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ABSTRACT

The main topic of this PhD thesis is the mathematical analysis of problems in non-
destructive testing by eddy currents. Non-destructive testing methods are widely used in the
industry for quality control of products and materials. The term “non-destructive testing”
usually refers to inspection methods for testing properties of materials and the quality of
products without damaging or impairing the test objects.

Since many high-technology devices operate under extreme temperature and pressure
conditions, or come into prolonged contact with chemically active materials, etc., it is
important to develop non-destructive testing methods which ensure their safety and reliability.
In fact, the main objective of non-destructive testing is to decide whether a device (or
material) can successfully perform specified functions. Perfect devices or materials are rare.
From a practical point of view, a material is considered to be of good quality if its parameters
lie within specified tolerances. Therefore, the purpose of non-destructive testing can be
formulated in the following way: to determine whether the relevant parameters of a material
(or characteristics of a device) lie within prescribed limits.

Among the non-destructive testing methods in use today, are the following: X-rays,
Messbauer analysis, neuron activation, ultrasound, acoustic emission, microwaves, dielectric
spectroscopy, and eddy currents.

Eddy current testing has its origins with Michael Faraday’s discovery of electromagnetic
induction in 1831. Nowadays eddy current testing devices are widely used for quality control
of electrically conducting objects, such as metals, alloys and semiconductors. As early as
1879, Hughes recorded changes in the properties of an exciting-sensing coil placed in contact
with metals of different conductivity and permeability. However, practical use of these effects
in testing quality of materials started only after the Second World War. In the industry eddy
current devices are used, for example, to control the size of products, to measure the diameter
of wires and tubes, the thickness of walls and metal sheets. They are widely used to control
the thickness of metal covering and the thickness of layers in multiplayer products. They can
also be used to estimate the rate of destructive corrosion.

Another widespread field of applications of eddy current methods is the detection of
flaws in materials: cracks, fiberings and non-metallic inclusions. Flaw detection is very
important in the transport industry, including aircraft, ship and automobile. Another important

application is the quality control of spot welding. Eddy current methods are widely used in the



nuclear industry and, in particular, to determine flaws and the thickness of walls in heat
exchanger tubes.

Devices for non-destructive inspection in engineering are based on either theoretical or
experimental research. Experiments are often used to develop the theory for particular cases.
However, in many cases the problem of interest contains many parameters and it may be
difficult to “connect” the output signal of a specific coil to the parameters of the flaw in a
conducting medium.

Moreover, the necessity to have a theoretical generalization of experimental data, on the
one hand, and analytical difficulties, on the other hand, incites one to consider particular cases
for only some range of the parameters. In this case, the obtained results can have only a
limited domain of applicability. In addition, it is often extremely difficult to interpret,
numerically or graphically, the obtained solution of the problem. This happens if the solution
contains integrals that cannot be expressed in terms of elementary or special, tabulated
functions. However, these difficulties are overcome by approximating the solution.

Analytical solutions for the simplest cases have been derived and associated computer
programs have been developed. But in order to solve more complicated problems one uses
different approximation methods. In practice, one needs only know some integral
characteristics of the solution, which, in some cases, can be expressed in terms of
computationally suitable formulas.

In general, eddy current testing problems depend on several parameters. The use of
mathematical models, along with the exact form of the solution, facilitates the study of the
influence of these parameters on the output characteristics of the signal and on the testing
process. Such a task may be costly and difficult, if at all possible, to achieve experimentally.

The present thesis represents a theoretical study on non-destructive inspection problems.
In particular, summarizing all the above-mentioned problems, the thesis is devoted to the
methods of solving eddy current testing problems and getting ways to simplify the obtained
solutions in order to make them more adaptable to computer calculations and engineering
practice. Mathematical methods are used in the thesis to solve several direct problems related
to eddy current testing of conducting materials. One of the obstacles in using mathematical
models of eddy current testing in engineering practice is the complexity of solutions. The
approximate solutions developed in this thesis allow one to implement the results in eddy
current testing. In addition, the simplified forms of the obtained solutions can be successfully
used to solve important practical inverse problems in eddy current testing.



This thesis is divided into four parts. The first part describes the physics of eddy current
testing method, the detailed derivation of the basic equations for the vector potential and its
boundary conditions, and introduces the meaning of the induced change in impedance. The
basic equations are Maxwell’s equations for a linear, isotropic and homogeneous medium. By
introducing the vector-potential, Maxwell’s equations lead to Helmholtz’ equation for the
vector potential. Generally, in the literature on formulating the vector potential problem, the
form of the vector potential (i.e. the number of non-zero components and dependent variables)
and, consequently, its boundary conditions are taken into account only by considering the
symmetry of the problem (for example, the geometry of the source of current) or even without
any derivation. Thus, the detailed derivation of the structure of the vector potential seems to
have been done only in the present thesis (see also the author’s paper [36]) for the few mostly
cases used in the literature. The form and the number of non-zero components of the vector
potential are determined for the following cases: a double conductor line, a wire of finite
length, and a single-turn coil above a uniform conducting half-space. As a generalization of
these cases, the vector potential problem is formulated for a wire of an arbitrary form located
in a vertical plane above a uniform conducting half-space.

The second part of this thesis considers exact analytical solutions to problems on
electromagnetic waves spreading from emitters of different forms. It includes the integral
representation of the solution for Helmholtz’ vector equation in arbitrary orthogonal
curvilinear coordinates; an exact analytical solution to the vector potential problem of a
rectangular frame with current, and an exact solution to the vector potential problem of a wire
of an arbitrary form with given current. Since Helmholtz’ vector equation describes the eddy
current problems, the integral representation of the solution to this equation is very important.
In the integral representation of the solution to Helmholtz’ vector equation known in the
literature (see [59]), the vector potential of the electromagnetic field is expressed in terms of a
triple integral of the product of the external current vector and the fundamental solution of
Helmholtz’ scalar equation. This representation has its simplest form in rectangular
coordinates where the unit vectors € ,€ ,€, do not depend on the spatial coordinates. In the
applications, other coordinate systems are also used. In the present thesis (see also the
author’s papers [17], [18]), the integral representation of the solution to Helmholtz’ vector
equation is obtained for a system of arbitrary orthogonal curvilinear coordinates where the
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of the obtained representation, the integral representations of the solution to Helmholtz’
vector equation are found for cylindrical and spherical coordinates.

The obtained representation of the solution to Helmholtz’ vector equation is used in this
thesis for the vector potential problems of a rectangular frame with current and of a wire of
arbitrary form with given current. The reaction of a conducting half-space to a rectangular
frame with current has been studied theoretically only in the case where the ratio of the
frame’s sides is 1:4 or smaller. In this case, a double conductor line is considered as a
convenient and sufficiently accurate model of the rectangular frame. In this thesis (see also
the author’s paper [13]), an exact solution to the vector potential problem of the
electromagnetic field induced by a rectangular frame with current is obtained without using
any double conductor line approximation. Due to the linearity of the problem it is sufficient to
find the vector potential of the electromagnetic field created by one side of the frame having
the form of a straight segment and by the other side having the form of a circular arc.
Different formulas known in the literature can be obtained from particular cases of the
presented solutions. Note that in the literature the problem of electromagnetic waves
spreading from a linear harmonic emitter is only solved in the so-called dipole approximation.
The dipole approximation is used for the analysis of electromagnetic waves spreading under
the assumption that the waves’ length is much greater than the emitter’s length. In non-
destructive testing problems, however, the size of a defect situated in a conducting medium
may be compared with the emitter’s length, I, or it may be even larger than |. Hence, non-
destructive testing methods require solutions to the problem of electromagnetic waves
spreading from a linear harmonic emitter without using the dipole approximation. The
solution is presented in this thesis (see also the author’s paper [13]).

In the same section (see also the author’s paper [15]), an exact solution is obtained for the
problem of electromagnetic waves spreading from a wire of finite length having an arbitrary
form. Writing the equation for the curve describing the wire in cylindrical polar and Cartesian
coordinates, and using Helmholtz’ equation and the integral representation of its solution, we
obtain the solution in the form of a single definite integral of an elementary function.
Moreover, using the obtained solution, some new formulas for electromagnetic waves
spreading are also found for the particular cases of a wire in the form of Archimedes’s spiral,
of an elliptical or circular helix and in the form of fractals. The case of a fractal wire is
interesting for antenna analysis in radio engineering.

The third part of this thesis is devoted to the analysis of the impedance change in

homogeneous conducting media. Analyzing the influence of a uniform or non-uniform
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conducting media with different geometries on a source of current, that has the form of a
double conductor line or a single-turn coil, one obtains the solution for the induced impedance
change in terms of improper integrals (see [6]), whose integrands are either combinations of
irrational and trigonometric functions, or combinations of irrational and Bessel functions, so
that the two classes of definite integrals can be separated. In this thesis (see also the author’s
papers [12], [8]), these new classes of definite integrals are evaluated in closed form by means
of divergent integrals that converge in the sense of Abel [4]). Only one particular case of these
integrals is known in the literature (see [48]), where the method used is also appropriate only
for that case.

Particular cases of these integrals have been used for the evaluation of impedance change
in the cases of a double conductor line and a single-turn coil located on the surface of a
conducting half-space. In the case of a double conductor line, the expression for the
impedance change has been evaluated in closed form, but in the case of a single-turn coil, the
expression for the impedance has been transformed into the simpler form of a fast-convergent
series. Furthermore, simple asymptotic formulas for the impedance of arbitrarily located
double lines and coils are obtained in the limit as the frequency tends to infinity. These results
are presented in the thesis (see also the author’s papers [9], [7]).

The change in impedance of a rectangular frame with current inside a conducting
cylindrical tube has been studied theoretically only in the double conductor line
approximation (see [6]). In this thesis (see also the authors’ papers [14], [35]), the exact
analytical solution of a similar problem is obtained without using any approximation. As a
possible application, the obtained solution can be used to determine the wall thickness of a
tube directly under the frame for the case of non-concentric wall’s surfaces.

Finally, the fourth part of this thesis is devoted to some problems on the impedance
change of media containing flaws (or defects). The exact analytical solution for the problem
of the influence of a conducting medium with an arbitrary flaw on a source of current is not
known. Therefore, since 1960 different approximate analytical and numerical methods for
such problems have been used. Different approximate methods — two methods of additional
currents — are developed in this thesis (see also the author’s papers [10], [11], [34]). The
presence of additional currents in the region of a flaw is assumed by the first method. The
direction of this current is opposite to the direction of the eddy current that flows in the same
region in the absence of the flaw. The additional currents used in the second method are

chosen so that the differential equation for a uniform conducting medium is transformed into



a differential equation for the flaw. This problem has an exact analytical solution that allows
one to estimate the error of both methods.

The next two sections are devoted to the proof of a new exact analytical formula for the
impedance change and a well-known formula in the literature. The derivation of the new
formula is based on Green’s formula while the Lorentz theorem is used for obtaining the other
formula.

In the literature, the formula for the induced change in impedance, describing the
influence of a conducting medium with a flaw of arbitrary shape on a source of current, seems
to have been used before without a rigorous proof. In the present thesis (see also the author’s
papers [19], [37], [38]), this formula is analytically proved and its correctness is analyzed.
The formula has the form of a triple integral of a scalar product of amplitude electric field
vectors.

The new formula for the impedance change has been found in the present thesis (see also
the author’s papers [16], [19], [34], [37]). This new formula has the form of a triple integral of
a scalar product of two vector potentials: the vector potential in the flaw and the vector
potential in the same region in the absence of the flaw over the region containing the flaw.

The equivalence of these two formulas was proved (see the author’s papers [19], [37]).
However, since analytical solutions of many problems contain the expressions for the vector
potential, then the newly obtained formula is more convenient for calculations than the well-

known formula.



ANOTACIJA

Promocijas darba galvena t€ma ir nesagraujosas kontroles problému matematiska analize
ar virpulstravu metodes izmantoSanu. Nesagraujosas kontroles metodes plasi izmanto
industrija, lai kontrolétu produkcijas un materialu kvalitati. “Nesagraujosas kontroles” termins
attiecas uz inspekcijas metodém, lai test€tu materialu ipaSibas un produkcijas kvalitati bez
test€jama objekta salausanas vai sabojasanas.

Ta ka daudzas augstas tehnologijas ierices strada ekstremalos temperatiiras un spiediena
apstaklos vai atrodas ilgstosa kontakta ar kimiski aktiviem materialiem, ir svarigi attistit
nesagraujosas kontroles metodes, kuras nodroSina ieri¢u darbibu un drosibu. Faktiski,
nesagraujosas kontroles galvenais mérkis ir noteikt, vai ierice (jeb materials) var sekmigi
veikt specifiskas funkcijas. Idealas ierices vai materiali ir reti sastopami. No praktiska
viedokla skatoties, materialu uzskata par labas kvalitates, ja ta parametri atrodas noteikta
pielaujama diapazona. Tap&c nesagraujosas kontroles galveno meérki var formulét sekojosa
veida: noteikt, vai materiala attiecigie parametri (jeb ierices raksturojums) atrodas uzdotas
robezas.

Sodienas nesagraujoias kontroles metozu teorija atskir sekojo$as metodes:
rentgenoskopijas analize, Mesbauera analize, neirona aktivizacijas, ultraskana, akustiska
emisija, mikrovilni, dielektriska spektroskopija, un virpulstrava.

Virpulstravu kontroles pamati nak no Maikla Faradeja laikiem, kad vins atklaja
elektromagnétisko indukciju 1831. gada. Miusdienas virpulstravu ierices plasi izmanto, lai
kontrolétu kvalitati tadiem elektribu vadoSiem objektiem ka metali, sakaus€jumi un
pusvaditaji. Jau 1879. gada Hugs registr&jis pasibu izmainas ierosmes-zondésanas spolg, kura
tika novietota kontakta ar metaliem ar dazadu vadamibu un caurlaidibu. Bet, lai testétu
materialus, Sos efektus saka izmantot praktiski tikai p&c otra pasaules kara. Industrija
virpulstravu ierices izmanto, pieméram, lai kontrolétu produktu izméru, lai méritu vadu un
caurulu diametru, lai noteiktu biezumu sienam un metala platném. Tas ar1 plasi izmanto, lai
kontrolétu metala segumu biezumu un slanu biezumu daudzslangu vidé. Tadas ierices var ari
izmantot, lai noverttu postosas korozijas atrumu.

Cita plasa sfera virpulstravu metozu pielietoSanai ir defektu atraSana metalos, t.i. plisumi,
noslanoSanas un nemetala defekti. Defektu atraSana ir loti svariga transporta industrija,
ieskaitot lidmasinas, kugus un automasinas. Loti svarigs pielietojums ir punktu metinaSanas
kvalitates kontrole. Virpulstravu metodes plasi izmanto kodolindustrija un, pieméram, lai

atrastu defektus un noteiktu sienu biezumu siltumapmainu caurulém.



InZenierzinatn€s nesagraujosas kontroles iericu darbiba balstas vai nu uz teorétiskiem
petijumiem, vai arl uz eksperimentiem. Eksperimentus biezi izmanto, lai attistitu teoriju
atseviskiem gadijumiem. Tomer daudzos gadijumos probléma satur vairakus parametrus un ir
griti saistit no specialas spoles izejoSo signalu ar defekta parametriem, ja defekts atrodas
elektribu vadosa vide.

Turklat, eksperimentalo datu teorétiska visparinajuma nepiecieSamiba no vienas puses un
analitiska risindjuma griitibas no otras puses piespiez aplikot atseviSskus gadijumus ar dazu
parametru diapazonu. Saja gadijuma iegiitiem rezultatiem biis pielietojums tikai ierobeZota
sfera. Pie tam, biezi ir loti gruti interpretét, skaitliski vai grafiski, problémas iegiito
atrisinajumu. Tas notiek, ja atrisindjums satur integralus, kurus nav iesp&jams izteikt ar
elementaro vai specialo tabulas funkciju integraliem. Bet S§is gritibas ir parvaramas ar
atrisinajuma aproksimaciju.

Ir iegiiti analitiski atrisinajumi vienkar$akajiem gadijumiem un izstradata atbilstoSa
programmatiira. Bet, lai risinatu sarezgitas problémas, izmanto dazadas aproksimacijas
metodes. Tacu praktiski nepiecieSams zinat tikai dazas ipaSibas atrisindjumam, kuru
atseviskos gadijumos var izteikt datoram piemérotu formulu veida.

Vispar, virpulstravu kontroles problémas ir atkarigas no daziem parametriem.
Matematisko modelu izmantoSana kopa ar precizo atrisinajumu atvieglo pétijumu par So
parametru ietekmi uz signala izejoSajam 1paSibam un uz test€Sanas procesu. Tads uzdevums
var but dargs un sarezgits vai vispar nav sasniedzams eksperimentali.

Dotais promocijas darbs ir teorgtisks p€tijums par nesagraujosas kontroles problémam.
Konkréti, apkopojot visas iepriek§ minétas problémas, promocijas darbs ir veltits virpulstravu
kontroles problému risinasanas metodém, ka ari metodém, kas palidz vienkarSot iegito
problému atrisinajumus, lai adaptetu pedgjos skaitliskiem aprékiniem datora un praktiskiem
pielietojumiem inzenierzinatnés. Matematiskas metodes $aja promocijas darba ir izmantotas,
lai risinatu dazas tieSas problémas, kas saistitas ar virpulstravu kontroli materialiem ar
vadamibu. Viens no virpulstravu kontroles matematisko modelu izmantoSanas iemesliem
inzenieru praks€ ir atrisinagjumu sarezgitiba. Tuvinati atrisinajumi, kas iegiti Saja darba, dod
iesp&ju iegiit rezultatus virpulstravu kontrolg€. Pie tam, iegito atrisinajumu vienkarSotas
formas var tikt sekmigi izmantotas, lai risinatu svarigas praktiskas inversas problémas
vilpulstravu kontrol&.

Promocijas darbs ir sadalits 4 dalas. Pirmaja dala aprakstita virpulstravu metodes fizika,
vektora potenciala pamatvienadojumu un robeznosacijumu detaliz€ta iegiiSana, un inducétas

izmainas impedanc€ ievieSana. Par pamatvienadojumiem uzskata Maksvela vienadojumu
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sisttmu linearai, izotropai un homogénai videi. Vektora potenciala ievieSana Maksvela
vienadojumus reduc€ uz Helmholca vienadojumu vektora potencialam. Literatiira, formulgjot
problému vektora potencialam, vektora potenciala forma (t.i. nenulles komponentes un
atkarigie mainigie) un, sekojosi, tas robeznosacijumi ir nemti bez stravas avota geometrijas
apskata vai vispar bez kada pieradijuma. Skiet, ka detalizéts pieradfjums ir izdarits tikai $aja
promocijas darba (sk. arl autora rakstu [36]), tas veikts Cetram literatira visbiezak
sastopamajam problémam par vektora potencialu. Vektora potenciala forma un nenulles
komponentu skaits ir defineti gadijumiem ar divvadu liniju, ar galiga garuma vadu un ar viena
vijuma spoli ar stravu virs homogenas elektribu vadosas pustelpas. Ka So gadijumu
visparinajums, vektora potenciala probléma ir noformuléta patvaligas formas vadam, kurs§
novietots vertikalaja plakn€ virs homogénas elektribu vadosSas pustelpas.

Promocijas darba otraja dala tiek apskatits analitisks atrisindjums problémai par
elektromagnétisko vilnu izplatibu no dazadu formu izstarotajiem. ST dala satur atrisinajumu
vektorialam Helmholca vienadojumam integrala forma patvaliga ortogonala Iikliniju
koordinatu sistéma; precizu analitisku atrisinagjumu problémai par vektora potencialu
taisnstirveida ramitim ar stravu, un precizu analitisku atrisinajumu problémai par vektora
potencialu patvaligas formas vadam ar uzdoto stravu vektora potencialu. Sakara ar to, ka
vektorialais Helmholca vienadojums apraksta virpulstravu problémas, atrisinajums Sim
vienadojumam integrala forma ir loti svarigs. Literatiira pazistams atrisinajums vektorialam
Helmbholca vienadojumam ir dots integrala forma, elektromagnétiska lauka vektora potencials
ir izteikts ar triskarSo integrali no stravas blivuma vektora un Helmholca vienadojuma
fundamentala atrisinajuma skalara reizinajuma. Tadu atrisindjumu visvieglak izmantot

taisnlenka koordinatu sisttma, kura vektori € ,€ ,€, nav atkarigi no koordinatem. Bet,

X2 2y
izstradajot So promocijas darbu, paradijas nepiecieSamiba izmantot citas koordinatu sisteémas.
Sakara ar to, ka literatiira atrisinajums integrala forma nav atrodams, $aja promocijas darba
(sk. arT autora rakstu [17], [18]), iegiits atrisinajums vektorialam Helmholca vienadojumam
integrala forma patvaliga ortogonala Iikliniju koordinatu sist€éma, kura vienibas vektori

€,,€,,,6,; ir dotas koordinatu funkcijas. Ka partikularie gadijumi no $1 atrisinajuma ieguti

a1> 42> g
atrisinajumi vektorialam Helmholca vienadojumam integrala forma cilindriska un sfériska
koordinatu sisteéma.

legiitais atrisinajums vektorialam Helmholca vienadojumam tiek izmantots problémai par
vektora potencialu taisnstiirveida ramitim ar stravu, ka arT problémai par vektora potencialu

patvaligas formas vadam ar uzdoto stravu, kas apliikoti taja pasa nodala. Elektribu vadoSas
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pustelpas reakcija uz taisnstirveida ramiti ar stravu tika pétita teorétiski tikai gadijuma, kad
rami$a malu proporcija ir 1:4 vai mazaka. Saja gadijuma, divvadu liniju uzskata par &rtu un
pietickosi precizu taisnstiirveida ramisa modeli. Saja promocijas darba (sk. arT autora rakstu
[13]), precizs atrisinajums problémai par elektromagnétiska lauka vektora potencialu, kas
inducéts taisnstiirveida ramitim ar stravu, iegits bez divvadu aproksimacijas. Problémas
linearitates dél, pietiek atrast vektora potencialu elektromagnétiskajam laukam, kas izveidots
ar vienu ramiSa malu, kurai ir taisnas linijas forma, un otru malu, kurai ir rinka Iinijas loka
forma. Atseviskos gadijumos no atrasta atrisinajuma var iegiit dazadas literatira pazistamas
formulas. Bet literattira probléma par elektromagnétisko izstarojumu no lineara harmoniska
izstarotaja risinata tikai ta saucamaja dipolu aproksimacija. Tada veida aproksimaciju izmanto
elektromagnétisko vilnu izplatiSanas analizei, pienemot, ka vilnu garums ir daudzreiz lielaks
neka izstarotaja garums. Tomé&r nesagraujosas kontroles problémas, defekta izmers, kas
atrodas vide ar vadamibu, meédz biit samérojams ar izstarotaja garumu | vai arT lielaks neka |.
Tapéc problému par elektromagnétisko vilnu izplatibu no lineara harmoniska izstarotaja vajag
risinat bez dipolu aproksimacijas. Tas tika izdarits Saja promocijas darba (sk. arT autora rakstu
[13]).

Viena no otras dalas paragrafiem (sk. arT autora rakstu [15]), precizs atrisinajums iegiits
problémai par elektromagnétisko vilpu izplatibu no galiga garuma patvaligas formas vada.
Sastadot vienadojumu linijai, kas apraksta vadu cilindriskaja un Dekarta koordinatu sist€éma,
un izmantojot Helmholca vienadojumu un ta atrisindjuma integralo formu, ieglistam
atrisinajumu, kuram ir vienkarsa noteikta integrala forma no elementaras funkcijas. Pie tam,
izmantojot ieglito atrisindjumu, atrod dazas jaunas formulas par elektromagnétisko vilnu
izplatibu gadijumiem ar vadu, kuram ir Arhiméda spirales forma, eliptiskas vai rinkveida
spirales forma, ka ar1 fraktalam vadam. Gadijums ar fraktalo vadu ir interesants
telekomunikacijas nozarei antenu analizei.

Tresaja dala tiek analiz€tas izmainas impedancé homoggnas elektribu vadosas pustelpas
dél. Analiz&jot homogénas vai nehomoggnas elektribu vadosas vides ar dazadu geometriju
ietekmi uz stravas avotu, kuram ir divvadu Iinijas vai viena vijuma spoles forma, atrisinajumu
izmainam impedancé ieguvam neisto integralu forma (sk. [5]). So integralu zemintegrala
funkcija ir vai nu iracionalo un trigonometrisko funkciju kombinacija, vai ar1 iracionalo un
Besela funkciju kombinacija. Tas lauj atdalit divas noteikto integralu klases. Saja promocijas
darba (sk. ar1 autora rakstu [12], [8]) $1s noteikto integralu jaunas klases noverte slégta forma,

izmantojot diverggjoSos integralus, kas konvergé Abela nozimé. Literatlira zinams tikai viens
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So integralu atseviSks gadijums (sk. [49]), bet tur izmantota metode ir pielietojama tikai
aprakstitajam gadijumam.

So integralu atseviskus gadijumus izmanto impedances novértéSanai gadijumos ar
divvadu liniju un viena vijuma spoli, novietotiem uz elektribu vadosas pustelpas virsmas.
Divvadu Iinijas gadijuma impedances izteiksmi noveérté slégta forma, bet gadijuma ar viena
vijuma spoli, impedances izteiksmi var transformé&t vienkarS$aka forma, kas satur atri
konverggjosas rindas. Turklat, vienkarsa asimptotiska formula impedancei iegita gadijuma ar
patvaligi novietotu divvadu Iiniju un viena vijuma spoli, kad frekvence tiecas uz bezgalibu.
legiitais rezultats arT pretend€ uz originalitati un piedavats $aja promocijas darba (sk. ari
autora rakstu [9], [7]).

Izmainas impedancg taisnstiirveida ramitim ar stravu, kas novietots cilindriskas elektribu
vadoSas caurules iekSpusg, teorétiski tika petitas tikai izmantojot divvadu aproksimaciju (sk.
[5]). Saja promocijas darba (sk. arT autora rakstu [14], [35]) lidzigai problémai atrasts precizs
analitisks atrisinajums, bet bez aproksimacijas izmantoSanas. Viens no atrisinajuma
iesp&jamiem pielietojumiem var biit caurules sienas biezuma noteikSana gadijuma, ja caurule
ar nekoncentriskam sienam atrodas tiesi zem ramisa.

