
UNIVERSITY OF LATVIA

FACULTY OF COMPUTING

Girts Strazdins

Wireless Sensor Network Software Design Rules

DOCTORAL THESIS FOR THE ACADEMIC DEGREE OF

DR.SC.COMP

FIELD: COMPUTER SCIENCE

SUB-FIELD: SYSTEMS OF DATA PROCESSING AND

COMPUTER NETWORKS

ADVISOR: DR.SC.COMP. LEO SELAVO

RIGA, 2014

HTTP://WWW.LU.LV
HTTP://DF.LU.LV
mailto:girts@strazdins.lv

This work has been supported by the European Social Fund within the project

”Support for Doctoral Studies at University of Latvia”.

Abstract

In the last decade wireless sensor networks (WSNs) have evolved as a promis-

ing approach for smart investigation of our planet, providing solutions for

environment and wild animal monitoring, security system development, hu-

man health telemonitoring and control, industrial manufacturing and other

domains.

Lack of unified standards and methodologies leads to limited sensor network

solution interoperability and portability. Significant number of WSN oper-

ating systems, virtual machines, query languages and other software tools

already do exist. Also a significant number of communication protocols have

been invented. However, sensor network designers and programmers still face

serious problems related to new platform and application development.

The goal of this work is to propose wireless sensor network software develop-

ment design rules that serve as a unified methodology for operating system

and application development. The design rules are based on 40 existing WSN

deployment extensive analysis and common trend inference. The proposed

rules are evaluated in different aspects. Improvements for existing WSN de-

ployments and operating systems are identified, design and implementation

of an object-oriented WSN operating system according to proposed rules is

described. In addition, a WSN application use-case is evaluated and improve-

ments are suggested according to design rules. The evaluation shows the

proposed design rules as an important tool for WSN software development at

different stages, from planning to testing and change request analysis.

Keywords: wireless sensor networks, methodology, design rules, operating

systems, deployment survey, case study

To my grandfather Modris and son Martins.

Acknowledgements

I would like to thank my advisor Leo Selavo, who has introduced the beauty

of research work to me and acted as a successful role model. My deepest

appreciation to my wife for support during the long run. Thanks to my playful

and active kids for not allowing my head to overheat. I’m grateful to my

parents and grandparents for cultivating importance of education since my

childhood, especially my mother, who motivated me to always strive for more.

Thanks to my sister for always being there in critical moments; persisting

in goal reaching; and showing sincere humanity. I’m thankful to my father

for creating environment where my passion to information technologies could

thrive; while enough severity was maintained to motivate me explore beyond

computer games. Thanks to director of Institute of Electronics and Computer

Science (EDI), Modris Greitans, for opportunity to work in research full time

and meet many talented young researchers, especially Atis Elsts, Artis Mednis

and Reinholds Zviedris, who supplied me invaluable technical and scientific

advise, and with whom I had the honor to have inspiring informal discussions.

Thank you to Sashidharan Komandur and Hans Petter Hildre for patience and

support during the final stretch that took much longer than initially planned. I

appreciate the patience and professional comments of Guntis Arnicans, Guntis

Barzdins, Valerijs Zagurskis, Michael Huhns, Yushan Pan, Cong Liu and other

reviewers who made this thesis better in multiple iterations. Warm thanks to

secretaries Ella Arsa, Anita Ermusa and Ruta Ikauniece at the University

of Latvia, who helped to solve many stressful situations, and always were

armed with eternal smile and positive attitude. I express my gratitude to my

elementary school teachers Sigita Blumfelde and Gunta Dance for awakening

the interest to math in me; and Uldis Jansons for teaching me the fascinating

first steps in BASIC programming environment. I’m thankful to Ilze Zarinova

and Iveta Mezatuca for bringing me back on track every time I experienced

serious health problems on the way. And finally, thanks to the reviewer who

has improved the thesis significantly by not allowing to accept the first version.

It was a long journey, full of reasoning, discoveries and surprises.

Contents

List of Figures 5

List of Tables 7

Glossary 10

1 Introduction 13

1.1 Project experience . 14

1.2 Scope and motivation . 15

1.3 Contribution of the thesis . 17

1.4 Related work . 18

1.5 Summary and thesis outline . 19

2 Sensor network software abstractions 21

2.1 Operating systems . 23

2.1.1 MansOS . 24

2.1.2 TinyOS . 27

2.1.3 Contiki . 28

2.1.4 LiteOS . 29

2.1.5 Mantis . 29

2.1.6 Arduino . 29

2.2 Middleware . 30

2.3 Summary . 31

3 Deployment survey 32

3.1 Methodology . 32

3.2 Survey results . 32

3.2.1 Deployment state and attributes . 37

3.2.2 Sensing . 38

3.2.3 Lifetime and energy . 39

1

CONTENTS

3.2.4 Sensor motes . 41

3.2.5 Sensor mote: microcontroller . 41

3.2.6 Sensor mote: external memory . 42

3.2.7 Communication . 42

3.2.8 Network . 43

3.2.9 Networking stack . 44

3.2.10 Operating system and middleware 45

3.2.11 Software level tasks . 45

3.2.12 Task scheduling . 47

3.2.13 Time synchronization . 47

3.2.14 Localization . 48

3.2.15 Real-time data access . 48

3.2.16 Discussion of future trends . 49

3.2.17 Summary . 51

4 Sensor network software design rules 52

4.1 Problem identification . 52

4.1.1 Portability and usability . 52

4.1.2 Wireless communication . 53

4.1.3 Services and efficiency . 53

4.2 Design rule definition . 54

4.2.1 Communication . 56

4.2.2 Portability . 57

4.2.3 Task scheduling . 58

4.2.4 Services . 59

4.2.5 User support . 59

4.3 Addressing problems by rules . 60

4.3.1 Portability and usability . 60

4.3.2 Wireless communication . 62

4.3.3 Services and efficiency . 62

4.4 Summary . 63

5 Design rule impact on existing systems 65

5.1 Impact on deployments . 65

5.2 Impact on operating systems . 67

5.2.1 TinyOS . 67

5.2.2 Contiki . 69

2

CONTENTS

5.2.3 LiteOS . 70

5.2.4 Mantis . 70

5.2.5 MansOS . 71

5.2.6 Arduino . 72

5.2.7 Summary . 73

5.3 Use case study: wearable sensor network 73

5.3.1 Research problem . 74

5.3.2 Approach . 74

5.3.3 Sensor network aspects . 75

5.3.4 System prototype . 76

5.3.4.1 Hardware components . 76

5.3.4.2 Software components . 78

5.3.5 Prototype conformance to design rules 78

5.3.5.1 Communication . 78

5.3.5.2 Portability . 79

5.3.5.3 Task scheduling . 80

5.3.5.4 Services . 80

5.3.5.5 User support . 80

5.3.6 Improvements by matching design rules 81

5.3.6.1 Network lifetime extension 81

5.3.6.2 Multi-hop communication 83

5.3.6.3 Multitasking support . 83

5.3.7 Use case summary . 84

5.4 Summary . 84

6 New operating system design according to rules 85

6.1 OOMOS’ advantages over MansOS . 85

6.2 Object-oriented programming for WSNs 86

6.3 OOMOS implementation . 87

6.3.1 Portability . 87

6.3.2 Scheduling . 90

6.3.3 Services and API . 92

6.3.4 Summary . 93

6.4 OOMOS evaluation . 93

6.4.1 RAM and flash memory usage . 94

6.4.2 Performance . 96

6.4.2.1 Sensor sampling performance 97

3

CONTENTS

6.4.2.2 Wireless data transmission performance 98

6.4.2.3 Wireless data reception performance 100

6.4.3 Optimizations . 101

6.4.4 Portability . 104

6.4.5 Object-orientation overhead . 111

6.5 Future work according to design rules . 112

6.5.1 Networking protocol stack . 113

6.5.2 Services and scheduling . 115

6.6 Summary . 115

7 Conclusion 116

References 119

Appendices 131

A WSN deployments 132

A.1 Application taxonomy . 132

A.2 Deployment survey detailed results . 134

B Hardware platform survey detailed results 154

C MansOS 156

C.1 MansOS Execution models . 156

C.1.1 Event-based execution . 157

C.1.2 Threaded execution . 158

C.1.2.1 Cooperative proto-threads 158

C.2 MansOS networking protocol stack . 162

C.2.1 Physical layer . 162

C.2.2 MAC layer . 162

C.2.2.1 Network layer . 163

D OOMOS 165

D.1 Object-oriented operating system advantages 165

D.2 OOMOS source code examples . 166

4

List of Figures

1.1 A typical wireless sensor node architecture 13

1.2 TMote Sky . 15

2.1 Abstractions for sensor networks . 21

2.2 MansOS components and abstraction layers 25

2.3 MansOS architecture . 26

3.1 Distribution function of mote count in surveyed deployments 38

3.2 Sensors used in deployments . 39

3.3 Sensor sampling rate used in deployments 40

3.4 Number of kernel level software services used in deployments 46

3.5 Number of application layer software tasks used in deployments 46

5.1 Tactile ship bridge alarm system architecture 75

5.2 Tactile belt prototype . 76

5.3 Tactile belt architecture . 77

6.1 OOMOS MCU class diagram with new MCU supported 91

6.2 Test application program code size comparison in MansOS, OOMOS, Con-

tiki and TinyOS . 95

6.3 Test application static RAM size comparison in MansOS, OOMOS, Contiki

and TinyOS . 95

6.4 ADC sampling performance of MansOS, OOMOS, Contiki and TinyOS . . 98

6.5 Radio transmission throughput dependance of packet size, packets/sec . . . 99

6.6 Radio transmission throughput dependance of packet size, KiBytes/sec . . 100

6.7 Absolute received packet count dependance on packet size 102

6.8 OOMOS code size reduction by excluding unused components 103

6.9 MansOS, OOMOS, Contiki and TinyOS size comparison, lines of source code106

6.10 MansOS, OOMOS, Contiki and TinyOS size comparison, file count 106

6.11 MansOS, OOMOS, Contiki and TinyOS code categorized 107

5

LIST OF FIGURES

6.12 OOMOS, MansOS, Contiki and TinyOS reusability, lines of code 108

6.13 Zolertia Z1 platform in OOMOS, MansOS, Contiki and TinyOS, lines of

code . 108

6.14 Device driver code in OOMOS, MansOS, Contiki and TinyOS, lines of code 110

6.15 Device driver file count in OOMOS, MansOS, Contiki and TinyOS 110

6.16 Object-oriented OOMOS compared to procedural MansOS, lines of code . 111

6.17 Object-oriented OOMOS compared to procedural MansOS, file count . . . 112

C.1 Flowchart of MansOS application using event-based execution model . . . 157

C.2 Flowchart of MansOS application using preemptive threads 159

C.3 Flowchart of MansOS application using cooperative proto-threads 160

6

List of Tables

1.1 Typical mote resource limits . 16

3.1 Deployments: general information . 33

4.1 WSN software design rules proposed by the author 54

4.2 Addressing WSN problems by design rules 61

5.1 Existing OS conformance to proposed design rules 68

6.1 Packet reception rate (PRR) dependance on packet size 101

6.2 OOMOS code and RAM size optimization by excluding unused components 102

6.3 Zolertia Z1 platform source code size in OOMOS, MansOS, Contiki and

TinyOS . 109

A.1 Deployments: deployment state and attributes 134

A.2 Deployments: sensing . 135

A.3 Deployments: lifetime and energy . 137

A.4 Deployments: used motes and radio chips 138

A.5 Deployments: used microcontrollers . 140

A.6 Deployments: external memory . 141

A.7 Deployments: sensor and user interface . 141

A.8 Deployments: communication . 142

A.9 Deployments: communication media . 144

A.10 Deployments: network . 145

A.11 Deployments: networking protocol stack 146

A.12 Deployments: used operating system and middleware 147

A.13 Deployments: software level tasks . 148

A.14 Deployments: task scheduling . 150

A.15 Deployments: time synchronization . 151

A.16 Deployments: localization . 151

7

LIST OF TABLES

A.17 Deployments: remote access . 152

B.1 Sensor network motes designed in years 2010 and 2011 154

B.2 Sensor network motes 2010-2011: MCU and memory 155

B.3 Sensor network motes 2010-2011: radio communication 155

8

List of source codes

C.1 MansOS socket application example . 163

D.1 OOMOS interface example . 166

D.2 OOMOS UART interface . 166

D.3 OOMOS radio interface . 166

D.4 OOMOS CC2420 device driver (partial) 167

D.5 OOMOS TelosB platform initialization (partial) 168

D.6 OOMOS interface for abstract hardware platform 168

D.7 OOMOS protocol interface and base class prototypes 169

9

Glossary

3G 3rd Generation mobile telecommunica-

tions, a generation of standards for mo-

bile phones and mobile telecommunica-

tion services

6lowPAN IPv6 over Low power Wireless Per-

sonal Area Networks

AC Alternating current

ACM Association for Computing Machinery

- global society of educational and sci-

entific computing

Ad Hoc A solution designed for a specific prob-

lem or task, non-generalizable

ADC Analog-to-Digital Converter - A hard-

ware module converting analog input

signal to digital output signal

ANSI American National Standards Institute

- A standardization organization in the

United States of America

AODV Ad-hoc On-demand Distance Vector -

a routing protocol for ad-hoc networks

API Application Programming Interface - a

software library that includes specifica-

tion for data structures and routines

used to interface with a software sys-

tem

Bluetooth RFCOMM A simple set of trans-

port protocols providing emulated RS-

232 serial ports over Bluetooth connec-

tion

CDF Cumulative Distribution Function - a

function describing the probability that

a random variable X with a given prob-

ability distribution will be found at a

value less than or equal to x

CPU Hardware within a computer system

which carries out the instructions of

a computer program by performing

the basic arithmetical, logical, and in-

put/output operations of the system

CRC Cyclic Redundancy Check - an error-

detecting code commonly used in digi-

tal networks and storage devices to de-

tect accidental changes to raw data

CSMA Carrier Sense Multiple Access - a prob-

abilistic media access control approach

where each node verifies absence of

other traffic before transmitting its

own data over a shared communication

medium

Duty cycling Algorithm of system operation,

where part of time is spent in low-

power suspend mode

EMF Electro-Magnetic field - a physical field

produced by electrically charged ob-

jects

FAT16/FAT32 A legacy file system format ini-

tially developed for personal computers

FIFO First In First Out - a principle where

set of objects are handled in the same

order as they were registered in the set

GPIO General Purpose Input/Output - a

generic pin on an integrated circuit

whose behavior can be programmed by

the user at run time

GPS Global Positioning System - a space-

based satellite navigation system that

provides location and time information

in all weather, anywhere on or near the

Earth, where there is an unobstructed

line of sight to four or more GPS satel-

lites

10

GLOSSARY

IDE Integrated Development Environment

- a software application that provides

comprehensive facilities to computer

programmers for software development

IEEE International Electrical and Electronics

Engineers - international association of

technology professionals

IoT Internet of Things - an Internet-like

network formed of uniquely identifiable

objects

IPv6 Internet Protocol version 6 - the lat-

est version of IP protocol, addresses

the problem of IPv4 protocol’s insuf-

ficiently large address space

ISO International Organization for Stan-

dardization - An international stan-

dardization organization

ISO OSI Network protocol stack architecture

proposed by ISO organization

ITS Intelligent Transportation Systems -

initiative to create more efficient trans-

portation systems by integration of ad-

vanced information technologies

KiB Kibibyte, unit for quantifying digital

information, equals to 1024 bytes

LCD Liquid-Crystal Display - flat panel dis-

play technology that uses light modu-

lating properties of liquid crystals

LED Light-Emitting Diode - a two-lead

semiconductor light source that resem-

bles a basic diode and emits light

LTE Long Term Evolution, marketed as 4G

LTE - a standard for wireless commu-

nication of high-speed data for mobile

phones and data terminals

MAC Medium Access Control: a layer in net-

work protocol stack providing efficient

transmission medium distribution be-

tween multiple network nodes using the

medium

MCU Microcontroller - small computer on

a single integrated circuit containing

a processor core, memory, and pro-

grammable input/output peripherals

MiB Mibibyte, unit for quantifying digital

information, equals to 1024 kibibytes

MMC MultiMediaCard - a non-volatile flash

memory card standard, superseded by

Secure Digital card format

Mote Wireless sensor node (hardware plat-

form)

NFC Near Field Communication - a set of

standards for mobile devices to estab-

lish radio communication with each

other by touching them together or

bringing them into proximity

OOMOS Object-oriented MansOS operating

system

OOOS Object-Oriented Operating System -

an operating system that is developed

and interfaced using object-oriented

programming

OOP Object-Oriented Programming - a pro-

gramming paradigm that is built

around data entities with fields and

methods, called objects, as the central

concept

Optimized code program source code that uses

specific constructs or algorithms, and

omits parts of generic implementation

to improve performance and resource

efficiency for a particular hardware

platform or application

OS Operating System - a set of software

that manages hardware resources and

provides common user interface

PC Personal Computer - a general-purpose

computer targeted to be operated di-

rectly by end-user

11

GLOSSARY

PDA Personal Digital Assistant - a mobile

device that functions as a personal in-

formation manager

PHY Physical Layer - the lowest layer in ISO

OSI protocol stack

PRR Packet Reception Ratio - the ratio be-

tween received packets and total num-

ber of transmitted packets

QoS Quality of service - intents to improve

quality of data transmission to satisfy

certain requirements

RAM A form of computer data storage for

quick access in random order

Reusable code program source code imple-

mented in a platform-independent

manner that can be compiled for mul-

tiple platforms

RFID Radio-Frequency IDentification - tech-

nology that uses wireless non-contact

radio-frequency electromagnetic fields

to transfer data, for the purposes of

automatically identifying and tracking

tags attached to objects

RS-232 The traditional name for a series of

standards for serial binary single-ended

data and control signals connecting be-

tween data terminal equipment and

data circuit-terminating equipment

SD Secure Digital - a non-volatile memory

card format

Sink oriented communication Type of com-

munication where the data flow is

mainly directed towards a single net-

work node

SoC System on chip - an integrated cir-

cuit, that integrates all components of

a computer or other electronic system

into a single chip

SPI Serial Peripheral Interface bus - syn-

chronous serial data link providing si-

multaneous transmit and receive oper-

ations

SQL Structured Query Language - a human-

readable format for specification of

queries to relational data bases

TDMA Time Division Multiple Access - a me-

dia access control approach where each

node transmits and receives data only

in specific time slots in a previously

agreed schedule

TinyOS Tiny Operating System - a component-

based operating system for wireless

sensor networks, developed using the

event-driven nesC language - a C pro-

gramming language dialect with spe-

cific component wiring and synchro-

nization constructs, optimized for re-

source constrained devices

TinyOS AM Tiny Active Message - a communi-

cation protocol stack and message for-

mat used in TinyOS operating system

UART Universal Asynchronous Receiver/-

Transmitter - a hardware module

translating data between parallel and

serial formats

VM Virtual Machine - a software-based em-

ulation of a computer

WiFi Wireless local area network products

that are based on IEEE 802.11 stan-

dards, widely used as a synonym for

consumer WLAN access

WSN Wireless Sensor Network - a network of

nodes with sensors and wireless com-

munication devices capable of measur-

ing environmental phenomena and re-

porting the data to one or several loca-

tions

12

1 Introduction

Environmental scientists, biologists, geologists and other researchers and industry profes-

sionals are interested in measuring a variety of parameters and phenomena of our planet.

Wireless sensor networks (WSNs) is a paradigm of measuring and event detection in the

surrounding environment. It is a tool for smart sensing of our planet, having wide vari-

ety of applications, including wild animal monitoring [1], remote island flora inspection

[2], volcano eruption prediction [3], interactive dance music generation [4], restricted area

monitoring [5], and battlefield surveilance [6], among others.

Sensor network consists of multiple nodes (also called motes), which sense the envi-

ronment and exchange data with each other. In most cases, the gathered information is

transferred to a central collection point, called base station or sink.

A sensor node consists of power (typically batteries), sensing, computation and com-

munication parts, sensors, micro-controller (MCU) and a wireless transceiver (Figure 1.1).

External flash memory is optional and is used to store large collected data streams.

External memory

Microcontroller

Wireless transceiver

SensorsPower

Figure 1.1: A typical wireless sensor node architecture - power, microcontroller,

wireless transceiver, sensors and external memory (optional)

13

1.1 Project experience

Considering WSN peculiarities, specific solutions have been proposed. Low-power

MCU [7] and radio [8] chips are developed, suitable communication media are used [9],

available infrastructure is used for communication support [10], physical radio propagation

phenomena are used [11]. New communication protocols are developed for physical layer

[12], Media access control (MAC) [13], network [14] and transport layers [15].

1.1 Project experience

The author has participated in several research projects related to wireless sensor network

programming, which have helped to get better understanding of common problems in

WSN application design. The author’s experience has been developed during participation

in the following projects:

1. Development of MansOS [16, 17]: an operating system for wireless sensor networks

with the focus of providing common Unix-like environment for C programmers,

rapid familiarization, prototyping and porting to new hardware platforms.

2. Design of low-power, delay-tolerant sensor network solutions for wild animal moni-

toring [18].

3. Microclimate monitoring in fruit orchards for precision-agriculture solutions [19].

4. Development of flexible hardware platforms for WSN prototyping [20].

5. Vehicular sensor network [21] applications in urban scenarios: pothole detection

[22, 23, 24, 25] and cooperative driving [26, 27].

6. Smart road infrastructure for increased traffic safety [28].

7. Detection of human gestures with vision-based sensor networks [29].

In addition, the author has performed extensive WSN deployment survey analyzing

different aspects of WSN applications. WSN software development design rules, which

are formed based on the analysis of data found in the survey, form a central part of this

thesis, and have been published in a scientific article [30].

14

1.2 Scope and motivation

1.2 Scope and motivation

Sensor nodes typically are match-box size embedded devices (Figure 1.2). Such devices

are called motes. Other networks of devices with sensing and communication capabilities

can also be considered sensor networks, for example vehicular sensor networks with car

on-board computers [22] or human-centric networks of smartphones [31]. However, these

kinds of networks use devices significantly different from motes, and therefore different

software abstractions could be more appropriate. In this work, the main focus is on

networks consisting of mote devices.

Figure 1.2: TMote Sky - a typical match-box size wireless sensor node (also called mote).

Picture from [32].

Sensor network design and programming contains a set of challenges to solve:

1. Limited energy budget and energy efficiency is the main challenge of sensor networks.

High-capacity batteries and energy harvesting methods [33] have to be combined in

an efficient way, using energy buffering and duty cycling.

2. Small size and low-power computation (see Table 1.1) implies limited central pro-

cessing unit (CPU), random-access memory (RAM) and flash memory resources,

which require highly effective software abstractions and low-level hardware control.

15

1.2 Scope and motivation

3. Standard communication hardware and protocol stacks used in Internet servers and

desktop computers are not suitable for sensor networks, due to low-power require-

ments and duty cycling.

4. Different platforms are often used during evolution of the projects. System design

requires rapid prototyping, including hardware and software tool support.

5. Embedded systems are event-driven, while most desktop programming languages

provide sequential programming paradigms. Therefore easily-adoptable software

abstractions must be provided to WSN programmers, without requirement of long

learning process.

6. Sensor nodes are often deployed in the wild, industrial or other open and harsh

environment, requiring additional effort for packaging problem solution.

7. Wireless communication has remarkable irregularities and disturbances, which must

be mitigated by both hardware and software methods.

8. Despite the unfriendly environment, sensor networks should be fault tolerant and

self-adaptive.

9. Deployment site is often hardly reachable for physical hardware inspection and

maintenance. Remote real-time management support is therefore desirable.

Table 1.1: Typical mote resource limits - CPU performance and memory amounts are

serious constraints for software design

Resource Typical amount

CPU 1 - 20MHz

RAM memory 256B - 10KiB

Non-volatile flash memory 40 - 128KiB

Optional external flash memory 1MiB - 4GiB

Wireless sensor network research has evolved over the last decade and has reached

a state where standardization becomes essential for interoperability between different

hardware and software solutions. Although parts of the WSN solutions are standardized,

such as communication protocols (802.15.4 standard [34]), a common methodology for

WSN software development is still missing. WSN designers face typical problems during

software development.

16

1.3 Contribution of the thesis

Therefore central thesis of this work states: a common methodology is required for

wireless sensor network software development. Such methodology would foster efficient

new solution design and serve as a tool for existing software evaluation and identification

of improvements.

The rest of this work describes the process of identification of common WSN prob-

lems, WSN design rule proposal and evaluation in different aspects: existing software

assessment and new software design. These rules form a basis for common WSN soft-

ware development methodology. Although standardization is a slow and complex process

beyond the scope of single person’s competence, these rules can have impact towards

establishment of common WSN software development standards and protocols.

1.3 Contribution of the thesis

The author’s main contribution in this thesis includes:

1. Analysis of 40 sensor network deployments described in the research literature. As

a result the critical and recurring WSN properties were distilled.

2. Identification of common WSN design problems that identify the challenges based

on critical WSN properties and user requirements.

3. Introduction of a WSN software development methodology in the form of 25 design

rules and analysis of their mapping to underlying problems.

4. Evaluation of the proposed design rule impact on existing WSN software improve-

ment. Design rules are shown as a tool for existing system comparison, drawback

identification and future direction sketch. The evaluation consists of three parts:

(a) Improvements to the analyzed deployment set showing design rule applicability

in general, for WSN users.

(b) Existing operating system conformance to proposed rules and suggestions for

OS improvement. Design rules are shown as an important tool for WSN OS

developers. This evaluation includes the author’s participation in the develop-

ment and improvement analysis of MansOS: a portable operating system (OS)

for sensor networks.

(c) A wearable sensor network use-case scenario - assessment of prototype imple-

mentation and suggestions for future work. This part shows more detailed

improvement of a particular WSN deployment in terms of network lifetime

and network coverage.

17

1.4 Related work

5. In addition, the author has developed a new WSN operating system, (called Object-

Oriented MansOS or OOMOS) according to the rules. This part of the thesis shows

design rules as a valuable tool in early stages of WSN OS design and implementation.

1.4 Related work

For WSN requirement summary and trend inference we first have to survey existing

WSNs and establish a taxonomy. Numerous researchers have surveyed and described

sensor network characteristics and challenges. In her book Anna Hac describes sensor

networks in general, including typical challenges [35]. Hill et.al. describe WSN hardware

platforms [36]. Tilak et al. propose to categorize sensor networks based on different

criteria [37]. Mottola and Picco propose another taxonomy focusing on programming

aspects [38]. The author of this thesis also proposes a WSN taxonomy that is based on

the author’s experience and summary of multiple survey articles, see Appendix A.1.

Metric definition is also an important task. Beutel proposes metrics for WSN hard-

ware platforms [39]. The author of this thesis used subset of these metrics for deployment

analysis in Chapter 3. However, the author adds significantly more metrics in the survey,

see tables in Appendix A.2.

Romer and Mattern have analyzed WSN deployments and assessed the WSN design

space based on application characteristics [40]. This thesis includes similar deployment

analysis approach. Handziski et.al. have analyzed WSN challenges and come to conclu-

sions similar to the author’s: standardizations and unified methodologies are required [41].

Handzinski is proposing suggestions for handling the challenges, without formalization.

Jason Hill’s thesis [42] is the closest effort to this thesis. He analyzes WSN system ar-

chitecture, describes constraints and challenges. Hill substantiates TinyOS design choices

with qualitative suggestions based on the identified challenges. The author of this thesis

takes a step further and proposes specific design rules based on a deployment survey.

The WSN survey is performed similarly to previous work, yet with more detail and more

formalized outcomes: the proposed design rules.

Different approaches are possible in WSN design and specification. Several re-

searchers have proposed algorithms and formulas to optimize WSN communication. Mha-

tre and Rosenberg propose an algorithm how to choose between different communication

approaches [43]. Olariu and Stojmenovic describe formulas how to calculate energy deple-

tion dependence on network topology and optimal transmission power [44]. Stojmenovic

et.al. describe design guidelines for WSN routing protocols [45]. Oppermann and Peter

18

1.5 Summary and thesis outline

propose a framework to transform informal end-user requirements to technical specifica-

tions [46]. It tries to solve communication problem between different WSN user groups:

end-users and engineers.

In contrast, the author of this thesis focuses on optimizing software development

process, not communication protocols or social communication problems. He extracts

technical WSN deployment characteristics based on the information available. In some

cases it is not possible to gather quantitative information. Qualitative discussion is used

in such situations, including proposed design rule evaluation in Chapter 5 and Chap-

ter 6. Nevertheless, to the best of the authors knowledge, this work proposes the most

comprehensive and formalized set of design rules for WSN software development.

1.5 Summary and thesis outline

Wireless sensor network software development includes set of challenges due to distributed

nature, resource limitations and environmental constraints of the networks. A com-

mon methodology is important for standardization, interoperability and component reuse

across different WSN applications. This thesis analyzes different WSN software abstrac-

tions and shows that operating systems are an important part of WSN software (Chap-

ter 2). An extensive WSN deployment survey will be presented in Chapter 3 analyz-

ing common trends and requirements of WSN applications. Subsequently, typical WSN

problems will be identified (Section 4.1) and design rules for WSN software development

will be proposed (Section 4.2). Relation between problems and rules will be analyzed

in Section 4.3. The proposed design rules will be evaluated in different aspects in the

two following chapters: Chapter 5 and Chapter 6. First, rule impact on analyzed WSN

deployments will be discussed in Section 5.1. Second, existing WSN operating system

conformance to proposed rules will be analyzed in Section 5.2. The author participated

in MansOS operating system development, therefore special attention will be devoted to

design rule impact on MansOS evolution (Section 5.2.5). Third, a particular WSN use

case (where the author also contributed in system design and implementation) will be an-

alyzed by describing its current prototype state, assessing it and proposing directions for

improvement, using proposed design rules (Section 5.3). And last, Chapter 6 will be de-

voted to discussion of design rule applicability during planning and designing OOMOS: a

new, object-oriented OS for sensor networks, built by the author on principles of MansOS

and according to proposed design rules. Details of OOMOS implementation will be de-

scribed in Section 6.3. OOMOS will be evaluated in terms of portability and performance

in Section 6.4. Future work on OOMOS improvement according to proposed design rules

19

1.5 Summary and thesis outline

will be discussed in Section 6.5. The thesis will be completed with conclusions on results

and future work in Chapter 7.

20

2 Sensor network software abstrac-

tions

Sensor networks can be programmed (or tasked) in multiple ways, using different ab-

stractions (Figure 2.1). The choice of abstraction to use is up to user and depends on

application requirements and user skills.

Runtime Environment

Sensor Node

Application

Operating system

Hardware

Middleware

Configuration

NetworkBinary
executable

Interpretable
code

Development Environment

Development
tools

Figure 2.1: Abstractions for sensor networks - Application can be written using

custom code, on-top of operating system or using additional middleware. The whole network

can be reprogrammed or re-tasked remotely

Two different environments must be distinguished:

a) Software abstractions in runtime environment - different layers of tasks or operations

executed on the sensor nodes. An example: a web server (application) running on a

21

sensor node that uses database (middleware) for sensor data, and this database is built

on top of TinyOS (operating system).

b) Programming abstractions in development environment abstractions - tools and meth-

ods used to provide better user experience in the process of sensor node programming.

Users can program sensor nodes in C/C++, build the code on top of operating systems

and virtual machines. The produced source code can be directly compiled to binary

code for sensor node microcontroller, it can also undergo multiple layers of translation

and compilation to different interpretable middleware formats. From user perspective

there is no difference between program source code pre-compilation to binary image in

the development environment and its interpretation or translation on the sensor node

during deployment.

The following abstractions are used in the runtime environment:

1. Operating system - interface for efficient access to hardware (Section 2.1).

2. Middleware - an intermediate layer providing access in a different, domain-specific

approach (Section 2.2).

3. Application - user created program for task-specific operations.

Each next software abstraction on the sensor node increases usability and conve-

nience for the user (or programmer), while sacrificing certain amount of performance and

flexibility. The most efficient way would be to write program code directly in machine

language or assembly for each application individually - all of hardware features are avail-

able in an efficient way, using this abstraction. However, such approach is available only

to embedded system programming experts, requires lot of time and effort, and is more

prone to software bugs. Therefore for each application and user type an appropriate pro-

gramming abstraction must be chosen, providing required development convenience and

resource efficiency.

It is important to remember, that sensor node is just one part of sensor network.

It can be considered a peripheral device of the system. The whole network includes also

routers, gateways (which can use the same sensor node hardware) and base stations, usu-

ally connected to a personal computer (PC) for data collection, analysis, post-processing

and visualization. A complete sensor network programming includes software tools for all

the listed network components.

22

2.1 Operating systems

2.1 Operating systems

The lowest software abstraction in runtime environment, most closely to hardware, is

operating system. It provides device drivers and efficient user interface for application,

higher abstraction and service development. Often user applications are built right on

top of operating system, without any middleware services. There are multiple reasons

why efficient access to hardware may be required:

1. Sensor network hardware platforms often have very limited computation resources.

2. High-frequency, accurately timed sensor sampling is required for certain applica-

tions.

3. Specific sensors or advanced chip features, not provided in hardware-independent

layer, are sometimes required.

The goal of a conventional PC-based operating system is to provide convenient and

efficient interface between users and hardware resources. The same goal holds for wire-

less sensor network OS. However, sensor networks possess different hardware platforms,

applications and users. Therefore different strategies are used to reach the same goals

effectively.

In contrast to conventional computers, sensor networks usually use an OS as a

set of libraries and functions which are linked together with user application code in a

single firmware image. It is in some occasions hard to separate user application and OS

kernel. For resource-efficiency reasons separate kernel thread and system call interface

may be substituted by direct resource access to the user application code. However, some

operating systems, such as Contiki [47], use dynamic application linking and process

loading.

Multiple wireless sensor network operating systems have been proposed previously

by the research community, most widely known are TinyOS [48], Contiki [47], MansOS

[16], LiteOS [49], Mantis [50] and Enix [51].

The following subsections describe the listed operating systems. MansOS is de-

scribed in more detail, compared to others. Author has actively participated in MansOS

development since 2008 and it will be used as a use case to show how an OS can be

improved by applying proposed design rules in its development.

23

2.1 Operating systems

2.1.1 MansOS

This section describes operating system MansOS [17], developed by research team, where

the author of this thesis is participating. MansOS1 is modular and portable WSN oper-

ating system that provides programming interface in plain C language, environment and

concepts familiar to Unix programmers. It’s main purpose is to serve as a sandbox for

WSN software solution development and experimentation.

The author has used experience in MansOS development as one source of knowledge

during writing of this thesis. Therefore it is not surprising, that MansOS conforms to ma-

jority of proposed design rules. Nevertheless, as the evaluation will reveal in Section 5.2.5,

there is space for improvement. This section summarizes important aspects of MansOS,

more detailed description in [16].

MansOS design is based on a set of principles, with the ease of WSN application

programming and portability in mind:

• Source code abstractions : source code is separated in four parts: chip-specific, MCU

architecture-specific, platform-specific, and platform-independent application pro-

gramming interface (API) (see Figure 2.2). Such separation provides more flexible

code development and porting. For example, chip-specific device drivers can be

used in multiple platforms, and all platforms may implement the same platform-

independent API by calling appropriate chip-specific functions.

• Modular system allowing to select among multiple alternative implementations (for

example, cooperative of preemptive task scheduling) and switch off unused modules

for the particular application, to reduce code size, increase performance and lifetime.

• Core libraries provide essential networking protocols and services for WSN appli-

cations, such as file system, time synchronization, cyclic redundancy check (CRC)

checksum calculation, and random number generation.

• Unix-like programming using only C language following American National Stan-

dards Institute (ANSI) specification. No language extensions or preprocessors are

added to provide familiar environment and avoid confusion.

• Different scheduling techniques. MansOS provides three different schedulers: coop-

erative, preemptive and event-based.

1Available at http://mansos.net.

24

http://mansos.net

2.1 Operating systems

• Simulation on the PC platform. Before real deployments MansOS provides simu-

lated environment to compile and test application level algorithms on PC platform.

Network consisting of multiple nodes can be simulated.

• Remote management and reprogramming. To accelerate deployment-time debugging

and facilitate reprogramming, run-time interface for data access and reprogramming

over-air is provided.

• Support of popular hardware chips and architectures. MansOS supports both AVR

and MSP430 microcontroller architectures, and popular WSN mote platforms, in-

cluding TelosB with 802.15.4 compatible radio chip CC2420.

HIL

Chips

Platforms & architectures

Application code

Int. flash

Ext. flashSPI

Radio

LED

Alarms

MCU

MSP430

Atmega

Radio

CC1101

CC2420

Flash

M25P80

AT25DF

Sensors

SHTxx

ISL29003

I/O port binding

Function binding Platform constants

Hardware-indep. implementations

Figure 2.2: MansOS components and abstraction layers - programmers have direct

access to all system layers, from chip-specific code to hardware-independent-layer (HIL).

Figure from [16]

25

2.1 Operating systems

MansOS architecture is shown in Figure 2.3. The following tasks are executed on

the sensor node:

• First, initialization starts with a bootloader. Multiple options are available - a

simple bootloader passing execution to kernel initialization, and a more complex

bootloader supporting remote node reprogramming.

• Kernel initialization selects the active components, based on hardware available on

the particular node, and the configuration at compile time. Calls to device drivers

are made.

• A specific time service routing is started that manages time counter and timed event

interrupt handling.

• Kernel starts task scheduler which distributes CPU time among kernel and user

tasks based on the execution model (see Section C.1 in Appendix for more details

on different execution models available in MansOS).

• The only critical process implemented in the kernel space is radio communication

(time synchronization is included in packet exchange). The rest of processes are

implemented in the user space, depending on application requirements.

Bootloader

User
process #1

Communication
process

Initialization

Process
scheduler

Time service

Device
drivers

... User
process #n

Kernel space

User space

MansOS Kernel

Figure 2.3: MansOS architecture - Bootloader calls kernel code responsible for device

driver initialization and process scheduling

26

2.1 Operating systems

MansOS is a flexible WSN operating system, that allows users to access radio com-

munication at multiple International Organization for Standardization (ISO) Open Sys-

tems Interconnection (OSI) networking stack layers [52]: physical, data link (MAC), and

network. Transport and application layers are not core features of MansOS, yet they may

be implemented using external libraries and user application code. Session and presenta-

tion OSI layers are usually not used in WSN applications.

MansOS allows interchangeable, independent protocols to be used in all three net-

working stack layers. For example, the same routing protocol may be used on top of

different MAC protocols. MansOS includes simple carrier-sense multiple access (CSMA)

MAC and multi-hop routing protocols, with package acknowledgements, and allows de-

velopers to customize them, and to implement completely new protocols. See Section C.2

in Appendix for more details on MansOS networking protocol stack.

MansOS features a simple file system that abstracts the physical storage as a number

of logical files or streams. Following the MansOS philosophy, the file system interface is

synchronous (UNIX-like) and thread-safe. In addition to basic file commands, the system

has non-buffering and integrity-checking modes. On the low level, the system is designed

for flash chips that have very large segments and don’t contain integrated controllers that

handle data rewrites and wear leveling.

MansOS is multi-platform in the sense of supporting multiple hardware platforms

(Tmote Sky, Arduino, Zolertia Z1 and more) and multiple architectures (MSP430 and

Atmel AVR). MansOS provides platform-independent API for analog sensor sampling

using analog-to-digital converter (ADC) module, digital communication protocols (Uni-

versal asynchronous receiver/transmitter (UART), serial peripheral interface(SPI), inter-

integrated circuit (I2C)) and MCU pin configuration. Therefore sensor, external memory

and other peripheral drivers can be designed using platform-independent routines, al-

lowing the same driver to be reused among multiple platforms and applications. The

communication protocols are provided in both hardware and software versions using uni-

fied API. The version to be used is selected at compile time, allowing to reuse peripheral

drivers without modification.

2.1.2 TinyOS

TinyOS is the first operating system designed especially for wireless sensor networks. It

is actively supported, well tested and has created a wide contributor and user community,

and can be considered de facto standard for WSN programming. TinyOS is primarily

targeted to sensor network researchers. According to Levis et al [48]:

27

2.1 Operating systems

The space of networked sensors is novel and complex: we therefore focus on

flexibility and enabling innovation, rather then the right OS from the begin-

ning.

Resource-constrained sensor nodes requiring high energy efficiency are event-driven

embedded devices. Therefore compact, reactive scheduler is used (core system uses 400

bytes of program memory). Source code is written in nesC language, a C dialect with

minor modifications, that is processed by a nesC parser and pre-compiled into a single C

source file. This single file is then compiled into a firmware image and takes advantages

of static compiler optimizations.

