ×
∣∣∣∣∣e± 2

8 πi + 1
2
√

2

∣∣∣∣∣
2

= cos2 1
8
π = 0.8535 . . .

(To make these equalities evident, one can recall the fact that
∣∣∣epi + eqi

∣∣∣ is just

2 cos p− q

2
, and in particular,

∣∣∣epi + e0i
∣∣∣ = 2 cos p

2
.)
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Therefore, whatever input players received, they win with a probability of cos2 1
8
π =

1
2

+ 1
2
√

2
= 0.8535 . . . and lose with a probability of cos2 3

8
π = 1

2
− 1

2
√

2
= 0.146 . . ..

In fact, this is the best result that could be achieved in this game, as was shown

in [Cir80].

Traditionally, quantum strategies for this game are described in a different way.

In particular, players are offered the use of different strategies. The reason why we did

not follow this tradition is ideological; the notion of symmetry is crucial for our further

considerations, and given a symmetrical problem, we shall try to find symmetrical solutions

for it.

3.4 Prisoner’s Dilemma

Prisoner’s Dilemma is one of the most popular non-zero-sum games. It is strate-

gically completely equivalent to the economic game mentioned in Subsection 1.3.3. It is

considered that the initial source of the idea of this game was discussions by Merrill Flood

and Melvin Dresher in 1950, as part of the game theory investigations in the Rand Corpo-

ration during the Cold War. As Flood and Dresher did not publicize their ideas in external

journal articles, there is no canonical formulation of the rules of this game. Let us quote

from the website www.prisoners-dilemma.com, which is dedicated entirely to the Prisoner’s

Dilemma:

You and a friend have committed a crime and have been caught. You are
being held in separate cells. You are both offered a deal but have to decide what
to do. But you are not allowed to communicate with your partner and you will
not be told what they have decided until you have made a decision.

Essentially the deal is this.

• If you confess and your partner denies taking part in the crime, you go free
and your partner goes to prison for five years.

• If your partner confesses and you deny participating in the crime, you go
to prison for five years and your partner goes free.

• If you both confess you will serve four years each.

• If you both deny taking part in the crime, you both go to prison for two
years.
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These rules could be represented as in Table 3.1.

Table 3.1: Players’ payoffs in Prisoner’s Dilemma

Your partner

Confesses Denies

Yo
u

Confess 4 years for You,
4 years for Your partner

0 years for You,
5 years for Your partner

Deny 5 years for You,
0 years for Your partner

2 years for You,
2 years for Your partner

This game is a famous illustration of the fact that two rationally operating individ-

uals sometimes might not cooperate, even if it is in their interest to do so. The phenomenon

represented by this game became very popular among scientists of different areas, and it

was investigated in many works and from many points of view. For the history of this idea

we refer to one of the most significant books on this topic, which is dedicated entirely to

the Prisoner’s Dilemma [Pou92].

3.4.1 Classical version

Analysis of such games usually assumes the Nash equilibrium as a solution concept.

This concept was described in Subsection 1.3.3, and very similar arguments in the case of

the Prisoner’s Dilemma show that rational players will confess and serve four years each.

One can formalize the game process in the following way (some redundant formal-

ism here will be clarified later):

1. The game board consists of two numbers a and b from [0, 1].

Initially their values are a1 = b1 = 0.

2. Players independently choose (say linear) operators A and B and apply them to a

and b, respectively.
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Let us denote a2 = A (a1) and b2 = B (b1).

3. Resulting numbers a2 and b2 are treated as probabilities of choosing the second strat-

egy, i.e., denying participation in the crime. (Obviously, 1 − a2 and 1 − b2 then will

be the probabilities of choosing the first strategy, i.e., confessing.)

4. Players get their payoffs — respectively

$1 (a2, b2) = −4 (1 − a2) (1 − b2) − 5a2 (1 − b2) − 2a2b2 = 4b2 − 4 − a2 (1 + b2) and

$2 (a2, b2) = −4 (1 − a2) (1 − b2) − 5 (1 − a2) b2 − 2a2b2 = 4a2 − 4 − b2 (1 + a2) .

Obviously,

max
A

$1 (A (0) , b2) (for any b2) is achieved when A (0) = 0, and

max
B

$2 (a2, B (0)) (for any a2) is achieved when B (0) = 0.

In other words, when players independently maximize their payoffs (by choosing identity

operators A = B = ( 1 0
0 1 )), they both get

$1 (0, 0) = $2 (0, 0) = −4.

On the other hand, the Pareto optimal decision would be to choose exchange operators

A = B = ( 0 1
1 0 ) with payoffs

$1 (1, 1) = $2 (1, 1) = −2.

3.4.2 Quantum version

Jens Eisert, Martin Wilkens, and Maciej Lewenstein in [EWL99, EW00] investi-

gated the quantization of non-zero-sum games and in particular Prisoner’s Dilemma. The

physical model proposed for quantum games assumes the following prerequisites:

• a system of multiple qubits in a given initial state (usually in an entangled one);

• two or more players, each of which is provided at least one qubit and the ability to

act on these qubits;

• a device to measure the final state of the system, which determines the outcome for

each of the players.
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The proposed quantum game process is somewhat analogous to the classical one:

1. The game board consists of a two-qubit quantum system.

Its initial state is ψ1 = |00⟩.

1q Before all players’ actions, an entangling operator

Ĵ ∈
{

exp
(
iγ

(0001
0010
0100
1000

))
: γ ∈

[
0, π

4

]}
is applied to the system, which gets “entangled” into state ψ1q = Ĵψ1.

2. Players independently choose operators Â = Û (θA, ϕA) and B̂ = Û (θB, ϕB)

and apply them to the first and the second qubits of the system, respectively. Its state

changes to ψ2 =
(
Â⊗ B̂

)
ψ1q .

2q After all the players’ actions are done, an operator Ĵ† is applied to the system.

Its state changes to ψ2q = Ĵ†ψ2.

Let us denote ψ2q = α00|00⟩ + α01|01⟩ + α10|10⟩ + α11|11⟩.

3. The resulting qubits are measured in computational basis, and absolute squares of

probability amplitudes |αab|2 are treated as probabilities of choosing strategy a by

the first player and strategy b by the second player (where a, b ∈ {0, 1}, strategy 0

corresponds to confessing and strategy 1 corresponds to denying participation in the

crime).

4. Players get their payoffs — respectively

$1
(
ψ2q

)
= −4 |α00|2 − 5 |α10|2 − 2 |α11|2 and

$2
(
ψ2q

)
= −4 |α00|2 − 5 |α01|2 − 2 |α11|2

As one can see, the quantum scheme implies two additional steps 1q and 2q, which

stand for the “quantum entangling” and “quantum disentangling” of quantum system, re-

spectively.
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The authors of [EWL99] argue that (a) these two steps together with (b) two

additional variables ϕA and ϕB in step 2, essentially make all the difference between the

classical and quantum versions of the game. Therefore, the quantum version of the Pris-

oner’s Dilemma is somewhat a: (a) generalization and (b) “quantum-mixed” expansion of

the original game.

The fact is that by fixing ϕA = ϕB = 0 makes the game completely equivalent

to its classical version with a = sin2 θA and b = sin2 θB (and the same Nash equilibrium

θA = θB = 0 with payoffs $1 = $2 = −4) 1.

Therewith, adjusting parameter γ for operator Ĵ from step 1q allows obtaining

different degrees of quantum entanglement effect in the game. Thus, setting γ = 0 elimi-

nates any quantum entanglement and leaves the Nash equilibrium at the point of mutual

confessing and a four-year prison sentence. On the other hand, setting γ = π
4 provides

maximal entanglement, and improves the players’ behavior up to the Pareto optimal mu-

tual denying participation in the crime. For example, the set of Nash equilibria in such a

game contains a symmetric pair of strategies Â = B̂ = Û
(
0, π

4
)

with payoffs $1 = $2 = −2.

(The idea is the following: for the first player choosing strategy Â = Û
(
0, π

4
)

guarantees

equity |α01|2 = |α10|2 = sin2 θB
2 , so that $1

(
ψ2q

)
= $2

(
ψ2q

)
, and with certainty converts an

adversary into an ally; a similar argument remains for choosing strategy B̂ = Û
(
0, π

4
)

by

the second player.)

1This “backward compatibility” with the set of classical strategies is assured by the constraint on Ĵ in
step 1q.
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Part II

Nonlocal XOR Games
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Chapter 4

Introduction

4.1 Definition

In Vaidman’s game use of an entangled quantum system allow players to construct

100%-winning strategies. In CHSH game players can use quantum strategies to achieve re-

sult, which exceeds classical optimum by over 10%. This improvement is possible because of

correlations between measurement outcomes of different parts of quantum system In physics,

these correlations are referred to as nonlocality or quantum entanglement. Therefore, such

games are called nonlocal or entangled. Actually, CHSH is the most famous example of

nonlocal games. But let us now give a general description of these games.

A nonlocal game is a cooperative game of two or more players. Given some infor-

mation, the players must find a solution, but with no direct communication between any of

them.

We can view nonlocal games as games between a referee and some number of

players, where communication is available only between the referee and the players. Referee

chooses settings of the game by telling some information (or input) xi to each of the player.

After that, each player independently must give back some answer (or output) yi.

The rules of the game define a function f (x1, x2, . . . , y1, y2, . . .) which determines whether

the players have won or lost.

Players are not allowed to communicate among themselves. In the classical case,
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they can use shared common bits that are independent of the inputs x1, . . . , xN (one can

interpret this fact in the following way: players are allowed to communicate before they have

received their questions, but prohibited to communicate after that). In the quantum case,

they can use a common multipartite quantum state |ψ⟩ that is independent of x1, x2, . . . , xN .

Each of players receives a part of |ψ⟩ and is allowed to apply a measurement that depends

on his input xi to his part of |ψ⟩. The advantage of quantum strategies is possible because

of the non-classical correlations between the measurement outcomes of different parts of

quantum system |ψ⟩ (entanglement or nonlocality).

In general, the maximum winning probability in a nonlocal game is hard to com-

pute. It is NP-hard to compute it for 2-player games with quantum inputs and outputs or

for 3-player games classically [KKM+08].

4.2 Nonlocal XOR games

Nonlocal games have been a very popular research topic (often, under the name

of Bell inequalities [Bel64, Eke91]). Many nonlocal games have been studied and large gaps

between classical and quantum winning probabilities have been discovered.

XOR games are the most widely studied class of nonlocal games. In a XOR

game, players’ outputs y1, y2, . . . , yN are {0, 1}-valued. The condition describing whether

the players have won can depend only on x1, x2, . . . , xN and y1 ⊕y2 ⊕ . . .⊕yN . In particular,

XOR games include the CHSH game.

For two-player XOR games (with inputs x1, x2, . . . , xN being from an arbitrary

set), we know that the maximum success probability of players can be described by a

semidefinite program [Cir80] and, hence, can be calculated in polynomial time [CHTW04].

In contrast, computing the classical success probability is NP-hard.

For XOR games with more than two players, examples of specific games providing

a quantum advantage are known [Mer90, Ard92, PWP+08, BV12] and there is some theory

in the framework of Bell inequalities [WW01a, WW01b, ZB02]. This theory, however, often

focuses on questions other than computing classical and quantum winning probabilities —

which is our main interest.
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4.3 What we study here

In this part, we consider a restricted case of symmetric multiplayer XOR games.

We shall study mainly those games, where each player should receive exactly one bit of

input and answer exactly one bit of output, and is allowed to operate with one qubit of

N -qubit quantum system. For this restricted case, we show that both classical and quantum

winning probabilities can be easily calculated.

Werner and Wolf [WW01a] speaking about nonlocal games in terms of set of

Bell inequalities, show that maximal violation of these inequalities can be achieved by

using maximal entanglement. That is, the biggest effect is achieved when using maximally

entangled state |GHZ⟩ = 1√
2

|00 . . . 0⟩ + 1√
2

|11 . . . 1⟩ or equal states up to local unitary

operations. When studying nonlocal games and having the similar interests, we’ll also

concentrate mainly on the case when players share a quantum system in state |GHZ⟩.

In Chapter 5 we perform some analysis of optimal strategies for both classical and

quantum versions of nonlocal XOR games. Namely, we specify relatively small subsets,

which with certainty contain optimal strategies. These methods allow to perform both very

efficient numerical and analytical investigations of such games.

In Chapter 6 we develop techniques (based on the results of Chapter 5) for evalu-

ation of a random symmetric nonlocal XOR game. This analysis shows that for almost all

such games the use of entangled quantum system allows players to improve their outcomes

significantly.

In Chapter 7 we describe similar results (but obtained by using totally different

techiques) for random two-player nonlocal XOR games. We follow that almost all such

games show quantum-over-classical advantage which is comparable to the maximum possible

advantage for this class of nonlocal games.

In Chapter 8 we apply our methods for analysis of symmetric nonlocal games to

the particular case of Mermin-Ardehali’s inequality [Mer90, Ard92]. The results coincide

with [Ard92] but are obtained using different methods (which are more combinatorial in

their nature). The advantage of our methods is that they can be easily applied to any

symmetric XOR game while those of [Ard92] are tailored to the particular XOR game.
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Finally, in Chapter 9 we apply a similar technique for analyzing the generalized

version of CHSH game, where referee’s choice is not restricted with uniform input distri-

bution. Some subset of the results coincide with [LLP10], as the classes of games being

analyzed here and in [LLP10] partially overlap. But again, we use different methods and

have slightly different purposes.

