
 
 

RIGA TECHNICAL UNIVERSITY 
 
 
 
 
 
 

 
 
 
 
 
 
 

PH.D. THESIS 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

2007 



 

RIGA TECHNICAL UNIVERSITY 
Faculty of Computer Science and Information Technology 

Department of Engineering Mathematics 

                                 

 
 

Ilona DZENITE 
Ph.D. student of the Mathematical Modeling Program 

 
 
 
 
 
 
 

SOLUTIONS TO SOME PROBLEMS ON  
THE INFLUENCE OF A CONDUCTING  

INHOMOGENEOUS MEDIUM ON A 
SOURCE OF CURRENT 

 
 

Ph.D. Thesis 
 
 
 

                                                                   Scientific supervisor 
                                                          Dr. habil. phys., Professor 
                                                                         M.ANTIMIROV  
                                                                          (till 20.03.2005) 

                                                                              Dr. math., Professor 
                                                                              I.VOLODKO 

 
 
 

Riga 2007 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

This work has been partly supported by the 
European Social Fund within the National Program 
“Support for the carrying out doctoral study 
program’s and post-doctoral researches” project 
“Support for the development of doctoral studies at 
Riga Technical University”.   



  

ABSTRACT 
 
The main topic of this PhD thesis is the mathematical analysis of problems in non-

destructive testing by eddy currents. Non-destructive testing methods are widely used in the 

industry for quality control of products and materials. The term “non-destructive testing” 

usually refers to inspection methods for testing properties of materials and the quality of 

products without damaging or impairing the test objects. 

Since many high-technology devices operate under extreme temperature and pressure 

conditions, or come into prolonged contact with chemically active materials, etc., it is 

important to develop non-destructive testing methods which ensure their safety and reliability. 

In fact, the main objective of non-destructive testing is to decide whether a device (or 

material) can successfully perform specified functions. Perfect devices or materials are rare. 

From a practical point of view, a material is considered to be of good quality if its parameters 

lie within specified tolerances. Therefore, the purpose of non-destructive testing can be 

formulated in the following way: to determine whether the relevant parameters of a material 

(or characteristics of a device) lie within prescribed limits.  

Among the non-destructive testing methods in use today, are the following: X-rays, 

Messbauer analysis, neuron activation, ultrasound, acoustic emission, microwaves, dielectric 

spectroscopy, and eddy currents.  

Eddy current testing has its origins with Michael Faraday’s discovery of electromagnetic 

induction in 1831. Nowadays eddy current testing devices are widely used for quality control 

of electrically conducting objects, such as metals, alloys and semiconductors. As early as 

1879, Hughes recorded changes in the properties of an exciting-sensing coil placed in contact 

with metals of different conductivity and permeability. However, practical use of these effects 

in testing quality of materials started only after the Second World War. In the industry eddy 

current devices are used, for example, to control the size of products, to measure the diameter 

of wires and tubes, the thickness of walls and metal sheets. They are widely used to control 

the thickness of metal covering and the thickness of layers in multiplayer products. They can 

also be used to estimate the rate of destructive corrosion.  

Another widespread field of applications of eddy current methods is the detection of 

flaws in materials: cracks, fiberings and non-metallic inclusions. Flaw detection is very 

important in the transport industry, including aircraft, ship and automobile. Another important 

application is the quality control of spot welding. Eddy current methods are widely used in the 
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nuclear industry and, in particular, to determine flaws and the thickness of walls in heat 

exchanger tubes.  

Devices for non-destructive inspection in engineering are based on either theoretical or 

experimental research. Experiments are often used to develop the theory for particular cases. 

However, in many cases the problem of interest contains many parameters and it may be 

difficult to “connect” the output signal of a specific coil to the parameters of the flaw in a 

conducting medium. 

Moreover, the necessity to have a theoretical generalization of experimental data, on the 

one hand, and analytical difficulties, on the other hand, incites one to consider particular cases 

for only some range of the parameters. In this case, the obtained results can have only a 

limited domain of applicability. In addition, it is often extremely difficult to interpret, 

numerically or graphically, the obtained solution of the problem. This happens if the solution 

contains integrals that cannot be expressed in terms of elementary or special, tabulated 

functions. However, these difficulties are overcome by approximating the solution.      

Analytical solutions for the simplest cases have been derived and associated computer 

programs have been developed. But in order to solve more complicated problems one uses 

different approximation methods. In practice, one needs only know some integral 

characteristics of the solution, which, in some cases, can be expressed in terms of 

computationally suitable formulas. 

In general, eddy current testing problems depend on several parameters. The use of 

mathematical models, along with the exact form of the solution, facilitates the study of the 

influence of these parameters on the output characteristics of the signal and on the testing 

process. Such a task may be costly and difficult, if at all possible, to achieve experimentally.   

 The present thesis represents a theoretical study on non-destructive inspection problems. 

In particular, summarizing all the above-mentioned problems, the thesis is devoted to the 

methods of solving eddy current testing problems and getting ways to simplify the obtained 

solutions in order to make them more adaptable to computer calculations and engineering 

practice. Mathematical methods are used in the thesis to solve several direct problems related 

to eddy current testing of conducting materials. One of the obstacles in using mathematical 

models of eddy current testing in engineering practice is the complexity of solutions. The 

approximate solutions developed in this thesis allow one to implement the results in eddy 

current testing. In addition, the simplified forms of the obtained solutions can be successfully 

used to solve important practical inverse problems in eddy current testing.      
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This thesis is divided into four parts. The first part describes the physics of eddy current 

testing method, the detailed derivation of the basic equations for the vector potential and its 

boundary conditions, and introduces the meaning of the induced change in impedance. The 

basic equations are Maxwell’s equations for a linear, isotropic and homogeneous medium. By 

introducing the vector-potential, Maxwell’s equations lead to Helmholtz’ equation for the 

vector potential. Generally, in the literature on formulating the vector potential problem, the 

form of the vector potential (i.e. the number of non-zero components and dependent variables) 

and, consequently, its boundary conditions are taken into account only by considering the 

symmetry of the problem (for example, the geometry of the source of current) or even without 

any derivation. Thus, the detailed derivation of the structure of the vector potential seems to 

have been done only in the present thesis (see also the author’s paper [36]) for the few mostly 

cases used in the literature. The form and the number of non-zero components of the vector 

potential are determined for the following cases: a double conductor line, a wire of finite 

length, and a single-turn coil above a uniform conducting half-space. As a generalization of 

these cases, the vector potential problem is formulated for a wire of an arbitrary form located 

in a vertical plane above a uniform conducting half-space. 

The second part of this thesis considers exact analytical solutions to problems on 

electromagnetic waves spreading from emitters of different forms. It includes the integral 

representation of the solution for Helmholtz’ vector equation in arbitrary orthogonal 

curvilinear coordinates; an exact analytical solution to the vector potential problem of a 

rectangular frame with current, and an exact solution to the vector potential problem of a wire 

of an arbitrary form with given current. Since Helmholtz’ vector equation describes the eddy 

current problems, the integral representation of the solution to this equation is very important. 

In the integral representation of the solution to Helmholtz’ vector equation known in the 

literature (see [59]), the vector potential of the electromagnetic field is expressed in terms of a 

triple integral of the product of the external current vector and the fundamental solution of 

Helmholtz’ scalar equation. This representation has its simplest form in rectangular 

coordinates where the unit vectors , ,x y ze e e  do not depend on the spatial coordinates. In the 

applications, other coordinate systems are also used. In the present thesis (see also the 

author’s papers [17], [18]), the integral representation of the solution to Helmholtz’ vector 

equation is obtained for a system of arbitrary orthogonal curvilinear coordinates where the 

unit vectors  are prescribed functions of the spatial coordinates. As particular cases 1 2, ,q q qe e e 3
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of the obtained representation, the integral representations of the solution to Helmholtz’ 

vector equation are found for cylindrical and spherical coordinates. 

The obtained representation of the solution to Helmholtz’ vector equation is used in this 

thesis for the vector potential problems of a rectangular frame with current and of a wire of 

arbitrary form with given current. The reaction of a conducting half-space to a rectangular 

frame with current has been studied theoretically only in the case where the ratio of the 

frame’s sides is 1:4 or smaller. In this case, a double conductor line is considered as a 

convenient and sufficiently accurate model of the rectangular frame. In this thesis (see also 

the author’s paper [13]), an exact solution to the vector potential problem of the 

electromagnetic field induced by a rectangular frame with current is obtained without using 

any double conductor line approximation. Due to the linearity of the problem it is sufficient to 

find the vector potential of the electromagnetic field created by one side of the frame having 

the form of a straight segment and by the other side having the form of a circular arc. 

Different formulas known in the literature can be obtained from particular cases of the 

presented solutions. Note that in the literature the problem of electromagnetic waves 

spreading from a linear harmonic emitter is only solved in the so-called dipole approximation. 

The dipole approximation is used for the analysis of electromagnetic waves spreading under 

the assumption that the waves’ length is much greater than the emitter’s length. In non-

destructive testing problems, however, the size of a defect situated in a conducting medium 

may be compared with the emitter’s length, , or it may be even larger than l . Hence, non-

destructive testing methods require solutions to the problem of electromagnetic waves 

spreading from a linear harmonic emitter without using the dipole approximation. The 

solution is presented in this thesis (see also the author’s paper [13]). 

l

In the same section (see also the author’s paper [15]), an exact solution is obtained for the 

problem of electromagnetic waves spreading from a wire of finite length having an arbitrary 

form. Writing the equation for the curve describing the wire in cylindrical polar and Cartesian 

coordinates, and using Helmholtz’ equation and the integral representation of its solution, we 

obtain the solution in the form of a single definite integral of an elementary function. 

Moreover, using the obtained solution, some new formulas for electromagnetic waves 

spreading are also found for the particular cases of a wire in the form of Archimedes’s spiral, 

of an elliptical or circular helix and in the form of fractals. The case of a fractal wire is 

interesting for antenna analysis in radio engineering. 

The third part of this thesis is devoted to the analysis of the impedance change in 

homogeneous conducting media. Analyzing the influence of a uniform or non-uniform 
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conducting media with different geometries on a source of current, that has the form of a 

double conductor line or a single-turn coil, one obtains the solution for the induced impedance 

change in terms of improper integrals (see [6]), whose integrands are either combinations of 

irrational and trigonometric functions, or combinations of irrational and Bessel functions, so 

that the two classes of definite integrals can be separated. In this thesis (see also the author’s 

papers [12], [8]), these new classes of definite integrals are evaluated in closed form by means 

of divergent integrals that converge in the sense of Abel [4]). Only one particular case of these 

integrals is known in the literature (see [48]), where the method used is also appropriate only 

for that case.  

Particular cases of these integrals have been used for the evaluation of impedance change 

in the cases of a double conductor line and a single-turn coil located on the surface of a 

conducting half-space. In the case of a double conductor line, the expression for the 

impedance change has been evaluated in closed form, but in the case of a single-turn coil, the 

expression for the impedance has been transformed into the simpler form of a fast-convergent 

series. Furthermore, simple asymptotic formulas for the impedance of arbitrarily located 

double lines and coils are obtained in the limit as the frequency tends to infinity. These results 

are presented in the thesis (see also the author’s papers [9], [7]).  

The change in impedance of a rectangular frame with current inside a conducting 

cylindrical tube has been studied theoretically only in the double conductor line 

approximation (see [6]). In this thesis (see also the authors’ papers [14], [35]), the exact 

analytical solution of a similar problem is obtained without using any approximation. As a 

possible application, the obtained solution can be used to determine the wall thickness of a 

tube directly under the frame for the case of non-concentric wall’s surfaces.  

Finally, the fourth part of this thesis is devoted to some problems on the impedance 

change of media containing flaws (or defects). The exact analytical solution for the problem 

of the influence of a conducting medium with an arbitrary flaw on a source of current is not 

known. Therefore, since 1960 different approximate analytical and numerical methods for 

such problems have been used. Different approximate methods – two methods of additional 

currents – are developed in this thesis (see also the author’s papers [10], [11], [34]). The 

presence of additional currents in the region of a flaw is assumed by the first method. The 

direction of this current is opposite to the direction of the eddy current that flows in the same 

region in the absence of the flaw. The additional currents used in the second method are 

chosen so that the differential equation for a uniform conducting medium is transformed into 
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a differential equation for the flaw. This problem has an exact analytical solution that allows 

one to estimate the error of both methods. 