TinyOS is a highly modular system, consisting of components, wired together using

specified interfaces. Each component provides a particular service and interfaces describe

commands for starting a service and events for signaling completion of a service rou-

tine. Inside components low-priority tasks are scheduled, using non-preemptive, run-to-

completion first in first out (FIFO) task queue. High-priority event handlers are used for

time-critical section execution. Optional preemptive scheduler can be used, implemented

as an add-on, called TOSThreads [53].

2.1.3 Contiki

Contiki is a lightweight operating system with support for dynamic loading and replace-

ment of individual programs and services. It is built around an event-driven kernel and

provides optional preemptive multithreading [47]. Contiki is written in C language and

has been ported to a number of platforms, including TelosB and MicaZ, having different

CPU architectures: Atmel AVR, Texas Instruments MSP430 and others. Bundled appli-

cation examples are extensible and provide easy learning and experimentation interface

for novice users.

The only abstractions provided by Contiki kernel are CPU multiplexing and dynamic

program and service loading. Additional abstractions are provided by libraries with full

access to underlying hardware. Loadable programs are implemented, using modified bi-

nary format containing relocation information and performing runtime relocation.

Communication stack is composed of services. Therefore, each layer is replaceable

in runtime and multiple communication stacks are loadable simultaneously.

Contiki is, perhaps, the most widely used TinyOS alternative, providing more clas-

sical sequential programming approach and rich service library. One argument supporting

this statement is Contiki developer activity in the forum with several hundred emails be-

ing discussed each month [54]. From design perspective, Contiki has potential for change,

including improvements in platform-independency increase.

28

2.1 Operating systems

2.1.4 LiteOS

LiteOS is a multi-threaded operating system that provides Unix-like abstractions for wire-

less sensor networks [49]. It offers hierarchical file system, remote shell, dynamic applica-

tion loading, preemptive scheduler for multithreaded applications and and object oriented

programming language LiteC++ - a subset of C++. LiteOS has been implemented on

MicaZ and Iris mote platforms, both with AVR microcontrollers.

LiteOS utilizes a specific binary image format, where all memory-dependent instruc-

tions are modified, using mathematical model, which calculates relative addresses from

the statically compiled ones.

LiteOS demonstrates a list of interesting Unix-like concepts integrated into a sensor

network OS. MansOS operating system, described in Section 2.1.1, was initially started

as a branch of LiteOS with the same goals to provide a flexible and familiar programming

WSN environment for Unix-users.

2.1.5 Mantis

Mantis is a multithreaded cross-platform embedded operating system for wireless sensor

networks, supporting complex tasks such as compression, aggregation and signal pro-

cessing, implemented in a lightweight RAM footprint that fits in less than 500 bytes of

memory, including kernel, preemptive scheduler, and network stack [50]. Mantis is im-

plemented on multiple platforms, including PCs and personal digital assistants (PDAs),

allowing to create hybrid networks consisting of real sensor nodes and virtual ones, simu-

lated on one or multiple PCs. Written in C language, Mantis OS translates to a separate

API on the PC platform.

Device drivers are implemented in Mantis similarly to unix device files. Additional

abstraction layer is implemented in the kernel, providing blocking call interface for external

event waiting. Remote shell is implemented, providing access to mote program and data

memory. Therefore, remote reconfiguration and partial reprogramming is possible in

theory, yet automated techniques have not been developed.

2.1.6 Arduino

According to [55]: ”Arduino is an open-source electronics prototyping platform based on

flexible, easy-to-use hardware and software. It’s intended for artists, designers, hobbyists

and anyone interested in creating interactive objects or environments.”

29

2.2 Middleware

Arduino has a significantly different ideology and scope compared to traditional

WSN operating systems. Arduino is both hardware and software solution for generic-

purpose embedded systems. The main advantage of Arduino is it’s huge community that

contributes with different libraries and application examples, shared ideas and completed

projects. Although in it’s core Arduino has a very limited functionality, it’s extensions

and examples make it powerful.

However, neither Arduino’s hardware nor software components are designed for low-

power requirements of WSNs. A typical Arduino application has 100% duty cycle and

a single thread of execution. The core hardware platform having only microcontroller

consumes 25mA in active mode, that is more than 1000% of TMote Sky sensor node’s

energy consumption in radio-off mode and more than TMote Sky node’s consumption

when radio is active.

Nevertheless, this platform is practical for rapid prototyping and WSN scenarios

where energy consumption is not critical (either short lifetime is expected or stable power

source is available). Compared to Arduino, high-performance platforms, such as Rasp-

berry Pi [56] or Odroid [57], running Linux can provide richer software environment and

more on-board data processing power. Yet the advantages of Arduino are simplicity and

low price.

2.2 Middleware

On top of operating systems, middleware can be used in the runtime environment to

provide programmers more convenient or specialized access to sensor network resources. In

addition to runtime middleware different middleware tools can also be part of development

environment providing translations and compilations outside sensor nodes.

Examples of middleware abstractions in the runtime environment include:

• Virtual machines (VMs) providing more comfortable or traditional programming

environment, such as Java virtual machines for WSNs [58, 59, 60].

• Virtual machines providing more compact code size therefore increasing energy ef-

ficiency of remote sensor network reprogramming and retasking [61, 62].

• Macro-programming abstractions with communication neighborhood and data ag-

gregation as programming primitives [63, 64].

• Query languages, including structured query language (SQL)-like languages, treat-

ing the whole network as a distributed database, for users with database interaction

experience [65, 66].

30

2.3 Summary

Development environment middleware examples include high-level declarative lan-

guage interfaces, providing English-like network tasking and configuration, for field ex-

perts not familiar with computer programming [67].

Operating systems for sensor networks are suitable for user group with advanced

level programming expertise, basic embedded hardware knowledge and understanding of

wireless networking principles. To make sensor networks available as a tool for wider user

rage, operating systems must support creation of additional middleware layers on top of

them. Middleware can significantly decrease complexity of sensor node resource man-

agement and network connectivity control by providing domain and application specific

programming paradigms.

2.3 Summary

Wireless sensor networks can be programmed using different software abstractions. One

very important part of the abstraction hierarchy is operating systems. There are signif-

icant differences between WSN and desktop operating systems due to specifics of WSN

hardware and environment. Several WSN operating systems have been proposed in pre-

vious work, including MansOS operating system where the author has also contributed.

Different middleware solutions can be used on-top of WSN operating systems to provide

different, usually more specific and simple, programming interface.

It is important to have a unified methodology for development of WSN operating

systems and middleware. Establishment of such methodology is an important step towards

efficient WSN solutions, interoperability and standardization.

This chapter has summarized different WSN software solutions. Chapter 3 will

describe survey of different WSN deployments and definition of a unified methodology, in

the form of design rule set, will be provided in Chapter 4.

31

3 Deployment survey

The goal of software abstractions, and operating systems in particular, is to simplify

practical application development and deployment prototyping (Chapter 2 described WSN

software abstractions in more detail). Prototyping is also required for communication

protocol testing in real-world environment. Therefore this section provides a survey on

sensor network deployments with a goal to infer common technical attribute trends. This

survey is important for creation of design rule set and common WSN software development

methodology design.

3.1 Methodology

Research papers presenting deployments are selected based on multiple criteria:

• Years 2002 up to 2011 have been reviewed uniformly, without any emphasis on a

particular year. Deployments before the year 2002 are not considered, as early sensor

network research projects used custom hardware, differing from modern embedded

systems significantly. Inclusion of such deployments would lead to greater variance of

statistical results and less important conclusions in context of near future prediction.

• Articles have been searched using Association for Computing Machinery (ACM)

Digital Library [68], Institute of Electrical and Electronics Engineers (IEEE) Xplore

Digital Library [69], Elsevier ScienceDirect [70] and SpringerLink databases [71].

Several articles have been found as external references from the aforementioned

databases.

• Deployments have been selected to cover the whole taxonomy, described in Appendix

(Section A.1).

3.2 Survey results

For each deployment, the best possible parameter extraction was performed. Part of

information was explicitly stated in the analyzed papers and web pages, part of it was

32

3.2 Survey results

acquired by making a rational guess or approximation. Such approximated values are

marked with question mark right after the approximated value. Only deployments de-

scribed in scientific journals and conference proceeding are included in the survey, web

news pages are not considered.

General deployment attributes are shown in Table 3.1. Each deployment has a

codename assigned. It will be used to identify each article in the following tables.

Multiple parameters are analyzed for each of the considered WSN deployments. For

presentation simplification, these parameters are grouped and each group is represented

as a separate subsection.

Table 3.1: Deployments: general information

Nr Codename Year Title Class Description

1 Habitats

[72]

2002 Wireless sensor networks for habi-

tat monitoring

Habitat and

weather moni-

toring

One of the first sensor network de-

ployments, designed for bird nest

monitoring on a remote island

2 Minefield

[73]

2003 Collaborative Networking Require-

ments for Unattended Ground Sen-

sor Systems

Opposing force

investigation

Unattended ground sensor system

for self healing minefield applica-

tion

3 Battlefield

[74]

2004 Energy-Efficient Surveillance Sys-

tem Using Wireless Sensor Net-

works

Battlefield

surveillance

System for tracking of the position

of moving targets in an energy-

efficient and stealthy manner

4 Line in

the sand

[6]

2004 A line in the sand: a wireless sensor

network for target detection, clas-

sification, and tracking

Battlefield

surveillance

System for intrusion detection, tar-

get classification and tracking

5 Counter-

sniper

[75]

2004 Sensor Network-Based Counter-

sniper System

Opposing force

investigation

An ad-hoc wireless sensor network-

based system that detects and ac-

curately locates shooters even in

urban environments.

6 Electro-

shepherd

[76]

2004 Electronic shepherd - a low-cost,

low-bandwidth, wireless network

system

Domestic ani-

mal monitoring

and control

Experiments with sheep GPS and

sensor tracking

7 Virtual

fences

[77]

2004 Virtual fences for controlling cows Domestic ani-

mal monitoring

and control

Experiments with virtual fence for

domestic animal control

8 Oil

tanker

[78]

2005 Design and Deployment of Indus-

trial Sensor Networks: Experiences

from a Semiconductor Plant and

the North Sea

Industrial

equipment

monitoring and

control

Sensor network for industrial ma-

chinery monitoring, using Intel

motes with Bluetooth and high-

frequency sampling

9 Enemy

vehicles

[79]

2005 Design and Implementation of a

Sensor Network System for Vehi-

cle Tracking and Autonomous In-

terception

Opposing force

investigation

A networked system of distributed

sensor nodes that detects an evader

and aids a pursuer in capturing the

evader

. . .

33

3.2 Survey results

Table 3.1 – continued

Nr Codename Year Title Class Description

10 Trove

game

[80]

2005 Trove: a Physical Game Running

on an Ad-Hoc Wireless Sensor Net-

work

Child educa-

tion and sensor

games

Physical multiplayer real-time

game, using collaborative sensor

nodes

11 Elder

RFID

[81]

2005 A Prototype on RFID and Sen-

sor Networks for Elder Healthcare:

Progress Report

Medication

intake account-

ing

In-home elder healthcare system

integrating sensor networks and

RFID technologies for medication

intake monitoring

12 Murphy

potatoes

[82]

2006 Murphy Loves Potatoes Experi-

ences from a Pilot Sensor Network

Deployment in Precision Agricul-

ture

Precision agri-

culture

A rather unsuccessful sensor net-

work pilot deployment for pre-

cision agriculture, demonstrating

valuable lessons learned

13 Firewxnet

[83]

2006 FireWxNet: A Multi-Tiered

Portable Wireless System for

Monitoring Weather Conditions in

Wildland Fire Environments

Forest fire de-

tection

A multi-tier WSN for safe and easy

monitoring of fire and weather con-

ditions over a wide range of loca-

tions and elevations within forest

fires

14 AlarmNet

[84]

2006 ALARM-NET: Wireless Sensor

Networks for Assisted-Living and

Residential Monitoring

Human health

telemonitoring

Wireless sensor network for

assisted-living and residental mon-

itoring, integrating environmental

and physiological sensors and

providing end-to-end secure com-

munication and sensitive medical

data protection

15 Ecuador

Volcano

[3]

2006 Fidelity and Yield in a Volcano

Monitoring Sensor Network

Volcano moni-

toring

Sensor network for volcano seismic

activity monitoring, using high fre-

quency sampling and distributed

event detection

16 Pet game

[85]

2006 Wireless Sensor Network Based

Mobile Pet Game

Child educa-

tion and sensor

games

Augmenting mobile pet game with

physical sensing capabilities: sen-

sor nodes act as eyes, ears and skin

17 Plug [86] 2007 A Platform for Ubiquitous Sensor

Deployment in Occupational and

Domestic Environments

Smart energy

usage

Wireless sensor network for human

activity logging in offices, sensor

nodes implemented as power strips

18 B-Live

[87]

2007 B-Live - A Home Automation Sys-

tem for Disabled and Elderly Peo-

ple

Home/office

automation

Home automation for disabled and

elderly people integrating hetero-

geneous wired and wireless sensor

and actuator modules

19 Biomotion

[4]

2007 A Compact, High-Speed, Wear-

able Sensor Network for Biomotion

Capture and Interactive Media

Smart user in-

terfaces and art

Wireless sensor platform designed

for processing multipoint human

motion with low latency and high

resolutions. Example applica-

tions: interactive dance, where

movements of multiple dancers are

translated into real-time audio or

video

. . .

34

3.2 Survey results

Table 3.1 – continued

Nr Codename Year Title Class Description

20 AID-N

[88]

2007 The Advanced Health and Disas-

ter Aid Network: A Light-Weight

Wireless Medical System for Triage

Human health

telemonitoring

Lightweight medical systems to

help emergency service providers

in mass casualty incidents

21 Firefighting

[89]

2007 A Wireless Sensor Network and In-

cident Command Interface for Ur-

ban Firefighting

Human-centric

applications

Wireless sensor network and inci-

dent command interface for fire-

fighting and emergency response,

especially in large and complex

buildings. During a fire accident,

fire spread is tracked and firefighter

position and health status is mon-

itored.

22 Rehabil

[90]

2007 Ubiquitous Rehabilitation Center:

An Implementation of a Wireless

Sensor Network Based Rehabilita-

tion Management System

Human indoor

tracking

Zigbee sensor network based ubiq-

uitous rehabilitation center for pa-

tient and rehabilitation machine

monitoring

23 CargoNet

[91]

2007 CargoNet: a low-cost microp-

ower sensor node exploiting quasi-

passive wakeup for adaptive asy-

chronous monitoring of exceptional

events

Good and daily

object tracking

System of low-cost, micropower ac-

tive sensor tags for environmental

monitoring at the crate and case

level for supply-chain management

and asset security

24 Fence

monitor

[5]

2007 Fence Monitoring Experimental

Evaluation of a Use Case for Wire-

less Sensor Networks

Security sys-

tems

Sensor nodes attached to a fence

for collaborative intrusion detec-

tion

25 BikeNet

[92]

2007 The BikeNet Mobile Sensing Sys-

tem for Cyclist Experience Map-

ping

City en-

vironment

monitoring

Extensible mobile sensing system

for cyclist experience (personal, bi-

cycle and environmental sensing)

mapping leveraging opportunistic

networking principles

26 BriMon

[93]

2008 BriMon: A Sensor Network Sys-

tem for Railway Bridge Monitoring

Bridge moni-

toring

Delay tolerant network for bridge

vibration monitoring using ac-

celerometers. Gateway mote col-

lects data and forwards oppor-

tunistically to a mobile base sta-

tion attached to a train passing by.

27 IP net

[94]

2008 Experiences from Two Sensor

Network Deployments - Self-

Monitoring and Self-Configuration

Keys to Success

Battlefield

surveillance

Indoor and outdoor surveillance

network for detecting troop move-

ment

28 Smart

home

[95]

2008 The Design and Implementation

of Smart Sensor-based Home Net-

works

Home/office

automation

Wireless sensor network deployed

in a miniature model house, which

controls different household equip-

ment: window curtains, gas valves,

electric outlets, TV, refrigerator,

door locks

. . .

35

3.2 Survey results

Table 3.1 – continued

Nr Codename Year Title Class Description

29 SVATS

[96]

2008 SVATS: A Sensor-network-based

Vehicle Anti-Theft System

Anti-theft sys-

tems

Low cost, reliable sensor-network

based, distributed vehicle anti-

theft system with low false-alarm

rate

30 Hitchhiker

[97]

2008 The Hitchhikers Guide to Success-

ful Wireless Sensor Network De-

ployments

Flood and

glacier detec-

tion

Multiple real-world sensor network

deployments performed, including

glacier detection, experience and

suggestions reported.

31 Daily

morning

[98]

2008 Detection of Early Morning Daily

Activities with Static Home and

Wearable Wireless Sensors

Daily activity

recognition

Flexible, cost-effective, wireless in-

home activity monitoring system

integrating static and mobile body

sensors for assisting patients with

cognitive impairments

32 Heritage

[99]

2009 Monitoring Heritage Buildings

with Wireless Sensor Networks:

The Torre Aquila Deployment

Heritage build-

ing and site

monitoring

Three different motes (sensing

temperature, vibrations and defor-

mation) deployed in a historical

tower to monitor its health and

identify potential damage risks.

33 AC me-

ter [100]

2009 Design and Implementation of a

High-Fidelity AC Metering Net-

work

Smart energy

usage

AC outlet power consumption

measurement devices, which are

powered from the same AC line,

but communicate wirelessly to

IPv6 router

34 Coal

mine

[101]

2009 Underground Coal Mine Monitor-

ing with Wireless Sensor Networks

Coal mine

monitoring

Self-adaptive coal mine WSN sys-

tem for rapid detection of structure

variations caused by underground

collapses

35 ITS [102] 2009 Wireless Sensor Networks for Intel-

ligent Transportation Systems

Vehicle track-

ing and traffic

monitoring

Traffic monitoring system imple-

mented through WSN technology

within SAFESPOT Project

36 Underwater

[103]

2010 Adaptive Decentralized Control of

Underwater Sensor Networks for

Modeling Underwater Phenomena

Underwater

networks

Measurement of dynamics of un-

derwater bodies and their impact

in the global environment, using

sensor networks with nodes adapt-

ing their depth dynamically

37 PipeProbe

[104]

2010 PipeProbe: A Mobile Sensor

Droplet for Mapping Hidden

Pipeline

Power line and

water pipe

monitoring

Mobile sensor system for determin-

ing the spatial topology of hidden

water pipelines behind walls

38 Badgers

[105]

2010 Evolution and Sustainability of a

Wildlife Monitoring Sensor Net-

work

Wild animal

monitoring

Badger monitoring in a forest

39 Helens

volcano

[106]

2011 Real-World Sensor Network for

Long-Term Volcano Monitoring:

Design and Findings

Volcano moni-

toring

Robust and fault-tolerant WSN for

active volcano monitoring

. . .

36

3.2 Survey results

Table 3.1 – continued

Nr Codename Year Title Class Description

40 Tunnels

[107]

2011 Is There Light at the Ends of

the Tunnel? Wireless Sensor Net-

works for Adaptive Lighting in

Road Tunnels

Tunnel moni-

toring

Closed loop wireless sensor and ac-

tuator system for adaptive lighting

control in operational tunnels

3.2.1 Deployment state and attributes

Full details of deployment state and used mote characteristics can be found in Appendix,

see Table A.1.

Deployment state represents maturity of the application: whether it is just a proto-

type or a pilot test-run in real environment, or it has been running in stable state for a

while. Only a few deployments are in stable state, the majority are prototypes and pilot

studies. Therefore it is important to support fast prototyping and effective debugging

mechanisms for these phases.

Despite theoretical assumptions about huge networks consisting of thousands of

nodes only a few deployments contain more than 100 nodes. 80% of listed deployments

contain 50 or less nodes, 34% - less than 10 nodes (Figure 3.1). Therefore communi-

cation stack included in the default operating system (OS) libraries, should concentrate

on usability, simplicity and resource efficiency, rather than provide complex and resource

intensive, scalable protocols for thousands of nodes.

Remote reprogramming is essential though, as it is very time intensive and difficult

to program more than 5 nodes. And often nodes need many reprogramming iterations

after initial setup at the deployment site.

The majority of deployments are built of homogenous networks with equal nodes:

70% of deployments. However, significant amount of deployments contain heterogenous

nodes, and that must be taken into account in remote reprogramming design - users must

be able to select subsets of network nodes to reprogram.

Almost all networks have a sink node or base station, collecting the data. Therefore

sink-oriented protocols must be provided. Significant part of deployments use multiple

sinks, which must be supported in the protocols.

Almost half of deployments use regular mote connected to a personal computer

(usually a laptop) as a base station hardware solution. OS toolset must therefore include

37

3.2 Survey results

Figure 3.1: Distribution function of mote count in surveyed deployments - 80%

of deployments contain less than 50 motes, 50% - less than 20 motes, 34% - ten or less

a default solution for base station application, which is easily extensible to user specific

needs.

3.2.2 Sensing

Detailed description of sensing subsystem and sampling characteristics can be found in

Appendix, see Table A.2.

The most popular sensors are temperature light sensors and accelerometers (Fig-

ure 3.2). Therefore WSN operating system should include API for temperature these in

the default library set.

Interfaces used for sensor attachment, user feedback and interaction are listed in

Table A.7. ADC is the most popular option for sensor interfacing: used in more than

50% of analyzed deployments, due to fact that majority of used sensors are analog.

Sensing applications may have two types of sampling: periodic, using timers, and

event based - where data processing is triggered by sensed events. Both these approaches

are used in sensor networks. Periodic sensing is more popular - 60% of applications use

periodic sensor sampling and data processing, while pure event based approach is used in

22% of deployments. Part of deployments (18%) are hybrids - both, event triggered and

periodic sensing is performed.

38

3.2 Survey results

Figure 3.2: Sensors used in deployments - temperature, light and acceleration sensors

are the most popular: each of them used in more than 20% of analyzed deployments

When considering sensor sampling rate, a pattern can be observed (Figure 3.3).

Most of the deployments are low sampling rate examples, where the mote has a very

low duty cycle, and sampling rate is less than 1Hz. Other, less popular application

classes use sampling in the range 10-100Hz and 100-1000KHz. The former class uses

accelerometer data processing while the latter is mainly representative of audio and high

sensitivity vibration processing. Significant part of applications have variable sampling

rate, configurable in run time.

Global positioning system (GPS) localization is widely used technology globally.

However, it is not very popular in sensor networks, mainly due to unreasonably high

power consumption. It is used in less than 18% of deployments. Therefore, GPS module

should not be considered as a default component.

3.2.3 Lifetime and energy

Table A.3 (in Appendix) describes energy usage and target lifetime of analyzed deploy-

ments.

Target lifetime is very dynamic among applications: from several hours to several

years. Long-living deployments use duty-cycle below 1%, meaning, that sleep mode is

used 99% of the time. Therefore operating systems should provide effective routines for

duty-cycling and have low computational overhead. Significant part of deployments (more

39

3.2 Survey results

Figure 3.3: Sensor sampling rate used in deployments - Low duty cycle applications

with sampling rate below 1Hz are the most popular, however, high-frequency sampling is

also used, ranges 10-100Hz and 10-100KHz are popular

than 30%), especially in the prototyping phase, do not concentrate on energy efficiency

and use 100% duty cycle. Automatic activation of sleep mode whenever possible would

decrease the complexity and increase lifetime for deployments in prototyping phase, and

also help beginner sensor network programmers.

Although energy harvesting is envisioned as the only way for sustainable sensing

systems [108], power sources other than batteries or static power network are rarely used

- in 5% of analyzed deployments. Harvesting module support in operating system level is,

therefore, not essential part of deployments until today. However, harvesting popularity

may increase in future deployments and their support could be a valuable option for WSN

OS.

Both, very short and very long sleeping periods are used: from 250 milliseconds

up to 24 hours. For convenient programming both, accurate short period sleeping and

energy-efficient long period sleep modes should be supported by operating system.

More than 80% of deployments have power-motes present in the network: at least

one node has increased energy budget. Usually, these motes are capable of running at

100% duty cycle, without sleep mode activation. This fact must be taken into account,

when designing default networking protocol library.

40

3.2 Survey results

3.2.4 Sensor motes

Table A.4 (in Appendix) lists used motes, radio (or other communication media) chips

and protocols.

Mica2 [109] and MicaZ [110]platforms were very popular in early deployments.

TelosB-compatible platforms (TMote Sky and others [32, 111, 112, 113]) are popular

in recent years. Therefore TelosB platform support is essential for WSN OS.

Almost half of deployments (48%) use adapted versions of off-the-shelf motes by

adding customized sensors, actuators and packaging. Almost one third (32%) use fully

custom-built motes, by combining different microchips. Often these platforms are either

compatible or similar to commercial platforms (for example, TelosB): the same MCUs

and radio chips are used. Only 20% of deployments use off-the-shelf motes with default

sensor modules. Therefore it is important for an operating system to support rapid:

• Implementation of additional sensor drivers for existing commercial motes.

• Porting to completely new platforms, providing effective mechanisms for existing

commercial platform driver reuse.

The most popular reason for building a customized mote is specific sensing and

packaging constraints. The application range is very wide and the author believes, that

there will always remain need for customized platforms. Software support for customized

platforms is therefore important.

On the other hand, part of sensor network users are beginners in the field and do not

have resources to develop a new platform to assess a certain idea in real world settings.

Off-the-shelf commercial platforms, simple programming interface, default settings and

demo applications are required for this user class.

Chipcon CC1000 radio [114] was popular for early deployments, however, Chipcon

CC2420 [8] is the most popular in recent years. IEEE 802.15.4 [34] is the most popular

radio transmission protocol (used in CC2420 and other radio chips) at the moment, and

with high confidence, it will keep the positions in near future. Driver support for CC2420

is essential. More radio chips and System-On-Chip (SoC) solutions using IEEE 802.15.4

protocol can be expected in the coming years.

3.2.5 Sensor mote: microcontroller

Used microcontrollers are listed in Table A.5, in Appendix.

Only a few deployments use motes with more than one MCU. Therefore the po-

tential usage of OS support for multi-MCU platforms is limited. Multi-MCU motes is a

41

3.2 Survey results

future research area for applications running simple tasks routinely and requiring extra

processing power sporadically.

The most popular MCUs belong to Atmel ATMega and Texas Instruments MSP430

families. The former is used in Mica-family motes while the latter is the core of TelosB

platform, widely used recently. Therefore support for these MCUs is essential for sensor

network operating systems. A few ARM family processors are used, not very widely.

Sensor network motes use 8-bit or 16-bit architectures, with a few 32-bit ARM-

family exceptions. Typical CPU frequencies are around 8MHz, RAM amount: 4-10KB,

Program memory: 48-128KB. It must be noted, that program memory size is always

larger than RAM, sometimes even by a factor of 32. Therefore RAM memory effective

usage is more important and reasonable amount of program memory can be sacrificed for

that matter.

3.2.6 Sensor mote: external memory

Used external memory characteristics are described in Table A.6 (see Appendix). While

external memory of several megabits is available on most sensor motes, it is actually

seldom used: only in 25% of deployments. Although very popular, Secure Digital/Mul-

tiMediaCard (SD/MMC) memory cards are even less frequently used: in less than 10%

of deployments. Despite the fact that multiple sensor network file systems have been

proposed previously [49, 115], they are not used. And, probably, there is a connection

between (lack of) external memory and file system usage - external memories are rarely

used, because there is no simple and efficient file system for these devices. Convenient file

system interface should be provided by operating system, so that sensor network users

can use it without extra complexity.

3.2.7 Communication

Table A.8 (in Appendix) lists deployment communication characteristics.

Data report rate varies a lot - some applications report once a day while others

perform real-time reporting at 100Hz. If we search for connection between Table A.2 and

Table A.8, two conclusions can be drawn:

• Low report rate is associated with low duty cycle.

• Low report rate not necessary implies low sampling rate - high-frequency sampling

applications with low report rate do exist [78, 99, 100].

42

3.2 Survey results

Typical data payload size is in the range 10-30 Bytes. However, larger packets are

used in some deployments. Therefore default packet size provided by operating system

should be around 30 bytes with option to change this constant easily, when required.

Typical radio transmission ranges are in the order of few hundred meters. Some

deployments use long-range links with more than 1km connectivity range. For any de-

ployment, option to change radio transmission power (if provided by radio chip) is a

valuable option for collision avoidance and energy efficiency.

Data transmission speed is usually below 1MBit theoretically and even lower prac-

tically. It must be taken into account when designing communication protocol stack.

80% of deployments consider the network to be connected without interruptions

- any node can communicate to other nodes at any time (not counting delays imposed

by MAC protocols). Only 12% experience interruptions, and 8% of networks have only

opportunistic connectivity.

Used communication media characteristics are listed in Appendix, Table A.9. With

few exceptions, the communication is performed by transmitting radio signals over air.

Ultrasound is used as alternative. And parts of networks may use available wired infras-

tructure.

85% of applications use one, static radio channel, the remaining 15% do switch

between multiple alternative channels. While directionality usage for extended coverage

and energy efficiency has been a widely discussed topic, the ideas are seldom used in

practice. Only 10% of deployments use radio directionality benefits, and none of these

deployments utilize electronically switchable antennas capable of adjusting directionality

in real time [11].

3.2.8 Network

Deployment networking parameters are summarized in Table A.10 (see Appendix).

Mesh, multi-hop network is the most popular network topology - used in 47% of

analyzed cases The 2nd most popular topology is simple one-hop network: 25%. Multiple

such one-hop networks are used in 15% of deployments.

A surprising finding: almost half of deployments (47%) have at least one mobile

node in the network. Therefore topology changes must be expected and handled correctly

by routing protocol. Neighbor discovery protocols could also be required. Additionally:

30% have random initial node deployment, increasing the need for neighbor discovery

protocol.

Maximum hop count does not exceed 11 in the surveyed deployments. Therefore,

routing protocol scalability and routing table size are not critical.

43

3.2 Survey results

3.2.9 Networking stack

Networking protocol stack is summarized in Table A.11, see Appendix.

43% of deployments use custom MAC protocols, proving that data link layer prob-

lems are very application-specific and important to assure energy-efficiency. Most com-

monly used MAC protocols can be divide into two classes: Carrier Sense Multiple Access

(CSMA) based and Time Division Multiple Access (TDMA) based. The former class

represents protocols which check media availability short before transmission while in the

latter case all communication participants agree on a common transmission schedule.

70% use CSMA-based MAC protocols, 15% - TDMA and the remaining 15% is un-

clear. Conclusion: operating system should provide simple, effective and generic CSMA-

based MAC protocol as default. TDMA MAC option would be a nice feature for WSN

OS, as TDMA protocols are more effective in many cases. However, CSMA MACs are

often used just because TDMA implementation is too complex: it requires master node

election and time synchronization.

Routing is used in 65% of applications. However, no single best routing protocol is

selected - between the analyzed deployment, no two applications used the same routing

protocol. 43% of deployments used custom routing, not published before.

Routing can be proactive: routing tables are prepared and maintained beforehand;

or it can be reactive - routing table is constructed only upon need. Proactive approach is

used in 85% of the cases, the remaining 15% use reactive route discovery.

Therefore the conclusion: operating system must provide simple yet efficient, proac-

tive routing protocol which performs fair enough for most of the cases. Interface for

custom MAC and routing protocol substitution must be provided.

Although Internet Protocol version 6 (IPv6) is a widely discussed protocol and mod-

ifications (such as 6lowpan [116]) for resource constrained devices have been developed,

the protocol is very novel and not widely used yet: only 5% of surveyed deployments

use it. However, it can be expected, that this number will increase in coming years and

most leading operating systems will adapt it. Sensor networks are essential part of the

Internet-of-Things (IoT) movement that is accelerating recently. The IoT approach re-

quires common standards with large address space. IPv6 is a promising standard for this

matter.

Safe data delivery is used by 43% of deployments, showing that reliable communica-

tion in transport layer is a significant requirement for some application classes. Another

quality-of-service option, data stream prioritizing, is rarely used though: only in 10% of

cases. Conclusion: simple transport layer delivery acknowledgement mechanisms should

be provided by the operating system.

44

3.2 Survey results

3.2.10 Operating system and middleware

Used operating systems and middleware are listed in Table A.12 (see Appendix).

TinyOS [48] is de-facto operating system for wireless sensor networks: 60% of deploy-

ments use it. There are multiple reasons behind that. First, TinyOS has large community

supporting it, therefore device drivers and protocols are well tested. Second, as it has

reached critical mass, TinyOS is the first choice for new sensor network designers - it is

being taught at universities, it has easy installation and well developed documentation,

even books on how-to program in TinyOS [117].

At the same time, many C and Unix programmers would like to use their previ-

ous skills and knowledge to program sensor networks without learning TinyOS specifics,

including nesC language (used by TinyOS) and component wiring. One evidence of

this statement - new operating systems for sensor network programming are developed

[16, 47, 49, 118, 119, 120], despite the fact, that TinyOS has been there for more than 10

years. Another evidence:in 25% of cases a self-made or customized OS is used: users either

want to use their particular knowledge, or they have specific hardware, not supported by

TinyOS and consider porting TinyOS to new hardware to be too complex.

Deluge [121] and TeenyLIME [64] middleware are used in more than one deploy-

ment. Deluge is a remote reprogramming add-on for TinyOS. TeenyLIME is middleware

providing different level of abstraction, also implemented on top of TinyOS. Conclusion:

middleware usage is not very popular in sensor networks. Therefore there is open space

for research - to develop an easy to use yet powerful middleware, that is generic enough

to be used in wide application range.

3.2.11 Software level tasks

User and kernel level tasks and services are described in Appendix, Table A.13. Task count

and objectives are an estimate of the author of this deployment survey, developed based

on information available from research articles. Networking, time synchronization and

remote reprogramming protocols are considered kernel services, if not stated otherwise.

Most of deployments use not more than 2 kernel services: 55% (Figure 3.4). For

some deployments up to 5 kernel services are used. Maximum service count must be taken

into account when designing task scheduler.

In application layer, often just one task is used, which is typically sense and send:

33% of cases (Figure 3.5). Up to 6 tasks are used in more complex applications. Therefore

task scheduler must support more than two application layer (user-space) tasks, preferably

at least 5.

45

3.2 Survey results

Figure 3.4: Number of kernel level software services used in deployments - 55%

of deployments use 2 or less kernel services. For 28% kernel service count is unknown.

Figure 3.5: Number of application layer software tasks used in deployments -

33% of deployments use just one task, however, up to 6 tasks used in more complex cases.

Task count is unknown in 18% of deployments.

46

3.2 Survey results

3.2.12 Task scheduling

Table A.14 (in Appendix) describes deployment task scheduling attributes: time sensitiv-

ity and need for preemptive task scheduling.

Two basic scheduling approaches do exist: cooperative and preemptive. In the

former case switch between tasks is explicit - one task yields processor to another task.

Switch can occur only in predefined code lines. In the latter case, the scheduler can

preempt any task at any time and give the CPU to another task. Switch can occur

anywhere in the code.

The main advantage of cooperative scheduling is resource efficiency: no CPU time

and memory is wasted to perform periodic switches between concurrent tasks, which could

be executed serially without any problem. The main advantage of preemptive scheduling:

users do not have to worry about task switching - it is performed automatically. Even

if the user has created an infinite loop in one task, other tasks will have access to CPU

and will be able to execute. However, preemptive scheduling can introduce new bugs: it

requires context switching, including multiple stack management. Memory checking and

overflow control is much harder for multiple stacks, compared to cooperative approaches

with single stack.

If we assume, that user written code is correct, preemptive scheduling is required

in a case, where at least one task is time sensitive and at least one other task is time

intensive (can execute relatively long period of time). 20% of analyzed deployments have

at least one time-sensitive application layer task (most of them: exactly one), while 30%

of deployments require preemptive scheduling. Even in some cases (10%), where no user-

space time-sensitive tasks do exist, preemption may be required by kernel-level services:

MAC protocols and time synchronization.

Conclusion: operating system should provide both: cooperative and preemptive

scheduling, switchable as needed. When using time-sensitive kernel services, scheduling

should automatically switch to preemptive mode.

3.2.13 Time synchronization

Time synchronization has been addressed as one of the core challenges of sensor networks.

Therefore its use in deployments is analyzed, statistics are shown in Table A.15 (see

Appendix). Reliable routing is possible if at least one of two requirements holds:

a) 100% duty cycle is used on all network nodes functioning as data routers without

switching to sleep mode.

47

3.2 Survey results

b) Network nodes agree on a cooperative schedule for packet forwarding - time synchro-

nization is required.

Therefore no effective duty cycling and multi-hop routing is possible without time

synchronization.

Time synchronization is used in 38% of deployments, while multi-hop routing is used

in 57% of cases (the remaining 19% use no duty-cycling).

Although very accurate time synchronization protocols do exist [122], simple meth-

ods, including GPS, are used most of the time, offering accuracy in millisecond, not

microsecond range.

Only one of deployments used a previously developed time synchronization approach

(not including GPS usage in two other deployments), all the others use custom methods.

Reason: despite many published theoretical protocols, no operating system provides an

automated and easy way to ”switch on” time synchronization. Conclusion: time syn-

chronization provided by the operating system would be of a high value, saving sensor

network designers time and effort for custom synchronization development.

3.2.14 Localization

Another of the most addressed sensor network problems is localization, Table A.16 in

Appendix.

Localization is used in 38% of deployments: 8% use GPS, 30% - other methods. In

contrast to time synchronization, localization problem is very application specific. Re-

quired localization granularity, environment, meta-information and infrastructure varies

tremendously: in one case, localization of centimeter scale must be achieved, in second:

room of moving object must be found, in the third: GPS is used in outdoor environment.

73% of the cases, where localization is used, it is custom for this application. Therefore it

is not possible for an operating system to provide a generic localization method for wide

application class. Neighbor discovery service (as a part of multi-hop routing) could be

usable.

3.2.15 Real-time data access

Real-time data access includes remote sensor reading access, software debug and remote

reprogramming. Summary is shown in Table A.17 (see Appendix).

Remote data access and debug is used in 38%, remote reprogramming: 35%. It

is clear, that remote, real-time data access is essential for efficient prototype and pilot

installation where motes are in a specific packaging, or too many to plug each in a USB

48

3.2 Survey results

port; or even worse - they are deployed on a hardly accessible remote site (such as island

or volcano). Therefore remote debug, data access and reprogramming is an integral part

of wireless sensor network operating system.

3.2.16 Discussion of future trends

In addition to deployment survey, the author has performed survey of recently designed

hardware platforms for wireless sensor networks. Detailed results are summarized in

Appendix, see Table B.1, Table B.2, and Table B.3. One conclusion from this platform

survey - more powerful microcontrollers with ARM architecture emerge. However, the

CPU frequencies are still less than 100MHz and amount of memory less than 100KiB.

These still are mote-class low-power devices.

At the same time, Linux-based embedded platforms have evolved rapidly, including

Raspberry Pi [56] and Odroid [57]. However, the energy consumption of these devices

limit their application domain to different problems, requiring more complex real-time

operations, such as image and audio signal processing.

Visual WSNs use high-performance platforms with Linux due to real-time large data

sampling, storage and processing [123]. Energy consumption is in the order of watts for

these platforms. If only image capture is required, devices with lower performance are

useful (Cyclops [124]). High performance is required for object recognition and tracking.

For underwater networks the nodes can be significantly larger in size and weight,

thus the main challenge is communication, not energy [125]. Linux can be used on these

platforms.

In medical applications more trustworthiness and privacy must be present for large-

scale, unsupervised deployments. Platform performance is not the limiting factor [126].

Sensor networks are mature enough to have more standardized protocols employed.

The WSN field is contributing to growth of Internet-of-Things, where standardization is

very important [127]. IEEE 802.15.4 and IPv6 over Low power Wireless Personal Area

Networks (6loWPAN) are most widely used protocols [128]. In specific WSN domains

other protocols might be dominating. For example, vehicular sensor networks are most

likely to use Long Term Evolution (LTE) cellular technologies and IEEE 802.11n [129].

Although IPv6 and 6lowpan implementation for sensor networks is not popular at the

moment, the popularity will increase at the moment, when internet hosts will start to

actively use IPv6. One way of this shift is to start with mobile phones - introduce IPv6

in cellular networks.

Up to now sensor network applications have been developed mostly by networking

researchers. As the field evolves and software abstractions provide more flexible access

49

3.2 Survey results

for users without expertise in embedded systems, the count of non-expert applications

could increase. There is a two-way link between attraction of new sensor-net designers

and operating system improvement. Such users will, most probably, focus on application

layer and use default networking protocols without developing custom implementations.

New middleware, operating system add-ons or configurable application solutions can be

expected, which provide sensor system access to people with no programming languages

at all.

Energy harvesting methods are underestimated. The rise of harvesting technique

usage can be expected, including harvesting from electro-magnetic field (EMF) energy,

as cellular, WiFi and other wireless communication technology usage is growing and the

EMF pollution grows accordingly.