4.4 Formalism of XOR games

A nonlocal N -player game is defined by a sequence of 2N elements

[(I00...0, I00...1, . . . , I11...1)], where each element corresponds to some of 2N inputs and de-

scribes all right answers for this input: Ix1...xN ⊆ {0, 1}N . Players receive a uniformly

random input x1, . . . , xN ∈ {0, 1} with the ith player receiving xi. The ith player then

produces an output yi ∈ {0, 1}. No communication is allowed between the players but

they can use shared randomness (in the classical case) or quantum entanglement (in the

quantum case). Players win if y1y2 . . . yN ∈ Ix1x2...xN and lose otherwise.

For each Ix1x2...xN , there are 22N possible values. Therefore, there are(
22N

)(2N)
= 222N different games. This means 65536 games for N = 2, ≈ 1.8 · 1019

games for N = 3 and practically not enumerable for N > 3.

We shall concentrate on that games, which are symmetrical with respect to per-

muting the players and whose outcome depends only on parity of the sum of the output

(or Hamming weight of the output), i.e. on XOR (|OUTPUT |). (Actually, this decision

was based not on strict analytics, but rather on the results of numerical experiments: XOR

games seem to be the most interesting in their quantum versions. See Section 6.2 for

illustration of this fact.)

Each such XOR game can be described as a string of N + 1 bits: Γ0Γ1 . . .ΓN ,

where each bit Γi represents the correct right parity of the output sum in the case when

the sum of input is i. Typical and important XOR game is the CHSH game: in our terms

it can be defined as Γ0Γ1Γ2 = “+ + −” (that is, an even answer if |INPUT | = 0 or 1

and an odd answer if |INPUT | = 2).
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Chapter 5

Optimal Strategies for Symmetric

XOR Games

5.1 Normalized classical strategies

In their classical versions XOR games are a good object for analysis and in most

cases turn out to have a little outcome for players.

Imagine a classical version of XOR game, for which we want to find optimal classi-

cal strategies for players. Each player has 4 different choices: (00), (01), (10), (11); (where

the first bit represents the answer to input 0, and the second bit represents the answer to

input 1. Thus, (ab) denotes a choice to answer a to input 0 and to answer b to input 1).

Definition 5.1 (Classical normalized strategy) A classical normalized strategy for N -

player XOR game is one of the following 2N + 2 choice sequences:

(00)N−k (01)k

(00)N−1 (11)

(00)N−k (01)k−1 (10) ,

where k ∈ {0, 1, . . . N}.
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Theorem 5.1 [AKNR10] For any classical strategy for an N -player XOR game there exists

a normalized strategy, such that these strategies on equal input answer equal parity.

Proof:

First of all, remember, that we consider only symmetrical games with respect to

players permutation. Therefore, we always will order players by their choices.

The second step is choice inversion for a pair of players. If we take any pair of

choices and invert both of them, the parity of the output will not change. Thus, we can

find the following pairs of choices and make the corresponding inversions:

(11) (11) → (00) (00)

(11) (10) → (00) (01)

(11) (01) → (00) (10)

(10) (10) → (01) (01)

If it is impossible to find such pair, there is clearly no more than one choice from

the set {(10) , (11)}, and presence of choice (11) follows that all other choices are (00). In

other words, this strategy is normalized. 2

This trick allows very efficient search for an optimal strategy for classical version

of a symmetric XOR game. Strategy of form

(00)N−k (01)k

has mean outcome

Outcome
(
(00)N−k (01)k

)
= 1

2N

N∑
i=0

i∑
j=0

(−1)j Γi

(
N − k

i− j

)(
k

j

)

(variable i here stands for the number of 1s in the input data, and variable j denotes the

number of 1s given to the (01)-choice players).

All other normal strategies has mean outcomes computable as

Outcome
(
(00)N−1 (11)

)
= −Outcome

(
(00)N

)
Outcome

(
(00)N−k (01)k−1 (10)

)
= −Outcome

(
(00)k (01)N−k

)
.
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Indeed, given some game and some input data for players, whenever a strategy

from the left side of an equality above wins the game, the corresponding strategy from the

right side of the equality loses, and vice versa. These two equalities demonstate the fact

that each normalized strategy has its sibling with the last players’s choice bitwise inverted

and with value of the mean outcome negated. From now on, we consider such pairs of

strategies S and S together with a positive value of the mean outcome

|Outcome (S)| =
∣∣∣Outcome (S)∣∣∣ .

In fact, the most useful strategies are (00)N and (01)N . In our computer experiments, one

of these strategies is optimal for ≈ 99% symmetric XOR games. Our rigorous results in the

next chapter imply that asymptotically (in the limit of large N) the fraction of games for

which one of these symmetric strategies is optimal is 1 − o (1).

5.2 Optimal quantum strategies

Consider a possibly non-symmetric XOR game. Let x1, x2, . . . , xN be the inputs

to the players. Define Gx1,x2,...,xN = 1 if, to win for these inputs, players must output

y1, y2, . . . , yN with XOR being 1 and Gx1,x2,...,xN = −1 if players must output y1, y2, . . . , yN

with XOR being 0.

Werner and Wolf [WW01a, WW01b] have shown that, for any strategy in quantum

version of an XOR game, its bias (the difference between the winning probability Prwin and

the losing probability Prlos) is equal to

f (λ1, λ2, . . . , λN ) =

∣∣∣∣∣∣ 1
2N

∑
x1,x2,...,xN ∈{0,1}

Gx1,x2,...,xNλ
x1
1 λ

x2
2 . . . λxN

N

∣∣∣∣∣∣ (5.1)

for some λ1, λ2, . . . , λN satisfying |λ1| = |λ2| = . . . = |λN | = 1. Conversely, for any such

λ1, λ2, . . . , λN , there is a winning strategy with the bias being f (λ1, λ2, . . . , λN ).

Theorem 5.2 [AKNR10] For symmetric XOR games, the maximum of f (λ1, λ2, . . . , λN )

is achieved when λ1 = λ2 = . . . = λN .
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Proof: We fix all but two of λi. To simplify the notation, we assume that λ3, . . . , λN are

the variables that have been fixed. Then, (5.1) becomes

a+ bλ1 + cλ2 + dλ1λ2

for some a, b, c, d. Because of symmetry, we have b = c. Thus, we have to maximize

a+ b (λ1 + λ2) + dλ1λ2. (5.2)

Let λ1 = eiθ1 and λ2 = eiθ2 . Let θ+ = θ1 + θ2
2

and θ− = θ1 − θ2
2

. Then, (5.2) becomes

a+beiθ+
(
eiθ− + e−iθ−

)
+de2iθ+ = A+B cos θ− where A = a+de2iθ+ and B = 2beiθ+ .

If we fix θ+, we have to maximize the expression A+Bx, x ∈ [−1, 1]. For any complex

A,B, A+Bx is either maximized by x = 1 (if the angle between A and B as vectors

in the complex plane is at most π
2

) or by x = −1 (if the angle between A and B is more

than π

2
). If x = 1, we have λ1 = λ2 = θ+. If x = −1, we have λ1 = λ2 = −θ+.

Thus, if λ1 ̸= λ2, then the value of (5.1) can be increased by keeping the same

θ+ = θ1 + θ2
2

but changing λ1 and λ2 so that they become equal. The same argument

applies if λi ̸= λj . 2

Thus, we can find the value of a symmetric XOR game by maximizing

f (λ) =
∣∣∣∣∣ 1
2N

N∑
k=0

(
N

k

)
Γkλ

k

∣∣∣∣∣ . (5.3)

The maximal f (λ) is the maximum possible gap Prwin − Prlos between the winning

probability Prwin and the losing probability Prlos. We have Prwin = 1 + f (λ)
2

and

Prlos = 1 − f (λ)
2

.
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Chapter 6

Random Symmetric XOR Games

6.1 Introduction

Interest in studying symmetric XOR games was initially raised after the series

of computer experiments indicating significant difference between classical and quantum

versions of such games [AKNR10, AKN+13]. As we shall see in the next sections, the

difference in favor of “quantum” players is inherent among the vast majority of symmetric

XOR games.

This chapter is dedicated entirely to the analysis of asymptotic behavior of the

“classical” and “quantum” expected values of a random N -player XOR game.

We obtain a tight bound for the classical case and provide numerical evidence that

quantum players can achieve better results.

6.2 Computer experiments

In order to visualize the matter let us first represent the “behavior” of symmetric

XOR games for different numbers of players.

Figure 6.1 shows the expected classical and quantum values for a randomly chosen

symmetric XOR game with binary inputs, with the number of players N ranging between

2 and 101 1.
1For N ≤ 16 the graphs are precise, as for small number of players it was possible to analyze all 2N+1
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Figure 6.1: Expected values of quantum and classical XOR games
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We see that there is a consistent quantum advantage for all N , and the question

about the further behavior of these two graphs arises very naturally.

In the Figure 6.2, we provide some statistical data on the distribution of the game

values (from 106 randomly selected games for N = 64). The first two histograms show

the distribution of classical and quantum values, respectively. The last one shows the

distribution of biases between the values of classical and quantum versions of a game.

We see that the quantum value of a game is more sharply concentrated than

the classical value. There is a substantial number (around 30%) of games which have no

quantum advantage (or almost no quantum advantage) 2. For the remaining games, the gap

between quantum and classical values is quite uniformly distributed over a large interval.

These results however are obtained by using numerical techniques and lack some

theoretical ground.

6.3 Some analysis of normalized strategies

In order to make a performance evaluation of classical strategies, let us analyze

some statistical properties of each normalized strategy. Now we shall calculate the variance

games.
2However, our results in the next sections indicate that the fraction of such games will tend to 0 for larger

N .
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Figure 6.2: Histograms of 64-player games’ values
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of the mean outcome produced by a normalized strategy for a randomly chosen game.

We first consider the strategy (00)N . As all players always answer 0, the mean

outcome of this strategy is equal to

∣∣∣Outcome ((00)N
)∣∣∣ =

∣∣∣∣∣∣
N∑

j=0

Γj
(N

j

)
2N

∣∣∣∣∣∣ (6.1)

For the strategy (01)N , we have

∣∣∣Outcome ((01)N
)∣∣∣ =

∣∣∣∣∣∣
N∑

j=0

(−1)j Γj
(N

j

)
2N

∣∣∣∣∣∣ (6.2)

Since the variance of a sum is equal to the sum of variances of the summands, for

both values (6.1) and (6.2) we have equal variances

Var
[∣∣∣Outcome ((00)N

)∣∣∣] = Var
[∣∣∣Outcome ((01)N

)∣∣∣]
= Var

 N∑
j=0

±
(N

j

)
2N

 =
N∑

j=0
Var

±
(N

j

)
2N

 =
N∑

j=0

(Nj )
2N

2

=
(2N

N

)
4N

.

Equity of these two variances could be also shown in the following way:

Outcome
(
(00)N

)
for the game Γ0Γ1Γ2Γ3Γ4 . . . is exactly the same as Outcome

(
(01)N

)
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for the game Γ0Γ1Γ2Γ3Γ4 . . ., with all odd bits inverted.

More generally, assume that we have a strategy (00)k (01)N−k. We can invert the

answers by all players for the case xi = 1 (that is, substitute choices (00) with (01) and

vice versa). Then, the overall parity of answers ⊕N
i=1yi stays the same if an even number

of players have received xi = 1 and changes to opposite value if an odd number of players

have received xi = 1. If we simultaneously invert all odd-numbered bits Γi in the winning

condition, the mean outcome does not change. From this, we conclude that for each k,

Outcome
(
(00)k (01)N−k

)
= Outcome

(
(00)N−k (01)k

)
. (6.3)

We now consider the value for the second strategy from Definition 5.1,

(00)N−1 (01), for a random symmetric XOR game.

Probability distributions of ⊕N
i=0yi when

∑N
i=0 xi = j are listed in Table

6.1.

Table 6.1: Probability distributions for strategy (00)N−1 (01)

j 0 1 2 3 4 5 6 7 . . .

Pr
[
⊕N

i=0yi = 0
]

1 1
N

N−2
N

3
N

N−4
N

5
N

N−6
N

7
N . . .

Pr
[
⊕N

i=0yi = 1
]

0 N−1
N

2
N

N−3
N

4
N

N−5
N

6
N

N−7
N . . .

Given input with
∑N

i=0 xi = j, the strategy outputs even or odd answer, depending

on whether or not the last player has received 1, i.e. with probabilities N−j
N and j

N (unlike

1 and 0 in the case of symmetric strategies).

Therefore, the variance of the mean outcome of the strategy (00)N−1 (01) for input

with
∑N

i=0 xi = j is
(

N−j
N − j

N

)2
=
(

N−2j
N

)2
.

Summing up the variances for all possible j’s, we get

Var
[
Outcome

(
(00)N−1 (01)

)]
=

N∑
j=0

Var

±N−2j
N

(N
j

)
2N


=

N∑
j=0

±N−2j
N

(N
j

)
2N

2

=
(2N

N

)
4N (2N − 1)

≈ 1√
πN (2N − 1)

,

(6.4)
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with the third equality following from Lemma 6.1, which we prove below (notation ±N−2j
N

denotes a random variable with equiprobable values +N−2j
N and −N−2j

N ).

Due to (6.3), the value of strategy (00) (01)N−1 has the same variance.