The next two sections are devoted to the proof of a new exact analytical formula for the 

impedance change and a well-known formula in the literature. The derivation of the new 

formula is based on Green’s formula while the Lorentz theorem is used for obtaining the other 

formula.  

In the literature, the formula for the induced change in impedance, describing the 

influence of a conducting medium with a flaw of arbitrary shape on a source of current, seems 

to have been used before without a rigorous proof. In the present thesis (see also the author’s 

papers [19], [37], [38]), this formula is analytically proved and its correctness is analyzed. 

The formula has the form of a triple integral of a scalar product of amplitude electric field 

vectors. 

The new formula for the impedance change has been found in the present thesis (see also 

the author’s papers [16], [19], [34], [37]). This new formula has the form of a triple integral of 

a scalar product of two vector potentials: the vector potential in the flaw and the vector 

potential in the same region in the absence of the flaw over the region containing the flaw.  

The equivalence of these two formulas was proved (see the author’s papers [19], [37]). 

However, since analytical solutions of many problems contain the expressions for the vector 

potential, then the newly obtained formula is more convenient for calculations than the well-

known formula.      

 7



  

ANOTĀCIJA 

Promocijas darba galvenā tēma ir nesagraujošās kontroles problēmu matemātiskā analīze 

ar virpuļstrāvu metodes izmantošanu. Nesagraujošās kontroles metodes plaši izmanto 

industrijā, lai kontrolētu produkcijas un materiālu kvalitāti. “Nesagraujošās kontroles” termins 

attiecas uz inspekcijas metodēm, lai testētu materiālu īpašības un produkcijas kvalitāti bez 

testējamā objekta salaušanas vai sabojāšanas. 

Tā kā daudzas augstas tehnoloģijas ierīces strādā ekstremālos temperatūras un spiediena 

apstākļos vai atrodas ilgstošā kontaktā ar ķīmiski aktīviem materiāliem, ir svarīgi attīstīt 

nesagraujošās kontroles metodes, kuras nodrošina ierīču darbību un drošību. Faktiski, 

nesagraujošās kontroles galvenais mērķis ir noteikt, vai ierīce (jeb materiāls) var sekmīgi 

veikt specifiskas funkcijas. Ideālas ierīces vai materiāli ir reti sastopami. No praktiskā 

viedokļa skatoties, materiālu uzskata par labas kvalitātes, ja tā parametri atrodas noteiktā 

pieļaujamā diapazonā. Tāpēc nesagraujošās kontroles galveno mērķi var formulēt sekojošā 

veidā: noteikt, vai materiāla attiecīgie parametri (jeb ierīces raksturojums) atrodas uzdotās 

robežās.              

Šodienas nesagraujošās kontroles metožu teorijā atšķir sekojošas metodes: 

rentgenoskopijas analīze, Mesbauera analīze, neirona aktivizācijas, ultraskaņa, akustiska 

emisija, mikroviļņi, dielektriskā spektroskopija, un virpuļstrāva.   

Virpuļstrāvu kontroles pamati nāk no Maikla Faradeja laikiem, kad viņš atklāja 

elektromagnētisko indukciju 1831. gadā. Mūsdienās virpuļstrāvu ierīces plaši izmanto, lai 

kontrolētu kvalitāti tādiem elektrību vadošiem objektiem kā metāli, sakausējumi un 

pusvadītāji. Jau 1879. gadā Hugs reģistrējis īpašību izmaiņas ierosmes-zondēšanas spolē, kura 

tika novietota kontaktā ar metāliem ar dažādu vadāmību un caurlaidību. Bet, lai testētu 

materiālus, šos efektus sāka izmantot praktiski tikai pēc otrā pasaules kara. Industrijā 

virpuļstrāvu ierīces izmanto, piemēram, lai kontrolētu produktu izmēru, lai mērītu vadu un 

cauruļu diametru, lai noteiktu biezumu sienām un metāla plātnēm. Tās arī plaši izmanto, lai 

kontrolētu metāla segumu biezumu un slāņu biezumu daudzslāņu vidē. Tādas ierīces var arī 

izmantot, lai novērtētu postošas korozijas ātrumu.         

Cita plaša sfēra virpuļstrāvu metožu pielietošanai ir defektu atrašana metālos, t.i. plīsumi, 

noslāņošanās un nemetāla defekti. Defektu atrašana ir ļoti svarīga transporta industrijā, 

ieskaitot lidmašīnas, kuģus un automašīnas. Ļoti svarīgs pielietojums ir punktu metināšanas 

kvalitātes kontrole. Virpuļstrāvu metodes plaši izmanto kodolindustrijā un, piemēram, lai 

atrastu defektus un noteiktu sienu biezumu siltumapmaiņu caurulēm.      
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Inženierzinātnēs nesagraujošās kontroles ierīču darbība balstās vai nu uz teorētiskiem 

pētījumiem, vai arī uz eksperimentiem. Eksperimentus bieži izmanto, lai attīstītu teoriju 

atsevišķiem gadījumiem. Tomēr daudzos gadījumos problēma satur vairākus parametrus un ir 

grūti saistīt no speciālas spoles izejošo signālu ar defekta parametriem, ja defekts atrodas 

elektrību vadošā vidē.         

Turklāt, eksperimentālo datu teorētiskā vispārinājuma nepieciešamība no vienas puses un 

analītiskā risinājuma grūtības no otras puses piespiež aplūkot atsevišķus gadījumus ar dažu 

parametru diapazonu. Šajā gadījumā iegūtiem rezultātiem būs pielietojums tikai ierobežotā 

sfērā. Pie tam, bieži ir ļoti grūti interpretēt, skaitliski vai grafiski, problēmas iegūto 

atrisinājumu. Tas notiek, ja atrisinājums satur integrāļus, kurus nav iespējams izteikt ar 

elementāro vai speciālo tabulas funkciju integrāļiem. Bet šīs grūtības ir pārvaramas ar 

atrisinājuma aproksimāciju.         

Ir iegūti analītiski atrisinājumi vienkāršākajiem gadījumiem un izstrādāta atbilstoša 

programmatūra. Bet, lai risinātu sarežģītas problēmas, izmanto dažādas aproksimācijas 

metodes. Taču praktiski nepieciešams zināt tikai dažas īpašības atrisinājumam, kuru 

atsevišķos gadījumos var izteikt datoram piemērotu formulu veidā.  

Vispār, virpuļstrāvu kontroles problēmas ir atkarīgas no dažiem parametriem. 

Matemātisko modeļu izmantošana kopā ar precīzo atrisinājumu atvieglo pētījumu par šo 

parametru ietekmi uz signāla izejošajām īpašībām un uz testēšanas procesu. Tāds uzdevums 

var būt dārgs un sarežģīts vai vispār nav sasniedzams eksperimentāli.       

Dotais promocijas darbs ir teorētisks pētījums par nesagraujošās kontroles problēmām. 

Konkrēti, apkopojot visas iepriekš minētās problēmas, promocijas darbs ir veltīts virpuļstrāvu 

kontroles problēmu risināšanas metodēm, kā arī metodēm, kas palīdz vienkāršot iegūto 

problēmu atrisinājumus, lai adaptētu pēdējos skaitliskiem aprēķiniem datorā un praktiskiem 

pielietojumiem inženierzinātnēs. Matemātiskās metodes šajā promocijas darbā ir izmantotas, 

lai risinātu dažas tiešas problēmas, kas saistītas ar virpuļstrāvu kontroli materiāliem ar 

vadāmību. Viens no virpuļstrāvu kontroles matemātisko modeļu izmantošanas iemesliem 

inženieru praksē ir atrisinājumu sarežģītība. Tuvināti atrisinājumi, kas iegūti šajā darbā, dod 

iespēju iegūt rezultātus virpuļstrāvu kontrolē. Pie tam, iegūto atrisinājumu vienkāršotas 

formas var tikt sekmīgi izmantotas, lai risinātu svarīgas praktiskas inversās problēmas 

vilpuļstrāvu kontrolē.   

Promocijas darbs ir sadalīts 4 daļās. Pirmajā daļā aprakstīta virpuļstrāvu metodes fizika, 

vektora potenciāla pamatvienādojumu un robežnosacījumu detalizēta iegūšana, un inducētas 

izmaiņas impedancē ieviešana. Par pamatvienādojumiem uzskata Maksvela vienādojumu 
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sistēmu lineārai, izotropai un homogēnai videi. Vektora potenciāla ieviešana Maksvela 

vienādojumus reducē uz Helmholca vienādojumu vektora potenciālam. Literatūrā, formulējot 

problēmu vektora potenciālam, vektora potenciāla forma (t.i. nenulles komponentes un 

atkarīgie mainīgie) un, sekojoši, tās robežnosacījumi ir ņemti bez strāvas avota ģeometrijas 

apskata vai vispār bez kāda pierādījuma. Šķiet, ka detalizēts pierādījums ir izdarīts tikai šajā 

promocijas darbā (sk. arī autora rakstu [36]), tas veikts četrām literatūrā visbiežāk 

sastopamajām problēmām par vektora potenciālu. Vektora potenciāla forma un nenulles 

komponentu skaits ir definēti gadījumiem ar divvadu līniju, ar galīga garuma vadu un ar viena 

vijuma spoli ar strāvu virs homogēnas elektrību vadošas pustelpas. Kā šo gadījumu 

vispārinājums, vektora potenciāla problēma ir noformulēta patvaļīgas formas vadam, kurš 

novietots vertikālajā plaknē virs homogēnas elektrību vadošas pustelpas.         

Promocijas darba otrajā daļā tiek apskatīts analītisks atrisinājums problēmai par 

elektromagnētisko viļņu izplatību no dažādu formu izstarotājiem. Šī daļa satur atrisinājumu 

vektoriālam Helmholca vienādojumam integrālā formā patvaļīgā ortogonālā līklīniju 

koordinātu sistēmā; precīzu analītisku atrisinājumu problēmai par vektora potenciālu 

taisnstūrveida rāmītim ar strāvu, un precīzu analītisku atrisinājumu problēmai par vektora 

potenciālu patvaļīgas formas vadam ar uzdoto strāvu vektora potenciālu. Sakarā ar to, ka 

vektoriālais Helmholca vienādojums apraksta virpuļstrāvu problēmas, atrisinājums šim 

vienādojumam integrālā formā ir ļoti svarīgs. Literatūrā pazīstams atrisinājums vektoriālam 

Helmholca vienādojumam ir dots integrālā formā, elektromagnētiskā lauka vektora potenciāls 

ir izteikts ar trīskāršo integrāli no strāvas blīvuma vektora un Helmholca vienādojuma 

fundamentālā atrisinājuma skalārā reizinājuma. Tādu atrisinājumu visvieglāk izmantot 

taisnleņķa koordinātu sistēmā, kurā vektori , ,x y ze e e  nav atkarīgi no koordinātēm. Bet, 

izstrādājot šo promocijas darbu, parādījās nepieciešamība izmantot citas koordinātu sistēmas. 

Sakarā ar to, ka literatūrā atrisinājums integrālā formā nav atrodams, šajā promocijas darbā 

(sk. arī autora rakstu [17], [18]), iegūts atrisinājums vektoriālam Helmholca vienādojumam 

integrālā formā patvaļīgā ortogonālā līklīniju koordinātu sistēmā, kurā vienības vektori 

 ir dotas koordinātu funkcijas. Kā partikulārie gadījumi no šī atrisinājuma iegūti 

atrisinājumi vektoriālam Helmholca vienādojumam integrālā formā cilindriskā un sfēriskā 

koordinātu sistēmā.        