People-centric sensing is rising in popularity due to high smartphone penetration

speed. To extend wireless sensor networks to the next level, sensor mote cooperation with

user-centric devices is essential. It can be accomplished by bridge devices having 802.15.4

and WiFi, BlueTooth or third generation of mobile telecommunications technology (3G)

communication.

Radio-Frequency IDentification (RFID) and Near-Field Communication (NFC) tech-

nologies could grow in popularity. Especially if technology giants, such as Nokia and

Google, support them [130, 131]. These technologies provide new application lifecycle

model: wake-on-radio + process + respond, which could require new software paradigms.

New sensors, providing revolutionary applications, can be discovered. Although it is

impossible to predict, what kind of sensors they will be, operating system must be flexible

enough to support wide range of sensor connections, to allow rapid experimentation.

New applications with ultra-low power consumption requirement could arise. However,

most likely these systems will be entirely programmed by the designers, without usage

of operating systems or middleware. Multiple serious environmental catastrophes have

occurred during last years, suggesting, that environmental hazard detection and warning,

as well as human rescue assistance systems could be developed in near future.

Intelligent Transportation Systems (ITS) is a promising approach to use information

technologies for increased traffic safety, efficiency and comfort. Wireless communication

is one part of ITS, and recently IEEE 802.11p standard has evolved to stable state [132].

Similarly to people-centric sensing, sensor motes can be used as eyes and ears of the

environment to provide information for traffic participants. Bridging of 802.15.4 and

802.11p is required to create collaboration between mote world and ITS, or energy efficient

802.11p solutions must be designed.

One of the most popular platforms in the last years has been TMote Sky manu-

factured MoteIV (company renamed to Sentilla later). TMote mote is not manufactured

50

3.2 Survey results

already since 2006, however, it is still used in academical research. In long term, other

motes must take TMote’s place and its established TelosB platform standard. Probably,

new motes will replace components found on TelosB and incrementally shift away from

the almost standard-like TelosB platform.

Traditional mote MCUs do not have memory protection mechanisms, while some

powerful MCUs (for example, ARM family MCUs used on mobile phones) on the mar-

ket have it. Sensor network systems could start adapting these devices with memory

protection features more actively, as it would provide better debugging and application

safety.

European global positioning satellite system Galileo was planned to launch in 2014,

now postponed to 2019 [133]. This new technology would provide more accurate localiza-

tion techniques and research of Galileo usage in sensor networks can be expected.

3.2.17 Summary

This is an important section describing results of a thorough analysis of a set of wireless

sensor network deployments. The results have high impact on design rule development in

Section 4. In addition, the analysis reveals, that many deployments use either customized

or fully custom-built hardware platforms substantiating the hypothesis that WSN op-

erating system must be portable to new hardware platforms. As the analysis shows,

higher-performance microcontrollers are emerging, yet the mote-class sensor nodes are

still present and will have also applications in future.

51

4 Sensor network software design rules

This chapter consists of three parts. First, typical WSN problems are identified. Second,

WSN software development design rules are proposed. Third, examination is made on

how the proposed design rules are addressing the identified problems.

Although every WSN application is unique and no rule can be defined as a theorem,

these rules represent a unified methodology of WSN software development based on the

best practice. By following the rules operating system and application developers ensure

that the solution will meet most common efficiency, flexibility and reliability requirements

of wireless sensor networks. The proposed design rules, with a focus on OS development

aspect, have been published in a scientific journal article [30].

4.1 Problem identification

In this section the author identifies typical problems that arise in wireless sensor network

software development due to WSN specific characteristics. The substantiation is based on

analysis of existing WSN deployments and the author’s experience in the sensor network

research projects. Recognition of these problems is an important step in the beginning of

WSN solution design. Solutions for the listed problems will be discussed in Section 4.3.

4.1.1 Portability and usability

The main problems related to portability and usability are the following:

Problem 1 : Chip reuse. Various hardware platforms do exist that have common

microchip and sensor base but different wiring and combination.

Problem 2 : Field experts. WSN is a promising field not only for programmers and

electrical engineers but also field experts with limited programming skills.

Problem 3 : Hardware evolution. WSN users may choose different hardware plat-

forms during the evolution of sensor network. However, the application logic and

source code should be portable with minimal modifications.

52

4.1 Problem identification

4.1.2 Wireless communication

Problems related to wireless communication:

Problem 4 : Protocol variety. Many WSN communication protocols do exist, yet not

many ready-to-use implementations are available.

Problem 5 : WSN 6= Internet. WSN architecture is completely different from the

Internet. Traditional protocols are not optimal, custom approach is required.

Problem 6 : Complex protocols. Communication protocols are often too complex to

provide full flexibility in unreliable networks.

Problem 7 : Limited resources. WSNs must be able to communicate in dynamic

topologies. However, memory and other resources are limited.

Problem 8 : Experimentation. WSN researchers investigate and analyze protocols.

An environment and infrastructure for experimentation is required.

Problem 9 : QoS. A certain degree of Quality-of-Service (QoS) is required, especially

in applications where WSNs are replacing traditional wired solutions.

4.1.3 Services and efficiency

Problems related to services and energy efficiency:

Problem 10 : Energy. The central problem of WSNs is energy efficiency, yet many

pilot and prototype deployments use 100% duty cycle. Such approach may incur

significant loss of realism in these deployments.

Problem 11 : Data caching. Dynamic Networks with probabilistic communication

may require data caching and preprocessing. In addition, local data logging for

redundancy might be important, especially during prototyping phases.

Problem 12 : Complex states. It is hard for programmers to think in event-driven

approach that requires explicit management of system state and split-phase opera-

tion. Also it is hard to design programs with multiple concurrent events within a

single thread of execution.

Problem 13 : Cooperation. The whole network of nodes should cooperate to reach the

real benefits of WSNs: higher resolution, energy efficiency and cooperative decision

making.

53

4.2 Design rule definition

4.2 Design rule definition

In this section the author proposes wireless sensor network design rules that are based on

existing WSN deployment analysis (described in Chapter 3). The importance of rules is

divided into the following classes based on their popularity among analyzed deployments:

1. MUST: the feature must be implemented. Deployment support: 40-100%.

2. SHOULD: feature implementation has lower impact. Deployment support: 20-50%.

Feature classes are overlapping in terms of popularity in deployments, as it is hard

to define sharp thresholds for feature popularity and strictly assign importance classes.

Overlapping boundaries open space for discussion.

Proposed rules are divided into multiple categories based on addressed aspects of

WSN development. Each of the following subsections lists proposed rules in one category.

Table 4.1 lists all proposed rules in a summarized form.

Table 4.1: WSN software design rules proposed by the author

Rule Description Importance

Communication

1 Sink-oriented The provided communication protocols must be sink-oriented. MUST

2 Powered motes Powered mote availability must be considered when designing

a default networking protocol library.

MUST

3 30 byte payload Default packet size should be at least 30 bytes with option to

change this constant easily, when required.

SHOULD

4 11 hop routing Multi-hop routing must be provided as a default component,

which can be turned off, if one-hop topology is used. Topol-

ogy changes must be expected, at least 11 hops should be

supported.

MUST

5 CSMA MAC A simple and generic CSMA-based MAC protocol must be

included in WSN solutions, preferable as part of OS libraries.

MUST

6 Custom protocol API Interface for custom MAC and routing protocol development

must be provided.

MUST

7 Packet acknowledgment Simple transport layer delivery acknowledgment mechanisms

must be provided by the operating system.

MUST

8 IPv6 support IPv6 (6lowpan) networking stack should be included in the

operating system libraries to increase interoperability.

SHOULD

Portability

9 TelosB support TelosB-compatible platform should be supported by WSN op-

erating systems.

SHOULD

. . .

54

4.2 Design rule definition

Table 4.1 – continued

Rule Description Importance

10 Rapid driver development WSN operating systems must support implementation of ad-

ditional sensor and other module drivers

MUST

11 Rapid platform definition Porting to completely new platforms must be simple enough

and operating systems should contain highly portable code.

MUST

12 802.15.4 support Driver support for CC2420 radio or other 802.15.4-compatible

radio communication chips should be provided by WSN oper-

ating systems.

SHOULD

13 AVR and MSP430 support WSN operating systems must support Atmel AVR and Texas

Instruments MSP430 MCU architectures.

MUST

Task scheduling

14 Low duty-cycle WSN operating systems must set effective low-energy, low

duty-cycle sampling as the first priority. High performance for

sophisticated audio or other signal processing is secondary.

MUST

15 5 kernel + 6 user tasks OS task scheduler must support up to 5 kernel services and

up to 6 user level tasks.

MUST

16 Cooperative scheduling Operating systems must provide cooperative tasks scheduling. MUST

17 Preemptive scheduling Operating systems should provide preemptive scheduling. SHOULD

18 Event-based scheduling Operating systems should provide event-based scheduling as

an option.

SHOULD

Services

19 External storage Interface for user data storage in external memory should be

provided by WSN operating systems.

SHOULD

20 File system Convenient file system interface should be provided by oper-

ating systems.

SHOULD

21 Time synchronization Simple time synchronization should be provided by WSN op-

erating systems.

SHOULD

User support

22 Base station example WSN OS toolset must include an example base station appli-

cation, which is easily extensible to user specific needs.

MUST

23 Popular sensor API WSN operating system should provide common interface for

temperature, light and acceleration sensor reading.

SHOULD

24 ADC API ADC sampling interface must be provided by WSN operating

systems.

MUST

25 Remote access Remote data access and reprogramming of sensor nodes should

be provided either by operating systems or other software ab-

stractions.

SHOULD

55

4.2 Design rule definition

4.2.1 Communication

Almost all (95% of deployments) networks have a sink node or base station, collecting the

data. Significant part of deployments use multiple sinks.

Design rule 1 : Sink-oriented. The provided communication protocols must be sink-

oriented.

This rule implies that the communication flow is directed to a single collection point.

This fact can be used to make protocols more efficient in terms of latency and memory

resource allocation.

More than 80% of deployments have powered motes present in the network: at least

one node has increased energy budget. Usually, these motes are capable of running at

100% duty cycle, without sleep mode activation.

Design rule 2 : Powered motes. Powered mote availability must be considered when

designing a default networking protocol library.

Typical data payload size is in the range 10-30 Bytes. However, larger packets are

used in some deployments.

Design rule 3 : 30 byte payload. Default packet size should be at least 30 bytes

with option to change this constant easily, when required.

Multi-hop routing is used in 57% of cases. Maximum hop count does not exceed 11

in the surveyed deployments. Almost half of deployments (47%) have at least one mobile

node in the network (while maintaining a connected network).

Design rule 4 : 11 hop routing. Multi-hop routing must be provided as a default

component, which can be turned off, if one-hop topology is used. Topology changes

must be expected, at least 11 hops should be supported.

70% of deployments use CSMA-based MAC protocols, 15% - TDMA (15% un-

known).

Design rule 5 : CSMA MAC. A simple and generic CSMA-based MAC protocol

must be included in WSN solutions, preferable as part of OS libraries.

Custom MAC or routing protocols are used in 60% of deployments. Therefore it is

important to provide interface for custom protocol development.

56

4.2 Design rule definition

Design rule 6 : Custom protocol API. Interface for custom MAC and routing pro-

tocol development must be provided.

Reliable data delivery is used by 43% of deployments, showing that reliable commu-

nication in transport layer is a significant requirement for some application classes.

Design rule 7 : Packet acknowledgement. Simple transport layer delivery acknowl-

edgment mechanisms must be provided by the operating system.

Although IPv6 is a widely discussed protocol for the Internet of things and mod-

ifications (such as 6lowpan [116]) for resource constrained devices have been developed,

the protocol is very novel and not widely used yet: only 5% of surveyed deployments use

it. However, it can be expected that this number will increase in coming years. TinyOS

[48] and Contiki OS [47] have already included 6lowpan as one of the main networking

alternatives.

Design rule 8 : IPv6 support. IPv6 (6lowpan) networking stack should be included

in the operating system libraries to increase interoperability.

4.2.2 Portability

TelosB-compatible platforms (TMote Sky and others [111, 112]) are the most popular

among WSN hardware platforms in recent years.

Design rule 9 : TelosB support. TelosB-compatible platform should be supported

by WSN operating systems.

Almost half of deployments (47%) use adapted versions of off-the-shelf motes by

adding customized sensors, actuators and packaging. Almost one third (32%) use custom

motes, by combining different microchips. Often these platforms are either compatible

or similar to commercial platforms (for example, TelosB): use the same microcontrollers

(MCUs) and radio chips.

Design rule 10 : Rapid driver development. WSN operating systems must sup-

port implementation of additional sensor and other module drivers.

Design rule 11 : Rapid platform definition. Porting to completely new platforms

must be simple enough and operating systems should contain highly portable code.

Chipcon CC2420 [8] radio chip is the most popular in recent years and IEEE 802.15.4

[34] was found to be the most popular radio transmission protocol (37.5% of deployments).

57

4.2 Design rule definition

Design rule 12 : 802.15.4 support. Driver support for CC2420 radio or other 802.15.4-

compatible radio communication chips should be provided by WSN operating sys-

tems.

The most popular MCUs belong to Atmel ATMega (AVR architecture) and Texas

Instruments MSP430 families. The former is used in Mica-family motes while the latter

is the core of TelosB platform, widely used recently. In total, 80% of deployments use

either AVR or MSP430 based microcontrollers.

Design rule 13 : AVR and MSP430 support. WSN operating systems must sup-

port Atmel AVR and Texas Instruments MSP430 MCU architectures.

4.2.3 Task scheduling

Energy-efficiency is the core requirement of sensor network longevity. Low-duty cycle

operation with low-frequency sensor sampling is preferred by 48% of deployments.

Design rule 14 : Low duty-cycle. WSN operating systems must set effective low-

energy, low duty-cycle sampling as the first priority. High performance for sophisti-

cated audio or other signal processing is secondary.

Most of deployments use not more than 2 kernel services: 55% (Figure 3.4 in Sec-

tion 3.2.11). For some deployments up to 5 kernel services are used. In application layer,

often just one task is used, which is typically sense and send: 33% of cases (Figure 3.5 in

Section 3.2.11). Up to 6 tasks are used in more complex applications.

Design rule 15 : 5 kernel + 6 user tasks. OS task scheduler must support up to 5

kernel services and up to 6 user level tasks.

An alternative configuration might be useful, providing a single user task to simplify

programming approach and provide maximum resource efficiency that might be important

for the most resource constrained platforms.

30% of deployments require preemptive scheduling. For others, cooperative schedul-

ing is preferred as more resource-efficient.

Design rule 16 : Cooperative scheduling. Operating systems must provide coop-

erative tasks scheduling.

Design rule 17 : Preemptive scheduling. Operating systems should provide pre-

emptive scheduling.

58

4.2 Design rule definition

The scheduling techniques should be switchable by configuration at the source code com-

pilation stage.

Although event-based programming might be complex for programmers with con-

ventional experience with desktop systems, embedded systems are event-driven by nature

and such programming paradigm might be most effective in some application scenarios.

In addition, event-driven programming is popular in smartphone operating systems, such

as Android. Therefore, more programmers adapt to this paradigm.

Design rule 18 : Event-based scheduling. Operating systems should provide event-

based scheduling as an option.

4.2.4 Services

External memory is used in 27.5% of deployments, and filesystem is used only in 5% of

deployments. This presents a different case, compared to other design rule inference. The

author believes, that the reason why external memory is seldom used, is the fact that

operating systems do not provide simple-to-use file system. Further studies should be

performed to verify this hypothesis.

Design rule 19 : External storage. Interface for user data storage in external mem-

ory should be provided by WSN operating systems.

Design rule 20 : File system. Convenient file system interface should be provided

by operating systems.

Time synchronization is used in 37.5% of deployments.

Design rule 21 : Time synchronization. Simple time synchronization should be

provided by WSN operating systems.

4.2.5 User support

Almost half of deployments use regular mote connected to a PC (usually a laptop) as

base station hardware solution.

Design rule 22 : Base station example. WSN OS toolset must include an example

base station application, which is easily extensible to user specific needs.

The most popular sensors are temperature, light and accelerometer sensors, used in

42.5%, 25% and 22.5% respectively (Figure 3.2 in Section 3.2.2).

59

4.3 Addressing problems by rules

Design rule 23 : Popular sensor API. WSN operating system should provide com-

mon interface for temperature, light and acceleration sensor reading.

50% of deployments use analog sensors that are sampled using analog-to-digital

converter (ADC). Therefore ADC should be treated as a core module of each sensor node.

Design rule 24 : ADC API. ADC sampling interface must be provided by WSN op-

erating systems.

Remote node access is used in 38% of deployments. It is an essential part of testing

a sensor network.

Design rule 25 : Remote access. Remote data access and reprogramming of sensor

nodes should be provided either by operating systems or other software abstractions.

4.3 Addressing problems by rules

This section analyzes relation between identified WSN problems and proposed design

rules. For each problem it is discussed how and which of the proposed design rules can

reduce the consequences. Results show that proposed design rules have an M:N relation

to common WSN problems: each problem is addressed by multiple rules and each rule

can be used to mitigate multiple problems. Summary of design rule correspondence to

problems is shown in Table 4.2. Details will be discussed in the following subsections.

4.3.1 Portability and usability

Here we analyze how proposed design rules address problems related to portability and

usability:

Problem 1 : Chip reuse. This problem can be solved by providing drivers for popular

modules (design rules #9, #12, #13), rapid new driver development (design rules

#10 and #24) and support for reconfiguration of wiring for hardware platforms

(design rules #10 and #11).

Problem 2 : Field experts. The solution is to provide ready-to-use components for

complex parts of WSN software and allow the users to focus on application. The

complex parts include networking protocols according to design rules #4, #5 and

#8 ; TelosB platform support (design rule#9); task schedulers (design rules #15,

#16, #17); different services, interfaces and examples (design rules #19 - #25).

60

4.3 Addressing problems by rules

Table 4.2: Addressing WSN problems by design rules (rules in rows, problems in columns)

Design rules #
1

C
h

ip
re

u
se

#
2

F
ie

ld
ex

p
er

ts

#
3

H
ar

d
w

ar
e

ev
o
lu

ti
o
n

#
4

P
ro

to
co

l
va

ri
et

y

#
5

W
S

N
6=

In
te

rn
et

#
6

C
om

p
le

x
p

ro
to

co
ls

#
7

L
im

it
ed

re
so

u
rc

es

#
8

E
x
p

er
im

en
ta

ti
o
n

#
9

Q
o
S

#
1
0

E
n

er
gy

#
1
1

D
at

a
ca

ch
in

g

#
1
2

C
o
m

p
le

x
st

a
te

s

#
1
3

C
o
o
p

er
a
ti

o
n

Communication rules

1 Sink-oriented x x x

2 Powered motes x x x

3 30 Byte payload x

4 11 hop routing x x x x x

5 CSMA MAC x x x

6 Custom protocol API x x x

7 Packet acknowledgment x x x x

8 IPv6 support x x x

Portability rules

9 TelosB support x x

10 Rapid driver dev. x x

11 Rapid platform def. x x

12 802.15.4 support x

13 AVR & MSP430 support x

Task scheduling rules

14 Low duty-cycle x

15 5 kernel + 6 user tasks x x

16 Cooperative sched. x x x

17 Preemptive sched. x x

18 Event-based sched. x x

Service rules

19 External storage x x

20 File system x x

21 Time Synchronization x x x

User support rules

22 Base-station example x

23 Popular sensor API x x

24 ADC API x x x

25 Remote access x x

61

4.3 Addressing problems by rules

Problem 3 : Hardware evolution. Rapid driver development (design rule#10) and

porting to new hardware platforms (design rule#11) is essential. In addition, uni-

fied interface for sensor sampling supports different platforms without changing

application code (design rules #23 and #24).

4.3.2 Wireless communication

This section summarizes design rules addressing problems related to WSN communication:

Problem 4 : Protocol variety. Implementation of basic, general purpose communica-

tion protocols should be provided according to design rules #4, #5, #7, #8.

Problem 5 : WSN 6= Internet. Provided protocols should be adapted for WSN con-

text, according to design rules #1-#5, #7, #8.

Problem 6 : Complex protocols. Specific aspects can be used to make protocols

simpler: consider powered motes and sink-oriented nature of data flow (design rules

#1 and #2).

Problem 7 : Limited resources. Limited network size (design rule#4) and sink-

orientation of data flow (design rule#1) can be exploited to create simpler routing

algorithms requiring less computation and memory. Also, programming in event-

driven paradigm requires less memory overhead (design rule#18).

Problem 8 : Experimentation. Interface for development of custom communication

protocols must be provided (design rule#6). Remote access is suggested for ad-

vanced debugging of systems in test environment (design rule#25).

Problem 9 : QoS. Packet acknowledgements can be integrated into the transport layer

of networking protocol stack according to design rule#7. Users may want to imple-

ment custom QoS requirements, therefore interface for custom protocol definition is

important (design rule#6).

4.3.3 Services and efficiency

This section discusses how design rules can mitigate WSN problems related to services

and energy efficiency:

Problem 10 : Energy. Operating system and other existing WSN tools should provide

framework for energy-efficient operation, including low-duty cycle task scheduling

62

4.4 Summary

(design rules #14, #16 and #18) and multi-hop routing (design rule#4) that or-

ganizes transmissions so that nodes can listen for incoming transmissions only at

certain time periods. Powered motes (design rule#2) or time synchronization (de-

sign rule#21) can be used for efficient transmission schedule management . Interface

for custom protocol design (design rule#6) is also important in this aspect - sensor

network environment can be specific for each application, MAC and routing protocol

modifications might be needed to create optimal solution.

Problem 11 : Data caching. Local data storage in external memory (design rules

#19, #20) should be provided and mechanism for checking which data packets

have been delivered to the destination (design rule#7).

Problem 12 : Complex states. Multitasking system with linear scheduling should

be provided allowing to run multiple concurrent threads according to design rules

#15-#17.

Problem 13 : Cooperation. Time synchronization and network-wide duty cycle is

required for cooperation according to design rule#21. Another option is to include

powered motes (design rule#2) in the network that act as buffers and intermediate

relays for nodes that have different activity periods.

4.4 Summary

In this section the author identified typical WSN problems and proposed design rules

that address these problems. The proposed design rules build a methodology for WSN

software development and represent the core contribution of this thesis.

Problems and design rules do not have 1:1 relation, rather M:N (many-to-many).

Each design rule addresses multiple problems and each problem can be mitigated by

following different rules. Design rule set is consistent and does not have contradictory

rules.

The proposed methodology, in the form of design rule set, functions as guidelines for

successful wireless sensor network software development. Conformance to rules must be

ensured at two levels. First, if used operating system or middleware conforms to proposed

rules, it makes WSN development easier for users and application developers. Second,

actual application developed by the users can be checked against the rules. WSN solution

can be optimal only if rules are followed at both these levels. If operating system does

not conform to rules, it will result in more time and resources spend by the users during

application development. If the users do not follow the rules (even though everything is

63

4.4 Summary

correct from the OS point of view), the resulting solution will not be optimal in terms of

energy efficiency and portability.

The proposed design rules can also be used as a checklist for WSN solution assess-

ment. By checking conformance to rules potential problems can be identified in each

individual case.

The following chapter evaluates proposed design rule methodology and shows how

it can be applied to evaluate, design and improve different WSN software solutions.

64

5 Design rule impact on existing sys-

tems

This chapter discusses how the proposed design rules are applicable to analyze existing

WSN software. Different aspects of software are analyzed with the goal to show how the

solutions could be improved by following the proposed design rules. Different abstraction

levels of WSN software are analyzed: operating systems and user applications (deploy-

ments). Although analysis of middleware could be interesting, it is out of the scope of

this thesis and can be considered part of future work.

5.1 Impact on deployments

During WSN deployment survey the author has identified common trends than are formed

as a set of design rules for WSN software development. However, no rule is satisfied in

100% of analyzed deployments. Not all deployments are optimal. While it is clear that

deployments are different in terms of environment, research goals and constraints, in some

cases efficiency of WSN applications can be improved by adapting proposed design rules

for particular deployments. This section analyzes how surveyed deployments could be

improved by making them according to proposed design rules.

• Rapid driver development and porting (design rules #10 and #11). 80%

of deployments have involved custom driver development for either platform with

specific components or porting the same application to another or completely custom

platform (32.5%). Source code portability is important for WSNs as the platforms

often evolve and development follows the prototyping model. Existing code modules

as well as the operating system ideology and structure should support rapid and fre-

quent changes. Unfortunately, the most popular operating system, TinyOS, follows

ideology and contains source code that is hard to read and understand (distributed

in various places, contains nesC specific constructs), and even harder to design dur-

ing porting. While TinyOS might have high performance and resource efficiency, it

65

5.1 Impact on deployments

should be improved dramatically in terms of usability. Although TinyOS us used

here as an example (most popular OS choice among deployments), the portabil-

ity and driver development rules are important for any WSN OS as these aspects

impact many deployments.

• Sink-oriented protocols and powered motes (design rules #1 and #2). 38

of 40 deployments (95%) needed a sink-oriented protocol and in 11 cases (27.5%) it

was not provided by the operating system. Providing such protocol at OS or library

level saves development time for users. Development of communication protocols is

a complex task requiring thorough testing either in simulations (which might not ac-

curately describe real-world scenarios) or real pilot networks (which may not always

be available and require time-consuming software update procedures). Similarly,

powered motes should be considered in these protocols (used in 82.5% of deploy-

ments, not provided by OS in 22.5%). By providing such protocols at OS level or

libraries, users of 22.5% of deployments could have improved software development

speed.

• Custom protocol interface (design rule #6). Interface for definition of custom

MAC and routing protocols is essential part of operating system or middleware - this

feature is required by 62.5% of deployments, and the requirement is satisfied only

in 68% of cases when it is needed (42.5% of total deployments). This rule could

decrease development time for WSN protocol researchers and encourage testing

protocols on real platforms, as well as simulations, if the OS allows to compile

application for simulated sensor nodes.

• Cooperative scheduling (design rule #16). Preemptive scheduling is only

needed in 30% of cases. In 62.5% cases a cooperative scheduling strategy is sufficient

(7.5% of cases do not have enough information). That implies that cooperative

scheduling should be preferred as it is more efficient in different aspects, including

efficient memory usage, less context switch time overhead and more appropriate

task switch time selection. The design rule that suggests cooperative scheduling

could improve 15% of deployments where cooperative scheduling is not provided by

an operating system.

• Popular sensor API (design rules #23). In 65% of cases at least one of the most

popular sensors (light, temperature, accelerometer) is used. Therefore operating

system or middleware should provide a unified API for these sensor sampling. Some

platform inspection functionality should be available telling the application what

66

5.2 Impact on operating systems

sensors are available. Unfortunately, such API is provided only in one of the cases

where specific sensor extension board is used. By doing so one can assure that the

same application can be run on different platforms.

• Time synchronization (design rule #21). In 35% of deployments some form

of time synchronization is implemented in the application. Proper time synchro-

nization requires complex algorithms, similarly to network protocols. Therefore it

would be valuable to include basic time synchronization in the operating system.

In 7.5% of deployments advanced and application specific time synchronization is

used, which cannot be implemented at the OS level. However, in most of cases a

generic time synchronization would suffice.

5.2 Impact on operating systems

This section summarizes existing WSN operating system conformance to proposed design

rules and analyzes improvements by applying the rules. The author analyzed operating

systems, described in Section 2.1, and results are summarized in Table 5.1. The following

sections will describe results for each of the presented operating systems.

5.2.1 TinyOS

As TinyOS complies to majority of rules, only the non-satisfied rules will be discussed in

detail.

TinyOS disregards the following design rules : design rule#10 (rapid driver de-

velopment), design rule#11 (rapid platform definition), design rule#20 (file system),

design rule#21 (time synchronization), design rule#23 (popular sensor API), and design

rule#25 (remote access). Although TinyOS is portable (wide range of supported plat-

forms is a proof for it), code readability and simplicity is doubtful. The main reasons of

TinyOS complexity are:

• The event-driven nature: while event handlers impose less overhead compared to

sequential programming with blocking calls and polling, it is more complex for

programmers to design and keep in mind the state machine for split-phase operation

of the application.

• Modular component architecture: high degree of modularity and code reuse leads to

program logic distribution into many components. Each new functionality may re-

quire modification in multiple locations, requiring deep knowledge of internal system

structure.

67

5.2 Impact on operating systems

Table 5.1: Existing OS conformance to proposed design rules

Rule TinyOS Contiki LiteOS Mantis MansOS Arduino

Communication

1 Sink-oriented + + + + +

2 Powered motes + + + +

3 30 byte payload + + + + + +

4 11 hop routing + + ± + + +

5 CSMA MAC + + + +

6 Custom protocol API + + +

7 Packet acknowledgment + + + + +

8 IPv6 support + + +

Portability

9 TelosB support + + + +

10 Rapid driver development + + + + +

11 Rapid platform definition ± ± +

12 802.15.4 support + + + + + +

13 AVR and MSP430 support + + ± + +

Task scheduling

14 Low duty-cycle + + + + +

15 5 kernel + 6 user tasks + + + + ±
16 Cooperative scheduling + + +

17 Preemptive scheduling + + + + +

18 Event-based scheduling + + +

Services

19 External storage + + + + + +

20 File system + + + + +

21 Time synchronization + + +

User support

22 Base station example + + + + +

23 Popular sensor API + ± + +

24 ADC API + + + + +

25 Remote access + + + + ±

68

5.2 Impact on operating systems

• nesC language peculiarities: confusion of interfaces and components, component

composition and nesting, specific requirements for variable definitions are examples

of language aspects interfering with creativity of novice WSN programmers.

These limitations are in the system design level, and there is no quick fix avail-

able. The most convenient alternative is to implement middleware on top of TinyOS for

simplified access to non-expert WSN programmers. TinyOS architecture is too specific

and complex to introduce groundbreaking improvements for readability while maintaining

backwards compatibility for existing applications.

Nevertheless, more than 100 groups around the world use TinyOS. It is also used

by multiple commercial products [134, 135].

The rest of unsatisfied design rules regard to missing features that can be imple-

mented as additions. And some of the functions are already implemented as external tools

and middleware on-top of TinyOS. For example, third party external storage filesystem

implementations do exist, such as TinyOS FAT16 support for SD cards [136]; Deluge can

be used for remote reprogramming [121].

5.2.2 Contiki

Contiki does not provide platform independent API for temperature, light, and sound

sensors (design rule#23 (popular sensor API)) and ADC access (design rule#24 (ADC

API)). The reason is Contiki’s mission - it is not dedicated specifically to sensor networks,

rather to networked embedded device programming. Some of the platforms (such as Apple

II) may not have sensors or ADC available, therefore the API is not explicitly enforced

for all the platforms.

Portability to new platforms is partially effective (design rule#11 (rapid platform

definition)). MCU architecture code may be reused. However, large proportion of platform-

specific code in Contiki may actually be reused on multiple platforms with appropriate

restructuring.

Surprisingly, there is no base station application template included (design rule#22

(base station example)). Contiki-collect is provided as an alternative - a complete and

configurable sense-and-send network toolset for simple setup of simple sensor network

applications.

To conclude, Contiki is one of the best WSN operating systems conforming with

most of the proposed design rules.

69

5.2 Impact on operating systems

5.2.3 LiteOS

LiteOS provides fully threaded programming with blocking calls, and no event callback

handling (design rule#18 (event-based scheduling)). No cooperative scheduler is provided

(design rule#16 (Cooperative scheduling)).

Networking stack is not included in the LiteOS distribution. However, multiple

demo applications are usable as templates for user-specific networking protocol creation.

Several routing protocols are implemented as user-level threads. The following commu-

nication rules are not satisfied: design rule#2 (powered motes), design rule#5 (CSMA

MAC), design rule#6 (custom protocol API), design rule#7 (packet acknowledgement)

and design rule#8 (IPv6 support). LiteOS’ applicability is very limited due to these

inconsistencies.

LiteOS conforms to all user support rules, including interface for temperature, light

and acceleration sensor sampling(design rule#23) and remote access (design rule#25).

From service rules it lacks time synchronization support (design rule#21).

The source code is 8-bit AVR platform specific and significant changes are required

to port LiteOS to other platforms with other microcontrollers. Chip driver development

is relatively simple, as device drivers must implement only a predefined set of functions.

However, new platform specification is unclear (design rule#11 is not satisfied).

Compared to other WSN operating systems (TinyOS, Contiki and MansOS) LiteOS

is a constrained OS with limited usability for field experts and other programmers who

do not want to study or develop customized networking protocols.

5.2.4 Mantis

A TDMA-class MAC protocol supporting star network topology is included in the default

configuration, without a CSMA MAC (design rule#5 is not satisfied). No unified net-

working API is used, therefore users must design inter-layer interfaces on demand (design

rule#6 is not satisfied). In addition, the following rules are not satisfied by the existing

networking implementation: design rule#2 (powered motes), design rule#7 (packet ac-

knowledgement) and design rule#8 (IPv6 support). Networking protocol stack of Mantis

is not thoroughly developed, and development of the OS itself has stopped in recent years.

Platform- and chip-level code is mixed, there are no TelosB or MicaZ platforms,

rather MSP430 and AVR code, which is MCU or architecture specific. Separation of MCU

architectures, specific chips and platforms would improve portability (design rule#11).

70

5.2 Impact on operating systems

Only preemptive thread scheduling is supported by the OS which, similarly to

LiteOS, limits its efficiency for constrained application class. No cooperative schedul-

ing (design rule#16) or event-based scheduling (design rule#18) is provided.

Mantis is rich in supported API, services and examples, yet no time synchronization

is provided (design rule#21).

Mantis has a promising software base that would be extensible for a rich WSN OS.

Unfortunately, it’s development activity has stopped.

5.2.5 MansOS

MansOS is a wireless sensor network operating system developed with simplicity of use

and portability in mind. The author has also participated in MansOS development since

it’s start in 2008. MansOS is still actively developed now. More MansOS details in

Section 2.1.1.

During it’s thorough development, ideology and core components of MansOS have

evolved in multiple iterations. Therefore the existing version conforms to most of the

design rules proposed in this thesis. There are some exceptions and space for improvement

that will be discussed here.

The author of this thesis introduced cooperative task scheduler (described in Ap-

pendix, Section C.1.2.1) to MansOS as a result of design rule development (design rule#16).

Previously MansOS was supporting two scheduling techniques: direct event handling and

preemptive scheduler. Based on the findings in deployment survey development team de-

cided that cooperative scheduler is an important part of WSN OS. As a result of multiple

alternative evaluation, the author decided to integrate ProtoThreads scheduler from Con-

tiki OS [137] - it has been proved to work stable already in Contiki, therefore there was

no need to reinvent the wheel. It is an example of how design rules improved WSN OS in

practice - by substantiating importance of a particular feature that was not implemented

previously.

Two improvements are required in MansOS to reach full conformance to proposed

design rules. First, IPv6 support is required (design rule#8). While third-party IPv6

libraries can be used [138], such addition would interfere with the existing networking

protocol infrastructure. IPv6 should be fully integrated as an optional component in

the common protocol stack. Second, the preemptive scheduler is limited to only one

kernel thread at the moment while design rule#15 states that 5 kernel tasks should be

supported. This can be fixed by implementing a multi-threaded kernel, although it might

require some re-design of the whole OS. Otherwise, two problems may arise. First, the

tasks running in kernel context have equal priority, it is not possible to assign higher

71

5.2 Impact on operating systems

priority to any of the tasks. Second, the kernel tasks are implicit without possibility to

create libraries of additional kernel tasks, that can be loaded and unloaded as necessary.

In summary, MansOS demonstrates how design rules are applied both during OS de-

velopment phase and also in evaluation to detect potential problems and design necessary

improvements.

5.2.6 Arduino

This section discusses how Arduino conforms to proposed WSN software development

design rules and how Arduino can be modified to become a fully-functional WSN OS.

Core Arduino OS provides only basic MCU driver and a base for extensions. How-

ever, Arduino is a community-based project without strict borders of OS and third-party

software. It is a set of solutions and libraries that are combined during custom solution

development. Therefore here we examine the opportunities of core Arduino together with

libraries and extensions that are widely accepted. As the Arduino solution is based on

engineer and enthusiast community (instead of WSN researchers) most of the references in

this section point to web sites instead of scientific articles. Nevertheless, these sites do not

have hypothesis and statements that have to be proved. Instead they contain source code

libraries and examples that can be simply verified empirically. Therefore these sources

are sufficiently reliable for this particular section.

Arduino core contradicts to all network rules as there is only a microcontroller on

the base board and USB is the only communication with a PC. However Zigbee/XBee-

802.15.4 modules are available providing networking options. Zigbee has a built-in mesh

capability. Networking rules are described here, using XBee Series 2 modules with Zigbee

stack [139]. In addition, new versions of Arduino boards with built-in communication do

appear, such as Arduino Yun [140] and Flutter [141].

The Zigbee networking protocol stack implements an 802.15.4-compatible (design

rule#12) mesh network topology, without sink-oriented data flow architecture (design

rule#1 is not satisfied). Powered motes are considered in Zigbee, called coordinator [142]

(design rule#2 is satisfied (powered mote support)). Zigbee includes CMSA-based MAC

protocol and Ad hoc On-demand Distance Vector (AODV) routing [143] with reliable

packet delivery (design rules #4, #5 and #7 are satisfied). IPv6 library from Contiki

has been ported to Arduino [144] (design rule#8 satisfied). However, the MAC and

routing protocols are predefined and cannot be customized by the user (design rule#6

not satisfied).

Arduino platform has space for improvement regarding portability. It is designed

only for AVR-based microcontrollers, TelosB platform (design rule#9) and MSP430-

72

5.3 Use case study: wearable sensor network

family MCUs (design rule#13 (AVR and MSP430 support)) are not supported. Arduino

is not designed for other architectures, therefore its software is not ready for porting: de-

sign rule#11 (rapid platform definition) is not satisfied. Nevertheless, driver development

(design rule#10) is facilitated with wide range of existing sensor and other chip drivers,

libraries and examples.

Task scheduling in Arduino is not optimal for WSNs. It uses a simple single-thread

polling approach. Protothread library (from Contiki) can be used on Arduino [137], but it

there is no ready-to-use Protothread port or tutorial available. All task scheduling design

rules are not satisfied. An advanced task scheduler is needed to adapt Arduino for WSN

needs.

Arduino supports wide range of services and interfaces using community-contributed

libraries, all service and user support design rules are satisfied. Examples include external

memory and FAT file system [145], time synchronization [146], ADC and wide range

of sensors drivers [147]. Remote reprogramming is possible by external tools requiring

custom bootloader [148].

To summarize, Arduino needs addition of task scheduler, portability to low-power

hardware platforms and more flexibility for networking protocols.

5.2.7 Summary

The evaluation shows that popular WSN operating systems conform to majority of pro-

posed design rules. However, each OS has some specific aspects that can be improved.

This thesis can serve as a reference for OS developers substantiating importance of par-

ticular design rules.

5.3 Use case study: wearable sensor network

This case study describes a research project on tactile ship bridge alarm system develop-

ment, performed jointly by Maritime Human Factors Laboratory at Aalesund University

College and Rolls Royce Marine, Norway. The author was (and still is) participating in

the project as part of the research team and was one of the main contributors in software

and hardware design and development. The author had built the first prototype of the

system at the time of writing this section. In this case study the author analyzes possible

improvements of the tactile alarm system that can be introduced by implementing the

proposed design rules.

73

5.3 Use case study: wearable sensor network

5.3.1 Research problem

Ship bridges are operated by complex systems that integrate many subsystems [149].

Dissemination of alarms is an essential function of the system. Alarms from all subsystems

are gathered in the central system and displayed for persons in charge, mainly to operators

active at the moment. If there is no reaction from the operators, alarms are forwarded to

other facilities, including captains and crew living rooms [150].

Bridge Navigational Watch Alarm System (BNWAS) is a specific and well standard-

ized part of ship bridge alarm systems [151]. It sounds an alarm whenever watch officer on

the bridge falls asleep or otherwise becomes unresponsive for too long [152]. The presence

and awareness of watch officers must be either confirmed by pressing specific buttons or

automatically by motion detection sensors [153]. Audio alarms are defined as mandatory

by different standards [151, 154] and they are treated as natural due to their scope of

operation properly installed audio alarms can reach all the crew members in any position

and orientation.

The purpose of this research project is to challenge the notion that alarms are equal

to audio sensory input. It investigates the possibilities to extend alarms beyond audio

cues. Nevertheless, it is clear that tactile alarms will not replace audible alarms, at least

not in near future. Tactile must be treated as a complimentary sensory input, used in

combination with existing audible and visual alarm systems. Previous research shows that

tactile stimuli has shorter response time and might help operators to distinguish between

different types of alarms [155].