Lemma 6.1
N∑

j=0

(
N − 2j
N

(
N

j

))2

=
(2N

N

)
2N − 1

Proof:
N∑

j=0

(
N − 2j
N

(
N

j

))2

=
N∑

j=0

(
1 − 4 j

N
+ 4 j

2

N2

)(
N

j

)2

=
N∑

j=0

(
N

j

)2

− 4
N∑

j=1

(
N − 1
j − 1

)(
N

j

)
+ 4

N∑
j=1

(
N − 1
j − 1

)2

=
(

2N
N

)
− 4

(
2N − 1
N − 1

)
+ 4

(
2N − 2
N − 1

)

=
(

2N
N

)
− 2

(
2N
N

)
+ 2N

2N − 1

(
2N
N

)

=
(2N

N

)
2N − 1

2

Other strategies of type (00)N−k (01)k where 2 ≤ k ≤ N − 2 have much smaller

variances, which can be expressed as follows:

Var
[
Outcome

(
(00)N−k (01)k

)]
=

N∑
j=0


(∑j

l=0 (−1)l (k
l)(N−k

j−l )
(N

j )

) (N
j

)
2N


2

=
∑N

j=0

(∑j
l=0 (−1)l (k

l

)(N−k
j−l

))2

4N
.

(6.5)

The expression
∑j

l=0 (−1)l (k
l

)(N−k
j−l

)
inside (6.5) is the well known Kravchuk polynomial

Kj (k), whose square can be bounded by the strict inequality provided in [Kra01]: j∑
l=0

(−1)l

(
k

l

)(
N − k

j − l

)2

= (Kj (k))2 < 2N

(
N

j

)(
N

k

)−1

. (6.6)
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This inequality implies that

Var
[
Outcome

(
(00)N−k (01)k

)]
=
∑N

j=0 (Kj (k))2

4N

<

∑N
j=0 2N

(N
j

)(N
k

)−1

4N
=
(
N

k

)−1

.

(6.7)

6.4 Symmetric classical strategies

Let us now obtain a tight bound on the value of strategies (00)N and (01)N .

Theorem 6.2 [AIKV12] For a random N -player symmetric XOR game with binary inputs,

E
[
max

(∣∣∣Outcome ((00)N
)∣∣∣ , ∣∣∣Outcome ((01)N

)∣∣∣)] = 0.8475 . . .+ o (1)
4√N

. (6.8)

Proof:

We need to find a bound for the maximum of (6.1) and (6.2):

E
[
max

(∣∣∣Outcome ((00)N
)∣∣∣ , ∣∣∣Outcome ((01)N

)∣∣∣)]

= E

max

∣∣∣∣∣∣
N∑

j=0

Γj
(N

j

)
2N

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

N∑
j=0

(−1)j Γj
(N

j

)
2N

∣∣∣∣∣∣
 .

Among the summands of (6.1) and (6.2) let us first evaluate those which are equal

for both of the sums, i.e. for even j’s, and then for remaining summands, which have

opposite values in the sums, i.e. for odd j’s:
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E
[
max

(∣∣∣Outcome ((00)N
)∣∣∣ , ∣∣∣Outcome ((01)N

)∣∣∣)]

= E

max

±
∑

0≤j≤N,
j is even

Γj
(N

j

)
2N

±
∑

0≤j≤N,

j is odd

Γj
(N

j

)
2N




= E

 ∑
0≤j≤N,

j is even

Γj
(N

j

)
2N

+ E

 ∑
0≤j≤N,

j is odd

Γj
(N

j

)
2N

 (6.9)

Let Σeven and Σodd be the two sums in (6.9). Then, we have

Var [Σeven] =
∑

0≤j≤N,
j is even

(Nj )
2N

2

=
(2N

N

)
2 · 4N

.

Similarly, Var [Σodd] =
(2N

N

)
2 · 4N

. From the central limit theorem, in the limit of

large N , each of random variables Σeven and Σodd can be approximated by a normally

distributed random variable with the same mean (which is 0) and variance. If X is a

normally distributed random variable with E [X] = 0, then E [|X|] =
√

2
π

√
Var [X]. Hence,

(6.9) is equal to

E [|Σeven|] + E [|Σodd|] =
√

2
π

(1 + o (1))
√

Var [Σeven] +
√

2
π

(1 + o (1))
√

Var [Σodd]

= (1 + o (1))
√

2
π

√ (2N
N

)
2 · 4N

× 2

= (1 + o (1)) 4

√
16
π3

1
4√N

= 0.8475 . . .+ o (1)
4√N

,
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where the third equality follows from the approximation of the binomial coefficients
(

2N
N

)
=

(1 + o (1)) 4N

√
πN

. 2

6.5 Asymmetric classical strategies

In this section we show that with a high probability an asymmetric strategy of

type (00)k (01)N−k gives a weaker result than one provided in Theorem 6.2.

Theorem 6.3 [AIKV12] For any c > 0,

Pr
[

max
k:1≤k≤N−1

∣∣∣Outcome ((00)k (01)N−k
)∣∣∣ ≥ c

4√N

]
= O

( 1
N

)
. (6.10)

Proof:

Among the strategies (00)k (01)N−k, k ∈ {1, . . . , N − 1}, two strategies (for

k = 1 and k = N − 1) have variance ≈ 1√
πN(2N−1) (due to (6.4)), and the remaining

N − 3 strategies have variance less than 1
(N

k ) (due to (6.6)).

We now apply Chebyshev’s inequality, using those two bounds on the variance.

We have

Pr
[∣∣∣Outcome ((00)N−1 (01)

)∣∣∣ ≥ λ
4√πN

√
2N − 1

]
= Pr

[∣∣∣Outcome ((00) (01)N−1
)∣∣∣ ≥ λ

4√πN
√

2N − 1

]
≤ 1
λ2 ,

(6.11)

and, for 2 ≤ k ≤ N − 2:

Pr

∣∣∣Outcome ((00)N−k (01)k
)∣∣∣ ≥ λ√(N

k

)
 ≤ 1

λ2 . (6.12)

We now combine the bounds (6.11) and (6.12) into one upper bound.

Pr
[

max
1≤k≤N−1

∣∣∣V al ((00)N−k (01)k
)∣∣∣ ≥ B

]
≤

≤ 2 × 1(
B 4√πN

√
2N − 1

)2 +
N−2∑
k=2

1(
B
√(N

k

))2

= 2
B2

√
πN (2N − 1)

+O

( 1
B2N3

)
, (6.13)
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with the last equality following from
(N

k

)
≥
(N

2
)

and the fact that we are summing over

N − 3 values for k: k ∈ {2, . . . , N − 2}. Taking B = c
4√N

completes the proof. 2

6.6 Cumulative classical bound

In order to combine the results of Theorems 6.2 and 6.3, we can just substitute

the constant c from (6.10) with constant 0.8475 . . . + o (1) from (6.8) and follow the

inequality:

E
[
max

k

∣∣∣Outcome ((00)k (01)N−k
)∣∣∣]

≤ 0.8475 . . .+ o (1)
4√N

+ Pr
[

max
k:1≤k≤N−1

∣∣∣Outcome ((00)k (01)N−k
)∣∣∣ ≥ 0.8475 . . .+ o (1)

4√N

]
≤ 0.8475 . . .+ o (1)

4√N
+O

( 1
N

)
= 0.8475 . . .+ o (1)

4√N
.

Thus, expected value (6.8) turns out to be also a tight bound for the expected

value of a random classical symmetric XOR game:

E [V alC (Γ)] = E
[
max

k

∣∣∣Outcome ((00)k (01)N−k
)∣∣∣] = 0.8475 . . .+ o (1)

4√N
.

Let us now reillustrate Figure 6.1 together with this bound:

Figure 6.3: Expected values of quantum and classical XOR games + classical bound

-
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6.7 Quantum bound

Next we turn to the quantum case. Due to the result proven in Section 5.2, we

must evaluate

E [V alQ(Γ)] = E
[
max
|λ|=1

∣∣∣∣∣
N∑

k=0

(N
k

)
Γkλ

k

2N

∣∣∣∣∣
]
,

which is the mean value of a random game in quantum case.

So far, we have not been able to find a tight lower for this value. However, we

provide some insights which could lead to a solution to the problem. We can bound the

value from below by

max
|λ|=1

∣∣∣∣∣
N∑

k=0

(N
k

)
Γkλ

k

2N

∣∣∣∣∣ ≥ max
α

∣∣∣∣∣
N∑

k=0

(N
k

)
Γk cos (kα)

2N

∣∣∣∣∣ (6.14)

The sum
N∑

k=0
ck cos (kα) where ck are indepedent random variables with mean 0 and

variance 1 has been being extensively studied over several decades under the name “random

trigonometric polynomials” [SZ54, Hal73, Kas87, BL01]. Famous result of [SZ54] imply that

there exist constants A and B such that

lim
M→∞

Pr
[
A
√
M logM ≤ max

α

∣∣∣∣∣
M∑

k=0
ck cos (kα)

∣∣∣∣∣ ≤ B
√
M logM

]
= 1. (6.15)

To apply (6.15), the crucial step is to reduce a sum of
(N

k

)
ck cos (kα) with binomial coeffi-

cients to a sum of ck cos (kα) not containing binomial coefficients.

We propose the following non-rigorous approximation. We first drop the terms

with k ∈
[
0, N

2 −
√
N
)

∪
(√

N + N
2 , N

]
. For the remaining terms, we replace

(N
j

)
with( N

N/2
)

(since
(N

k

)
= Θ

(( N
N/2
))

for k ∈
[

N
2 −

√
N, N

2 +
√
N
]
). If this approximation can be

justified, it reduces (6.14) to (6.15) with M = 2
√
N . This would lead to a lower bound of

E [V alQ(Γ)] = Ω
(√

log M√
M

)
= Ω

(√
log N
4√

N

)
.
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Chapter 7

Random XOR Games for Two

Players

7.1 Introduction

In Chapter 6 we illustrated a contribution that N entangled qubits can bring to

interaction abilities of N players being apart from each other.

Yet another setting is in relevance to this topic. Let us modify the general rules

of the game by allowing communication between some players. We then can figure out N ′

groups of players, such that inside every group players are allowed to communicate. One

can observe such games just as N ′-player games, where each player receives some predefined

amount of bits and must answer with the same amount of bits.

The simplest nontrivial class of such games consists of games with N ′ = 2 (games

with N ′ = 1 obviously are trivial, and games with N ′ > 2 are NP-hard to compute

[KKM+08]). Such two-player games are extensively studied in a number of papers. E.g.

Buhrman et al. [BRSW11] construct a 2-player quantum game where the players receive

numbers x1, x2 and answer with numbers y1, y2 (x1, x2 ∈ {1, . . . , n}); the classical value of

this game is 1
2 +Θ

(
1√
n

)
while the quantum value is 1. In contrast, Almeida et al. [ABB+10]

construct a non-trivial example of a game in which quantum strategies provide no advan-

tage at all. We still do not know which of those two examples is the typical for two-player
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nonlocal games.

In this light nonlocal XOR games are of particular interest. Detailed analysis of

two-player XOR games can be found in [CHTW04]. In this chapter we shall also concentrate

on two-player symmetric XOR games. It turns out that quantum values of these games

typically are significantly bigger than classical ones. All details can be found in [ABB+12],

and in this chapter we shall just provide the main results.

7.2 Formalism

In a 2-player XOR game, we have two players A and B playing against a referee.

Players A and B cannot communicate but can share common random bits (in the classical

case) or an entangled quantum state (in the quantum case). The referee randomly chooses

values i ∈ {1, . . . , n} and j ∈ {1, . . . , n} and sends them to A and B, respectively. Players

A and B respond by sending answers x ∈ {0, 1} and y ∈ {0, 1} to the referee.

Players win if answers x and y satisfy some winning condition P (i, j, x, y). For

XOR games, the condition may only depend on the parity x⊕y of players’ responses. Then,

it can be written as P (i, j, x⊕ y).

We also assume that, for any i, j, exactly one of P (i, j, 0) and P (i, j, 1) is true.

Then, we can describe a game by an n × n matrix (Aij)n
i,j=1 where Aij = 1 means that,

given i and j, players must output x, y with x⊕ y = 0 (equivalently, x = y) and Aij = −1

means that players must output x, y with x⊕ y = 1 (equivalently, x ̸= y).

7.3 Results

7.3.1 Preliminaries

Let pij be the probability that the referee sends question i to player A and question

j to player B. Then, by [CHTW04, section 5.3], the classical value of the game is equal to

∆c = max
u1,...,un∈{−1,1}

max
v1,...,vn∈{−1,1}

n∑
i=1

n∑
j=1

pijAijuivj . (7.1)
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In the quantum case, Tsirelson’s theorem [Cir80] implies that

∆q = max
∥ui∥=1

max
∥vj∥=1

n∑
i,j=1

pijAij⟨ui, vj⟩ (7.2)

where the maximization is over all tuples of unit-length vectors u1, . . . , un ∈ Rd, v1, . . . , vn ∈

Rd (in an arbitrary number of dimensions d).

We will assume that the probability distribution on the referee’s questions i, j is

uniform: pij = 1
n2 and study ∆c and ∆q for the case when A is a random Bernoulli matrix

(i.e., each entry Aij is +1 with probability 1
2 and −1 with probability 1

2 , independently of

other entries).