1 2, ,q q qe e e 3

Iegūtais atrisinājums vektoriālam Helmholca vienādojumam tiek izmantots problēmai par 

vektora potenciālu taisnstūrveida rāmītim ar strāvu, kā arī problēmai par vektora potenciālu 

patvaļīgas formas vadam ar uzdoto strāvu, kas aplūkoti tajā pašā nodaļā. Elektrību vadošas 
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pustelpas reakcija uz taisnstūrveida rāmīti ar strāvu tika pētīta teorētiski tikai gadījumā, kad 

rāmīša malu proporcija ir 1:4 vai mazāka. Šajā gadījumā, divvadu līniju uzskata par ērtu un 

pietiekoši precīzu taisnstūrveida rāmīša modeli. Šajā promocijas darbā (sk. arī autora rakstu 

[13]), precīzs atrisinājums problēmai par elektromagnētiskā lauka vektora potenciālu, kas 

inducēts taisnstūrveida rāmītim ar strāvu, iegūts bez divvadu aproksimācijas. Problēmas 

linearitātes dēļ, pietiek atrast vektora potenciālu elektromagnētiskajam laukam, kas izveidots 

ar vienu rāmīša malu, kurai ir taisnas līnijas forma, un otru malu, kurai ir riņķa līnijas loka 

forma. Atsevišķos gadījumos no atrastā atrisinājuma var iegūt dažādas literatūrā pazīstamas 

formulas. Bet literatūrā problēma par elektromagnētisko izstarojumu no lineārā harmoniskā 

izstarotāja risināta tikai tā saucamajā dipolu aproksimācijā. Tāda veida aproksimāciju izmanto 

elektromagnētisko viļņu izplatīšanas analīzei, pieņemot, ka viļņu garums ir daudzreiz lielāks 

nekā izstarotāja garums. Tomēr nesagraujošās kontroles problēmās, defekta izmērs, kas 

atrodas vidē ar vadāmību, mēdz būt samērojams ar izstarotāja garumu  vai arī lielāks nekā . 

Tāpēc problēmu par elektromagnētisko viļņu izplatību no lineāra harmoniska izstarotāja vajag 

risināt bez dipolu aproksimācijas. Tas tika izdarīts šajā promocijas darbā (sk. arī autora rakstu 

[13]).    

l l

Vienā no otrās daļas paragrāfiem (sk. arī autora rakstu [15]), precīzs atrisinājums iegūts 

problēmai par elektromagnētisko viļņu izplatību no galīga garuma patvaļīgas formas vada. 

Sastādot vienādojumu līnijai, kas apraksta vadu cilindriskajā un Dekarta koordinātu sistēmā, 

un izmantojot Helmholca vienādojumu un tā atrisinājuma integrālo formu, iegūstam 

atrisinājumu, kuram ir vienkārša noteiktā integrāļa forma no elementāras funkcijas. Pie tam, 

izmantojot iegūto atrisinājumu, atrod dažas jaunas formulas par elektromagnētisko viļņu 

izplatību gadījumiem ar vadu, kuram ir Arhimēda spirāles forma, eliptiskas vai riņķveida 

spirāles forma, kā arī fraktālam vadam. Gadījums ar fraktālo vadu ir interesants 

telekomunikācijas nozarei antenu analīzei.          

Trešajā daļā tiek analizētas izmaiņas impedancē homogēnas elektrību vadošas pustelpas 

dēļ. Analizējot homogēnas vai nehomogēnas elektrību vadošas vides ar dažādu ģeometriju 

ietekmi uz strāvas avotu, kuram ir divvadu līnijas vai viena vijuma spoles forma, atrisinājumu 

izmaiņām impedancē ieguvām neīsto integrāļu formā (sk. [5]). Šo integrāļu zemintegrāļa 

funkcija ir vai nu iracionālo un trigonometrisko funkciju kombinācija, vai arī iracionālo un 

Beseļa funkciju kombinācija. Tas ļauj atdalīt divas noteikto integrāļu klases. Šajā promocijas 

darbā (sk. arī autora rakstu [12], [8]) šīs noteikto integrāļu jaunās klases novērtē slēgtā formā, 

izmantojot diverģējošos integrāļus, kas konverģē Ābeļa nozīmē. Literatūrā zināms tikai viens 
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šo integrāļu atsevišķs gadījums (sk. [49]), bet tur izmantotā metode ir pielietojama tikai 

aprakstītajam gadījumam.       

Šo integrāļu atsevišķus gadījumus izmanto impedances novērtēšanai gadījumos ar 

divvadu līniju un viena vijuma spoli, novietotiem uz elektrību vadošas pustelpas virsmas. 

Divvadu līnijas gadījumā impedances izteiksmi novērtē slēgtā formā, bet gadījumā ar viena 

vijuma spoli, impedances izteiksmi var transformēt vienkāršākā formā, kas satur ātri 

konverģējošas rindas. Turklāt, vienkārša asimptotiska formula impedancei iegūta gadījumā ar 

patvaļīgi novietotu divvadu līniju un viena vijuma spoli, kad frekvence tiecas uz bezgalību. 

Iegūtais rezultāts arī pretendē uz oriģinalitāti un piedāvāts šajā promocijas darbā (sk. arī 

autora rakstu [9], [7]).   

Izmaiņas impedancē taisnstūrveida rāmītim ar strāvu, kas novietots cilindriskas elektrību 

vadošas caurules iekšpusē, teorētiski tika pētītas tikai izmantojot divvadu aproksimāciju (sk. 

[5]). Šajā promocijas darbā (sk. arī autora rakstu [14], [35]) līdzīgai problēmai atrasts precīzs 

analītisks atrisinājums, bet bez aproksimācijas izmantošanas. Viens no atrisinājuma 

iespējamiem pielietojumiem var būt caurules sienas biezuma noteikšana gadījumā, ja caurule 

ar nekoncentriskām sienām atrodas tieši zem rāmīša.       

Beidzot, promocijas darba ceturtā daļa veltīta dažādām problēmām par izmaiņām 

impedancē videi, kas satur defektu. Literatūrā nav zināms precīzs analītisks atrisinājums 

problēmai par vides ar vadāmību, kura satur patvaļīgas formas defektu, ietekmi uz strāvas 

avotu. Tāpēc, sākot no 1960. gada, izmanto dažādas analītiskas un skaitliskas aproksimācijas 

metodes, lai risinātu šāda veida problēmas. Citas aproksimācijas metodes – divas metodes, 

kas izmanto papildstrāvu – tika izstrādātas šajā promocijas darbā (sk. arī autora rakstu [10], 

[11], [34]). Saskaņā ar pirmo metodi pieņemts, ka defekta apgabalā eksistē papildstrāva. Šīs 

strāvas virziens ir pretēji vērsts tās strāvas virzienam, kura tek tajā pašā apgabalā, tikai 

gadījumā, kad defekta tur nav. Papildstrāvu, kuru izmanto otrajā metodē, izvēlās tā, lai 

diferenciālvienādojumus homogēnai elektrību vadošai videi varētu pārveidot par 

diferenciālvienādojumiem defektam. Šai problēmai eksistē precīzs analītisks atrisinājums un 

tas dod iespēju novērtēt kļūdu abām metodēm.           

Nākamie divi paragrāfi apraksta pierādījumu jaunai precīzai analītiskai formulai par 

izmaiņām impedancē, kā arī literatūrā pazīstamai formulai. Pierādījums jaunai formulai 

balstās uz Grīna formulas, bet otras formulas pierādījumam izmanto Lorenca teorēmu. Šķiet, 

ka literatūrā formula izmaiņām impedancē, kas raksturo elektrību vadošas pustelpas, kas satur 

patvaļīgas formas defektu, ietekmi uz strāvas avotu, tika izmantota bez stingra pierādījuma. 

Dotajā promocijas darbā (sk. arī autora rakstu [19], [37], [38]), šī literatūrā pazīstamā formula 
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tika analītiski pierādīta un analizēts tās patiesums. Formulai ir trīskāršā integrāļa forma pa 

apgabalu, kas satur defektu, no divu elektriskā lauka vektoru skalārā reizinājuma. 

Arī šajā promocijas darbā tika iegūta jauna formula izmaiņām impedancē (sk. arī autora 

rakstu [16], [19], [34], [37]). Formula iegūta trīskāršā integrāļa formā pa apgabalu, kas satur 

defektu, no divu vektoru potenciālu skalārā reizinājuma: vektora potenciālu defektā un 

vektora potenciālu tajā pašā apgabalā, gadījumā, kad defekta nav.  

Stingri pierādīts, ka jaunā vienkāršākā formula ir ekvivalenta formulai, kas izmantota 

literatūrā (sk. arī autora rakstu [19], [37]). Bet sakarā ar to, ka analītiski atrisinājumi daudzām 

problēmām satur izteiksmes vektora potenciālam, jaunā formula izmaiņām impedancē ir 

ērtāka skaitļošanai nekā literatūrā zināmā formula.     
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INTRODUCTION 
 
The introductory part of the thesis is devoted to a review of the literature. A full review of 

theoretical papers on eddy current methods for non-destructive testing published up to 1997 is 

given in monograph [6]. Therefore, only the most important theoretical papers on eddy 

current testing, which are close to the topic of the thesis and published up to 2004, are 

considered below. The review is divided into two parts, where the first part deals with papers 

on the influence of a homogeneous conducting medium on an emitter, while the second part 

analyzes problems on inhomogeneous conducting medium containing a defect (or a flaw). 

 1. One of the first papers dealing with problems on homogeneous conducting medium is 

the paper [62], published in 1963. In this paper, an exact formula is obtained for the part of 

vector potential, induced into a single-turn coil (and also a superposed coil) due to the 

presence of a conducting half-space. Besides, the full complex resistance (so-called 

impedance), ),( βαcZZ = , is calculated by means of the formula 

dsesJ
jss
jss

jZ s
c ∫

∞
−

++

+−
=

0

ˆ22
12

2

)( βαββ jYX +=: ,                                                          (0.1) 

where , , cZX Re= cZY Im= 1−=j ,  is the Bessel function of the first kind of order 

1, 

)(1 zJ

ˆ 2 / ch rα =  and 0ωσµβ cr=  are dimensionless variables,  is the radius of the coil,  is 

the height of the coil above the conducting medium, 

cr h

ω  is the frequency, σ  is the 

conductivity of the medium, 0µ  is the magnetic constant. Unfortunately, integral (0.1) cannot 

be expressed in terms of known elementary or special functions. In [49] integral (0.1) is 

calculated approximately assuming that the parameter β  is small (i.e. assuming that either the 

coil radius is small, or the frequency or the conductivity of the medium is small). In this case, 

 is expressed in terms of an elliptic integral. In turn, in Section 3.2.2 of the thesis, integral 

(0.1) is represented in the form of a fast-convergent series for all values of the parameter 

cZ

β  

(see also the author’s papers [9], [7]): 

  ( )2
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)3)(2)(1(
)()1(

8)( 2
1
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c Γ+++
−

= ∑
∞

=

+β
β ,                                                             (0.2)  

where  is the gamma function. The solution corresponds to the case )(zΓ 0ˆ =α , i.e. where the 

single-turn coil is located on the surface 0=z . Series (0.2) converges very rapidly so that if 
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3≤β , then it is sufficient to take the first five terms of the series for having a computational 

error less than 3% compared with the exact solution. Moreover, in this thesis, an exact 

asymptotic of integral (0.1) as ∞→β  and 0ˆ ≠α  is found (see Section 3.2.3 and the author’s 

papers [9], [7]):        

[ ])(2)()2(1lim 2 θθθ
πθβ

EKjZc −−−=
∞→

,        
2ˆ1

1

α
θ

+
= ,                                          (0.3) 

where )(θK  and )(θE  are the full elliptic integrals of the first and second kind, respectively, 

tabulated, for instance, in [53]. 

After the first paper by Sobolev [62], different aspects of this problem were considered, 

for instance, in [23], [26], [30], [64] and [49]. As a generalization of the problem considered 

in [62], the problem on the influence of a flat conducting layer on a single-turn coil is 

considered in [46], [63], [52], and the problem on the influence of a multi-layer conducting 

medium on a single-turn coil or double conductor line is considered in [6], [29], [51], [24] and 

[40].    

Eddy current testing problems can be reduced to a two-dimensional problem if the flaw in 

the inhomogeneous half-space is a cylindrical body coaxial with a single-turn coil carrying the 

external current (see [66], [67]), or if the flaw is an infinitely long cylinder parallel to the 

double conductor line carrying the external current (see [1]). Similar reduction takes place in 

the case of a homogeneous conducting half-space where the external current is generated 

either by a single-turn coil or double conductor line in the plane parallel to the half-space.   