Beidzot, promocijas darba ceturta dala veltita dazadam problémam par izmainam
impedancé videi, kas satur defektu. Literatira nav zinams precizs analitisks atrisinajums
problémai par vides ar vadamibu, kura satur patvaligas formas defektu, ietekmi uz stravas
avotu. Tapéc, sakot no 1960. gada, izmanto dazadas analitiskas un skaitliskas aproksimacijas
metodes, lai risinatu $ada veida problémas. Citas aproksimacijas metodes — divas metodes,
kas izmanto papildstravu — tika izstradatas $aja promocijas darba (sk. arT autora rakstu [10],
[11], [34]). Saskana ar pirmo metodi pienemts, ka defekta apgabala eksisté papildstrava. Sis
stravas virziens ir pret€ji versts tas stravas virzienam, kura tek taja pasa apgabala, tikai
gadijuma, kad defekta tur nav. Papildstravu, kuru izmanto otraja metode, izvélas ta, lai
diferencialvienadojumus homogenai elektribu vadoSai videi varétu parveidot par
diferencialvienadojumiem defektam. Sai problémai eksisté precizs analitisks atrisinajums un
tas dod iesp&ju novertet klidu abam metodém.

Nakamie divi paragrafi apraksta pieradijumu jaunai precizai analitiskai formulai par
izmainam impedanc€, ka ari literatira pazistamai formulai. Pieradijums jaunai formulai
balstas uz Grina formulas, bet otras formulas pieradijumam izmanto Lorenca teoremu. Skiet,
ka literatiira formula izmainam impedancg, kas raksturo elektribu vadosas pustelpas, kas satur
patvaligas formas defektu, ietekmi uz stravas avotu, tika izmantota bez stingra pieradijuma.

Dotaja promocijas darba (sk. arT autora rakstu [19], [37], [38]), §1 literatiira pazistama formula

12



tika analitiski pieradita un analizets tas patiesums. Formulai ir triskarsa integrala forma pa
apgabalu, kas satur defektu, no divu elektriska lauka vektoru skalara reizinajuma.

ArT Saja promocijas darba tika iegiita jauna formula izmainam impedancé (sk. arT autora
rakstu [16], [19], [34], [37]). Formula iegiita triskarsa integrala forma pa apgabalu, kas satur
defektu, no divu vektoru potencialu skalara reizinajuma: vektora potencialu defekta un
vektora potencialu taja pasa apgabala, gadijuma, kad defekta nav.

Stingri pieradits, ka jauna vienkarSaka formula ir ekvivalenta formulai, kas izmantota
literatura (sk. arT autora rakstu [19], [37]). Bet sakara ar to, ka analitiski atrisinajumi daudzam
problémam satur izteiksmes vektora potencialam, jauna formula izmainam impedancg ir

ertaka skaitloSanai neka literatiira zinama formula.
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INTRODUCTION

The introductory part of the thesis is devoted to a review of the literature. A full review of
theoretical papers on eddy current methods for non-destructive testing published up to 1997 is
given in monograph [6]. Therefore, only the most important theoretical papers on eddy
current testing, which are close to the topic of the thesis and published up to 2004, are
considered below. The review is divided into two parts, where the first part deals with papers
on the influence of a homogeneous conducting medium on an emitter, while the second part

analyzes problems on inhomogeneous conducting medium containing a defect (or a flaw).

1. One of the first papers dealing with problems on homogeneous conducting medium is
the paper [62], published in 1963. In this paper, an exact formula is obtained for the part of
vector potential, induced into a single-turn coil (and also a superposed coil) due to the
presence of a conducting half-space. Besides, the full complex resistance (so-called

impedance), Z =Z_(a, ), is calculated by means of the formula

J 2(Bs)e”*¥°ds =X + jY, (0.1)

=B
'([sh/s + ]
where X =ReZ,, Y =ImZ_, j=+-1, J,(2) is the Bessel function of the first kind of order

1, a=2h/r, and B =r wou, are dimensionless variables, r, is the radius of the coil, h is

the height of the coil above the conducting medium, @ is the frequency, o is the
conductivity of the medium, g, is the magnetic constant. Unfortunately, integral (0.1) cannot
be expressed in terms of known elementary or special functions. In [49] integral (0.1) is
calculated approximately assuming that the parameter £ is small (i.e. assuming that either the
coil radius is small, or the frequency or the conductivity of the medium is small). In this case,

Z_ is expressed in terms of an elliptic integral. In turn, in Section 3.2.2 of the thesis, integral

(0.1) is represented in the form of a fast-convergent series for all values of the parameter f
(see also the author’s papers [9], [7]):

S E)Wis™ 1
2.(h)=8 JZn(n +1)(n+2)(n+3) I?(n/2)’ 02)

where T'(z) is the gamma function. The solution corresponds to the case @ =0, i.e. where the

single-turn coil is located on the surface z=0. Series (0.2) converges very rapidly so that if
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L <3, then it is sufficient to take the first five terms of the series for having a computational
error less than 3% compared with the exact solution. Moreover, in this thesis, an exact

asymptotic of integral (0.1) as # — o and a # 0 is found (see Section 3.2.3 and the author’s

papers [9], [7]):

. 1 ) 1
Ll_rgzcz—J%[(Z—e)K(H)—ZE(H)], e_m, (0.3)

where K(6) and E(&) are the full elliptic integrals of the first and second kind, respectively,

tabulated, for instance, in [53].

After the first paper by Sobolev [62], different aspects of this problem were considered,
for instance, in [23], [26], [30], [64] and [49]. As a generalization of the problem considered
in [62], the problem on the influence of a flat conducting layer on a single-turn coil is
considered in [46], [63], [52], and the problem on the influence of a multi-layer conducting
medium on a single-turn coil or double conductor line is considered in [6], [29], [51], [24] and
[40].

Eddy current testing problems can be reduced to a two-dimensional problem if the flaw in
the inhomogeneous half-space is a cylindrical body coaxial with a single-turn coil carrying the
external current (see [66], [67]), or if the flaw is an infinitely long cylinder parallel to the
double conductor line carrying the external current (see [1]). Similar reduction takes place in
the case of a homogeneous conducting half-space where the external current is generated
either by a single-turn coil or double conductor line in the plane parallel to the half-space.

In some applications, the source of current has the form of a rectangular frame located
above the conducting half-space in the plane parallel to the plane z=0. It is shown in [49]
that if the ratio of the frame’s sides is 1:4 or smaller, then the so-called double conductor line
(see Fig.1.2) may be considered as a convenient and sufficiently accurate model of a

rectangular probe. In this case, the formula for impedance has the form
o0 _ 2 . .
z,=j[> 2 VS 4 g2ims _cos ps) B = X Y (0.4)
0S++/S%+ ] s

where a=h/d, g=d.wo,u,, h is the height of the double conductor line above the

surface of the conducting half-space, d =y, —y, is the distance between the wires. In this

thesis (see Section 3.2.1 and also the author’s papers [9], [7]), integral (0.4) has been
calculated in the exact analytical form for & =0 (i.e. the case when the double line is located

on the surface z=0):
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A P N R | :
zl|&=0_4+1{2 C |n2} 2[[]2 ﬂﬁKl(,B\/T)] (0.5)

where K,(z) is the modified Bessel function of the second kind of order 1 and

C=0,577215... is the Euler constant. The Bessel functions in (0.5) can be expressed in

terms of the Kelvin functions, ker,(£) and kei, (/) , tabulated, for instance, in [53]:

Ki(BY1) = ilker,(B) + jkeiy(B)]. (0.6)
Asymptotic of integral (0.4) as S — o and a =0 has also been obtained in the present thesis

(see Section 3.2.3 and also the author’s paper [9]), and it has the form

~2
limz, ——jin ¥4 1

0.7

Computational results of hodograph (i.e. curves X = X (f) and Y =Y () for different fixed

values of &), obtained by means of the exact analytical formula (0.4) practically coincide
with the simple asymptotic formula (0.7) if the parameter £ satisfies the inequality §>10.
The asymptotic formula (0.7) is also valid in the case the coil carrying an alternating current is
located above a plate of finite thickness d. An exact analytical solution of this problem is
found in [46] and [63]. The results for a half-space and a plate practically coincide due to the

so-called skin effect as f—> o (i.e. a3 w — ), when induced currents in the plate are

concentrated near the plate’s surface z =0, so that the plate’s thickness d does not influence

the asymptotic value of the impedance Z as f — «.

Another form of a conducting medium that has many applications is a conducting tube of
cylindrical shape. In this case, the emitter having the form of a single-turn coil or a
rectangular frame carrying the current is located either inside or outside the tube (see [2], [25],
[33], [43], [45], [30], [31], [32], [39]). In many cases the excitation coil is located in a
concentric position with respect to the sample to be tested. If the axis of the coil does not
coincide with the tube’s axis, the solution of the problem becomes more complicated. In [1]
the coil is displaced so that the tube’s axis is situated on the coil. In Section 3.3 of this thesis
(see also the author’s papers [14], [35]), an analytical solution is obtained for the following
two problems on the influence of the tube’s wall on the emitters located inside the tube.

(1) The emitter has the form of a linear segment of finite length. The emitter is located

parallel to the tube’s walls, but not on the tube’s axis;
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(2) The emitter has the form of a circular arc of finite length with the center situated on
the tube’s axis.

The solution of these two problems allows one to obtain an analytical solution on the
influence of circular tube’s walls on a rectangular frame with current. The frame consists of
two parallel linear segments and two parallel circular arcs. The location of such a frame in the
vicinity of the tube’s walls gives information about the thickness of the walls situated under
the emitter, i.e. the information about the tube walls’ deterioration.

2. The second group of problems, important for applications, is on the influence of a
conducting medium, containing flaws of different conductivities, on an emitter. These
problems have approximate analytical solutions in the following two cases: (1) the case of a
homogeneous half-space as a conducting region, when the source of the external current is
located in the plane parallel to the half-space and it has the form either of a single-turn coil or
a double conductor line; (2) the case where the flaw of the inhomogeneous half-space has the
form of a cylindrical body coaxial with a single-turn coil carrying the external current (see
[66], [67]), or if the flaw is an infinitely long cylinder parallel to the double conductor line
carrying the external current (see [1]).

One of these assumptions corresponds to the case where the conductivities, o, and o,,
of a conducting medium and a flaw, respectively, do not differ by much. In this case one can
define a small parameter ¢=1-0,/0, (o,<o,) and consider a perturbation series with
respect to &. Using the perturbation series in &, one can solve a wide range of problems in
eddy current testing. This is the so-called perturbation method (see [3]). Such situation often

occurs in practice, for instance, in eddy current testing of weld joints. Assuming that o, is the
conductivity of the welding region of an aircraft body and o, is the conductivity of the

aircraft body, then the parameter is varying in the range 0.05<&£<0.3 (see [66]). This
method was used in [66] to find an approximate analytical solution for the problem on the
influence of a cylindrical flaw on a single-turn coil carrying the current. Later this result was
obtained in [42] and [44]. In the second part of monograph [6], the application of this method
is considered for conducting media and flaws of different shapes.

A different approximate method - the method of additional currents — is developed in this
thesis in Section 4.1 (see also the author’s papers [10], [11], [34]). The main idea of the
method is as follows. Instead of the region containing a flaw, the problem is solved for a
uniform medium containing a source of additional current located in the region of the flaw.

For example, if o- =0, then in region V. the additional source of current is taken to be
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opposite compared with the current that exists in the uniform medium containing the flaw.
For small values of the parameter £ =1- 0, /0, , this method coincides with the perturbation
method. But the advantage of the method of additional currents is that it can be applied to the
whole range of values of the parameter ¢: 0< & <1.

Another approximate method used for such problems is the layer approximation. The
method was suggested in [47]. Using this method, the region of the flaw, V., is replaced by a
region V. which has the form of a flat horizontal layer with the same conductivity o, as the
region V.. The layer is located in region z, <z<z,. The planes z=z, and z=1z, are
tangential planes to region V. . For such region V., the problem can be solved analytically.

In order to calculate the impedance change induced by the presence of the flaw, we

substitute the obtained solution for EF into the formula for the impedance change (see [20],

[21]):

zi”dz—(C’Fl—za)wE-Ede, (0.8)

where V. is the region of the flaw, o and o are the conductivities of the flawed and
flawless regions, respectively, EF is the complex-valued amplitude electric field vector in the

flawed region, E is the complex-valued amplitude electric field vector in the same region in
the absence of the flaw, 1 is the amplitude of the current density. Equation (0.8) is also used
in [28], [50], [27], [47], [22].

A more convenient formula is obtained in this thesis (see Section 4.2.2 and also the

author’s papers [19], [16], [34], [37]) for calculating the impedance change:
Zind_a)z(GF_G) A A dv 0.9
= |—2J.VH AV, (0.9)

where AF is the complex-valued amplitude vector potential in the flawed region, A is the
complex-valued amplitude vector potential in the same region in the absence of the flaw.

Note that the relationship between the vectors E and A in the case of harmonic
oscillations of the external current with frequency @ is given by (see [6]):
E:—jwﬂ+lz—1zgrad div A, (0.10)
1

where lZf = uop(o+ je,éw) if the displacement current is taken into account and f{f = Ho MO,
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if the displacement current is neglected, &, and s, are the electric and magnetic constants,
respectively; ¢ and u are the relative permittivity and relative magnetic permeability of the

medium, respectively.
In Section 4.2 of this thesis (see also the author’s papers [19], [37]), the equivalence of

Egs. (0.8) and (0.9) is proved. Since analytical solutions of many problems contain

expressions for the vector potential A, then formula (0.9) is more convenient for calculations

than formula (0.8). Besides, in order to calculate the impedance change, the authors in [50]
and [47] performed an incorrect substitution of the vector E by the vector A using Eq. (0.9).
The point is that, in the simplest case, Egs. (0.8) and (0.9) coinside if div A=0, although in
general case, divA=0. Thus, in the previous studies (see [50], [47]), it is assumed that
divA=0 in Eq. (0.10). Besides, in [50] it is assumed that the scalar potential gives the
change in the static field only. That statement is not true. In [47] it is suggested to use the
Coulomb’s gauge, i.e. divA=0, but the authors use the following equation for the vector

potential A:
AA+ K A= pul ™, K? = — joouu . (0.11)

It is well known that Eq. (0.11) is not correct in this case. In fact, in the case of Coulomb’s
gauge the equation for the vector potential is more complicated (see [6], p.10), and it has the

form

- oA A0 oA .
AA= NONG[V§0+E}"‘ﬂogoﬂga(V(P"‘E]_ Mot 17, (0.12)

where ¢ is the scalar potential. That fact made us to prove and verify the correctness of Eq.

(0.8) in Section 4.2.3 of the present thesis (see also the author’s papers [19], [37] and [38]).
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1. FORMULATION OF THE PROBLEM AND BASIC EQUATIONS

1.1. Physics of eddy current method

The main topic of this thesis is the analysis of non-destructive testing problems by the
eddy current methods. The eddy current method is based on the law of electromagnetic
induction, i.e. on inducing electrical currents in the material being inspected and observing the
interaction between these currents and the material. The idea of the method is as follows (see

Fig. 1.1). Suppose that a coil carrying an alternating current, 7¢, is situated in the vicinity of a
conducting medium to be tested. The current, passing through the coil (so-called excitation

coil), generates a varying magnetic field, @,. This magnetic field (so-called primary field)

induces varying currents (known as eddy currents because of their circulatory paths) in the
electrically conducting medium according to the principle of electromagnetic induction.

These currents, in turn, produce a varying magnetic field, @, (so-called secondary field). The

effects of the secondary field can be seen from the variation of the output signal of the
excitation coil or from the output signal of a second coil (so-called detector coil) situated
nearby. In general, the output signal represents the resultant field, that is, the sum of the

primary and secondary fields.

COIL

S S

PROBE

N
N

Fig.1.1. A coil carrying alternating current above a conducting medium

The output signal of the detector coil depends on several parameters, such as the

magnitude and frequency of the alternating current, the electrical conductivity and magnetic
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permeability of the medium, as well as the relative position of the coil and the medium. It also
reflects the presence of inhomogeneities (so-called flaws) in the medium. The eddy current
flow changes the coil impedance. Hence, it is important to study the basic principles of the
interaction of eddy currents in non-uniform conducting media. By monitoring the coil
impedance, the electrical, magnetic and geometric properties of the probe can be measured.
Thereby, the most general formulation of the main problem of eddy current flaw inspection
and control can be stated as a problem of finding a dependence of a detector coil’s parameters
on a flaw’s shape, its size, properties of the medium in the flawed region, and its location with
respect to the detector coil.

Eddy current responses are conveniently described by reference to the “impedance
plane”. This is a graphical representation of the complex probe impedance where the abscissa
(X value) represents the resistance and the ordinate (Y value) represents the inductive
reactance. Note that, while the general form of the impedance plane remains the same, the

details are unique for a particular probe and frequency.
1.2. Basic equations

Maxwell’s equations for a homogeneous isotropic medium are

curlﬁ? =——, 11

Py (1.1)
curlézﬂ[fﬁua—l)], (1.2)

ot

divB=0, (1.3)
divD=p, (1.4)
I-cE, (L5)
B =p,uH, (1.6)
D=¢3E, (L.7)

where E and H are the electric and magnetic field vectors, respectively; D and B are the

electric and magnetic induction vectors, respectively; 1 is the current vector density; I¢is

the external current vector density; o is the conductivity; ¢, and g, are the electric and

magnetic constants, respectively; £ and u are the relative permittivity and relative magnetic
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permeability of the medium, respectively; and p is the charge density.

Equations (1.1)-(1.7) can be rewritten in another convenient form in terms of the vector
potential A of the magnetic field. This magnetic vector potential is introduced by the relation
B=curl a.

(1.8)
Using Eq. (1.3) one can rewrite Eg. (1.1) in the form:

curl(ﬁ#a—AJ =0,
ot

(1.9)
where the vector E+§ is the potential. The scalar electric potential ¢ is defined by the
relation:

§+§ —grad ¢ (1.10)

ot v '
where

grad=V=—e¢, +iéy +£éz.

X oy 0z

(1.11)
Substituting Eqg. (1.10) into Egs. (1.5) and (1.7), we have
: _ oA
I =—0c|Vp+—|, 1.12
0[ 0+ t} (1.12)
D= 803[V<5+2—f]- (1.13)

Substituting Egs.

(1.8), (1.12) and (1.13) into Eg. (1.2), and using the formula
curlcurl A = Vdiv A A4, yields

Vdiva—Ad= —,uo,ua(ng—i-Z—Ij]—,uogoyéa[V(ﬁ+z—;4J+yoy[:e : (1.14)

2 2 2
where A=V = aa 5 +§2 +§2 is the Laplacian in three dimensions. Eq. (1.14) can be
X Y /4

rewritten as:

= D = 1 2 =
V{diVA + L Uo P + ,uolugoéaa—(:} —AA= —,uoyag—lj— —,uogoluéaan+ yINTI AN (1.15)
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For given B and E the vector potential Z is not uniquely defined by Eq. (1.8). Therefore, to

determine A4 uniquely an additional condition, Lorentz’ gauge, can be used:

divjl+,uolua(ﬁ+yogoy§%—(tp=0. (1.16)

In this case, Eq. (1.15) has the form:

= N o4 =,
Ad = poo e ——5 + Mo O —— = Ho il *, (1.17)
ot ot
and a similar equation holds for the scalar potential ¢ :

2~ ~ ~

~ ~O0°p op p
Ap = et <L+ ol - L 1.18
Ay (1.18)

The first term on the right-hand side of Eq. (1.17) represents the displacement current, while
the second term represents the current due to conductivity. Since, for metals, the displacement
current is much smaller than the current due to conductivity, the first term may be neglected.
Then Eq. (1.17) takes the form

= aA ::e
A4 = Hoto— = Mol ©. (1.19)

The displacement current can also be neglected in free space due to the sufficiently low
frequencies used in eddy current testing. Moreover, in free space the current due to

conductivity is equal to zero. Then Eqg. (1.19) can be rewritten as

=

AA = —yo,u76 . (1.20)
Another useful gauge is Coulomb’s gauge which requires that
divA=0. (1.21)

In the case of Coulomb’s gauge, it follows from Egs. (1.4), (1.7), (1.10) and (1.21) that

p=divD =div(e,EE) —goédiv[gradgi)a@—f]—eoé(A¢3+a(dé\;A)}—goéAgb.

Thus, the equation for the scalar potential ¢ is

I (1.22)

A

EE

26



Using Coulomb’s gauge, the vector potential satisfies the equation

= Ry o _- o4 =
AA= Vo+— |+ ucuc—|Vo+— |- 1°, 1.23
uow[ @ &] HoEo az[ 7 azJ Mol (1.23)

Lorentz’ gauge presents the advantage of decoupling the equations for the scalar and the
vector potentials so that, in some cases, these equations can be solved independently.
Assume that all vectors and scalars that describe the electromagnetic field are periodic

in time, ¢, with the same frequency o . For example,

Ty

— Ecos(wt + ¢) = Re[Ee’ @ ]= Re[Ee’*'] , where E = Ee’*, (1.24)

— T cos(wt + p) = Re[Te’ "= Re[le’*'] , where I = I’

~

and so on. Thus, the vectors and scalars can be written as

_ Rt
= De’"",

Su

=Eej{1)t1 B=Beja)l" H= eja)l‘1

tyu

:jej[”’, I¢ :jeejw’, Zz;lejm, o =pe’”", (1.25)

~u

where the factors multiplied with e’“ are complex-valued amplitude vectors and functions of
the spatial coordinates. It is to be noted that everywhere below instead of £, I, B, I¢, H,

A, D, ¢pweuse E,I,B,I°, H, A, D, ¢, respectively, without the dot.
Under assumptions (1.25), Eq. (1.17) for the complex-valued amplitude magnetic vector

potential (everywhere below it is called just vector potential) takes the form
AA+k*A=—pul®, (1.26)

where k° = —jou,u(c + je,éw). Equation (1.26) is known in the literature (see [59]) as

Helmholtz’ equation. If the displacement current is neglected, then Eq. (1.19) takes the form
AA+K2Ad=—-pul”, (1.27)

where %2 =—jou,uc . Besides, in free space, due to the absence of conductivity, the

equation for the vector potential has the form
AAd=—p ul®. (1.28)

It also follows from Egs. (1.25) and (1.16) that

p=-dvd, K= ppu(or jaio) (1.29)
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By means of Egs. (1.10) and (1.29) the vector potential A4 completely determines the electric

field vector E,

E:—ja)ﬁ—gradgo:—ja)2+l€—129rad div 4. (1.30)

Applying Coulomb’s gauge (1.21) to Eq. (1.30), we obtain
E=—joA. (1.31)

To guarantee the uniqueness of the electromagnetic potentials in the case of a non-uniform

medium, it is necessary to use one of the above-mentioned gauges together with some

boundary conditions for 4 at the interface between the media and at infinity.
1.3. Boundary conditions

It is shown in [6] that the solution of Maxwell’s equations is unique if the tangent

components of the vectors £ and H are continuous at the interface between the two media,

and conditions at infinity are prescribed. The boundary conditions for the tangential
components £, and E,, of the vector E, and for H, and H,_  of the vector H are,
respectively

E, =E,, H,=H,. . (1.32)
1 27 1r 27

In view of Eqs. (1.8) and (1.30), A completely determines £ and H , despite the fact that the

problem for A is completely decoupled from the problem for ¢.

In the literature on formulating the vector potential problem, the form of the vector
potential (i.e. the number of nonzero components and arguments) and, consequently, the
boundary conditions are determined only by considering the geometry of the source of
current or even without any proof. The detailed proof seems to be given only in the present
thesis (see also the author’s paper [36]). The proof begins with the assumption that all three
components of the vector potential are nonzero. Then it is proved that some components in
particular cases are equal to zero. The form and the number of nonzero components of the
vector potential are proved for the case of a double conductor line, of a wire of finite length,
and of a single-turn coil above a uniform conducting half-space. As a generalization of these
cases, the vector potential problem is formulated for a wire of an arbitrary form located in a

vertical plane above a uniform conducting half-space.
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Let us consider boundary conditions for these four mostly used cases of the vector
potential problem formulated in the literature (see [6]).

Moreover, despite the fact that in eddy current testing problems the displacement current
is often neglected, it is convenient to consider the influence of that current on the following
boundary conditions. The displacement current can be neglected in the final expressions of a

problem.
Boundary value problem 1: A double conductor line above a uniform conducting half-
space. Consider two infinitely long wires located in free space in region R, ={z >0} at

height % (see Fig.1.2). The wires are parallel to the x -axis and are passing through the points

(0, y,,h) and (0, y,, ). The conducting half-space is located in region R, ={z < 0}.

Z 4

Fig.1.2. A double conductor line in free space R, over a uniform conducting half-space R,

Assume that in region R,: A=A,, E=E,, H=H,, and inregion R: A=4,, E=E,,

H = H,. The wires carry the alternating current +7e’” , where j=+/-1,  is the frequency,

I is the complex-valued amplitude current vector density (everywhere below it is called just
current vector as it is used in the English scientific literature). In practice, two infinitely long

wires are used as a model of a rectangular frame with current with sides’ ratio 1:4 or smaller,
i.e. AD:DC >4 (see Fig.1.2).

According to Eq. (1.26), the equation for the vector potential A4 in region R, (free space

with conductivity o =0), and in region R, (absence of external currents) is, respectively,
Ady+k Ay =—pofip1°,  T°=15(z=h)[5(y—y,)-6(y-y),, inR,,  (1.33)
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AA +k24, =0, in R, (1.34)

where

AA=

24 %4 GZAX} Q{GZA), 0°4, 6%} a[aZAZ 0’4, 0°A,

é + - +é + + +é + +
T et et | Y| e et e | et 9t o
(1.35)

is the Laplacian of the vector function A, k2 =u,&,i1,8,0°, k2 = — joouuu (0, + j&,6,0) , My
and g, are the relative magnetic permeabilities in regions R, and R,, respectively, &, and &

are the relative permittivities in regions R, and R,, respectively, I¢ is the complex-valued

amplitude external current vector density (everywhere below it is called external current

vector), o, is the conductivity of region R, and &(x) is Dirac’s delta function.