In [ABB+12] three bounds are proven: upper and lower bounds for ∆c and one

explicit bound for ∆q.

7.3.2 Quantum bound

Theorem 7.1 [ABB+12] For a random 2-player XOR game with n inputs for each player,

∆q = 2 ± o (1)√
n

with probability 1 − o (1).

This theorem relies on two facts for building upper and lower bounds for ∆q.

One fact about operator norms of random matrices from [Tao11] implies that

∥A∥ = (2 + o (1))
√
n with a high probability, and consequently, the upper bound for ∆q

follows from the following inequality:
n∑

i=1

n∑
j=1

Aij⟨ui, vj⟩ = ⟨u, (A⊗ I) v⟩ ≤ ∥u∥ · ∥A⊗ I∥ · ∥v∥ ≤ ∥A∥n = (2 + o (1))n3/2.

Another fact is derived similarly to the Marchenko-Pastur law [MP67] in random

matrix theory, which bounds the number of big singular values for random n × n matrix

with elements from {−1, 1}. In a similar manner one can bound (by O
(

1
n

)
) the number of

long vectors

uj = (lij)m
i=1 , vj = (rij)m

i=1 ,
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where li and ri are respectively left and right singular vectors of matrix A (so that

Ari = λili). Zeroizing these long vectors and normalizing all remaining vectors result in

u′
1, . . . , u

′
n, v

′
1, . . . , v

′
n with norms ≤ 1, such that

∑n
i=1

∑n
j=1Aij⟨u′

i, v
′
j⟩ ≥ (2 − o (1))n3/2.

And this naturally implies the lower bound for ∆q, since

max
∥ui∥=∥vj∥=1

n∑
i=1

n∑
j=1

Aij⟨ui, vj⟩ = max
∥ui∥≤1,∥vj∥≤1

n∑
i=1

n∑
j=1

Aij⟨ui, vj⟩ ≥
n∑

i=1

n∑
j=1

Aij⟨u′
i, v

′
j⟩.

7.3.3 Classical bound

Theorem 7.2 [ABB+12] For a random 2-player XOR game, its classical value ∆c satisfies

1.2789 . . .√
n

≤ ∆c ≤ 2
√

ln 2 + o (1)√
n

= 1.6651 . . .+ o (1)√
n

with probability 1 − o (1).

The upper bound in this theorem follows just from Chernoff bounds.

The proof of the lower bound is constructive, since it follows from the evaluation

of the expected value

E

 n∑
i=1

n∑
j=1

uivjAij

 ≥ 1.2789 . . . n3/2,

where values of u1, . . . , un, v1, . . . , vn are calculated according to Algorithm 1.

1. Set u1 = 1.

2. For each k = 2, . . . , n do:

(a) For each j = 1, . . . , n, compute Sk−1,j =
∑k−1

i=1 Aijui.

(b) Let ak = (Z (Sk−1,1) , . . . , Z (Sk−1,n)), where Z (x) =


+1, if x > 0
−1, if x < 0
±1 (equiprobably), if x = 0

.

(c) Let bk = (Ak1, Ak2, . . . , Akn).

(d) Let uk ∈ {+1,−1} be such that ak and ukbk agree in the maximum number of positions.

3. For each j = 1, . . . , n, let vj be such that vjSn,j ≥ 0 where Sn,j =
∑n

i=1 Aijui.

Algorithm 1: Algorithm for choosing ui and vj for a given matrix A.
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7.3.4 The difference

In the literature on nonlocal games, one typically studies the ratio ∆q

∆c
. For random

XOR games, our results imply that

1.2011 . . . < ∆q

∆c
< 1.5638 . . .

for almost all games. Our computer experiments suggest that, for large n, ∆q

∆c
≈ 1.305 . . ..

For comparison, the biggest advantage that can be achieved in any 2-player XOR game

is equal to Grothendieck’s constant KG [Gro53] about which we know that [Kri77, Ree91,

BMMN11]

1.67696 . . . ≤ KG ≤ 1.7822139781 . . .

Thus, the quantum advantage in random XOR games is comparable to the maximum pos-

sible advantage for this class of nonlocal games.
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Chapter 8

Mermin-Ardehali Game

8.1 Introduction

There are four quantum XOR games (equivalent to each other up to the input

and/or output inversion), which give the biggest gap between “classical” and “quantum”

outcomes. Those games were discovered in the context of Bell inequalities (physics notion

closely related to nonlocal games) by Ardehali [Ard92], building on an earlier work by

Mermin [Mer90].

They can be described as follows:

|INPUT | 0 1 2 3 · · · N

Γ|INP UT | + + − − · · ·

 + if (N mod 4) ∈ {0, 1}

− otherwise

(8.1)

|INPUT | 0 1 2 3 · · · N

Γ|INP UT | + − − + · · ·

 + if (N mod 4) ∈ {0, 3}

− otherwise

|INPUT | 0 1 2 3 · · · N

Γ|INP UT | − − + + · · ·

 + if (N mod 4) ∈ {2, 3}

− otherwise
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|INPUT | 0 1 2 3 · · · N

Γ|INP UT | − + + − · · ·

 + if (N mod 4) ∈ {1, 2}

− otherwise

For each of those games, the classical and the quantum values are correspondingly

V alC = 2−⌈ N−1
2 ⌉ and V alQ = 1√

2 .

Thus, if we take the ratio V alQ
V alC

as the measure of the quantum advantage, these

games achieve the ratio of 2⌊ N−1
2 ⌋. Werner and Wolf [WW01a] have shown that this ratio

is the best possible among all XOR games. Similar ratio was earlier achieved by Mermin

[Mer90] for a partial XOR game:

|INPUT | 0 1 2 3 · · · N

Γ|INP UT | + any − any · · ·

 + if (N mod 4) ∈ {0}

− if (N mod 4) ∈ {2}

In this game, the input of the players is chosen uniformly at random among all

inputs with an even number of 1s.

We now derive the winning probabilities for Mermin-Ardehali game using our

methods.

8.2 Classical version

Since all of them are symmetric to each other (with respect to inversion of input

and/or output bits), we will consider only the first game (8.1). Any normalized strategy

for a classical version of such game can be further simplified.

Lemma 8.1 In Mermin-Ardehali game, if there are two players with strategies (01) and

(10), replacing their strategies by (00) and (11) does not change the average winning prob-

ability.

Proof: Let us compare the outcome before and after a simplification of type (01) (01) →

(00) (11). Imagine the situation, where the referee has already produced inputs for all
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except two players, whose choices are being changed. And he is ready to toss up his coin

twice in order to decide what input to give to the remaining players.

If the coin will produce different inputs for these players, their answers will be the

same: one will answer 0 and the other will answer 1, so the outcome will remain unchanged.

If the coin will produce equal inputs for players — 00 or 11 — it is a more tricky

case. Let us notice first that the rules of the game require different answers for 00 and

for 11. This can be seen from Table (8.1): changing |INPUT | by 2, right answer changes

to opposite value. The second fact to notice is that the strategy before the simplification

resulted in equal answers on input 00 and on input 11, that is in one correct and one incorrect

answer. The third fact is that the strategy after the simplification will do essentially the

same (but in opposite sequence): one answer will be incorrect and the other one will be

correct.

So, the total average is equal for both strategies. 2

Finally, when none of the simplifications can be applied, then the strategy is one

from the following set: 

(00)N ,

(00)N−1 (01) ,

(00)N−1 (10) ,

(00)N−1 (11)


Theorem 8.2 [AKN+13] For any N the optimal classical strategy has winning probability

1
2

+ 2
−⌈N + 1

2
⌉
.

Proof: By f (N, 01) we will denote the number of winning inputs (as a subset of all 2N

inputs) for N -player game with strategy (00)N−1 (01). The value of f for f (N, 00),

f (N, 10), f (N, 11) will be defined similarly. We will use these two elementary facts ex-

tensively:
(N

k

)
= 0 if k exceeds N or is less than zero, and

(N
k

)
+
( N

k−1
)

=
(N+1

k

)
,

which holds for any pair of N and k. Let’s evaluate f (N, 00). This strategy always pro-

duces XOR equal to zero, therefore f (N, 00) is equal to the number of all N -bit strings,

whose Hamming weight is 0 or 1 modulo 4. Counting over all Hamming weights we have

f (N, 00) =
(N

0
)

+
(N

1
)

+
(N

4
)

+
(N

5
)

+ . . . =
∑∞

k=0
(N

4k

)
+
( N

4k+1
)

=
∑∞

k=0
(N+1

4k+1
)
. The sum is
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bounded because of the first elementary fact. This infinity-based notation will be helpful

later. Strategy f (N, 01) always produces XOR equal to the last bit of the input. If the last

bit is zero, then for the strategy to give a correct answer, the Hamming weight of all other

bits of the input must be 0 or 1 modulo 4 and there are
∑∞

k=0
(N−1

4k

)
+
(N−1

4k+1
)

=
∑∞

k=0
( N

4k+1
)

such inputs. If the last bit is one, then for the strategy to give a correct answer, the

Hamming weight of all other bits of the input must be 1 or 2 modulo 4 and there are∑∞
k=0

(N−1
4k+1

)
+
(N−1

4k+2
)

=
∑∞

k=0
( N

4k+2
)

such inputs. Taking these two facts together we have:

f (N, 01) =
∑∞

k=0
( N

4k+1
)

+
∑∞

k=0
( N

4k+2
)

=
∑∞

k=0
(N+1

4k+2
)
. Analyzing the other two cases

in a similar manner we get f (N, 10) =
∑∞

k=0
(N+1

4k

)
and f (N, 11) =

∑∞
k=0

(N+1
4k+3

)
.

Let us notice that f (1, 00) = 2, f (1, 01) = 1, f (1, 10) = 1, f (1, 11) = 0. Also no-

tice that f (N + 1, 00) = f (N, 00) + f (N, 10), f (N + 1, 01) = f (N, 01) + f (N, 00),

f (N + 1, 10) = f (N, 10) + f (N, 11) and f (N + 1, 11) = f (N, 11) + f (N, 01), which can

be proved by using the second elementary fact. By using mathematical induction one can

immediately prove that the number of winning inputs for each of four strategies can be

characterized as follows:

N (mod 8) (00) (01) (10) (11)

0 2
N
2 −1 + 2N−1 2N−1 − 2

N
2 −1 2

N
2 −1 + 2N−1 2N−1 − 2

N
2 −1

1 2
N−1

2 + 2N−1 2N−1 2N−1 2N−1 − 2
N−1

2

2 2
N
2 −1 + 2N−1 2

N
2 −1 + 2N−1 2N−1 − 2

N
2 −1 2N−1 − 2

N
2 −1

3 2N−1 2
N−1

2 + 2N−1 2N−1 − 2
N−1

2 2N−1

4 2N−1 − 2
N
2 −1 2

N
2 −1 + 2N−1 2N−1 − 2

N
2 −1 2

N
2 −1 + 2N−1

5 2N−1 − 2
N−1

2 2N−1 2N−1 2
N−1

2 + 2N−1

6 2N−1 − 2
N
2 −1 2N−1 − 2

N
2 −1 2

N
2 −1 + 2N−1 2

N
2 −1 + 2N−1

7 2N−1 2N−1 − 2
N−1

2 2
N−1

2 + 2N−1 2N−1

This proves the fact that for any N the optimal strategy has 2⌊ N−1
2 ⌋ + 2N−1

winning inputs and therefore the winning probability is 1
2 + 2−⌈ N+1

2 ⌉. 2
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Our analysis of the game is different from the one in Ardehali’s paper [Ard92].

Ardehali’s analysis is based on a clever trick that reduces the winning probability to an

expression involving complex numbers. This results in a proof that is fairly short but is

specific to Mermin-Ardehali game.

Our method of evaluating a sum of binomial coefficients is applicable to any sym-

metric XOR game.

8.3 Quantum version

The value of the Mermin-Ardehali game can be obtained by maximizing the one-

variable expression in equation (5.3). In the case of Mermin-Ardehali game, the maximum of

this expression is 1√
2

and it is achieved by λ = eiθ where θ = (2N + 1) mod 8
N

π+k2π
N

.

The result f (λ) = 1√
2

corresponds to the winning probability of Prwin =
1
2

+ 1
2
√

2
. It has been known since [Ard92] that Prwin = 1

2
+ 1

2
√

2
but the advantage

of our approach is that we obtain the maximum winning probability by an easy argument

that is applicable to any symmetric XOR game.

The winning strategy can be obtained by reversing the argument of [WW01a] and

going from λ to transformations for the N players. There are infinitely many possible sets

of strategies for each of the given θ. One of these strategies is described in [Ard92]. We

include an example of another strategy — of course, symmetric one — in Section 8.4.

The optimality of Prwin = 1
2

+ 1
2
√

2
can be also shown by a very simple

argument, which does not involve any of the machinery above.

Theorem 8.3 [AKNR10] 1
2

+ 1
2
√

2
is the best possible probability for quantum strategy.

Proof: We modify the game by providing the inputs and the outputs of the first N − 2

players to the (N − 1)st and N th players. Clearly, this makes the game easier: the last two

players can still use the previous strategy, even if they have the extra knowledge.