In some applications, the source of current has the form of a rectangular frame located 

above the conducting half-space in the plane parallel to the plane . It is shown in [49] 

that if the ratio of the frame’s sides is 1:4 or smaller, then the so-called double conductor line 

(see Fig.1.2) may be considered as a convenient and sufficiently accurate model of a 

rectangular probe. In this case, the formula for impedance has the form 

0=z

s
dsse

jss
jss

jZ s
l )cos1(

0

ˆ2

2

2

ββα −
++

+−
= ∫

∞
− jYX +=: ,                                                      (0.4) 

where dh /ˆ =α , 01µωσβ d= ,   is the height of the double conductor line above the 

surface of the conducting half-space, 

h

01 yyd −=  is the distance between the wires. In this 

thesis (see Section 3.2.1 and also the author’s papers [9], [7]), integral (0.4) has been 

calculated in the exact analytical form for 0ˆ =α  (i.e. the case when the double line is located 

on the surface ): 0=z
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where  is the modified Bessel function of the second kind of order 1 and 

  is the Euler constant. The Bessel functions in (0.5) can be expressed in 

terms of the Kelvin functions, 

)(1 zK

…577215,0=C

)(ker1 β  and 1kei ( )β , tabulated, for instance, in [53]: 

 1 1( ) [ker ( ) kei ( )]K j j j 1β β= + β .                                                                              (0.6) 

Asymptotic of integral (0.4) as ∞→β  and 0ˆ ≠α  has also been obtained in the present thesis 

(see Section 3.2.3 and also the author’s paper [9]), and it has the form   

α
α

β ˆ2
1ˆ4lnlim

2 +
−=

∞→
jZ l .                                                                                               (0.7) 

Computational results of hodograph (i.e. curves )(βXX =  and )(βYY =  for different fixed 

values of α̂ ), obtained by means of the exact analytical formula (0.4) practically coincide 

with the simple asymptotic formula (0.7) if the parameter β  satisfies the inequality 10≥β . 

The asymptotic formula (0.7) is also valid in the case the coil carrying an alternating current is 

located above a plate of finite thickness . An exact analytical solution of this problem is 

found in [46] and [63]. The results for a half-space and a plate practically coincide due to the 

so-called skin effect as 

d

∞→β  (i.e. as ∞→ω ), when induced currents in the plate are 

concentrated near the plate’s surface 0=z , so that the plate’s thickness  does not influence 

the asymptotic value of the impedance 

d

Z  as ∞→β .  

Another form of a conducting medium that has many applications is a conducting tube of 

cylindrical shape. In this case, the emitter having the form of a single-turn coil or a 

rectangular frame carrying the current is located either inside or outside the tube (see [2], [25], 

[33], [43], [45], [30], [31], [32], [39]). In many cases the excitation coil is located in a 

concentric position with respect to the sample to be tested. If the axis of the coil does not 

coincide with the tube’s axis, the solution of the problem becomes more complicated. In [1] 

the coil is displaced so that the tube’s axis is situated on the coil. In Section 3.3 of this thesis 

(see also the author’s papers [14], [35]), an analytical solution is obtained for the following 

two problems on the influence of the tube’s wall on the emitters located inside the tube. 

(1) The emitter has the form of a linear segment of finite length. The emitter is located 

parallel to the tube’s walls, but not on the tube’s axis;  
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(2) The emitter has the form of a circular arc of finite length with the center situated on 

the tube’s axis. 

The solution of these two problems allows one to obtain an analytical solution on the 

influence of circular tube’s walls on a rectangular frame with current. The frame consists of 

two parallel linear segments and two parallel circular arcs. The location of such a frame in the 

vicinity of the tube’s walls gives information about the thickness of the walls situated under 

the emitter, i.e. the information about the tube walls’ deterioration.  

2. The second group of problems, important for applications, is on the influence of a 

conducting medium, containing flaws of different conductivities, on an emitter. These 

problems have approximate analytical solutions in the following two cases: (1) the case of a 

homogeneous half-space as a conducting region, when the source of the external current is 

located in the plane parallel to the half-space and it has the form either of a single-turn coil or 

a double conductor line; (2) the case where the flaw of the inhomogeneous half-space has the 

form of a cylindrical body coaxial with a single-turn coil carrying the external current (see 

[66], [67]), or if the flaw is an infinitely long cylinder parallel to the double conductor line 

carrying the external current (see [1]).  

One of these assumptions corresponds to the case where the conductivities, 1σ  and 2σ , 

of a conducting medium and a flaw, respectively, do not differ by much. In this case one can 

define a small parameter 121 σσε −=  ( 12 σσ < ) and consider a perturbation series with 

respect to ε . Using the perturbation series in ε , one can solve a wide range of problems in 

eddy current testing. This is the so-called perturbation method (see [3]). Such situation often 

occurs in practice, for instance, in eddy current testing of weld joints. Assuming that 1σ  is the 

conductivity of the welding region of an aircraft body and 2σ  is the conductivity of the 

aircraft body, then the parameter is varying in the range 3.005.0 ≤≤ ε  (see [66]). This 

method was used in [66] to find an approximate analytical solution for the problem on the 

influence of a cylindrical flaw on a single-turn coil carrying the current. Later this result was 

obtained in [42] and [44]. In the second part of monograph [6], the application of this method 

is considered for conducting media and flaws of different shapes.  

A different approximate method - the method of additional currents – is developed in this 

thesis in Section 4.1 (see also the author’s papers [10], [11], [34]). The main idea of the 

method is as follows. Instead of the region containing a flaw, the problem is solved for a 

uniform medium containing a source of additional current located in the region of the flaw. 

For example, if 0=Fσ , then in region  the additional source of current is taken to be FV
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opposite compared with the current that exists in the uniform medium containing the flaw. 

For small values of the parameter 121 σσε −= , this method coincides with the perturbation 

method. But the advantage of the method of additional currents is that it can be applied to the 

whole range of values of the parameter ε : 10 ≤< ε .    

Another approximate method used for such problems is the layer approximation. The 

method was suggested in [47]. Using this method, the region of the flaw, , is replaced by a 

region  which has the form of a flat horizontal layer with the same conductivity 

FV

FV Fσ  as the 

region . The layer is located in region FV 21 zzz ≤≤ . The planes  and 1zz = 2zz =  are 

tangential planes to region . For such region , the problem can be solved analytically.  FV FV

In order to calculate the impedance change induced by the presence of the flaw, we 

substitute the obtained solution for FE  into the formula for the impedance change (see [20], 

[21]): 

ind
2

( ) ,
F

F
F

V

Z E E dV
I

σ σ−
= − ⋅∫∫∫                                                                                      (0.8) 

where  is the region of the flaw, FV Fσ  and σ  are the conductivities of the flawed and 

flawless regions, respectively,  is the complex-valued amplitude electric field vector in the 

flawed region, 

FE

E  is the complex-valued amplitude electric field vector in the same region in 

the absence of the flaw, I  is the amplitude of the current density. Equation (0.8) is also used 

in [28], [50], [27], [47], [22]. 

A more convenient formula is obtained in this thesis (see Section 4.2.2 and also the 

author’s papers [19], [16], [34], [37]) for calculating the impedance change:  

2
ind

2
( ) ,

F

F
F

V

Z A A dV
I

ω σ σ−
= ∫∫∫ ⋅                                                                                    (0.9)                   

where  is the complex-valued amplitude vector potential in the flawed region, FA A  is the 

complex-valued amplitude vector potential in the same region in the absence of the flaw.  

 Note that the relationship between the vectors E  and A  in the case of harmonic 

oscillations of the external current with frequency ω  is given by (see [6]):  

2
1

1 grad divE j A
k

ω= − + A ,                                                                                          (0.10)                    

where )ˆ(~
00

2
1 ωεεσµµ jk +=  if the displacement current is taken into account and σµµ0

2
1

~
=k , 
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 if the displacement current is neglected, 0ε  and 0µ  are the electric and magnetic constants, 

respectively; ε̂  and µ  are the relative permittivity and relative magnetic permeability of the 

medium, respectively.  

In Section 4.2 of this thesis (see also the author’s papers [19], [37]), the equivalence of 

Eqs. (0.8) and (0.9) is proved. Since analytical solutions of many problems contain 

expressions for the vector potential A , then formula (0.9) is more convenient for calculations 

than formula (0.8). Besides, in order to calculate the impedance change, the authors in [50] 

and [47] performed an incorrect substitution of the vector E  by the vector A  using Eq. (0.9). 

The point is that, in the simplest case, Eqs. (0.8) and (0.9) coinside if , although in 

general case, div

div 0A =

0A ≠ . Thus, in the previous studies (see [50], [47]), it is assumed that 

 in Eq. (0.10). Besides, in [50] it is assumed that the scalar potential gives the 

change in the static field only. That statement is not true. In [47] it is suggested to use the 

Coulomb’s gauge, i.e. , but the authors use the following equation for the vector 

potential 

div 0A =

div 0A =

A : 

2 ext
0A k A Iµ µ∆ + = µωσµ0

2 jk −=, .                                                                         (0.11)  

It is well known that Eq. (0.11) is not correct in this case. In fact, in the case of Coulomb’s 

gauge the equation for the vector potential is more complicated (see [6], p.10), and it has the 

form 

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+∇
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+∇=∆
t
A

tt
AA ϕεµεµϕσµµ ˆ000

eIµµ0 ,                                        (0.12) 

where ϕ  is the scalar potential. That fact made us to prove and verify the correctness of Eq. 

(0.8) in Section 4.2.3 of the present thesis (see also the author’s papers [19], [37] and [38]). 
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1. FORMULATION OF THE PROBLEM AND BASIC EQUATIONS 

1.1. Physics of eddy current method 

The main topic of this thesis is the analysis of non-destructive testing problems by the 

eddy current methods. The eddy current method is based on the law of electromagnetic 

induction, i.e. on inducing electrical currents in the material being inspected and observing the 

interaction between these currents and the material. The idea of the method is as follows (see 

Fig. 1.1). Suppose that a coil carrying an alternating current, eI , is situated in the vicinity of a 

conducting medium to be tested. The current, passing through the coil (so-called excitation 

coil), generates a varying magnetic field, pΦ . This magnetic field (so-called primary field) 

induces varying currents (known as eddy currents because of their circulatory paths) in the 

electrically conducting medium according to the principle of electromagnetic induction. 

These currents, in turn, produce a varying magnetic field, sΦ , (so-called secondary field). The 

effects of the secondary field can be seen from the variation of the output signal of the 

excitation coil or from the output signal of a second coil (so-called detector coil) situated 

nearby. In general, the output signal represents the resultant field, that is, the sum of the 

primary and secondary fields. 

eI
pΦ

sΦ

COIL

PROBE

 

Fig.1.1. A coil carrying alternating current above a conducting medium 

The output signal of the detector coil depends on several parameters, such as the 

magnitude and frequency of the alternating current, the electrical conductivity and magnetic 
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permeability of the medium, as well as the relative position of the coil and the medium. It also 

reflects the presence of inhomogeneities (so-called flaws) in the medium. The eddy current 

flow changes the coil impedance. Hence, it is important to study the basic principles of the 

interaction of eddy currents in non-uniform conducting media. By monitoring the coil 

impedance, the electrical, magnetic and geometric properties of the probe can be measured. 

Thereby, the most general formulation of the main problem of eddy current flaw inspection 

and control can be stated as a problem of finding a dependence of a detector coil’s parameters 

on a flaw’s shape, its size, properties of the medium in the flawed region, and its location with 

respect to the detector coil.  

Eddy current responses are conveniently described by reference to the “impedance 

plane”. This is a graphical representation of the complex probe impedance where the abscissa 

(X value) represents the resistance and the ordinate (Y value) represents the inductive 

reactance. Note that, while the general form of the impedance plane remains the same, the 

details are unique for a particular probe and frequency.   