Since the wires are infinitely long along the x -axis, the right-hand side of Eq. (1.33) does
not depend on the variable x, and it is natural to suppose that the left-hand side does not

depend on x either. Thus, the vector potential depends only on y and z. Besides, we

suppose that the vector potential has the full form (i.e. it has all three components):
A=A (y,2)e. + A4,(y,2)e, + A (y,2)e. (1.36)

The expression for the electric field vector is

E=—jwA +]€—1zgrad divd=—jo(4,e, +A4,¢ +A4.8)+ (1.37)
1| 0(04, O0A, 04 ). 004, 0A, 04 \. 06(0A4, O0A, 04, ).
+=|— + + e, +— + + e, +— + + é. |,
k?|lox\ ox oy oz oy\ox oy o6z )" oz\ox oy oz
~ R _ 04, 04, 04
where k? = yyu(o+ je,éw), and in the present case, ai: 0, oo, +—+—=1=0.
ox ox\ oy Oy Oz
Thus,
- 0A 0A
E=—jo(Ade +A4e +Azéz)+..i O +% E,+i z +% e. |. (1.38)
oY k*|loy\ oy oz )" oz\ oy oz

It follows from the equations B =curl 4 and B = u,u H that the magnetic field vector takes

the form
. . e, & &
H=——curl4 = d/ox 0/oy 0/oz (1.39)
Mo HoH A 4, A
or

30



~ 0A 0A
A=t |2 —(aAz o jé o L ey ) (1.40)
woul\ oy oz )’ ox oz )" | ox oy

Hence, in the present case, the magnetic field vector has the form

_ oA
ot |04 é +%éy _o4, é.|. (1.41)
MHopt|\ Oy Oz 0z oy

In view of Egs. (1.38) and (1.41), the vectors £ and H have two tangent components, and

the boundary conditions (1.32) for these components are rewritten as

z=0: E,=E,, E,=E (1.42)

)’;

z=0: Hy =H,, Hy, =H,. (1.43)

Using Egs. (1.38) and (1.41), the boundary conditions (1.42) and (1.43) at z =0 take the form

EOx = Elx AOx = Alx ’ (144)
04 0A
EOy = Ely AOy +%i(¢+%j = Aly +~i2£( — +%j 1 (145)
ky oy\ Oy oz k° oy\ oy 0z

04 0A

H o= %_J] _ i(%_ij ; (1.46)
W\ &) mla e

HOV = Hly '-~--i aon = i 8Alx ) (147)

’ My Oz  py Oz

where k2 = pfi,(0o+ jenby@), k7 = piopy(o+ je6,0), o, and o, is the conductivity of
regions R, and R,, respectively, but o, =0 in free space.

It follows from the boundary conditions (1.44) and (1.47), and the vector equations (1.33)
and (1.34) that the problem for the x -component, A_, of the vector potential A, is decoupled

from the equations for the other components. Hence, the problem for 4 _ has the form

Ndy, + ki Ay, = =t fig15(z = W)[S(y = y,) = 6(y = 1)), in Ry, (1.48)
A4, +kPd4 =0, in R, '
with the boundary conditions
2200 Ay =4, oo 104 (1.49)
S [y Oz o Oz
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The problems for the components 4, and 4. are homogeneous:

+k’A, =0, inR, k24 =0, inR.,
{AAO) OAOJ’ 0 and {AAOZ+ OAOZ 0 (150)

Ady, +kid, =0, inR, AA_+kl A4 =0, inR

with boundary conditions (1.45) and (1.46). The problems for these components cannot be

separated, but their zero-solutions, 4, =0 and A4, =0, satisfy Eq. (1.48) and the boundary

conditions (1.45) and (1.46). Due to the uniqueness theorem, these solutions are unique.
Consequently, in the case of a double conductor line above a uniform conducting half-

space, the vector potential has only the x -component:
A=4,(y,2)e, (1.51)

Boundary value problem 2: A horizontal emitter over a uniform conducting half-space.
Consider a horizontal emitter of finite length, parallel to the x -axis and passing through the
point (0, y,, /) (see Fig.1.3).

Z 5
(_I 1Y01h)
/
! i,
h =0
RO
Y
R 1
A=4,
o=0,
“x

Fig.1.3. A horizontal emitter in free space R, over a uniform conducting half-space R,

In free space R,, the equation for the vector potential Ais

- - - =, | 1o(y=yy)o(z=h)e,, xe(=11),
AAy+k2Ay =—popgI¢, T :{0 ° g (ol0) (1.52)

In this case, the external current vector, I ¢, has only the x -component, I?. But this does not

mean that the vector potential 4 has only the x -component, A..
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Initially we suppose that all three components of the vector potential are not equal to zero:
A=A,(x,9,2)8, + A, (x,3,2)¢, + 4. (x,,2)é. . (1.53)

We will prove that 4, =0, but 4, # 0, because in this case the vector I depends on all

three variables, x, y,z. Hence, the left-hand side of Eq. (1.52) depends also on the variables
x,y,z. In the present case, the electric and magnetic field vectors are given by Egs. (1.37)

and (1.40), respectively, and the boundary conditions (1.42) and (1.43) for the tangent

components of these vectors at z =0, become

EOx = El'c
04 04
- jo Ay, + 1 004, o , O, =—jo A, s 2 0| % OH | 04 , (1.54)
Jox\ ox oy z k?ox\ ox oy Oz
E, =E,
04 0A
—jw A, —_2 Oy, +—2 +6A°Z =—jw4, —_ Oy, +—2 4 04, ; (1.55)
Yok oyl ox oy 0z bk oy ox oy oz
04 0A
H, =H,,: ,,i(—aAOZ - ] _i(—aAlz -— j; (1.56)
Mo\ Oy 0z M\ oy oz
Hy, =H,,: é[—aAm Ay, j =i(—a‘4“ _oA, j (1.57)
U\ Oz Ox m\ 0z  Ox

It is easy to see that if there exists a zero solution 4, =0, then the equations for A4 are
satisfied so that the problem for 4, is decoupled. Indeed, by substituting 4,, = 4,, =0 into

the boundary conditions (1.54)-(1.57), the boundary conditions become

z=0: —jwA, +~ii(%+%j =—jo A, +~i£(&4—“+%j (1.58)
ki ox\ ox Oz k? ox\ ox oz

2=0: iﬁt—a“lw 4 Yo j =LQ£—8Alx +—6Alzj; (1.59)
ki oy\ oOx 0z kZoy\ ox oz

z=0: éaAoz _ 104, ; (1.60)
Ho OV Oy

Y é(aAm_ﬁAOZj:i(aAlx_8Alzj. (1.61)
Mo\ Oz Ox W\ 0z  Ox

In Eq. (1.59) the differentiation 9/dy can be neglected, since z =0 is fixed, but the variables

x,y are not fixed, and, moreover, Eq. (1.59) can be easily obtained by differentiating Eq.
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(1.62) with respect to y, so that we use

i(%ﬁ%zj_i(%x +8Alzj

K2\ax oz ) kElox o @z

Differentiating Eq. (1.62) with respect to x,

ii(%Jr 04y, j _ iﬁ(afhx N 5/112)
kiox\ ox oz ) ktoxox oz )

and comparing the result with Eq. (1.58) obviously yields
z=0: 4, =4,.
Neglecting the differentiation with respect to y in Eq. (1.60) yields

i1402 =iAlz '

~

Hy H

Differentiating Eq. (1.65) with respect to x,

iaAOz _iéAlz
Hy ox oy ox

and comparing the result with Eq. (1.61) we obtain thatat z=0:
i a140): _ i 8‘ACI.)c

Ho 0z gy 0z

(1.62)

(1.63)

(1.64)

(1.65)

(1.66)

(1.67)

Thus, the problem for the x -component of the vector potential is decoupled and has the form

— o fi I5(y — v,)0(z = h), -1,1), )
AA,, +k02A0x :{0 Hoto1O(y = y,)0(z = h) xei l l; in R,
) X & —ht)

Ad, +klA4, =0, in R,
with the boundary conditions (see Egs. (1.64) and (1.67))

A A
z=0: A, =4,, 104, 104,

~

Ho 0z gy 0z

The formulation of the problem for the z-component of the vector potential is

Ad,, +klA,. =0, inR,,
A4, +klA4_ =0, inR,.
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The problem for A, does not have a zero-solution, because the boundary condition (1.62) for
A_ is not homogeneous. This problem is solved after obtaining the solution of the problem for

A, by using the boundary conditions (1.59) and (1.65):

g L0 (8AOY +aAozj_ 10 (8Ah +8Alzj; (L.71)
k oy 0z k?oy\ ox oz

z=0: éAOZziAlz. (1.72)
Ho Hy

Consequently, in the case of a horizontal emitter over a uniform conducting half-space, the
vector potential has only the following two components:

A=A (x,y,2)8, + 4.(x,y,2)e.. (1.73)
Besides, if 4, =0 and 4. =0, then it follows from Eq. (1.62) that 4, must satisfy the
boundary condition

1 1
z :O. k—OZAOx =k—12A1X. (174)

Note that if k. = &/, then condition (1.74) contradicts Eq. (1.69), i.e. the condition 4, = 4, .
Consequently, this condition cannot be satisfied. To satisfy the boundary condition (1.62), 4.
must not be equal to zero. In that case, condition (1.62) is a boundary condition for 4. and it
provides the uniqueness of solution 4, #0.

Boundary value problem 3: A circular single-turn coil above a uniform conducting half-
space. Consider a circular single-turn coil of radius », located at height % in free space
R, ={z > O} above a uniform conducting half-space in region R, ={z <0} (see Fig.1.4).

In free space R,, the equation for the vector potential is

AAy+ ki Ay =—po ity I, T°=15(r—r)5(z-h)é,. (1.75)
where
04 A
A=e¢, AA,—iZ—%—‘” +é,| A4 ——§+%8A’ +e.AA4_, (1.76)
re ot o 1 A S o))
of, 10f O°f
A (r,p,z)=—— +— + , 1.77
Y (r.0:2) r@r( 81”) 2 og? | oz (.77)

Af (r,p,z) is the Laplacian of a scalar function f(r,¢,z) in cylindrical polar coordinates.
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h O'ZO
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0 5%
A=4,
oc=0,

X

Fig.1.4. A circular single-turn coil in free space R, over a uniform conducting half-space R,

In the case of a circular coil, due to axial symmetry, the vector potential does not depend
on the variable ¢ and it may have the full form

A=A4,(r,2)e, + 4,(r,2)é, + A.(r,2)e. . (1.78)

But in Eq. (1.76) the Laplacian takes the form

r ’ r

_— AN AN
&k:(A¢—7J+%@M—~§}%A4, (1.79)
where the scalar function becomes

_1o(,a), 9
Af(nz)—-rar(rarj+-azz. (1.80)

The expression for the electric field vector in cylindrical polar coordinates is

Fe—jwi +l€—1zgrad div A =—jo(4,3 + A4S, + A2)+

1 [a a(la(mr) 104, aAzj 0 (16(%) 104, 6Azj
+= e +-——"+ +é,—| = +-—24+ +
r

k? r or rop Oz Yop\r or rop oz
04
+ézi 100r4,) +l £ +aAZ : (1.81)
oz\r or rop 0z

where, in the present case, 6/0¢ = 0 (since the functions 4,,4,, 4. do not depend on ¢).

Thus,

E=-jo(d.e +4,e,+Ae.)+
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v llg Of1004) 04 ), 5 0f10k4) ot ), (1.82)
k? or\r or oz oz\r or 0z

Using the expression for curl 4 in cylindrical polar coordinates

- 04 o(r4d
curld=e, 104, %4, +é (aA’—%j+éz1 olrd,) _ o4, : (1.83)
rop 0Oz Loz or or op

7

and taking into account that, in this case, 6/0¢ =0, one finds that

) B} o4 o(r4
A=t cumi=-—ts|-% +é¢,(%—%j+ézlﬂ . (1.84)
Mol Ho 0z oz Or r or

In this case, at z =0 the boundary conditions are

EOr = Elr
—jwA, +%§(1_8(VAO,) 4 O, j = jwd, ii[l_a(”lw) L o4 j . (1.85)
ky or\r or 0z k? or\r or 0z
Ey,=E,: 4A,=4,; (1.86)
04 0A
H, =H,: é v _ 1 %% ; (1.87)
Ho Oz py Oz
H,,=H,,: é(—aAf’f _ Oy, ] :i[—aA“ _oA, J (1.88)
Mo\ Oz or m\ o0z or

It is obvious from the boundary conditions (1.86), (1.87) and Eq. (1.79) that the problem for

the ¢ -component, 4, is decoupled. The problems for the other two components, 4, and 4_,
cannot be decoupled. But each of these problems is a system of homogeneous equations with
homogeneous boundary conditions, whose zero-solutions, 4, =0 and 4, =0, satisfy the

boundary conditions (1.85) and (1.88). Due to the uniqueness theorem, there are no other
solutions of these problems.
Consequently, in the case of a circular single-turn coil above a uniform conducting half-

space, the vector potential has only the ¢ -component:
A=4,(r,z)e,. (1.89)

Then the problem for the vector potential has the form

L%wkﬁw = tfl O =)0, in R, (1.0

A4, +ki4, =0, inR,
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where A is the Laplacian given by Egs. (1.79) and (1.80):

o*f 1of o°f 1
A ,Z) = — +——— -——f, 1.91
(pf(r 2) or? " r or " 0z%  r? / ( )

with the boundary conditions (1.86) and ( 2.88):

o4 o4
2200 Ay =d,, 2o 1O (1.92)
’ oy 0z oy 0Oz

Boundary value problem 4: A contour of arbitrary form in a vertical plane above a
uniform conducting half-space. Without loss of generality, we assume that the vertical plane

is the plane y =0, since the choice of the coordinate system is free. Let us consider a contour
L located in the vertical plane y =0 in free space R, ={z >0} above a uniform conducting

half-space in region R, ={z <0} (see Fig.1.5). It is to be noted that in the case of a closed

contour, the contour is to be divided into two parts: the upper and the lower contours. The
problem for each contour is solved separately and the results are added together.

Z 4

Q=i
=0
RO
O L
Y
Rl
A=4
o=0,

/ I

X

Fig.1.5. Contour L inplane y =0 in free space R, over a uniform conducting half-space R,

Let the contour L be described by the equations

{x=t,y=0,z=z(1)}. (1.93)
On the other hand, the line L can be defined in vector form as

F(x)=x-7+0-j+z(x) -k . (1.94)

The unit tangent vector to the line ¥ =r(x) is
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L P i+z(0)k

€, =— = : (1.95)
[P 1+ 22(x)
In this case, the external current vector is
Fe_ 16(y)olz—z(x)]e,, xe(-1,1), (1.96)
O, X ¢& (_la l)!
or
i +2'(x)k
- 16(y)0]z — z(x) ] ———=—, xe(-11),
I°= J1+2z7%(x) (1.97)
O! X g (_l, l).
In free space R, the equation for the vector potential has the form
Ady + kG Ay = —pofig 1, (1.98)
where 7°¢ is defined by Eq. (1.97).
The vector potential depends on all variables and is assumed to have the form
A= A4.(x,y,z)e, + A4, (x,y,2)e, + 4.(x,y,2)e. . (1.99)

In the present case, the boundary conditions are the same as for the case of a finite length
horizontal emitter (see the boundary value problem 2). Besides, similarly to the 2nd boundary

value problem, the problem for 4 is homogeneous and has a zero-solution, 4, =0, which is
unique due to the uniqueness theorem. Thus, if we substitute 4 =0 into the boundary

conditions (1.58)-(1.61) and take the vector equation (1.98) with Eq. (1.97) into account, the

problem for A4, is decoupled:

- 1
| I8l 2], xe (LD,
A Ay, + k24, = 1+ 2% (x) inR,,  (1.100)

0, x ¢ (-1,1D),

A4, +kl A4, =0, in R, (1.102)
with the boundary conditions

1m0 Ay —d,, 2O 104, (1.102)

Mo Oz py Oz

The problem for A_ is solved after obtaining the solution of the problem for A . But unlike

the 2nd boundary value problem, the projection of Eq. (1.98) for the vector potential onto the
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z -axis, gives a nonhomogeneous problem for A4, in the form

- BT ()STz — 2N, xe (1,1,
AA, +kiA, = 1+2"%(x) in R,, (1.103)

0, x ¢ (-1,1),
AA, +k2 A4, =0, in R,  (1.104)

with the boundary conditions (1.71) and (1.72)

2=0: L4 =L (1.105)
Ho H

=0 ii(aAOx + GAOZJZQ‘LQ(GA_“_FaA_lZJ’ (1106)
k? oy\ ox Oz k? oy\ ox 0z

Consequently, in the case of an emitter of arbitrary form in a vertical plane above a uniform
conducting half-space, the vector potential has only the following two components:

A= A (x,y,z)e, + A (x,y,2)e.. (1.207)

It is to be noted that the above-mentioned problems can be solved by integral transform
methods (see [4]). In this thesis all the problems are formulated and solved in terms of a

vector potential and the excitation is considered as a time-harmonic.
1.4. Impedance change

Once the vector potential is determined, one can calculate the main characteristic used in
eddy current testing — the change in impedance of a detector coil — affected by the presence
of a conducting medium.

The induced change in impedance of a closed contour C of arbitrary form is defined by
the relation

i __ @ | (1.108)

where E(z) is the electromotive force and 7 is the amplitude of the current.

The electromotive force is the work needed to move a positive unit charge over the

closed contour C:

E() = §E, (M)dl, (1.109)

40



B, S L~ o .
where E =—jwA™ +?gradd|vA'”", k? = uyu(o+ je,éw), A™ is the vector potential

induced by the presence of the external current. Thus,

E() = §l-jod™ +%(grad div A", JdI = - jo A™dI (1.110)
C C

since gSgrad(p:O for any function ¢ and for any closed contour C. Consequently, Eq.
C

(1.108) for the induced change in impedance takes the form

Zm = %gﬁ A™dl, (1.111)

C

where C is the closed contour of a source of current.
An impedance diagram represents the variations of amplitude and phase of the coil

impedance, Z = X + ;Y , which can be resolved into its real and imaginary components, X
and Y = wL, called the resistive and the reactive components, respectively; and L is the coil

inductance.
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2. EXACT ANALYTICAL SOLUTIONS TO PROBLEMS OF
ELECTROMAGNETIC WAVES SPREADING FROM EMITTERS OF
DIFFERENT FORMS

2.1. Integral representation of the solution to Helmholtz’ vector equation in

arbitrary orthogonal curvilinear coordinates

Since Helmholtz’ vector equation describes eddy current problems, the integral
representation of the solution to this equation is very important. The integral representation of
this solution known in the literature is based on the expression of the electromagnetic field
vector potential in terms of a triple integral of the product of the external current vector and
the fundamental solution of Helmholtz’ scalar equation (see [59], [65]). This representation

has its simplest form in rectangular coordinates in which the unit vectors ¢é,,é ,é. do not

depend on the spatial coordinates. However, other coordinate systems are also widely used in
applications. Since this integral representation of the solution is absent in the literature for
other coordinate systems, it is obtained in the present section (see also [17], [18]) for a system

of arbitrary orthogonal curvilinear coordinates in which the unit vectors ¢é,,¢ ,,¢, are

prescribed functions of the spatial coordinates. As particular cases of the representation
obtained, the integral representations of the solution to Helmholtz’ vector equation are found
for cylindrical and spherical coordinates. The obtained representation of the solution to this
equation is used for the vector potential problem of a rectangular frame with current
considered below.

2.1.1. Formulation of the problem
Helmholtz’ equation for the vector potential used in electrodynamics has the form

B . *?
AA+IPA=—yul®, A=—g— 4+
Holt o o o

(2.1)

where k? = pe,ué®, 1°=1°(M) is the external current vector. The vectors A(M) and
I¢(M) in Cartesian coordinates have the form
AM) = A (M), + A, (M)e, + 4. (M)e., (22)

(M) =I;(M)é + (M), +IS(M)e. . (2.3)
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The integral representation of the solution to Helmholtz’ equation in vector form for a point

M (x,y,z), situated in the region where the external current vector 7°¢ =0 (see [59], p. 322), is

A(M)_47Z jlj 7°(M) - v, (2.4)

where the integration is performed over the points M(%,7,Z)eV where I°=0. Besides,
£=1 since the wire is situated in free space, r, . is the distance between the points

M(x,y,z) and M (%, y,Z) and is equal to

==+ (=) +(z—2) . (2.5)
The conditions for all components, A4, 4 , 4., of the vector potential at infinity are called
Sommerfeld’s conditions of radiation (see [65], page 509):

R*=r*+z" 5 w: A:O(ij, a—A+jkA:o(£j, (2.6)
R) @R R

where the symbol O(1/R) means that 4 and 1/R are infinitesimals of the same order as
R — oo, but the symbol o(1/R) means that 04/0R + jkA is an infinitesimal of higher order
than /R as R — o,

It can be easily verified that if the functions 7(M), I5(M), I;(M) are continuous in
some closed region 7 and, consequently, they are bounded in this region, then the vector
function A(M) in Eq. (2.4) satisfies Sommerfeld’s conditions (2.6). Consequently, in this
case, Eq. (2.4) gives the solution to the problem (2.1), (2.6) providing that the vector function
I°(M) is prescribed.

In Cartesian coordinates, the unit vectors ¢ , ¢, and €. are constant. Therefore, in this

case, according to Eq. (2.4), each component of the vector A is expressed in terms of a triple

integral of the corresponding component of the vector 7° (i.e. A, in terms of I°, 4, in terms

of 77 and 4. interms of /7). For example,

rMM

A (M) :%m Ij(M)MdV, @2.7)

and so on. However, in all other orthogonal curvilinear coordinate systems, the unit vectors

depend on the spatial coordinates. For example, in the system of cylindrical polar coordinates
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(r,¢,z), the vector I°(M) has the form

IS(M)=TI(M)e. +1(M)e,+ 15 (M)e,, (2.8)
and only the unit vector e_ is constant. Then, in this case, the equality

j j 15(M)é (M)MdV j j j ]e(M)MdV é (M) (2.9)

MM rMM

and the similar equality for f(j (M)- é, (M) are wrong. Consequently, the components 4, (M)
and 4,(M) have the form of a triple integral of some linear combination of the components
I°(M) and I;(M) . Problem (2.1), (2.6) is solved in the author’s papers [13] and [15] in the

cylindrical polar coordinates as follows. First, the triple integral (2.7) is transformed into a
single integral in the Cartesian coordinates. Then the transformation to the cylindrical polar
coordinates is performed in the obtained solution. This fact allows us to obtain the universal
formula for the integral representation of the solution to the vector Helmholtz equation (2.4)

in the systems of cylindrical polar, spherical and also arbitrary orthogonal curvilinear
coordinates. The components of the vector A(M) are expressed in terms of a triple integral of

the linear combinations of the components of the external current vector 7¢(M).

2.1.2. Integral representation of the solution to Helmholtz’ vector equation in cylindrical

polar coordinates

In cylindrical polar coordinates (r,¢,z) the vectors A(M)=A(r,p,z) and
I8(M)=1°(7¢,%) have the form

AWM)=A4,(M)e (M)+A4,(M)e,(M)+A4.(M)éE,, (2.10)

I8(M)=I:(M)e.(M)+I(M)e,(M)+1:(M)é.. (2.11)

The components 4, (M), 4,(M) can be expressed in terms of the components 4, (M),

A,(M) as
A, =A.cosp+ A, sing, (2.12)
A,=-A4,sinp+A4,08¢. (2.13)
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The components 7¢(M), Iﬁ(M) can be expressed in terms of the components 7¢(M) and

I3(M) as
I3(M)=1;(M)cosg— I (M)sing, (2.14)
I5(M)=I;(M)sing + I3 (M)cosg . (2.15)

It follows from Eq. (2.4) that

A (M) =%m IS(M)D(M,M)dV (2.16)
_ MBI e N T
4,(M) =22 j!j IH(M) (M, M)aV (2.17)
where
o, i1y = ZPEH i) (2.18)

The distance, r -, between the points A/ and M s defined by Eqg. (2.5). Substituting

MM

X=rcosSe, y=rsing,z=z, X=rcose, y=rsing, z=z (2.19)

into Eq. (2.5), one obtains

roo =\ r+FE=2rF cos(p - ) +(z - Z)% . (2.20)
It follows from Eq. (2.12), by substituting Egs. (2.16) and (2.17), that

Hol [([ re( -\ Hol [([ e (1 VA
A’(M):Em IX(M)qa(M,M)dV.coswEw [E(M)D(M, M)dV -sing. (2.21)
Substituting Egs. (2.14) and (2.15) into Eq. (2.21) yields
A,(M):Mm [15(M)cos@ — 5 (M)sinG]d(M, M) dV -cosp +
A <5
+ B[ [12(81)sin g + 15, (M) cos Gl (M, M) dV -sing. (2.22)
4z %,

The final expression for the component 4, (M) can be easily obtained from Eq. (2.22) by

performing some elementary transformations, and it has the form
A, =22 [[[ L7 (1) cos(p — @) + 15 (V)sin(p — G (M M) Y (2.23)
Vv
where
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dV =7drdg dz . (2.24)
The expression for the component 4, (M) is obtained by performing similar transformations
and using Eq. (2.13) for 4,(M), Eq. (2.16) for 4 (M)and Eq. (2.17) for 4 (M), Eq. (2.14)

for Ifj(M) and Eq. (2.15) for Ij(M). It has the form
A,(M) =22 [ L (W1)sin(p = ) + 15.(01) cos(p - PIO(M M) dV (2.25)
14
The component A_ (M) has the same form as in Cartesian coordinates:
A (M) =%m [5(M)D(M, M)V . (2.26)
4 Vv

Thus, Egs. (2.10), (2.23), (2.25) and (2.26) give the integral representation of the solution to
Helmholtz” vector equation (2.4) in cylindrical polar coordinates.

2.1.3. Integral representation of the solution to Helmholtz’ vector equation in spherical

coordinates

In spherical coordinates (p, 6, ¢) the vectors A(M)=A(p,6,9) and
I°(M)=1%(p,0,9) have the form

Z(M)=Ap(M)ép(M)+A9(M)EH(M)+AW(M)EW(M), (2.27)

fe(]\?[):I;‘(M)ép(M)JFI;(M)ée(M)+I;(1\7[)é¢(]\7[). (2.28)
The components 4, (M), A,(M), 4,(M) can be expressed in terms of the components

A (M), A,(M), A, (M) as

A,(M)=[4,(M)cosp+ A, (M)singp]sind+ A_(M)coso, (2.29)
Ay,(M)=[A,(M)cosp+ 4, (M)sinp]cosd— 4. (M)sing, (2.30)
A,(M)=-A,(M)sinp+A4,(M)cose. (2.31)

The components 1°(M), ]j(M), I°(M) can be expressed in terms of the components
I5(M), I3(M), I;5(M) as (see [68], page 582)
[(M)=1I°(M)sindcosg+ I;(M)cosOcosg— IS (M)sing, (2.32)
[5(M) = I5(M)sinsin g+ I5(M)cos@sin g + IS (M) cos @, (2.33)
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[5(M) =1I5(M)cosf - I5(M)sind .
It follows from Eq. (2.4) that
4,(M) " I3(M)
o S e
where

exp(—jkr, ;)

rMM

F(M,M)=

Substituting
x = psin@cosp, y=psindsing, z= pcosé,
X=psin0cos@, ¥=psindsing, z = pcosd

into Eq. (2.5) for the distance r, - yields

P = \/pz + 5% = 2pp[sinOsin @ cos(p — @) +cosOcosd] .