Let k be the number of 1s among the first N − 2 inputs. Then, we have the

following dependence of the result on the actions of the last two players.
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x1 + x2 + . . .+ xN−2 xN−1 + xN

0 1 2

k + + − if k mod 4 = 0

k + − − if k mod 4 = 1

k − − + if k mod 4 = 2

k − + + if k mod 4 = 3

In either of the four cases, we get a game (for the last two players) which is

equivalent to the CHSH game and, therefore, cannot be won with probability more than
1
2

+ 1
2
√

2
. 2

8.4 Optimal quantum strategy

A common behavior for a player in a quantum nonlocal game is to perform some

local operation on his qubit, perform a measurement in the standard basis and answer

the result of the measurement. In other words, a choice for a player can be expressed

with two matrices: one for input 0 and other for input 1. In fact, players may use equal

strategies to achieve the best outcome. So optimal strategy for any quantum XOR game

can be found and proved with numerical optimization quite simply. For quantum version

of Mermin-Ardehali game, the two matrices for all players look like the following:

1√
2


��
��

C
CO 1

−1 ��
��

�
��

 for input 0; 1√
2


��
��

��: 1

−1 ��
��

XXz

 for input 1

Complex numbers here are illustrated as vectors on the complex plane. Marked

small angles between vectors and axes are equal to each other and their value γ depends on

the number of players.

Let us assume x as a value of the input bit. Then these two matrices can be

described as one:
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1√
2

 ei( π
2 ·(1−x)+γ) e0

eiπ ei(− π
2 ·(1−x)−γ)

 (8.2)

The value γ can be expressed by the table:

Number of players Angle γ

2 5
8π

3 7
12π

4 1
16π

5 3
20π

6 5
24π

7 7
28π

8 1
32π

...
...

N (2N+1) mod 8
4N π

...
...

Consider a quantum system in the initial state

|GHZ⟩ = 1√
2

|00 . . . 0⟩ + 1√
2

|11 . . . 1⟩. Let us express all local operations, that the

players apply to their qubits during the play, as a tensor product of N matrices

M = C1 ⊗ C2 ⊗ . . . ⊗ CN (where each Ck can be represented as in (8.2)). Each cell of M

can be calculated as follows:

M[j1j2...jN , i1i2...iN ] =
N∏

k=1
Ck [jk, ik]

where i1, i2, . . . , iN , j1, j2, . . . , jN ∈ {0, 1}.

After all local operations are complete, let’s express the final state directly as sum

of its amplitudes∑
y1,...,yN ∈{0,1}

αy1...yN |y1 . . . yN ⟩ = M

( 1√
2

|00 . . . 0⟩ + 1√
2

|11 . . . 1⟩
)

Consider the value of an arbitrary amplitude αy1...yN . As there are only two nonzero am-

plitudes in the starting state, any αy1...yN will consist of two summands:

αy1...yN = 1√
2

N∏
k=1

Ck [0, yk] + 1√
2

N∏
k=1

Ck [1, yk]
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Assuming players got an N -bit input x1 . . . xN , let us substitute the values from

(8.2) for each Ck:

αy1...yN = 1√
2

N∏
k=1

1√
2
ei((γ+ π

2 (1−xk))·(1−yk)) +

+ 1√
2

N∏
k=1

1√
2
ei(π+( π

2 −γ+ π
2 ·xk)·yk) =

=
( 1√

2

)N+1
ei
∑N

k=1(γ+ π
2 (1−xk))·(1−yk)

+
( 1√

2

)N+1
ei
∑N

k=1(π+( π
2 −γ+ π

2 ·xk)·yk)

Now we are interested mainly in the difference between rotation angles on the

complex plane for these two summands. That is,

N∑
k=1

[(
γ + π

2
(1 − xk)

)
(1 − yk) −

(
π +

(
π

2
− γ + π

2
xk

)
yk

)]

=
N∑

k=1

[(
γ + π

2
− π

2
xk − γyk − π

2
yk + π

2
xkyk

)
−
(
π + π

2
yk − γyk + π

2
xkyk

)]

=
N∑

k=1

(
γ + π

2
− π

2
xk − π

2
yk − π − π

2
yk

)

=
N∑

k=1

(
γ − π

2
− π

2
xk − πyk

)

Let us now consider the case of N = 4n and γ = 1
4N

π (and similar reasoning holds

for any N). In this case the difference is expressed by (throwing out π
2

×N ≡ 0 (mod 2π),

which is now redundant)
1
4
π − 1

2
π

N∑
k=1

(xk + 2yk)

By modulus 2π it is equal to the value from Table 8.1.

If the angle between two summands (both of the same length
( 1√

2

)N+1
) is ±1

4π ,

then their sum is ( 1√
2

)N−1
cos π

8
=
( 1√

2

)N−1
√

2 +
√

2
2

. (8.3)
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Table 8.1: Amplitude angle values for different inputs
|INPUT | |OUTPUT | = y1 + y2 + . . .+ yN

= x1 + x2 + . . .+ xN 0 1 2 3 . . .

0 1
4π −3

4π
1
4π −3

4π · · ·

1 −1
4π

3
4π −1

4π
3
4π · · ·

2 −3
4π

1
4π −3

4π
1
4π · · ·

3 3
4π −1

4π
3
4π −1

4π · · ·

4 1
4π −3

4π
1
4π −3

4π · · ·
...

...
...

...
... . . .

(Recall that the absolute value of the sum of two vectors of the same length x with angle ϕ

between them is calculated as
∣∣∣2x cos ϕ

2

∣∣∣.)
If the angle between two summands (both of the same length

( 1√
2

)N+1
) is ±3

4π,

then their sum is ( 1√
2

)N−1
cos 3π

8
=
( 1√

2

)N−1
√

2 −
√

2
2

As one can see from Table 8.1, bigger amplitudes always correspond to correct

answers (and smaller amplitudes correspond to incorrect answers). The sum of the squares of

formula (8.3), i.e., the result of the measurement for any fixed input, will give the probability

of right answer:

∑
Angle= ±1

4π

( 1√
2

)N−1
√

2 +
√

2
2

2

= 2N−1
( 1√

2

)2(N−1)

√

2 +
√

2
2

2

= 1
2

+ 1
2
√

2

Note that this probability is stable: it remains the same for all possible inputs

from the referee.
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Chapter 9

CHSH Game with Arbitrary Input

Distribution

9.1 Introduction

CHSH game is a popular illustration of the difference between classical and quan-

tum worlds. Namely, it shows violation of the original Bell’s inequality. In terms of the

CHSH game, the biggest such violation can be achieved by choosing uniformly distributed

players’ input.

It could be interesting however to study more general case, i.e. CHSH games with

different input distributions.

9.2 Classical version

Let us start with the classical optimum for a CHSH game with arbitrary distribu-

tion of input.

First of all it is worth to recall the fact that no randomized strategy can give better

results than optimal deterministic one does. So, it is sufficient to consider and evaluate finite

number of different deterministic strategies only. Since each of two players has to determine

his binary answer for two possible inputs, this number is 24 = 16. But it turns out to be

sufficient to consider only four of them in order to find an optimum.
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The following four strategies belong to the set of optimal classical strategies for

CHSH game with uniform distribution of input.

Answers of player 1 Answers of player 2 Inputs, for which strategy
Input 0 Input 1 Input 0 Input 1 gives correct answer

0 0 0 0 0, 0 0, 1 1, 0 ////1, 1
0 1 0 0 0, 0 0, 1 ////1, 0 1, 1
0 0 0 1 0, 0 ////0, 1 1, 0 1, 1
0 1 1 0 ////0, 0 0, 1 1, 0 1, 1

Since each strategy in CHSH game results in an incorrect answer for at least one

input, each of the other 12 strategies either is equivalent to one of the above-mentioned four

strategies or is strictly dominated by one of them. Therefore it is sufficient to consider only

the four above-mentioned strategies.

Suppose we have input distribution (P00, P01, P10, P11), where Pab stands for the

probability to receive input “a, b” from the referee. We must select any pair (a∗, b∗), such

that

Pa∗b∗ = min
a,b

Pab

Then we must search for this pair crossed out in the rightmost column of the table (i.e. for

“///////a∗, b∗”) and select the respective strategy. This strategy will exploit differences of input

distributions in the best possible way and will give outcome

1 − min (P00, P01, P10, P11)

which is evidently the best possible expected value for the given distribution.

We conclude that the classical outcome depends linearly on the input distribution

and has the lowest expected value (0.75) for the uniform input distribution.

9.3 Analysis of quantum version

In this section we shall consider only those input distributions, which preserve

symmetry of the game with respect to permutations of players. In other words, we shall

assume that P01 = P10 = 1 − P00 − P11
2

.
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In order to find an optimal quantum strategy for the players in such symmetric

game, we can make some useful restrictions:

1. Players always answer with the result of the measurement applied to their qubits.

2. Given x as an input, a player applies operation

Ûx =


eiϕx

√
2

1√
2

− 1√
2

e−iϕx

√
2


to his qubit and then makes a measurement.

3. Strategies for both players are the same.

Proof:

1. The first fact follows from the result of [WW01a], namely from the assumption that

observables A (0) , A (1) for any player may be unitary.

2. The second fact also can be simply followed from [WW01a]. To figure out observables

A (0) , A (1) for any player, one should calculate:

A (x) = Ûx
†

 1 0

0 −1

 Ûx =

 0 −eiϕx

−e−iϕx 0


Thus both observables A (0) and A (1), as well as their product

C = A (0)A (1) =

 ei(ϕ0−ϕ1) 0

0 ei(ϕ1−ϕ0)

 (9.1)

can have any eigenvalue (from the set {γ : |γ| = 1}, depending on the values ϕ0 and

ϕ1) needed to maximize the outcome of the game.

3. Equality of players’ strategies could be proven in the similar way as in analysis of

general XOR games.
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2

Now let us perform some calculations in order to figure out the best outcome for

the described set of quantum strategies.

Given an input “x, y”, players perform the following transformation on their en-

tangled quantum system:

Ûx ⊗ Ûy =


eiϕx

√
2

1√
2

− 1√
2

e−iϕx

√
2

⊗


eiϕy

√
2

1√
2

− 1√
2

e−iϕy

√
2



=



ei(ϕx+ϕy)

2
eiϕx

2
eiϕy

2
1
2

−eiϕx

2
ei(ϕx−ϕy)

2
−1

2
e−iϕy

2
−eiϕy

2
−1

2
ei(ϕy−ϕx)

2
e−iϕx

2
1
2

−e−iϕy

2
−e−iϕx

2
e−i(ϕx+ϕy)

2


Just like in the analysis of an ordinary CHSH game, we only have to consider

amplitudes of |00⟩ and |11⟩ of the initial state and on the same amplitudes of the final

state, that is, the corner values of this matrix.

The winning probability for such a strategy is as follows:

Win(ϕ0, ϕ1) = P00 ×
(∣∣∣ei(ϕ0+ϕ0)

2
√

2
+ 1

2
√

2

∣∣∣2 +
∣∣∣ 1
2
√

2
+ e−i(ϕ0+ϕ0)

2
√

2

∣∣∣2)+

P01 ×
(∣∣∣ei(ϕ0+ϕ1)

2
√

2
+ 1

2
√

2

∣∣∣2 +
∣∣∣ 1
2
√

2
+ e−i(ϕ0+ϕ1)

2
√

2

∣∣∣2)+

P10 ×
(∣∣∣ei(ϕ1+ϕ0)

2
√

2
+ 1

2
√

2

∣∣∣2 +
∣∣∣ 1
2
√

2
+ e−i(ϕ1+ϕ0)

2
√

2

∣∣∣2)+

P11 ×
(

1 −
∣∣∣ei(ϕ1+ϕ1)

2
√

2
+ 1

2
√

2

∣∣∣2 −
∣∣∣ 1
2
√

2
+ e−i(ϕ1+ϕ1)

2
√

2

∣∣∣2)

Since
∣∣∣eiϕ + 1

∣∣∣ =
∣∣∣e−iϕ + 1

∣∣∣ = 2 cos ϕ
2

, we can rewrite this expression as

Win(ϕ0, ϕ1) = P00 cos2 ϕ0+

(P01 + P10) cos2 ϕ0 + ϕ1
2

+

P11 − P11 cos2 ϕ1
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Since cos2 ϕ = cos 2ϕ+ 1
2

,

Win(ϕ0, ϕ1) = P00
2

(cos 2ϕ0 + 1) +
P01 + P10

2
(cos (ϕ0 + ϕ1) + 1) +

P11 − P11
2

(cos 2ϕ1 + 1)

= P00
2

cos 2ϕ0 + P01 + P10
2

cos (ϕ0 + ϕ1) − P11
2

cos 2ϕ1+
P00 + P01 + P10 + P11

2︸ ︷︷ ︸
= 1

2

Finally, we define Bias (ϕ0, ϕ1) as Win (ϕ0, phi1) − Loss (ϕ0, ϕ1):

Bias (ϕ0, ϕ1) = Win (ϕ0, ϕ1) − Lose (ϕ0, ϕ1)

= Win (ϕ0, ϕ1) − (1 −Win (ϕ0, ϕ1))

= 2 ×Win (ϕ0, ϕ1) − 1

= P00 cos 2ϕ0 + (P01 + P10) cos (ϕ0 + ϕ1) − P11 cos 2ϕ1

We notice that this expression does not depend on ratio of P01 and P10, but depends

only on their sum. This is not surprising: since players use the same strategy, expected

value of the game must not depend on permutations of players. In further considerations

it will be useful to replace P01 + P10 with 1 − P00 − P11.