1.2. Basic equations 

Maxwell’s equations for a homogeneous isotropic medium are  

curl BE
t

∂
= −

∂
,                                                                                                                (1.1) 

curl e DB I I
t

µ
⎛ ⎞∂

= + +⎜
⎜ ∂⎝ ⎠

⎟
⎟

,                                                                                              (1.2) 

div 0B = ,                                                                                                                       (1.3) 

div D ρ= ,                                                                                                                      (1.4) 

EI ~~ σ= ,                                                                                                                         (1.5) 

HB ~~
0µµ= ,                                                                                                                    (1.6) 

ED ~ˆ~
0εε= ,                                                                                                                      (1.7) 

where E~  and H~  are the electric and magnetic field vectors, respectively; D~  and B~  are the 

electric and magnetic induction vectors, respectively; I~  is the current vector density; eI~  is 

the external current vector density; σ  is the conductivity; 0ε  and 0µ  are the electric and 

magnetic constants, respectively; ε̂  and µ  are the relative permittivity and relative magnetic 
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 permeability of the medium, respectively; and ρ~  is the charge density. 

Equations (1.1)-(1.7) can be rewritten in another convenient form in terms of the vector 
potential A~  of the magnetic field.  This magnetic vector potential is introduced by the relation   

curlB A= .                                                                                                                     (1.8) 

Using Eq. (1.3) one can rewrite Eq. (1.1) in the form: 

curl 0AE
t

⎛ ⎞∂
+ =⎜ ⎟

⎜ ⎟∂⎝ ⎠
,                                                                                                         (1.9) 

where the vector 
t
AE
∂
∂

+
~~  is the potential. The scalar electric potential ϕ~  is defined by the 

relation: 

gradAE
t

ϕ∂
+ = −
∂

,                                                                                                      (1.10) 

where 

grad x ye e ze
x y z
∂ ∂ ∂

= ∇ = + +
∂ ∂ ∂

.                                                                                 (1.11) 

Substituting Eq. (1.10) into Eqs. (1.5) and (1.7), we have 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂
∂

+∇−=
t
AI
~

~~ ϕσ ,                                                                                                     (1.12) 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂
∂

+∇−=
t
AD
~

~ˆ~
0 ϕεε .                                                                                                  (1.13) 

Substituting Eqs. (1.8), (1.12) and (1.13) into Eq. (1.2), and using the formula 

, yields  curl curl divA A= ∇ − ∆A

0 0 0 ˆdiv eA AA A I
t t t 0µ µσ ϕ µ ε µε ϕ µ µ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
∇ − ∆ = − ∇ + − ∇ + +⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
,                        (1.14) 

where 2∇=∆ 2

2

2

2

2

2

zyx ∂
∂

+
∂
∂

+
∂
∂

=  is the Laplacian in three dimensions. Eq. (1.14) can be 

rewritten as: 

2

0 0 0 0 0 0 02ˆ ˆdiv eA AA A
t t t
ϕ Iµ µσϕ µ µε ε µ µσ µ ε µε µ µ∂ ∂ ∂⎡ ⎤∇ + + − ∆ = − − − +⎢ ⎥∂ ∂ ∂⎣ ⎦

.          (1.15) 
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For given B~  and E~ , the vector potential A~  is not uniquely defined by Eq. (1.8). Therefore, to 

determine A~  uniquely an additional condition, Lorentz’ gauge, can be used: 

0 0 0 ˆdiv 0A
t
ϕµ µσϕ µ ε µε ∂+ +
∂

= .                                                                                (1.16) 

In this case, Eq. (1.15) has the form: 

eI
t
A

t
AA ~~~

ˆ~
002

2

00 µµσµµεµεµ −
∂
∂

+
∂
∂

=∆ ,                                                                      (1.17) 

and a similar equation holds for the scalar potential ϕ~ :  