It follows from Eqgs. (2.29) and (2.35) that

Ap(M):%fw I5(M) F(M,M)dV -cospsin 0 +
W‘m (M) F(M, M) dV -sinpsin 6 +

+%’jﬂ IS(M)F(M,M)dV -cosé..

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

The final expression for the component 4, (M) is obtained by substituting Egs. (2.32)-(2.34)

into Eq. (2.39) and by performing some elementary transformations. It has the form

A, (M) :%Hj {1 (M)[sin &sin & cos(p — §) + cos O cos ] +

+15(M)[sin @cos & cos(e — @) — cos Gsin O]+
+1,(M)sin@sin(p - @)} F(M, M) dV,
where

dv = p?sin0dpdo dj .
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If we performe similar transformations for the components 4,(M) and 4, (M), the final

expression for these components is found in the form
A, (M) = %J-” {1°(M)[sin @ cos G cos(p — §) — cos Fsin O]+
4 Vv

+15(M)[cos O cos & cos(p — @) +sin G sin 0] +
+15(M)cos@sin(p — @)} F(M, M) dV (2.42)
A,(M) = -%m {1 (M)sin Gsin(p - @) + I5(M) cosfsin(p — @) -

T 14

—I5(M)cos(p - @)} F(M, M) dV . (2.43)

Thus, Egs. (2.27), (2.40), (2.42) and (2.43) give the integral representation of the solution to
the Helmholtz’ vector equation (2.4) in spherical coordinates.

2.1.4. Integral representation of the solution to Helmholtz’ vector equation in arbitrary

curvilinear coordinates

Let the arbitrary orthogonal curvilinear coordinates (¢,,q,,45) be given by the functions

x=x(4,,9,,95)» y=3(4,,9,.95) , z=2(4,,95,93) (2.44)

and, respectively,

x =X(67176721673), )7:)’(51152153)1 z =Z(671,527673)- (2.45)

Let ¢, , e, , ¢, be the unit vectors of this coordinate system. Then the vectors A(M) and
I¢(M) have the form
AM) = A, (M)e, (M)+4, (M)e, (M)+4,(M)é, (M), (2.46)

T8(M) = I (M) &, (M) + I° (M)E, (M) + I (V)& (). (2.47)

The components 4, (M), A, (M), A, (M) can be expressed in terms of the components

A (M), A,(M), A, (M) as

4, (M)=—1 AX(M)aa—HAy(M)j—MAZ(M)j—Z, j-123.
J q X

T (2.48)

j j 9,
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The components 1°(M), Ij(M), I¢(M) can be expressed in terms of the components

I3 (M), I; (M), I: (M) as (see [68], page 561, formulae (A.6.8), (A.6.9))

N -

IX(M)—;I%(M)H 20 (2.49)
(M) = Zl" (M)hl, ;y (2.50)
I(1) = Zle (M)Hi%’“ (2.50)

where H, = H (¢,,9,.,9) » ﬁk =H, (¢,.9,.q;) are the Lame coefficients of the prescribed

coordinate system (see [68] with the notation H, =4.").

It follows from Eq. (2.4) that

A (M) I¢(M)
A,(M) |= ’;0” [[[ | 21y |G(m, w1y a7 (2.52)
A4.(M) Vo)

where

G(M,A7[)=M. (2.53)

rMM
The distance r, . is defined by Eq. (2.5), where x,y,z and Xx,y,z are functions of ¢,,¢,,q,
and ¢,,9,,q5, respectively, and they are given by Egs. (2.44) and (2.45).

Substitution of Egs. (2.49)-(2.51) into Eq. (2.52) followed by the substitution of Eq.
(2.52) into Eq. (2.48) yields

ot 1 -1
A0 =G o) & om0

ox 8x+8; 6y+@g 0z
aq, aqj oq, aqj aq, aqj

G(M,M)dV, j=123 (2.54)

where
dV = H,(M)H,(M)H,(M)dg,dg,d7,. (2.55)

Egs. (2.46) and (2.54) give the integral representation of the solution to Helmholtz’ vector

equation (2.4) in arbitrary orthogonal curvilinear coordinates.
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The integral representation of the solution to Helmholtz’ vector equation (2.4) can be
obtained for any orthogonal coordinate system by substituting the Lame coefficients of this

coordinate system into Egs. (2.54) and (2.46). For example, in cylindrical polar coordinates

(r,p,z):

H
I
=
T
N
I
=
T
[
=

9= 4, =9, 43=2, H

CI1:’7!‘]2:¢!§3:E' H

H
Il
=

T
N

Il
~
T
w

Il
P

G(M,M)=d(M,M).

Substituting these expressions into Eq. (2.54) at j =1 and using Eq. (2.19), we have
A (M) :MJ'” [Z1°(M)(cos@Cos @ +sin @sin ) +
A <5

+15 (M) (—sin @ cos g +cos@sin )| d(M, M) dV . (2.56)
Eq. (2.56) completely coincides with the previously obtained Eg. (2.23). Similarly, Eqgs.
(2.25) for A4,(M) and (2.26) for 4.(M) can be obtained from Eq. (2.54) by substituting
j=2and j =3, respectively.
In spherical coordinates ( p,8,¢), by Egs. (2.40), (2.42) and (2.43) can be obtained from
Eq. (2.54) by using the substitution
gG.=p ,9,=0,q9;=9, H =1 H,=p, Hy=psing,
3.=p,3,=0.3,=0¢, H =1, H,=p, H, =psind ,
G(M,M)=F(M,M)

and Eq. (2.37).

2.2. Exact analytical solution to the vector potential problem of a

rectangular frame with current

The reaction of a conducting half-space on a rectangular frame with current has been
studied theoretically only in the case where the ratio of the frame’s sides is 1:4 or smaller. In
this case, a double conductor line is considered as a convenient and sufficiently accurate
model of the rectangular frame (see [6]). In this section (see also the author’s paper [13]), an
exact solution to the problem of the vector potential of the electromagnetic field induced by a

rectangular frame with current is obtained without using the double conductor line
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approximation. Due to the linearity of the problem, it is sufficient to find the vector potential
of the electromagnetic field created by one side of the frame having the form of a straight line
and by the other side having the form of a circular arc. Similarly, the vector potential can be

written for the other two other sides of the frame, and the results are added.

2.2.1. Solution to the problem of electromagnetic waves spreading from a harmonic

emitter having the form of a straight line

In the literature the problem on electromagnetic waves spreading from a linear harmonic
emitter is only solved in the so-called dipole approximation (see [57], p.666). The main idea

is as follows. The emitter’s length, [, tends to zero, but the current vector, /, in the emitter

tends to infinity so that the product 7-/=P (called the moment of dipole) stays constant.
Such an approximation is used for the analysis of electromagnetic waves spreading under the
assumption that the waves’ length is much greater than the emitter’s length. However, in non-
destructive testing problems the size of a defect situated in a conducting medium may be
compared with the emitter’s length, /, or may even be larger than /. Therefore for problems
of non-destructive testing, the problem on electromagnetic waves spreading from a linear
harmonic emitter is to be solved without using the dipole approximation. This is done in the
present thesis (see also the author’s paper [13]).

Consider a vertical wire of length 2/, located in the domain {—-/<z</, r=0} in free

space (see Fig.2.1), where (7, ¢, z ) are cylindrical polar coordinates.

Z s
I O'=O
u=1
- =1
0 8%

X

Fig.2.1. A linear harmonic emitter in free space

51



In the present case, due to axial symmetry, the magnetic vector potential does not depend

on the coordinate ¢, and it has only the z -component (see [57]):
A(r,z) = A(r,2)é. . (2.57)

The external current vector has the form (see [6]):

LG Py,
I°=< 7xr (2.58)

0, z ¢ (-1,1).

The use of the form o) on the right-hand side of Eg. (2.58) was suggested in [13]. The

r

right-hand side of Eq. (2.58) is chosen so that the full current vector in the wire is equal to 7 :

I} Idedszd(p]OI@rdr:zm-iz1. (2.59)
D 0 0 a

r 27

In cylindrical polar coordinates, the mathematical formulation of the problem on
electromagnetic waves spreading from a linear harmonic emitter has the form (see Eq. (1.26)):

AA+KA=—pul®. (2.60)
Since the vector potential has only the z -component, the problem for 4. = 4 has the form

5(r)

— 1 , —-l<z<l,
Mikia=] 1ML, (2.61)
O, Z & (_lyl)y
2 P P _9* 1o o . .
where k° = e uew” (since o =0 in free space), A=——+-—+— s the Laplacian
or® ror oz

for the z -component of the vector potential in a system of cylindrical polar coordinates for

the case of independence from the variable ¢.

The conditions for the vector potential at infinity are Sommerfeld’s radiation conditions
(see [65], page 509):

R*=r?+z* 5w A=O(£j, a—A+jkA=0(£j’ (2.62)

R OR R
where k = /(& e

In order to solve problem (2.61)-(2.62), it is sufficient to use the integral representation of
the solution to Helmholtz’ equation in vector form in cylindrical polar coordinates (see
Section 2.1.2):
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A(r,2) = “0“ m 7e (M)Mrdrdmz (2.63)

MM
where the integration is performed over the points (7,p,Z)eV where I¢=0. Here
u=1¢6=1, =0, since the wire is situated in free space, and r, - is the distance given by

the formula (see Eq.(2.20)):

P =T =27 cos(p— ) +(z—2)? . (2.64)

Substituting Eq. (2.58) for 7¢ into the projection of Helmholtz’ equation (2.63) onto the z -

axis, and taking into account that z =1, the solution for the z -component of the Helmholtz

equation has the form

A(r,z) = ﬂo J'd I~J‘J'5(r) eXp(er it )

0 MM

&=

:&lzzjfdajdz“fg(r exp[— jk[r? + 7% — 217 cos(p— §) + (z — 2)? ]d~ (2.65)
% \/ +72=2rrcos(p—@)+(z-2)°

In order to calculate the integral of Eq. (2.65) with respect to 7, the main property of the

Dirac delta function is used. That is, for any continuous function f(x) on [a,b]:
S (xp), a<x,<b,
.b[f(x)é‘(x—xo)dx = %f(xo), X, =a or x,=b, (2.66)
’ 0, x, ¢[a,b].

Using Eq. (2.66), it follows from Eq. (2.65) that

A(rz) = ﬂo“j jexp( N+ (2=2)°) = pl [exp( i’ +(z=2)") -
2

! \/r +(z-2)? Ar \/r +(z-2)?
(2.67)
Substituting z—2z =& with dz =—-d¢ into Eq. (2.67) yields
A )_,Uo T’exp( et +87) (2.69)

-1 \H" +§

It can be verified that A(r,z) given by Eq. (2.68) satisfies Sommerfeld’s conditions (2.62).

Consequently, Eq. (2.68) is the solution of problem (2.61) - (2.62), and it gives the
electromagnetic field’s vector potential created by a linear harmonic emitter of length 2/ in an

exact formulation without using the dipole approximation.
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In the limit case as k*> — 0, Eq. (2.68) gives the result known in the literature. The term
k%4 in Eq. (2.61) represents the displacement current. This term is neglected in free space

and for sufficiently low frequencies. Consequently, substituting k> =0 into Eq. (2.68), the

vector potential can be written in the form

o 17 tol | z4+1+4(z+1)* +72 | 2 69
() = fJ—:gT ZE N e (259

In particular, at x=1,=1 and A= A(r,z), it follows from Eq. (2.69) that the complex-

valued amplitude magnetic induction vector B (everywhere below it is called the magnetic

induction vector) has the form:

B= curIA_—a—Ae (2.70)

or ?

The known formula for the magnetic induction vector, produced by the current of an
infinite length wire (see, for example, [61]), can be easily obtained from Eq. (2.70) as / — oo
B — 'u_Ollg

B= N

2.71
27 r ( )

Equations (2.68), (2.70) and (2.71) correspond to the quasi-steady case, because @ =0 in

A=Jde™ and B=Be™ (see Eq. (2.25)). Eq. (2.70) can also be obtained by using the Bio-
Savare law.

It is to be noted that Eqg. (2.68) gives the possibility to apply easily the dipole
approximation as / — 0, but / — o« so that the product 7-2/ = P =const. Before passing to
the limit, we transform the integral in Eqg. (2.68) by using the mean value theorem for a

definite integral. That is, if the function f(&,r) (in the present case, the integrand in Eq.
(2.68)) is continuous in the integration domain {z—l <éEL z+l}, there exists a point & in

this domain such that the integral in Eq. (2.68) is equal to the product of the integrand f(&,r)

and the length of the integration interval, 2!/
A(rz) =2 p @y 2=t pE ), —1<E<zal. 2.72)
4 A

Now let /—0 and 7 — o so that 7-2/ =P =const, then £ — z and it follows from Eq.

(2.68) that

P e—jk\/ﬁ
A@@=%H@m=ﬁz

—. (2.73)
zZ +r
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Equation (2.73) coincides with the known formula in the literature for the vector potential of a
linear harmonic emitter (see for example, [65], [56]). But instead of SI measurement units the

authors use the CGSE units in the above mentioned books; therefore Eq. (2.73) differs from

the similar formula in [65] and [56] by the factor 1/47 .

2.2.2. Solution to the problem of electromagnetic waves spreading from a harmonic

emitter having the form of a circular arc

Consider a wire in the form of a circular arc of radius R situated in the domain

{z=0, r=R,, —@,<@p<¢,} (see Fig.2.2). In this case, the vector potential depends on all

a

variables, i.e. 4= A(r,z, ).

Z 5
o=0
u=1
c=1
0
_¢ ‘\ Y
¢ Do \\‘R

X

Fig.2.2. An emitter in the form of a circular arc in free space

The external current vector has the form (see the similar formula in [6], page 24):

- I16(r—R)o(2)e, —o,<p<0p,,
7e ={ ( ,)0(2) (p Dy =P =Py 2.74)
0, 9 &[99
The mathematical formulation of the problem has the form
AA+K*A=—pyul°, (2.75)
with the Sommerfield’s conditions of radiation at infinity:
R*=r*+z> 5> w: A:O(lj, a—A+jkA=0(£j. (2.76)
R OR R
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In cylindrical polar coordinates, the Laplacian of the vector function has the form

04 A
Ad=¢e | A4 —i;—%—“’ +é,| A4 ——§+£2% +e.AA., (2.77)
rort O 1 N N oY)
where
10( of) 10°f 0°f
AN (r,p,z)=——| r— |+— + 2.78
V(r.0.2) r@r(rarj r? a(p2 oz* ( )

and Af(r,¢,z) is the Laplacian of a scalar function. It is easy to see from Eq. (2.77) that

problem (2.74)-(2.78) for the z -component of the vector potential is decoupled. Besides, the

problem for A. is homogeneous and it has a unique zero solution, 4. =0. Consequently,
A, =0 can be substituted into Eq. (2.77). According to Egs. (2.74) and (2.75), the problem
for the »-component, 4., is also homogeneous, but it does not have a zero solution, 4, =0.
Indeed, substituting 4, =0 into Eq. (2.77), we find that 8A¢/6¢:0, but this is a
contradiction. The problem for 4, is not homogeneous due to Eqg. (2.74). Thus, the problems

for 4, and A4, cannot be decoupled.
Consequently, the vector potential 4 must have the form
A=A, (r,p.2)e, + 4,(r,9,2)é,. (2.79)

Then the solution of problem (2.74)-(2.78) for the two non-zero components of the vector
potential is obtained by the integral representation of the solution to Helmholtz® equation in

vector form in cylindrical polar coordinates (see Section 2.1.2):

Alro.2) = 2L [] 12 (1) sin(p - ) ZPI i) gz (2.80)
Ty MM
Aw(r,go,z):% (Il 12 (1) cos(p - ) EPIMi) g s (2.81)
Ty MM
where
roo =\ JrE+FE = 2rF cos(p— @)+ (2 —Z)2 . (2.82)

Substituting Eq. (2.74) for I° into the projection of Helmholtz’ equation (2.80) on the 7 -

axis, and taking into account that « =1, Helmholtz equation for the » -component has the

form
Po

A.(r,p,2) :Z—i | d&TFdFT&(F—Ra)5(2)sin(¢)—é) -

~% - MM

eXpjk ) (2.83)
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Using the main property of Dirac’s delta function, it follows from Eq. (2.83) that

% — —exp(—jkr, - -
4,092 =2 [ singy - ) 722 ui)) g

- MM

or
exp(—jk~/r? + R> —2rR, cos(p— @) +z?)
A (r0.2) = ”0 jsm(-) Py + RS~ 2rR, Ww=9)+z), (2.84)
\/r2+Rf—2rRa cos(p — @) +z°
Similarly, the solution for the ¢ -component can be obtained, and it has the form
ex ik +R? - 2rR, COS +
A,(r, (o,z)—’uo— J. cos(p — P/ \/r i (p-p)+z ) (2.85)
o \/r +R?—2rR_ cos(p—@)+z°
It follows from Egs. (2.84) and (2.85), by substituting ¢ — ¢ =w, —-dg =dy , that
IR T exp(—jk\/r2+R2—2rR cosy +z°%)
A (r,p,z)="0"0 j siny « “ dy (2.86)
4z, \/r2+R:—2rRa cosy +z°
IR % exp(—jk\/r2+R2—2rR cosy +z%)
Aw(r,w,z):% [ cosy “ “ d (2.87)
T

P \/rz +R? —2rR, oSy + z°

It can easily be verified that 4,(r,¢,z) and 4 (r,¢,z) in Egs. (2.86) and (2.87) satisfy
Sommerfeld’s conditions (2.76). Consequently, Egs. (2.86) and (2.87) give the solution of
problem (2.74)-(2.78) with Sommerfeld’s conditions (2.76) at infinity.

Remark. By substituting ¢, = 7 into Egs. (2.86) and (2.87), one can obtain the solution

for the problem on electromagnetic waves spreading from a coil carrying harmonic current.
Then in Egs. (2.86) and (2.87) the interval of integration is equal to the period of the functions

siny, cosy and, consequently, the parameter ¢ can be deleted from the limits of
integration. Besides, in this case the vector potential does not depend on the variable ¢ due to
the axial symmetry. Then it follows from Eq. (2.86) that 4, (r,z) =0, since the integrand in
Eq. (2.86) is odd with respect to . Thus we have

R % exp(— jk~/r*> + R?> —2rR_ cOS
J‘COSW p( J \/7" a I, l//)

4,(rz) = HlRe (2.88)
27 Jr2+R2—2rR, cosy

For k£ =0, solution (2.88) coincides with the one known in the literature (see for example, Eq.

(2.1.15) in [6]) for the case of a bare single-turn coil located in free space:
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_ “OéRa [ 7,.r) 7, (AR e A, (2.89)
0

A(r,z)

where J,(s) is the Bessel function of the first kind of order 1 of a real argument. This can be
easily verified by using the package “Mathematica”.
One can see that if the multiplication of the Bessel functions in Eq. (2.89) is expressed in

terms of the integral of trigonometric functions, by using formula (4) on page 426 in [55], i.e.
by the formula

T at um o) di — (B/2)*(c/2)'TRu+D T (sing)* do
!e 1, 0 (er)di = I'(v+1/2)C(1/2) -!:(az+2iacCOS(p—02COSZ(/)+b2)”+1/2,

Re[atbitci]>0, Re[u]>-12. (2.90)

then at £ =0 formula (2.89) may be expressed in terms of full elliptic integrals.

2.3. Exact analytical solution to the vector potential problem of a wire of

arbitrary form with given current

In the previous section, an exact solution to the problem on electromagnetic waves
spreading has been obtained for the case of a finite length wire in the form of a straight line
and of a circular arc. In this section (see also the author’s paper [15]), an exact solution to the
similar problem is obtained for the case of a finite length wire of an arbitrary form. Writing
the equation for the curve describing the wire in cylindrical polar and Cartesian coordinates
and using Helmholtz’ equation and the integral representation of its solution, the solution is
obtained in the form of a single definite integral of an elementary function. Moreover, using
the obtained solution, some new formulae for electromagnetic waves spreading are also found
for the particular cases of a wire in the form of an Archimedes’s spiral, of an elliptical or
circular helix and in the form of a fractal wire. The case of the fractal wire is interesting for

antenna analysis in radio engineering.
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2.3.1. Solution to the problem of electromagnetic waves spreading from a harmonic

emitter of an arbitrary form

Consider a wire located on a curve L (see Fig.2.3). In cylindrical polar coordinates

(r,¢,z) centered at 0, with the z -axis directed upwards, the parametric equation describing

the curve L is

r=7(p)

{ ap v PLSQOSQ,. (2.91)
z=2(p)

where 7(¢) and z(¢) are given functions of the angle ¢. In Cartesian coordinates (x, y,z)

the same curve is given by the parametric equations in the form

x = r(p)cose,
y=r(p)sing, @ <p<gp,. (2.92)
z=2z(p),

Il

Il
Il
\

2]

%)

Fig.2.3. An arbitrary form wire in free space

The equation of the curve can be also written in the vector form
F(p) = F(@)Cosp-i +F(@)sing- j +2(p) -k . (2.93)

The unit tangent vector, ¢, , to the curve ¥ =7 (p) is

¢ =L@ 2.94
) &9
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Taking into account Eq. (2.93), the unit tangent vector can be written in the form

¢ = w,(l@ | {7 (p)cosp—F(p)single, +[7 (p)sinp+ () cosplé, + 2 (p)e.},  (2.95)

~r2

where |F’((p)|:\/?2((p)+r (@) + 2% (@) , and the angle ¢ is

arctan(y/x), x>0,
@ =1arctan(y/x)+ 7z, x<0,y>0, (2.96)
arctan(y/x) -z, x<0,y<0.

The vector potential has the form
A=A, (x,y,2)é +A4,(x,,2)¢,+ 4. (x,p,2)e., (2.97)

where the variables x, y,z are functions of the angle ¢ given by Eq. (2.92).
The mathematical formulation of the problem on electromagnetic waves spreading from
the segment of the curve ¥ =r(¢) according to Eq. (1.2.26) has the form:

A +IPA=—pupl®, (2.98)

where k° = yye,uéw’; u=1, £=1and o =0, since the wire is located in free space.
The external current density is

o {15[r— H)olz-2(p)le,, @ <p<g, (2.99)
0, 9 £[pn 0],

The conditions at infinity for all the components A4, 4,4, of the vector potential are

Sommerfeld’s conditions of radiation (see Eq. (2.62)):

R*=r’+z> >w: A=0(@/R), 2—;+jkA:0(l/R). (2.100)

Substituting Eq. (2.96) for . into the right-hand side of Eq. (2.99) for 7°, and projecting the
vector equation (2.98) onto the x,y,z axes, one can obtain three scalar problems for the

components 4,4, 4, of the vector potential in the form:

A+ KA, = {— pl Sl(r =7 (@)1o[z - 2(P)] D1 (0), @ <@ <, (2.101)
0, 9 £[p 9],

A, 452 :{—%15[0—77(40)]5[2—2(@]@2((0), P <P<p,, (2.102)
Y 0, ¢ [, 0,],
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M. KA = {— 1ol S = F()1olz — 2(P)] D4 (9), @1 <@ <, (2.103)
0, ¢ &, 0,],
where
D, (p) = [7'(p) cos @ —r(p)sin ],
|7 ((0)|
D, (¢) = ———[7(g)sin g+ () cosg], (2.104)
| (9) |
_ Z(p)
Pslp) = IT'(p) |

In order to solve problems (2.101)-(2.103) with Sommerfeld’s conditions (2.100), one uses
the solution of the Helmholtz equation in the vector form (see Egs. (2.4) - (2.5)):
- - exp(— jkr -
Alry,2) = 28 ([ 7o(3.5,2 X Mi) s (2.105)
4 <

Tvi

where k = o,/ e, ué and r, - is the distance between the points M (x, y,z) and M (x,,z):

ro=y(x=X) 4+ (r-F)2 +(z-2)2. (2.106)

It follows from Eq. (2.105) at x =1 that the solution of Eq. (2.101) for the x-component has

the form:
+o  z(g;) o o N exp(— ik ~)
A,(x, y,z)—“° j & [dy | 5[r—r(w)]é[z—z(qo)]cbl(w)%ds. (2.107)
-0 z(p) MM

Using the main property of the delta function (see Eq. (2.66)) for the integration with respect
to z yields
exp(—jkr,;;)

MM

& . (2.108)

Z=2(p)

A, (3 =20 [ [ 617 -7 (@)1, )

~

Substituting x =7 cosg, y =rsing, x=rcose, y=rsing and dxdy =rdrd¢p into Eq.
(2.108), one obtains

2 - — jkr, - -
Ax(r,rp,z)=f4‘—jf [ap] 517 - N, 2 L) (2.109)

(2 0 MM

where

=Jx=F)+ (=) +[z- 2@ =

z=z(9)
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= [ +F = 2rF cos(p—- ) +[z - 2(@)F - (2.110)

It follows from Eq. (2.109) by using the main property of the delta function (see Eq. (2.66))
that

4,092 =42 ch( 7@ 22 g, (2411)
where
F =\r* +7(p) - 2ri(p)cos(p—p) +[— 2P, (2.112)
OB )|[r'(a)cos&—f(‘<5)sina], (2.113)
/(@) =7 (@) +7(3) +27 () - (2.114)

Similarly, the solution of Egs. (2.102) and (2.103) has the form

4,010,222 0,@)75) 22 g, (2.115)
Az(r,(p,z)=’;—if %(&)f(&)wd&?, (2.116)
where
®,(7) = ———[7(7)sin G+ 7(7)cos ], (2.117)
7@
D7) = =2) (2.118)
7]

In order to get the solution of the same problem in terms of cylindrical polar coordinates, the

components A, and A4, are to be expressed in terms of the components 4, and 4, as (see

[68])
A, =A.cosp+ A sing, A,=—Assinp+A4 Cosp. (2.119)

Substituting Egs. (2.111) and (2.115) into Eqg. (2.119), we can write the solution of the

problem in terms of cylindrical polar coordinates as

[7'(@) cos(p — @) + 7(p)sin(p - p)

A(r(oZ)—Z—‘)f @ s 12T 45, (2420
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A,(rpz) =2l j (¢>)|#,( 7@ costo—7) - @)sinte - PP 45, 2121
AZ(F,(D,Z)=Z—2ZIJZ P )lfg(p;lexr’(FJkF) 7. (2.122)

It can be easily verified that if the functions 7(¢) and 7'(¢) are continuous on the closed
segment ¢, < ¢ < ¢, and, consequently, they are bounded on this segment, then the functions
4.(r,9,z), A,(r,p,z) and A (r,p,z) in Egs. (2.120)-(2.122) satisfy Sommerfeld’s

conditions (2.100). Consequently, Egs. (2.120)-(2.122) are the solutions to problem (2.98)-
(2.100).