So, now our task is: given values P00 and P11, just maximize the expression

Bias (ϕ0, ϕ1) = P00 cos 2ϕ0 + (1 − P00 − P11) cos (ϕ0 + ϕ1) − P11 cos 2ϕ1 (9.2)

This procedure turns out not to be so trivial. An extremum of function

Bias (ϕ0, ϕ1) requires the following two conditions to be satisfied:
d

dϕ0
Bias (ϕ0, ϕ1) = 0

d
dϕ1

Bias (ϕ0, ϕ1) = 0

It follows that − (1 − P00 − P11) sin (ϕ0 + ϕ1) − 2P00 sin 2ϕ0 = 0

− (1 − P00 − P11) sin (ϕ0 + ϕ1) + 2P11 sin 2ϕ1 = 0
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And this could be rewritten in slightly more beautiful form:

(1 − P00 − P11) sin (ϕ0 + ϕ1) = −2P00 sin 2ϕ0 = 2P11 sin 2ϕ1 (9.3)

In order to understand the following steps, it is worth to imagine what all that

means when drawn on a diagram.

-

6

−11
2π −1

2π

1
2π 11

2π
f f f

f f f f f f
f f f

−2P00 sin 2ϕ0

2P11 sin 2ϕ1

(1 − P00 − P11) sin (ϕ0 + ϕ1)

Here we tried to illustrate three functions
f1 (ϕ0 + ϕ1) = (1 − P00 − P11) sin (ϕ0 + ϕ1)

f2 (2ϕ0) = −2P00 sin 2ϕ0

f3 (2ϕ1) = 2P11 sin 2ϕ1

(9.4)

in such a way as if their arguments ϕ0 + ϕ1, 2ϕ0, and 2ϕ1 would be mutually independent.

If they were really independent, then we would be interested in every triple of points of

different curves, which lies on the same horizontal line: we could claim then that each of

such triple corresponds to an extremum of (9.2).

Fortunately, there are not so many extremums. Now we are going to find all points,

which meet restriction of equidistance: arguments of form ϕ0 +ϕ1, 2ϕ0, and 2ϕ1 follow that

values of arguments 2ϕ0 and 2ϕ1 are equidistant from value of argument ϕ0 + ϕ1.
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There are marked some triples on the diagram that meet both our conditions:

values of the margin arguments are equidistant from the value of the middle argument, and

values of all three respective functions are equal (we shall call them correct triples).

Actually, there are shown eight correct triples, three of which are collapsed into

single points (namely, one point 2ϕ0 = ϕ0 + ϕ1 = 2ϕ1 = −π; one point in 0; and one

point in π). Additionally, there are marked triple (2ϕ0, ϕ0 + ϕ1, 2ϕ1) = (−π, 0, π) and triple

(2ϕ0, ϕ0 + ϕ1, 2ϕ1) = (π, 0,−π). These five triples are correct for each input distribution

P00, P01, P10, P11.

But we must consider also some specific correct triples. On the diagram there are

marked three such triples, which do depend on values of P00 and P11 (from left to right):

1. (2ϕ0, ϕ0 + ϕ1, 2ϕ1) = (0.28,−0.18,−0.64)

2. (2ϕ0, ϕ0 + ϕ1, 2ϕ1) = (−0.28, 0.18, 0.64)

3. (2ϕ0, ϕ0 + ϕ1, 2ϕ1) = (3.42, 2.96, 2.50)

So, we can figure out eight function’s Bias (ϕ0, ϕ1) extremum points from this

diagram. Actually, they are only candidates to extremums, as they could turn out to be,

for example, saddle points (that is, correspond to min
ϕ′

0

Bias
(
ϕ′

0, ϕ1
)

= max
ϕ′

1

Bias
(
ϕ0, ϕ

′
1
)
).

Then we won’t have any interest in them. Besides that, they could turn out to be minimums,

and then we also won’t have any interest in them. But on the other hand, we can be sure

that after we have found all correct triples, we won’t miss any maximum. That is, we should

check finite (and quite small) number of correct triples and figure out that triple, which

correspond to the biggest value of Bias (ϕ0, ϕ1).

How can we find all correct triples, which correspond to some given values P00 and

P11? In order to do this we are going to start with the condition of functions’ equity, and

then add the condition of arguments’ equidistance.

But before it is worth to take a look on the diagram once again and try to imagine

what could be the diagrams and solutions for arbitrary P00 and P11. One could notice that

the amplitudes of functions can vary, but functions should keep their signs, as P00, P01, 1−

P00 − P11 all are positive numbers (unless one of them collapses to zero; that would
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immediately follow that the game is trivial and has 100%-winning classical strategy, as it

was described in the analysis of classical case). That is, we can assume the diagram to

consist of two “positive” sinusoids and one “negative” sinusoid. The second fact to notice

is that none of these sinusoids can exceed 1 by its absolute value, since we can expect that

P00, P01, and 1 − P00 − P11 all are ≤ 1.

Now, let us continue our search for correct triples and start with considering each

horizontal line of the diagram. Say, let us fix a horizontal line at height H. We are only

interested in horizontal lines that cross all three functions (9.4). That means,

|H| ≤ min (|1 − P00 − P11| , |−2P00| , |2P11|) < 1

On the next step, let us add the condition of equidistance of the arguments. When

expressed via function valueH, values of arguments ϕ0+ϕ1, 2ϕ0, and 2ϕ1 will look as follows:

(1 − P00 − P11) sin (ϕ0 + ϕ1) = H =⇒ ϕ0 + ϕ1 = arcsin H

1 − P00 − P11

−2P00 sin 2ϕ0 = H =⇒ 2ϕ0 = arcsin H

−2P00

2P11 sin 2ϕ1 = H =⇒ 2ϕ1 = arcsin H

2P11

(9.5)

So, the condition of equidistance of the arguments for value H means that

2 arcsin H

1 − P00 − P11
= arcsin H

−2P00
+ arcsin H

2P11
(9.6)

Unfortunately, last claim was not completely correct. There are some more cases,

which can guarantee to meet the condition of equidistance of the arguments. Namely, in

the equation (9.6) we can replace any of three components of form “arcsinX” with

“π − arcsinX”. Laws of trigonometry forces us here to spread our considerations into

23 = 8 different threads (actually, less than eight, as some of them are completely equal,

but definitely more than one).

But as all these threads are of quite similar nature, we shall limit ourselves with

only that one described by (9.6).

Now let us solve (9.6) by considering sines of both sides:



76

2 arcsin H

1 − P00 − P11
= arcsin H

−2P00
+ arcsin H

2P11

sin
(

2 arcsin H

1 − P00 − P11

)
= sin

(
arcsin H

−2P00
+ arcsin H

2P11

)

2 × sin
(

arcsin H

1 − P00 − P11

)
sin
(

arcsin H

−2P00

)
cos

(
arcsin H

2P11

)
=

× cos
(

arcsin H

1 − P00 − P11

)
+ cos

(
arcsin H

−2P00

)
sin
(

arcsin H

2P11

)

2H
√

1 − H2

(1 − P00 − P11)2

1 − P00 − P11
=

H

√
1 − H2

4P 2
11

−2P00
+
H

√
1 − H2

4P 2
00

2P11

This is quite heavy formula, but it is still computable. We shall not dive into

simplifying these expressions, as this process is rather boring.

For each value H, which satisfies this equation, one must compute

ϕ0 =
arcsin H

−2P00
2

or
π − arcsin H

−2P00
2

ϕ1 =
arcsin H

2P11
2

or
π − arcsin H

2P11
2

(9.7)

and then check the (probably, extremal) value of Bias (ϕ0, ϕ1) for corresponding ϕ0 and ϕ1.

In this manner all extremums of function Bias (ϕ0, ϕ1) would be observed and a maximum

would be found among them. (Moreover, in this manner we could also find all minimums

and all saddle points of this function, and thus make some estimations about what would

happen, if players wanted to lose, or if one player wanted to lose and another wanted to

win.)
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9.4 Optimal quantum strategies

Luckily, there is a shorter way to find strategies for the quantum version of this

game.

In order to do this, we shall find the upper bound for Bias (ϕ0, ϕ1) by optimizing

expression ∣∣∣P00 + (1 − P00 − P11)λ− P11λ
2
∣∣∣

Direct calculations show that

max
|λ|=1

∣∣∣P00 + (1 − P00 − P11)λ− P11λ
2
∣∣∣ = max

|λ|=1

√√√√√√√√√
−4P00P11ℜ2(λ)

+2 (1 − P00 − P11) (P00 − P11) ℜ(λ)

+1 − (1 − P00 − P11) (P00 + P11)

(by ℜ(λ) we denote the real part of complex number λ).

The quadratic function of ℜ (λ) under the square root achieves its maximum at

the point where its derivative −8P00P11ℜ (λ) + 2 (1 − P00 − P11) (P00 − P11) turns to

zero, that is, at

ℜ(λ) = (1 − P00 − P11) (P00 − P11)
4P00P11

= 1 − P00
4P11

− 1 − P11
4P00

and the closer is ℜ(λ) to this point, the bigger is the value of the function.

Since |λ| = 1 =⇒ ℜ(λ) ∈ [−1; 1], the closest possible value for ℜ(λ) is at

ℜ(λopt) = max
(

−1,min
(

1, (1 − P00 − P11) (P00 − P11)
4P00P11

))
In this way we can find the exact value of λopt, which corresponds to the optimal

eigenvalue of (9.1).

Phase of this eigenvalue arg (λopt) is just the difference between angles ϕ0 and ϕ1:

ϕ1 = ϕ0 + arg (λopt) (9.8)

Combining (9.8) with (9.5) we get the following equation:

H = (1 − P00 − P11) sin (ϕ0 + ϕ0 + arg (λopt)) = −2P00 sin 2ϕ0
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Solving this equation will lead to the following result:

sin 2ϕ0 = ±ξ, where ξ = 1√√√√(cos (arg (λopt)) + 2P00
1−P00−P11

sin (arg (λopt))

)2

+ 1

(9.9)

Checking results for four possible values of ϕ0 (± arcsin ξ
2

and π ∓ arcsin ξ
2

) will

provide us with optimal ϕ0 and ϕ1.

Of course, (9.9) can be further simplified, but let us limit our considerations only

with the general principle of building this formula.

These results partly overlap with the work of Lawson et al. [LLP10], which also

analyzes CHSH game under non-uniform distributions on the inputs. We, however, analyze

different probability distributions and use different methods.
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Chapter 10

Summary

Part II is dedicated to the so-called nonlocal games, which can be briefly defined

as cooperative games of non-communicating players against a referee. These games are

known as a simple but useful model which is widely used for displaying nonlocal properties

of quantum mechanics. Among them XOR games (whose outcome depends only on the

parity of players’ answers) are of special interest, because they appear to have the biggest

difference between their classical and quantum values. In order to show this we described

our techniques for analyzing such games.

In Chapter 5 we initiated studying multiplayer nonlocal XOR games with {0, 1}-

valued players’ input, which are symmetric w.r.t. permutation of players. We showed that

for any such game there always exists a symmetric optimal quantum strategy, and defined

quite small set, which with certainty contains an optimal classical strategy. These results

provide an insight for efficient (polynomial-timed) calculating classical and quantum values

of an arbitrary game from the above-mentioned class.

On the ground of these ideas we developed efficient algorithms for determining

both classical and quantum values, and in Chapter 6 we presented statistical results of

analysis of millions of games picked at random (part of these results were introduced in the

joint work [AIKV12]). Additionally we built an explicit bound for the expected classical

value of a random game, and made a hypothesis on the expected quantum value of a random

game. These results demonstrate significant quantum-over-classical advantage for almost
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all multiplayer nonlocal XOR games.

In Chapter 7 we briefly introduced the results of the joint work [ABB+12], which

is dedicated to the two-player nonlocal XOR games with large players’ input. We performed

study on general properties of a random game from that set. One can specify the rules of

such game by an n×n matrix, whose entries are +1 and −1. Two classical bounds and one

explicit quantum bound for the expected value of a random game follow from a large variety

of techniques, most of which come from the theory of random matrices. These results also

confirm that quantum-over-classical advantage is typical for nonlocal XOR games.

In Chapter 8 we studied the well known Mermin-Ardehali game, which demon-

strate the biggest possible quantum-over-classical advantage in its class of games. We ana-

lyzed this game in the light of ideas from Chapter 5 and followed its known values (together

with appropriate symmetric strategies) in different way, which (as we hope) is simpler than

one in original works [Mer90, Ard92].

In Chapter 9 we performed analysis of modified CHSH games, where the referee

may choose the probability distribution of players’ input. We obtained quite heavy formulae

for finding optimal players’ strategies in these games. The overall result conforms to the

immanent spirit of Part II: the more symmetric (i.e. uniform) the distribution of input is,

the greater is the quantum-over-classical advantage in the game.
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Part III

Games with Quantum Decisions
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Chapter 11

Introduction

In Part II we studied nonlocal games. In these games players are provided with

some settings and must declare their decisions in the form of common classical information.

This part is dedicated to another interesting class of games. In these games, unlike

nonlocal ones, players are allowed to declare their decisions by providing a quantum system

in some state, i.e. in the form of quantum information. Since this class of games seems

not to have any conventional name so far, we proposed to call them “games with quantum

decisions”.