εε
ρϕσµµϕεµεµϕ

ˆ

~~~
ˆ~

0
02

2

00 −
∂
∂

+
∂
∂

=∆
tt

.                                                                          (1.18) 

The first term on the right-hand side of Eq. (1.17) represents the displacement current, while 

the second term represents the current due to conductivity. Since, for metals, the displacement 

current is much smaller than the current due to conductivity, the first term may be neglected. 

Then Eq. (1.17) takes the form  

eI
t
AA ~~~

00 µµσµµ −
∂
∂

=∆ .                                                                                              (1.19) 

The displacement current can also be neglected in free space due to the sufficiently low 

frequencies used in eddy current testing. Moreover, in free space the current due to  

conductivity is equal to zero. Then Eq. (1.19) can be rewritten as 

eIA ~~
0µµ−=∆ .                                                                                                              (1.20) 

Another useful gauge is Coulomb’s gauge which requires that  

0~
=Adiv .                                                                                                                     (1.21) 

In the case of Coulomb’s gauge, it follows from Eqs. (1.4), (1.7), (1.10) and (1.21) that 

0 0 0 0
(div )ˆ ˆ ˆ ˆdiv div ( ) div grad A AD E

t t
ρ ε ε ε ε ϕ ε ε ϕ ε ε ϕ

⎛ ⎞ ⎛ ⎞∂ ∂
= = = − − = − ∆ + = −⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∆ . 

Thus, the equation for the scalar potential ϕ~  is 

εε
ρϕ

ˆ

~~
0

−=∆ .                                                                                                                 (1.22) 
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Using Coulomb’s gauge, the vector potential satisfies the equation  

eI
t
A

tt
AA ~~

~ˆ
~

~~
0000 µµϕεµεµϕσµµ −

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂
∂

+∇
∂
∂

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂
∂

+∇=∆ ,                                        (1.23) 

Lorentz’ gauge presents the advantage of decoupling the equations for the scalar and the 

vector potentials so that, in some cases, these equations can be solved independently.  

Assume that all vectors and scalars that describe the electromagnetic field are periodic 

in time, , with the same frequency t ω . For example, 

]Re[]Re[)cos(~ )( tjtj eEeEtEE ωϕωϕω ==+= + ,  where ϕjeEE = ,                            (1.24) 

]Re[]Re[)cos(~ )( tjtj eIeItII ωϕωϕω ==+= + ,  where ϕjeII = ,   

and so on. Thus, the vectors and scalars can be written as 

tjeEE ω=~ ,         tjeBB ω=~ ,         tjeHH ω=~ ,      tjeDD ω=~ ,  

        tjeII ω=~ ,          tjee eII ω=~ ,      tjeAA ω=
~ ,        tje ωϕϕ =~ ,                                     (1.25) 

where the factors multiplied with  are complex-valued amplitude vectors and functions of 

the spatial coordinates. It is to be noted that everywhere below instead of 

tje ω

E , I , B , eI , H , 

A , D , ϕ  we use E , I , B , eI , H , A , D , ϕ , respectively, without the dot.   

Under assumptions (1.25), Eq. (1.17) for the complex-valued amplitude magnetic vector 

potential (everywhere below it is called just vector potential) takes the form 

eIAkA µµ0
2 −=+∆ ,                                                                                                    (1.26) 

where . Equation (1.26) is known in the literature (see [59]) as 

Helmholtz’ equation. If the displacement current is neglected, then Eq. (1.19) takes the form 

)ˆ( 00
2 ωεεσµµω jjk +−=

eIAkA µµ0
2ˆ −=+∆ ,                                                                                                   (1.27) 

where . Besides, in free space, due to the absence of conductivity, the 

equation for the vector potential has the form 

σµµω 0
2ˆ jk −=

eIA µµ0−=∆ .                                                                                                              (1.28) 

It also follows from Eqs. (1.25) and (1.16) that  

2
1 div A
k

ϕ = − ,    )ˆ(~
00

2 ωεεσµµ jk += .                                                                     (1.29) 
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By means of Eqs. (1.10) and (1.29) the vector potential A  completely determines the electric 

field vector E , 

2
1grad grad divE j A j A
k

ω ϕ ω= − − = − + A .                                                               (1.30)  

Applying Coulomb’s gauge (1.21) to Eq. (1.30), we obtain  

AjE ω−= .                                                                                                                   (1.31) 

To guarantee the uniqueness of the electromagnetic potentials in the case of a non-uniform 

medium, it is necessary to use one of the above-mentioned gauges together with some 

boundary conditions for A  at the interface between the media and at infinity. 

1.3. Boundary conditions 

It is shown in [6] that the solution of Maxwell’s equations is unique if the tangent 

components of the vectors E  and H  are continuous at the interface between the two media, 

and conditions at infinity are prescribed. The boundary conditions for the tangential 

components  and  of the vector τ,1E τ,2E E , and for  and  of the vector τ,1H τ,2H H  are, 

respectively 

 ,  .                                                                                                (1.32) ττ 21 EE = ττ 21 HH =

In view of Eqs. (1.8) and (1.30), A  completely determines E  and H , despite the fact that the 

problem for A  is completely decoupled from the problem for ϕ . 

In the literature on formulating the vector potential problem, the form of the vector 

potential (i.e. the number of nonzero components and arguments) and, consequently, the 

boundary conditions are determined   only by considering the geometry of the source of 

current or even without any proof. The detailed proof seems to be given only in the present 

thesis (see also the author’s paper [36]). The proof begins with the assumption that all three 

components of the vector potential are nonzero. Then it is proved that some components in 

particular cases are equal to zero. The form and the number of nonzero components of the 

vector potential are proved for the case of a double conductor line, of a wire of finite length, 

and of a single-turn coil above a uniform conducting half-space. As a generalization of these 

cases, the vector potential problem is formulated for a wire of an arbitrary form located in a 

vertical plane above a uniform conducting half-space.   
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Let us consider boundary conditions for these four mostly used cases of the vector 

potential problem formulated in the literature (see [6]).  

Moreover, despite the fact that in eddy current testing problems the displacement current 

is often neglected, it is convenient to consider the influence of that current on the following 

boundary conditions. The displacement current can be neglected in the final expressions of a 

problem. 

Boundary value problem 1: A double conductor line above a uniform conducting half-

space. Consider two infinitely long wires located in free space in region  at 

height  (see Fig.1.2). The wires are parallel to the 

}0{0 >= zR

h x -axis and are passing through the points 

 and . The conducting half-space is located in region .  0(0, , )y h 1(0, , )y h }0{1 <= zR

  Y

X

R0

 R1

Z

h
                    (y1,h)                    (y0,h)

A B

CD

y1y00

eΙ

eΙ

0AA =

1AA =

0=σ

1σσ =

 
Fig.1.2. A double conductor line in free space  over a uniform conducting half-space  0R 1R

Assume that in region : 0R 0AA = , 0EE = , 0HH = , and in region : 1R 1AA = , 1EE = , 

1HH = . The wires carry the alternating current tjeI ω± , where 1−=j , ω  is the frequency, 

I  is the complex-valued amplitude current vector density (everywhere below it is called just 

current vector as it is used in the English scientific literature). In practice, two infinitely long 

wires are used as a model of a rectangular frame with current with sides’ ratio  or smaller, 

i.e.  (see Fig.1.2). 

4:1

4: ≥DCAD

According to Eq. (1.26), the equation for the vector potential A  in region  (free space 

with conductivity 

0R

0=σ ), and in region  (absence of external currents) is, respectively, 1R

eIAkA 000
2
00

~µµ−=+∆ ,     x
e eyyyyhzII )]()()[( 10 −−−−= δδδ ,     in ,           (1.33) 0R
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01
2

11 =+∆ AkA ,    in ,                                                                                              (1.34) 1R

where  
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⎦
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AeA zzz

z
yyy
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xxx
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                                                                                                                                      (1.35) 
is the Laplacian of the vector function A , 2

0000
2
0 ˆ~ ωεµεµ=k , , )ˆ( 10110

2
1 ωεεσµµω jjk +−= 0

~µ  

and 1µ  are the relative magnetic permeabilities in regions  and , respectively, 0R 1R 0ε̂  and 1̂ε  

are the relative permittivities in regions  and , respectively, 0R 1R eI  is the complex-valued 

amplitude external current vector density (everywhere below it is called external current 

vector), 1σ  is the conductivity of region , and 1R )(xδ  is Dirac’s delta function.  

Since the wires are infinitely long along the x -axis, the right-hand side of Eq. (1.33) does 

not depend on the variable x , and it is natural to suppose that the left-hand side does not 

depend on x  either. Thus, the vector potential depends only on  and . Besides, we 

suppose that the vector potential has the full form (i.e. it has all three components): 

y z

zzyyxx ezyAezyAezyAA ),(),(),( ++=                                                                       (1.36) 

The expression for the electric field vector is   

2
1 grad divE j A A
k

ω= − + +++−= )( zzyyxx eAeAeAjω                                            (1.37)            

    ⎥
⎦

⎤
⎢
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⎡
⎟⎟
⎠
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∂

+
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∂
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⎞
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∂
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∂
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∂

+⎟⎟
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e
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A

xk 2~
1 ,                    

where )ˆ(~
00

2 ωεεσµµ jk += , and in the present case, 0=
∂
∂

x
Ax , 0=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂

∂
+

∂
∂

∂
∂

z
A

y
A

y
A

x
zyx . 

Thus, 
  

+++−= )( zzyyxx eAeAeAjE ω ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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∂
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yk 2~
1 .          (1.38)

                
 

It follows from the equations curlB A=  and HB µµ0=  that the magnetic field vector takes 

the form  

0

1 curlH A
µ µ

=  

zyx

zyx

AAA
zyx

eee
∂∂∂∂∂∂=

µµ0

1                                                             (1.39) 

or 
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1 .                                  (1.40) 

Hence, in the present case, the magnetic field vector has the form 

⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

−
∂
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+⎟⎟
⎠
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x
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z
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y
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µµ0

1 .                                                             (1.41)  

In view of Eqs. (1.38) and (1.41), the vectors E  and H  have two tangent components, and 

the boundary conditions (1.32) for these components are rewritten as 

0=z :    ,    ;                                                                                 (1.42) xx EE 10 = yy EE 10 =

0=z :    ,   .                                                                                (1.43) xx HH 10 = yy HH 10 =

Using Eqs. (1.38) and (1.41), the boundary conditions (1.42) and (1.43) at  take the form 0=z

       :     ;                                                                                               (1.44) xx EE 10 = xx AA 10 =

yy EE 10 = :     ⎟⎟
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xx HH 10 = :     ⎟⎟
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yy HH 10 = :     
z

A
z

A xx

∂
∂

=
∂
∂ 1

1

0

0

1
~
1

µµ
,                                                                              (1.47) 

where )ˆ(~~
00000

2
0 ωεεσµµ jk += , )ˆ(~

10110
2

1 ωεεσµµ jk += , 0σ  and 1σ  is the conductivity of 

regions  and , respectively, but 0R 1R 00 =σ  in free space.     

It follows from the boundary conditions (1.44) and (1.47), and the vector equations (1.33) 

and (1.34) that the problem for the x -component, , of the vector potential xA A , is decoupled 

from the equations for the other components. Hence, the problem for  has the form xA

2
0 0 0 0 0 0 1

2
1 1 1 1.

( )[ ( ) ( )], in ,

0, in
x x

x x

A k A I z h y y y y R

A k A R

µ µ δ δ δ⎧∆ + = − − − − −⎪
⎨
∆ + =⎪⎩

0                                (1.48) 

with the boundary conditions  

0=z :   ,  0 1x xA A= 0

0 1

1 1xA
z zµ µ

∂ ∂
=

∂ ∂
1xA .                                                                       (1.49) 
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The problems for the components  and  are homogeneous:  yA zA

2
0 0 0

2
1 1 1 1
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A k A R

A k A R

⎧∆ + =⎪
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         and                                 (1.50) 
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0, in ,

0, in
z z

z z

A k A R

A k A R

⎧∆ + =⎪
⎨
∆ + =⎪⎩

with boundary conditions (1.45) and (1.46). The problems for these components cannot be 

separated, but their zero-solutions, 0=yA  and 0=zA , satisfy Eq. (1.48) and the boundary 

conditions (1.45) and (1.46). Due to the uniqueness theorem, these solutions are unique.  

Consequently, in the case of a double conductor line above a uniform conducting half-

space, the vector potential has only the x -component: 

xx ezyAA ),(= .                                                                                                             (1.51) 

Boundary value problem 2: A horizontal emitter over a uniform conducting half-space. 

Consider a horizontal emitter of finite length, parallel to the x -axis and passing through the 

point  (see Fig.1.3).  0(0, , )y h

  Y

l

X

                         Z

h

                    (-l,y0,h)

y00

-l

                    (l,y0,h)

R0

 R1

0AA =
0=σ

1AA =
1σσ =

eΙ

 
Fig.1.3. A horizontal emitter in free space  over a uniform conducting half-space  0R 1R

In free space , the equation for the vector potential 0R A  is 

eIAkA 000
2
00

~µµ−=+∆ ,       0( ) ( ) , ( ,
0, ( , ).

xe ),I y y z h e x l l
I

x l l
δ δ− − ∈ −⎧

= ⎨ ∉ −⎩
                             (1.52) 

In this case, the external current vector, eI , has only the x -component, . But this does not 

mean that the vector potential 

e
xI

A  has only the x -component, .  xA
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Initially we suppose that all three components of the vector potential are not equal to zero: 

zzyyxx ezyxAezyxAezyxAA ),,(),,(),,( ++= .                                                          (1.53) 

We will prove that , but 0=yA 0zA ≠ , because in this case the vector eI  depends on all 

three variables, , ,x y z . Hence, the left-hand side of Eq. (1.52) depends also on the variables 

, ,x y z . In the present case, the electric and magnetic field vectors are given by Eqs. (1.37) 

and (1.40), respectively, and the boundary conditions (1.42) and (1.43) for the tangent 

components of these vectors at 0=z , become 
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It is easy to see that if there exists a zero solution 0=yA , then the equations for are 

satisfied so that the problem for  is decoupled. Indeed, by substituting  into  

yA

xA 010 == yy AA

the boundary conditions (1.54)-(1.57), the boundary conditions become 
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In Eq. (1.59) the differentiation y∂∂  can be neglected, since 0=z  is fixed, but the variables 

yx,  are not fixed, and, moreover, Eq. (1.59) can be easily obtained by differentiating Eq. 
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(1.62) with respect to , so that we use  y
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Differentiating Eq. (1.62) with respect to x , 
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and comparing the result with Eq. (1.58) obviously yields 

0=z :   .                                                                                                        (1.64) xx AA 10 =

Neglecting the differentiation with respect to  in Eq. (1.60) yields y
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Differentiating Eq. (1.65) with respect to x , 
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and comparing the result with Eq. (1.61) we obtain that at 0=z :   
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Thus, the problem for the x -component of the vector potential is decoupled and has the form 
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with the boundary conditions (see Eqs. (1.64) and (1.67)) 
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The formulation of the problem for the -component of the vector potential is z
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The problem for  does not have a zero-solution, because the boundary condition (1.62) for 

 is not homogeneous. This problem is solved after obtaining the solution of the problem for 

 by using the boundary conditions (1.59) and (1.65): 
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Consequently, in the case of a horizontal emitter over a uniform conducting half-space, the 

vector potential has only the following two components: 

zzxx ezyxAezyxAA ),,(),,( += .                                                                                   (1.73) 

Besides, if  and , then it follows from Eq. (1.62) that  must satisfy the 

boundary condition  

0=yA 0=zA xA

0=z : xx A
k

A
k 12

1
02
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11
= .                                                                                                (1.74) 

Note that if , then condition (1.74) contradicts Eq. (1.69), i.e. the condition 2
1

2
0 kk ≠ xx AA 10 = . 

Consequently, this condition cannot be satisfied. To satisfy the boundary condition (1.62),  

must not be equal to zero. In that case, condition (1.62) is a boundary condition for  and it 

provides the uniqueness of solution 

zA

zA

0≠zA . 

Boundary value problem 3: A circular single-turn coil above a uniform conducting half-

space. Consider a circular single-turn coil of radius  located at height  in free space 

 above a uniform conducting half-space in region 

cr h

}0{0 >= zR }0{1 <= zR  (see Fig.1.4).  

In free space , the equation for the vector potential is 0R
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),,( zrf ϕ∆  is the Laplacian of a scalar function ),,( zrf ϕ  in cylindrical polar coordinates. 
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Fig.1.4. A circular single-turn coil in free space  over a uniform conducting half-space  0R 1R

In the case of a circular coil, due to axial symmetry, the vector potential does not depend 

on the variable ϕ  and it may have the full form 

zzrr ezrAezrAezrAA ),(),(),( ++= ϕϕ .                                                                       (1.78) 

But in Eq. (1.76) the Laplacian takes the form 
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where the scalar function becomes    
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The expression for the electric field vector in cylindrical polar coordinates is   
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where, in the present case, 0=∂∂ ϕ  (since the functions  do not depend on zr AAA ,, ϕ ϕ ). 

Thus, 
  
 

+++−= )( zzrr eAeAeAjE ϕϕω  
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Using the expression for  in cylindrical polar coordinates curl A
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and taking into account that, in this case, 0=∂∂ ϕ , one finds that   
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In this case, at  the boundary conditions are 0=z
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It is obvious from the boundary conditions (1.86), (1.87) and Eq. (1.79) that the problem for 

the ϕ -component, , is decoupled. The problems for the other two components,  and , 

cannot be decoupled. But each of these problems is a system of homogeneous equations with 

homogeneous boundary conditions, whose zero-solutions, 

ϕA rA zA

0=rA  and , satisfy the 

boundary conditions (1.85) and (1.88). Due to the uniqueness theorem, there are no other 

solutions of these problems.  

0=zA

Consequently, in the case of a circular single-turn coil above a uniform conducting half-

space, the vector potential has only the ϕ -component: 

ϕϕ ezrAA ),(= .                                                                                                             (1.89) 

Then the problem for the vector potential has the form 
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where   is the Laplacian given by Eqs. (1.79) and (1.80):  ϕ∆
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with the boundary conditions (1.86) and ( 2.88): 

0=z :   ,  ϕϕ 10 AA =
z

A
z

A
∂
∂

=
∂
∂ ϕϕ

µµ
1

1

0

0

1
~
1 .                                                                      (1.92) 

Boundary value problem 4: A contour of arbitrary form in a vertical plane above a 

uniform conducting half-space. Without loss of generality, we assume that the vertical plane 