5.3.2 Approach

The author has designed system architecture, shown in Figure 5.1. It receives alarms

from the ship bridge system, including information about desired recipients and location

of focus. The system consists of two parts. One part is implemented as an add-on for the

ship bridge system. It takes information about person location and actual alarms, and

generates tactile alarm signals to be sent to persons. The second part is a system worn

on the operators. It receives commands wirelessly and generates tactile cue patterns for

the actuators mounted on the person.

There are several options for device types to be used. The author chose tactile belt

as the most appropriate. Ideally it would be a smart belt that men wear as usual during

the stay onboard. But in first iterations it will be a stretchable add-on type belt. It can

be worn over the regular belt or adjusted around the abdominal. Its main advantages:

close contact, naturalness (immersiveness) that leads to low human resistance, ability to

74

5.3 Use case study: wearable sensor network

Figure 5.1: Tactile ship bridge alarm system architecture - wearable sensor and

actuator device communicating with ship bridge automation system

follow the person 24 hours a day (perhaps also in bed, if it is comfortable enough), and

ability to give accurate directions.

5.3.3 Sensor network aspects

The tactile alarm system presented here is a sensor-actuator network, although the first

implementations might seem otherwise. Although the main focus of the system is actu-

ation, not sensing, in further, more advanced revisions, the system would contain sensor

modality, such as position and pose estimation with inertial sensors, in combination with

external vision-based user tracking. In the experimental phase the author has assembled

only one belt, yet for deployment at least two belts are required for maritime operators

(such as dynamic positioning and anchor handling operators), one belt for the captain and

optional belts for other crew members. Continuous connectivity would require a wireless

base station and router infrastructure that is able to provide two-way communication

with the mobile, wearable devices in the harsh environment of ships containing thick steel

walls. Wireless communication is proved to be possible on passenger and offshore vessels1.

1http://www.mtnsat.com/mtn-solutions/internet-wi-fi

75

5.3 Use case study: wearable sensor network

5.3.4 System prototype

The author designed tactile belt as the first external, wearable tactile device for a ship

bridge alarm system. The following sub-sections describe hardware and software compo-

nents of the solution.

5.3.4.1 Hardware components

As can be seen in Figure 5.1, the device consists of three components: tactile actuators,

actuator manager, and wireless communication. All these components are independent

and can have different implementation as long as the interaction protocol is followed. For

example, wireless communication can be implemented using WiFi, BlueTooth, ZigBee

or other standards; AVR, MSP430 or other microcontrollers can be used as actuator

managers; and different vibrating motors are supported.

The author has created a hardware prototype, shown in Figure 5.2. Its structural

diagram is shown in Figure 5.3.

Figure 5.2: Tactile belt prototype - Vibrator motors, microcontroller, battery power

source and wireless communication mounted on a stretchable material

The belt consists of the following components:

• Bluetooth radio module acting as a wireless bridge between the belt and external

alarm system. Bluetooth Mate silver 1 used for the prototype, consisting of Roving

Networks RN-42 Bluetoth Class 2 module 2.

1https://www.sparkfun.com/products/10393
2http://www.microchip.com/RN42

76

5.3 Use case study: wearable sensor network

Figure 5.3: Tactile belt architecture - in addition to microcontroller, bluetooth module

and power source, transistor-based switch circuit is used to drive high-current vibrator

motors

• 4 vibrating motors generating tactile cues. They are located across the abdominal

of the user: one motor in the front, one in back, one on the left side and one on

the right side. Literature studies show that users can distinguish between 8 evenly

spaced locations on a tactile belt [156], yet it is sufficient with four in the first

scenarios. And the architecture is flexible additional motors can be added later if

necessary. A switch circuit with a transistor is added for each motor so that it can

be controlled by a microcontroller. Precision Microdrives 307-100 Pico Vibe 0mm-

25mm vibrating motors 1 are used in the prototype with switch circuits consisting of

BC368 NPN transistor 2, 1N4148 diode 3 and resistor mounted on a LilyPad Small

Protoboard 4.

• An Arduino LilyPad microcontroller 5 acting as the manager: parsing wirelessly

received messages and sending commands to motors.

• A Lithium Polymer (LiPo) battery powering the whole belt. A 400mAh battery

weighting 9 grams (0.32 oz) 6 is sufficient to supply the system for about 8 hours.

A 2000mAh battery (36 grams or 1.27 oz) 7 would last about 40 hours.

1https://catalog.precisionmicrodrives.com/order-parts/product/307-100-9mm-vibration-motor-

25mm-type
2http://www.promelec.ru/pdf/BC368-NXP.pdf
3http://www.nxp.com/documents/data sheet/1N4148 1N4448.pdf
4https://www.sparkfun.com/products/9102
5https://www.sparkfun.com/products/9266
6https://www.sparkfun.com/products/10718
7https://www.sparkfun.com/products/11238

77

5.3 Use case study: wearable sensor network

• A power regulator module 1 transforming unstable 3.7V battery voltage to a stable

5V power source.

5.3.4.2 Software components

The author designed the software as master-slave (or client-server) system where tactile

devices act as slaves/clients receiving commands from a central computer. In deployment

the central computer is represented as a module in the ship bridge alarm system, while in

test scenarios it can be any personal computer or any other device capable of connecting

to the tactile device wireless network.

Client devices were programmed by the author using Arduino Integrated Develop-

ment Environment (IDE), server application is developed in Java, using RXTX serial

communication library2.

The motors are activated by sending MotorCommand message from the server to

client. The client responds with Acknowledgement message. If the server receives no

Acknowledgement within a certain period of time after sending a MotorCommand, it should

resend the MotorCommand message. Timeouts and number of retries are system specific

and are not defined here.

5.3.5 Prototype conformance to design rules

In the following section the tactile system implementation is analyzed with respect to con-

formance with wireless sensor network software design rules proposed in this thesis. The

analysis shows that the first prototype suffers from problems related to network lifetime,

limited space coverage and deficient multitasking. These drawbacks can be mitigated by

following design rules, as it will be shown in Section 5.3.6.

5.3.5.1 Communication

• Sink-oriented: satisfied. Although most of the communication actually initiates

at the sink and transmission of data (commands) is in the direction from sink to

wearable devices, Bluetooth is a master-slave technology. The computer is acting

as the master with the role of the sink.

• Powered motes: satisfied. It is assumed that master device is always on and

always received the message sent by slave devices.

1https://www.sparkfun.com/products/11260
2http://rxtx.qbang.org/wiki/

78

5.3 Use case study: wearable sensor network

• 30 byte packet: satisfied. The default packet size specified in Bluetooth RFCOMM

protocol (implements serial communication link over Bluetooth wireless channel) is

127 bytes, configurable in the range from 23 up to 32767 bytes [157].

• 11 hop routing: not satisfied. Single-hop communication is considered in the first

prototype, no router infrastructure is used.

• CSMA MAC: satisfied. Bluetooth is able to operate both using asynchronous

(CSMA/CA) and synchronous (TDMA) MAC protocols [158].

• Custom protocol API: not satisfied. The Bluetooth modules used do not allow

changing MAC protocol.

• Packet acknowledgement: satisfied. Bluetooth RFCOMM provides a reliable

communication channel [157].

• IPv6 support: not satisfied. Bluetooth uses local addressing scheme and RF-

COMM profile does not support IP protocol.

5.3.5.2 Portability

• TelosB support: not satisfied. Arduino software (used in current implementation)

supports only Atmels AVR-based microcontrollers.

• Rapid driver development: satisfied. Arduino system provides convenient inter-

face for driver development in object-oriented C++ language and lots of examples

are available on community forums.

• Rapid platform definition: not satisfied. Arduino is intended for use only on

AVR-based microcontrollers.

• 802.15.4 support: satisfied. Although Bluetooth uses a different protocol (IEEE

802.15.1), interface from Arduino board to Bluetooth module is UART. The Blue-

tooth module currently used can be replaced with an 802.15.4 XBee module and

the Arduino program may be left unchanged.

• AVR and MSP430 support: not satisfied. Arduino OS and IDE are designed

for Atmel AVR microcontrollers only.

79

5.3 Use case study: wearable sensor network

5.3.5.3 Task scheduling

• Low duty-cycle: not satisfied. Arduino application is running in a 100% duty-

cycle.

• 5 kernel + 6 user tasks: not satisfied. The current Arduino application has a

single thread of execution handling wireless communication and motor management.

• Cooperative scheduling: not satisfied. Arduino does not have any multi-task

scheduling mechanism.

• Preemptive scheduling: not satisfied. Arduino does not have any multi-task

scheduling mechanism.

• Event-based scheduling: not satisfied. Arduino does not have any multi-task

scheduling mechanism.

5.3.5.4 Services

• External storage: satisfied. Arduino community provides source code for different

external memory devices, including SD card.

• File system: satisfied. There are implementations of FAT16 and FAT32 file systems

available for Arduino environment. Although FAT is a rather complex file system in

the WSN context, it has a simple user interface on the Arduino side and is supported

by any PC operating system, including Windows, Linux and MacOSX.

• Time synchronization: satisfied. Arduino time synchronization library is avail-

able supporting time pulses from different sources, including GPS.

Although none of these services are used in the deployment, libraries and examples

are available if such need arises in the future.

5.3.5.5 User support

• Base station example: satisfied. Different Arduino application examples as well

as source code for the PC side can be found in the community pages.

• Popular sensor API: satisfied. This particular application might need accelerom-

eter and light sensors to determine persons position and environment. There are

numerous drivers and source code examples available.

• ADC API: satisfied. There is an API for analog sensor reading in the Arduino OS.

80

5.3 Use case study: wearable sensor network

• Remote access: satisfied. Bluetooth RFCOMM emulates virtual serial connection

for data exchange. Remote reprogramming is not possible in this case. But it is

also not very important - only a couple of network nodes are used and they are

accessible during the development time.

5.3.6 Improvements by matching design rules

In this section the author identifies problems in the system prototype and discusses future

improvements based on WSN software development design rules proposed in this thesis.

The following problems have been identified for the prototype implementation:

• Short network lifetime. The devices are not able to operate autonomously for

the desired period of 7 days. There are multiple reasons for that, including energy-

inefficient hardware and task scheduling.

• No multi-hop communication support. While single-hop communication is

reasonable for tactile alarm dissemination in a single room (ship bridge) it prohibits

the implementation of alarm forwarding to watch officers in other facilities.

• No multitasking. One can implement all required processes (motor control, data

reception, data transmission and sensor sampling) in a single thread, yet it involves

creation of a state machine with inefficient and error-prone polling strategies.

The author analyzes improvements that are suggested by the proposed design rules

in the remainder of this section.

5.3.6.1 Network lifetime extension

There are two modes of expected system operation:

• During intense operations, where tactile device might inform the operators of critical

information, low latency is important (in millisecond range). Therefore 100% radio

duty-cycle is expected here.

• During other time (actually, most of time) crew members are in idle mode, when

nothing significant is happening. They must be warned in case of alarm, yet the

acceptable latency is much higher (might be several seconds).

Most energy is spent in radio listening mode. Customized MAC protocols (design

rule#6) that allow changing radio duty cycle can help to reduce energy consumption

significantly. For example, if the radio transmission is activated every 5 seconds for a

81

5.3 Use case study: wearable sensor network

250ms period (it takes around 100ms to send a 46-byte packet [159], 250ms is enough for

two-way communication), it results in a 20% duty cycle.

The current Bluetooth module does not allow control of MAC protocols. Therefore

more efficient radio module must be selected. In addition, the Arduino board with AVR

ATMega328 microcontroller is also not the best option in terms of energy efficiency it

consumes around 25mA in active mode, and additional 25mA for Bluetooth radio, the

total consumption of the platform is more than 50mA or less than 8 hours of operation

from a 400mAh battery.

Vibrator motor energy consumption cannot be accurately predicted without a par-

ticular scenario. The motors will be active in a very tiny fraction of time, the duty cycle

will be very low. Let us examine an example scenario where 4 motors are used, each of

them consumes 50mA of energy in active mode. The operators are active 8 hours daily

performing operations where alarms may be raised once every 5 minutes and the motors

are active for 1 second on every alarm. That means a 96 seconds of active motors during

the 8 hour operation or 5.33mAh of total energy consumed. During the inactive period

of the day the probability of an alarm is low, let us approximate it to one alarm every

day. However, the motors will be active longer on each alarm, let us define the activ-

ity period 60 seconds in this case the person must react and turn the alarm off in one

minutes time. That leads to 60 seconds of motors in active mode or 3.33mAh of energy

consumed. Taken together, less than 9mAh of energy is consumed daily for the motor

operation or less than 0.375mAh of average consumption. Although this example uses

multiple assumed constants, it shows that the motor energy consumption in a realistic

scenario is insignificant, compared to consumption of the rest of the system.

Selection of an energy-efficient wearable sensor-actuator node increases the lifetime

dramatically. Let us take a TelosB-compatible platform with MSP430F16111 microcon-

troller and CC2420 radio, such as TMote Sky, as an example. The whole platform con-

sumes 20-23mA during active radio transmission or reception. With a 20% duty-cycle

that would result in less than 5mA average consumption. It is tenfold increase in energy

efficiency compared to existing implementation. To conclude, a solution that supports

custom MAC protocols (design rule#6), TelosB-compatible platform (design rule#9)

and low duty-cycle (design rule#14), would lead to significant lifetime extension.

In addition, it is important to be able to experiment with multiple different platforms

and select the best alternatives based on empirical evidence. Rapid porting and driver

development (design rules #10 and 11) are important in that matter. To comply with

these rules, Arduino software should be replaced with a solution more appropriate for

1http://www.ti.com/product/msp430f1611

82

5.3 Use case study: wearable sensor network

porting to new platforms and providing wider set of supported platforms. Contiki OS

would be a good candidate: the solution can be incrementally ported to Contiki OS

keeping the same initial hardware and than changing hardware component-by-component

as necessary.

5.3.6.2 Multi-hop communication

To implement a deployable system, alarm dissemination is required also outside the ship

bridge room, and a 24-hour stable operation is required. Multi-hop communication (design

rule#4) between the alarm generation system and tactile wearable devices is essential part

of this requirement. The solution can be implemented in multiple different ways: either

the conventional ship automation systems network (TCP/IP or other) is used to create

a backbone network and connect tactile devices using gateway nodes attached to each

backbone network router, or a mesh network of wearable devices and corresponding sensor

network routers (802.15.4) can be installed on the ship, connected to the automation

systems network using a single (or multiple redundant) gateway nodes.

5.3.6.3 Multitasking support

There are multiple logical tasks running concurrently on the wearable device: motor con-

trol, data reception, data transmission and sensor sampling (no sensors attached at the

moment, but could be required in future deployments). Support of multi-tasking by pro-

viding API for separate thread creation (design rule#15) is necessary due to different

aspects. First, it is correct to separate and encapsulate threads with different responsi-

bilities and resources. It is logically more correct and makes the code easier to maintain

and expand. Second, correct multi-tasking can improve the efficiency of the application

in terms of time-sharing threads wait when they have no operation to perform and start

running whenever the expected event has occurred. Fully accurate multitasking is not

achievable on a single-processor microcontroller, yet the idle-time can be minimized.

Selection of scheduling techniques depends on task characteristics. If some of them

are time-critical (MAC protocol) while others may be time-intensive (data processing),

preemptive scheduling is required (design rule#17). If there is no intensive data pro-

cessing, only command execution and sensor data reports, cooperative scheduler (design

rule#16) is sufficient and will have less overhead on average. As the whole system is event-

driven, event-based scheduling with configuration on callback function (design rule#18)

would be very efficient in terms of system performance, yet it might be more difficult for

the programmers if the system grows more complicated during its evolution.

83

5.4 Summary

5.3.7 Use case summary

This section describes a wireless sensor network use case where the author created a proto-

type implementation of wearable wireless device. The author identified several problems,

including short network lifetime, limited communication abilities and problematic source

code design and maintenance. Then he showed that following several of the WSN design

rules proposed in this thesis can make significant improvements and can solve the identi-

fied problems. To conclude, this use case showed that the design rules are applicable for

WSN quality assurance as a diagnostics checklist and also solution guide.

5.4 Summary

In this chapter the author showed that proposed design rules are a valuable tool for

improvement of WSN software at different development phases. The rules can be used

to identify drawbacks as well as guidelines for design and further development of existing

systems. In addition, the rules are applicable to WSN software at different levels: from

operating system to particular applications. Rule evaluation for new WSN software design

will be analyzed in the following chapter.

84

6 New operating system design ac-

cording to rules

The previous chapter discusses how proposed design rules can be applied to evaluate exist-

ing WSN software solutions and conclude on future improvement directions. This chapter

describes how the same design rules can be used during the design and implementation

processes of a new operating system for wireless sensor networks.

The Object-Oriented-MansOS, or OOMOS for short, is an operating system that is

incrementally built based according to the design rules proposed in this thesis. At the

moment of writing this chapter, OOMOS is in a work-in-progress state. Nevertheless,

OOMOS is applicable to simple WSN applications already at the current stage, and this

chapter shows the next steps for OOMOS to become a widely-applicable WSN operating

system.

The author of this thesis has designed and implemented OOMOS individually, there-

fore it is considered solely the author’s contribution. In addition to the main goal of

evaluating design rule applicability for new WSN OS design, an additional challenge was

set for OOMOS. As the title states, OOMOS is a proof-of-concept showing that object-

oriented programming approach can be used in WSN operating systems and applications.

To the best of the authors knowledge, there is no other fully-functional object-oriented

WSN operating system.

The rest of this chapter will describe OOMOS’ advantages over MansOS (Sec-

tion 6.1), give introductions to object-oriented programming and its adaptation to WSN

domain (Section 6.2), describe implementation of OOMOS according to design rules (Sec-

tion 6.3), evaluate OOMOS in terms of portability and performance (Section 6.4) and

discuss future evolution of OOMOS according to the rules (Section 6.5).

6.1 OOMOS’ advantages over MansOS

To the best of the author’s knowledge, OOMOS is the first object oriented operating

system for wireless sensor networks. As such, it is a proof-of-concept example that object-

85

6.2 Object-oriented programming for WSNs

oriented design is possible and feasible for WSN OS.

Object-orientation comes with overhead in terms of code size and execution speed.

OOMOS advantages compared to MansOS are related to usability aspects. OOMOS pro-

vides a new way of designing and structuring the code with a goal of increased familiarity,

clarity, and modularity:

• Familiarity. Object oriented programming paradigm is very popular amongst pro-

grammers - 4 of 5 top programming languages (according to TIOBEs research [160])

provide object oriented programming as the main paradigm. Familiar environment

is very important to attract new sensor network programmers, as it decreases the

familiarization time [161].

• Clarity. OOMOS provides a way to explicitly define provided and used interfaces for

components similarly to TinyOS, yet in a more familiar and straight forward way.

Instead of writing additional configuration files with custom syntax, component

wiring in OOMOS is implemented using pure C++ language set() and init()

routines.

• Modularity. OOMOS implements MCU support code as set of modular components,

such as ADC module, SPI module, UART module. These components can be reused

to adapt another MCU that supports the particular module. Such modular approach

increases porting speed of multiple MCUs from the same MCU family as they usually

share many common modules.

The goal of implementing OOMOS is to create an object-oriented WSN OS according

to proposed design rules while maintaining portability and performance at a reasonable

level. It is expected that object-orientation will add overhead to the system. Nevertheless,

evaluation will show(Section 6.4) that performance of compiled C++ code is at usable

level while providing the benefit of familiarity to object-oriented programmers.

6.2 Object-oriented programming for WSNs

Computer programming can be done in many different ways. The term programming

paradigm is used to describe a specific style of designing and programming computer

systems. Object-oriented programming (OOP) is one of the popular paradigms, that

encapsulates data and methods in entities called objects.

Although all widely used operating systems (including Linux, Windows and MacOS)

are procedural, there are several advantages of object-oriented operating systems. See

Section D.1 in Appendix for more details. Object-oriented operating systems have been

86

6.3 OOMOS implementation

proposed previously, including ChoicesOS [162, 163] as an academic example and Haiku

OS as a commercially available OS [164, 165].

In addition to conventional OOOS general advantages (portability, maintainability

and extensibility) wireless sensor network OS design, using object-oriented principles,

provides some benefits that should be noted explicitly:

• More flexible code reuse in MCU-family hierarchies. For example, MSP430F1611

MCU can inherit code common to the whole MSP430 architecture, MSP430 Series

1 family chips, and it can use modules common to multiple chips, such as TimerA3

and USART1 modules.

• Convenient interface for definition of loosely coupled components, i.e. usage of

conventional classes and objects is a simpler alternative of interdependent object

description interface, provided by TinyOS operating system.

• Programming to an interface, not fixed implementation, allows to switch actual

implementations either at compile- or run-time. This principle can be used to

choose different data processing algorithms, networking protocols or communication

hardware interfaces (data sinks).

• Data encapsulation allows object to store internally all constants and variables it

depends on. Although, this approach uses significantly more memory, compared

to macro-constant usage in specified header files, it allows more dynamic module

usage. For example, multiple instances of the same chip (radio, flash memory) may

be used on the same platform.

6.3 OOMOS implementation

The author chose C++ as OOMOS implementation language, due to its effectiveness

and popularity among programmers around the world. An alternative would be to use

Java. However, Java uses virtual machine paradigm, poses high overhead on system

performance, and Java for WSNs is not a novelty [58, 60, 166].

The following subsections describe how OOMOS was designed according to design

rules, proposed in Chapter 4.

6.3.1 Portability

The author designed OOMOS as a wireless sensor network operating system right from

the beginning. Therefore it targets low-power platforms suited for WSN applications. The

87

6.3 OOMOS implementation

author chose TelosB as the first hardware platform according to design rule#9. Support

for CC2420 radio with 802.15.4 standard communication was implemented according to

design rule#12. To conform with design rule#13, Arduino support was included as a

representative of AVR-based platform. Zolertia Z1 was chosen as a platform to test

portability and code reusability of the OS (design rule#11).

The author implemented device drivers in platform-independent manner, to increase

code reusability. Although such requirement may seem trivial and self-evident, it is not

always met in other operating systems. For example, in Contiki OS part of device drivers

are platform-specific, including ADXL3451 acceleration sensor driver for Zolertia Z1 plat-

form, that uses platform-specific pin operations.

Device drivers are object-oriented with classes representing devices. Existing pro-

cedural code is reused, wrapped in C++ classes. Although such approach requires more

effort at the beginning, more reusable code pieces are created, representing individual

modules of devices.

Object-oriented approach is useful for drivers of generic modules, that are specified

by subclasses. Each subclass may execute the same code, defined in parent class, by

using only descendant-class-specific parameters. Strategy pattern is used here. Example

class: MSP430 USART, that provides routines for its child class modules: MSP430 USART0

and MSP430 USART1.

Similarly to approach used in TinyOS [48], OOMOS is composed of interfaces and

components (or objects) implementing these interfaces. In contrast to TinyOS, where

nesC language-specific construct are used to wire components and interfaces, OOMOS

uses standard C++ languages primitives for that matter. Each component has a set of

provided and required interfaces. Provided interfaces are implementations of functions

that can be used by other objects. Required interfaces are functions that may be called

by this object and must be implemented by other objects. Interface mechanism is an

important part of OOMOS increasing interoperability between objects.

Interface primitives provided in programming languages, such as Java, are not avail-

able in C++. Therefore interfaces are implemented in OOMOS as abstract base classes

with pure virtual methods - declared methods without implementation. An example

ILogStream interface is shown in Listing D.1 (see Appendix).

The same interface may be implemented by multiple objects. For example, ILogStream

interface is implemented by UART (Listing D.2), radio (Listing D.3) and external flash

memory modules. A comfortable feature of OOMOS - interface hierarchies can be cre-

ated - an interface may implement another interface. For example, IUART interface for

1http://www.analog.com/static/imported-files/data sheets/ADXL345.pdf

88

6.3 OOMOS implementation

UART module handling automatically implements ILogStream interface (Listing D.2).

That means, that each UART module, providing IUART interface, automatically provides

ILogStream interface for logging data streams. An object may provide multiple interfaces

by using multiple inheritance. For example, CC2420 radio chip (Listing D.4) provides

IRadio interface - it can be used as a radio chip on multiple platforms. Simultaneously,

it provides IEventHandler interface - CC2420 listens to General Purpose Input/Output

(GPIO) pin interrupts.

A new provided interface may be added for a class by simply specifying additional

parent class to inherit from, and implementing its virtual functions. Abstract interface

class names are prefixed by capital letter I to separate them from object classes.

Required interfaces for each class are specified by using class variables - pointers

to interface objects. For example, CC2420 radio chip requires ISPI, IMCU and IGPIO

interfaces (Listing D.4). These pointers are initialized in init() functions, that are

class-specific. While it is not possible to detect in compilation time, which interface

dependencies are not met, init() functions return error code ERR MISSING COMPONENT

of type err t in case of missing dependency. An example of initialization of interfaces for

TelosB platform is shown in Listing D.5.

Microcontroller is the core of each WSN hardware platform, and its support con-

stitutes the most part of platform code. To provide flexible portability and code reuse

(design rule#11), MCU support code is divided into three layers:

• MCU architecture - code common to the whole architecture of MCUs, such as, AVR

or MSP430. This layer contains routines common for all MCUs of this architecture,

and MCU components (ADC, timers, etc) that are reusable in multiple MCUs of the

particular architecture, yet are not specific to a particular MCU model or family.

• MCU family - a family or series of MCU chips, that have common modules and

shareable code for all members of the family. Example families include MSP430

Series 1, MSP430 Series 2.

• Particular MCU model - a chip-specific code for a particular MCU. Examples:

MSP430F1611, ATMega328p.

IMCU interface is an abstract class providing functions that should be available on

most MCUs, such as timer counter functions, GPIO pin, ADC and watchdog module

handling. MCU architecture code provides functions either common to the whole archi-

tecture, or modules that are available on multiple MCUs of a particular architecture across

multiple families. Examples of such modules include MSP430 TimerA3 module available

89

6.3 OOMOS implementation

on MSP430x1xx, MSP430x2xx and other family MCUs; and AVR ADC module present on

multiple AVR-architecture MCUs.

Such code distribution across multiple layers gives flexible porting and code reuse ca-

pabilities. For example, to add support for a new MSP430x2xx family MCU, MSP430F2274,

only a few classes must be implemented: MSP430 ADC10 module and the MCU class itself,

see Figure 6.1.

The code separation in three layers is similar to approach used in MansOS. However,

OOMOS adds improvements in code portability by introducing MCU family concept and

providing MCU family classes with code reusable for all members of a particular family.

OOMOS takes a slightly different approach in system initialization, compared to

MansOS. MansOS kernel sequentially initialized all the modules that are used in a par-

ticular application: Light Emmiting Diodes (LEDs), ADC, I2C, radio, etc. In contrast,

OOMOS calls only one function: platform.init(). This init() function must be pro-

vided by each platform and contains initialization sequence, specific to each platform.

An alternative approach in OOMOS would be implementation of default init sequence in

the IPlatform base class, and delegation of single module initialization steps to ancestor

classes, similarly as in MansOS. However, OOMOS approach provides more flexible ap-

proach for different platforms. If a common initialization pattern is discovered for a set

of platforms, an abstract base class between IPlatform interface and specific platform

classes may be introduced to provide common framework for all the platforms with similar

initialization sequence.

6.3.2 Scheduling

The author designed OOMOS for low-power applications (design rule#14) and provides

effective scheduling techniques: cooperative protothread scheduling [137] was adapted

from Contiki OS [47] (design rule#16), similarly to MansOS. See Section C.1.2.1 in Ap-

pendix for more details on the scheduler. No object-oriented wrapper classes were added,

protothread API is used in its standard form. Reimplementing it in object orientated

fashion would not simplify the syntax, yet it may require additional testing and introduce

new errors. In addition, usage of the standard protothread API in OOMOS and MansOS

allows easier application porting and sharing between all three operating systems: Contiki,

MansOS and OOMOS.

In addition, the author identified the following technical substantiation for cooper-

ative scheduler:

90

6.3 OOMOS implementation

<<
 In

te
rfa

ce
 >

>
IM

C
U

M
SP

43
0M

C
U

AV
R
M
C
U

M
SP

43
0x
1x
x

M
SP

43
0x
2x
x

M
SP

43
0F

16
11

M
SP

43
0F

26
17

M
SP

43
0_

G
PI

O

M
SP

43
0_

Ba
si

cC
lo

ck

M
SP

43
0_

Ti
m

er
A3

M
SP

43
0_

Ti
m

er
B7

M
SP

43
0_

U
SA

RT
M

SP
43

0_
AD

C
12

M
SP

43
0_

U
SC

I_
B

M
SP

43
0_

U
SC

I_
A

M
SP

43
0_

Ba
si

cC
lo

ck
Pl

us
AT

M
eg

a3
28

P

AV
R

_T
im

er
8B

it

AV
R

_T
im

er
16

Bi
t

1

2

2
2

2
1

AV
R

_G
PI

O

AV
R

_A
D

C

1 1

1

AV
R

_U
SA

RT
1

M
SP

43
0F

22
74

1
1

M
SP

43
0_

AD
C

10

1

F
ig

u
re

6
.1

:
O

O
M

O
S

M
C

U
c
la

ss
d

ia
g
ra

m
w

it
h

n
e
w

M
C

U
su

p
p

o
rt

e
d

-
A

d
d

it
io

n
of

a
n

ew
M
S
P
4
3
0
x
2
x
x

fa
m

il
y

M
C

U

M
S
P
4
3
0
F
2
2
7
4

in
O

O
M

O
S

re
q
u

ir
es

ad
d

it
io

n
of

on
ly

tw
o

cl
as

se
s:

A
D

C
10

m
o
d

u
le

an
d

th
e

M
C

U
it

se
lf

91

6.3 OOMOS implementation

• As the evaluation of existing solutions shows (Contiki radio packet reception, Sec-

tion 6.4.2.3), cooperative scheduling is able to provide high performance in handling

time-critical tasks.

• Cooperative scheduling with single memory stack simplifies memory sharing between

processes and decreases stack overflow probability.

• Cooperative scheduler requires less platform specific code: only some MCU timer

routines. No context switch code is required.

• Preemptive scheduler can be added later as an option.

No particular limits on concurrent proto-thread count were set in OOMOS. Memory

resources are sufficient to support at least 5 kernel and 6 user tasks, as required by design

rule#15. In addition to cooperative scheduling, users can directly use callback functions

of device drivers, including UART serial port and radio chip. Although the author does

not recommended it, event-driven programming paradigm is supported (design rule#18)

in OOMOS.

6.3.3 Services and API

Although hardware platforms for sensor networks are very different, operating systems

should provide some common components and routines for all platforms to simplify user

application development. Whenever a particular platform does not support a very com-

mon feature, compiler should the user of this fact.

The author has divided platform API (Listing D.6 in Appendix) into three parts:

• Mandatory API - functions and components required on each WSN platform. Ex-

amples include platform initialization routine init(), called by the kernel, delay

and timer routines.

• Very common, yet optional API - functions that should be provided by majority

of platforms, yet may be inaccessible on some nodes. Examples: ADC (design

rule#24), radio modules, LEDs, light, temperature and accelerometer sensor func-

tions (design rule#23) and external memory handling (design rule#19).

• Optional, platform-specific routines, such as routines for reading specific sensors

(seismic, gas, barometric pressure).

92

6.4 OOMOS evaluation

The author used an abstract interface IPlatform as a base class for all WSN hard-

ware platforms to implement the three API layers. It declares pure virtual functions for

all mandatory functions. These must be implemented by all platforms. OOMOS specifies

virtual functions with default, empty implementations in IPlatform interface to provide

common feature interface to user applications. These default implementations are over-

ridden by all platforms supporting the particular feature. For example, readLight()

function returns 0 by default (see Listing D.6). It is implemented by calling appropri-

ate sensor device readout function on all platforms supporting light sensor. OOMOS

implements fully optional functions as simple, non-virtual functions in each platform’s

class.

To support partially optional, common functions, two alternative approaches could

be used:

• Specification of all required functions as pure virtual. It is not desirable, as it would

require all platforms to implement all functions, even if they are not supported. It

would lead to larger code. And introduction of new functions in IPlatform interface

would require modification of all platform classes, which is not a desirable situation.

• Removal of partially optional functions from IPlatform interface. While it could

save code space, such approach would make user applications more platform-specific

and not allow to compile the same application on all platforms, even if part of used

components are not available on the platform. For example, application may check

availability of sensors on the platform, sample and report only available sensor

values.

6.3.4 Summary

OOMOS is an experimental OS with the goal to build an object-oriented WSN OS ac-

cording to design rules proposed in this thesis. The development process of OOMOS is

incremental and there are design rules that are not satisfied in the current stage. The

main missing part is full networking protocol stack, designed according to specific WSN

needs and proposed design rules. The gaps will be identified and suggestions on future

directions will be given in Section 6.5.

6.4 OOMOS evaluation

The author has developed OOMOS as an example how an object-oriented WSN operat-

ing system can be built according to proposed design rules. MansOS and OOMOS are

93

6.4 OOMOS evaluation

operating systems with high portability in mind. This section evaluates how conformance

to design rules has helped MansOS and OOMOS in reaching higher code reusability.

In addition, it is important that WSN operating systems possess reasonable perfor-

mance. Evaluation shows, that Contiki and TinyOS are superior in some performance

aspects, yet MansOS and OOMOS still have performance at a level that is efficient for

practical applications.

Being a modification of MansOS, OOMOS must be evaluated together with MansOS.

Whenever applicable, MansOS and OOMOS are compared to two typical WSN operating

systems: TinyOS and Contiki. TinyOS represents the most popular choice among WSN

users, and is built with extreme resource efficiency in mind. Contiki, on the other hand,

focuses more on user friendly programming interface. MansOS and OOMOS strive to

achieve high user friendliness and portability while maintaining a reasonable degree of

performance and resource efficiency. As the results reveal, in some cases MansOS and

OOMOS are more resource-efficient compared to TinyOS, and in most cases have higher

portability compared to both Contiki and TinyOS.

6.4.1 RAM and flash memory usage

To be usable for actual WSN applications, operating systems must have size requirements

that can be met by existing hardware platforms. This section analyzes program code and

RAM memory requirements of MansOS and OOMOS operating systems.

To assess memory usage, the author used test applications:

• ADCPerformance application, that samples ADC channels and outputs sampling

rate.

• RadioTxPerformance application, that sends radio packets as fast as possible, and

outputs transmission rate.

• RadioRxPerformance application, that receives packets transmitted by another sen-

sor node, and outputs packet reception rate.

All three applications use UART serial data line for debug output, while ADC

module is used only in the ADCPerformance application and radio module is used in both

remaining applications: RadioTxPerformance and RadioRxPerformance.

In addition the author analyzed a simple LED Blink application, that used only

LED module. It is usable to assess minimal size requirements of operating systems.

94

6.4 OOMOS evaluation

25
90
	

29
72
2	

15
54
0	

26
80
	 56

98
	

29
80
2	

16
51
8	

14
43
8	

76
60
	

30
20
6	

15
82
8	 17
67
2	

71
96
	

30
27
0	

15
58
0	

16
65
6	

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

MansOS	 OOMOS	 Con4ki	 TinyOS	

Test	 applica+on	 code	 size,	 bytes	

Blink	

ADC	

Radio	 TX	

Radio	 RX	

Figure 6.2: Test application program code size comparison in MansOS, OOMOS,

Contiki and TinyOS - MansOS and TinyOs provide highly dynamic code size due to

modularity, OOMOS object-oriented programs larger in size

30
2	

69
8	

43
74
	

55
	

41
6	 66

4	

43
42
	

86
8	

73
8	 98

0	

45
10
	

13
60
	

55
2	 81

8	

43
28
	

11
84
	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

MansOS	 OOMOS	 Con4ki	 TinyOS	

Test	 applica+on	 sta+c	 RAM	 size,	 bytes	

Blink	

ADC	

Radio	 TX	

Radio	 RX	

Figure 6.3: Test application static RAM size comparison in MansOS, OOMOS,

Contiki and TinyOS - OOMOS RAM usage higher than in MansOS, yet significantly

lower than in Contiki’s default configuration

95

6.4 OOMOS evaluation

The author developed the same applications in four operating systems: MansOS,

OOMOS, Contiki and TinyOS. Program code size and static RAM memory usage was

analyzed. Results are shown in Figure 6.2 and Figure 6.3.

Multiple conclusions can be drawn from here:

• Program code size adapts very dynamically in MansOS (and also in TinyOS) ac-

cording to features used in particular application. Unused modules are switched off

and not included in the binary application image.

• MansOS code size is remarkably smaller compared to TinyOS and Contiki.

• Object-oriented code in its unoptimized form produces large program code binaries.

While OOMOS application code size is small enough to fit in the flash memory

of MSP430F1611 microcontroller (used on TMote Sky), optimizations of code size

should be investigated, to make OOMOS usable for platforms with smaller program

flash memory (see Section 6.4.3).

• MansOS has very low RAM memory footprint.

• OOMOS RAM footprint is higher compared to MansOS, yet it is still lower compared

to Contiki and TinyOS. Therefore optimizations in OOMOS should be concerned

more on saving program flash memory, than RAM size.

• Contiki uses large static RAM memory blocks, even in the default configuration.

The reason - Contiki has multiple services, that use large memory buffers and that

are also running, even when not used. Optimizations in this direction are possible

- ability to turn off unused services in Contiki.

6.4.2 Performance

The author identifies three WSN application tasks as time-critical, where execution time

is important:

• Sensor sampling. Some sensors, such as microphone or accelerometer, may require

high-frequency sampling. Therefore sampling rate may be important.

• Data transmission over radio. Although sensor networks rarely use high-bandwidth

communication, data transmission in short bursts is typical and ability to transmit

several packets in a short time may be important. In addition, radio communication

consumes most of used energy, therefore minimizing communication may extend

network lifetime.

96

6.4 OOMOS evaluation

• Data reception over radio. If packets are transmitted at high rate (even if overall

packet count is not large, yet more than one), it is important to be able to receive

and buffer the burst of packets on the receiving node. Otherwise either information

is partially lost, or request to resend lost data must be issued, diminishing the

benefit of high-speed data transmission.

The author executed all three tests on TMote Sky platform [32], having MSP430F1611

MCU with advanced built-in ADC module, providing high frequency sampling, and TI

CC2420 radio chip [8], widely used on WSN platforms. Cooperative scheduling with pro-

tothreads was used on MansOS and OOMOS to be comparable with cooperative sched-

ulers used in Contiki and TinyOS.

6.4.2.1 Sensor sampling performance

The author chose analog sensor sampling using ADC as a test application for sampling

performance analysis. The wide range of digital sensors vary a lot, therefore it is difficult

to choose a typical representative of digital sensors. In addition, some sensors may have

a sampling latency due to characteristics of the sensor itself. Therefore ADC sampling

was chosen as a representative example of sensor sampling interface, with relatively stable

characteristics for wide sensor range.

To measure sampling rate, the author developed a test application with consistent

application logic in all four operating systems: MansOS, OOMOS, Contiki, TinyOS. It

contains two test modes: (1) continuous sampling of a single ADC channel; and (2)

sampling of three consecutive ADC channels consequently. The first mode was expected

to have higher sampling rate, as the ADC module is not required to switch channels

between each two samples. One test run is 30000 consecutive sensor samples. System

uptime is checked after each test run, and sampling rate is calculated accordingly. The

author analyzed 30 test runs for each test mode, and chose median of all sampling rates.

Results are shown in Figure 6.4.

MansOS performance is the highest in single-channel mode, while in multi-channel

mode it is 30% lower than Contiki’s performance. The reason is Contiki sensor interface

implementation for TelosB platform, that uses MSP430 ADC module specifics to sample

all required ADC channels consequently, even when a single channel is required. TinyOS

performance is high in single-channel mode, yet it is very low (under 1KHz) for multi-

channel sampling. While ReadStream interface with batch operation support at high

sampling rate was used for single-channel scenario, the slower Read interface had to be

used for multi-channel scenario.

97

6.4 OOMOS evaluation

11
32
08
	

45
18
1	

10
10
10
	

79
36
5	

42
85
7	

15
48
8	

61
92
0	

83
3	

0	

20000	

40000	

60000	

80000	

100000	

120000	

MansOS	 OOMOS	 Con4ki	 TinyOS	

ADC	 sampling	 rate,	 Hz	

Single	 channel	

Mul4-‐channel	

Figure 6.4: ADC sampling performance of MansOS, OOMOS, Contiki and

TinyOS - MansOS performance is comparable to Contiki, and higher than TinyOS

Results show, that introduction of object-oriented approach in OOMOS has reduced

performance of ADC sampling. Nevertheless, it is still on a level usable for majority of

WSN applications, including single-channel audio sensor sampling at 45KHz or 3D ac-

celerometer sampling with frequencies up to 5KHz (per channel). Built-in ADC sampling

is not usable for demanding scenarios, such as seismic and acoustic data in volcano moni-

toring [3, 106]. External ADC modules with higher frequency are frequently used in such

scenarios.