One of the most widely studied models of game quantization was initially proposed

in [EWL99] and further developed in a number of works, up to physical implementation

on a quantum computer [DLX+01]. In this model the game process follows the predefined

protocol, which consists of the following steps:

1. a referee prepares a multipartite quantum system (in an entangled state);

2. parts of this quantum system are being distributed among the players;

3. players perform arbitrary operations on their particles (by applying some unitary

operators on their states);

4. the referee collects all the system together, applies some additional unitary operations

and performs a measurement;

5. payoffs are being paid to the players according to the results of the measurement.
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This is a general description of the protocol, which needs one significant remark.

The fact is that when one builds a quantum version of a classical game, he might intend

to keep the quantum game analogous to its classical version. In order to do so, he must

properly define operations made by the referee.

Traditionally this model is being applied for quantization of non-cooperative games

(such as Prisoner’s Dilemma [EWL99] or Kolkata Restaurant Problem [SH11]), since they

are comparatively easy analyzable. But it is also applicable for quantization of cooperative

games, in which entanglement effects could affect also the process of forming coalitions.

Initially this model was demonstrated on the quantization of Prisoner’s Dilemma

(see Section 3.4 for details), which is a 2 × 2 matrix game. The one-dimensional space of

the referee’s operations

Ĵ ∈
{

exp
(
iγ

(0001
0010
0100
1000

))
: γ ∈

[
0, π

4

]}
(11.1)

(where parameter γ represents the amount of the initial entanglement and thus the power

of the quantum effect in the game) was chosen in order to keep the same outcome of the

game for (a) all four pure classical strategies and (b) all two-dimensional space of mixed

strategies in the mixed expansion of the original Prisoner’s Dilemma.

This model is very naturally applicable to a game with any number of players

N , just by substituting the
(0001

0010
0100
1000

)
with 2N × 2N exchange matrix in (11.1) (e.g. similar

technique was introduced in [BH01b]). On the other hand, this model has quite specific

limitation on the amount of strategies for each player. Namely, each player in the classical

version of a game should have exactly 2 strategies (and respectively one-dimensional space

of strategies in the mixed expansion of this game, where the single parameter represents

the probability of choosing one or another of the two options).

Probably the first step towards an M -choice generalization of an N -player game

is done in [SH11] by constructing a quantum minority game, where three players use three-

level quantum states.

In this part we introduce rather new approach to the generalizing similar scheme

to the set of arbitrary multiplayer multichoice game. This approach has been published in

our paper [Kra13].
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Chapter 12 is dedicated to formal description of the quantization scheme, and in

Chapter 13 we illustrate this technique on a specific example of voting game. The key idea

is repeated in both chapters in order to keep them self contained to a certain degree, and

to allow the reader to skip or just to run over one of them.

Finally, in Chapter 14 we discuss some known issues and comments on game

quantization.
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Chapter 12

Technical Details

12.1 Settings

Let us consider an arbitrary N -player game, where ith player has arbitrary number

(say Mi) of options (i.e. pure classical strategies).

We shall now treat this game in the spirit of the considerations applied to the

Prisoner’s Dilemma (see Section 3.4). Yet lifting of restrictions on the number of choices

will lead to a different quantization method.

12.2 Classical formalism

We can formulate the settings of the game and the behavior of the players in terms

of linear algebra in the following way:

1. The game board consists of N unit vectors, each from {0, 1}Mi for i ∈ {1, 2, . . . , N}.

Initially their values are a1i =


1
0
...
0

.

2. All players independently choose shift operators A1, A2, . . . , AN and apply them one
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by one to a11, a12, . . . , a1N . Thus the ith player chooses Mi ×Mi matrix

Ai ∈





0 1 0 · · · 0 0

0 0 1 . . . 0 0
...

... . . . . . . . . . ...

0 0 0 . . . 1 0

0 0 0 · · · 0 1

1 0 0 · · · 0 0



k

= [myx] : myx =
{

1 if y+k≡x(mod N),
0 otherwise , k ∈ N


(12.1)

and multiplies it with a1i.

Let us denote a2i = Aia1i for i ∈ {1, 2, . . . , N}.

3. Each resulting vector a2i is treated as probability distribution of choosing among Mi

options available for the ith player.

4. Players get their payoffs according to the table of payoffs.

12.3 Quantum formalism

We now propose the general scheme for constructing a quantum version of an ar-

bitrary miltiplayer multichoice game. This scheme is somewhat an analog and an expansion

of the classical scheme described in Section 12.2.

1. The game board consists of an N -qudit quantum system, where the ith qudit is an

Mi-level quantum subsystem.

The initial state of the game board is ψ1 = |11 . . . 1⟩ (and corresponds to choosing the

first option by each of N players).

1q Before all players’ actions, an entangling operator Ĵ (from the set, which we shall

define later) is applied to the system, which gets “entangled” into state ψ1q = Ĵψ1.

2. Players independently choose shift or any other unitary operators Â1, Â2, . . . , ÂN and

apply them one by one to the N qudits of the system.



87

Its state changes to ψ2 =
(
Â1 ⊗ Â2 ⊗ . . .⊗ ÂN

)
ψ1q .

2q After all players’ actions are done, an operator Ĵ† is applied to the system.

Its state changes to ψ2q = Ĵ†ψ2.

Let us denote ψ2q =
M1∑

k1=1

M2∑
k2=1

. . .
MN∑

kN =1
αk1k2...kN

|k1k2 . . . kN ⟩.

3. Resulting qubits are measured in the computational basis, and the absolute squares

of the probability amplitudes |αk1k2...kN
|2 (of total number

N∏
i=1

Mi) are treated as

probabilities of simultaneous choosing options k1, k2, . . . , kM .

4. Players get their payoffs according to the table of payoffs.

In order to keep “backward compatibility” with the set of classical strategies (like

in the Quantum Prisoner’s Dilemma) we must apply special constraints on the entangling

operator Ĵ in step 2q. Namely, we must ensure that steps 1q and 2q won’t affect state ψ2q in

the case where all players choose unitary operators from the set (12.1) which is “classical”

subset of “quantum” set of strategies.

In terms of linear algebra this requirement is being defined as a set of
N∏

i=1
Mi

equalities:

Ĵ†
(

N
⊗

i=1
Âi

)
Ĵ =

N
⊗

i=1
Âi (where all Âi are from the set (12.1)),

which has
(

N∏
i=1

Mi

)
-dimensional space of solutions:

Ĵ ∈


M1∑

k1=1

M2∑
k2=1

. . .
MN∑

kN =1
λk1k2...kN

(
N
⊗

j=1
Ekj

E†
kj

)
: |λk1k2...kN

| = 1

 ,

where Ekj
= 1√

Mj



exp
(

2πi(kj−1) 0
Mj

)
exp
(

2πi(kj−1) 1
Mj

)
...

exp
(

2πi(kj−1)
Mj −1

Mj

)

 is kth
j eigenvector of Mj ×Mj shift matrix.
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Chapter 13

Voting Game

13.1 Introduction

Voting games are used as a model for analyzing different political processes, and

in particular elections.

When more than two candidates are participating, voters sometimes have reason

for the so-called tactical voting. Namely, a voter in some situations doesn’t support the

most preferred candidate, and acts just in order to prevent the undesirable candidate from

winning an election.

There is a large variety of voting systems, including ones with rather exotic ballots

and tallying methods. In this chapter we shall consider the basic case of a plurality voting

system, where this tactical voting occurs in a quantum model of the game and brings a

better outcome to all the voters.

Let us consider elections with 4 candidates and only 3 voters. Voters give their

votes to exactly one candidate each, and the single winner (the candidate with the most

votes) provides the appropriate payoffs to all voters according to his personal preferences.

If there are more than one candidate with maximal number of votes, let us pick one of the

leaders at random and assert him to be the winner (in this case we shall consider voters’

payoffs as expected values).

It is convenient to call all the participants with appropriate names and represent
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the voters’ payoffs for all four possible winning candidates as in Table 13.1:

Table 13.1: Voters’ payoffs

Candidates

Mr. A Mr. B Mr. C Mr. Fairness

Vo
te

rs

Mrs. A 3 0 0 2

Mrs. B 0 3 0 2

Mrs. C 0 0 3 2

13.2 Nash equilibria

When analyzing plurality (or relative majority) voting it is worth to mention that

not all Nash equilibria can be treated as solutions.

E.g. let us consider such voting game with N voters. Each situation when at

least ⌊N
2 ⌋ + 2 voters vote for one (possibly, very bad) candidate, formally speaking, is a

Nash equilibrium: there is no a single voter who could improve his outcome by switching

to another option (since a single vote is unable to affect the absolute majority). Of course,

unanimous voting for an unfit candidate could not be considered as a stable one or even as

making any common sense. What is the appropriate concept of decision in such situations?

For different practical purposes the so-called refinements must be applied on the

set of Nash equilibria. E.g. in real voting processes a voter usually

• is not sure about other voters’ decisions, especially when tactical voting makes sense;

• is not sure whether or not all the voters will participate in voting;

• is not sure whether or not some voters by accident will vote for undesired candidates

or just spoil their voting bulletins;
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• is not sure about how many mistakes will be made during checking and summing up

the results of the voting;

At least some of these factors must be taken into account. In terms of game

theoretical analysis it means applying the so-called trembling hand refinement. Trembling

hand perfect equilibrium assumes a small probability ϵ for each player to change his choice

to some different one [Sel74].

Thus in the voting game described above, each single vote has a chance to affect

the majority, even if the probability of this effect is very small.

According to this refinement, let us assume that after voters completed their task,

the tallying machine counts each voting bulletin properly with probability 1 − 3ϵ, and with

probability 3ϵ makes mistake (in favor to one of the remaining candidates, with probability

ϵ for each candidate).

Then the probabilities of winning in different cases of voting are as follows:

Table 13.2: Adjustment of winning probabilities for trembling hand perfect equilibrium

Combinations
of votes Pr

[Mr. A
wins

]
Pr
[Mr. B

wins
]

Pr
[Mr. C

wins
]

Pr
[Mr. Fairness

wins
]

3 × Mr. A 1 − 21ϵ2 + 36ϵ3 7ϵ2 − 12ϵ3

2 × Mr. A,
1 × Mr. B 1 − 42

3ϵ+ 92
3ϵ

2 − 12ϵ3 31
3ϵ− 13ϵ2 + 142

3ϵ
3 2

3ϵ+ 12
3ϵ

2 − 11
3ϵ

3

1 × Mr. A,
1 × Mr. B,
1 × Mr. C

1
3 − 1

3ϵ+ 1
3ϵ

2 − 11
3ϵ

3 ϵ− ϵ2 + 4ϵ3

All other cases are equivalent to above-stated ones up to permutation of candidates.

13.3 Classical version

Let us analyze the voting game with payoffs defined in Table 13.1.

The single trembling hand perfect equilibrium is “selfish voting”: it is easy to

show that regardless of the other votes, Mrs. A’s best choice is to vote for Mr. A. Similar
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arguments will show that Mrs. B will vote for Mr. B, and Mrs. C will vote for Mr. C.

Mr. Fairness, whose leadership promises the biggest common benefit, will remain

with no votes at all.

Summing up these arguments, we follow that Messrs. A, B and C will win with

probabilities about 1
3

each, thus providing Mesdames A, B and C with benefits about 1 for

each of them 1 2.

Let us now reformulate the process of voting game in terms of linear algebra, like

it was done in Section 3.4 for Prisoner’s Dilemma:

1. The game board consists of three unit vectors from {0, 1}4.

Initially their values are a1 = b1 = c1 =
( 1

0
0
0

)
.

2. Voters independently choose shift operators A,B,C from
{( 0 1 0 0

0 0 1 0
0 0 0 1
1 0 0 0

)k

: k ∈ N
}

and apply them respectively to a1, b1, c1.

Let us denote a2 = Aa1, b2 = Bb1, c2 = Cc1.

3. Resulting vectors a2, b2, c2 are treated as probability distribution of choosing among

four options available for voters.

Note that the set of allowed operators in step 2 implement only pure strategies for vot-

ers. This restriction however is not crucial as in voting games use of mixed strategies

generally makes no sense.

4. Winner is selected among the candidates according to Table 13.2, and voters get their

payoffs according to Table 13.1.

Thus described above Nash equilibrium of our voting game asserts the following
1To be completely precise in accordance to Table 13.2, each voter’s payoff is 1 + ϵ − ϵ2 + 4ϵ3, i.e. slightly

bigger, because Nash equilibrium here is the worst decision in terms of common benefit, and deviation from
this point (caused by trembling hand) improves the payoffs.

2Generally speaking, the set of Nash equilibria in such voting games might not consist of a single element
(as it does in our case), but all Nash equilibria assume voters to use pure strategies (unlike general bimatrix
or multimatrix games, where use of mixed strategies sometimes prevent players from big loss).
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values:

a1 = b1 = c1 =

1
0
0
0


A =

( 0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)0
=
( 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

)
, B =

( 0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)1
=
( 0 1 0 0

0 0 1 0
0 0 0 1
1 0 0 0

)
, C =

( 0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)2
=
( 0 0 1 0

0 0 0 1
1 0 0 0
0 1 0 0

)

a2 =

1
0
0
0

 , b2 =

0
1
0
0

 , c2 =

0
0
1
0


13.4 Quantum version

We propose a quantization of this voting game by the general method described

in Subsection 12.3. In the following voting scheme we numbered candidates from 0 to 3 as

they appear in Table 13.1.

1. The game board consists of a three-qudit quantum system, where each qudit is a

4-level quantum subsystem.