is the plane , since the choice of the coordinate system is free. Let us consider a contour 

 located in the vertical plane 

0=y

L 0=y  in free space }0{0 >= zR  above a uniform conducting 

half-space in region  (see Fig.1.5). It is to be noted that in the case of a closed 

contour, the contour is to be divided into two parts: the upper and the lower contours. The 

problem for each contour is solved separately and the results are added together.  
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L

 
Fig.1.5. Contour  in plane  in free space  over a uniform conducting half-space  L 0=y 0R 1R

Let the contour  be described by the equations  L

{ , 0, ( )}x t y z z t= = = .                                                                                                 (1.93) 

On the other hand, the line  can be defined in vector form as L

kxzjixx ⋅+⋅+⋅= )(0)(r .                                                                                          (1.94) 

The unit tangent vector to the line )(xrr =  is 
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In this case, the external current vector is                                                                             
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In free space  the equation for the vector potential has the form 0R

eIAkA 000
2
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where eI  is defined by Eq. (1.97). 

The vector potential depends on all variables and is assumed to have the form 

 zzyyxx ezyxAezyxAezyxAA ),,(),,(),,( ++= .                                                          (1.99) 

In the present case, the boundary conditions are the same as for the case of a finite length 

horizontal emitter (see the boundary value problem 2). Besides, similarly to the 2nd boundary 

value problem, the problem for  is homogeneous and has a zero-solution, , which is 

unique due to the uniqueness theorem. Thus, if we substitute  into the boundary 

conditions (1.58)-(1.61) and take the vector equation (1.98) with Eq. (1.97) into account, the 

problem for  is decoupled:  
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The problem for  is solved after obtaining the solution of the problem for . But unlike 

the 2nd boundary value problem, the projection of Eq. (1.98) for the vector potential onto the 

zA xA
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z
A

x
A

ykz
A

x
A

yk
zxzx 11

2
1

00
2

0
~
1

~
1 ,                                              (1.106) 

Consequently, in the case of an emitter of arbitrary form in a vertical plane above a uniform 

conducting half-space, the vector potential has only the following two components: 

zzxx ezyxAezyxAA ),,(),,( += .                                                                                 (1.107) 

It is to be noted that the above-mentioned problems can be solved by integral transform 

methods (see [4]). In this thesis all the problems are formulated and solved in terms of a 

vector potential and the excitation is considered as a time-harmonic. 

1.4. Impedance change 

Once the vector potential is determined, one can calculate the main characteristic used in 

eddy current testing ⎯ the change in impedance of a detector coil ⎯ affected by the presence 

of a conducting medium.   

The induced change in impedance of a closed contour C  of arbitrary form is defined by 

the relation 

ind ( )E tZ
I

= − ,                                                                                                             (1.108) 

where )(~ tE  is the electromotive force and I  is the amplitude of the current. 

The electromotive force is the work needed to move a positive unit charge over the 

closed contour C : 

∫=
C

l dlMEtE )()(~ ,                                                                                                      (1.109) 
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where  ind ind
2

1 grad divE j A A
k

ω= − + , )ˆ(~
00

2 ωεεσµµ jk += , indA  is the vector potential 

induced by the presence of the external current. Thus,    

   ind ind
2

1( ) [ (grad div ) ]l l l ind
l

C

j A dω= − ∫ ,                                     (1.110) 
C

E t j A A d
k

ω= − +∫ l

since  for any function grad 0
C

ϕ =∫ ϕ  and for any closed contour . Consequently, Eq. 

(1.108) for the induced change in impedance takes the form  

C

ind ind
l

C

jZ A dl
I
ω

= ∫ ,                                                                                                     (1.111) 

where C  is the closed contour of a source of current. 

An impedance diagram represents the variations of amplitude and phase of the coil 

impedance, jYXZ += , which can be resolved into its real and imaginary components, X  

and LY ω= , called the resistive and the reactive components, respectively; and L is the coil 

inductance.   
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2. EXACT ANALYTICAL SOLUTIONS TO PROBLEMS OF 

ELECTROMAGNETIC WAVES SPREADING FROM EMITTERS OF 

DIFFERENT FORMS 

2.1. Integral representation of the solution to Helmholtz’ vector equation in 

arbitrary orthogonal curvilinear coordinates 

Since Helmholtz’ vector equation describes eddy current problems, the integral 

representation of the solution to this equation is very important. The integral representation of 

this solution known in the literature is based on the expression of the electromagnetic field 

vector potential in terms of a triple integral of the product of the external current vector and 

the fundamental solution of Helmholtz’ scalar equation (see [59], [65]). This representation 

has its simplest form in rectangular coordinates in which the unit vectors  do not 

depend on the spatial coordinates. However, other coordinate systems are also widely used in 

applications. Since this integral representation of the solution is absent in the literature for 

other coordinate systems, it is obtained in the present section (see also [17], [18]) for a system 

of arbitrary orthogonal curvilinear coordinates in which the unit vectors  are 

prescribed functions of the spatial coordinates. As particular cases of the representation 

obtained, the integral representations of the solution to Helmholtz’ vector equation are found 

for cylindrical and spherical coordinates. The obtained representation of the solution to this 

equation is used for the vector potential problem of a rectangular frame with current 

considered below.   

, ,x y ze e e

1 2, ,q q qe e e 3

2.1.1. Formulation of the problem 

Helmholtz’ equation for the vector potential used in electrodynamics has the form 

2 e
0A k A Iµ µ∆ + = − ,       

2 2

2 2

2

2x y z
∂ ∂ ∂

∆ = + +
∂ ∂ ∂

,                                                             (2.1) 

where , 2
00

2 ˆωεµεµ=k e e ( )I I M=  is the external current vector. The vectors  and ( )A M

( )eI M  in Cartesian coordinates have the form 

( ) ( ) ( ) ( )x x y y zA M A M e A M e A M e= + + z

z

,                                                                      (2.2) 

 e e e e( ) ( ) ( ) ( )x x y y zI M I M e I M e I M e= + + .                                                                     (2.3) 
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The integral representation of the solution to Helmholtz’ equation in vector form for a point 

, situated in the region where the external current vector ),,( zyxM e 0I =  (see [59], p. 322), is 

e0 exp( )
( ) ( )

4
MM

V MM

jkr
A M I M dV

r
µ µ
π

−
= ∫∫∫ ,                                                                    (2.4) 

where the integration is performed over the points VzyxM ∈)~,~,~(~  where . Besides, e 0I ≠

1ˆ =ε  since the wire is situated in free space, MMr  is the distance between the points 

( , , )M x y z  and ( , , )M x y z  and is equal to 

2 2( ) ( ) ( )MMr x x y y z= − + − + − 2z

z

.                                                                             (2.5) 

The conditions for all components, , of the vector potential at infinity are called 

Sommerfeld’s conditions of radiation (see [65], page 509): 

, ,x yA A A

2 2 2 :R r z= + →∞      1 , AA O jkA o 1
R R R

∂⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
 ,                                               (2.6) 

where the symbol  means that  and (1/O R) A 1 R  are infinitesimals of the same order as 

, but the symbol  means that R →∞ (1/o R) /A R jkA∂ ∂ +  is an infinitesimal of higher order 

than 1 R  as . R →∞

It can be easily verified that if the functions e ( )xI M , e ( )yI M , e (z )I M  are continuous in 

some closed region V  and, consequently, they are bounded in this region, then the vector 

function  in Eq. (2.4) satisfies Sommerfeld’s conditions (2.6). Consequently, in this 

case, Eq. (2.4) gives the solution to the problem (2.1), (2.6) providing that the vector function 

( )A M

e ( )I M  is prescribed.  

In Cartesian coordinates, the unit vectors xe , ye  and ze  are constant. Therefore, in this 

case, according to Eq. (2.4), each component of the vector A  is expressed in terms of a triple 

integral of the corresponding component of the vector eI  (i.e.  in terms of xA e
xI ,  in terms 

of 

yA

e
yI  and  in terms of zA e

zI ). For example, 

e0 exp( )
( ) ( )

4
MM

x x
V MM

jkr
A M I M dV

r
µ µ
π

−
= ∫∫∫ ,                                                                   (2.7) 

and so on. However, in all other orthogonal curvilinear coordinate systems, the unit vectors 

depend on the spatial coordinates. For example, in the system of cylindrical polar coordinates 
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 ),,( zr ϕ , the vector e ( )I M  has the form 

e e e e( ) ( ) ( ) ( )r r z zI M I M e I M e I M eϕ ϕ= + + ,                                                                      (2.8) 

and only the unit vector  is constant. Then, in this case, the equality ze

e exp( )
( ) ( ) MM

r r
V MM

jkr
I M e M dV

r
−

∫∫∫ e exp( )
( ) ( )MM

r r
V MM

jkr
I M dV

r
e M

−
= ⋅∫∫∫                     (2.9) 

and the similar equality for e ( ) ( )I M e Mϕ ϕ⋅  are wrong. Consequently, the components  

and  have the form of a triple integral of some linear combination of the components 

( )rA M

( )A Mϕ

e ( )rI M  and e ( )I Mϕ . Problem (2.1), (2.6) is solved in the author’s papers [13] and [15] in the 

cylindrical polar coordinates as follows. First, the triple integral (2.7) is transformed into a 

single integral in the Cartesian coordinates. Then the transformation to the cylindrical polar 

coordinates is performed in the obtained solution. This fact allows us to obtain the universal 

formula for the integral representation of the solution to the vector Helmholtz equation (2.4) 

in the systems of cylindrical polar, spherical and also arbitrary orthogonal curvilinear 

coordinates. The components of the vector ( )A M  are expressed in terms of a triple integral of 

the linear combinations of the components of the external current vector e ( )I M .   

2.1.2. Integral representation of the solution to Helmholtz’ vector equation in cylindrical 

polar coordinates 

In cylindrical polar coordinates ( , ,r zϕ ) the vectors  and ( ) ( , , )A M A r zϕ=

e e( ) ( , , )I M I r zϕ=  have the form 

( ) ( ) ( ) ( ) ( ) ( )r r zA M A M e M A M e M A M eϕ ϕ= + + z

z

,                                                      (2.10) 

e e e e( ) ( ) ( ) ( ) ( ) ( )r r zI M I M e M I M e M I M eϕ ϕ= + + .                                                     (2.11) 

The components ,  can be expressed in terms of the components , 

 as   

)(MAr )(MAϕ )(MAx

)(MAy

ϕϕ sincos yxr AAA += ,                                                                                               (2.12)  

ϕϕϕ cossin yx AAA +−= .                                                                                            (2.13)  
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The components e ( )xI M , e ( )yI M  can be expressed in terms of the components e ( )rI M  and 

e ( )I Mϕ  as                       

e e e( ) ( )cos ( )sinx rI M I M I Mϕϕ ϕ= − ,                                                                            (2.14)                   

e e e( ) ( )sin ( )cosy rI M I M I Mϕϕ ϕ= + .                                                                           (2.15) 

It follows from Eq. (2.4) that 

e0( ) ( ) ( , )
4x x

V

A M I M M M dVµ µ
π

= Φ∫∫∫ ,                                                                       (2.16) 

e0( ) ( ) ( , )
4y y

V

A M I M M M dVµ µ
π

= Φ∫∫∫ ,                                                                       (2.17) 

where     

MM

MM

r
jkr

MM
~

~ )exp(
)~,(

−
=Φ .                                                                                           (2.18) 

The distance, , between the points MMr ~ M  and M~  is defined by Eq. (2.5). Substituting  

zzryrxzzryrx ~~,~sin~~,cos~~;,sin,cos ====== ϕϕϕϕ                                (2.19) 

into Eq. (2.5), one obtains 

222
~ )~()~cos(~2~ zzrrrrr MM −+−−+= ϕϕ .                                                                (2.20) 

It follows from Eq. (2.12), by substituting Eqs. (2.16) and (2.17), that 

e0( ) ( ) ( , ) cos
4r x

V

A M I M M M dVµ µ ϕ
π

= Φ ⋅ +∫∫∫ e0 ( ) ( , ) sin
4 y

V

I M M M dVµ µ ϕ
π

Φ ⋅∫∫∫ . (2.21) 

Substituting Eqs. (2.14) and (2.15) into Eq. (2.21) yields    

e e0( ) [ ( ) cos ( )sin ] ( , ) cos
4r r

V

A M I M I M M M dVϕ
µ µ ϕ ϕ ϕ
π

= − Φ∫∫∫ ⋅ +    

            e e0 [ ( )sin ( )cos ] ( , ) sin
4 r

V

I M I M M M dVϕ
µ µ ϕ ϕ
π

+ + Φ∫∫∫ ϕ⋅ .                            (2.22) 

The final expression for the component  can be easily obtained from Eq. (2.22) by 

performing some elementary transformations, and it has the form 

)(MAr

e e0( ) [ ( ) cos( ) ( )sin( )] ( , )
4r r

V

A M I M I M M M dVϕ
µ µ ϕ ϕ ϕ ϕ
π

= − + − Φ∫∫∫ ,                    (2.23) 

where  
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zddrdrVd ~~~~~ ϕ= .                                                                                                           (2.24) 

The expression for the component  is obtained by performing similar transformations 

and using Eq. (2.13) for , Eq. (2.16) for and Eq. (2.17) for , Eq. (2.14) 

for 

)(MAϕ

)(MAϕ )(MAx )(MAy

e ( )xI M  and Eq. (2.15) for e ( )yI M . It has the form 

e e0( ) [ ( )sin( ) ( )cos( )] ( , )
4 r

V

A M I M I M M M dVϕ ϕ
µ µ ϕ ϕ ϕ ϕ
π

= − + − Φ∫∫∫ .                    (2.25) 

The component  has the same form as in Cartesian coordinates: )(MAz

e0( ) ( ) ( , )
4z z

V

A M I M M M dVµ µ
π

= Φ∫∫∫ .                                                                       (2.26) 

Thus, Eqs. (2.10), (2.23), (2.25) and (2.26) give the integral representation of the solution to 

Helmholtz’ vector equation (2.4) in cylindrical polar coordinates.  

2.1.3. Integral representation of the solution to Helmholtz’ vector equation in spherical 

coordinates 

In spherical coordinates ( ϕθρ ,, ) the vectors ),,()( ϕθρAMA =  and 

e e( ) ( , , )I M I ρ θ ϕ=  have the form 

( ) ( ) ( ) ( ) ( ) ( ) ( )A M A M e M A M e M A M e Mρ ρ θ θ ϕ ϕ= + + ,                                            (2.27) 

e e e e( ) ( ) ( ) ( ) ( ) ( ) ( )I M I M e M I M e M I M e Mρ ρ θ θ ϕ ϕ= + + .                                             (2.28) 

The components , ,  can be expressed in terms of the components 

, ,  as   

)(MAρ )(MAϕ )(MAθ

)(MAx )(MAy )(MAz

θθϕϕρ cos)(sin]sin)(cos)([)( MAMAMAMA zyx ++= ,                                       (2.29) 

θθϕϕθ sin)(cos]sin)(cos)([)( MAMAMAMA zyx −+= ,                                        (2.30)  

ϕϕϕ cos)(sin)()( MAMAMA yx +−= .                                                                       (2.31)  

The components e ( )xI M , e ( )yI M , e ( )zI M  can be expressed in terms of the components 

e ( )I Mρ , e ( )I Mϕ , e ( )I Mθ  as  (see [68], page 582)     

e e e e( ) ( )sin cos ( )cos cos ( )sinxI M I M I M I Mρ θ ϕθ ϕ θ ϕ= + − ϕ ,                                    (2.32) 

e e e e( ) ( )sin sin ( )cos sin ( )cosyI M I M I M I Mρ θ ϕθ ϕ θ ϕ= + + ϕ ,                                    (2.33)                    
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e e e( ) ( )cos ( )sinzI M I M I Mρ θθ θ= − .                                                                            (2.34) 

It follows from Eq. (2.4) that 
e

e0

e

( ) ( )
( ) ( ) ( , )

4
( ) ( )

x x

y y
V

z z

A M I M
A M I M F M M dV
A M I M

µ µ
π

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫∫∫ ,                                                              (2.35) 

where 

MM

MM

r
jkr

MMF
~

~ )exp(
)~,(

−
= .                                                                                           (2.36) 

Substituting  

θρϕθρϕθρ cos,sinsin,cossin === zyx ,                                                                 

  θρϕθρϕθρ ~cos~~,~sin~sin~~,~cos~sin~~ === zyx                                                      (2.37) 

into Eq. (2.5) for the distance  yields  MMr ~

]~coscos)~cos(~sin[sin~2~22
~ θθϕϕθθρρρρ +−−+=MMr .                                      (2.38) 

It follows from Eqs. (2.29) and (2.35) that 

e0( ) ( ) ( , ) cos sin
4 x

V

A M I M F M M dVρ
µ µ ϕ θ
π

= ⋅∫∫∫ +    

             e0 ( ) ( , ) sin sin
4 y

V

I M F M M dVµ µ ϕ θ
π

+ ⋅∫∫∫ +  

             e0 ( ) ( , ) cos
4 z

V

I M F M M dVµ µ θ
π

+ ∫∫∫ ⋅ .                                                            (2.39) 

The final expression for the component  is obtained by substituting Eqs. (2.32)-(2.34) 

into Eq. (2.39) and by performing some elementary transformations. It has the form 

)(MAρ

e0( ) { ( )[sin sin cos( ) cos cos ]
4 V

A M I Mρ ρ
µ µ θ θ ϕ ϕ θ θ
π

= −∫∫∫ + +   

            e ( )[sin cos cos( ) cos sin ]I Mθ θ θ ϕ ϕ θ θ+ − − +  

            e ( )sin sin( )} ( , )I M F Mϕ θ ϕ ϕ+ − M dV ,                                                          (2.40) 

where  

ϕθρθρ ~~~~sin~~ 22 dddVd = .                                                                                          (2.41) 
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If we performe similar transformations for the components  and , the final 

expression for these components is found in the form  

)(MAθ )(MAϕ

e0( ) { ( )[sin cos cos( ) cos sin ]
4 V

A M I Mθ ρ
µ µ θ θ ϕ ϕ θ θ
π

= −∫∫∫ − +  

            e ( )[cos cos cos( ) sin sin ]I Mθ θ θ ϕ ϕ θ θ+ − + +  

            e ( )cos sin( )} ( , )I M F Mϕ θ ϕ ϕ+ − M dV ,                                                         (2.42) 

e e0( ) { ( )sin sin( ) ( )cos sin( )
4 V

A M I M I Mϕ ρ θ
µ µ θ ϕ ϕ θ ϕ ϕ
π

= − − + − −∫∫∫  

                e ( )cos( )} ( , )I M F M Mϕ ϕ ϕ− − dV .                                                             (2.43) 

Thus, Eqs. (2.27), (2.40), (2.42) and (2.43) give the integral representation of the solution to 

the Helmholtz’ vector equation (2.4) in spherical coordinates. 

2.1.4. Integral representation of the solution to Helmholtz’ vector equation in arbitrary 

curvilinear coordinates 

Let the arbitrary orthogonal curvilinear coordinates ( ) be given by the functions 321 ,, qqq

),,( 321 qqqxx = , , ),,( 321 qqqyy = ),,( 321 qqqzz =                                                     (2.44) 

and, respectively,                                              

)~,~,~(~
321 qqqxx = , )~,~,~(~

321 qqqyy = , )~,~,~(~
321 qqqzz = .                                                  (2.45) 

Let 
1qe , 

2qe , 
3qe  be the unit vectors of this coordinate system. Then the vectors )(MA  and 

e ( )I M  have the form 

1 1 2 2 3 3
( ) ( ) ( ) ( ) ( ) ( ) ( )q q q q q qA M A M e M A M e M A M e M= + + ,                                        (2.46) 

1 1 2 2 3 3

e e e e( ) ( ) ( ) ( ) ( ) ( ) ( )q q q q q qI M I M e M I M e M I M e M= + + .                                         (2.47) 

The components , ,  can be expressed in terms of the components 

, ,  as   

)(
1

MAq )(
2

MAq )(
3

MAq

)(MAx )(MAy )(MAz

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+
∂
∂

+
∂
∂

=
j

z
j

y
j

x
j

q q
zMA

q
yMA

q
xMA

MH
MA

j
)()()(

)(
1)( ,     .                (2.48) 1, 2,3j =
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The components e ( )xI M , e ( )yI M , e ( )zI M  can be expressed in terms of the components 

1

e ( )qI M , 
2

e ( )qI M , 
3

e ( )qI M  as  (see [68], page 561, formulae (A.6.8), (A.6.9)) 

3
e e

1

1( ) ( )
kx q

k k k

xI M I M
H q=

∂
=

∂∑ ,                                                                                        (2.49) 

3
e e

1

1( ) ( )
ky q

k k k

yI M I M
H q=

∂
=

∂∑ ,                                                                                        (2.50) 

3
e e

1

1( ) ( )
kx q

k k k

xI M I M
H q=

∂
=

∂∑ ,                                                                                        (2.51) 

where , ),,( 321 qqqHH kk = )~,~,~(~
321 qqqHH kk =  are the Lame coefficients of the prescribed 

coordinate system (see [68] with the notation ).  1−= kk hH

It follows from Eq. (2.4) that 

e

e0

e

( ) ( )
( ) ( ) ( , )

4
( ) ( )

x x

y y
V

z z

A M I M
A M I M G M M dV
A M I M

µ µ
π

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫∫∫ ,                                                              (2.52) 

where 

MM

MM

r
jkr

MMG
~

~ )exp(
)~,(

−
= .                                                                                           (2.53) 

The distance  is defined by Eq. (2.5), where MMr ~ zyx ,,  and zyx ~,~,~  are functions of  

and  

321 ,, qqq

321
~,~,~ qqq , respectively, and they are given by Eqs. (2.44) and (2.45). 

Substitution of Eqs. (2.49)-(2.51) into Eq. (2.52) followed by the substitution of Eq. 

(2.52) into Eq. (2.48) yields  

3
e0

1

1 1( ) ( )
4 ( ) ( )j kq q

kj kV

A M I M
H M H M

µ µ
π =

= ×∑∫∫∫   

              VdMMG
q
z

q
z

q
y

q
y

q
x

q
x

jkjkjk

~)~,(~
~

~
~

~
~

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

× ,   ,3,2,1=j                         (2.54)                   

where                                                                                                                         

321321
~~~)~()~()~(~ qdqdqdMHMHMHVd = .                                                                       (2.55) 