6.4.2.2 Wireless data transmission performance

The author used a test application with equivalent logic on all four operating systems

(MansOS, OOMOS, Contiki and TinyOS) to evaluate radio transmission performance.

Communication in the PHY layer was used to exclude networking protocol imposed delay.

However, in TinyOS components of the communication stack are tied so closely, that it

is impossible to access the PHY layer without rewriting most of TinyOS components,

that would lead to a new operating system, that is not TinyOS anymore. Therefore

Active Message (AM) layer was used. Therefore it must be kept in mind, that results of

TinyOS could show lower throughput due to additional overhead of higher layer protocols.

An alternative would be to use AM layer communication in all four operating systems.

98

6.4 OOMOS evaluation

However, it was not available in other OSes, therefore selection of already available and

well-tested communication primitives was used. The AM layer in TinyOS adds 11 bytes of

meta-data fields in addition to the packet, therefore it was not able to send 2 byte packets.

For TinyOS, only 16, 40 and 120 byte packets were sent, were protocol meta-data fields

were counted in the packet size (actual payload size: 5, 29 and 109 bytes).

The test applications executed four test modes in a continuous loop. The test node

was sending packets with different sizes in each mode: 2, 16, 40 and 120 byte packets

respectively. One test run was transmission of 1000 packets. System uptime was checked

after each run and transmission rate calculated accordingly. 30 test runs were analyzed

for each test mode, and median of all transmission rates was chosen. Resulting packet

throughput (packets per second) is shown in Figure 6.5, and bandwidth (Kibibytes per

second) is shown in Figure 6.6.

0	

200	

400	

600	

800	

1000	

1200	

0	 20	 40	 60	 80	 100	 120	 140	

Pa
ck
et
s/
se
c	

Packet	 size,	 Bytes	

Packet	 send	 throughput	

MansOS	

OOMOS	

Con0ki	

TinyOS	

Figure 6.5: Radio transmission throughput dependance of packet size, pack-

ets/sec - Contiki has the highest transmission rate at Physical (PHY) layer, followed by

MansOS. OOMOS performance is lower, yet the difference decreases with increasing packet

size. TinyOS (AM Packet layer) performance is lowest.

Contiki has the highest radio transmission throughput, followed by MansOS. MansOS

lower bandwidth might be explained by more generic SPI bus layer used, while it is

MSP430 architecture-specific in Contiki. OOMOS transmission is lower than MansOS,

due to object-oriented driver implementation, that requires more function cascades and

virtual function calls in places, where plain C macros are used in Contiki and OOMOS.

TinyOS performance is significantly lower, compared even to OOMOS. Partially it might

99

6.4 OOMOS evaluation

0	

5	

10	

15	

20	

25	

0	 20	 40	 60	 80	 100	 120	 140	

KB
/s
ec
	

Packet	 size,	 Bytes	

Radio	 transmission	 bandwidth	

MansOS	

OOMOS	

Con1ki	

TinyOS	

Figure 6.6: Radio transmission throughput dependance of packet size,

KiBytes/sec -

be due to AM protocol stack overhead. Nevertheless, it shows that TinyOS does not

always comply with its main objective to be a high-performance, low-overhead WSN OS.

The author’s conclusion from test results - OOMOS object-orientation imposes addi-

tional overhead in data transmission, therefore, performance may be lower in applications

requiring transmission bursts with high bandwidth, such as image sensor data trans-

mission or data muling in delay tolerant networks [167]. In applications without such

bandwidth requirements Contiki, MansOS and OOMOS will perform comparably well,

as the packet transmission time difference is not more than a couple of milliseconds. It

could be harder to implement high-precision time synchronization protocols in OOMOS.

6.4.2.3 Wireless data reception performance

High bandwidth data transmission becomes useless, if the receiving part is not able to

process all the transmitted packets in time. The author performed additional radio recep-

tion (radio RX) tests to test OS ability to quickly buffer packets received over radio. An

application with identical logic was used on all four operating systems. A 16-bit counter

was analyzed in received packet, sent by a sensor node with radio transmission test appli-

cation. The same operating system was used on both nodes. For example, when MansOS

application was running on the transmission node, MansOS application was also running

on the reception node; when OOMOS was sending, OOMOS was also receiving, etc. The

same 2, 16, 40 and 120 byte packets were used (in TinyOS, only 16, 40 and 120 byte

100

6.4 OOMOS evaluation

packets were sent and received). Test application counted number of received packets

from the total of 1000 packets transmitted, and calculated packet reception rate (PRR)

for all four test modes. Test results are shown in Table 6.1.

Table 6.1: Packet reception rate (PRR) dependance on packet size

Packet size (bytes): 2 16 40 120

MansOS 99.7% 99.8% 100% 100%

OOMOS 99.9% 100% 100% 100%

Contiki 49.7% 95.4% 79.5% 59%

TinyOS - 100% 100% 100%

It can be seen that Contiki, despite its fast transmission ability, is not able to receive

many of transmitted packets. For small, 2 byte packets Contiki’s PRR is under 50%, it is

the highest for 16 byte packets (93%), and then falls again, for 120 byte packets Contiki’s

PRR is 59%. MansOS, OOMOS and TinyOS reception is very high, over 99.6% for all

tested packet sizes.

TinyOS reception rate is stable at 100%, while MansOS and OOMOS are close to

it: ≥ 99.7%. PRR of OOMOS is slightly higher than PRR of MansOS, that might be

explained by slightly higher transmission rate of MansOS. If instead of relative PRR we

take a look at absolute received packet count (Figure 6.7), it can be concluded, that

MansOS reception performance is very close to Contiki, while OOMOS RX is slower.

Actually OOMOS receives almost all transmitted packets, yet the transmission speed of

the other OOMOS node is lower compared to MansOS and Contiki.

The author’s conclusion: MansOS and OOMOS radio reception performance is very

high and able to handle almost all the transmitted packets.

6.4.3 Optimizations

The author created initial OOMOS version without any optimizations to assess worst-

case performance. As suggested in Section 6.4.1, OOMOS program binary image size is

small enough to fit on TMote Sky sensor nodes, yet optimizations should be considered for

OOMOS to be usable on more constrained platforms, and to be extensible with additional

services in the future. In this section the author describes his experiment on OOMOS

program size reduction, and its possible automation approaches.

One approach to code size reduction is dynamic exclusion of unused components, as

it is successfully performed in MansOS. To test effectiveness of this approach, the author

101

6.4 OOMOS evaluation

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

90000	

100000	

0	 20	 40	 60	 80	 100	 120	 140	

Pa
ck
et
s/
se
c	

Packet	 size,	 Bytes	

Absolute	 packet	 recep6on	 rate	

MansOS	

OOMOS	

Con4ki	

TinyOS	

Figure 6.7: Absolute received packet count dependance on packet size - MansOS

performance close to Contiki, OOMOS and TinyOS absolute reception lower due to lower

performance of the transmitting node

performed manual exclusion of unused components for RadioTxPerformance application,

where data packets are sent over radio. The unused interfaces and modules, that were

commented out, are listed in Table 6.2. Visual result summary is shown in Figure 6.8.

Table 6.2: OOMOS code and RAM size optimization by excluding unused components

Excluded module Flash saved, B RAM saved, B

FastADC interface 154 (0.5%) 2

LEDs 1560 (5.2%) 54

LogStream interface 850 (2.8%) 0

External storage 1684 (5.6%) 16

Humidity sensor 3092 (10.2%) 8

Platform functions 268 (0.9%) 0

Total 7608 (25.2%) 80

Multiple unused interfaces and their implementations were removed: IFastADC (fast

continuous sampling of a single ADC channel), ILogStream (ands its implementation in

IUART and IRadio interfaces), ILEDs, IStorage. Also GPIOLEDs component was removed

(generic LED control using GPIO pins), M25P80 external flash memory driver, and SHT11

102

6.4 OOMOS evaluation

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

Flash	 image	 size	

Func:ons	
Humidity	
Storage	
LogStream	
LEDs	
FastADC	
Minimal	 app	

Figure 6.8: OOMOS code size reduction by excluding unused components - the

author reduced program size by 25% (7608 bytes from initial 30206 bytes) by removing

unused components in RadioTxPerformance application

humidity sensor driver.

Overall program size was reduced by 7608 bytes, i.e., 25% of initial size. It is a

remarkable result. However, it must be noted, that this approach works only for small

applications that use only a small subset of features provided by the OS. For an appli-

cation using radio communication, debug stream over UART, sensors, external storage

and LEDs, it would be difficult to exclude any components. Therefore this size reduction

method allows to run constrained applications on more resource-constrained platforms.

The author performed component exclusion manually in this experiment. More

research should be done on automated component exclusion. While MansOS uses auto-

mated approach by parsing the function call three and simply deciding which compiled

object files to link together, a more complicated approach, using preprocessor may be

needed in OOMOS, as there are features and components that are defined in multiple

files, for example, interfaces and their implementers. Here the author lists suggestions on

principles for further investigation:

• If a class is not used, its declaration and definition files (.h and .cpp) can be

excluded.

• If an interface is not used, its declaration file can be excluded. Yet consequentially

all the classes implementing it must be found and cleaned by removing inheritance

103

6.4 OOMOS evaluation

relation to this interface and removing all the functions implementing the interface.

• If some of class functions are never used, they can be removed.

• A multi-pass approach may be required to find unused classes. For example, SHT11

humidity sensor driver may be used in TelosB platform class to provide humidity

sensor functions declared in IPlatform class. When it is discovered, that application

does not require humidity functionality, these functions can be removed and SHT11

sensor class is no longer used.

6.4.4 Portability

According to design rule#11, portability to new hardware platforms is an important

aspect for a WSN OS. The author performed source code statistical analysis to evaluate

portability of proposed operating system prototypes. OS source code lines and files are

counted and classified in the following categories:

• Platform-independent function interface,

• Platform-independent libraries and services,

• Kernel code, including task scheduling,

• Platform-independent device drivers,

• MSP430-architecture MCU code,

• AVR-architecture MCU code,

• Telosb platform-specific code,

• Zolertia Z1 platform-specific code,

• AVR-based (Arduino, AVR Raven, or Mica2) platform-specific code.

Such statistical analysis gives an overview of OS code size and distribution among

categories, as well as platform-dependability and reusability of the source code.

The author compared source code of four operating systems: MansOS, OOMOS,

Contiki OS and TinyOS. The analyzed operating systems support different feature sets

and follow different ideologies, especially TinyOS. Therefore the following restrictions were

followed to provide comparable results:

• Only meaningful source code lines were counted, without comments and blank lines.

104

6.4 OOMOS evaluation

• OOMOS is an experimental OS with the smallest implemented feature set of all

the listed systems. Therefore only files implementing features available in OOMOS

were counted for all four operating systems. For example, preemptive scheduling

was excluded, and only physical layer communication was analyzed in the network-

ing stack (inclusion of Contiki’s sophisticated networking stack with 6lowpan IPv6

implementation would produce biased results).

• Although multiple other platforms are supported by MansOS, Contiki and TinyOS,

TelosB and Zolertia Z1 were chosen as a baseline for portability evaluation. Zolertia

Z1 has significant part common with TelosB, therefore large TelosB code base should

be reusable for Z1.

Analyzed OS versions: Contiki 2.6, TinyOS 2.1, MansOS rev 452 (2012-09-11),

OOMOS v1.0 (2012-08-31).

The author performed manual source file categorization, based on file location, name

and content analysis. Lines of code for each file were counted, using cloc tool, v1.5 [168].

TinyOS nesC files were renamed to .c files and counted as C language code. The author

empirically verified, that cloc tool correctly counts nesC lines of code in this manner.

Evaluation emphasizes the following aspects:

1. Total OS source code size comparison. This metric gives an overview of how much

code is required for a working system.

2. Platform-independent code percentage, that describes code reusability.

3. Code size, that was required to implement TelosB platform. This aspect describes

complexity of platform implementation without prior existing code.

4. Total code size for Zolertia Z1 platform, and percentage of code reused from existing

TelosB platform.

5. Device driver source code size, describing complexity of new sensor, memory, radio

chip and extension board adaptation.

6. Overall object-oriented OOMOS code overhead trend compared to procedural MansOS.

Total OS source code line count comparison is shown in Figure 6.9, total file count

in Figure 6.10. Categorized source code statistics are depicted in Figure 6.11.

Figures show, that MansOS and OOMOS operating systems contain significantly

less code, compared to Contiki and TinyOS. TinyOS code size is surprisingly huge: about

4 times the size of MansOS. The foundation lies in overly high modularity of TinyOS code

105

6.4 OOMOS evaluation

6469	
5133	

10339	

20270	

0	

5000	

10000	

15000	

20000	

25000	

OOMOS	 MansOS	 Con3ki	 TinyOS	

Li
ne

s	 o
f	 c
od

e	

OS	 code	 size	 comparisson	

Figure 6.9: MansOS, OOMOS, Contiki and TinyOS size comparison, lines of

source code - MansOS and OOMOS contain significantly less code, especially compared

to TinyOS (only features available in all systems are included)

126	 127	
143	

422	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

OOMOS	 MansOS	 Con2ki	 TinyOS	

Fi
le
	 c
ou

nt
	

OS	 file	 count	 comparisson	

Figure 6.10: MansOS, OOMOS, Contiki and TinyOS size comparison, file count

- high modularity of TinyOS system significant overhead for developers, having source code

distributed across hundreds of files

106

6.4 OOMOS evaluation

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

Interfaces	 Libraries	 Kernel	 MSP430	 arch	 AVR	 arch	 TelosB	 plaEorm	 Z1	 plaEorm	 Arduino	
plaEorm	

Device	 drivers	

Li
ne

s	 o
f	 c
od

e	
OS	 code	 size	 comparisson,	 categorized	

OOMOS	

MansOS	

ConNki	

TinyOS	

Figure 6.11: MansOS, OOMOS, Contiki and TinyOS code categorized

- the whole system is composed of hundreds of small components, implementing many

interfaces and interconnected in complex structures. Although such modularity provides

high degree of code reusability, such approach is very complex for both application and

new platform developers. Programmers need to understand the whole structure and

simultaneously be able to analyze each individual component, to decide, where a change

of existing code or creation of new component is required.

Let us examine the whole OS source code, divided into two classes: platform-specific

and platform-independent. Platform-dependent is the code, that initializes or describes

a particular platform, and is not directly reusable for new platform adaptation. In the

particular case, TelosB, Zolertia Z1 and AVR platform-specific initialization code sum is

described as platform-specific, while the rest is platform-independent. Source code line

count is shown in Figure 6.12.

Overall, MansOS and OOMOS contain more reusable code: 91.8% and 91.6% respec-

tively, while TinyOS is less portable (88% reusable), and Contiki contains most platform-

specific code (only 67% reusable). It is due the fact, that both TelosB and Z1 platform

code in Contiki contains parts, that are equally usable for multiple platforms, for example,

analog sensor support is duplicated in both platforms.

To get a perception of code size and effort required to adapt a new platform, let us

examine Zolertia Z1 platform in all four operating systems. Z1 platform source code line

count is shown in Figure 6.13.

107

6.4 OOMOS evaluation

0	

5000	

10000	

15000	

20000	

25000	

OOMOS	 MansOS	 Con.ki	 TinyOS	

Li
ne

s	 o
f	 c
od

e	

OS	 code	 reusability,	 lines	 of	 code	

Reusable	

Pla9orm-‐dependent	

Figure 6.12: OOMOS, MansOS, Contiki and TinyOS reusability, lines of code -

MansOS and OOMOS contain few lines of non-reusable code, 8.2% and 8.4% respectively,

while TinyOS contains 12% and Contiki - 33% of platform-dependent, non-reusable source

code

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

OOMOS	 MansOS	 Con0ki	 TinyOS	

Li
ne

s	 o
f	 c
od

e	

Zoler.a	 Z1	 pla2orm	 code,	 lines	 of	 code	

Z1-‐specific	

Reusable	 added	

Reused	 TelosB	

Figure 6.13: Zolertia Z1 platform in OOMOS, MansOS, Contiki and TinyOS,

lines of code - MansOS and OOMOS require few lines of additional code, and significant

part of added code is further reusable

108

6.4 OOMOS evaluation

Figures show, that MansOS and OOMOS porting to Zolertia Z1 platform required

writing of significantly less code, compared to Contiki: 59% of TelosB code in MansOS

was reused, 66% in OOMOS, 36% in Contiki. In addition, newly created Z1 platform code

is further reusable for other platform adaptation: 89% of added code is further reusable

in MansOS, 93% in OOMOS. In Contiki code is mostly platform-specific, without a goal

to reuse it later: only 63% of added code is reusable.

When comparing TinyOS to OOMOS, TinyOS results are comparable in relative

numbers and even slightly better compared to MansOS: 64% of TelosB code is reusable in

TinyOS and 92% of newly added Zolertia Z1 code is further reusable. Yet, as mentioned

above, in absolute numbers TinyOS code base is huge: 4.7 times larger than OOMOS

and 6.9 times larger than MansOS (source code lines, see Table 6.3), requiring much more

effort for platform porting.

Table 6.3: Zolertia Z1 platform source code size in OOMOS, MansOS, Contiki and TinyOS

Code category OOMOS MansOS Contiki TinyOS

Reused TelosB 1847 1126 1178 8458

Reusable added 751 579 852 3666

Z1-specific 206 203 1206 1103

Total 2804 1908 3236 13227

Device driver development requires a lot of effort in new platform adaptation process.

Therefore let us examine device driver code size comparison. Lines of code are shown in

Figure 6.14, file count - Figure 6.15.

It can be seen, that OOMOS driver development requires slightly more coding effort

compared to MansOS. The reason is object-oriented nature of the drivers - each devices is

represented by a class, requiring both declaration and definition. In general, class oriented

code contains more code lines compared to procedural approach. It must be noted, that all

device drivers in MansOS and OOMOS are written using platform-independent routines

and the code is therefore reusable for multiple platforms.

Contiki contains less platform-independent device driver code, compared to MansOS

and OOMOS. However, additional device drivers are platform-specific and included in

platform code. When considering also these platform-specific drivers (in particular, for

ADXL345 accelerometer, TMP102 temperature sensor and M25Px flash memory chips),

the driver code is larger than MansOS and OOMOS. Transforming these drivers to

platform-independent code would increase portability of Contiki.

109

6.4 OOMOS evaluation

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

OOMOS	 MansOS	 Con0ki	 TinyOS	

Li
ne

s	 o
f	 c
od

e	
Device	 driver	 size,	 lines	 of	 code	

Pla7orm-‐specific	
lines	

Reusable	 lines	

Figure 6.14: Device driver code in OOMOS, MansOS, Contiki and TinyOS, lines

of code - OOMOS device drivers contain slightly more code compared to MansOS, yet less

than Contiki and TinyOS

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

OOMOS	 MansOS	 Con0ki	 TinyOS	

Fi
le
	 c
ou

nt
	

Device	 driver	 size,	 file	 count	

Pla7orm-‐specific	 files	

Reusable	 files	

Figure 6.15: Device driver file count in OOMOS, MansOS, Contiki and TinyOS

110

6.4 OOMOS evaluation

TinyOS device drivers contain 3 times more source code lines compared to MansOS

(3791 and 1205 lines respectively), and almost 4 times more files (44 versus 12). Driver

development in TinyOS is therefore significantly more complicated.

To summarize, MansOS and OOMOS were developed with portability (design rule#11)

in mind right from the beginning. Results show that conformance to this rule provides

high portability in terms of source code reusability.

6.4.5 Object-orientation overhead

This section compares MansOS and OOMOS to understand impact to code size of intro-

ducing object-orientation, while maintaining the same overall OS ideology and structure.

OOMOS and MansOS source line count is compared in Figure 6.16, file count comparison

is depicted in Figure 6.17.

31
4	 43

9	

97
2	

19
77
	

85
2	

21
6	

20
6	

12
4	

13
69
	

66
0	

50
0	

12
15
	 13
65
	

60
9	

18
4	

20
3	

34
	

12
05
	

0	

500	

1000	

1500	

2000	

2500	

Interfaces	 Libraries	 Kernel	 MSP430	
arch	

AVR	 arch	 TelosB	
plaEorm	

Z1	 plaEorm	 Arduino	
plaEorm	

Device	
drivers	

Li
ne

s	 o
f	 c
od

e	

MansOS	 and	 OOMOS	 code	 comparisson,	 lines	 of	 code	

OOMOS	

MansOS	

Figure 6.16: Object-oriented OOMOS compared to procedural MansOS, lines

of code

These graphs show the ability of object-oriented approach to better separate inter-

face and implementation code. It can be seen, that OOMOS interface files contain less

code lines. OOMOS contains more empty interface declarations, that are implemented

in the library code, while in MansOS part of interfaces are implemented straight in the

interface code.

Kernel size is comparable for both systems. MansOS kernel is even slightly larger, as

it performs generic initialization for all platforms, while OOMOS delegates initialization

111

6.5 Future work according to design rules

17
	

17
	

22
	

32
	

16
	

3	 3	 3	

13
	

23
	

12
	

24
	 25
	

13
	

8	

7	

3	

12
	

0	

5	

10	

15	

20	

25	

30	

35	

Interfaces	 Libraries	 Kernel	 MSP430	
arch	

AVR	 arch	 TelosB	
plaDorm	

Z1	 plaDorm	 Arduino	
plaDorm	

Device	
drivers	

Fi
le
	 c
ou

nt
	

MansOS	 and	 OOMOS	 code	 comparisson,	 file	 count	

OOMOS	

MansOS	

Figure 6.17: Object-oriented OOMOS compared to procedural MansOS, file

count

process to each individual platform code.

MSP430 architecture code shows, that object-oriented approach requires more lines

of code for MCU support. Partially it is due to higher modularity - MCU modules (such

as MSP430 TimerA3 and MSP430 USART1) are extended to separated classes, while MansOS

uses lower degree of modularity.

One feature of OOMOS is not visible in the graphs - OOMOS contains separate

classes for each particular MCU model. For example, MSP430F1611 and MSP430F2617.

These classes include all the required MCU modules and are an effective approach to

reusability - whenever a new platform contains a previously defined MCU, it simply has

to include the particular class in its platform code, without requirement to combine and

interconnect all the MCU modules separately for each platform.

As already mentioned above, device driver development in object-oriented fashion

produces more source code, and for the sake of higher modularity, code is more fragmented

across files. However, such approach provides higher module reusability.

6.5 Future work according to design rules

OOMOS is an experimental WSN operating system, designed by the author incrementally

according to rules. Although it can be used for simple applications already at this stage,

significant future work is required to implement features necessary for wide application

112

6.5 Future work according to design rules

range. The main challenges involve implementation of a full networking protocol stack,

preemptive scheduling and important services, including file system, time synchronization

and remote access. This section demonstrates how the proposed design rules can be used

as a useful tool for design and implementation of these features.

6.5.1 Networking protocol stack

At the moment of writing this thesis the author had implemented only physical layer

(PHY) protocol responsible for sending packets (terms layer and protocol are used inter-

changeably in this section). Basic CSMA MAC mechanisms are built in 802.15.4-based

radio chips, such as CC2420. But they don’t provide full flexibility that might be required

by custom user needs. Implementation of flexible networking stack is an important task.

This section describes how a flexible protocol stack can be designed. The design rules

proposed in this thesis help in identifying important requirements and choosing between

alternative approaches for the protocol stack.

Implementation of the stack consists of two parts. First, a framework or inter-

face must be established supporting implementation of different protocol stacks. Second,

particular protocols are implemented using the framework available.

The following requirements for the networking protocol framework can be inferred

from the proposed design rules:

• Networking stack should be flexible with ability to change each layer separately.

Users should be able to design their own protocols easily and modify the stack by

replacing individual protocol implementations (design rule#6).

• Each protocol must be able to track the state of the node and the whole network and

decide on further actions. CSMA protocols (design rule#5) might require counters

to track number of transmission retries, TDMA protocols might require individual

timer.

• Implementation of IPv6 protocol stack should be possible (design rule#8). It may

be difficult to implement the whole stack in the OOMOS framework, wrapper layer

of existing IPv6 libraries could be used.

The following rules are targeted to individual protocol development (not the general

protocol stack framework):

• The default protocols should be sink-oriented (design rule#1) and consider powered

motes in the network (design rule#2). I.e., it should be possible to notify each net-

working protocol whether this node has unlimited energy resources and can operate

113

6.5 Future work according to design rules

in different mode. The platform class should have a function that signals whether

this particular sensor node has access to extended power source and can therefore

run on a higher duty-cycle.

• Acknowledgement mechanism for reliable delivery should be included in one of the

protocols (design rule#7). It can be implemented either as a separate layer, or as

a part of other layers.

There are several ways how to implement network protocols. One approach is to

create a separate thread for each layer. However, the author does not recommend it,

as it would make protocols more dependent on the selected scheduling technique. The

same protocol stack implementation should be available for multiple scheduling tech-

niques (design rule#16, 17, and 18). Another observation: protocols should be reusable

and interchangeable - the same interface should be provided and used by each protocol.

Definition of connection between protocols is necessary.

In summary, the author suggests the following networking stack framework:

• Each layer (or protocol) is represented by an abstract base class AbstractProtocol

that implements part of IProtocol interface. See prototype in Listing D.7.

• Each protocol holds pointers for protocols above and below it and functions to

modify these relations. Initializing, removing or replacing protocols is simple in

such architecture.

• Each protocol has functions pushUp() and pullDown() that transfer data to the

next layer up/down accordingly.

• Default implementations of application layer and physical layer protocols is provided

by the OS. These act as wrappers between methods used in the protocol stack

and methods used by application and radio chip driver. It is required to hide

implementation details from users who may not understand the protocol stack idea.

• Each protocol can use one timer for delayed operations.

• Due to resource efficiency reasons sharing a single buffer between all protocols is

suggested without duplication. A mechanism how to calculate size of header infor-

mation for each protocol must be ensured. A separate class for handling the packet

buffer issues is suggested.

114

6.6 Summary

6.5.2 Services and scheduling

In addition to networking protocol stack implementation OOMOS can be improved by

implementing more services. Design rules are important in this aspect as a tool for

suggesting which features should be considered first.

Preemptive scheduling is one of the features that might support requirements for

wide application range (design rule#17). This feature requires highly efficient implemen-

tation and integration into kernel. Therefore implementation of this feature is up to OS

developers.

In contrast, other features, suggested by design rules, can be implemented as ex-

ternal services or libraries: file system (design rule#20), time synchronization (design

rule#21) and remote access (design rule#25). Contiki OS is an example of file system

implementation (Coffee) that is independent from the kernel and can be ported even to

different operating systems [169]. Time synchronization might require modifications in

the operating system if very high accuracy is required [122]. However, if accuracy in mil-

lisecond range is acceptable, time synchronization can be implemented either as an option

in the networking protocols or as a separate service. Support from networking protocols

is needed in any case, as time synchronization protocols should be able to transmit data

exactly at the moments when it is necessary. Remote reprogramming can be part of the

OS to be very optimized (as it is in the case of MansOS) or it can also be implemented

as an additional service that uses low-level program memory access [170].

6.6 Summary

In this chapter author presented OOMOS - an object-oriented OS that he implemented

according to proposed design rules. It is a work in progress and space for improvement was

identified in this chapter. As the evaluation showed, OOMOS achieves high portability

and reasonable performance. This chapter demonstrated proposed design rules as an

important tool already in early stages of WSN software development: during design and

implementation of WSN operating systems.

115

7 Conclusion

Development of software for wireless sensor networks is a complex task due to multi-

ple reasons. Resource constrained devices are combined with unreliable communication

channels to form complex distributed systems. Hardware platforms are either customized

or fully custom built for particular applications. A reusable and extensible source code

base is required to simplify the task of WSN programming. Central thesis of this work

states that wireless sensor network software development requires a methodology as an

important step towards standardization.

The author analyzed a set of 40 WSN deployments described in scientific literature

in order to develop the said methodology. In addition, he has also participated in multiple

WSN research projects [16, 18, 19, 20, 21, 22, 25, 26, 27]. He identified critical WSN prop-

erties based on the deployment survey and WSN project experience. He then proposed a

set of design rules addressing these problems forming a methodology for WSN software

development. The author performed qualitative evaluation of the rules by applying them

to different WSN software entities. The evaluation consisted of identifying the problems

that each WSN software entity (deployment or operating system) contains and analysis of

solutions, based on the design rules. Results showed that proposed design rules serve as

a valuable methodology at different stages of software development: design and planning,

programming and testing, as well as assessment and improvement analysis.

The author’s main contribution in this thesis includes:

1. Analysis of 40 sensor network deployments described in the research literature. As

a result the critical and recurring WSN properties were distilled.

2. Identification of common WSN design problems that identify the challenges based

on critical WSN properties and user requirements.

3. Introduction of a WSN software development methodology in the form of 25 design

rules and analysis of their mapping to underlying problems.

116

4. Evaluation of the proposed design rule impact on existing WSN software improve-

ment. Design rules are shown as a tool for existing system comparison, drawback

identification and future direction sketch. The evaluation consists of three parts:

(a) Improvements to the analyzed deployment set showing design rule applicability

in general, for WSN users.

(b) Existing operating system conformance to proposed rules and suggestions for

OS improvement. Design rules are shown as an important tool for WSN OS

developers. This evaluation includes the author’s participation in the develop-

ment and improvement analysis of MansOS: a portable operating system (OS)

for sensor networks.

(c) A wearable sensor network use-case scenario - assessment of prototype imple-

mentation and suggestions for future work. This part shows more detailed

improvement of a particular WSN deployment in terms of network lifetime

and network coverage.

5. In addition, the author has developed a new WSN operating system, (called Object-

Oriented MansOS or OOMOS) according to the rules. This part of the thesis shows

design rules as a valuable tool in early stages of WSN OS design and implementation.

It is complicated in practice to measure external deployments in quantitative terms.

For example, it is relatively simple to calculate energy consumption for our own sensor

networks. However, it is very complicated to estimate energy efficiency of an external

WSN deployment that is neither physically accessible to the analyst, nor is described in

rich detail by the deployment designers. The author of this thesis extracted technical WSN

deployment characteristics based on the information available. In some cases, including

design rule evaluation, it is not possible to gather quantitative information. Qualitative

discussion was used in such situations. Nevertheless, to the best of the authors knowledge,

this work proposes the most comprehensive and formalized set of design rules for WSN

software development.

The gaps identified during thesis research work serve as starting points for future

research directions:

• WSN operating systems are only one possible software abstraction. Further research

on WSN middleware on top of MansOS and other operating systems can be explored.

• Sensor networks is an evolving field and WSN deployment survey should be updated

periodically to follow the state-of-the-art and recent trends.

117

• Deployment analysis reveals that energy harvesting is a rarely explored direction.

The author believes, it has a great potential for future research.

• OOMOS is usable for WSN applications with typical tasks. Yet it still is a prototype

covering only small set of essential OS parts. It should be further extended to a

feature rich OS to understand scalability and trends of object-oriented operating

systems for WSNs.

• While OOMOS provides reasonable performance there is still place for optimiza-

tions.

The design rules proposed in this thesis represent an important step towards higher

wireless sensor network standardization and software portability. As such, this thesis is

an important milestone for sensor network maturity and wide distribution.

118

References

[1] Pei Zhang, Christopher M. Sadler, Stephen A. Lyon, and Margaret Martonosi. Hardware design ex-

periences in ZebraNet. In Proceedings of the 2nd international conference on Embedded networked sensor sys-

tems, SenSys ’04, pages 227–238, New York, NY, USA, 2004. ACM. Available from: http://doi.acm.org/10.1145/

1031495.1031522. 13

[2] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A. Srinivasan, Y. Wu, W. Kang, J. Stankovic, D. Young,

and J. Porter. LUSTER: wireless sensor network for environmental research. In Proceedings of the 5th

international conference on Embedded networked sensor systems, SenSys ’07, pages 103–116, New York, NY, USA,

2007. ACM. Available from: http://doi.acm.org/10.1145/1322263.1322274. 13

[3] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and Matt Welsh. Fidelity and yield

in a volcano monitoring sensor network. In Proceedings of the 7th symposium on Operating systems design

and implementation, OSDI ’06, pages 381–396, Berkeley, CA, USA, 2006. USENIX Association. Available from:

http://portal.acm.org/citation.cfm?id=1298455.1298491. 13, 34, 98

[4] Ryan Aylward and Joseph A. Paradiso. A compact, high-speed, wearable sensor network for biomotion

capture and interactive media. In Proceedings of the 6th international conference on Information processing in

sensor networks, IPSN ’07, pages 380–389, New York, NY, USA, 2007. ACM. Available from: http://doi.acm.org/

10.1145/1236360.1236408. 13, 34

[5] Georg Wittenburg, Kirsten Terfloth, Freddy López Villafuerte, Tomasz Naumowicz, Hartmut Ritter,

and Jochen Schiller. Fence monitoring: experimental evaluation of a use case for wireless sensor

networks. In Proceedings of the 4th European conference on Wireless sensor networks, EWSN’07, pages 163–

178, Berlin, Heidelberg, 2007. Springer-Verlag. Available from: http://portal.acm.org/citation.cfm?id=1758126.

1758141. 13, 35

[6] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal, H. Cao, M. Demirbas,

M. Gouda, Y. Choi, T. Herman, S. Kulkarni, U. Arumugam, M. Nesterenko, A. Vora, and M. Miyashita. A

line in the sand: a wireless sensor network for target detection, classification, and tracking. Computer

Networks, 46(5):605 – 634, 2004. Military Communications Systems and Technologies. Available from: http:

//www.sciencedirect.com/science/article/pii/S138912860400146X. 13, 33

[7] Virantha Ekanayake, Clinton Kelly, IV, and Rajit Manohar. An ultra low-power processor for sensor

networks. In Proceedings of the 11th international conference on Architectural support for programming languages

and operating systems, ASPLOS-XI, pages 27–36, New York, NY, USA, 2004. ACM. Available from: http://doi.

acm.org/10.1145/1024393.1024397. 14

[8] Texas Instruments. CC2420: Single-Chip 2.4 GHz IEEE 802.15.4 Compliant and ZigBee Ready RF

Transceiver. Available from: http://www.ti.com/lit/gpn/cc2420 [cited 2011.07.13]. 14, 41, 57, 97

[9] Ian F. Akyildiz, Dario Pompili, and Tommaso Melodia. Underwater acoustic sensor networks: research

challenges. Ad Hoc Networks, 3(3):257 – 279, 2005. Available from: http://www.sciencedirect.com/science/

article/pii/S1570870505000168. 14

[10] Gabe Cohn, Erich Stuntebeck, Jagdish Pandey, Brian Otis, Gregory D. Abowd, and Shwetak N. Patel.

SNUPI: sensor nodes utilizing powerline infrastructure. In Proceedings of the 12th ACM international

119

http://doi.acm.org/10.1145/1031495.1031522
http://doi.acm.org/10.1145/1031495.1031522
http://doi.acm.org/10.1145/1322263.1322274
http://portal.acm.org/citation.cfm?id=1298455.1298491
http://doi.acm.org/10.1145/1236360.1236408
http://doi.acm.org/10.1145/1236360.1236408
http://portal.acm.org/citation.cfm?id=1758126.1758141
http://portal.acm.org/citation.cfm?id=1758126.1758141
http://www.sciencedirect.com/science/article/pii/S138912860400146X
http://www.sciencedirect.com/science/article/pii/S138912860400146X
http://doi.acm.org/10.1145/1024393.1024397
http://doi.acm.org/10.1145/1024393.1024397
http://www.ti.com/lit/gpn/cc2420
http://www.sciencedirect.com/science/article/pii/S1570870505000168
http://www.sciencedirect.com/science/article/pii/S1570870505000168

REFERENCES

conference on Ubiquitous computing, Ubicomp ’10, pages 159–168, New York, NY, USA, 2010. ACM. Available from:

http://doi.acm.org/10.1145/1864349.1864377. 14

[11] Karlis Prieditis, Ivars Drikis, and Leo Selavo. SAntArray: passive element array antenna for wireless

sensor networks. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, SenSys ’10,

pages 433–434, New York, NY, USA, 2010. ACM. Available from: http://doi.acm.org/10.1145/1869983.1870060.

14, 43

[12] IEEE 802.15™: WIRELESS PERSONAL AREA NETWORKS (PANs). Available from: http://

standards.ieee.org/about/get/802/802.15.html [cited 2011.07.13]. 14

[13] I. Demirkol, C. Ersoy, and F. Alagoz. MAC protocols for wireless sensor networks: a survey. Commu-

nications Magazine, IEEE, 44(4):115–121, april 2006. 14

[14] Brad Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for wireless networks. In

Proceedings of the 6th annual international conference on Mobile computing and networking, MobiCom ’00, pages

243–254, New York, NY, USA, 2000. ACM. Available from: http://doi.acm.org/10.1145/345910.345953. 14

[15] A. Dunkels, T. Voigt, and J. Alonso. Making TCP/IP viable for wireless sensor networks. In Proceedings

of the First European Workshop on Wireless Sensor Networks (EWSN 2004), work-in-progress session, Berlin,

Germany, 2004. 14

[16] Atis Elsts, Girts Strazdins, Andrey Vihrov, and Leo Selavo. Design and Implementation of MansOS: a

Wireless Sensor Network Operating System. In Scientific Papers. University of Latvia, 2012. 14, 23, 24, 25,

45, 116

[17] Girts Strazdins, Atis Elsts, and Leo Selavo. MansOS: Easy to Use, Portable and Resource Efficient

Operating System For Networked Embedded Devices. In Proceedings of the 8th ACM Conference on Em-

bedded Networked Sensor Systems, SenSys ’10, pages 427–428, New York, NY, USA, 2010. ACM. Available from:

http://doi.acm.org/10.1145/1869983.1870057. 14, 24

[18] Reinholds Zviedris, Atis Elsts, Girts Strazdins, Artis Mednis, and Leo Selavo. Lynxnet: Wild animal

monitoring using sensor networks. In Peter Corke Pedro J. Marron, Thiemo Voigt and Luca Mottola,

editors, Real-World Wireless Sensor Networks 4th International Workshop, REALWSN 2010, Colombo, Sri Lanka,

December 16-17, 2010. Proceedings, 6511 of Lecture Notes in Computer Science, pages 170–173. Springer-Verlag

GmbH, 2010. 14, 116

[19] Atis Elsts, Rihards Balass, Janis Judvaitis, Reinholds Zviedris, Girts Strazdins, Artis Mednis, and Leo

Selavo. SADmote: A Robust and Cost-Effective Device for Environmental Monitoring. In Andreas

Herkersdorf, Kay Romer, and Uwe Brinkschulte, editors, Architecture of Computing Systems – ARCS 2012,

7179 of Lecture Notes in Computer Science, pages 225–237. Springer Berlin / Heidelberg, 2012. Available from:

http://dx.doi.org/10.1007/978-3-642-28293-5_19. 14, 116

[20] Rinalds Ruskuls, Girts Strazdins, and Leo Selavo. Accurate Sensor Node Energy Consumption Estima-

tion Using EdiMote Prototyping Platform. In In the 3rd InternationalWorkshop on Networks of Cooperating

Objects (CONET’12), Electronic Proceedings of CPSWeek’12, 2012. 14, 116

[21] Girts Strazdins. Location Based Information Storage and Dissemination in Vehicular Ad Hoc Net-

works. In Janis Grundspenkis, Marite Kirikova, Yannis Manolopoulos, and Leonids Novickis, editors,

Advances in Databases and Information Systems Associated Workshops and Doctoral Consortium of the 13th East

European Conference, ADBIS 2009, Riga, Latvia, September 7-10, 2009. Revised Selected Papers, 5968 of Lec-

ture Notes in Computer Science, pages 211–219. Springer Berlin / Heidelberg, 2010. 10.1007/978-3-642-12082-427.

Available from: http://dx.doi.org/10.1007/978-3-642-12082-4_27. 14, 116

[22] Artis Mednis, Girts Strazdins, Martins Liepins, Andris Gordjusins, and Leo Selavo. RoadMic: Road

Surface Monitoring Using Vehicular Sensor Networks with Microphones. In Proc. of Networked Digital

Technologies, Part II: Second International Conference, NDT 2010, pages 417–429. Springer-Verlag GmbH, 2010.