2.3.2. Some examples of the particular exact solutions obtained by using solutions of
Section 2.3.1

Example 1. Consider a wire given in the form of a fragment of the Archimedes’ spiral:
r(@)=ap, a=const, z(p)=0, ¢, <p<p,. (2.123)

The solution to the problem for 4,(r,¢,2), 4,(r,p,z) and A_(r,¢,z) can be easily found

from Egs. (2.120)-(2.122) by substituting 7(@)=a@, 7(p)=a, Zz'(p)=0,

| (@) |= ay/p® +1 and

F =\/r2 +a’p’ —2rapcos(p—@)+z° . (2.124)

Then the solution to the problem has the form

A4,(r.p,2) = ”0 j \/—[005(40 7)+gsin(p— ) |22 ij) dg, (2.125)
4,092 =2 i Jﬁ [ cos(p - ) —sin(p— )] 2L 45 (2.126)
A (r,p,z)=0. (2.127)

Example 2. Consider a wire given in the form of the elliptical helix:

2 2 - A~
S+l 2p)=he (h=h27), @ <p<e, (2.128)

2 2

Q
S

or by the substitution x =7(¢)cos¢ and y =r(p)sing into Eq. (2.128), the wire is described
by
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. cos’p sin?
d@=[ ANl 4

-y X
PEERRS j  2p)=he. <@g, (2.129)

In this case, the solutions for 4,(r,¢,z), 4,(r,¢,z) and A, (r,p,z) are obtained from Egs.

(2.120)-(2.122) by substituting

2~ w2~ \H ,
f@{c“ﬁ” + 2 (’)j , f’(’é)=—1(f(¢'>)‘4sin2¢(%—%j,
a b* a

B> 2

K@) =hp. Z@)=h. [F@)=F@)+72 @) +h?

F=Alr? +72(5) - 2r7(p) cos(p— 3) + (z —hp)* . (2.130)

Example 3. Consider a wire given in the form of the circular helix (circular solenoid):
r@)=R, Z(p)=he (h=h27), ¢ <p<g,. (2.131)
In this case, the solutions for 4, (r,¢,z), 4,(r,¢,z) and A.(r,p,z) are obtained from Egs.

(2.120)-(2.122) by substituting

F@)=R, F(@)=0, 2@)=hp, 2(@)=h, |F(@)|=vVR>+h?,

F=Alr? +R? —2rRcos(p— ) +[z— hp]’ . (2.132)

Thus, the solution to the problem has the form

P2 2 i = .
Ar(r,(p’z):ﬂolj RZsin(p — @) exp(jkE) 45 (2.133)
4r ” VRZ +h2 F
P2 2 = .
Aw(r,<0,2)=ﬂ°lf R COS((DA @) exp(—jkF) 7, (2.134)
) Jgew  F
P2 T o
A(rpz) =t L _SRCHE) 5 (2.135)

4”(p1 \IR2+]:l\2 F

It is to be noted that in the limit case as k> — 0 and » — 0 (i.e. on the axis of the solenoid),

this example gives the result known in the literature (see [69]). The term k24 in Eq. (2.98)

for the vector potential represents the displacement current. For sufficiently low frequencies
and at the absence of conductivity in free space, the multiplier k*=0 can be directly

substituted into Eq. (2.98) and, consequently, into solutions (2.120)-(2.122) for 4,, 4,and

A_. In this case, integrals (2.120)-(2.122) and, consequently, the vectors B and E given by
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Egs. (1.8) and (1.30), respectively, can be expressed in terms of elliptical integrals. Besides,
substituting » =0 into the same equations, integrals (2.133)-(2.103) can be expressed in terms
of elementary functions.

It follows from Egs. (2.133)-(2.135) as k* — 0 that

A (rypz) =20 - \/7] sin(p — (p)— (2.136)
Mol = do
A (I" (Daz)__\/mj COS(¢ ¢) F ’ (2137)
do
A(r,p,2) = ”0 Ll (2.138)
- \/R2+h2 I F

In particular, in calculating the component of the magnetic induction vector B on the

axis of the solenoid, i.e. the z -component, the formula for curl 4 is used in polar cylindrical
coordinates:

B=curld = (curl4) & +(cur|A) +(cur|A) é. (2.139)
where
(curl 4). :1( 4, j (2.140)
r op

The magnetic induction vector B = B_é. on the axis of the solenoid has the form

0 0A

B ,=(curl4),| = —(—( 4, ] = lim ¢ :[_} =
=0 r ¢ o r—0 7 0
04

=|Im£ 4, —|Im2 A +r—2 04, _

=0 OF 81/' —0opr| ? or @

04, 04 2 024

—tlim| Lo Ho A i e (2.141)

=0 Or or OQ)ﬁr =0 OF

Substituting Eq. (2.136) for 4, and Eq. (2.137) for 4, into Eq. (2.141), one obtains

. 1 ~ ~
—ygg{ M [ costo- co)[ ][E(Zr—zzecos(qo—co))]dqo—
_ul R a"’f d (sin(gp—(ﬁ)]d(z _
Ar \JR? yp2 Or: O¢ F

65

B,




1 ~ ~
—l;gg{ m [ costo- qo)[ j(ﬁ(zr—zkcos(w—qo»jdqp—

I 2 P2 _ =
el R0 (cos(co §)_Sn@-9) 1,0 i m) d(p}
4r \JRZ 4 p2 Or F F 2F

i r—Rcos(go—é)j -
=lim cos dp—
Ho{4,, rm | cos(e- co)( 7 Z

Hol

r—Rcos(¢p — @)
( F? ) ’-

R | costp—g)
AT R*+ 17,

—sin ( ))d }

4”\/R+hzj ( )

_ Mol ‘]3 cosz(¢—¢)| d@_#ol T 0052(¢—5)| 45+
T R + i? o F? ‘r:() AT R* +h? ” F r=0
LMl R® L01 j ~

————| sin — | do;=
47[ ,R2+h2 -[ ((p (p)( 8r F? 0 ¢
wl R oe-p)
~ A~ 3/2
AR B o[ R+ (2 )|
R* % sin’*(p-9) 45 =
477 \/Rerh2 lR2+(z ho)? J3/2
3 ¢’z
dgp (2.142)

@
" \/R2+h2 [R2+(z qg) [
Substituting (pl:—LA/};, ¢2=i/};, hg =%, ngE/}; and dg'pﬁ:d'z'/ﬁ into Eq. (2.142),

where L is half the length of the solenoid, the magnetic induction vector on the axis of the

solenoid takes the form

: 2.143
214:0 471_ R2+h2 h .[ [RZ )2]3/2 ( )
Substituting z—z = Rtant into Eq. (2.143) and calculating the integral, yields
Mo IR L+z L-z
o = g (2.144)

~ ~ ~ + ~
AxinR? + 7% | R +(L+2)? R +(L-z)
where z = };(p =he/2x . It means that 4 is the pitch of a screw. Therefore, if there are 2N
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single-turn coils of the solenoid, then the length of the solenoid is equal to 2N#, but the
number of the single-turn coils on one unit length of the solenoid is equal to

n=2N/(2Nh) =1/h . Consequently, in the case /° << R?, Eq. (2.144) can be rewritten as

~

_ pnl L+z N L-z
2 | JR?+(L+z) JR?+(L-2z)

(2.145)

Z1r=0

Eq. (2.145) coincides with a known formula in the literature (see [69]).

Example 4. Consider a fractal wire i.e. wire in the form of a broken curve. There exist
linear branches on some links of this curve. Due to the linearity of the problem, it is sufficient
to solve the problem for one linear segment of the wire that is given by the equation

TN YT ZT Ry <x<y,, (2.146)
Iy my ny

where
Ly =Xpp =Xy My =Yy =Yy, Ny =2y — 2y, k=12,..,N.
Then we must add the results of the solutions. The coordinate system XYZ may be chosen

such that /, #0, m, #0,n, #0 for the each £=12,...,N, and such that the each of
segments (2.146) does not pass through the point (0,0,0). Substituting x=7(¢)cose,
y=r(p)sing and z = z(¢p) into Eq. (2.146), we can write the equation for the linear segment

given by Eq. (2.146) in cylindrical polar coordinates as

#(@) = (m.x, =1y, )(m, cosp—I sing)™,

2(p) = z,, + (F(@)cosp—x, )n, L. " (2.147)
The solutions for 4,(r,¢,z), 4,(r,¢,z) and A.(r,¢,z) are obtained by substituting

#(@) = (m,x, —1, v, )(m, cos@ -1 sing)™,

2(p) = zy + (F(p) COSQ —xy ) m, L,

#(@) = (m,x,, —1, vy, )(m, cOs@ —1,sing)™(m, sing —1, cosp),

2(55) =Zyt (7:(&) COS& _xlk)nklk_l1

[P (@)= \/’:2((;) +’:'2(¢) +2,2((5) , ¢, = arctan ylk/xlk , @, =arctan yzk/x2k and

F = \[r? +72(@) - 2r7(() cos( — ) +[z — 2(P)]* (2.148)

into the same Eqs. (2.120)-(2.122). This case of a fractal wire can be applicable in radio

engineering for the design of antennas.
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3. SOME PROBLEMS ON IMPEDANCE CHANGE OF
HOMOGENEOUS MEDIA

3.1. Evaluation of new classes of definite integrals

As mentioned in the Introduction, analytical solutions to eddy current testing problems
are rare and can be found only for domains and emitters of simple geometry. However, even
in these cases, the change in impedance is usually expressed in terms of improper integrals
(see [6]).

The integrands of these integrals are either combinations of irrational and trigonometric
functions, or combinations of irrational and Bessel functions, so that one can consider two
classes of definite integrals. Thus, applications require the evaluation of different types of
improper integrals. New classes of improper integrals which can be evaluated in closed
analytical form and have direct applications to eddy current testing methods are considered in
this section (see also the author’s papers [12], [8]). The integrals are evaluated in closed form
by means of divergent integrals that converge in the sense of Abel [4]).

Consider the following classes of definite integrals

cos y x dx T x™J(bx)dx

0 , B, (b)= ,
S e

where n=1,2,3,...,m=012,..., and J_(z) is the Bessel function of the first kind of order

(3.1)

m . Only the particular case B, ,(b) is evaluated in closed form in the literature (see [48]) and
the used method is appropriate only for calculating B, ,(b). The general formula for B, (b)

and even particular cases for A, (y) seems to be absent in the literature.
3.1.1. Evaluation of the integral A, (y)

In order to evaluate A, (), one uses divergent integrals, which converge in the sense of

Abel (see [4]). For example, for y > 0 the integral

[e¢]

_[sinyxdx= lim [ e sinyxdx = lim —7— L
5 ()a+00 5>+0 g +0 4

3.2)

Differentiating both sides of Eq. (3.2) with respect to » yields that, in the sense of Abel,
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[ xcosyxdx=- 1 J'x sinyxdx = — 2. jx COS]/XdX—E, e (3.3)
0 y? a a

and, in general,
“ !
_[xml cos yxdx = (-1)"* (an::zl)' , n=012,... (3.4)
0 Y

Consider the integral (see [41])

J.\/%cos;/xdx K,(ays2 +72), (3.5)
+

where K,(z) is the modified Bessel function of the second kind of order 0 and a = const,

a>0. Differentiating both sides of Eq. (3.5) with respect to 6 and using the formula
K, (2) =—K,(z), one obtains

T -5 x?+a’ a5Kl(aV§2 +7/2)
je cosyxdx = , 0>0
0 [52 +7/2

where K,(z) is the modified Bessel function of the second kind of order 1. Differentiating

(3.6)

(2n+1)-times both sides of Eq. (3.6) with respect to &, one obtains the formulas

[ g2
'[\/x +ale Vi cos;xxdx_—— 0K, (& +7 ) (3.7)
do o2+ 7P

© 2n+l 2
J‘( [? PO EPS X2 +a? cos yxdx = — d _ asK,(ays” +y ) (3.8)
0 do™ 1/5 +]/

It follows from Eqgs. (3.7), (3.8) and (3.4) that, in the sense of Abel,

© [ 2
.|.\/x2 +a’ cosyxdx = — I|m aoK,(@yo +7 ) (3.9)
3 s—>+0dS [5 +7/

2n+1 [ 2
'[(\/x +a )2”*1cos;/xdx_—llm dd — aoK,(ayo +7 ) (3.10)
o N

J'sz (Vx*+a?)* cosyxdx = (-)™* dzm m 47 | 20K, @Yd" +7" ) (3.11)
dy? 5—>+o do2t \/ﬁ :
e
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In view of the transformation

1 _ (k=X (k-1 [ 2L 22y p(p-1) 23y 2

= X
(K + X)Zn—l (K2 _ X2)2n—l (a2)2n—1 (a2)2n—l 2|

_p(p-D(p-2)
3

A3 _X2n1j|’ a=x?-x2, p=2n-1, (3.12)

one can see that A (y) is a finite sum of integrals (3.4) and (3.11) for x=+/x*+a’.
Consider the right-hand side of Eq. (3.12). The first term is

K2n—1 _ ( /XZ n a_2 )Zn—l — (XZ +a2)”_l"X2 +a2 . (313)

Thus, the first term is a finite sum of the products of the term +/x* +a® and even powers of x

(see the integrand in Eq. (3.11). The second term is

K" = p(WxP +a%)" ?x = p(x* +a*)"'x. (3.14)
Thus, the second term is a finite sum of odd powers of x (see the integrand in Eq. (3.4)). The
third term is

p(r;' D onse _ p(p PO=D) [ aymeye p(r; D +a)y*xx+al. (3.15)

Thus, the third term has the same structure as the first term of Eq. (3.12). Similarly, the fourth
term has the same structure as the second term of Eq. (3.11), and so on.

Hence, the integral A, (y) indeed is the finite sum of integrals (3.4), (3.10) and (3.11).

For example, it follows from Eq. (3.1) and decomposition (3.12) that

T cosyxdx 1%, 7
A) =222~ = [(/X? +a® —x)cosyxdx
!«/x2+a2+x az'([

:%J\/xz +a’ cosyxdx— izf XCOS X dX, (3.16)
0 a 0

A (7)) = I cosyxdx =i6T(\/x2+a2—x)3c03yxdx
(\/x +a’+x)® a'y

1
a®

o—38

[(\/x +a%)® - 3x(x* +a*) +3x*Vx* +a’ - xﬂ cos y x dx

a

- iej'[(\/xz +a%)® —4x® -3xa’® +3x°Vx* + aZJ CoS y X dx . (3.17)
0
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Consider the expressions for A, () in detail. The first integral on the right-hand side of Eq.
(3.16) can be evaluated by using Eq. (3.9) and the formula

i[ KV(Z)} _ K@) (3.18)
dz ' '

YAl VAl

and it has the form

© 2
J.«/x2+a2 cos;/xdx_—llm— adK,(@yo" +77)
0 s>+ do ’5 +7/

:_nm{aKl(Wz”z) asfe@NOT 177 as }:—ixl(an, (3.19)
/4

5—+0 \/52+7/2 \/52+7/ \/52+72

but the second integral on the right-hand side of Eq. (3.16) is found by Eqg. (3.3). Similarly, in

order to calculate A,(y), four integrals on the right-hand side of Eq. (3.17) are evaluated by
using Eq. (3.10), (3.4), (3.11) and (3.18). Thus,

_focosyxdx _ 1[1 a, } 320
A®) !—mﬂ az[yz K@) |, (3.20)

T cosyxdx 113a® 3a? 24
A =] Z = ?[_ Ks(ay) +_z__4} , (3.21)
Ve Ve Ve

o (Wx*+a® +x)°

where K,(z) and K,(z) are the modified Bessel functions of the second kind of order 1 and

3, respectively. The correctness of Egs. (3.20) and (3.21) has been verified numerically by
using the package “Mathematica”.

Moreover, the correctness of Eq. (3.20) is rigorously proved by using the following
analytical methods of Van der Pol [48]. Performing the transformation

v=a

j vdv Vi
X+ X +a \/V +X v=0
2(«/x Tafoyyo L Xraox L (3.22)

a® Jx2+a? +x \/x2+a2+x

we can rewrite the integral on the left-hand side of Eq. (3.20) in the form

o]

J- COSs y X dx _iTVdVTM_ (3.23)

L ]Ecos%dxi vv
=2 S, a2
5 x +a?+x a g oAV x2 Aty oalvi+x?
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If one uses the integral

¢ cosyxdx
_[ A =Ko (7v), (3.24)
0

\/V +x°

where K, (yv) is the modified Bessel function of the second kind of order O (see [54], vol.1,

page 18), then it follows from Eq. (3.23) that

cosyxdx i 1.1 | 1%
J. .[ aZ!Ko(yv)\/dv—{VV—Z,V—;Z,dV——dZ:|—az—yz‘([Ko(Z)ZdZ

0 V2 + X2 v
or using the equation zK,(z) =- [zK (2)] and K (z)— ,as z— 0, one obtains
17 1 o 1 1
—— | K, (2)zdz = ———zK(z =———[raK,(ya)-1] =
2y Kol = =52 (@) = glraK, () ]

(3.25)
Thus, Eq. (3.20) is also proved analytically.

3.1.2. Evaluation of the integral B,  (b)

As in the previous evaluation of the integral A, (), divergent integrals that converge in
the sense of Abel are used to evaluate the integral B, (b). Consider the integral (see [41], Eq.
6.623(2)):

T o s 26 (2b)"T'(m+3/2)

e *J_(bx)x™dx = :

'([ m( ) \/; (52+b2)m+3/2
where I'(z) is Euler’s gamma function, and consider the integral (see [58], p.171, Eq.
(6.15.6)):

—v-1
2K, (6VX +a%) e b7 (o7 an? |
J. Zx2+a2)"/2 J, (bx)x 1dx=5ﬂ — K, (avs®+b?), (3.27)

0

§>0, b>0, (3.26)

where a>0,b>0,5>0,v>-1, and K ,(z) is the modified Bessel function of the second

kind of order g . Substituting z=1/2, v =m into Eq. (3.27) yields

-m-1/2
2K,,(SVX* +a N2
| wp@VX +a) | (bx)x"‘”dx_;z[ ° +b] K ,yo(@/o2+b?).  (3.28)
a

L (x*+a?)v
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If we use the equations

Km(z):‘/%e‘z and  K_ (2)=K, (2), (3.29)
then it follows from Eq. (3.28) that

o -5y x*+a’ m

[E——1, oxmdx = |22 (a—b) Kpa(@Ky), &, =67 +7 (3.30)

s x?+a? K, \ K,
where

7 & (m+k)!
K 7)=,—=e , 3.31
me (D) =47, kz::;k!(m—k)!(ZZ)" (3:31)

and, in the case m =0, the sum in Eq. (3.31) is equal to 1.

Differentiating both sides of Eq. (3.26) (2n+1)-times with respect to ¢, one obtains

© 2n-1 m
_Ie_dxxzn_lJm(bX) Xm+1 dX = d 2n-1 |: 25 (2b)2 F(T :+?;//22)i| (3.32)
: ds> | r (5% +b?)
or in the sense of Abel:
T oo d>* | 26 (2b)"T(m+3/2)
X" (bx)x™ " dx = — lim : 3.33
.([ m( ) 540 d52n—l |:\/_ (52 +b )m+3/2 ( )
Differentiating both sides of Eq. (3.30) 2n-times with respectto & yields
2n a
j e (IxE +a?)? g (bx) X dx = dd5 { 22 (aty" —””*”i(mm}- (3.:34)
2
We introduce the operator L, such that
1 d
L, =——(b" 2"“— b™. 3.35
m bl—m db( ) ( )
Then it follows from Eq. (3.34) that, in the sense of Abel,
2n a
'[xzr(\/x +a?)™ ], (bx)x™ dx = (-1)"(L,,)" lim d ( b)" m Kz (2K,) ,
d52n K£n+1/2
(3.36)
where r=0,1,2,..., and the operator L, is chosen such that
Lo L3, (0X)] = %23, (bX) , (3.37)

and it gives the multiplier x*" on the left-hand side of Eq. (3.36).
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The next transformations are the same as for the integral A, (). The transformation
given by Eq. (3.12) allows representing the integral B, . (b) as a finite sum of integrals (3.33)

and (3.36).
For example, for m =0 it follows from Egs. (3.33), (3.36) and (3.37) that

1x3 xydx=—lim 9~ & gyl (3.38)
_([ 0 - 5H+0d52n—1 (52+b2)3/2 - 0 b’ .
where
1d(, d
b :E%(b E)’ (3.39)

© ) dZn e—aV52+b2
X2 (W x%+a?)™ 1, (bx) xdx = (<1)"(L,)" lim , r=012,... 3.40
! (Vx +a%)"" 3, (ox) xx = (-1)' (L,) e (3.40)

It follows from Eq. (3.1), by using decomposition (3.12) and Egs. (3.38) and (3.40) at n=1,

m=0, r=0, that

7 xJ, (bx)dx 1%, 7
B,,(b) = | —=2=—— = = | (WXx*+a® —x)J,(bx) xdx =
R v °

1], d?2 e®™ 14d( d1 11 1 1
=S lim————t=—|b—=||= 5| S-S |a+= e |; 3.41
a2 [5%—*—0(152 152 +b2 bdb( db bj] a.2 |:b3 bz( bj :| ( )

Similarly,at n=1, m=0, r =0, we have

T xJ,(bx)dx 1%, 3
B,o(b)= g =— | (Wx +a® —x)’xJ,(bx)dx =
* o (Wx? +a? +x)3 ae'([ ’

=%J'[(\/x2 +a%)® —4x® —3xa® + 3x*Vx* +a2]xJ0(bx)dx -
0

1 { d* g d' e 3 36 (3.42)
T 6| 44 YO 2 41,3 65 '
a®| ds d6? |Jp? + 52 \H a'b® ab

The correctness of Egs. (3.41)-(3.42) has been verified numerically by using the package
“Mathematica”. However, there remains the question whether the following two limits are
equal, i.e. the integrals

lim |e?*v/x*+a® cos yxdx (3.43)

5—>+0
0

and

74



lim {e=V¥*%" \/x? +a? cos yxdx. (3.44)

5—>+0
0

Equation (3.7) is used for evaluating the integral (3.44), but for the evaluation of integral
(3.43), a similar formula does not exist. Integral (3.43) can be expressed only in terms of the
Lommel functions, and for these functions, it is difficult to find the limit as 6 — +0. It is

rigorously proved that

5—>+0

lim _|‘(e“SX —e ) x? +a? cosyxdx =0, (3.45)
0

i.e. limits (3.43) and (3.44) are equal. The correctness of Eq. (3.45) has also been verified
numerically by using the package “Mathematica”.
It is to be noted that the multiplier cosyx in Eq. (3.45) is very important. It is proved that
without this multiplier, the limit
@ 2

lim [e‘“ _ gV }/x2 +atdx= a7 =0, (3.46)

5—>+0

despite the fact that

5—>+0

lim [e“” ol } —0. (3.47)

3.2. Closed form solutions to some eddy current testing problems

In this section, we apply some of the integrals that have been evaluated in the previous
section to some mathematical problems of eddy current testing. In particular, the integrals

A(y) and B ,(b) given by Egs. (3.20) and (3.41), respectively, are used for evaluating

impedance change in the cases of a double conductor line and a single-turn coil located on the
surface of a conducting half-space. In the case of a double conductor line, the expression for
the impedance change has been evaluated in closed form, but in the case of a single-turn coil,
the impedance has been transformed into the simpler form of a fast-convergent series.
Furthermore, we obtain the simple asymptotic formulae for the impedance of arbitrarily
situated double lines and coils in the limit as the frequency tends to infinity. The obtained

results are published in [9] and [7].
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3.2.1. Double conductor line above a half-space

Consider two infinitely long wires carrying an alternating current and located in region

R, ={z >0} at height h above a uniform conducting half-space (see Fig.3.1). The wires are
parallel to the x-axis and pass through the points (0, y,,h) and (0,y,,h). The conducting

half-space is located in region R, ={z < 0}.

z A
(Vo) (Vy,h)
@® ®
0 Ro
/o) »
&/ >
X R, Y

Fig.3.1. A double conductor line in free space R, at height h above a uniform

conducting half-space R,

The vector potential has only the x-component (see the 1% boundary value problem):
A=A (y,2)E, . (3.48)

The mathematical formulation of the problem has the form (see the 1% boundary value
problem, Egs. (1.48) and (1.49)):

ANy ==l [6(Y = Yo)o(z—h)=5(y - y,)6(z—h)], 2>0, (3.49)

AA +KZA =0, 2<0, (3.50)
where k’ =—jwu,o,, and g, =1, & =1 and =0 in free space. The displacement current
is assumed to be absent, but the relative magnetic permeability of region R, is equal to 1. The
boundary conditions are

Ay
0z

_oA

AO|z=0+ = Al|z=0—’ - oz (351)

z=0+ z=0—

and the following conditions hold at infinity:
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oy OA  OA, OA
’ ’ ’ ’ ’ - Oa
Moo A oy oy 0z 0z
The solution of problem (3.49)-(3.52) for region R, has the form (see [6])

as 4y’ +12° 5w, (3.52)

ol (@-h) (Y- y,)
T v o B VA G

0

ol fA=0 __un di
4200 |2 " cosA(y—V,)—cosA(y—V,)]—, 3.53
5 _([/Hq [cosA(y —Y,) (y—vy.)] B (3.53)

where q=4/2* -k’ .