Initial state of the game board is ψ1 = |000⟩.

1q Before all players’ actions, an entangling operator Ĵ (from the set, which we shall

define later) is applied to the system, which gets “entangled” into state ψ1q = Ĵψ1.

2. Players independently choose unitary operators Â, B̂, Ĉ and apply them one by one

to the three qudits of the system. Its state changes to ψ2 =
(
Â⊗ B̂ ⊗ Ĉ

)
ψ1q .

2q After all players’ actions are done, an operator Ĵ† is applied to the system.

Its state changes to ψ2q = Ĵ†ψ2.

Let us denote ψ2q =
3∑

i=0

3∑
j=0

3∑
k=0

αijk|ijk⟩.

3. Resulting qubits are measured in computational basis, and the absolute squares of

amplitudes |αijk|2 are treated as probabilities of voting for candidates i, j, k by the

first, second and third voters respectively.

4. Winner is selected among the candidates according to Table 13.2, and voters get their
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payoffs according to Table 13.1.

In order to keep “backward compatibility” with the set of classical strategies (like

in the Prisoner’s Dilemma) we must apply special constraints on the entangling operator Ĵ

in step 2q. Namely, we must ensure that steps 1q and 2q won’t affect state ψ2q in the case

where all three voters choose unitary operators from the set
{( 0 1 0 0

0 0 1 0
0 0 0 1
1 0 0 0

)k

: k ∈ N
}

, so that

they are equivalent to shift operators from the classical version of game.

In terms of linear algebra this requirement is being defined as a set of 43 = 64

equalities:

Ĵ†
(
Â⊗ B̂ ⊗ Ĉ

)
Ĵ = Â⊗ B̂ ⊗ Ĉ, where Â, B̂, Ĉ ∈

{( 0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)k

: k ∈ N
}
,

which has 64-dimensional space of solutions:

Ĵ ∈


3∑

i=0

3∑
j=0

3∑
k=0

λijk

(
EiE

†
i ⊗ EjE

†
j ⊗ EkE

†
k

)
: |λijk| = 1

 ,
where E0 = 1

2

( 1
1
1
1

)
, E1 = 1

2

( 1
i

−1
−i

)
, E2 = 1

2

( 1
−1

1
−1

)
, E3 = 1

2

( 1
−i
−1

i

)
are eigenvectors of 4 × 4

shift matrices.

As an example we shall consider a symmetric bundle of λ’s:

λijk =
{

1 if i = j = k,

−1 otherwise,

and corresponding 64 × 64 matrix

Ĵ = [mij ] , where mij =


−7

8 if i = j,

1
8 if i+ ⌊ i

4⌋ + ⌊ i
16⌋ ≡ j + ⌊ j

4⌋ + ⌊ j
16⌋ (mod 4),

0 otherwise.

13.5 Search for quantum Nash equilibrium

Although Nash equilibrium is known as the most important solution concept of

non-zero-sum games, very little is known about efficient computing of Nash equilibria for

an arbitrary game. For example, Megiddo and Papadimitriou [MP91] placed this problem
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for a finite two-player game into rather specific complexity class TFNP, and question about

the precise computational complexity is still relevant.

Certainly, our problem for infinite multiplayer game is much less clear. In this

chapter we shall only (a) show inconsistency of classical selfish voting in terms of Nash

equilibrium and (b) provide a promising solution, which turns up, in a curious way, Pareto

optimal.

All our considerations are based on numerical experiments, which model the pro-

cess of iterative search for equilibrium point in the multidimensional space of strategies.

We start our search from an arbitrary point. So as to show inconsistency of classical

Nash equilibrium, let us start with the selfish voting, i.e. with

Â =
( 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

)
, B̂ =

( 0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
, Ĉ =

( 0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)
.

Then let us perform a series of the iterations. We first let Mrs. A slightly 3 change

her unitary operator Â in order to increase her expected payoff (assuming B̂ and Ĉ to

remain unchanged). Then we make similar offer to Mrs. B, and then to Mrs. C. After that

we repeat these three adjustments, starting again with Mrs. A, until some stable point is

reached.

Changes of voters’ payoffs during this iterative algorithm is displayed in Figure

13.1.

Sooner or later, voters’ payoffs reach the neighborhood of a Pareto optimal point

(and never leave it again), where each voter has payoff 2.

Basically, results of this (probably not the most efficient) algorithm suffice for both

our purposes:

(a) It shows inconsistency of classical selfish voting in terms of Nash equilibrium. We

can follow that if Mrs. B and Mrs. C stick to their classical optimal strategies, i.e.

3Say we can restrict max
i,j

∣∣∣Âij − Â′
ij

∣∣∣ ≤ 0.01, where Â′ is Mrs. A’s operator after the change is made.

Actually we just restricted the distance between Â and Â′ in the parametrized space of M × M unitary
operators.
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Figure 13.1: Voters’ payoffs during evolution
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B̂ =
( 0 1 0 0

0 0 1 0
0 0 0 1
1 0 0 0

)
and Ĉ =

( 0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)
, then there exists a strategy for Mrs. A, which is

significantly better than Â = I. E.g. choosing Â =
(−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

)
will provide her with

expected outcome 101
64 (while Mrs. B will get 47

64 , and Mrs. C will get 53
64).

(b) It provides us with a non-rigorous equilibrium, which probably could be proven ana-

lytically. We shall not go into greater detail, as this was just a specific example for

illustration of the general game quantization method.



96

Chapter 14

Possible Issues

14.1 Objections on EWL scheme

In [EP02] van Enk and Pike provide some criticism on the quantum Prisoner’s

Dilemma constructed by Eisert et al. in [EWL99, EW00]. Namely, they argue that this

generalization of classical Prisoner’s Dilemma is somewhat equivalent to offering a new

classical choice Q for each of the players, so that the payoff matrix in Table 3.1 is expanded

as in Table 14.1.

Table 14.1: Players’ payoffs in Prisoner’s Dilemma with an extra choice Q

Your partner

Confesses Denies Qs

Yo
u

Confess 4y. for You,
4y. for Your partner

0y. for You,
5y. for Your partner

5y. for You,
0y. for Your partner

Deny 5y. for You,
0y. for Your partner

2y. for You,
2y. for Your partner

4y. for You,
4y. for Your partner

Q 0y. for You,
5y. for Your partner

4y. for You,
4y. for Your partner

2y. for You,
2y. for Your partner
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Obviously, a mutual choice of Q is the single Nash equilibrium.

Additionally, authors of [EP02] provide some arguments of rather philosophical

nature. Namely, they treat step 2q as an activity of an attorney or interrogator which

actually helps the prisoners. Providing prisoners with such assistance certainly is counter

to the spirit of the game.

Finally, Benjamin and Hayden [BH01a] showed that when the set of strategies is

not restricted with two-parametric Û (θ, ϕ), and players are allowed to use any local

unitary operator, then strategies Â = B̂ = Û
(
0, π

4
)

do not remain a Nash equilibrium.

Moreover, they show that in such settings no Nash equilibrium for the quantum Prisoners’

Dilemma exists.

This criticism, of course, should be taken into account when constructing a quan-

tum version of a game. Although first two objections (by van Enk and Pike) seem not to

be that relevant for the voting game (described in Chapter 13), the comment by Benjamin

and Hayden is worth some complementary discussion.

14.2 Comment on Nash equilibria in quantized games

The fact is that quantization by [EWL99] is claimed to be a generalization of the

mixed expansion of Prisoner’s Dilemma. But, as it is noted in [BH01a], Nash’s theorem

may not work any more under these circumstances.

Unlike quantization of Prisoner’s Dilemma with exactly two pure classical strate-

gies per player, the more general quantization proposed in this part is claimed to be an

expansion, which does not implement mixed strategies in the sense of classical probabilities
1. It is not clear whether Nash’s theorem works for this quantum expansion of the game.

While it might not be relevant for the quantum voting game, overall situation needs some

futher reasoning on existance of Nash equilibrium points.

For both quantization schemes (by [EWL99, EW00] and by Part III of this thesis)

the following reasoning seems to be quite natural. Since sets of quantum strategies are
1This feature can be qualified as a drawback in comparison with EWL scheme, but our further consider-

ations in this chapter show that it is not that significant. In fact, implementing mixed strategies appear to
be obsolete, when speaking about Nash equilibria.
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compact, and the payoff function is a continuous mapping to the compact (N -dimensional)

space of payoffs, one can observe such quantum game as a basic case of classical game with

infinite set of strategies. In game theory it is a well-known fact that for mixed expansion

of such game exists a Nash equilibrium [Gli52]. In particular, for quantum Prisoner’s

Dilemma all Nash equilibrium points consist of mixed strategies. In general, search for a

Nash equilibrium may require analysis of superoperators as players’ strategies and mixed

quantum states as objects for the final measurement of step 2q.

From this point of view the only fundamental difference between the two quanti-

zation schemata is as follows:

(a) EWL scheme is a “quantum-over-mixed” expansion of an original classical game;

(b) our scheme is just a “quantum” expansion, which contains only pure strategies as a

special case, and does not contain mixed strategies in the sense of classical probabilistic

choice.

But in both cases, generally speaking, we need to apply further mixed expansion (one can

call it “mixed-over-quantum expansion”) of the resulting game in order to figure out its

Nash equilibria.
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Chapter 15

Summary

Part III is devoted to the analysis of players’ interaction in a special but large

class of quantum games, which we call games with quantum decisions. The strategies of the

above-mentioned games are operations undertaken on qubits, whilst players’ winnings are

calculated taking into account the results of quantum system measurements. The classical

choices of players account only for a limited ratio of various quantum operations, which

often does not allow the maximally effective approach by rationally thinking players. The

usage of quantum strategies makes it possible to sufficiently enlarge players’ abilities to

interact among themselves applying quite rational principles.

Quantum Prisoner’s Dilemma (see Section 3.4 in Part I) may serve as a basic

illustration of a game with quantum decisions. In Chapter 12 we provided a technique,

which is of similar spirit but technically different, which allows quantization of games with

arbitrary many players and arbitrary many players’ choices.

In Chapter 13 we illustrated ideas of Chapter 12 by quantizing a specific nonco-

operative game, which models the process of elections. We also provided computer experi-

ments modeling the behavior of participants in a system, which is working under the laws

of quantum theory.

In Chapter 14 we study some objections on quantum Prisoner’s Dilemma which

arose after work [EWL99]. We analyzed these issues (by Benjamin and Hayden [BH01a], and

by van Enk and Pike [EP02]), and evaluated their relevance to our proposed quantization
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scheme of Chapter 12 and to the specific quantized voting game of Chapter 13. We followed

that although the above-mentioned objections may be not that relevant to the voting game,

some of them must be born in mind when constructing new quantum versions of classical

games.
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Conclusion

The topic of quantum games began to attract the attention of researchers quite

recently, following the works [Vai99, Mey99, EWL99]. Perhaps this interest could be ex-

plained by the relative affordability of these games for real physical experiments. The fact

is that implementing most of these games only requires operations on separate qubits, and

all the necessary technologies are already available in experimental quantum optics.

For example, Chinese physicists successfully conducted a number of physical ex-

periments [DLX+01] based on the theoretical model described in [EWL99]; thus, confirming

the general applicability of the EWL scheme.

Another topic — nonlocal games — is of particular interest in quantum informa-

tion. These games also are being successfully implemented in real physical experiments.

Similar experiments in the context of Bell inequalities were performed long before the con-

cept of quantum games (for example, in [AGR81]), but the results of these experiments

could easily be interpreted as an argument in favor of the applicability of the concept of

nonlocal quantum games. Today, these and similar experiments are still considered rele-

vant, and one of the latest results in experimental physics, concerning the nature of the

nonlocality effect is, for example, the work [MHS+12].

Therefore, one can say that, despite its relative youth, the theory of quantum

games is already confirmed experimentally and has good prospects for practical use (in

particular, in the field of cryptography, see, e.g., [BB84, Eke91]). This fact distinguishes

quantum games from other areas of quantum computing, which often require complex tech-

nologies to manipulate large quantum systems, and have not yet been confirmed in large-

scale experiments.
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On the other hand, studies of some theoretical aspects of quantum games remain

insufficient.

For example, games with quantum decisions have so far been presented only as

analogs of classic games with binary strategies. (Probably the only exception is the recently

introduced quantum Kolkata Restaurant Problem [SH11] with three strategies for each

player.) Chapters 12 and 13 of the thesis fill this gap, but they can only be considered as

a first step on the way to studying quantum games with an arbitrary number of strategies.

The effects of quantum nonlocality are now being given much more attention.

However, in this area there are still many open questions. For example, researchers still do

not have a common understanding of the measure of entanglement of quantum subsystems

(at least, for systems consisting of more than two qubits, there are several different entan-

glement measures, see, e.g., [DVC00]). Reaching a common understanding of this issue will

perhaps help quantum game theory, where the equivalent open question is formulated as

the advantage of quantum strategies over classical ones. In this sense, games discussed in

Chapters 5 to 9 of the thesis represent estimates of the entanglement measure of a quantum

system in GHZ state 1√
2

(
|0⟩⊗N + |1⟩⊗N

)
. This state is often called “the most entangled”;

however, authors of [PWP+08] show that it does not always give the maximum benefit,

which could be achieved with the use of the properties of quantum nonlocality.

These and other questions of quantum game theory require further consideration,

and as practice shows, such issues often involve a wide range of different mathematical

methods.
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