Available from: http://www.springerlink.com/content/q3t5564544t8x188/fulltext.pdf. 14, 15, 116

120

http://doi.acm.org/10.1145/1864349.1864377
http://doi.acm.org/10.1145/1869983.1870060
http://standards.ieee.org/about/get/802/802.15.html
http://standards.ieee.org/about/get/802/802.15.html
http://doi.acm.org/10.1145/345910.345953
http://doi.acm.org/10.1145/1869983.1870057
http://dx.doi.org/10.1007/978-3-642-28293-5_19
http://dx.doi.org/10.1007/978-3-642-12082-4_27
http://www.springerlink.com/content/q3t5564544t8x188/fulltext.pdf

REFERENCES

[23] Girts Strazdins, Artis Mednis, Georgijs Kanonirs, Reinholds Zviedris, and Leo Selavo. Towards Vehic-

ular Sensor Networks with Android Smartphones for Road Surface Monitoring. In Proc. of the 2nd

International Workshop on Networks of Cooperating Objects (CONET’11), Electronic Proceedings of CPSWeek’11,

page 4, April 2011. 14

[24] Artis Mednis, Girts Strazdins, Reinholds Zviedris, Georgijs Kanonirs, and Leo Selavo. Real time pothole

detection using Android smartphones with accelerometers. In Distributed Computing in Sensor Systems and

Workshops (DCOSS), 2011 International Conference on, pages 1–6, june 2011. Available from: http://ieeexplore.

ieee.org/search/freesrchabstract.jsp?tp=&arnumber=5982206. 14

[25] Girts Strazdins, Artis Mednis, Reinholds Zviedris, Georgijs Kanonirs, and Leo Selavo. Virtual Ground

Truth in Vehicular Sensing Experiments: How to Mark it Accurately. In The 5th International Conference

on Sensor Technologies and Applications (SENSORCOMM 2011), Nice, France, August 2011. 14, 116

[26] Nikolajs Agafonovs, Girts Strazdins, and Modris Greitans. Accessible, Customizable, High-

Performance IEEE 802.11p Vehicular Communication Solution. In Proc. of 1st International Workshop

on Vehicular Communications and Applications (VCA 2012), pages 127–132, June 2012. 14, 116

[27] Girts Strazdins, Andris Gordjusins, Georgijs Kanonirs, Vadims Kurmis, Artis Mednis, Reinholds Zviedris,

and Leo Selavo. Team “Latvia” GCDC 2011 Technical Paper. Technical report, Institute of Electronics and

Computer Science (EDI) and University of Latvia, April 2011. 14, 116

[28] Nikolajs Agafonovs, Andrejs Skageris, Girts Strazdins, and Artis Mednis. IMilePost: Embedded Solu-

tion for Dangerous Road Situation Warnings. In Prof of the 1st IEEE/ASME International Conference on

Artificial Intelligence, Modelling and Simulation, AIMS2013, page 6, 2013. 14

[29] Girts Strazdins, Sashidharan Komandur, and Arne Styve. Kinect-based Systems For Maritime Oper-

ation Simulators? In 27th European Conference on Modelling and Simulation (ECMS’13), pages 205–211, May

2013. 14

[30] Girts Strazdins, Atis Elsts, Krisjanis Nesenbergs, and Leo Selavo. Wireless Sensor Network Operating

System Design Rules Based on Real-World Deployment Survey. Journal of Sensor and Actuator Networks,

2(3):509–556, 2013. Available from: http://www.mdpi.com/2224-2708/2/3/509. 14, 52

[31] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and M.B. Srivastava. Participatory

Sensing. In Proc. of World Sensor Web Workshop (WSW’06), collocated with SenSys’06, pages 1–5, 2006. 15

[32] TMote Sky datasheet. Available from: http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/

tmote-sky-datasheet.pdf [cited 2011-07-13]. 15, 41, 97

[33] Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani B. Srivastava. Power management in energy harvesting

sensor networks. ACM Transactions on Embedded Computing Systems, Special Section LCTES’05, 6, September

2007. Available from: http://doi.acm.org/10.1145/1274858.1274870. 15

[34] IEEE 802.15 WPAN Task Group 4 (TG4). Available from: http://www.ieee802.org/15/pub/TG4.html [cited

26.07.2011.]. 16, 41, 57

[35] Anna Hac. Wireless sensor Network Designs. John Wiley and Sons, Ltd, 2003. 18

[36] Jason Hill, Mike Horton, Ralph Kling, and Lakshman Krishnamurthy. The platforms enabling wireless

sensor networks. Commun. ACM, 47:41–46, June 2004. Available from: http://doi.acm.org/10.1145/990680.

990705. 18

[37] Sameer Tilak, Nael B Abu-Ghazaleh, and Wendi Heinzelman. A taxonomy of wireless micro-sensor

network models. ACM SIGMOBILE Mobile Computing and Communications Review, 6(2):28–36, 2002. 18

[38] Luca Mottola and Gian Pietro Picco. Programming wireless sensor networks: Fundamental concepts

and state of the art. ACM Computing Surveys, 43:19:1–19:51, April 2011. Available from: http://doi.acm.org/

10.1145/1922649.1922656. 18

121

http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=5982206
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=5982206
http://www.mdpi.com/2224-2708/2/3/509
http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf
http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf
http://doi.acm.org/10.1145/1274858.1274870
http://www.ieee802.org/15/pub/TG4.html
http://doi.acm.org/10.1145/990680.990705
http://doi.acm.org/10.1145/990680.990705
http://doi.acm.org/10.1145/1922649.1922656
http://doi.acm.org/10.1145/1922649.1922656

REFERENCES

[39] Jan Beutel. Metrics for Sensor Network Platforms. In Proc. ACM Workshop on Real-World Wireless Sensor

Networks (REALWSN’06), page 5, 2006. 18

[40] K. Romer and F. Mattern. The design space of wireless sensor networks. Wireless Communications, IEEE,

11(6):54–61, 2004. 18

[41] Vlado Handziski, Andreas Kopke, Holger Karl, and Adam Wolisz. A common wireless sensor network

architecture? Technical report, Telecommunications Networks Group, Technische Universitat Berlin, 2003. 18

[42] Jason Lester Hill. System architecture for wireless sensor networks. PhD thesis, University of California, 2003. 18

[43] Vivek Mhatre and Catherine Rosenberg. Design guidelines for wireless sensor networks: communica-

tion, clustering and aggregation. Ad Hoc Networks, 2(1):45–63, 2004. 18

[44] S. Olariu and I. Stojmenovic. Design Guidelines for Maximizing Lifetime and Avoiding Energy Holes

in Sensor Networks with Uniform Distribution and Uniform Reporting. In INFOCOM 2006. 25th IEEE

International Conference on Computer Communications. Proceedings, pages 1–12, April 2006. 18

[45] Ivan Stojmenovic, Amiya Nayak, and Johnson Kuruvila. Design guidelines for routing protocols in ad

hoc and sensor networks with a realistic physical layer. Communications Magazine, IEEE, 43(3):101–106,

2005. 18

[46] Felix Jonathan Oppermann and Steffen Peter. Inferring technical constraints of a wireless sensor

network application from end-user requirements. In Mobile Ad-hoc and Sensor Networks (MSN), 2010 Sixth

International Conference on, pages 169–175. IEEE, 2010. 19

[47] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki - A Lightweight and Flexible Operating

System for Tiny Networked Sensors. In Proc. of Annual IEEE Conference on Local Computer Networks, pages

455–462, Los Alamitos, CA, USA, 2004. IEEE Computer Society. 23, 28, 45, 57, 90

[48] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,

E. Brewer, et al. Tinyos: An operating system for sensor networks. Ambient intelligence, 35, 2005. 23,

27, 45, 57, 88

[49] Qing Cao, Tarek Abdelzaher, John Stankovic, and Tian He. The LiteOS Operating System: Towards

Unix-Like Abstractions for Wireless Sensor Networks. In Proceedings of the 7th international conference on

Information processing in sensor networks, IPSN ’08, pages 233–244, Washington, DC, USA, 2008. IEEE Computer

Society. Available from: http://dx.doi.org/10.1109/IPSN.2008.54. 23, 29, 42, 45

[50] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruenwald, A. Torgerson,

and R. Han. MANTIS OS: An embedded multithreaded operating system for wireless micro sensor

platforms. Mobile Networks and Applications, 10(4):563–579, 2005. 23, 29

[51] Yu-Ting Chen, Ting-Chou Chien, and Pai H. Chou. Enix: a lightweight dynamic operating system

for tightly constrained wireless sensor platforms. In Proceedings of the 8th ACM Conference on Embedded

Networked Sensor Systems, SenSys ’10, pages 183–196, New York, NY, USA, 2010. ACM. Available from: http:

//doi.acm.org/10.1145/1869983.1870002. 23

[52] Hubert Zimmermann. OSI reference model–The ISO model of architecture for open systems intercon-

nection. Communications, IEEE Transactions on, 28(4):425–432, 1980. 27, 162

[53] K. Klues, C.J.M. Liang, J. Paek, R. Musăloiu-e, P. Levis, A. Terzis, and R. Govindan. TOSThreads:

Thread-Safe and Non-invasive Preemption in TinyOS. In Proceedings of the 7th ACM Conference on Em-

bedded Networked Sensor Systems (SenSys’09), pages 127–140. ACM, 2009. 28

[54] Contiki Developers. Mailing List Discussion Archive. Available from: http://sourceforge.net/mailarchive/

forum.php?forum_name=contiki-developers [cited 2014-02-01]. 28

[55] Arduino. Available from: http://arduino.cc/ [cited 2014-02-01]. 29

122

http://dx.doi.org/10.1109/IPSN.2008.54
http://doi.acm.org/10.1145/1869983.1870002
http://doi.acm.org/10.1145/1869983.1870002
http://sourceforge.net/mailarchive/forum.php?forum_name=contiki-developers
http://sourceforge.net/mailarchive/forum.php?forum_name=contiki-developers
http://arduino.cc/

REFERENCES

[56] Raspberry Pi Foundation. Raspberry Pi [online]. Available from: http://www.raspberrypi.org/ [cited 2014-

01-28]. 30, 49

[57] HardKernel. Odroid [online]. Available from: http://www.hardkernel.com/ [cited 2014-01-28]. 30, 49

[58] J. Ellul, B. Lo, and G.Z. Yang. The BSNOS Platform: A Body Sensor Networks Targeted Operating

System and Toolset. In SENSORCOMM 2011, The Fifth International Conference on Sensor Technologies and

Applications, pages 381–386, 2011. 30, 87

[59] N. Brouwers, K. Langendoen, and P. Corke. Darjeeling, A Feature-Rich VM for the Resource Poor.

In 7th ACM Conf. on Embedded Networked Sensor Systems (SenSys’09), pages 169–182, Berkeley, CA, November

2009. 30

[60] Faisal Aslam, Christian Schindelhauer, Gidon Ernst, Damian Spyra, Jan Meyer, and Mohannad Zalloom.

Introducing TakaTuka: a Java virtualmachine for motes. In Proceedings of the 6th ACM conference on

Embedded network sensor systems, SenSys ’08, pages 399–400, New York, NY, USA, 2008. ACM. Available from:

http://doi.acm.org/10.1145/1460412.1460472. 30, 87

[61] Philip Levis and David Culler. Mate: a tiny virtual machine for sensor networks. SIGPLAN Not.,

37:85–95, October 2002. Available from: http://doi.acm.org/10.1145/605432.605407. 30

[62] R. Muller, G. Alonso, and D. Kossmann. A virtual machine for sensor networks. In Proceedings of the 2nd

ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, pages 145–158. ACM, 2007. 30

[63] M. Welsh and G. Mainland. Programming sensor networks using abstract regions. NSDI, 2004. 30

[64] Paolo Costa, Luca Mottola, Amy L. Murphy, and Gian Pietro Picco. TeenyLIME: transiently shared

tuple space middleware for wireless sensor networks. In Proceedings of the international workshop on

Middleware for sensor networks, MidSens ’06, pages 43–48, New York, NY, USA, 2006. ACM. Available from:

http://doi.acm.org/10.1145/1176866.1176874. 30, 45, 148

[65] S.R. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. TinyDB: an acquisitional query processing

system for sensor networks. ACM Transactions on Database Systems (TODS), 30(1):122–173, 2005. 30

[66] L.S. Bai, R.P. Dick, and P.A. Dinda. Archetype-Based Design: Sensor Network Programming for Appli-

cation Experts, Not Just Programming Experts. In IPSN ’09: Proceedings of the 8th international conference

on Information processing in sensor networks, 2009. 30

[67] Atis Elsts, Janis Judvaitis, and Leo Selavo. SEAL: A Domain-Specific Language for Novice Wire-

less Sensor Network Programmers. In Software Engineering and Advanced Applications (SEAA), 2013 39th

EUROMICRO Conference on, pages 220–227. IEEE, 2013. 31

[68] ACM Digital Library. Available from: http://portal.acm.org/ [cited 08.08.2011.]. 32

[69] IEEE Xplore Digital Library. Available from: http://ieeexplore.ieee.org/Xplore/dynhome.jsp [cited

08.08.2011.]. 32

[70] Elsevier ScienceDirect Scientific Database. Available from: http://www.sciencedirect.com/ [cited

08.08.2011.]. 32

[71] SpringerLink integrated full-text database. Available from: http://www.springerlink.com [cited 08.08.2011.].

32

[72] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John Anderson. Wireless sensor

networks for habitat monitoring. In Proceedings of the 1st ACM international workshop on Wireless sensor

networks and applications, WSNA ’02, pages 88–97, New York, NY, USA, 2002. ACM. Available from: http:

//doi.acm.org/10.1145/570738.570751. 33

[73] William Merrill, Fredric Newberg, Kathy Sohrabi, William Kaiser, and Greg Pottie. Collaborative

Networking Requirements for Unattended Ground Sensor Systems. In Proc. of IEEE Aerospace Conference,

2003. 33

123

http://www.raspberrypi.org/
http://www.hardkernel.com/
http://doi.acm.org/10.1145/1460412.1460472
http://doi.acm.org/10.1145/605432.605407
http://doi.acm.org/10.1145/1176866.1176874
http://portal.acm.org/
http://ieeexplore.ieee.org/Xplore/dynhome.jsp
http://www.sciencedirect.com/
http://www.springerlink.com
http://doi.acm.org/10.1145/570738.570751
http://doi.acm.org/10.1145/570738.570751

REFERENCES

[74] Tian He, Sudha Krishnamurthy, John A. Stankovic, Tarek Abdelzaher, Liqian Luo, Radu Stoleru, Ting

Yan, Lin Gu, Jonathan Hui, and Bruce Krogh. Energy-efficient surveillance system using wireless sensor

networks. In Proceedings of the 2nd international conference on Mobile systems, applications, and services, MobiSys

’04, pages 270–283, New York, NY, USA, 2004. ACM. Available from: http://doi.acm.org/10.1145/990064.990096.

33

[75] Gyula Simon, Miklós Maróti, Ákos Lédeczi, György Balogh, Branislav Kusy, András Nádas, Gábor Pap,

János Sallai, and Ken Frampton. Sensor network-based countersniper system. In Proceedings of the 2nd

international conference on Embedded networked sensor systems, SenSys ’04, pages 1–12, New York, NY, USA, 2004.

ACM. Available from: http://doi.acm.org/10.1145/1031495.1031497. 33

[76] Bjørn Thorstensen, Tore Syversen, Trond-Are Bjørnvold, and Tron Walseth. Electronic shepherd -

a low-cost, low-bandwidth, wireless network system. In Proceedings of the 2nd international conference on

Mobile systems, applications, and services, MobiSys ’04, pages 245–255, New York, NY, USA, 2004. ACM. Available

from: http://doi.acm.org/10.1145/990064.990094. 33

[77] Z. Butler, P. Corke, R. Peterson, and D. Rus. Virtual fences for controlling cows. In Robotics and

Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on, 5, pages 4429–4436, april-1

may 2004. 33

[78] Lakshman Krishnamurthy, Robert Adler, Phil Buonadonna, Jasmeet Chhabra, Mick Flanigan, Nandak-

ishore Kushalnagar, Lama Nachman, and Mark Yarvis. Design and deployment of industrial sensor

networks: experiences from a semiconductor plant and the north sea. In Proceedings of the 3rd inter-

national conference on Embedded networked sensor systems, SenSys ’05, pages 64–75, New York, NY, USA, 2005.

ACM. Available from: http://doi.acm.org/10.1145/1098918.1098926. 33, 42

[79] C. Sharp, S. Schaffert, A. Woo, N. Sastry, C. Karlof, S. Sastry, and D. Culler. Design and implemen-

tation of a sensor network system for vehicle tracking and autonomous interception. In Wireless Sensor

Networks, 2005. Proceeedings of the Second European Workshop on, pages 93 – 107, jan.-2 feb. 2005. 33

[80] Sarah Mount, Elena Gaura, Robert M. Newman, Alastair R. Beresford, Sam R. Dolan, and Michael

Allen. Trove: a physical game running on an ad-hoc wireless sensor network. In Proceedings of the

2005 joint conference on Smart objects and ambient intelligence: innovative context-aware services: usages and

technologies, sOc-EUSAI ’05, pages 235–239, New York, NY, USA, 2005. ACM. Available from: http://doi.acm.

org/10.1145/1107548.1107607. 34

[81] Loc Ho, Melody Moh, Zachary Walker, Takeo Hamada, and Ching-Fong Su. A prototype on RFID and

sensor networks for elder healthcare: progress report. In Proceedings of the 2005 ACM SIGCOMM workshop

on Experimental approaches to wireless network design and analysis, E-WIND ’05, pages 70–75, New York, NY, USA,

2005. ACM. Available from: http://doi.acm.org/10.1145/1080148.1080164. 34

[82] K. Langendoen, A. Baggio, and O. Visser. Murphy loves potatoes: Experiences from a pilot sensor

network deployment in precision agriculture. In Parallel and Distributed Processing Symposium, 2006. IPDPS

2006. 20th International, pages 1–8. IEEE, 2006. 34

[83] Carl Hartung, Richard Han, Carl Seielstad, and Saxon Holbrook. FireWxNet: a multi-tiered portable

wireless system for monitoring weather conditions in wildland fire environments. In Proceedings of the

4th international conference on Mobile systems, applications and services, MobiSys ’06, pages 28–41, New York, NY,

USA, 2006. ACM. Available from: http://doi.acm.org/10.1145/1134680.1134685. 34

[84] A. Wood, G. Virone, T. Doan, Q. Cao, L. Selavo, Y. Wu, L. Fang, Z. He, S. Lin, and J. Stankovic. ALARM-

NET: Wireless sensor networks for assisted-living and residential monitoring. Technical report, University

of Virginia Computer Science Department, 2006. 34

[85] Liang Liu and Huadong Ma. Wireless sensor network based mobile pet game. In Proceedings of 5th ACM

SIGCOMM workshop on Network and system support for games, NetGames ’06, New York, NY, USA, 2006. ACM.

Available from: http://doi.acm.org/10.1145/1230040.1230099. 34

124

http://doi.acm.org/10.1145/990064.990096
http://doi.acm.org/10.1145/1031495.1031497
http://doi.acm.org/10.1145/990064.990094
http://doi.acm.org/10.1145/1098918.1098926
http://doi.acm.org/10.1145/1107548.1107607
http://doi.acm.org/10.1145/1107548.1107607
http://doi.acm.org/10.1145/1080148.1080164
http://doi.acm.org/10.1145/1134680.1134685
http://doi.acm.org/10.1145/1230040.1230099

REFERENCES

[86] Joshua Lifton, Mark Feldmeier, Yasuhiro Ono, Cameron Lewis, and Joseph A. Paradiso. A platform

for ubiquitous sensor deployment in occupational and domestic environments. In Proceedings of the 6th

international conference on Information processing in sensor networks, IPSN ’07, pages 119–127, New York, NY,

USA, 2007. ACM. Available from: http://doi.acm.org/10.1145/1236360.1236377. 34

[87] V. Santos, P. Bartolomeu, J. Fonseca, and A. Mota. B-Live - A Home Automation System for Disabled

and Elderly People. In Industrial Embedded Systems, 2007. SIES ’07. International Symposium on, pages 333

–336, july 2007. 34

[88] Tia Gao, T. Massey, L. Selavo, D. Crawford, Bor rong Chen, K. Lorincz, V. Shnayder, L. Hauenstein,

F. Dabiri, J. Jeng, A. Chanmugam, D. White, M. Sarrafzadeh, and M. Welsh. The Advanced Health and

Disaster Aid Network: A Light-Weight Wireless Medical System for Triage. Biomedical Circuits and

Systems, IEEE Transactions on, 1(3):203–216, sept. 2007. 35

[89] J. Wilson, V. Bhargava, A. Redfern, and P. Wright. A Wireless Sensor Network and Incident Command

Interface for Urban Firefighting. In Mobile and Ubiquitous Systems: Networking Services, 2007. MobiQuitous

2007. Fourth Annual International Conference on, pages 1 –7, aug. 2007. 35

[90] B.P. Jarochowski, SeungJung Shin, DaeHyun Ryu, and HyungJun Kim. Ubiquitous Rehabilitation Center:

An Implementation of a Wireless Sensor Network Based Rehabilitation Management System. In

Convergence Information Technology, 2007. International Conference on, pages 2349 –2358, nov. 2007. 35

[91] Mateusz Malinowski, Matthew Moskwa, Mark Feldmeier, Mathew Laibowitz, and Joseph A. Paradiso.

CargoNet: a low-cost micropower sensor node exploiting quasi-passive wakeup for adaptive asy-

chronous monitoring of exceptional events. In Proceedings of the 5th international conference on Embed-

ded networked sensor systems, SenSys ’07, pages 145–159, New York, NY, USA, 2007. ACM. Available from:

http://doi.acm.org/10.1145/1322263.1322278. 35

[92] Shane B. Eisenman, Emiliano Miluzzo, Nicholas D. Lane, Ronald A. Peterson, Gahng-Seop Ahn, and

Andrew T. Campbell. BikeNet: A mobile sensing system for cyclist experience mapping. ACM Trans.

Sen. Netw., 6:6:1–6:39, January 2010. Available from: http://doi.acm.org/10.1145/1653760.1653766. 35

[93] K. Chebrolu, B. Raman, N. Mishra, P.K. Valiveti, and R. Kumar. Brimon: a sensor network system for

railway bridge monitoring. In Proceedings of the 6th international conference on Mobile systems, applications,

and services (MobiSys), pages 2–14, June 2008. 35

[94] Niclas Finne, Joakim Eriksson, Adam Dunkels, and Thiemo Voigt. Experiences from two sensor network

deployments: self-monitoring and self-configuration keys to success. In Proceedings of the 6th international

conference on Wired/wireless internet communications, WWIC’08, pages 189–200, Berlin, Heidelberg, 2008. Springer-

Verlag. Available from: http://portal.acm.org/citation.cfm?id=1788674.1788696. 35

[95] Changsu Suh, Young-Bae Ko, Cheul-Hee Lee, and Hyung-Joon Kim. The Design and Implementation

of Smart Sensor-based Home Networks. In Proc. of the International Symposium on Ubiquitous Computing

Systems (UCS’06), page 10, 2006. 35

[96] Hui Song, Sencun Zhu, and Guohong Cao. SVATS: A Sensor-Network-Based Vehicle Anti-Theft System.

In INFOCOM 2008. The 27th Conference on Computer Communications. IEEE, pages 2128 –2136, april 2008. 36

[97] Guillermo Barrenetxea, François Ingelrest, Gunnar Schaefer, and Martin Vetterli. The hitchhiker’s

guide to successful wireless sensor network deployments. In Proceedings of the 6th ACM conference on

Embedded network sensor systems, SenSys ’08, pages 43–56, New York, NY, USA, 2008. ACM. Available from:

http://doi.acm.org/10.1145/1460412.1460418. 36

[98] Nuri Firat Ince, Cheol-Hong Min, Ahmed Tewfik, and David Vanderpool. Detection of early morning

daily activities with static home and wearable wireless sensors. EURASIP J. Adv. Signal Process, 2008,

January 2008. Available from: http://dx.doi.org/10.1155/2008/273130. 36

125

http://doi.acm.org/10.1145/1236360.1236377
http://doi.acm.org/10.1145/1322263.1322278
http://doi.acm.org/10.1145/1653760.1653766
http://portal.acm.org/citation.cfm?id=1788674.1788696
http://doi.acm.org/10.1145/1460412.1460418
http://dx.doi.org/10.1155/2008/273130

REFERENCES

[99] Matteo Ceriotti, Luca Mottola, Gian Pietro Picco, Amy L. Murphy, Stefan Guna, Michele Corra, Mat-

teo Pozzi, Daniele Zonta, and Paolo Zanon. Monitoring heritage buildings with wireless sensor net-

works: The Torre Aquila deployment. In Proceedings of the 2009 International Conference on Information

Processing in Sensor Networks, IPSN ’09, pages 277–288, Washington, DC, USA, 2009. IEEE Computer Society.

Available from: http://portal.acm.org/citation.cfm?id=1602165.1602191. 36, 42

[100] Xiaofan Jiang, Stephen Dawson-Haggerty, Prabal Dutta, and David Culler. Design and implementation

of a high-fidelity AC metering network. In Proceedings of the 2009 International Conference on Information

Processing in Sensor Networks, IPSN ’09, pages 253–264, Washington, DC, USA, 2009. IEEE Computer Society.

Available from: http://portal.acm.org/citation.cfm?id=1602165.1602189. 36, 42

[101] Mo Li and Yunhao Liu. Underground coal mine monitoring with wireless sensor networks. ACM Trans.

Sen. Netw., 5:10:1–10:29, April 2009. Available from: http://doi.acm.org/10.1145/1498915.1498916. 36

[102] M. Franceschinis, L. Gioanola, M. Messere, R. Tomasi, M.A. Spirito, and P. Civera. Wireless Sensor

Networks for Intelligent Transportation Systems. In Vehicular Technology Conference, 2009. VTC Spring

2009. IEEE 69th, pages 1 –5, april 2009. 36

[103] Carrick Detweiler, Marek Doniec, Mingshun Jiang, Mac Schwager, Robert Chen, and Daniela Rus. Adap-

tive decentralized control of underwater sensor networks for modeling underwater phenomena. In

Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, SenSys ’10, pages 253–266, New

York, NY, USA, 2010. ACM. Available from: http://doi.acm.org/10.1145/1869983.1870008. 36

[104] Tsung-te (Ted) Lai, Yu-han (Tiffany) Chen, Polly Huang, and Hao-hua Chu. PipeProbe: a mobile sensor

droplet for mapping hidden pipeline. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor

Systems, SenSys ’10, pages 113–126, New York, NY, USA, 2010. ACM. Available from: http://doi.acm.org/10.

1145/1869983.1869996. 36

[105] Vladimir Dyo, Stephen A. Ellwood, David W. Macdonald, Andrew Markham, Cecilia Mascolo, Bence

Pásztor, Salvatore Scellato, Niki Trigoni, Ricklef Wohlers, and Kharsim Yousef. Evolution and sus-

tainability of a wildlife monitoring sensor network. In Proceedings of the 8th ACM Conference on Em-

bedded Networked Sensor Systems, SenSys ’10, pages 127–140, New York, NY, USA, 2010. ACM. Available from:

http://doi.acm.org/10.1145/1869983.1869997. 36

[106] Renjie Huang, Wen-Zhan Song, Mingsen Xu, Nina Peterson, Behrooz Shirazi, and Richard LaHusen. Real-

World Sensor Network for Long-Term Volcano Monitoring: Design and Findings. IEEE Transactions

on Parallel and Distributed Systems, 23(2):321–329, 2012. 36, 98

[107] M. Ceriotti, M. Corrà, L. D’Orazio, R. Doriguzzi, D. Facchin, S. Guna, G.P. Jesi, R.L. Cigno, L. Mottola,

A.L. Murphy, et al. Is There Light at the Ends of the Tunnel? Wireless Sensor Networks for Adaptive

Lighting in Road Tunnels. In Proceedings of the 10th ACM/IEEE International Conference on Information

Processing in Sensor Networks (IPSN/SPOTS), pages 187–198, 2011. 37

[108] Prabal Dutta. Sustainable Sensing for a Smarter Planet. XRDS, 17(4):14–20, Summer 2011. 40

[109] Crossbow Technology. MICA2 Wireless Measurement System datasheet. Available from: https://www.

eol.ucar.edu/rtf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf [cited 20.07.2011.]. 41

[110] MicaZ mote datasheet. Available from: http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf.

41

[111] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: enabling ultra-low power wireless research.

In Proceedings of the 4th international symposium on Information processing in sensor networks, IPSN ’05, Piscat-

away, NJ, USA, 2005. IEEE Press. Available from: http://portal.acm.org/citation.cfm?id=1147685.1147744. 41,

57

[112] B. Lo, S. Thiemjarus, R. King, and G. Yang. Body sensor network–a wireless sensor platform for pervasive

healthcare monitoring. In Adjunct Proceedings of the Third International Conference on Pervasive Computing,

191, pages 77–80, 2005. 41, 57

126

http://portal.acm.org/citation.cfm?id=1602165.1602191
http://portal.acm.org/citation.cfm?id=1602165.1602189
http://doi.acm.org/10.1145/1498915.1498916
http://doi.acm.org/10.1145/1869983.1870008
http://doi.acm.org/10.1145/1869983.1869996
http://doi.acm.org/10.1145/1869983.1869996
http://doi.acm.org/10.1145/1869983.1869997
https://www.eol.ucar.edu/rtf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
https://www.eol.ucar.edu/rtf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf
http://portal.acm.org/citation.cfm?id=1147685.1147744

REFERENCES

[113] Sentilla. TMote Mini datasheet. Available from: http://automatica.dei.unipd.it/public/Schenato/

PSC/2010_2011/gruppo4-Building_termo_identification/BibliografiaCasuale/Tmote_Mini_Datasheet.pdf [cited

26.07.2011.]. 41

[114] Texas Instruments. Single Chip Ultra Low Power RF Transceiver for 315/433/868/915 MHz SRD

Band. Available from: http://www.ti.com/lit/gpn/cc1000 [cited 2011.07.13]. 41

[115] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture directions for

networked sensors. Acm Sigplan Notices, 35(11):93–104, 2000. 42

[116] Zach Shelby and Carsten Bormann. 6LoWPAN: The Wireless Embedded Internet. Wiley Publishing, 2010.

Available from: http://portal.acm.org/citation.cfm?id=1824211. 44, 57

[117] Philip Levis and David Gay. TinyOS Programming. Cambridge University Press, 1st edition, March 2009. Available

from: http://www.amazon.com/TinyOS-Programming-Philip-Levis/dp/0521896061. 45

[118] S. Saruwatari, M. Suzuki, and H. Morikawa. A compact hard real-time operating system for wireless

sensor nodes. In Networked Sensing Systems (INSS), 2009 Sixth International Conference on, pages 1–8, june

2009. 45

[119] A. Eswaran, A. Rowe, and R. Rajkumar. Nano-RK: an energy-aware resource-centric RTOS for sensor

networks. In Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE International, pages 265–274, dec.

2005. 45

[120] Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani Srivastava. A dynamic operating system

for sensor nodes. In Proceedings of the 3rd international conference on Mobile systems, applications, and services,

MobiSys ’05, pages 163–176, New York, NY, USA, 2005. ACM. Available from: http://doi.acm.org/10.1145/

1067170.1067188. 45

[121] Jonathan W. Hui and David Culler. The dynamic behavior of a data dissemination protocol for network

programming at scale. In Proceedings of the 2nd international conference on Embedded networked sensor systems,

SenSys ’04, pages 81–94, New York, NY, USA, 2004. ACM. Available from: http://doi.acm.org/10.1145/1031495.

1031506. 45, 69, 147, 148

[122] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-sync protocol for sensor networks. In

Proceedings of the 1st international conference on Embedded networked sensor systems, SenSys ’03, pages 138–149,

New York, NY, USA, 2003. ACM. Available from: http://doi.acm.org/10.1145/958491.958508. 48, 115

[123] Bulent Tavli, Kemal Bicakci, Ruken Zilan, and JoseM. Barcelo-Ordinas. A survey of visual sensor

network platforms. Multimedia Tools and Applications, 60(3):689–726, 2012. 49

[124] Mohammad Rahimi, Rick Baer, Obimdinachi I. Iroezi, Juan C. Garcia, Jay Warrior, Deborah Estrin, and

Mani Srivastava. Cyclops: in situ image sensing and interpretation in wireless sensor networks. In

Proceedings of the 3rd international conference on Embedded networked sensor systems, SenSys ’05, pages 192–204,

New York, NY, USA, 2005. ACM. Available from: http://doi.acm.org/10.1145/1098918.1098939. 49

[125] John Heidemann, Milica Stojanovic, and Michele Zorzi. Underwater sensor networks: applications, ad-

vances and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 370(1958):158–175, 2012. 49

[126] JeongGil Ko, Chenyang Lu, Mani B Srivastava, John A Stankovic, Andreas Terzis, and Matt Welsh.

Wireless sensor networks for healthcare. Proceedings of the IEEE, 98(11):1947–1960, 2010. 49

[127] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey. Computer Networks,

54(15):2787–2805, 2010. 49

[128] Peter Corke, Tim Wark, Raja Jurdak, Wen Hu, Philip Valencia, and Darren Moore. Environmental

wireless sensor networks. Proceedings of the IEEE, 98(11):1903–1917, 2010. 49

127

http://automatica.dei.unipd.it/public/Schenato/PSC/2010_2011/gruppo4-Building_termo_identification/Bibliografia Casuale/Tmote_Mini_Datasheet.pdf
http://automatica.dei.unipd.it/public/Schenato/PSC/2010_2011/gruppo4-Building_termo_identification/Bibliografia Casuale/Tmote_Mini_Datasheet.pdf
http://www.ti.com/lit/gpn/cc1000
http://portal.acm.org/citation.cfm?id=1824211
http://www.amazon.com/TinyOS-Programming-Philip-Levis/dp/0521896061
http://doi.acm.org/10.1145/1067170.1067188
http://doi.acm.org/10.1145/1067170.1067188
http://doi.acm.org/10.1145/1031495.1031506
http://doi.acm.org/10.1145/1031495.1031506
http://doi.acm.org/10.1145/958491.958508
http://doi.acm.org/10.1145/1098918.1098939

REFERENCES

[129] Mario Gerla and Leonard Kleinrock. Vehicular networks and the future of the mobile internet. Com-

puter Networks, 55(2):457–469, 2011. 49

[130] Sarah Clark. Nokia unveils N9 NFC phone. Available from: http://www.nfcworld.com/2011/06/21/38138/

nokia-unveils-n9-nfc-phone/ [cited 17.09.2011.]. 50

[131] Kit Eathon. Google’s NFC-Powered Digital Wallet: Room For Your Shopping Lists,

Credit Cards ... And Complete Trust . Available from: http://www.fastcompany.com/1755490/

google-shopping-wireless-wallet-nfc-payment-nexus-smartphones [cited 17.09.2011.]. 50

[132] IEEE Computer Society. IEEE Std. 802.11p 2010. IEEE, amendment 6 edition. Available from: http:

//standards.ieee.org/getieee802/download/802.11p-2010.pdf. 50

[133] European Space Agency. Galileo Navigation. Available from: http://www.esa.int/esaNA/galileo.html [cited

2014-01-28]. 51

[134] SOWNet technologies. G-Node. Available from: http://www.sownet.nl/index.php/en/products/gnode [cited

07.02.2012.]. 69

[135] Zolertia. Z1 Platform. Available from: http://www.zolertia.com/ti [cited 07.02.2012.]. 69

[136] Gwenhael Goavec-Merou. SDCard and FAT16 file system implementation for TinyOS

http://www.trabucayre.com/page-tinyos.html [online]. Available from: http://www.trabucayre.com/

page-tinyos.html [cited 06.02.2012.]. 69

[137] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. Protothreads: Simplifying Event-Driven

Programming of Memory-Constrained Embedded Systems. In Proc. of SenSys’06, pages 29–42, 2006. 71,

73, 90, 158, 161

[138] Adam Dunkels. Full TCP/IP for 8-bit architectures. In Proceedings of the 1st international conference on

Mobile systems, applications and services (MobiSys’03)., pages 85–98. ACM, 2003. 71

[139] Arduino SA. Arduino Wireless Shield with XBee Series 2 radios. Available from: http://arduino.cc/en/

Guide/ArduinoWirelessShieldS2 [cited 2014-02-02]. 72

[140] Arduino SA. Arduino Yún. Available from: http://arduino.cc/en/Main/ArduinoBoardYun [cited 2014-02-02]. 72

[141] Flutter Wireless. Wireless ARM development board with over 1 km range. Available from: http:

//www.flutterwireless.com/ [cited 2014-02-02]. 72

[142] Robert Faludi. Building wireless sensor networks: with ZigBee, XBee, Arduino, and Processing. O’reilly, 2010. 72

[143] Charles E Perkins and Elizabeth M Royer. Ad-hoc on-demand distance vector routing. In Second IEEE

Workshop on Mobile Computing Systems and Applications (WMCSA’99)., pages 90–100. IEEE, 1999. 72

[144] Baptiste Gaultier. Arduino uIPv6 Stack. Available from: https://github.com/telecombretagne/

Arduino-IPv6Stack/wiki [cited 2014-02-02]. 72

[145] Bill Greiman. sdfatlib: A FAT16/FAT32 Arduino library for SD/SDHC cards. Available from: https:

//code.google.com/p/sdfatlib/ [cited 2014-02-02]. 73

[146] Arduino SA. Arduino Time Library. Available from: http://playground.arduino.cc/Code/time [cited 2014-

02-02]. 73

[147] Arduino SA. Interfacing with Hardware: Input. Available from: http://playground.arduino.cc//Main/

InterfacingWithHardware [cited 2014-02-02]. 73

[148] CodeBender team. codebender. Available from: https://codebender.cc/ [cited 2014-02-02]. 73

[149] Rolls Royce. Integrated bridge systems, 2013. Available from: http://www.rolls-royce.com/marine/

products/automation_control/integrated_bridge_systems/ [cited 2014-02-02]. 74

128

http://www.nfcworld.com/2011/06/21/38138/nokia-unveils-n9-nfc-phone/
http://www.nfcworld.com/2011/06/21/38138/nokia-unveils-n9-nfc-phone/
http://www.fastcompany.com/1755490/google-shopping-wireless-wallet-nfc-payment-nexus-smartphones
http://www.fastcompany.com/1755490/google-shopping-wireless-wallet-nfc-payment-nexus-smartphones
http://standards.ieee.org/getieee802/download/802.11p-2010.pdf
http://standards.ieee.org/getieee802/download/802.11p-2010.pdf
http://www.esa.int/esaNA/galileo.html
http://www.sownet.nl/index.php/en/products/gnode
http://www.zolertia.com/ti
http://www.trabucayre.com/page-tinyos.html
http://www.trabucayre.com/page-tinyos.html
http://arduino.cc/en/Guide/ArduinoWirelessShieldS2
http://arduino.cc/en/Guide/ArduinoWirelessShieldS2
http://arduino.cc/en/Main/ArduinoBoardYun
http://www.flutterwireless.com/
http://www.flutterwireless.com/
https://github.com/telecombretagne/Arduino-IPv6Stack/wiki
https://github.com/telecombretagne/Arduino-IPv6Stack/wiki
https://code.google.com/p/sdfatlib/
https://code.google.com/p/sdfatlib/
http://playground.arduino.cc/Code/time
http://playground.arduino.cc//Main/InterfacingWithHardware
http://playground.arduino.cc//Main/InterfacingWithHardware
https://codebender.cc/
http://www.rolls-royce.com/marine/products/automation_control/integrated_bridge_systems/
http://www.rolls-royce.com/marine/products/automation_control/integrated_bridge_systems/

REFERENCES

[150] Uni-Safe Electronics. BNWAS BW-800 Bridge Navigational Watch Alarm System, 2014. Available from:

http://www.unielec.dk/BNWAS_Bridge_Navigational_Watch_Alarm_System-10.htm [cited 2014-02-02]. 74

[151] Maritime and Coastguard Agency. International Convention for the Safety of Life at Sea. In Safety of

Navigation, chapter V. 2002. 74

[152] Furuno. Installation Manual BRIDGE ALARM SYSTEM BR-1000, 2009. 74

[153] Ulstein. Bridge Alarm System, 2013. Available from: http://www.ulsteingroup.com/kunder/ulstein/

cms66.nsf/pages/elcontrl.htm?open&qnfl=flash#electricalandcontrolsystems/electronicsandautomation/

ubas/product/ulsteincom.itm [cited 2014-02-02]. 74

[154] Det Norske Veritas. Classification of Ships Nautical Safety - Offshore Service Vessels. chapter 20, pages

1–40. 2010. 74

[155] Yushan Pan, Sathiya Kumar Renganayagalu, and Sashidharan Komandur. Tactile cues for ship bridge

operations. In 27th European Conference on Modelling and Simulation (ECMS’13), pages 177–183, Aalesund, 2013.

74

[156] James L. Merlo. The effects of physiological stress on tactile communication. Proceedings of the Human

Factors and Ergonomics Society Annual Meeting, 50(16):1562–1566, 2006. 77

[157] Bluetooth special interest group. Bluetooth specification, Part F: RFCOMM with TS 07.10, Version

1.1, June 2003. Available from: https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=40909.