Note that the first term on the right-hand side of Eq. (3.53) represents the vector potential
due to the presence of the two solitary wires in unbounded free space and is associated with

the primary field, while the second term on the same side gives the contribution A (y,z) to
A, (Y, z) due to the conducting medium and is associated with the secondary field. Thus, the

induced vector potential is
: 15A-q _ da

nd (g 7) =00 (278 et cos 4(y -y, ) —cos Ay — y,)] 2. 3.54
A (¥,2) 2ﬂ£ﬂ+q [cos A(y = o)~ cos Ay - v.)]— (354)
The induced change in impedance, z™, due to the conducting medium, is given by Eq.
(1.1112), i.e.

zZ'n :JI_% Al , (3.55)

where C is the contour of the source of current. In the case of the double line, the equation of
the contour C is given by {z=h, y=y,, 0<x<1 and z=h, y=y, 0<x<1}.
Introducing dimensionless variables, it follows from Egs. (3.54) and (3.55), that the
impedance change in the double conductor line per unit length has the form (see [6]):

2 -

e 2% (1—cos ﬂs)ﬁ =X +jY, (3.56)
S

in ® T
Z d — /’lO Z|, Z| — Jj =
0S+4/S" + ]

where ¢ =h/d, g=d, wo,u, and d =y, —y, is the distance between the wires.

Consider the case a =0, i.e. the current source is located on the surface z=0. In order
to evaluate integral (3.56) in closed form, we use Eqg. (3.20) of the new classes of definite

integrals, obtained in Section 3.1.1, i.e. the integral
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T cosyxdx 111 a
(r)= —=—[———K (w)] (3.57)
A '([\/x2+a2+x a’ly’ y
where K, (z) is the modified Bessel function of the second kind of order 1.

In order to transform integral (3.56) to the form of integral (3.57) at « =0, one uses the

formula

X —+/x* +a’ 2 1

- _=. (3.58)
X(x+vx2+a%) x+yx’+a’ X

To avoid the divergent integrals in Eq. (3.56) at & =0, we replace the multiplier (1—cos #x)
with the multiplier (cosax—cos Sx). Then by Eq. (3.58), the integral on the right-hand side

of Eq. (3.56) at @ =0 (and assuming j:=a®) can be rewritten as

© 2 2 ~ 0 A~
X—4/X°+a - dx COSa X —COoS X COSa X —COS X
I (cosax—cos fx)— = Zj P dx—_[ s

o X+4/ x> +a’ X o X+4/x*+a’ 0

The second integral on the right-hand side of Eq. (3.59) is known in the literature (see [41]):

dx .(3.59)

o0

J-cosax—cos,Bx dx:lng. (3.60)
0

X a

The first integral on the right-hand side of Eqg. (3.59) is evaluated by Eq. (3.57):

A y=a
T COSa X —Cos BX N 111 a
dx = A(a)-A(B) = —{———K (37)} (3.61)
l‘ X++/x* +a’ a’ly? oy ! p
Substituting Egs. (3.60) and (3.61) into Eq. (3.59) yields
0. [2 2 r=a
ju(cos&x—cosﬂx)%:%[%—EKl(ay)} —Ing
o X+/x*+a’ X a [y vy p a
2 A
- 2F@-Fp)-nL, (3:62)
a a
where
1 a
F(r)=—-—Ki(ay). (3.63)
yor
In order to take the limitas & — 0 in Eq. (3.62), i.e. the limit of the part
lim %F(&)—In@ : (3.64)
a—>+0| a o

the asymptotic behaviour of K, (z) as z — 0 is to be found, and not only by using the known
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formula (see [58], p.142, formula (5.7.12)):
K. (2) %Oé(n—l)!(Z/Z)”, n=12.., e K(2) =Yz

The general expression for K, (z) is

K (2)=1 Z( 1) (n k — 1)(/2)2k—n

22k+n
+= ( )“+1Zkl(/k)n)l[ é_lﬂ(kﬂ)_y/(kmﬂ)] O B8

where y(z) is the logarithmic derivative of Euler’s gamma function, whose values can be
calculated by means of the following formulae,

v()=-C, w(2)=-C+1, 1//(3)=—C+1+%, t//(m+1)=—C+1+%+%+---+i,
m

where C =0,577215... is Euler’s constant. Besides, at n=0, the first sum in Eqg. (3.65)
for K, (z) is equal to zero.

It follows from Eq. (3.65) at n=1 that

K (z)_—+I (2)In E _E y %[z//(k +1)+z//(k+2)], (3.66)
where
l,(2)= :E:kféi-+1)l (3.67)

and 1,(z) is the modified Bessel function of the first kind of order 1. It follows from Eq.

(3.66) that

K@)-2 =1 ——E{FE[W(1)+W(2)]+%(—j [W(2)+w(3)]+---}, (359

3
where, in order to find the limit as z — 0, the term %(gj [w(2)+w(3)] can be neglected,

because this term gives zero contribution in the limitas z — 0 and,

(D)= 2+ 5%{§)+~- (3.69)

3
The term %(éj in Eq. (3.69) does not give the contribution as z — 0 either. Thus, as
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z— 0, Eq. (3.68) holds
1 z, 7 z
K(z)-===In=-—(1-2C). 3.70
1(2) > =55 4( ) (3.70)
Besides, it follows from Egs. (3.63) and (3.69) that

1 a 1 a|l1 ay, ay ay
Fy)=—-—K/(ay) =——-——| —+—Inh—-—(1-2C
()= =K@ = y[ay < -E )}

a2

=—7Ina27 2 0-2C), asy 0. (3.71)

Substituting Eq. (3.71) at ¥ = & into limit (3.64) yields

Iim{%F(&)—lng}=lim{ |na—“ 1(1 2C)— ﬂ}
a (04

a—+0| g a—+0

_||m{ In%—ln&+%(1—2€)—ln,6’+ln&}:O.S—C—In%.

a—+0

Hence,
lim [%F(&)— ﬂ} 05-c-In?2. (3.72)
a—>+0 | g a 2

At last, it follows from Eq. (3.62), by taking the limit as & — 0 and using Eq. (3.72), that

- dx . 2 _ . Ll 2
cosax—cosfx)—= lim | =F(a)-In= |-—=F
“*°J.x+\/x +a’ ( “ / )X é++0{a2 (@) 0?} a’ A

=0.5-C—In %—EF(ﬁ) (3.73)

We substitute F(5) given by Eq. (3.63) into Eq. (3.73) and if & =0, then integral (3.59)

takes the final form

Tx—/x*+a’ ~ ap 2{1 }
—(1- —=05-C-lIn —K 3.74
Lo oo 2wl g a7

Therefore, if we substitute Eq. (3.74) into Eq. (3.56) for Z, and if =0 and az\/_',

then the impedance change in the double conductor line has the form
2|, —1{05 C—In%ﬁ—%{—z—f mﬂﬂ (3.75)

or if we take into account that
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ﬁ\/_ [m +In\/_} [ +In\/7]—{ln§+lnejq——[lnéﬂ'z},

then the impedance change takes the final form

=5+j[1—c—lnﬁ}—2{ﬂi s 1(ﬂ\/_)} (376)

Zlis =341 2

The Bessel function in Eq. (3.76) can be expressed in terms of the Kelvin functions,

ker,(p) and kei, (f), which are tabulated in [53]:

Ki(By1) = jlker,(B)+ jkei (B)]. (3.77)
Eq. (3.77) allows separating the real and the imaginary parts in Eq. (3.76):

X (B)=ReZ, = %—%—\/ﬂ_[ker (B)+kei, (B)], (3.78)

Y(8)=1mz, =%—c —|n§ ‘/’;[ker (B) —kei, ()] (3.79)

Computational results obtained by means of Egs. (3.78) and (3.79) are presented in Fig.3.2 for
different values of the parameters & and 3 (see curve a =0).

As can be seen from Fig.3.2, in the case & =0, i.e. when the current source is located on

the surface of the conducting half-space, the curve becomes parallel to the imaginary axis as

P — .
Y(B)
0.4 0.6 8 X('B)

-0.5

1 4=02 a=0
e a=0.1

'2 & =0.05
-2.5 |

Fig.3.2. Curves describing the change in impedance of a double

conductor line for different values of & and
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Computational results obtained by means of Egs. (3.78) and (3.79) at & =0 completely

coincide with the computational results obtained by means of integral (3.56) with the use of

the package “Mathematica”.

3.2.2. Single-turn coil above a half-space

Consider a circular single-turn coil of radius r,, carrying an alternating current and

located at height h in free space, R, ={z >0}, above a uniform conducting half-space in

region R, ={z < 0} (see Fig.3.3).

Z A

v

Fig.3.3. A single-turn coil of radius r, in free space, R,, at height h above

the uniform conducting half-space, R;

In this case, the vector potential has only the ¢ -component,

A=A(r,z)E,,

(3.80)

The mathematical formulation of the problem for the vector potential has the form (see the 3"

boundary value problem, Egs. (1.89)-(1.92))

{A(pﬁbz—yolé(r—rc)&(z—h), inR,,

AA +KFA =0, inR,
where
o’f 1of o*f 1
A f(r,2)= + i ———=f,
o1 r2) or’ ror 0z° r?

with the boundary conditions
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oA
0z

_A

= (3.83)

A0|z:0+ - A1|z:0— !

)
=0+ z=0—

and the conditions at infinity

o, OA  OA A [2.,2
Ao A Z5 o o 0 as ezt e, (3.84)

The solution of problem (3.81)-(3.84) for region R, has the form (see [6])

A(r.2) :“OT"C [3.0r)3, (e 1 1da+ % [ j—;g 3,(r.)3,(Ane=Md, 1, (3.85)
0

0

where J,(z) is the Bessel function of the first kind of order 1. The first term on the right-
hand side of Eq. (3.86) represents the vector potential of a solitary single-turn coil in
unbounded free space, while the second term on the same side gives the contribution

A" (r,z) into A,(r,z) due to the conducting medium. Thus, the induced vector potential is

o0

in Irc A— —A(z+
Aod(r,z):ﬂoTierl(ﬂrc)Jl(ﬂr)e Hasg g (3.86)

Substituting A™(r,z) into Eq. (3.55) for Z™, the induced impedance change in the coil

located above the conducting half-space (see [5]) has the form

C Y Py H R
Zzind _ Lotz 7 - jﬂjwjf (Bs)e 2%ds = X + jY, (3.87)

‘ 0S+4/S°+ ]

where a=2h/r, and p=r Jwou, are dimensionless variables. Formula (3.87) was

obtained by [62] for the first time in 1960, although this problem was considered before in
connection with expansion of electromagnetic waves in monograph [56] and textbook [57]

under the magnetic dipole approximation assuming that the radius of the coil, r,, tends to
zero, but the amplitude of the current tends to infinity so that multiplier r,1 =M remains

constant. In this case, integral (3.87) is simplified and can be expressed in terms of elementary
functions for the case & =0 (see [48]). However, in the case of non-destructive testing, the
magnetic dipole approximation is not appropriate, as the size of the defect can be
commensurable with the diameter of the coil. Thus, one needs to simplify the integral (3.87).
Consider the case « =0, i.e. when the current source is located on the surface z=0. In
order to evaluate integral (3.87) in closed form, divergent integrals convergent in the sense of

Abel are used, i.e. the integral
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RN TE RPNV a5

s VX2 +a? +x b* b’ b
Integral (3.87) at @ =0 can be rewritten by using Eq. (3.58) as
Tx—/x? +a? xJ2(SX) 5,
S =3 (BX)dX = Ilm{Z —dx Jo(Bx)dx |, (3.89)
£x+«/x2+a '[x+\/x +a’ }[ '

where a = \/T . In Eq. (3.89) both integrals can be transformed by using the formula (see [55],
page 166, formula (2)):

7
I(2) = —% jJO(zz cos0)cos20dé, (3.90)
0

Then it follows from Eq. (3.90), by using formula

| Jo(bz)dz=%, b>0, (3.91)

0
that the second integral on the right-hand side of Eq. (3.89) is

T,

b 7 b Yyt
. 2 . 2 .. cos26
lim [ J2(Bx)dx=—=| c0s20d@ lim | J.(28xcos@)dx = —— lim
J 2(Bx) ﬁ{ J o(23xc0s6) | o,

e—>+0
4 0

(3.92)
Using Egs. (3.90) and (3.88) for B, ,(b), the first integral on the right-hand side of Eq. (3.89)

takes the form

J- xJ. (BX) dx_——jcoszedejx‘] (Zﬂxcose)d _
o X+yx*+a’ \/X +a’ +X
57
:——Icosze B,o(28c0s0)dd =
072
__2 j cos20- L b a1 et gg (3.93)
21 (2Bc0s8)® (2pcosh) 25cosé
Substituting Egs. (3.92) and (3.93) into Eq. (3.89), integral (3.89) is transformed to the form
TX—/x*+a’ cos26
J? (,Bx)dx_—— -
'([ +4/x? +a? IZﬂCOSH
7
B ZZI c0s26 21 : _ g-2apcost a N 21 : 40 (3.94)
ra® y 2pcos0| 437 cos” 0 2pcos0@ 4p°cos” 6
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Substituting Eq. (3.94) into Eq. (3.87) for Z, when & =0, the impedance change in the coil

is obtained in the form of a convergent integral that does not contain Bessel functions any
longer, and it has the form

J .[ CcosS 29{ |: 1 (1_e—2aﬂcosﬁ)_ﬂ:|}d9 , a= J . (395)

cosé 23% cos’ fcosé

If 6 tends to % the leading terms of the expansion in power of 2agcosé for the

expression in parentheses have the form:

%aﬂcose—azﬂ2 cos’ O +...

Therefore, the integrand in Eqg. (3.95) has a finite limit as 0—)%. Computational results

obtained by means of Eq. (3.95) are presented in Fig.3.4 for different values of the parameter

B (see the curve a =0). These computational results completely coincide with results

obtained by means of Eq. (3.87) at & =0.

Y ()

- X(B)

Fig.3.4. Curves describing the change of impedance in a coil

for different values of & and g
Besides, it follows from Eq. (3.95) that

i - :4'_ajE —2afcosé — H
d,&[ﬁdﬁ(’g } ﬁ!coszee do, a=.[j. (3.96)
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Expanding the exponential function of integrand in Eq. (3.96) in series in powers of cos# and

using the formula

(n+1/2) _
cos" 0d@ = \/7 ((n+2)/2) =B,, (3.97)

where I'(z) is the Euler gamma function, it follows from Eq. (3.96) that

O N N

Zc(ﬂ)=47j2 _1)"(28, , )%. (3.98)
or
Z.(B)=8 jz (=D"(A)™ ! a=1]. (3.99)

“n(n+1)(n+2)(n+3) T'*(n/2)’

Series (3.99) converge very rapidly. If £<3, then the first five terms of the series are

sufficient for error less than 3%, compared with the exact solution.

3.2.3. Asymptotic formula for the impedance as f — o«

In order to calculate the limit of the impedance, Z,, in the case of a double line above a
conducting half-space as f — « (skin effect), it is convenient to substitute #s=7# into Eq.

(3.56) for Z,,

Z, = JT”_WZ f &2 (1_cosn) 3L . (3.100)
on+n’+ 7] n

Eq. (3.100) is more convenient for calculations than Eq. (3.57) for all g € (0,). It follows

from Eq. (3.100) by taking the limitas g — oo that

1200874, p=2a4. (3.101)

Z, ::ygjozl’ Z, :_J-J.e_p’7

In order to calculate integral (3.101), the following property of the Laplace transform is used,

f(t
L[f(®)]=F(p) = { ()} IF( )dg, (3.102)
that provide the convergence of the right-hand side of Eg. (3.102). We have
1 p
L[1-cost] =——-——=F(p). (3.103)
p p°+1
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Hence, it follows from Eqgs. (3.102) and (3.103) that

o 2 ~2
Z, ——JI{1 : }dq=—jln Pl L
p

q q°+1 T 20

(3.104)

Eq. (3.104) gives the asymptotic value of the impedance for a double line above a conducting

half-space as f — oo. Formula (3.104) seems to be absent in the literature. The computational
results obtained by means of Eq. (3.100) for different values of the parameter S and for
a =0.2,0.1,0.05,0 are shown in Fig. 3.2. As can be seen from this figure, all curves cross
the imaginary axis at the points given by Eq. (3.104).

In order to calculate the limit of the impedance Z_ in the case of the coil located above a
conducting half-space as g — oo (skin effect), it is convenient to substitute fs=n into Eq.
(3.88):

Z. - an_ n’ +521: IZ(p)e2indy . (3.105)
0 +n" + ]

Eq. (3.105) is more convenient for calculations than formula (3.88) for all £ € (0,%). Taking

the limitas B — oo, it follows from Eqg. (3.105) that

P

limz, =2, =—jje-p"Jf(n)dn, p=24. (3.106)
0

Integral (3.106) is evaluated in [55] and [60]:

L (e-9)K(@®-2E9)], 9= , (3.107)

7 ——j—
° ng 1+ 42

where K(9) and E(9) are the full elliptic integrals of the first and second kind, respectively,
tabulated, for example, in [53]. The computational results obtained by means of Eq. (3.105)
for different values of the parameter S and for & =0.2, 0.1, 0.05, 0 are shown in Fig.3.4. As

can be seen from this figure, all curves cross the imaginary axis exactly at the points given by
Eq. (3.107).
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3.3. Exact analytical solution to the problem on impedance change of a

rectangular frame with current inside a cylindrical tube

3.3.1. Formulation of the problem

The change in impedance of a rectangular frame with current inside a conducting
cylindrical tube has been studied theoretically only in the double conductor line
approximation (see [6]). In this section, (see also the authors’ paper [14], [35]), the exact
analytical solution of the similar problem is obtained without using any approximation.

Consider a thin-wall tube located in the region {R<r<R,, 0<@p <27, —o0<Z<+o0},
where r, ¢, z are cylindrical polar coordinates. The rectangular frame ABCD is located
inside the tube. The sides AB and CD are linear segments located on the lines {r =r,,
p=x¢,, —1<z<I, (0<r, <R)}, but BC and DA are arcs of a circle located on the lines
{r=r,, —p, <@<¢,, z==I}.Due to the linearity of the problem, it is sufficient to consider
separately the vector potential problem on electromagnetic waves spreading from each side of

the rectangle. The impedance change Z™ of the whole frame is formed by the impedances of
the sides AB, BC, CD and DA:

ZM =70 23 28+ 25y (3.108)
3.3.2. Emitter in the form of a linear segment

Consider an emitter located on the linear segment AB of the rectangular frame inside the
tube (see Fig.3.5). It is known that in the case of a linear emitter, there are two components of
the vector potential: A, (r,p,z) and A, (r,o,z) (see [6]). However, only A, contributes to the
impedance of frame ABCD. Besides, the problem for A, is solved independently.

The mathematical formulation of the problem has the form (see [6]):

A =A(rpz), 0<r<R;

A =A(r,pz), R<Sr<R;; (3.109)

A =A(rez), R <r<+omo,
where the functions A,, A, A, satisfy the following equations (assuming that the relative

magnetic permeability of the wall is x=1).
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Fig.3.5. Emitter of the form of a linear segment located inside a tube

- OIMN(/)—%), —l<z<l, 0<r<R,
LA, = ry (3.110)
0, z¢ (-L1), 0<r<R,
LA +k*A =0, R<r<R,, —0<z<+m0, (3.111)
LA, =0, R, <r<+w, —0<Zz<+m0, (3.112)
where

0> 10 1 82 62
=——+——+ :
or? ror r? 6g0 622

k’=—jou,o and o is the conductivity of the tube. The right-hand side of Eq. (3.110) is

selected so that the full current in each cross section z=const (—1<z<I) of the wire is
equalto I :

TT'g(r ———90(p—gp)rdrde =—I5((/) ¢o)d(pj5(r—r)rdr_|

The boundary conditions are

A, _ A R aA_n OA_OA
r=R: Aj=A, o r=R: A=A, o o (3.113)
z—>to: ALAA —-0; r-+o: A, —0. (3.114)
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Due to the symmetry of the problem, the functions A(r,e,z) (i=0,1,2) are even with
respect to z, i.e. the following additional condition holds:

oA

=0, i=0,12. (3.115)
0z |,

Applying the Fourier cosine transform with respectto z,

A (r,p,v) = \/ZJ‘AI (r,p,z)cosvzdz , (3.116)
4 0
to problem (3.110)-(3.115), one obtains that
LAS =~ 5“ ") 5(p— 0)(5"'”, 0<r<R, (3.117)
LVAf+k2Af=0, R<r<R,, (3.118)
LA =0, R, <r <+, (3.119)
where

L =—+——+— -ve. (3.120)

The boundary conditions are

da _A ; r=R;:
or or

r—+o: Al 0. (3.122)

F=R: AT = A Ao p, A A (3.121)

The Fourier series of the function (¢ —¢,) has the form (see [6]):

5(o- %)—i;ﬁZcosn((p o), (3.123)

=1

and series (3.123) converges conditionally in the sense of Abel (see [6]). The solution of
problem (3.117)-(3.122) is sought in the form:

.o(r v) _zam(r v)cosn(p—@,), i=012, (3.124)

n=1

Arov)=———

where a,,(r,v) and a, (r,v) are unknown coefficients. Substituting Egs. (3.123) and (3.124)

into Egs. (3.117)-(3.122), one obtains a boundary value problem for a system of ordinary

differential equations with respect to the coefficients a,, (r,v), i=0,1,2. Solving this system

and substituting the coefficients a,, (r,v) into Eq. (3.124), one obtains the solution of problem
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(3.117)-(3.122). Applying the inverse Fourier cosine transform, one obtains the solution of
problem (3.109)-(3.115) in the form

A(r, o, z):\/ZTN(r,go,v)cosvzdv, i=012. (3.125)
T 0

Since for calculating the impedance change we need only the value A,, we consider the

solution for this component in detail:

Ao(r,(p,z):l EZynIa(,n(r,v)cosvzdvcosn((p—goo), (3.126)
r\7wis g

where

7o Z%, 7, =1,(n=123,...),

{Clnln(vr), 0<r<r,
ay, (r,v) = (3.127)
C,,I,0r)+C, K, (»r), r,<r<R,
E
Cin :m[rOKn(Vro)ln(VR)_rOIn(WO)Kn(‘R)+ f.(], (3.128)
2 sinv

Con =Cy —ERK, 01,), Cy =rEl (1), E= ﬂol\/; . (3.129)
W)= e —q[c4|;<qR>+csK;(qR)} , (3,130
C, =R[K (OR)K, (GR,) - K} (AR K, (R))]C, (3.131)
C5 = Rl[qlr:(qu)Kn(‘/Rl)_VKr:(VRl)In(qu)]CS’ (3-132)
Co = o ML ORIK (GR)1, (R ~ 1, GRK, (R

+qK, (R (GR)K, (GR) + K/ (GR) 1, (GR)]} (3.133)
q=Vw2—k%, I'(R) :% . KIOR) = dKJZ(Z) , (3.134)

I,(z) and K (z) are the modified Bessel functions of the first and the second kinds,
respectively, of order n. As R, — oo (the thick-wall tube), the expression for f (v) is much

simpler, and it has the form

foyfo L, (0)K, (GR) (3.135)
"R, (@R 0R) -0l (R)K, (GR) |
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The vector potential A,(r,¢,z) for side CD is found from Eq. (3.126) by replacing ¢, with
— @, and by changing the sign of the sum to its opposite. From the expression for A,(r,¢,z)

in Eq. (3.126), we obtain A™(r,e,2), i.e. the part of the vector potential corresponding to the

reaction of the tube’s walls to the wire on side AB. Thus, it is sufficient to consider only the

terms which depend on g, R and R; in Eq. (3.126):

A‘)”d(r,(p,z):l\/zi T 2 (r,v)cosvzdvcosn(e —@,), (3.136)
T NT oo

0

3y (1, V) =

E
I OR) -l (vi))K, (vR)II, (vr) (3.137)

(the exact solution of the problem on electromagnetic waves spreading of the isolated frame

ABCD with current has been obtained in [13]). The formula for calculating the impedance

change, Z™™, has the form (see Section 1.4 and [6]):
pAL ‘I—a’gS A (3.138)
C

It follows from Eq. (3.138) that, in the case of two wires located on sides AB and CD, the

impedance change has the form
_ _ jo |
2 - Zep =2 | IR (10,0, 2) A0S (1,00, 2) 102 (3.139)

Substituting A% (. ¢,,2) taken from Eq. (3.136) and the corresponding expression for

A (6, 9,,2) into Eq. (3.139), one obtains

ind ind 4_]0)/10 Sln V| I (Vro) _
zid zind _ r zo ! o (‘R)[f (V) -1l (1)K, (R)]dv(1—cos2ng,) .