79

[158] Bluetooth Special Interest Group. Specification of the Bluetooth system, Version 4.1,

2013. Available from: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Specification+of+

the+Bluetooth+system#3. 79

[159] Moslem Amiri. Measurements of energy consumption and execution time of different operations on Tmote Sky

sensor motes. Master’s thesis, Masaryk University, 2010. 82

[160] TIOBE Software. TIOBE Programming Community Index, 2014. Available from: http://www.tiobe.com/

index.php/content/paperinfo/tpci/index.html [cited 2014-02-10]. 86

[161] Jakob Nielsen. Usability Engineering. Morgan Kaufmann, 1st edition, 1993. 86

[162] V.F. Russo. An object-oriented operating system. PhD thesis, University of Illinois at Urbana-Chaimpaign, 1991.

87, 165

[163] V.F. Russo, P.W. Madany, and R.H. Campbell. C++ and operating systems performance: a case study.

Technical report, Department of Computer Science, University of Illinois at Urbana-Champaign, 1991. 87, 166

[164] R. Leavengood. The Dawn of Haiku - How a volunteer crew brought a crack OS back. Spectrum, IEEE,

49(5):40–54, 2012. 87

[165] Hauku Inc. Haiku Operating System. Available from: http://haiku-os.org/ [cited 2012-06-28]. 87

[166] Doug Simon, Cristina Cifuentes, Dave Cleal, John Daniels, and Derek White. Java on the bare metal of

wireless sensor devices: the squawk Java virtual machine. In Proceedings of the 2nd international conference

on Virtual execution environments, VEE ’06, pages 78–88, New York, NY, USA, 2006. ACM. Available from:

http://doi.acm.org/10.1145/1134760.1134773. 87

[167] Rahul C. Shah, Sumit Roy, Sushant Jain, and Waylon Brunette. Data MULEs: modeling and analysis

of a three-tier architecture for sparse sensor networks. Ad Hoc Networks, 1(2-3):215 – 233, 2003. Sen-

sor Network Protocols and Applications. Available from: http://www.sciencedirect.com/science/article/pii/

S1570870503000039. 100

129

http://www.unielec.dk/BNWAS_Bridge_Navigational_Watch_Alarm_System-10.htm
http://www.ulsteingroup.com/kunder/ulstein/cms66.nsf/pages/elcontrl.htm?open&qnfl=flash#electricalandcontrolsystems/electronicsandautomation/ubas/product/ulsteincom.itm
http://www.ulsteingroup.com/kunder/ulstein/cms66.nsf/pages/elcontrl.htm?open&qnfl=flash#electricalandcontrolsystems/electronicsandautomation/ubas/product/ulsteincom.itm
http://www.ulsteingroup.com/kunder/ulstein/cms66.nsf/pages/elcontrl.htm?open&qnfl=flash#electricalandcontrolsystems/electronicsandautomation/ubas/product/ulsteincom.itm
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=40909
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Specification+of+the+Bluetooth+system#3
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Specification+of+the+Bluetooth+system#3
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://haiku-os.org/
http://doi.acm.org/10.1145/1134760.1134773
http://www.sciencedirect.com/science/article/pii/S1570870503000039
http://www.sciencedirect.com/science/article/pii/S1570870503000039

REFERENCES

[168] Northrop Grumman Corporation. Count Lines Of Code (CLOC). Available from: http://cloc.sourceforge.

net/ [cited 2012-09-02]. 105

[169] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt. Enabling Large-Scale Storage in Sensor Networks with

the Coffee File System. In Proceedings of the 8th International Conference on Information Processing in Sensor

Networks (IPSN), pages 349–360, 2009. 115

[170] Thanos Stathopoulos, John Heidemann, and Deborah Estrin. A remote code update mechanism for

wireless sensor networks. Technical report, University of California, LA, 2003. 115

[171] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network survey. Comput. Netw.,

52:2292–2330, August 2008. Available from: http://portal.acm.org/citation.cfm?id=1389582.1389832. 132

[172] Hande Alemdar and Cem Ersoy. Wireless sensor networks for healthcare: A survey. Comput. Netw.,

54:2688–2710, October 2010. Available from: http://dx.doi.org/10.1016/j.comnet.2010.05.003. 132

[173] Ning Xu. A Survey of Sensor Network Applications. Technical report, University of Southern California, 2002.

132

[174] I. Khemapech, I. Duncan, and A. Miller. A survey of wireless sensor networks technology. In Proc. of The

6th Annual PostGraduate Symposium on The Convergence of Telecommunications, Networking and Broadcasting,

32, 2005. 132

[175] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: a survey.

Computer Networks, 38(4):393 – 422, 2002. Available from: http://www.sciencedirect.com/science/article/pii/

S1389128601003024. 132

[176] Kumalasari Wardhana and Fabian C Hadipriono. Analysis of recent bridge failures in the United States.

Journal of Performance of Constructed Facilities, 17(3):144–150, 2003. 134

[177] K. Terfloth, G. Wittenburg, and J. Schiller. FACTS: a rule-based middleware architecture for wire-

less sensor networks. In Proc. of the 1st Int. Conf. on Communication System Software and Middleware (COM-

SWARE), 2006. 148

[178] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced encryption standard. Springer,

2002. 162

130

http://cloc.sourceforge.net/
http://cloc.sourceforge.net/
http://portal.acm.org/citation.cfm?id=1389582.1389832
http://dx.doi.org/10.1016/j.comnet.2010.05.003
http://www.sciencedirect.com/science/article/pii/S1389128601003024
http://www.sciencedirect.com/science/article/pii/S1389128601003024

Appendices

131

A WSN deployments

A.1 Application taxonomy

Wireless sensors networks contain huge potential for wide range of life quality improve-

ment applications. To formalize the application and deployment design space, a tax-

onomy is established. It is an adapted version of multiple previous research papers

[171, 172, 173, 174, 175]. In the presented taxonomy, deployments are divided not by

their technical characteristics (high/low sampling rate, single/multi hop network, etc),

rather by the application field.

The author suggests the following taxonomy:

1 Environmental monitoring:

1.1 Habitat and weather monitoring,

1.2 Environmental forecasting:

1.2.1 Forest fire detection,

1.2.2 Flood and glacier detection,

1.2.3 Volcano monitoring,

1.3 Precision agriculture,

1.4 Underwater networks,

2 Animal monitoring:

2.1 Wild animal monitoring,

2.2 Domestic animal monitoring and control,

3 Human-centric applications:

3.1 Human health telemonitoring,

3.2 Human monitoring in emergency situations,

132

A.1 Application taxonomy

3.3 Human indoor tracking,

3.4 Firefighter and police assistance systems,

3.5 Medication intake accounting,

3.6 Daily activity recognition,

3.7 Child education and sensor games,

4 Infrastructure monitoring:

4.1 Heritage buildings and sites,

4.2 Civil infrastructure monitoring:

4.2.1 Bridge monitoring,

4.2.2 Tunnel monitoring,

4.3 Power line and water pipe monitoring,

4.4 Security systems,

5 Asset tracking:

5.1 Anti-theft systems,

5.2 Good and daily object tracking,

6 Smart buildings:

6.1 Home/office automation,

6.2 Smart energy usage,

7 Military applications:

7.2 Battlefield surveillance,

7.3 Opposing force investigation,

8 Urban applications:

8.1 Vehicle tracking and traffic monitoring,

8.2 City environment monitoring,

9 Industrial applications:

9.1 Industrial equipment monitoring and control,

9.2 Coal mine monitoring,

133

A.2 Deployment survey detailed results

10 Smart user interfaces and art.

Environmental monitoring and is the most popular application class of sensor net-

works, therefore it is divided more specifically. Human centric sensor networks is also

a large class, containing mostly medical applications. Infrastructure monitoring has be-

came popular due to several significant problems faced in real life, including bridge failures

[176]. Military research was the initial driver for sensor network evolution, however, the

published applications represent only friendly force, battlefield and enemy monitoring.

A.2 Deployment survey detailed results

Table A.1: Deployments: deployment state and attributes

Nr Codename Deployment

state

Mote

count

Heterog.

motes

Base

station

count

Base station hardware

1 Habitats pilot 32 n 1 Mote + PC with satellite link to

Internet

2 Minefield pilot 20 n 0 All motes capable to connect to a

PC via Ethernet

3 Battlefield prototype 70 y (soft,

by role)

1 Mote + PC

4 Line in the sand pilot 90 n 1 Root connects to long range radio

relay

5 Counter-sniper prototype 56 n 1 Mote + PC

6 Electro-shepherd pilot 180 y 1+ Mobile mote

7 Virtual fences prototype 8 n 1 Laptop

8 Oil tanker pilot 26 n 4 Stargate Gateway + Intel Mote,

wall powered.

9 Enemy vehicles pilot 100 y 1 Mobile powermotes - laptop on

wheels

10 Trove game pilot 10 n 1 Mote + PC

11 Elder RFID prototype 3 n 1 Mote + PC

12 Murphy potatoes pilot 109 n 1 Stargate Gateway + Tnode, solar

panel,

13 Firewxnet pilot 13 n 1 BS +

5 gate-

ways

Gateway: Soekris net4801 with

Gentoo Linux and Trango Ac-

cess5830 long-range 10Mbps wire-

less; BS: PC with satellite link

512/128Kbps

14 AlarmNet prototype 15 y varies Stargate Gateway with MicaZ,

wall powered.

15 Ecuador Volcano pilot 19 y 1 Mote + PC

16 Pet game prototype ? n 1+ Mote + MIB510 board + PC

17 Plug pilot 35 n 1 Mote + PC

18 B-Live pilot 10+ y 1 B-Live modules connected to PC,

wheelchair computer etc

19 Biomotion pilot 25 n 1 Mote + PC

20 AID-N pilot 10 y 1+ Mote + PC

21 Firefighting prototype 20 y 1+ ?

. . .

134

A.2 Deployment survey detailed results

Table A.1 – continued

Nr Codename Deployment

state

Mote

count

Heterog.

motes

Base

station

count

Base station hardware

22 Rehabil prototype ? y 1 Mote + PC

23 CargoNet pilot <10 n 1+ Mote + PC?

24 Fence monitor prototype 10 n 1 Mote + PC?

25 BikeNet prototype 5 n 7+ 802.15.4/Bluetooth bridge +

Nokia N80 OR mote + Aruba

AP-70 embedded PC

26 BriMon prototype 12 n 1 Mobile Train TMote, static Bridge

Tmotes

27 IP net pilot 25 n 1 Mote + PC?

28 Smart home prototype 12 y 1 EMPOSII embedded PC with

touchscreen, internet, wall pow-

ered

29 SVATS prototype 6 n 1 ?

30 Hitchhiker pilot? 16 1 ?

31 Daily morning prototype 1 n 1 Mote + MIB510 board + PC

32 Heritage stable 17 y 1 3Mate mote + Gumstix embedded

PC with SD card and WiFi

33 AC meter pilot 49 n 2+ Meraki Mini and the OpenMesh

Mini-Router wired together with

radio

34 Coal mine prototype 27 n 1 ?

35 ITS prototype 8 n 1 ?

36 Underwater prototype 4 n 0 -

37 PipeProbe prototype 1 n 1 Mote + PC

38 Badgers stable 74

mobile

+ 26?

static

y 1+ Mote

39 Helens volcano pilot 13 n 1 ?

40 Tunnels pilot 40 n 2 Mote + Gumstix Verdex Pro

Table A.2: Deployments: sensing

Nr Codename Sensors Periodic

or event-

based

function

Sampling

rate, Hz

GPS

used

1 Habitats temperature, light, barometric pres-

sure, humidity, and passive infrared

periodic 0.0166667 n

2 Minefield sound, magnetometer, accelerometers,

voltage, imaging

periodic ? y

3 Battlefield magnetometer event 10 n

4 Line in the sand magnetometer, radar event ? n

5 Counter-sniper sound event 1000000 n

6 Electro-shepherd temperature periodic ? y

7 Virtual fences - both ? y

8 Oil tanker accelerometer periodic 19200 n

. . .

135

A.2 Deployment survey detailed results

Table A.2 – continued

Nr Codename Sensors Periodic

or event-

based

function

Sampling

rate, Hz

GPS

used

9 Enemy vehicles magnetometer, ultrasound transceiver event ? y, on

power

nodes

10 Trove game accelerometers, light periodic ? n

11 Elder RFID RFID reader periodic 1 n

12 Murphy potatoes temperature, humidity periodic 0.0166667 n

13 Firewxnet temperature, humidity, wind speed

and direction

periodic 0.8333333 n

14 AlarmNet motion, blood pressure, body scale,

dust, temperature, light

both ≤ 1Hz n

15 Ecuador Volcano seismometers, acoustic both 100 y, on

BS

16 Pet game temperature, light, sound periodic configurable n

17 Plug sound, light, electric current, voltage,

vibration, motion, temperature

periodic 8000 n

18 B-Live light, electric current, switches event ? n

19 Biomotion accelerometer, gyroscope, capacitive

distance sensor

periodic 100 n

20 AID-N pulse oximeter, ECG, blood pressure,

heart beat

periodic depends on

queries

n

21 Firefighting temperature periodic ? n

22 Rehabil temperature, humidity, light periodic ? n

23 CargoNet shock, light, magnetic switch, sound,

tilt, temperature, humidity

both 0.0166667 n

24 Fence monitor accelerometer event 10 n

25 BikeNet magnetometer, pedal speed, incli-

nometer, lateral tilt, GSR stress,

speedometer, CO2, sound, GPS

both configurable y

26 BriMon accelerometer periodic 0.6666667 n

27 IP net temperature, luminosity, vibration,

microphone, movement detector

event ? n

28 Smart home Ligth, temperature, humidity, air pres-

sure, acceleration, gas leak, motion

both ? n

29 SVATS radio RSSI periodic ? n

30 Hitchhiker air temperature and humidity, sur-

face temperature, solar radiation, wind

speed and direction, soil water content

and suction, and precipitation

periodic ? n

31 Daily morning accelerometer periodic 50 n

32 Heritage fiber optic deformation, accelerome-

ters, analog temperature

periodic 200 n

33 AC meter current both ≤ 14000 n

34 Coal mine - (sense radio neighbors only) periodic - n

35 ITS anisotropic magneto-resistive and py-

roelectric

event varies n

36 Underwater pressure, temperature, CDOM, salin-

ity, dissolved oxygen, cameras; motor

actuator

periodic ≤1Hz n

37 PipeProbe gyroscope, pressure periodic 33 n

38 Badgers humidity, temperature event ? n

39 Helens volcano geophone, accelerometer periodic 100000? y

. . .

136

A.2 Deployment survey detailed results

Table A.2 – continued

Nr Codename Sensors Periodic

or event-

based

function

Sampling

rate, Hz

GPS

used

40 Tunnels light, temperature, voltage periodic 0.0333333 n

Table A.3: Deployments: lifetime and energy

Nr Codename Lifetime,

days

Energy

source

Sleep time,

sec

Duty cycle,

%

Power-motes present?

1 Habitats 270 battery 60 ? yes, gateways

2 Minefield ? battery ? ? yes, all

3 Battlefield 5-50 battery varies varies yes, base station

4 Line in the sand ? battery

and solar

? ? yes, root

5 Counter-sniper ? battery 0 100 no

6 Electro-shepherd 50 battery ? < 1 no

7 Virtual fences 2h 40min battery 0 100 no

8 Oil tanker 82 battery 64800 < 1 yes, gateways

9 Enemy vehicles ? battery ? ? yes, mobile nodes

10 Trove game ? battery ? ? yes, base station

11 Elder RFID ? battery 0? 100? yes, base station

12 Murphy potatoes 21 battery 60 11 yes, base station

13 Firewxnet 21 battery 840 6.67 yes, gateways

14 AlarmNet ? battery ? configuration

dependent

yes, base stations

15 Ecuador Volcano 19 battery 0 100 yes, base station

16 Pet game ? battery ? ? yes, base station

17 Plug - power-net 0 100 yes, all

18 B-Live - battery 0 100 yes, all

19 Biomotion 5 hours battery 0 100 yes, base stations

20 AID-N 6 battery 0 100 yes, base station

21 Firefighting 4+ battery 0 100 yes, infrastructure

motes

22 Rehabil ? battery ? ? yes, base station

23 CargoNet 1825 battery varies 0.001 no

24 Fence monitor ? battery 1 ? yes, base station

25 BikeNet ? battery ? ? yes, gateways

26 BriMon 625 battery 0.55 no

27 IP net ? battery ? 20 yes, base station

28 Smart home ? battery ? ? yes

29 SVATS unlimited power-net not imple-

mented

- yes, all

30 Hitchhiker 60 battery

and solar

5 10 yes, base station

31 Daily morning ? battery 0? 100? yes, base station

32 Heritage 525 battery 0.57 0.05 yes, base station

33 AC meter ? power-net ? ? yes, gateways

34 Coal mine ? battery ? ? yes, base station?

35 ITS ? power-net? 0? 100? yes, all

. . .

137

A.2 Deployment survey detailed results

Table A.3 – continued

Nr Codename Lifetime,

days

Energy

source

Sleep time,

sec

Duty cycle,

%

Power-motes present?

36 Underwater ? battery ? ? no

37 PipeProbe 4 hours battery 0 100 yes, base station

38 Badgers 7 battery ? 0.05 no

39 Helens volcano 400 battery 0? 100? yes, all

40 Tunnels 480 battery 0.25 ? yes, base stations

Table A.4: Deployments: used motes and radio chips

Nr Codename Mote Ready

or

custom

Mote motivation Radio

chip

Radio

proto-

col

1 Habitats Mica adapted custom Mica weather board

and packaging

RFM

TR1000

?

2 Minefield WINS NG

2.0

custom need for high performance ? ?

3 Battlefield Mica2 adapted energy and bandwidth effi-

cient, simple and flexible

Chipcon

CC1000

SmartRF

4 Line in the sand Mica2 adapted ? Chipcon

CC1000

SmartRF

5 Counter-sniper Mica2 adapted ? Chipcon

CC1000

SmartRF

6 Electro-shepherd Custom

+ Active

RFID tags

custom packaging adapted to sheep

habits

unnamed

UHF

?

7 Virtual fences Zaurus

PDA

ready off-the-shelf unnamed

Wifi

802.11

8 Oil tanker Intel Mote adapted ? Zeevo

TC2001P

Bluetooth

1.1

9 Enemy vehicles Mica2Dot adapted ? Chipcon

CC1000

SmartRF

10 Trove game Mica2 ready off-the-shelf Chipcon

CC1000

SmartRF

11 Elder RFID Mica2 adapted off-the-shelf, RFID reader

added

Chipcon

CC1000

+

RFID

SmartRF

+

RFID

12 Murphy potatoes TNOde,

Mica2 like

custom packaging + sensing Chipcon

CC1000

SmartRF

13 Firewxnet Mica2 adapted MANTIS support, AA batter-

ies, easily extensible

Chipcon

CC1000

SmartRF

14 AlarmNet Mica2 +

TMote Sky

adapted off-the-shelf, extensible Chipcon

CC1000

SmartRF

15 Ecuador Volcano Tmote Sky adapted off-the-shelf Chipcon

CC2420

802.15.4

16 Pet game MicaZ ready off-the-shelf Chipcon

CC2420

802.15.4

17 Plug Plug Mote custom specific sensing + packaging Chipcon

CC2500

?

. . .

138

A.2 Deployment survey detailed results

Table A.4 – continued

Nr Codename Mote Ready

or

custom

Mote motivation Radio

chip

Radio

proto-

col

18 B-Live B-Live

module

custom custom modular system ? ?

19 Biomotion custom custom size constraints Nordic

nRF2401A

-

20 AID-N TMote Sky

+ MicaZ

adapted off the shelf, extensible Chipcon

CC2420

802.15.4

21 Firefighting TMote Sky adapted off the shelf, easy prototyping Chipcon

CC2420

802.15.4

22 Rehabil Maxfor

TIP

7xxCM:

TelosB-

compatible

ready off-the-shelf Chipcon

CC2420

802.15.4

23 CargoNet CargoNet

mote

custom low power, low cost compo-

nents

Chipcon

CC2500

-

24 Fence monitor Scatterweb

ESB

ready off-the-shelf Chipcon

CC1020

?

25 BikeNet TMote In-

vent

adapted off-the-shelf mote providing re-

quired connectivity

Chipcon

CC2420

802.15.4

26 BriMon Tmote Sky adapted off the shelf Chipcon

CC2420

802.15.4

27 IP net Scatterweb

ESB

adapted Necessary sensors onboard TR1001 ?

28 Smart home ZigbeX custom specific sensor, size and power

constraints

Chipcon

CC2420

802.15.4

29 SVATS Mica2 ready off-the-shelf Chipcon

CC1000

SmartRF

30 Hitchhiker TinyNode adapted long range communication Semtech

XE1205

?

31 Daily morning MicaZ ready off-the-shelf Chipcon

CC2420

802.15.4

32 Heritage 3Mate! adapted TinyOS supported mote with

custom sensors

Chipcon

CC2420

802.15.4

33 AC meter ACme

(Epic core)

adapted modular, convenient prototyp-

ing

Chipcon

CC2420

802.15.4

34 Coal mine Mica2 ready off-the-shelf Chipcon

CC1000

SmartRF

35 ITS Custom custom specific sensing needs Chipcon

CC2420

802.15.4

36 Underwater AquaNode custom specific packaging, sensor and

actuator needs

custom -

37 PipeProbe Eco mote adapted size and energy constraints Nordic

nRF24E1

?

38 Badgers V1: Tmote

Sky + ext.

board; V2:

custom

v1:

adapted,

v2:

custom

v1: off-the-shelf, v2: optimiza-

tions

Atmel

AT86RF230

802.15.4

39 Helens volcano custom custom specific computational, sensing

and packaging needs

Chipcon

CC2420

802.15.4

40 Tunnels TRITON

mote:

TelosB-like

custom reuse and custom packaging Chipcon

CC2420

802.15.4

139

A.2 Deployment survey detailed results

Table A.5: Deployments: used microcontrollers

Nr Codename MCU

count

MCU Name Arch.,

bits

MHz RAM,

KB

Prog.

Mem.,

KB

1 Habitats 1 Atmel ATMega103L 8 4 4 128

2 Minefield 1 Hitachi SH4 7751 32 167 64000 0

3 Battlefield 1 Atmel ATMega128 8 7.3 4 128

4 Line in the sand 1 Atmel ATMega128 8 4 4 128

5 Counter-sniper 1 +

FPGA

Atmel ATMega128L 8 7.3 4 128

6 Electro-shepherd 1 Atmel ATMega128 8 7.3 4 128

7 Virtual fences 1 Intel StrongArm 32 206 65536 ?

8 Oil tanker 1 Zeevo ARM7TDMI 32 12 64 512

9 Enemy vehicles 1 Atmel ATMega128L 8 4 4 128

10 Trove game 1 Atmel ATMega128 8 7.3 4 128

11 Elder RFID 1 Atmel ATMega128 8 7.3 4 128

12 Murphy potatoes 1 Atmel ATMega128L 8 8 4 128

13 Firewxnet 1 Atmel ATMega128L 8 7.3 4 128

14 AlarmNet 1 Atmel ATMega128L 8 7.3 4 128

15 Ecuador Volcano 1 TI MSP430F1611 16 8 10 48

16 Pet game 1 Atmel ATMega128 8 7.3 4 128

17 Plug 1 Atmel AT91SAM7S64 32 48 16 64

18 B-Live 2 Microchip PIC18F2580 8 40 1.5 32

19 Biomotion 1 TI MSP430F149 16 8 2 60

20 AID-N 1 TI MSP430F1611 16 8 10 48

21 Firefighting 1 TI MSP430F1611 16 8 10 48

22 Rehabil 1 TI MSP430F1611 16 8 10 48

23 CargoNet 1 TI MSP430F135 16 8? 0.512 16

24 Fence monitor 1 TI MSP430F1612 16 7.3 5 55

25 BikeNet 1 TI MSP430F1611 16 8 10 48

26 BriMon 1 TI MSP430F1611 16 8 10 48

27 IP net 1 TI MSP430F149 16 8 2 60

28 Smart home 1 Atmel ATMega128 8 8 4 128

29 SVATS 1 Atmel ATMega128L 8 7.3 4 128

30 Hitchhiker 1 TI MSP430F1611 16 8 10 48

31 Daily morning 1 Atmel ATMega128 8 7.3 4 128

32 Heritage 1 TI MSP430F1611 16 8 10 48

33 AC meter 1 TI MSP430F1611 16 8 10 48

34 Coal mine 1 Atmel ATMega128 8 7.3 4 128

35 ITS 2 ARM7 +

MSP430F1611

32 + 8 ? +

8MHz

64 + 10 ? + 48

36 Underwater 1 NXP LPC2148

ARM7TDMI

32 60 40 512

37 PipeProbe 1 Nordic nRF24E1

DW8051

8 16 4.25 32

38 Badgers 1 Atmel ATMega128V 8 8 8 128

39 Helens volcano 1 Intel XScale PXA271 32 13 (624

max)

256 32768

40 Tunnels 1 TI MSP430F1611 16 8 10 48

140

A.2 Deployment survey detailed results

Table A.6: Deployments: external memory

Nr Codename Available

ext.mem.,

KB

SD/MMC

used

Ext.

mem.

used

File

system

used

1 Habitats 512 n y n

2 Minefield 16000 n y y

3 Battlefield 512 n n n

4 Line in the sand 512 n n ?

5 Counter-sniper 512 n n n

6 Electro-shepherd 512 n y n

7 Virtual fences ? y y y

8 Oil tanker 0 n n n

9 Enemy vehicles 512 n n n

10 Trove game 512 n n n

11 Elder RFID 512 n n n

12 Murphy potatoes 512 n n n

13 Firewxnet 512 n n n

14 AlarmNet 512 n n n

15 Ecuador Volcano 1024 n y n

16 Pet game 512 n n n

17 Plug 0 n n n

18 B-Live 0 n n n

19 Biomotion 0 n n n

20 AID-N 1024 n n n

21 Firefighting 1024 n n n

22 Rehabil 1024 n n n

23 CargoNet 1024 n y n

24 Fence monitor 0 n n n

25 BikeNet 1024 n y? n

26 BriMon 1024 n y n

27 IP net 1024 n n n

28 Smart home 512 n ? n

29 SVATS 512 n n n

30 Hitchhiker 1024 n n n

31 Daily morning 512 n n n

32 Heritage 1024 n n n

33 AC meter 2048 n y n

34 Coal mine 512 n n n

35 ITS ? n? ? n?

36 Underwater 2097152? y y n

37 PipeProbe 0 n n n

38 Badgers 2097152 y y n

39 Helens volcano 0 n n n

40 Tunnels 1024 n n n

Table A.7: Deployments: sensor and user interface

Nr Codename Sensor interface User Interface

1 Habitats soft-I2C 3 LEDs

2 Minefield ADC + ? ?

3 Battlefield ADC 3 LEDs

. . .

141

A.2 Deployment survey detailed results

Table A.7 – continued

Nr Codename Sensor interface User Interface

4 Line in the sand ADC 3 LEDs

5 Counter-sniper ADC + ? 3 LEDs

6 Electro-shepherd 1-wire ?

7 Virtual fences - GUI

8 Oil tanker SPI 1 LED

9 Enemy vehicles ADC + ? 1 LED

10 Trove game ADC 3 LEDs, buzzer

11 Elder RFID UART 3 LEDs

12 Murphy potatoes soft-I2C 3 LEDs

13 Firewxnet ADC 3 LEDs

14 AlarmNet ADC + UART + GPIO 3 LEDs, color LCD

15 Ecuador Volcano SPI? 3 LEDs

16 Pet game ADC? 3 LEDs

17 Plug ? 2 LEDs

18 B-Live ? ?

19 Biomotion ADC 3 LEDs

20 AID-N UART, ADC 5 LEDs, 2x8 text LCD, 4 User buttons

21 Firefighting ? 3 LEDs

22 Rehabil ADC, soft-I2C 3 LEDs

23 CargoNet ADC, GPIO, soft-I2C -

24 Fence monitor ADC 1 LED

25 BikeNet UART, ADC, GPIO 3 LEDs

26 BriMon ADC 3 LEDs

27 IP net ? 2+ LEDs

28 Smart home I2C, ADC, GPIO ?

29 SVATS ADC 3 LEDs

30 Hitchhiker ADC, soft-I2C, GPIO 1 LED

31 Daily morning ADC 3 LEDs

32 Heritage ADC + SPI? 3 LEDs

33 AC meter SPI 3 LEDs

34 Coal mine - 3 LEDs

35 ITS ? ?

36 Underwater ? ?

37 PipeProbe ADC, SPI -

38 Badgers I2C 3 LEDs

39 Helens volcano SPI? -

40 Tunnels ADC, I2C 3 LEDs

Table A.8: Deployments: communication

Nr Codename Report

rate, 1/h

Payload

size, B

Radio range, m Speed,

kbps

Connectivity

type

1 Habitats 60 ? 200 (1200 with

Yagi 12dBi)

40 connected

2 Minefield ? ? ? ? connected

3 Battlefield ? ? 300 38.4 intermittent

4 Line in the sand ? 1 300 38.4 connected

5 Counter-sniper ? ? 60 38.4 connected

6 Electro-shepherd 0.33 7+ 150-200m ? connected

. . .

142

A.2 Deployment survey detailed results

Table A.8 – continued

Nr Codename Report

rate, 1/h

Payload

size, B

Radio range, m Speed,

kbps

Connectivity

type

7 Virtual fences 1800 8? ? 54000 connected

8 Oil tanker 0.049 ? 30 750 connected

9 Enemy vehicles 1800 ? 30 38.4 connected

10 Trove game ? ? ? 38.4 connected

11 Elder RFID ? 19 ? 38.4 connected

12 Murphy potatoes 6 22 76.8 connected

13 Firewxnet 200 ? 400 38.4 intermittent

14 AlarmNet depends on

config.

29 ? 38.4 connected

15 Ecuador Volcano depends on

events

16 1000 250 connected

16 Pet game depends on

config.

? 100 250 connected

17 Plug 720 21 ? ? connected

18 B-Live - ? ? ? connected

19 Biomotion 360000 16 15 1000 connected

20 AID-N depends on

queries

? 66 250 connected

21 Firefighting ? ? 20 250 connected

22 Rehabil ? 12 30 250 connected

23 CargoNet depends on

events

? ? 250 sporadic

24 Fence monitor ? ? 300 76.8 connected

25 BikeNet opportunistic ? 20 250 sporadic

26 BriMon 62 116 125 250 sporadic

27 IP net ? ? 300 19.2 connected

28 Smart home ? ? 75-100

outdoor/20-30

indoor

250 connected

29 SVATS ? ? 400 38.4 connected

30 Hitchhiker ? 24 500 76.8 connected

31 Daily morning 180000 2? 100 250 connected

32 Heritage 6 ? 125 250 intermittent

33 AC meter 60 default

(config-

urable)

? 125 250 connected

34 Coal mine ? 7 4m forced, 20m

max

38.4 intermittent

35 ITS varies 5*n ? 250 connected

36 Underwater 900 11 ? 0.3 intermittent

37 PipeProbe 72000 ? 10 1000 connected

38 Badgers 2380+ 10 1000 250 connected

39 Helens volcano depends on

config.

? 9600 250 connected

40 Tunnels 120 ? ? 250 connected

143

A.2 Deployment survey detailed results

Table A.9: Deployments: communication media

Nr Codename Communication media Used

chan-

nels

Directinality

used?

1 Habitats radio over air 1 n

2 Minefield radio over air + sound over air ? n

3 Battlefield radio over air 1 n

4 Line in the sand radio over air 1 n

5 Counter-sniper radio over air 1 n

6 Electro-shepherd radio over air ? n

7 Virtual fences radio over air 2 y

8 Oil tanker radio over air 79 n

9 Enemy vehicles radio over air 1 n

10 Trove game radio over air 1 n

11 Elder RFID radio over air 1 n

12 Murphy potatoes radio over air 1 n

13 Firewxnet radio over air 1 y, gateways

14 AlarmNet radio over air 1 n

15 Ecuador Volcano radio over air 1 y

16 Pet game radio over air 1 n

17 Plug radio over air ? n

18 B-Live wire mixed with radio over air ? n

19 Biomotion radio over air 1 n

20 AID-N radio over air 1 n

21 Firefighting radio over air 4 n

22 Rehabil radio over air 1? n

23 CargoNet radio over air 1 n

24 Fence monitor radio over air 1 n

25 BikeNet radio over air 1 n

26 BriMon radio over air 16 n

27 IP net radio over air 1 n

28 Smart home radio over air 16 ?

29 SVATS radio over air ? n

30 Hitchhiker radio over air 1 n

31 Daily morning radio over air 1 n

32 Heritage radio over air 1 n

33 AC meter radio over air 1 n

34 Coal mine radio over air 1 n

35 ITS radio over air 1 n

36 Underwater ultra-sound over water 1 n

37 PipeProbe radio over air and water 1 n

38 Badgers radio over air ? n

39 Helens volcano radio over air 1? y

40 Tunnels radio over air 2 n

144

A.2 Deployment survey detailed results

Table A.10: Deployments: network

Nr Codename Network

topology

Mobile motes? Deployment

area

Max

hop

count

Randomly de-

ployed?

1 Habitats multi-one-

hop

n 1000 x 1000m 1 n

2 Minefield mesh y 30 x 40m ? y

3 Battlefield mesh n 85m long road ? y

4 Line in the sand mesh n 18 x 8m ? n

5 Counter-sniper mesh n 30 x 15m 11 y

6 Electro-shepherd one-hop y ? 1 y (attached to ani-

mals)

7 Virtual fences mesh y 300 x 300m 5 y (attached to ani-

mals)

8 Oil tanker multi-mesh n 150 x 100m ? n

9 Enemy vehicles mesh y, power node 20 x 20m 6 n

10 Trove game one-hop y ? 1 y, attached to users

11 Elder RFID one-hop n (mobile

RFID tags)

< 10m2 1 n

12 Murphy potatoes mesh n 1000 x 1000m 10 n

13 Firewxnet multi-mesh n 160km2 4? n

14 AlarmNet mesh y, mobile body

motes

apartment ? n

15 Ecuador Volcano mesh n 8000 x 1000m 6 n

16 Pet game mesh y ? ? y

17 Plug mesh n 40 x 40 ? n

18 B-Live multi-one-

hop

n house 2 n

19 Biomotion one-hop y, mobile body

motes

room 1 n (attached to pre-

defined body parts)

20 AID-N mesh y ? 1+ y, attached to users

21 Firefighting predefined

tree

y, human mote 3200m2 ? n

22 Rehabil one-hop y, human

motes

gymnastics

room

1 y, attached to pa-

tients and training

machines

23 CargoNet one-hop y truck, ship or

plane

1 n

24 Fence monitor one-hop? n 35 x 2m 1? n

25 BikeNet mesh y 5km long track ? y (attached to bicy-

cles)

26 BriMon multi-mesh y, mobile BS 2000 x 1 4 n

27 IP net multi-one-

hop

n 250x25 3 story

building +

mock-up town

500m2

? n

28 Smart home one-hop n ? ? n

29 SVATS mesh y, motes in cars parking place ? n

30 Hitchhiker mesh n 500 x 500m 2? n

31 Daily morning one-hop y, body mote house 1 n (attached to hu-

man)

32 Heritage mesh n 7.8x4.5x26m 6 n (initial deploy-

ment static, but

can be moved

later)

. . .

145

A.2 Deployment survey detailed results

Table A.10 – continued

Nr Codename Network

topology

Mobile motes? Deployment

area

Max

hop

count

Randomly de-

ployed?

33 AC meter mesh n building ? y (Given to users

who plug in power

outlets of their

choice)

34 Coal mine multi-path

mesh

n 8 x 4 x ? m ? n

35 ITS mesh n 140m long road 7? n

36 Underwater mesh y ? 1 n

37 PipeProbe one-hop y 0.18 x 1.40 x

3.45m

1 n

38 Badgers mesh y 1000 x 2000m ? ? y (attached to ani-

mals)

39 Helens volcano mesh n ? 1+? n

40 Tunnels multi-mesh n 230m long tun-

nel

4 n

Table A.11: Deployments: networking protocol stack

Nr Codename Custom

MAC

TDMA

or

CSMA

Routing

used

Custom

routing

Reactive

or

proac-

tive

routing

IPv6

used

QoS:

safe de-

livery

QoS:

data

priori-

ties

1 Habitats n CSMA n - - n n n

2 Minefield n CSMA y ? ? ? ? ?

3 Battlefield y CSMA y y proactive n y ?

4 Line in the sand y CSMA y y proactive n y n

5 Counter-sniper n CSMA y y proactive n n -

6 Electro-shepherd y CSMA - - - n y n

7 Virtual fences n CSMA y n - IPv4? n n

8 Oil tanker n CSMA y n - n y n

9 Enemy vehicles y CSMA y y proactive n n -

10 Trove game n CSMA n - - n n n

11 Elder RFID n CSMA n - - n n n

12 Murphy potatoes y CSMA y n proactive n n n

13 Firewxnet y CSMA y y proactive n y n

14 AlarmNet y CSMA y n ? n y y

15 Ecuador Volcano n CSMA y y proactive n y n

16 Pet game n CSMA y n ? n n n

17 Plug y CSMA y y ? n n n

18 B-Live ? ? n - - n ? ?

19 Biomotion y TDMA n - - n n n

20 AID-N ? ? y n proactive n y n

21 Firefighting n CSMA y,

static

n proactive n n n

22 Rehabil n CSMA n - - n n n

23 CargoNet y CSMA n - - n n n

. . .

146

A.2 Deployment survey detailed results

Table A.11 – continued

Nr Codename Custom

MAC

TDMA

or

CSMA

Routing

used

Custom

routing

Reactive

or

proac-

tive

routing

IPv6

used

QoS:

safe de-

livery

QoS:

data

priori-

ties

24 Fence monitor n CSMA? y y proactive? n n n

25 BikeNet y CSMA y y reactive n y n

26 BriMon y TDMA y y proactive n y n

27 IP net n CSMA y y proactive ? ? ?

28 Smart home ? ? y ? ? n ? ?

29 SVATS n CSMA y n ? n n n

30 Hitchhiker y TDMA y y reactive n y n

31 Daily morning n CSMA n - - n n n

32 Heritage y TDMA y y proactive n y y

33 AC meter n ? y n proactive y y n

34 Coal mine n CSMA y y proactive n y n

35 ITS y? CSMA? y y reactive n y n

36 Underwater y TDMA n - - n n n

37 PipeProbe n ? n - - n n n

38 Badgers n CSMA y y proactive y n y

39 Helens volcano y TDMA y ? ? n y y

40 Tunnels n CSMA y y proactive n n n

Table A.12: Deployments: used operating system and middleware

Nr Codename OS used Self-made

OS

Middleware used

1 Habitats TinyOS n

2 Minefield customized

Linux

n

3 Battlefield TinyOS n

4 Line in the sand TinyOS n

5 Counter-sniper TinyOS n

6 Electro-shepherd ? y

7 Virtual fences Linux n

8 Oil tanker ? n

9 Enemy vehicles TinyOS n

10 Trove game TinyOS n

11 Elder RFID TinyOS n

12 Murphy potatoes TinyOS n

13 Firewxnet Mantis y

14 AlarmNet TinyOS n

15 Ecuador Volcano TinyOS n Deluge [121]

16 Pet game TinyOS n Mate VM + TinyScript [?]

17 Plug custom y

18 B-Live custom y

19 Biomotion custom y

20 AID-N ? ?

21 Firefighting TinyOS n Deluge [121]?

22 Rehabil TinyOS n

. . .

147

A.2 Deployment survey detailed results

Table A.12 – continued

Nr Codename OS used Self-made

OS

Middleware used

23 CargoNet custom y

24 Fence monitor ScatterWeb y FACTS [177]

25 BikeNet TinyOS n

26 BriMon TinyOS n

27 IP net Contiki n

28 Smart home TinyOS n

29 SVATS TinyOS? n

30 Hitchhiker TinyOS n

31 Daily morning TinyOS n

32 Heritage TinyOS n TeenyLIME [64]

33 AC meter TInyOS n

34 Coal mine TinyOS n

35 ITS custom? y?

36 Underwater custom y

37 PipeProbe custom y

38 Badgers Contiki n

39 Helens volcano TinyOS n customized Deluge [121], remote procedure

calls

40 Tunnels TinyOS n TeenyLIME [64]

Table A.13: Deployments: software level tasks

Nr Codename Kernel

service

count

Kernel services App-

level

task

count

App-level tasks

1 Habitats 2 MAC, routing 1 sensing + caching to flash +

data transfer

2 Minefield ? linux services 11

3 Battlefield 2 MAC, routing 2 + 4 Entity tracking, status, mid-

dleware (time sync, group

mgmt, sentry service, dynamic

conf)

4 Line in the sand ? ? ? ?

5 Counter-sniper ? ? ? ?

6 Electro-shepherd ? - 1 sense and send

7 Virtual fences ? MAC 1 sense and issue warning (play

sound file)

8 Oil tanker 0 4 cluster formation and time

sync, sensing, data transfer

9 Enemy vehicles ? ? ? ?

10 Trove game 1 MAC 3 sense and send, receive, buzz

11 Elder RFID 1 MAC 2 query RFID, report

12 Murphy potatoes 2 MAC, routing 1 sense and send

13 Firewxnet 2 MAC, routing 2 sensing and sending, reception

and time-sync

14 AlarmNet ? ? 3 query processing, sensing, re-

port sending

. . .

148

A.2 Deployment survey detailed results

Table A.13 – continued

Nr Codename Kernel

service

count

Kernel services App-

level

task

count

App-level tasks

15 Ecuador Volcano 3 time sync, remote re-

program, routing

3 sense, detect events, process

queries

16 Pet game 2 MAC, routing ? sense and send, receive config

17 Plug 2 MAC, routing, radio

listen

2 sensing and statistics and re-

port, radio RX

18 B-Live ? ? 3 sensing, actuation, data trans-

fer

19 Biomotion 2 MAC, time sync 1 sense and send

20 AID-N 3 MAC, routing, trans-

port

3 query processing, sensing, re-

port sending

21 Firefighting 1 routing 2 sensing and sending, user input

processing

22 Rehabil 0? ? 1 sense and send

23 CargoNet 0? ? 1 sense and send

24 Fence monitor 2 MAC, routing 4 sense, preprocess, report, re-

ceive neighbor response

25 BikeNet 1 MAC 5 hello broadcast, neighbor dis-

covery and task reception,

sensing, data download, data

upload

26 BriMon 3 Time sync, MAC, rout-

ing

3 sensing, flash storage, sending

27 IP net ? ? ? ?

28 Smart home ? ? ? ?

29 SVATS 2 MAC, time sync 2 listen, decide

30 Hitchhiker 4 MAC, routing, trans-

port, timesync

1 sense and send

31 Daily morning 1 MAC 1 sense and send

32 Heritage ? ? ? ?

33 AC meter ? ? 2 sampling, routing

34 Coal mine 2 MAC, routing 2 receive beacons, send beacon

and update neighbor map and

report accidents

35 ITS 2 MAC, routing 1 listen for queries and sample

and process and report

36 Underwater 2 MAC, timesync 3 sensing + sending, reception,

motor control

37 PipeProbe 0? - 1 sense and send

38 Badgers 3 MAC, routing, UDP

connection establish-

ment

1 sense and send

39 Helens volcano 5 MAC, routing, trans-

port, time sync, remote

reprogram

5 sense, detect events, compress,

RPC response, data report

40 Tunnels 2 MAC, routing 1 sense and send

149

A.2 Deployment survey detailed results

Table A.14: Deployments: task scheduling

Nr Codename Time

sensitive

app-level

tasks

Preemptive

scheduling

needed

Task comments

1 Habitats 0 n sense + cache + send in every period

2 Minefield 7+ y complicated localization, network awareness and co-

operation

3 Battlefield 0 n

4 Line in the sand 1 ? n

5 Counter-sniper 3? n localization, synchronization, blast detection

6 Electro-shepherd ? ?

7 Virtual fences ? n

8 Oil tanker 1 y user-space cluster node discovery and sync is time crit-

ical

9 Enemy vehicles 0 n

10 Trove game 0 n

11 Elder RFID 0 n

12 Murphy potatoes 0 n

13 Firewxnet 1 y sensing can take up to 200ms, should be preemptive

14 AlarmNet 0 n -

15 Ecuador Volcano 1 y sensing is time-critical, but it is stopped, when query

received

16 Pet game 0 n

17 Plug 0 n

18 B-Live 0 y

19 Biomotion 0 y preemption needed for time sync and TDMA MAC

20 AID-N 0 n

21 Firefighting 0 n

22 Rehabil ? ?

23 CargoNet 0 n wake up on external interrupts, process them, return

to sleep mode

24 Fence monitor 0 n if preprocess is time-consuming, preemptive schedul-

ing needed

25 BikeNet 1 y sensing realized as app-level TDMA schedule and is

time-critical. Data upload may be time consuming,

therefore preemptive scheduling may be required

26 BriMon 0 n sending is time critical, but in MAC layer

27 IP net 0 ?

28 Smart home ? ?

29 SVATS 0 y preemption needed for time sync and MAC

30 Hitchhiker 0 y preemption needed for time sync and MAC

31 Daily morning 0 n

32 Heritage 1 y preemptive scheduling needed for time sync?

33 AC meter 0 n

34 Coal mine 0 n preemptive scheduling needed, if neighbor update is

time consuming

35 ITS 0 n

36 Underwater 0 y preemption needed for time sync and TDMA MAC

37 PipeProbe 0 n no MAC, just send

38 Badgers 0 n

39 Helens volcano 0 y preemption needed for time sync and MAC

40 Tunnels 0 n

150

A.2 Deployment survey detailed results

Table A.15: Deployments: time synchronization

Nr Codename Time-sync

used

Accuracy, µsec Advanced

time-sync

Self-made

time-sync

1 Habitats n - - -

2 Minefield y 1000 ? ?

3 Battlefield y ? n y

4 Line in the sand y 110 n y

5 Counter-sniper y 17.2 (1.6 per hop) y y

6 Electro-shepherd n - - -

7 Virtual fences n - - -

8 Oil tanker y ? n y

9 Enemy vehicles n - - -

10 Trove game n - - -

11 Elder RFID n - - -

12 Murphy potatoes n - - -

13 Firewxnet y >1000 n y

14 AlarmNet n - - -

15 Ecuador Volcano y 6800 y n

16 Pet game n - - -

17 Plug n - - -

18 B-Live n - - -

19 Biomotion y ? n y

20 AID-N n - - -

21 Firefighting n - - -

22 Rehabil n - - -

23 CargoNet n - - -

24 Fence monitor n - - -

25 BikeNet y 1ms? n, GPS n

26 BriMon y 180 n y

27 IP net ? ? ? ?

28 Smart home ? ? ? ?

29 SVATS y, not im-

plemented

- - -

30 Hitchhiker y ? n y

31 Daily morning n - - -

32 Heritage y 732 y y

33 AC meter n - - -

34 Coal mine n - - -

35 ITS n - - -

36 Underwater y ? ? y

37 PipeProbe n - - -

38 Badgers n - - -

39 Helens volcano y 1ms? n, GPS n

40 Tunnels n - - -

Table A.16: Deployments: localization

Nr Codename Localization

used

Localization

accuracy, cm

Advanced

Localization

Self-made

Localization

1 Habitats n - - -

2 Minefield y +/-25 y y

. . .

151

A.2 Deployment survey detailed results

Table A.16 – continued

Nr Codename Localization

used

Localization

accuracy, cm

Advanced

Localization

Self-made

Localization

3 Battlefield y couple feet n y

4 Line in the sand n - - -

5 Counter-sniper y 11 y y

6 Electro-shepherd y, GPS >1m n n

7 Virtual fences y, GPS >1m n n

8 Oil tanker n - - -

9 Enemy vehicles y ? n y

10 Trove game n - - -

11 Elder RFID n - - -

12 Murphy potatoes n - - -

13 Firewxnet n - - -

14 AlarmNet y room n, motion

sensor in

rooms

y

15 Ecuador Volcano n - - -

16 Pet game n - - -

17 Plug n - - -

18 B-Live n - - -

19 Biomotion n - - -

20 AID-N n - - -

21 Firefighting y <5m? n y

22 Rehabil n - - -

23 CargoNet n - - -

24 Fence monitor n - - -

25 BikeNet y, GPS >1m n n

26 BriMon n - - -

27 IP net n - - -

28 Smart home n - - -

29 SVATS y ? n, RSSI y

30 Hitchhiker n - - -

31 Daily morning y room n y

32 Heritage n - - -

33 AC meter n - - -

34 Coal mine y ? n, static y

35 ITS y, static ? n n

36 Underwater y ? n y

37 PipeProbe y 8cm y y

38 Badgers n - - -

39 Helens volcano n - - -

40 Tunnels n - - -

Table A.17: Deployments: remote access

Nr Codename Remote debug and

data access

Remote reprogram

1 Habitats n n

2 Minefield y y

3 Battlefield y y

. . .

152

A.2 Deployment survey detailed results

Table A.17 – continued

Nr Codename Remote debug and

data access

Remote reprogram

4 Line in the sand y y

5 Counter-sniper n n

6 Electro-shepherd ? n

7 Virtual fences ? ?

8 Oil tanker ? n

9 Enemy vehicles y y

10 Trove game n n

11 Elder RFID n n

12 Murphy potatoes n y

13 Firewxnet y, data n

14 AlarmNet y, remote queries y, reconfigure

15 Ecuador Volcano y y

16 Pet game n y

17 Plug n n

18 B-Live ? ?

19 Biomotion n n

20 AID-N y y

21 Firefighting y y?

22 Rehabil n n

23 CargoNet n n

24 Fence monitor n n

25 BikeNet n n

26 BriMon n n

27 IP net n n

28 Smart home ? ?

29 SVATS n n

30 Hitchhiker y n

31 Daily morning n n

32 Heritage ? y

33 AC meter y y

34 Coal mine y, queries n

35 ITS y, data n

36 Underwater ? ?

37 PipeProbe n n

38 Badgers ? ?

39 Helens volcano y y

40 Tunnels y y

153

B Hardware platform survey detailed

results

Table B.1: Sensor network motes designed in years 2010 and 2011

Year Affilation Country Mote name Mote class, application

2010 UC Berkeley USA Egs Medical applications

2010 Libellium Spain Wasp General purpose, with sensor exten-

stion boards for multiple applications

2010 Oracle Sun USA SunSPOT High level interface for programmers

without embedded system knowledge

2010 University of

Washington

USA SNUPI Ultra low-power home & office sensor

nodes with TX only

2010 TU Braunschweig Germany Akiba Rapid WSN prototyping

2010 MIT USA Cattle mote Cattle gathering

2010 USDA-

Agricultural

Research Service

USA Gen-II Precision agriculture

2010 Graz University of

Technology

Austria RiverMote River monitoring

2010 Nanjing University

of Aeronautics and

Astronautics

China Structural mote Structural monitoring

2010 Clarkson

University

USA WISAN mote Structural monitoring

2011 University of

Colima

Mexico Agro mote Precision agriculture

2011 Shenzhen Institute

of Advanced Tech-

nology

China BSN mote Body sensor network

154

Table B.2: Sensor network motes 2010-2011: MCU and memory

Mote name MCU name MCU

MHz

Arch,

bits

RAM,

KB

Program

flash, KB

Egs Atmel SAM3U2C, Cortex M3 96 32 36 128

Wasp Atmel ATMega1281 8 8 8 128

SunSPOT Atmel SAM9G20, ARM Thumb +

Atmel ATMega168V

400 + 8 32 + 8 1024 +

1

8192 + 16

SNUPI TI MSP430F2013, MSP430 16 16 0.128 2

Akiba Microchip PIC18F14K22, 8051 16 8 0.512 16

Cattle mote NXP LPC2148, ARM7 60 32 32 512

Gen-II Microchip PIC16F883, 8051 8 8 0.256 4

RiverMote TI MSP430F1611, MSP430 8 16 10 48

Structural mote TI MSP430F1611, MSP430 8 16 10 48

WISAN mote TI MSP430F1611, MSP430 8 16 10 48

Agro mote NXP LPC2148, ARM7 60 32 32 512

BSN mote TI MSP430F2418, MSP430 16 16 8 116

Table B.3: Sensor network motes 2010-2011: radio communication

Mote name Radio chip Radio frequency Radio standard

Egs Mitsumi WML-C46 + TI

CC2520

2.4 GHz Bluetoooth Class 2 + 802.15.4

Wasp XBee (Zibgee and RF alterna-

tives available)

2.4 GHz (433, 868, 915

MHz available)

802.15.4/Zigbee (FSK RF al-

ternatives)

SunSPOT TI CC2420 2.4 GHz 802.15.4

SNUPI Custom 27 MHz FSK

Akiba TI CC2500, wake-on-radio 2.4 GHz GFSK

Cattle mote Aerocomm AC4790 900 MHz FHSS

Gen-II Maxstream XBee 2.4 GHz 802.15.4

RiverMote MRF24J40MB 2.4 GHz 802.15.4

Structural mote TI CC2420 2.4 GHz 802.15.4

WISAN mote TI CC2420 2.4 GHz 802.15.4

Agro mote Maxstream XBee Pro 2.4 GHz 802.15.4

BSN mote Nordic nRF905 2.4 GHz 802.15.4

155

C MansOS

C.1 MansOS Execution models

Two application execution models are used in WSN operating systems:

• Event-based (asynchronous),

• Thread-based (synchronous).

Event-based model is simpler and requires less resources: no context switch is re-

quired between multiple simultaneously executing tasks, and single memory stack can be

shared among all the tasks to save RAM. On the other hand, this model is more challeng-

ing for the programmer, especially for one who is developing lengthy applications. For

event based execution, program flow is not reflected in the source code. The user has

to keep the system state explicitly in custom state variables. Each event of interest is

assigned a handler, that is called whenever the event occurs. Problems may arise when

there coexist time-critical and time-intensive tasks in the system - the latter may cause

the former to wait too long.

The benefits of thread-based model can be observed in application code, as it be-

comes easier to write and understand. On the other hand, this approach is not only

more heavyweight, but application execution becomes more difficult to trace, stack over-

flow errors as well as race conditions become possible, and the complexity of OS kernel

increases.

Taking all this into account, MansOS offers three scheduling models and lets the

user choose between:

• Manual event handling, straight in the interrupt context.

• Preemptive multi-threading.

• Cooperative event handling, wrapped in a multi-threading syntax.

156

C.1 MansOS Execution models

C.1.1 Event-based execution

This is the default implementation used in MansOS. In event-based execution model,

the user registers and implements event handlers or callbacks. Sample application using

event-based execution is shown in Figure C.1.

Radio receive
handler

Initialize
radio receive

handler

Send packet

Sleep

User and Kernel
shared context

Interrupt:
radio data
received

Buffer
received
packet

Process
received
packet

Interrupt context

User task
started

Figure C.1: Flowchart of MansOS application using event-based execution

model - transmission and reception of periodic data packets

Take software timers (named alarms in MansOS) as an example. Alarm callback

function pointers are put in a global list, ordered by alarm firing time. The list is processed

in the periodic timer interrupt handler, executed 100 times per second (user-configurable

value). Therefore, timers with precision up to 10 ms are available by default.

Similar callbacks can be registered for packet reception, whether serial or radio. User

callbacks are executed immediately after hardware signals arrival of new data, therefore

the smallest possible delay is guaranteed. However, user callback code is executed in

the interrupt context and can cause problems: if the execution blocks for too long new

interrupts the following can be missed; if the user code re-enables interrupts stack overflow

may occur due to cascaded interrupt handling. User and kernel code is executed in the

same context in the event-based model. There is no explicit task scheduler.

Energy efficiency in this model can be achieved by calling one of sleep() family

functions in application’s main loop.

157

C.1 MansOS Execution models

C.1.2 Threaded execution

MansOS uses prioritized thread implementation, where the kernel thread has the highest

priority. It is used for system event processing only and cannot be interrupted by user

threads, while user threads can interrupt each other. A timer is used to implement time-

sliced thread switching.

At least two threads are always created: a user thread and the kernel thread. Mul-

tiple user threads are optionally available. In the latter case, two scheduling policies are

available: round-robin, in which the least recently run user thread is always selected, and

priority-based, in which the thread with the highest priority is always selected (from all

threads that are ready to run).

Sample application using threaded execution is shown in Figure C.2.

Mutexes are available as means of synchronization. Sequential execution of two

threads can be implemented using a mutex.

Energy efficiency using threaded execution can be achieved by calling one of sleep()

functions in the main loops of every user thread. The system will enter low power mode

if no threads (including the kernel thread) are active.

Preemptive multithreading has two benefits. First, it allows users to write sequential

programs without implementing split-phase state machines with external variables to store

state of the machine (application). Second, it ensures equal time distribution between

multiple threads and may help in scenarios, where a time-intensive is blocking time-critical

thread. MansOS provides third alternative task scheduling approach using protothreads,

that offers the first above mentioned benefit of sequential thinking and code execution

without managing time-sliced context switch between multiple threads.

C.1.2.1 Cooperative proto-threads

Contiki protothreads approach [137] has proved itself as an effective tradeoff between

usability and resource efficiency. It provides an interface that looks sequential to pro-

grammers on top of scheduler with asynchronous event handling. Primitives called local

continuations are used to implement event handlers, called protothreads. Protothreads

may contain statements, that exit the thread function and reenter the handler again,

continuing code execution at the place where it previously left of, simulating an interface

of sequential execution.

MansOS borrows protothread scheduling approach by adapting Contiki OS code. A

sample application using protothreads is shown in Figure C.3

On top of protothreads, a process scheduling layer (also borrowed from Contiki

OS) is used. It includes scheduling of multiple processes, storing of incoming events and

158

C.1 MansOS Execution models

Transmission process

User context

Interrupt:
radio data
received

Set radio
process flag

Interrupt context Kernel context

Kernel
context
restored

Packet
received?

Schedule
user thread

Store packet
in buffer

Send packet

Sleep

Yield CPU to
other context

Interrupt:
timer

Switch to
kernel
context

Yes

No

Set packet
semaphore

Reception process

Wait packet
semaphore

Process packet

Figure C.2: Flowchart of MansOS application using preemptive threads - trans-

mission and reception of periodic data packets

159

C.1 MansOS Execution models

User context

Interrupt:
radio data
received

set radio
process flag

Interrupt context

Radio process

Kernel context

Initialize
processes

Check
process

flags

Choose
process to

run

Initialize process

Wait until flag
set

Store packet
in buffer

Set packet
semaphore

Transmission process

Initialize
process

Send packet

Sleep

Yield CPU to other
processes

Scheduler

Reception process

Initialize
process

Wait packet
semaphore

Process
received
packet

Figure C.3: Flowchart of MansOS application using cooperative proto-threads

- transmission and reception of periodic data packets

160

C.1 MansOS Execution models

passing them to processes. Inter-process communication may occur by passing an event

between two processes in either synchronous or asynchronous way. In the synchronous

case, the receiver process thread function is called directly. In the asynchronous case, an

event is stored in the waiting event list, and it is passed as a regular event to the receiving

process after all the previously received events are processed sequentially.

When using this execution model, all the processes share a common variable stack.

A cooperative scheduler is started in the kernel main function. It sequentially calls all

the processes that are listed in the active process list. The only mandatory process is

timer handling. All other processes are created in one of two ways: either in the platform

initialization code or in user application module (using specific autostart processes

data structure).

The benefit of using protothreads is increased efficiency - context switch occurs only

at moments when a process explicitly starts to wait for an event (such as timer expiration

or incoming radio packet) and passes execution to other processes. When all the processes

are waiting for an event, system may switch to low-power mode until an event is received.

When processes are programmed in a correct fashion, this execution model is also very

effective - no unnecessary context switches are performed and time-critical event handling

is ensured.

The drawbacks are mainly related to more responsibility enforced on the process

developer:

• Processes must be written very carefully. Otherwise a single incorrect process may

block execution of all the remaining processes. All device drivers are also imple-

mented as protothread processes, therefore a single user-space process may block

device driver execution.

• Only static variables should be used, as all the local variables stored on the stack are

reset each time the process re-enters the thread handler function after the reception

of an event. This requirement may introduce new software bugs, as the usage of

local variables is legal from syntax perspective and the compiler issues no warnings.

• Processes may call statements that wait for an event or simply yield control to other

processes only from the main process thread function (due to technical protothread

implementation details [137]).

• Programmers must include predefined keywords at the beginning (PROCESS BEGIN())

and end (PROCESS END()) of the process thread function. These macro-keywords

ensure some behind the scenes protothread technical requirements are met.

161

C.2 MansOS networking protocol stack

C.2 MansOS networking protocol stack

MansOS is a flexible WSN operating system, that allows users to access radio communi-

cation at multiple ISO Open Systems Interconnection (OSI) networking stack layers [52]:

physical, data link (MAC), and network. The following subsections describe each of these

layers.

C.2.1 Physical layer

The role of physical layer (PHY) is exchange of data bits using physical communication

link. In WSN case the communication link is wireless. Today commercial radio commu-

nication chips offer rich feature set, far beyond simple bit transmission. For example, TI

CC2420 radio chip also solves the framing problem (a link layer problem) by providing

data transmission and reception in whole packets. Data encryption using AES-128 [178]

is also available as an additional feature.

In PHY layer MansOS provides function radioSend(data, len) for data transmis-

sion. Reception in PHY layer is possible either using event-driven execution model and

handling callback function (set by radioSetReceiveHandle(callback)) directly in in-

terrupt context, or using cooperative execution model with blocking waitRadioPacket()

function.

The advantage of using directly PHY layer is high performance, that comes with

a price of user responsibility to write error-free data reception handlers and customized

networking logic.

C.2.2 MAC layer

In WSN context data link layer is usually reduced to MAC layer responsibility - choosing

of appropriate moments, when to send data. Encryption and framing is often already

solved in the PHY layer. Irregularities due to harsh environment and wireless low-power

communication specifics introduce many problems in sensor networks. Therefore opti-

mizations in MAC layer are far more important than in the global internet. Another

reason for the variety of MAC protocols used in WSNs is the lack of standardization.

IPv6 and its low-power implementation, 6lowpan, introduce restrictions in this context.

To provide interchangeability, MAC protocols are defined as data structure

MacProtocol t. It stores pointers to protocol functions init(), send(), poll(), and

several other internal routines.

Similarly to PHY layer, also in MAC layer MansOS provides data transmission

and reception callback functions. Nevertheless, in contrast to PHY, these functions are

162

C.2 MansOS networking protocol stack

executed outside interrupt context. Kernel handles packet reception and data buffer-

ing. MAC protocol’s poll() function is called in kerne thread context. User level data

transmission function is macSend(dstAddress, buffer, bufferSize). Data reception

handler setup: macProtocol.recvCb = radioDataHandler.

C.2.2.1 Network layer

MansOS network layer consists of two parts: routing and socket interface.

In networking layer MansOS implements Unix-like socket interface. Socket is opened

using socketOpen(Socket t *s, SocketRecvFunction *callback), bound to a partic-

ular port using socketBind(Socket t *socket, int port). Data is sent using

socketSetDstAddress(Socket t *s, MosShortAddr addr) to set destination node ad-

dress and socketSend(Socket t *s, void *data, int len) to execute the actual data

sending. And finally socket can be closed using socketClose(Socket t *s). Data re-

ception callback function is initialized in socketOpen() function and is called in kernel

context. Example application is shown in Listing C.1.

Listing C.1: MansOS socket application example - data is sent to base station, using

port 123, and received packet length is printed

1 #inc lude ” stdmansos . h”

#inc lude <net / socke t . h>

3

enum { DATA PORT = 123 , SLEEP TIME MS = 2000 } ;

5

s t a t i c void recvData (Socke t t ∗ socket , u i n t 8 t ∗data , u i n t 1 6 t l en) {
7 PRINTF(” got \%d bytes from 0x\%04x\n” ,

len , socket−>recvMacInfo−>o r i g i n a l S r c . shortAddr) ;

9 redLedToggle () ;

}
11

void appMain (void) {
13 Socke t t socke t ;

socketOpen(&socket , recvData) ;

15 socketBind(&socket , DATA PORT) ;

socketSetDstAddress (&socket , MOS ADDR ROOT) ;

17

u i n t 1 6 t counter ;

19 f o r (; ;) {
i f (socketSend(&socket , &counter , s i z e o f (counter))) {

21 PRINT(” socketSend f a i l e d \n”) ;

}
23 ++counter ;

mdelay (SLEEP TIME MS) ;

25 }
}

163

C.2 MansOS networking protocol stack

Routing allows data packets to be sent in multi-hop networks. MansOS interface for

routing protocol design is simple. To add a new routing protocol, only two functions must

be implemented: initRouting un routePacket(). Function routePacket() decides

what to do next with each received packet, and returns the decision as function return

value. MansOS platform-independent communication layer performs actions according to

routing protocol decision - either forwards or drops the packet.

164

D OOMOS

D.1 Object-oriented operating system advantages

This section summarizes advantages of creating object-oriented operating systems, as

described by Vincent Frank Russo, in 1991, in his PhD thesis on the creation of the

Choices OS [162]:

• Portability. Abstract classes is a convenient way to specify what functions are

required to develop a new platform or device driver.

• Code reuse. Improved by inheritance. New platforms may extend base classes,

override only required functions.

• Separation of policies from mechanisms. By creating hierarchies of classes and

requiring a particular non-leaf class as an interface, subclasses may change some

mechanisms, leaving the global policies intact.

• Optimizations by subclassing. Some algorithms may be implemented in multiple

ways. By changing the implementing class we can choose (even in runtime) which

dimension to optimize.

• Portability/Efficiency tradeoff. A more portable class may be used at start and

replaced by more efficient, yet more platform-specific, class later. For example,

bzero and bcopy functions of a MemoryBlock class may use platform-independent

loop at start and be replace by platform-specific instructions later.

• Easier unit-testing. Simple tests can be created by using interfaces provided by

objects and stub-implementations of member functions.

• Simpler synchronization and mutual exclusion. Each object holds its semaphores,

mutexes and other synchronization primitives inside it.

165

D.2 OOMOS source code examples

It is also noted, that the overhead imposed by C++ language is reasonable, and

efficient-enough implementations are possible, as it is shown in a research paper summa-

rizing Choices OS performance evaluation results [163].

D.2 OOMOS source code examples

Listing D.1: OOMOS interface example - ILogStream interface for data logging

to a stream, provides pure virtual functions logStreamOpen(), logStreamClose(), and

logStreamWrite(), which must be implemented by classes providing ILogStream interface

#inc lude < i f a c e / i f a c e . h>

2

c l a s s ILogStream {
4 pub l i c :

v i r t u a l e r r t logStreamOpen () = 0 ;

6 v i r t u a l e r r t logStreamClose () = 0 ;

v i r t u a l u i n t 1 6 t logStreamWrite (const void ∗buf , u i n t 1 6 t l en) = 0 ;

8 } ;

Listing D.2: OOMOS UART interface - abstract class that declares functions required

for objects implementing IUART interface, and also implements ILogStream interface

#inc lude < i f a c e / i l og s t r eam . h>

2 #inc lude <eventhandler . h>

4 c l a s s IUART : pub l i c ILogStream {
pub l i c :

6 //−−−
// IUART i n t e r f a c e d e c l a r a t i o n

8 //−−−
v i r t u a l e r r t i n i t U a r t (u i n t 3 2 t speed) = 0 ;

10 v i r t u a l e r r t uartEnableTx () = 0 ;

v i r t u a l e r r t uartDisableTx () = 0 ;

12 v i r t u a l void uartTxByte (u i n t 8 t b) = 0 ;

v i r t u a l e r r t uartEnableRx () = 0 ;

14 v i r t u a l e r r t uartDisableRx () = 0 ;

v i r t u a l e r r t uartSetRxHandler (EventHandler ∗ handler) = 0 ;

16

//−−−
18 // ILogStream i n t e r f a c e implementation

//−−−
20 v i r t u a l e r r t logStreamOpen () { r e turn uartEnableTx () ; }

v i r t u a l e r r t logStreamClose () { r e turn uartDisableTx () ; }
22 v i r t u a l u i n t 1 6 t logStreamWrite (const void ∗buf , u i n t 1 6 t l en) ;

} ;

Listing D.3: OOMOS radio interface - abstract class that declares functions required

for objects implementing IRadio interface, and also implements ILogStream interface

166

D.2 OOMOS source code examples

1 #inc lude ” i f a c e / i l og s t r eam . h”

#inc lude <eventhandler . h>

3

c l a s s IRadio : pub l i c ILogStream {
5 EventHandler ∗ eventHandler ;

pub l i c :

7 //−−−
// IRadio i n t e r f a c e d e c l a r a t i o n

9 //−−−
v i r t u a l e r r t i n i t () = 0 ;

11 v i r t u a l e r r t send (const void ∗data , u i n t 1 6 t l en) = 0 ;

v i r t u a l e r r t enableRx () = 0 ;

13 v i r t u a l void disableRx () = 0 ;

v i r t u a l i n t 1 6 t packetRecv (void ∗buf , u i n t 1 6 t l en) = 0 ;

15

// Received data handl ing

17 void setRece iveHandler (EventHandler ∗eh) { eventHandler = eh ; }
void onPacketRx () {

19 i f (eventHandler) eventHandler−>handleEvent (E RADIO RX) ;

}
21

//−−−
23 // ILogStream i n t e r f a c e implementation

//−−−
25 v i r t u a l e r r t logStreamOpen () { r e turn ERR OK; }

v i r t u a l e r r t logStreamClose () { r e turn ERR OK; }
27 v i r t u a l u i n t 1 6 t logStreamWrite (const void ∗buf , u i n t 1 6 t l en) {

r e turn send (buf , l en) ;

29 }
} ;

Listing D.4: OOMOS CC2420 device driver (partial) - class acts as generic radio chip

by providing IRadio interface, and handles GPIO pin interrupts by provided IEventHandler

interface. Uses ISPI, IMCU, and IGPIO interfaces.

#inc lude < i f a c e / i r a d i o . h>

2 #inc lude <eventhandler . h>

#inc lude < i f a c e / i s p i . h>

4 #inc lude < i f a c e /imcu . h>

#inc lude < i f a c e / i g p i o . h>

6

c l a s s CC2420 : pub l i c IRadio , pub l i c EventHandler {
8 ISPI ∗ s p i ;

IMCU ∗mcu ;

10 IGPIO ∗ gpio ;

pub l i c :

12 //−−−
// IRadio i n t e r f a c e

14 //−−−
v i r t u a l e r r t i n i t () ; // I n i t i a l i z e rad io

16 v i r t u a l e r r t enableRx () ; // Enable r e c e p t i o n

v i r t u a l void disableRx () ; // Disab le r e c e p t i o n

18 v i r t u a l e r r t send (const void ∗data , u i n t 1 6 t l en) ;

// Store r e c e i v e d packet in b u f f e r

20 v i r t u a l i n t 1 6 t packetRecv (void ∗buf , u i n t 1 6 t l en) ;

167

D.2 OOMOS source code examples

22 //−−−
// EventHandler i n t e r f a c e

24 //−−−
// GPIO i n t e r r u p t handl ing c a l l b a c k

26 v i r t u a l e r r t handleEvent (Event t event , void ∗data = NULL,

u i n t 1 6 t dataLen = 0) ; // Handle RX packet event

28 } ;

Listing D.5: OOMOS TelosB platform initialization (partial) - interface providers

are defined and wired using standard C++ syntax, without additional configuration files

(present in TinyOS)

e r r t Telosb : : i n i t () {
2 // . . .

// bind MCU GPIO and LED components

4 l e d s . setGpio (mcu . getGPIO ()) ;

l e d s . setCount (3) ; // 3 l e d s on TelosB : red , green , b lue

6 l e d s . setLedPin (0 , LEDS RED PORT, LEDS RED PIN , LEDS ON HIGH) ;

l e d s . setLedPin (1 , LEDS GREEN PORT, LEDS GREEN PIN, LEDS ON HIGH) ;

8 l e d s . setLedPin (2 , LEDS BLUE PORT, LEDS BLUE PIN , LEDS ON HIGH) ;

// I n i t i a l i z e LED component

10 e r r t e = l e d s . i n i t () ;

i f (e != ERR OK) return e ;

12 // . . .

// I n i t i a l i z e rad io module

14 rad io . setMcu(&mcu) ;

rad io . s e t S p i (mcu . getSp i (RADIO SPI ID)) ;

16 e = rad io . i n i t () ;

i f (e != ERR OK) return e ;

18 // . . .

r e turn ERR OK;

20 }

Listing D.6: OOMOS interface for abstract hardware platform - declares manda-

tory API as pure-virtual functions and optional API as virtual functions with default

(empty) implementation

#inc lude < i f a c e /imcu . h>

2 #inc lude < i f a c e / i l e d s . h>

#inc lude < i f a c e / iadc . h>

4 #inc lude < i f a c e / i r a d i o . h>

#inc lude < i f a c e / i s t o r a g e . h>

6

c l a s s IPlat form {
8 pub l i c :

10 // −−−
// Mandatory API

12 // −−−
v i r t u a l e r r t i n i t () = 0 ;

14 // Delays

v i r t u a l void udelay (u i n t 1 6 t us) = 0 ; // in microseconds

168

D.2 OOMOS source code examples

16 v i r t u a l void mdelay (u i n t 1 6 t ms) = 0 ; // in m i l l i s e c o n d s

v i r t u a l void de lay (u i n t 1 6 t s) = 0 ; // in seconds

18 v i r t u a l u i n t 3 2 t g e t U p t i m e J i f f i e s () ; // uptime in MCU j i f f i e s

v i r t u a l u i n t 3 2 t getUptimeMs () = 0 ; // uptime , in m i l l i s e c o n d s

20 // Run a c a l l b a c k func t i on a f t e r j f c l o ck j i f f i e s

v i r t u a l e r r t scheduleTimer (j i f f i e t j f , TimerCal lback t handler) = 0 ;

22 // Return s l eep , i f the plat form can switch to s l e e p mode at the moment

v i r t u a l bool canSleep () { r e turn true ; }
24 v i r t u a l void enterSleepMode () = 0 ;

26 // −−−
// Common, yet op t i ona l API

28 // −−−
v i r t u a l IMCU ∗getMCU() { r e turn 0 ; } // PC may not have i t

30 v i r t u a l IADC ∗getAdcModule () { r e turn 0 ; }
v i r t u a l IRadio ∗getRadio () { r e turn 0 ; }

32 v i r t u a l ILEDs ∗getLEDs () { r e turn 0 ; }
v i r t u a l IUART ∗ getPr intUart () { r e turn 0 ; }

34 v i r t u a l IS to rage ∗ getStorage () { r e turn 0 ; }
// Sensors

36 v i r t u a l u i n t 1 6 t readLight () { r e turn 0 ; }
v i r t u a l u i n t 1 6 t readInternalTemp () { r e turn 0 ; }

38 v i r t u a l u i n t 1 6 t readTemperature () { r e turn 0 ; }
v i r t u a l u i n t 1 6 t readHumidity () { r e turn 0 ; }

40 v i r t u a l u i n t 1 6 t readAccelX () { r e turn 0 ; }
v i r t u a l u i n t 1 6 t readAccelY () { r e turn 0 ; }

42 v i r t u a l u i n t 1 6 t readAccelZ () { r e turn 0 ; }
} ;

Listing D.7: OOMOS protocol interface and base class prototypes -

1

#inc lude < i f a c e / i f a c e . h>

3

c l a s s IPro toco l {
5

pub l i c :

7 /∗∗
∗ I n i t i a l i z e p ro to co l . Run t h i s method AFTER s e t t i n g a l l subcomponents !

9 ∗/

v i r t u a l e r r t i n i t () = 0 ;

11

/∗∗
13 ∗ I n i t i a l i z e p ro to co l r e l a t i o n s , s e t p r o t o c o l s that

∗ w i l l be r i g h t above/under t h i s one

15 ∗/

v i r t u a l void s e t R e l a t i o n s (IPro toco l ∗ topProto , IPro toco l ∗bottomProto) = 0 ;

17

/∗∗
19 ∗ Return header s i z e (in bytes) that t h i s p ro to co l w i l l add to packet b u f f e r

∗/

21 v i r t u a l u i n t 8 t getHeaderS ize () = 0 ;

23 /∗∗
∗ Process a packet and push i t up in the networking p ro to co l s tack

25 ∗ (forward i t to the next p ro to co l r i g h t above t h i s one)

169

D.2 OOMOS source code examples

∗/

27 v i r t u a l void pushUp (PacketBuf fer ∗ packet) = 0 ;

29 /∗∗
∗ Process a packet and p u l l i t down in the networking p ro to co l s tack

31 ∗ (forward i t to the next p ro to co l r i g h t under t h i s one)

∗/

33 v i r t u a l void pullDown (PacketBuf fer ∗ packet) = 0 ;

} ;

35

/∗∗
37 ∗ Abstract base c l a s s f o r p r o t o c o l s . Implements r e l a t i o n s with top and

∗ bottom p r o t o c o l s

39 ∗/

c l a s s Abst ractProtoco l : pub l i c IPro toco l {
41 protec ted :

IPro toco l ∗ topProto , ∗bottomProto ;

43 pub l i c :

v i r t u a l void s e t R e l a t i o n s (IPro toco l ∗tp , IPro toco l ∗bp) {
45 th i s−>topProto = tp ;

th i s−>bottomProto = bp ;

47 }
} ;

170

	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Project experience
	1.2 Scope and motivation
	1.3 Contribution of the thesis
	1.4 Related work
	1.5 Summary and thesis outline

	2 Sensor network software abstractions
	2.1 Operating systems
	2.1.1 MansOS
	2.1.2 TinyOS
	2.1.3 Contiki
	2.1.4 LiteOS
	2.1.5 Mantis
	2.1.6 Arduino

	2.2 Middleware
	2.3 Summary

	3 Deployment survey
	3.1 Methodology
	3.2 Survey results
	3.2.1 Deployment state and attributes
	3.2.2 Sensing
	3.2.3 Lifetime and energy
	3.2.4 Sensor motes
	3.2.5 Sensor mote: microcontroller
	3.2.6 Sensor mote: external memory
	3.2.7 Communication
	3.2.8 Network
	3.2.9 Networking stack
	3.2.10 Operating system and middleware
	3.2.11 Software level tasks
	3.2.12 Task scheduling
	3.2.13 Time synchronization
	3.2.14 Localization
	3.2.15 Real-time data access
	3.2.16 Discussion of future trends
	3.2.17 Summary

	4 Sensor network software design rules
	4.1 Problem identification
	4.1.1 Portability and usability
	4.1.2 Wireless communication
	4.1.3 Services and efficiency

	4.2 Design rule definition
	4.2.1 Communication
	4.2.2 Portability
	4.2.3 Task scheduling
	4.2.4 Services
	4.2.5 User support

	4.3 Addressing problems by rules
	4.3.1 Portability and usability
	4.3.2 Wireless communication
	4.3.3 Services and efficiency

	4.4 Summary

	5 Design rule impact on existing systems
	5.1 Impact on deployments
	5.2 Impact on operating systems
	5.2.1 TinyOS
	5.2.2 Contiki
	5.2.3 LiteOS
	5.2.4 Mantis
	5.2.5 MansOS
	5.2.6 Arduino
	5.2.7 Summary

	5.3 Use case study: wearable sensor network
	5.3.1 Research problem
	5.3.2 Approach
	5.3.3 Sensor network aspects
	5.3.4 System prototype
	5.3.4.1 Hardware components
	5.3.4.2 Software components

	5.3.5 Prototype conformance to design rules
	5.3.5.1 Communication
	5.3.5.2 Portability
	5.3.5.3 Task scheduling
	5.3.5.4 Services
	5.3.5.5 User support

	5.3.6 Improvements by matching design rules
	5.3.6.1 Network lifetime extension
	5.3.6.2 Multi-hop communication
	5.3.6.3 Multitasking support

	5.3.7 Use case summary

	5.4 Summary

	6 New operating system design according to rules
	6.1 OOMOS' advantages over MansOS
	6.2 Object-oriented programming for WSNs
	6.3 OOMOS implementation
	6.3.1 Portability
	6.3.2 Scheduling
	6.3.3 Services and API
	6.3.4 Summary

	6.4 OOMOS evaluation
	6.4.1 RAM and flash memory usage
	6.4.2 Performance
	6.4.2.1 Sensor sampling performance
	6.4.2.2 Wireless data transmission performance
	6.4.2.3 Wireless data reception performance

	6.4.3 Optimizations
	6.4.4 Portability
	6.4.5 Object-orientation overhead

	6.5 Future work according to design rules
	6.5.1 Networking protocol stack
	6.5.2 Services and scheduling

	6.6 Summary

	7 Conclusion
	References
	Appendices
	A WSN deployments
	A.1 Application taxonomy
	A.2 Deployment survey detailed results

	B Hardware platform survey detailed results
	C MansOS
	C.1 MansOS Execution models
	C.1.1 Event-based execution
	C.1.2 Threaded execution
	C.1.2.1 Cooperative proto-threads

	C.2 MansOS networking protocol stack
	C.2.1 Physical layer
	C.2.2 MAC layer
	C.2.2.1 Network layer

	D OOMOS
	D.1 Object-oriented operating system advantages
	D.2 OOMOS source code examples