(3.140)
Calculations have been made only for the case where there exists only one emitter on the axis

of the cylinder and R, — o (the thick-wall cylinder). In order to find A™ and z™, it is
enough to take the limit in Eq. (3.136) as r, — 0. Then all terms of series (3.136) tend to zero

except the term with n = 0. The induced impedance change, Z™, has the form:

i 2 sinvl )’ C(v) - K,(qR)
z =5 Ja)ﬂo{( » j LRy -

1 Ko (aR)
R gK, (aR) 1, (R) + K, (GR)1, OR)

é(v) = q=yv’ + joou, . (3.142)
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0.4 0.6 0.8 1

-6

=7

Fig.3.6. Curves describing the change in impedance for
a =0.01(—), a=0.1 (-- --), and for different values of g

Introducing the dimensionless variables o =R/I, =, wou, and s=vI/A, we obtain

from Egs. (3.141) and (3.142) that

w_ 2 o 2(sings) C(s) - Ky (aps)
Z —ﬁza)luol Z, z_mi( s J ah9) ds, (3.143)
where
é(s) = Ko (aR) (3.144)

1
aff |57+ ] K, (affs? + )1, (afs) + 5K, (ays* + )1, (affs)

Calculation results of the impedance by means of Eq. (3.143) are presented in Fig.3.6. As
can be seen from the figure, the influence of the conducting walls to the impedance increases

as a = R/l decreases, i.e. as the emitter gets closer to the wall of the cylinder.
3.3.3. Circular arc emitter

The problem is solved for an emitter located on the arc BC =r=r, —p,<p<p,,

z=0} (see Fig.3.7). However, one can easily obtain the solution of the prescribed problem,

when the emitters are located on arcs BC and DA, from the obtained solution by replacing z
with z—L and z+L, respectively. In the case of emitter located on arc BC, the equations

for the vector potential components A, and A, are not decoupled (see [6]) so that the

solution of this problem is more complicated. Consider only the case R, — o (thick-wall
tube), in order to explain the main idea of the method on deriving the solution. The solution

for the case of finite R, is performed similarly, but it is more bulky.
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v

Fig.3.7. Circular arc emitter located inside a thick-wall tube

The formulation of the problem has the form:

- 2 0A, :
LAO‘”+r g" = -]
)0 AZD , O0<r<R, —ow<z<+om,
LAOr = =0
op
LA1 +k? A, +— a;“ =0
25A1 , R<r<+4ow, —00<7<+o0,
+k?
LA kA, - =
where
{l5(2)5(r ) —0 <@< g,
P& =0y, 9,),
- 2 2 B
AN T S S P Y
or’> ror r* r?op’ oz r

(3.145), (3.146)

(3.147), (3.148)

(3.149)

(3.150)

Assuming that =1, the boundary conditions at r =R for the components A, , A, , A,

A, have the form (see similar boundary conditions on pp.19-20 in [6] for the case of a linear

horizontal finite length emitter above a conducting half-space):

16}
(=R A=A, A=A, =T
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r=R: L[AOr+R%+%}:i[A”+R%+%} (3.152)

r—-o: A,A -0, (3.153)

where kZ = joppue,é, K* = uu(o + jwe,8) and £ is the relative permittivity. Since the

solution is an even function of z, the following additional boundary condition takes place,

z=0: %=0, i=01. (3.154)
0z

Applying the Fourier cosine transform given by Eq. (3.116) to problem (3.145)-(3.154) and
expanding the function 1* (the Fourier cosine transform of the function 1° in Eq. (3.149))

and the unknown functions A (r,¢,v), AL (r,e,v) into the Fourier series, we have:

1 /2 = sinng,
1°(r,o,v) =—.|—5(r—r +2 %cosng |, 3.155
(r,o,v) o\ 7 ( o){?o nZ=1: n §0:| ( )
¢ 1. 23 . .
A, (rpv)==ag(r,v)+=> a; (r,v)cosng, =01, (3.156)
T n=1
Afr(r,go,v):EZbﬁ](r,v)sinn(p, i=01, (3.157)
T

n=1
where aj(r,v), a;(r,v), b.(r,v) are unknown coefficients. Substituting series (3.155)-
(3.157) into the equations for the functions A? (r,¢,v), AL(r,p,v) and comparing the
coefficients of cosng and sinng, one can obtain the boundary value problem for the system

of ordinary differential equations with respect to the coefficients a; (r,v), b (r,v):

~ / sinn
Lnagn +2_I;Ibgn = _1 3/uol Py o(r- ro)
r T n

; 2 . 0<r<R, (3.158), (3.159)
r S n Cc
LnbOn +r—2a0n =0
L as +k?a’, +2—?bfn =0
r . R<r<+x, (3.160), (3.161)

A
where
~d® 1d n*+1

L, v =012, b =bj, =0. (3.162)
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The boundary conditions are
r=R: a;,=a;,, by, =b,, r-o:a,—>0,b, -0, (3.163)

dag, day,

dr dr
1[ . —dog, .1 a[. _dbs .
l.(.—z{b(m +Rd—$—naon}:F{bl +R d; —naln}

0

r=R: (3.164), (3.165)

Since b, =0 (i=0,1), condition (3.165) at n=0 is correct and the problem for a,, (i =0,1)
is decoupled. Then the solution a, (r,z) has the form:

00

Ay (r,z) = %J'aoo(r,v) cosvzdv , (3.166)

agn(r,v)=C,()l, (), 0<r<r,;

agy (r,v) = Copo (V)K, (1) + Cy (V) 1, (1) L <r<R;

2
Cio (v)= Cao (v)+ WoEK, (Vro) ) Co (v)= E, |1(Vro) ' E, = Loy —I,

2v \x
Cyu(v)= |1_l (OR)[C, (v) —Cy (VK. (R)],
Co(v) = Coo (V)K, OR)RT [, (R)K, (IR) —gK; (R)1, (R)], q=+v*—k*. (3.167)

The solution for a,,(r,z) allows one to obtain the sum Z¢ + Z" in the case the detector coil
of radius r, <R is concentric with respect to the tube (see [5]). Using boundary condition
(3.163), n=1,23,..., the solution of the problem for the coefficients a,,(r,z) and b, (r,z)

has the form:

ain(r,z):\/zofafn(r,v)coswdv, bin(r,z):\/Zben(r,v)cosvzdv, (3.168)
T 0 T 0
where

() = W) RG] B ) =2l ) Vi ], (3.169)

Ug, (r,v)=C,,(W1,0r), 0<r<r;
Up, (1, V) = Cyy MK, (1) +C, (W1, (1), 1, <T<R;
us (r,v) =C,(v)K, (ar)/K, (aR), C,.(v)=C, (V) +,E K_(11,),

Con (V) =1,E, 1, 01,), Cay (V) = 11 OR)IC, (V) —C,y (WK, ORI,
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En:&\gm, m=n-1 for uf(r,v)(i=01). (3.170)
2v\r n

The expressions for v; (r,v) are obtained from the formulas for u; (r,v) by replacing m

with n+1 and (Sn (v) with én(v), where én(v) and én(v) are unknown constants that are

found by substituting Eg. (3.169) into the two boundary conditions (3.164) and (3.165).
The solution to problem (3.145)-(3.154) for Ay, (r,¢,z) has the form:

A, (1 9,2) :iaoo(r, 7) +£Za0n(r, z)cosng, (3.171)
T

nel
where a,(r,z) and a,,(r,z) are given by Egs. (3.166)-(3.170). In order to obtain the
expression of the vector potential A +A,,, Wwe replace cosvz with
cosv(z—-L)-cosv(z+L).

It follows from Eq. (3.138) that in the case of two wires located on arcs BC and DA the
impedance change is
jo

|

ind ind __
Zoc+Zp, =2

|

I in in

2 [ LA (1, L) +Ans (1, —L, 9)]dz. (3.172)
0

Choosing A in Eq. (3.171) and putting it into Eq. (3.172), we finally obtain:

zind 7z _ g a)i\/:x
BC * 4DaA J A7

A HCINOES CHETOSI-HOTNES)

sinng,

(1—costL)}dv,

D3n (V) =1 e

n+l

OR)IC, () = vE 0 (1)K, OR)]. (3.173)

Egs. (3.140) and (3.173) give the solutions of the problem on the impedance of a frame with
current inside a conducting tube. One possible application of the solution is the following. If
the ratio of the frame’s sides CD and AB, and the gap between the frame and tube’s wall are
sufficiently small, then the eddy currents in the tube’s wall are mainly excited only under the
frame. Therefore, the solution obtained can be used to determine the tube’s wall thickness
directly under the frame for the case of non-concentric wall’s surfaces. The eccentricity in the
tube’s geometry arises in the exploitation process of heat exchanger tubes.
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4. SOME PROBLEMS ON THE IMPEDANCE CHANGE OF
MEDIA CONTAINING FLAWS

4.1. Calculation of impedance change by using the method of additional

currents

The exact analytical solution for the problem of the influence of a conducting medium
with an arbitrary flaw on a source of current is not known. Therefore, since 1960 different
approximate analytical and numerical methods for that kind of problem have been used. The
influence of a non-uniform conducting medium on a source of current has been investigated

in monograph [6], by using the small parameter ¢ =1-0o,/0,, where o, and o, are the

conductivities of the conducting medium and the flaw, respectively. In order to obtain
approximate and exact analytical solutions of that kind of problems two methods of additional
current in a non-uniform conducting medium are developed in this thesis (see also the
author’s paper [10], [11], [34]). The presence of additional current in the region of a flaw is
assumed by the first method. The direction of this current is opposite to the direction of the
eddy current that flows in the same region when the flaw is absent. The additional current
used in the second method is chosen so that the differential equation for the uniform
conducting medium is transformed into a differential equation for the flaw. Both methods are
illustrated for the problem of a double conductor line above a two-layer conducting half-
space. This problem has an exact analytical solution that allows one to estimate the error for
both methods.

4.1.1. Formulation of the problem

Consider two horizontal infinitely long parallel wires carrying an alternating current and
placed in free space above a two-layer conducting medium. The wires are situated on the lines
{r=y,, z=h, —o<x<+4+} and {y=y,, z=h, —o<x<+oo}. The upper layer of
thickness d and conductivity o is situated in the region {-co < x,y <+, —d <z <0}; the
lower layer situated in the region {—wo<ux,y<+4w, —o<z<-d} is a half-space with

conductivity o, (see Fig.4.1).
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v

Fig.4.1. A double conductor line above a two-layer conducting medium

In this case the vector potential has only the x-component, i.e. 4= 4. (y,z) (see the 1%

boundary value problem) and the formulation of the vector potential problem for the x-

component has the form (see [6]):

Ady=—pol*, I°=16(z=h)[6(y—y,)=6(y—»)], z>0, (4.1)
A4 +k A4 =0, -d<z<0, (4.2)
AA, +k2 A, =0, —w<z<—d, (4.3)

where k! =—jou,o,, i=12 (i.e. the displacement current is absent) and o, is the

conductivity of region R, (i =1,2) . The boundary conditions are

aA 8A
z 0 1 62 e (4.4)
04, 04
=—d: A4=4, —t=—Z 4.5
z 1 2 o o (4.5)

Problem (4.1)-(4.5) has been solved in [6]. The reaction of the conducting plate on the

double conductor line is the following

ind ,Uo g, +,)A—q)+ (g —g,) (A +q,)e 20 1o )
Ao (y,2) = J. (A+g)q+¢,)—(A—q)(q, —q)e 2qd

x[cosz(y—yo)—cosz(y—yl)]d%‘, (4.6)

where ¢, =4/4*-k? and ¢, =+4*—kZ. The induced change in impedance due to a

conducting medium, per unit length of contour C of a double conductor line, is given in [6]:
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zm = IL gy, =H27, @a.7)
1 Y=Y T

4.1.2. Approximate solution to the problem by the first method of additional currents

In order to solve problem (4.1)-(4.5) approximately, using the first method of additional
current, the two-layer conducting medium should be replaced by the conducting half-space
{—0 < z < 0} (this means that Eq. (4.2) takes place in the whole region {—w < z < 0}). In this
case, the vector potential 4, in the region {z <0} has the form (see [6]):
qu2-2h

I%e
Al(ylz) =4, :%J./’t

0 Ql

[cosA(y —y,) —cosA(y — y,)]dA. (4.8)

In the region {z < 0} the eddy current 1¢ is defined by the formula (see [6]):

I°=-0jwA,. (4.9)
First, consider the more explicit case o, =0 (k> =0): the region {-o < z < —d} is free space
and the conducting plate of thickness 4 is located in the region {—d < z < 0}. In order to pass
from the conducting half-space to the conducting plate of finite thickness, it is assumed that
there is an additional current, /¢, in the region {—w < z < —d} of the conducting half-space,

and this current is opposite to the current given by Eq. (4.9):

[=-1¢=0,jod,. (4.10)
Then the equation for the vector potential in the region {—o < z < —d} takes the form:
AA +K A =kl A, — —w<z<-d, (4.11)

where A4, is given by Eq. (4.8).

In general, if o, #0 (k2 #0), then, instead of Eq. (4.11), the following equation is
obtained:

AA +k2A =k} —k2)A,, —owo<z<—d. (4.12)
Then the problem can be formulated as follows:

AAy=—pl®, 1I°=15(z-h)[o(y—y,)-0(y—n)], z>0, (4.13)

0, -d <z<0,

4.14
(k} —k2)A4,, -wo<z<-d. (4.14)

A4+ﬁ4={
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The boundary conditions are

04, 04
Z:O: AO :Al’ a—zoza—zl (415)

The right-hand side of Eq. (4.14) is transformed to the form (k! —k2)A,, =&k’ A,,, where

e=1-0,/0, =1-k?/k?. Therefore, one can prove that the solution of problem (4.13)-

(4.15) completely coincides with the approximate solution of problem (4.1)-(4.5) obtained by
the perturbation method (see [3]), if one assumes that

A (y,z) = Ai(o) (y,z)+ 5Al.(l) (r,z), =12 (4.16)
The function A in Eq. (4.16) is the solution of problem (4.1)-(4.5) if £=0 (i.e. k, =k,).
The terms 4® in Eq. (4.16) give a solution of problem (4.13)-(4.15), if we assume that the
right-hand side of Eq. (4.13) is equal to zero, and substitute £=1 (i.e. k, =0) into the right-

hand side of Eq. (4.14). This method had been used first in [3] for the problem of a double

conductor line above a flawed medium when the flaw with conductivity o, = o,(1—¢) was
situated in the rectangular domain {—wo < x <+4w, -/ <y<I, —(a+b)<z<-a}. The change

in impedance at o, =0 is obtained from the solution of problem (4.13)-(4.15) in the form
(-cosgye | Loe
1-cosé)e | = - —e
nd M@ 50 S NE+ B

" ===7, Z,=p I dg

4 0 (E+&+jp)’

(4.17)

where

B=cJoou,, c=y,~y,, a=hlc, d=dJc.

The difference between Z™ obtained from the solution of problem (4.13)-(4.15) and the

exact value of Z™ by means of Eq. (4.7) does not exceed 2% if 0<e<0.2. However, if
& =1, the difference tends to 20% (see Fig.4.2).

4.1.3. Approximate solution to the problem by the second method of additional currents

Using this method one should replace a two-layer conducting medium with a conducting
half-space of conductivity o,. However, instead of equation (4.12) the following equation is

considered:

AA + kA = (K —K2)I°. (4.18)
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The additional current, 7¢, is selected so that Eq. (4.18) is transformed into Eq. (4.3). For this

purpose, we substitute /¢ = 22 into Eq. (4.18), where ZZ is the solution of Eq. (4.3) of the

domain {-w <z <0}, i.e. for the case where the layer {-d <z <0} of conductivity o, is

absent:
~ I % e‘lzzfﬂh
4, (y,2) =205 [S—[c0s Ay - ) ~COS A(y - ;)] dA. (4.19)
T 3 A+q,

Then Eq. (4.18) can be written as

AA, + k2 (4 - A,) =—k24,. (4.20)
Substituting 4, = ;472 into Eq. (4.20), we obtain

AA, +k?4, =0, (4.21)
i.e. EQ. (4.3) is obtained. In this case a complete formulation of the problem is given by Egs.

(4.13)-(4.15), where the value A, is replaced by ZZ on the right-hand side of Eq. (4.14). If

o, =0, the induced impedance change has the form

0 4 —d(EE+jB)
Zind:luoa)zz, Zzzﬂzj‘ o
T

0 (E+yE°+ B

e ** (1-cos¢é) % . (4.22)

Fig.4.2. Curves describing the change in impedance
for « = 0.1 and for different values of £,

where the continuous line is the exact solution by means of formula (4.7),
the dotted line is obtained by the second method by means of formula (4.22),
the dashed line is obtained by the first method by means of formula (4.17)).
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The real and imaginary parts of the impedance change as functions of the parameter g

are plotted in Fig.4.2 by means of the exact formula (4.7), and by the approximate formulas
(4.17) and (4.22) for « = 0.1. Calculations show that the approximate solution (4.22) gives an
ind

error less than 6% for the value Z™ given by Eq. (4.7), while the error in |Z| by means of Eq.

(4.17) reaches 20%.
Note that the second method gives a result that completely coincides with the exact

solution if one uses the exact value of 4,..

4.2. Impedance change of a conducting medium with a flaw of an arbitrary

shape

This section is devoted to the proof of a new exact analytical formula for the impedance
change and the well-know formula in the literature (see [50] and [47]). Both formulas are
proved in this thesis (see also the author’s papers [16], [19], [34], [37]). The derivation of the
new formula is based on Green’s formula, since Lorentz’ theorem is used for obtaining the
other formula. The newly obtained formula for the impedance change has the form of a triple
integral of a scalar product of two vector potentials: the vector potential in the flaw and the
vector potential in the same region in the absence of the flaw over the region containing the
flaw. A similar formula obtained earlier by previous authors has the form of a triple integral

of a scalar product of amplitude electric field vectors.
4.2.1. Formulation of the problem

The formula for the change in impedance used in the literature (see [50], [47]) has the

form

Zm = —(GFI—QG)jﬂE E.dV, (4.23)

where V.. is the region of the flaw, o, and o are the conductivities of the flawed and
flawless regions, respectively, E,. is the amplitude electric field vector in the flawed region,

E is the amplitude electric field vector in the same region in the absence of the flaw and / is
the amplitude of the current vector density.
The displacement current is neglected in Eq. (4.23) as it is used in the problems of eddy

current testing and in the case of harmonic oscillations of the external current with frequency
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w (see [6]). In this section (see also the author’s papers [16], [19], [34], [37]), a new formula

for Z™ is obtained in a form more suitable for computations:

Zm =@MZ-ZF dv, (4.249)
VF

where 4, is the amplitude vector potential in the flawed region, 4 is the amplitude vector
potential in the same region in the absence of the flaw (i.e. the case when all physical

properties of the region V. are the same as the physical properties of the conducting region
outside of region 7,) and w is the frequency.

The aim is to prove that the right-hand sides of Egs. (4.23) and (4.24) coincide (see also
the author’s papers [19] and [37]), i.e.

[[[E-Epav=-w?|[[4-4,a7. (4.25)

Note that the relationship between the vectors £ and A in the case of harmonic oscillations

of the external current with frequency w is given by (see [6]):

- -1 _—
E:—ja)A+?grad div 4, (4.26)
1
where ]’(‘12 = u,u(o+ je,éw) if the displacement current is taken into account and 1;12 = u,po if
the displacement current is neglected, ¢, and u, are the electric and magnetic constants,
respectively; £ and u are the relative permittivity and relative magnetic permeability of the
medium, respectively, and j =+/—1 is the imaginary unit.

It follows from Eq. (4.26) that Eq. (4.25) is correct if
divd=0, div4, =0. (4.27)

In fact Eq. (4.27) is only valid in the case of a homogeneous half-space as the conducting
region and the external current located either on a single-turn coil or double conductor line in
the plane parallel to the half-space. Eq. (4.27) is also valid if the flaw of the inhomogeneous
half-space is a cylindrical body coaxial with a single-turn coil carrying the external current
(see [66], [67]) or if the flaw is an infinitely long cylinder parallel to double conductor line

carrying the external current (see [5]). In all other cases, divA =0, div ZIF #0 in the region

V... However, Egs. (4.23), (4.24) and (4.25) are still true as it will be shown below.

It follows from Eqgs. (4.25) and (4.26) that for a flaw situated in an arbitrary region V..
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J.” [-jwA-kZgraddivA, — joA, - k2 graddivA + graddiv4-graddiv4,]dV =0, (4.28)
Ve

where k2 = u(o,+ je,épw).

At first sight, assuming the continuity of the functions A, }iF, graddivA, graddiv4,
one may conclude that graddiv4=0, graddiv4, =0 (using the known theorem: if a
function f(M) is continuous in a closed region ¥, and for any region Ve V. the formula

”_[/f(M)dV =0 is valid, then f(M)=0 forall M €V,). However, this is not true. In fact,

by changing the region 7., the functions A and ZIF are changed too. Therefore, Eq. (4.28) is
also valid if divA4 =0, div 4, =0 in the region .

In the previous studies (see [50], [47]) in trying to prove Eq. (4.23) for impedance
change, it was assumed that div 4 =0 in Eq. (4.26). Besides, in [50] it was assumed that the
scalar potential gives a change in the static field only. That statement is not true. It was
suggested in [47] to use the Coulomb’s gauge, i.e. divA4=0. At the same time, the authors
use the following equation for the vector potential A :

AA+K*A = pugul ™, k* =—jwouyu. (4.29)

It is well known that Eq. (4.29) is not correct in this case. In fact, in the case of Coulomb’s
gauge the equation for the vector potential is more complicated (see [6], p.10), and has the

form

- oA .0 oA =,
A4 = ﬂoﬂa(V(P +§J + ﬂogoﬂga(v¢ +§J — Hop 1, (4.30)

where ¢ is the scalar potential.
Note also that in this problem by taking the displacement current into account, the
coefficient (o, —0)/12 in Egs. (4.23) and (4.24) is transformed into the coefficient

o, —0  joey(é, ~8)
& I?

, (4.31)

where ¢, and ¢ are the relative electric permittivity in the flawed and flawless regions.
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4.2.2. New convenient formula for the change in impedance

Let us prove the new formula (4.24) for the impedance change, which describes the
influence of a conducting medium with a flaw of arbitrary shape on a source of current.

Consider a conducting half-space situated in the region V,={—-c<x,y <40, —0<z<0}
with a flaw in the region V. € V. The source of current is located in free space, V,, on the
closed curve described by the equation:

z=h, p=plp), 0<p<2r, (4.32)
where p, @,z are cylindrical polar coordinates. One also can use the Cartesian coordinates

x, y,z (see Fig.4.3).

AZ
L
2
0 V. Y

X

Fig.4.3. Contour L with current above a conducting half-space, 1,

containing a flaw of arbitrary form in region V..

The current in the contour is given by
I°=18[p-p(p)]S(z—h)e,, 0<p<2r, (4.33)
where [ is the complex amplitude of the current’s density, 6(x) is the Dirac delta function

and e, is the unit vector to the tangent of line (4.32). In this case the complex amplitude

A(x, y,z) of the vector potential has three components 4., A, A, (see[6]):

A(x,y,2) = A4, (x,y,2) + 4_(x, y, ). , (4.34)

A,(x,p,2)= A, (x,p,2), + 4, (x,9,2)é, . (4.35)
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Since the source of current is situated in the horizontal plane, then only the horizontal
component of the vector potential, Zh (x,»,z), contributes to the impedance. It is known that

the problem for the horizontal component can be solved separately (see [6]). The solution of
the problem to the vertical component needs only satisfy all boundary conditions for the

components 4., 4,, A, in the plane z=0. That is why it is not necessary to solve the

problem for 4_.

The mathematical formulation of the problem for the horizontal component has the form

Ado, ==t 1° —o<x,y<40, 0<z<+o, (4.36)
A;llh +k12;11h =0, —o<x,y<+o, —-w0<z<0, (xyz)eV,, (4.37)
AIZIFthkﬁgth =0, —oo<x,y<+w, —-w0<z<0, (x,y2)eV,, (4.38)

with the corresponding boundary conditions on the boundaries of regions V;, V; and V... The

problem for a non-uniform medium can be transformed into the problem for a uniform

medium with non-uniform right-hand side so that system (4.36)-(4.38) can be rewritten in the

form
AZO,,:—,uoie , —0< X,y <40, 0< z < 4o, (4.39)
- - 0, v z) eV, —0<z<0,
Ady, + k2 A, = { - (o3 2) €V o (4.40)
(kf —kp)Ag,, (x,y,2) eV, —0<z<0,
with the boundary conditions
2200 A, =4, oy (4.41)
oz oz

X4y4zi 5w (2>0): 4, >0 x*+y*+z° >0 (z<0): 4, »0. (442
It is to be noted that ZFh on the right-hand side of Eq. (4.40) is taken from the solution of
problem (4.36)-(4.38) with the corresponding boundary conditions. Besides, the right-hand
side of Eq. (4.40) is chosen such that substituting A4,, = 4,, into Eq. (4.40), Eq. (4.40) is
transformed into Eq. (4.38).

In order to obtain Eq. (4.24) for Z™, and due to the linearity of the problem, the

functions A,, (x,v,z) and 4,,(x, y,z) can be written in the form
20}, (x’ y’Z) = Zgzsm(x’ y,Z) + ‘Zéh,ind (x1 Vs Z) + ’Zgh,ind (X, Vs Z)’ (443)
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Ay (x,,2) = 4y, (x,y,2) + 47, (x,,2), (4.44)
where
A2 s the solution of Eq. (4.39) in the absence of the conducting half-space in the
region z<0;
4}, e is the reaction of the conducting medium under the condition that the medium is
uniform, i.e. k. =k, (in other words, the right-hand side of Eq. (4.40) is equal to zero),
but 7#0;

#,’h,ind is a contribution to the reaction of the conducting medium under the condition that

the medium is non-uniform , i.e. k. #k;, but /=0 (in other words, A4, is the
solution of problem (4.39) - (4.42) when 7 =0, but &, #k,).
Similarly,
4], is the solution of Eq. (4.40) at k, =k, but 1#0;
A is the solution of Eq. (4.40) at k. #k,, but 7=0.

It follows from the boundary conditions (4.41) and Eqgs. (4.43), (4.44) that the following

equalities are to be satisfied:

z=0: ;10;1 = ;11111 = #aZSt + Z(;h,ind + _."h,ind = erh + 211’;1 : (4-45)
. OZ 8?10h _ &Zlh ’ N a"aant + 8A(;h,ind + a ”h,ind — 8A{h + aAl”h ) (446)
0z Oz oz 1574 oz 154 154

Thus, it follows from Eqgs. (4.45) and (4.46) that

;11'11 = ;132“ + ‘zi(;h,ind; ﬁ”h = _’"h,ind;
=00 o, _odgn . OA, _ (@.47)
oz 0z oz 0z 0z

Since A4 is the solution of the inhomogeneous Eq. (4.39), then the functions 4;, ., and

ﬁ”hymd must be the solutions of the corresponding homogeneous equations

A4y, 10 =0, A g =0. (4.48), (4.49)
Since 4], is the solution of the homogeneous Eq. (4.40) when k,. = k,, then the function A4;,
satisfies the equation

A4l +k2 4], =0. (4.50)
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In the case of problem (4.36)-(4.38) for a non-uniform medium, the change in impedance due

to a flaw in the conducting medium has the form (see [6]):
A :%95 A ey, 2)dl (4.51)
L

Consider Green’s formula

J.J‘J.(uAv—vAu)dV=ﬁ(u%—v2—2)dS, (4.52)

where S is the closed surface bounding the region ¥, A=0%/ox* +8%/dy* +8° /02", i is
the outer normal to surface S, and the functions u, v, Au, Av are continuous in the closed

region. It is easy to prove that Green’s formula (4.52) takes place for the two vector functions
A=A4_(M)é_ + A,(M)e, +A4,(M)é, and B=B_(M)é, + B, (M)é, +B_(M)e,

in Cartesian coordinates, and has the form

jlj(ﬁAE—EM)dV:gEﬁ(Z%—Egjds. (4.53)

In order to prove Eq. (4.53), it is enough to write Eq. (4.52) for the three pairs of projections

(4,,B,), (4,,B,), (4.,B.) and to sum the written results.

Now in order to evaluate a formula for Z™ of Eq. (4.51), it is necessary to consider the

contour of integration in detail.

I. Consider the region z <0. Taking the scalar product of Eq. (4.40) with ;ll’h and Eq.

(4.50) with leh , and subtracting the first product from the second one, one obtains that

a) A, times Eq. (4.40) equals

A K :{w?’—ki)fi;hﬁm, et —mesco .
b) A, times Eq. (4.50) equals

A, A4, +kP A, A, =0, (4.55)
c) Eq. (4.55) minus Eq. (4.54):

AL NA, - AL AA, =—(kP —k2) Al Ay, . (4.56)

It follows from Eq. (4.56) by integrating over the region z <0 that
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[I] Guadl, - 4,04,)dv =~k ~k; )m A, Ay dv (4.57)

z<0

and it follows from Eq. (4.57) by using Green’s formula (4.53) that

, o4 oA S
@ (Alh n Aih n ]dS = (k12 - kﬁ)ﬂj‘ AFhAlh av, (4-58)
Ve

N

where S is the closed surface of the integration (see Fig.4.4).

A Z
ﬁT
0 Y
R
S \
X

Fig. 4.4. Closed integration surface S (z<0)

Since 4,,, 4}, >0 as R* =x*+y?+z° -, and z <0, then instead of the surface integral

over the closed surface S (see Fig. 4.4.), only the double integral over the plane z=0

remains on the left-hand side of Eq. (4.58), and in the plane z=0:

TT(Al’h n ?11,,%) dxdy=(klz_k;)“ j A AL dv . (4.59)
Vi

—00—00

Using the boundary conditions (4.47) and the decomposition (4.44), one can perform the

transformations

' a;l h = 814’ ’ ' " ' " aA'
z=0: A, 4, 0 Alh (Alh + ALY — (AL, + Al
Oz Oz
- = , P an
= A{h a:;zlh A” aAlh AOh e A(;’h ind aAOh 1 (4.60)

where Aj, = A3™ + 4}, 4. Then it follows from Egs. (4.59) and (4.60) that

VT G Sy &) ey i i) [[ v @s1)

—0 —o =0
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Il1. Consider the region z>0. By a similar way, one can perform the same

transformations with Eq. (4.39) for 4,, and with oning = 0 N the region z > 0. Taking the

scalar product of Eq. (4.39) with th ing and A47, ;. =0 with Ay, , and subtracting the first

product from the second one, we obtain

20/1 #l’h,ind — Ao, lndAAOh /uoje‘zi(;h,ind - (4.62)
It follows from Eq. (4.62) by integrating over the region z >0 that

J..”- (AOh h ind h, |ndAA0h)dV /JOJ.J.I I h, |nddV ! (463)

z>0 z>0

and it follows from Eq. (4.63) by using Green’s formula (4.53) that

Cﬁﬁ (AOh AOh = A(gh ind aAOh )dS ﬂo'[“‘ [ A(;'h ind dV (464)

z>0

where S is the closed surface of integration (see Fig.4.5).

Since A4,,, 4 hng — 0 as R®=x*+y*+z> 500, and z>0, then instead of the surface

integral over the closed surface S, only the double integral over the plane z =0 remains on
the left-hand side of Eq. (4.64), and in the plane z=0:

—TT(A% Agh'"d — Aghin ai‘”’) dedy = 1 [[[ T°45, 0 dV . (4.65)

—00 —00 2=0 z>0

z>0

v

S)

X

Fig. 4.5. Closed integration surface S (z >0)

The minus sign on the left-hand side of Eq. (4.65) comes from the fact that the outer normal

to the surface z =0 inregion z >0 is opposite to the direction of the z -axis.
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absnt

Using the decomposition A4, = + Al v + Ag, g » We perform the transformations

= éa "h d 6L40 b Ea "h d
=0: AOh L ”h,ind ’ (Aghsm + AOh ind + AOh ind 2

a SN 14 n, in 14 a
h |nd ( o + AOh ind T AOh md) AOh 1 .- AOh ind AOh ’ (4-66)

where A4, = A" +A0h - Then it follows from Eq. (4.65), by using Egs. (4.66) and (4.33),

that

j”j” (Ao,,a ”hmd i ath) dxdy—_ﬂozm Slo—p(@)8(z—h)e, AL, adV . (4.67)

—00 —0 =0 z>0

Transforming the right-hand side of Eq. (4.67) by using the main property of the delta

function, we have

+00 +00

[[[ olo = p(9)6(z = h)e 4y, dxdydz = [ [ SLp = p(@)1é. A, g|  dxdy. (4.68)

z>0 —00 —0 z=h
It follows from Eq. (4.68), passing to polar cylindrical coordinates by substituting
X=pCose, y=psing, dxdy = pdpdgp, that
Yy s
F= j d(pja‘[p PPN, sl Pdp = | 4, na(p(9).h) & plp)dep. (4.69)
z=h 0

But ¢, p(p)dp=eé.dl = dl . Consequently, it follows from Egs. (4.69) and (4.51) that

= § 43, na(p(p), h)dl " L, (4.70)

Since the left-hand sides of Eqgs. (4.61) and (4.67) are equal, then the right-hand sides must be

equal as well,

~pI* 2" (joo) ™t = (k] = k) [[[ Apy ALy aV (4.71)
Vi
Since k! = jowo,u, and ki = jwo,u,, it follows from Eq. (4.71) that
~IZ" (joo) = jouy(o; — o) [[[ A Al v 4.72)
Vi
It follows from Eq. (4.72) that

7z = M [[[ A, av (4.73)
VF
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i.e. the obtained formula is similar to formula (4.24).
4.2.3. Formula for impedance change known in the literature

In the literature (see [50], [20]) formula (4.23) for induced changes in impedance,
describing the influence of a conducting medium with a flaw of arbitrary shape on a source of
current, seems to have been used without any strict proof before. In particular, it is usually
obtained without describing the source of external current. This fact creates difficulties for
estimating the degree of mathematical basis of the formula. In the present thesis (see also
author’s paper [19], [37]), this formula is analytically proved and its correctness is verified.
The proof is performed taking into account the displacement current.

Let an emitter be located on a closed curve described in parametric form in polar

cylindrical coordinates (p,,z) by the equation:

{p = p(p),

0<p<2r, (4.74)
z=2z(p),
where p(@),z(¢) are prescribed functions and ¢ is a parameter. An equation describing any

closed curve can be written by using Eq. (4.74) and choosing the appropriate system of

rectangular coordinates (x, y,z).
Consider a sphere S, of radius R with an interior closed surface S of arbitrary form
(see Fig.4.6). The surface S covers a region ¥, containing a single-turn coil, and a region

V' of the conducting medium. A closed surface S

coil

bounds the region ¥, containing only a
single-turn coil. A closed surface S, bounds the region ' containing a conducting medium
with conductivity o =const and the relative permittivity &=const, and a region V7, with

conductivity o, =const and the relative permittivity £, =const. The region ¥, is bounded

by a closed surface S,.. Finally, Visa region bounded by the surfaces S and S, and ; isa
region bounded by the surfaces S, S,; and S, .

In the case of harmonic oscillations of the external current with frequency @ in the
closed coil, Maxwell’s equations for the complex-valued amplitude electric field vector E
and the complex-valued amplitude magnetic field vector H have the form (see [6]):

curl E = — jou,uH (4.75)

curl H = (o + je,éw)E+1°, (4.76)
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Fig.4.6. The disposition of the regions and closed surfaces

According to Eq. (4.74), one can write
[* = Ih(p,9)Slp- p(@)15lz - z()]E, , (4.77)
where €, is a unit vector of the tangent to the curve given by Eq. (4.74), I is the complex-

valued amplitude current vector density. The coefficient 4(0,®) in Eq. (4.77) has the form:

h(p.p) =%Jp2 P @@ - (4.78)

The coefficient /(p,¢) is chosen so that the triple integral of |7

over the whole space is

equal to the following constant:

400 +00 +00

JT]

—00 —00 —00

ie dV = ILcoiI = UcoiIEcoichoiI ! (479)

where o is the conductivity of the coil, L, is the length of the closed contour given by

Eq. (4.74) with the current density /=const, E_,L.; is the electromotive force that is

coil
necessary for supporting the current of density 7 =const in this closed contour. It follows
from Eq. (4.74) that the contour’s length, L

‘coil

is equal to

Ly = [ IP@F I @F + (@) do, (4.50)

0
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assuming that the origin of the coordinate system is located inside the coil. In order to prove

Eq. (4.79), we substitute |I°| given by Eq. (4.77) into the integral of Eq. (4.79). Using the

main property of the delta function and Eq. (4.80), we obtain

~+00+00+00

J1]

—00—00—00

ie

dsdydz =1 [do] o+ 1o + =@ pdp

x [0l p—plp)lolz—z(p)ldz = I f\/ PP @Y +[2 ()] dp=

=1L =0 E.iL

cail coil coil"~coil *

(4.81)

Hence, formula (4.79) is proved.

Consider the system of Eqgs. (4.75)-(4.76) for the following two cases: for the case when

), and in

abs

the flaw is absent, i.e. o, = o in the region ¥, (by substituting £E=E,_, H=H,
the presence of the flaw (by substituting £ = E,, H = H, ). Then assuming that the external

current vector density 7¢ is the same in both cases and is defined by Eq. (4.77), one obtains

—curlEabs = jouuH,,, (4.82)
curl B, =i2 E, +1°, (4.83)
—curIE"F = ja),uOﬂI:IF, (4.84)
curl H, =k*E, +1°, (4.85)
where

~ o+ je.cw, M(x,y,z)eV,

s = {jgoé‘ja),o ng,i,zi gV, (4.86)
= _ {O‘F + jggéFa), M(x,y,z)eV,, (4.87)

o+ jecw, M(x,y,z)eV,.

In the above, E, and H, are the solutions of Egs. (4.82)-(4.83) such that:

1) the tangent components of the vectors E, . and H,, are continuous on the surface S,

(see [6]);

2) the vectors E, and H, satisfy the radiation condition at infinity (see [65]).

Similarly, £, and H, are the solutions of Egs. (4.84)-(4.85) such that:
1) the tangent components of the vectors £, and H, are continuous on the surfaces S,

and S, ;
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2) the vectors E, and H . satisfy the radiation condition at infinity.
In order to prove Eq. (4.23) we use Lorentz’ reciprocity theorem (see [6]). Taking the

scalar product of Eq. (4.83) with E,. and of Eq. (4.84) with H

abs !

and summing both

products, one obtains

E.-curlH, —H, -CulE, =k’ E, -E,+1°E.+ jouuH,,  H,. (4.88)
From

div(E,xH,)=H,, -curlE,—E,. -curlH,,, (4.89)
and Eq. (4.84), it follows

—div(E, xHy )=k’ Ey -Ep+1°E.+ jouuH, -H,. (4.90)

Interchanging the subscripts abs and £ in Eq. (4.90) (i.e. doing the similar operations
with Egs. (4.82) and (4.85)), we obtain

—

_dIV(E XF]F):kIEEF'Eabs+je'Eabs+jw:u():uI:IF'ljlabs' (491)

abs

Subtracting Eq. (4.90) from Eq. (4.91) yields

div (EF XI:Iabs _Eabs XHF) = (iglE _lgazbs)Eabs 'EF _je (EF _Eabs) : (492)

I. Integrating Eq. (4.92) over the region V bounded by the closed surfaces S, and S
yields
J‘J.J. div (EF x F]abs _Eabs X I:IF)dV = (l;i‘ _l;azbs)_”.J- Eabs 'EF dv - _”.J- je ) (EF - Eabs)dV :
% % %

(4.93)
Since k2, —k2=0 and I¢ =0 in the region ¥ (see Egs. (4.77), (4.86), (4.87)), the right-hand

abs

side of Eq. (4.93) is equal to zero in the region V . The left-hand side is transformed using the

Gauss’ divergence theorem and taking into account that the boundary of the region 4

consists of two closed surfaces S, and S (see Fig.5.6). As a result, we obtain

|:¢ﬁ +<J‘:ﬁ ](EFXI:Iabs_EabsXI:IF)'fﬁdS:o' (494)
Sk s

where 7" is a unit vector of the external normal to the boundary of region V. We assume that
the integrand in Eq. (4.92) tends to zero faster than R as R — 0. Since the surface S, is a

sphere of radius R, we have

lim b (B, x Hy, — By x H,)-ii%dS = 0. (4.95)
Sk

R—x
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Thus, it follows from Eq. (4.95) that

ff R-iivds =0, (4.96)
S

where
R=E.xH, —E, xH,. (4.97)

I1. Integrating Eq. (4.92) over the region ¥ bounded by the three closed surfaces S, S

coil
and S, , using Gauss’ divergence theorem and taking into account that in the region I; the
right-hand side of Eq. (4.92) is equal to zero, we obtain
fh +fp +qp )R-7ias=o, (4.98)
S S, Sy,

where 7#n~ =—7" is a unit vector of the external normal to the boundary of region ; It

follows from Eqgs. (4.96) and (4.98) that

ﬁ)ﬁ-fz‘dS=—gfj5R-ﬁ‘dS=(j;BI?ﬁ*dS. (4.99)
S, S,

SCOI|

I11. Integrating Eq. (4.92) over the region V., bounded by the closed surface S_; , then

coil

using Gauss’ divergence theorem and taking into account that in this region 7¢ 0 and ¢ is
defined by Eq. (4.77), one gets

PR ii"ds =~1{[[ slp-p(@)olz-z(@)] h(p.0)E, - E™aV (4.100)
where
E™=E.-E,,. (4.101)

Using the main property of the delta function, the right-hand side of Eq. (4.100) is
transformed as

I oL~ p(e)5lz - 2(0)h(p.0)e, - E™ dxdydz

Vcoil

+00 +00

= [ [ olp=p@]h(p.p)e.-E™

—00 —00

) dxdy , (4.102)
4

z=z(

where

h(p.0) = %Jpz P @F+Z@F -
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Introducing the polar cylindrical coordinates x= pcose, y=psing, dxdy=pdpdp in
Eq. (4.102) yields

F=[dg[élp-p(o)lh(p.p)e. - E™|_  pdp
= [ E™(p(9), 2(0)) h(p(0).0) ¢, p(p) dgp . (4.103)
However,
éh(p(p).p)pl)dp=édl=dl (4.104)

where dI is a vector such that its module is equal to the differential of the length of the line

arc and it is directed along the tangent to this curve. Thus, it follows from Eq. (4.103) that

F= 95 E™.dl =-7™], (4.105)

L

where Z™ is the change in impedance due to a flaw situated in the region ¥, (see [6]).

Consequently, Eg. (4.100) has the following form

fpRr s =rz". (4.106)

Scoil

IV. Integrating Eq. (4.92) over the region 7 bounded by the two closed surfaces S, and
S, using Gauss’ divergence theorem and taking into account that the right-hand side of Eq.

(4.92) is equal to zero in this region, we obtain

f{R-iids+ f{R-7ids =0. (4.107)
S, Sy

It follows from Eqgs. (4.99), (4.106) and (4.107) that

—1?Z" = @E-ﬁ*ds = —fR-iids. (4.108)

Sy S,
V. Finally, integrating Eq. (4.92) over the region V., using Gauss’ divergence theorem
and taking into account that 7° =0 and k2 —k2, = o, — o + jwe,(é .—&) in this region, we

obtain

~ffR-ii*dS = [(0 — 0) + joey( p=E)[[[ B Er dV . (4.109)
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The final formula follows from Eqgs. (4.108) and (4.109):
ALE —1—12[(aF —~0)+ jcy(é y=E)] [[[ Ege ErdV . (4.110)
VF

Eq. (4.110) gives the formula for calculating the induced impedance change in the case when

the displacement current is taken into account. If the displacement current is neglected, one
can obtain the corresponding Eq. (4.23) from Eq. (4.110) by the simple substitution (£, - &)

equal to zero.
4.2.4. Proof of the equivalence of the two formulas.

Let us consider two arbitrary functions u(M)=u(x,y,z) and v(M)=v(x,y,z) that are
continuous together with their second derivatives in the region ¥ bounded by some closed

surfaces S,,S,,...,S,, . The Green’s formula for these functions has the form

I!I(uAv—vAu)dV £§+ ﬁ_2§+ +5E3§ }{u@—v—de (4.111)

where 7 is the external normal vector to the region V. Formula (4.111) is also valid for the

two vector functions #(M) and v(M).
Let EHbS(M ) be the vector potential in the absence of the flaw, and ZF (M) be the vector

potential in the presence of the flaw. The vectors A, and 4, satisfy the following equations

(see Eq. (1.26) and [6]):

A’_éiabs + kazbs;{iabs = _/uo/'lje ) (4112)
A, +k2A, = —uul®, (4.113)
where
10 o+ jwe,E), M(x,y,z)eV,
K - 2J ﬂoﬂ(A J0&E), M(x,y,z) (4.114)
O Lo HEYE, M(x,y,z) &V,
K2 = _]:C‘),uo,u(o_F +‘ngg‘§F)a M(x,y,z) eV, (4.115)
— jou,u(o + jwe,é, M(x,y,z) V., M(x,y,z)€V.

and 7¢ is defined by Eq. (4.77).
Green’s formula (4.111) can be rewritten for the vectors 4, and 4, in the region Vv

bounded by the closed surfaces S, and S in the form (see Fig.4.6):
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A A A AA = 4 aIle A a’Zlalbs
Jﬂ (A — ApAdy)dV = [i:ﬁ +g§f> ][A“Sa_n ~ 4, Fjds . (4.116)
Substituting  AA,,, = —ka Ay — poul¢ of Eq. (4.112) and Ad, = —k2A, — ppul® of Eq.

(4.113) into the left-hand side of Eq. (4.114), the integrand can rewritten as
;jabsA‘ZF - ZFAZabs = (kgps — kji)faabs;iF + ﬂoﬂie(ZF - ;j'abs) - (4.117)

Since the external current 7¢ =0 and k2 =k in the region ¥, one can see that the right-

abs

hand side of Eq. (4.117) is equal to zero. Hence the left-hand side of Eq. (4.116) is also equal

to zero. In the limit as R — oo, the integral over S, tends to zero. Consequently, it follows

from Eq. (4.116) that

@S (21 %—ZF%]dszo as R — . (4.118)

abs
$ on on

Formula (4.118) is completely equivalent to formula (4.96). Therefore, the rest of the proof of

formula (4.24) is completely similar to the one of formula (4.23). Consequently,
2
A =%[O‘F — 0+ jaey(E, — [ Ay AV . (4.119)
Vi

Eq. (4.119) gives the new formula for the induced change calculation when the displacement

—

current is taken into account. Besides, it is to be noted that the vectors £, , H,,, E, and

H, are expressed in terms of the vectors Zabs and ZIF by using the following expressions (see

[6]):

curl A, = pouH,,, E, =—jod, + 1 %gmddivilabs, (4.120)
Hol Kgps
- 2 = = 11 L~
curl 4, = pouH, , E, =-jwA, +——-—=graddiv 4, (4.121)
oM ki

where the coefficients 42, and k2 are given by Eqgs. (4.86) and (4.87).

abs
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CONCLUSIONS

The present thesis is a theoretical work dealing with problems of non-destructive testing
by eddy current methods. Experimental investigations in this field are costly and time-
consuming so that theoretical studies can be an attractive alternative. This thesis presents
methods to solve some eddy current testing problems and ways to simplify the obtained
solutions and adapt them to computational calculations in engineering. The forward problems
are solved: mathematical models of eddy current testing are constructed and the influence of
the parameters of the flaw and the media on the input signal of eddy current probes is
investigated.

In the present thesis the discussion on non-destructive testing problems starts from a
detailed review of the literature devoted to this subject and mostly of recent papers.

The thesis is divided into four chapters. The first chapter is introductory. It describes the
physics of the method, introduces the meaning of vector potential and impedance change,
and gives the main equations and characteristics. Besides, the four mostly used boundary
value problems, giving the form and non-zero components of vector potentials for separate
cases, are strictly proved corresponding to the geometry of a source of current.

The second chapter is devoted to Helmholtz’ vector equation and its solution, describing
the problems of eddy current testing as an influence of a conducting medium on a source of
current. In this thesis the integral representation of the solution to Helmholtz’ vector equation
is considered not only in the well-known form of the Cartesian coordinates, but it is also
obtained for arbitrary orthogonal curvilinear coordinates. As particular cases, the integral
representation of the solution to Helmholtz’ vector equation is derived for cylindrical polar
and spherical coordinates. Besides, in Chapter 2 the newly obtained representations of the
solution to Helmholtz” vector equation are used for solving the problems of electromagnetic
waves spreading from emitters of different forms. These are the vector potential problems of
a rectangular frame with current and of a wire of arbitrary form with given current. In the
present thesis, the problem of a rectangular frame with current is solved without using the
dipole approximation, which is widely used for problems of electromagnetic waves spreading
from linear emitters, but not suitable for problems of eddy current inspection. To solve the
problem of a finite length wire of an arbitrary form, the integral representation of the solution

to Helmholtz’ vector equation is found in the form of a single definite integral of an
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elementary function. The obtained solution is used for deriving the solution for its particular
cases of electromagnetic waves spreading from a wire in the form of an Archimedes’s spiral,
an elliptical or circular helix and, also, from a fractal form wire.

The third chapter is devoted to the problems of influence of the homogeneous
conducting medium on a source of current of different geometries. Analytical solutions to
eddy current testing problems even in simple geometries are expressed in terms of improper
integrals containing special functions. Hence, the effective evaluation of such integrals is an
important practical problem. In Chapter 3 several new improper integrals are evaluated in
closed form. The results are used to calculate the change in impedance of a double conductor
line and a single-turn coil above a conducting half-space. An asymptotic formula for large
frequencies is also obtained in Chapter 3. Moreover, in this chapter the impedance change is
obtained for the problem of a rectangular frame located inside a conducting cylindrical tube.
Moreover, in this thesis the exact analytical solution of this problem is obtained without
using either the double conductor line approximation or any other approximation.

The last chapter considers the problems of impedance change due to the influence of
conducting media containing flaws (or defects) of arbitrary shapes. Since the exact analytical
solution for the problem of the influence of a conducting medium with an arbitrary flaw on a
source of current is not known, different approximate analytical and numerical methods have
been developed and used. In the present thesis two methods, called methods of additional
currents, are developed. One of these methods transforms the problem (differential
equations) for a non-uniform conducting medium into a problem for a uniform conducting
medium with a non-uniform right-hand side in the system of differential equations describing
the problem. Besides, Chapter 4 is mostly devoted to the basic analytical formula of
impedance change for non-uniform media. In the literature this well-known formula is based
on Lorentz’ theorem, but rigorous proof seems to be absent. In this thesis the formula is
analytically proved and its correctness is analyzed. Moreover, the similar formula for
impedance change, whose proof is based on Green’s formula, is obtained in the present
thesis. The last mentioned formula appears in the literature in some applied problems, but the
connection between these two formulae and their equivalence, seems to be given only in the
present thesis.

Future work can be devoted to the analysis of the method of additional currents applied
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to practical problems of non-destructive testing, for example, to problems with flaws in
conducting media. In the applications, such problems presently require extensive
computational resources and are seldom used in engineering practice because of the
complexity of the analysis. The use of the method of additional currents may be useful for
simplifying real world problems and obtaining practically useful engineering solutions for
eddy current testing of conducting media with flaws. Moreover, the approximate solutions
developed in this thesis and the simplified form of other solutions can be successfully used to

solve important practical inverse problems in eddy current testing.
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Appendix 1

NOMENCLATURE

List of Latin symbols

magnetic vector potential, A= Aelt
complex-valued amplitude magnetic vector potential
complex-valued amplitude magnetic vector potential in a flawed region

non-zero component of vector potential in region R,, i =0,1

A™ induced vector potential intensity in R,

ou

m my O Ty O

= M
!

- —U T, T

U

I"e

magnetic induction vector, B =Belot

complex-valued amplitude magnetic induction vector
Euler constant, C =0.577215...

electric induction vector, D = D!
complex-valued amplitude electric induction vector
electric field vector, E = Ee!*

complex-valued amplitude electric field vector
complex-valued amplitude electric field vector in a flawed region

height of emitter above conducting medium
magnetic field vector, H = H el
complex-valued amplitude magnetic field vector
current vector density, 1 = I e

complex-valued amplitude current vector density
external current vector density, 1¢=Teelt

complex-valued amplitude external current vector density

I, (s) modified Bessel function of the first kind of order v

j

imaginary unit, j=+-1

J,(s) Bessel function of the first kind of order v
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K, (s) modified Bessel function of the second kind of order v

ker,(x) . .
. Kelvin functions

kei, (x)

L, theoperator L, = 11_ 9 [gran 4 g
b~ db db

_ - 2 2 2 B

L  the operator L _6—2 li—iz+i2 0 . +a—2, ie. L=A2—i2
o ror r° r°op° oz r

n normal to a surface

r, coil radius

R,  unbounded free space

R, conducting medium with or without a flaw (defect)
. flaw-region

R

X real part of Z
Y imaginary part of Z
Y

,(s) Bessel function of the second kind of order v

dimensionless induced change in impedance

dimensionless induced change in impedance (case of a coil)

dimensionless induced change in impedance (case of a double line)

YA
YA
Z,, ~ asymptotic of impedance as f — oo (case of a coil)
ZI
YA

asymptotic of impedance as S — oo (case of a double line)

loo

Z™ induced change in impedance
List of Greek symbols

I'(x) Euler gamma function

2 2 2
A Laplacian, Af(XyZ)—af 82+6Z
oy- oz
2 2
Af(r ¢1Z)_12(rij i5f+éz
ror\_or) r*op® oz
A
AA(r,p,7) =€, A 2R 5[ aA - ZA
r8(p U o
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o°f 1of o'f 1

A the operator A _f(r,z) = —+
P  f(12) or* ror or* r?

o(x) Dirac’s delta function
g  electric constant
& relative permittivity

U,  Mmagnetic constant

7] relative magnetic permeability
p  charge density

o conductivity

®, primary varying magnetic field
@, secondary varying magnetic field
7 scalar electric potential intensity

l

scalar electric potential, 7 =y e "

frequency
Coefficients

k? = - jouu(o+ jeéw)

k?= Hot(T+ jEgE®)

Coordinate systems

(x,y,z) Cartesian coordinates, x,y,ze R
(r,p,z) cylindrical polar coordinates, r >0,0<p <27,z€R

,0, spherical coordinates, p >0,0<0<27,0<p<nx
(0,0,90) sp P ®

Two classes of definite integrals

T cosyxdx T x™J (bx)dx
AG) =[5 ()

, B,nm(b) =
o (WxZ +a? +x)** ’ o (WxZ +a? +x)t
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