Eqs. (2.46) and (2.54) give the integral representation of the solution to Helmholtz’ vector 

equation (2.4) in arbitrary orthogonal curvilinear coordinates.  
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The integral representation of the solution to Helmholtz’ vector equation (2.4) can be 

obtained for any orthogonal coordinate system by substituting the Lame coefficients of this 

coordinate system into Eqs. (2.54) and (2.46). For example, in cylindrical polar coordinates 

( zr ,,ϕ ): 

rq =1  , ϕ=2q , ,          zq =3 11 =H , rH =2 , 13 =H , 

rq ~~
1 = , ϕ~~

2 =q , zq ~~
3 = ,         1~

1 =H , rH ~~
2 = , 1~

3 =H , 

)~,()~,( MMMMG Φ= . 

Substituting these expressions into Eq. (2.54) at 1=j  and using Eq. (2.19), we have  

e0( ) [ ( ) (cos cos sin sin )
4r r

V

A M I Mµ µ ϕ ϕ ϕ ϕ
π

= +∫∫∫ +   

            e ( ) ( sin cos cos sin )] ( , )I Mϕ ϕ ϕ ϕ ϕ+ − + Φ M M dV .                                         (2.56) 

Eq. (2.56) completely coincides with the previously obtained Eq. (2.23). Similarly, Eqs. 

(2.25) for  and (2.26) for  can be obtained from Eq. (2.54) by substituting 

 and , respectively.  

)(MAϕ )(MAz

2=j 3=j

In spherical coordinates ( ϕθρ ,, ), by  Eqs. (2.40), (2.42) and (2.43) can be obtained from 

Eq. (2.54) by using the substitution 

 ρ=1q  , θ=2q , ϕ=3q ,           11 =H , ρ=2H , θρ sin3 =H , 

ρ~~
1 =q , θ~~

2 =q , ϕ~~
3 =q ,              1~

1 =H , ρ~~
2 =H , θρ ~sin~~

3 =H ,  

)~,()~,( MMFMMG =   

and Eq. (2.37). 

2.2. Exact analytical solution to the vector potential problem of a 

rectangular frame with current 

The reaction of a conducting half-space on a rectangular frame with current has been 

studied theoretically only in the case where the ratio of the frame’s sides is 1:4 or smaller. In 

this case, a double conductor line is considered as a convenient and sufficiently accurate 

model of the rectangular frame (see [6]). In this section (see also the author’s paper [13]), an 

exact solution to the problem of the vector potential of the electromagnetic field induced by a 

rectangular frame with current is obtained without using the double conductor line 
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approximation. Due to the linearity of the problem, it is sufficient to find the vector potential 

of the electromagnetic field created by one side of the frame having the form of a straight line 

and by the other side having the form of a circular arc. Similarly, the vector potential can be 

written for the other two other sides of the frame, and the results are added.  

2.2.1. Solution to the problem of electromagnetic waves spreading from a harmonic 

emitter having the form of a straight line 

In the literature the problem on electromagnetic waves spreading from a linear harmonic 

emitter is only solved in the so-called dipole approximation (see [57], p.666). The main idea 

is as follows. The emitter’s length, l , tends to zero, but the current vector,  in the emitter 

tends to infinity so that the product 

,I

PlI =⋅  (called the moment of dipole) stays constant. 

Such an approximation is used for the analysis of electromagnetic waves spreading under the 

assumption that the waves’ length is much greater than the emitter’s length. However, in non-

destructive testing problems the size of a defect situated in a conducting medium may be 

compared with the emitter’s length, , or may even be larger than . Therefore for problems 

of non-destructive testing, the problem on electromagnetic waves spreading from a linear 

harmonic emitter is to be solved without using the dipole approximation. This is done in the 

present thesis (see also the author’s paper [13]).  

l l

Consider a vertical wire of length , located in the domain {l2 lzl ≤≤− , } in free 

space (see Fig.2.1), where (

0=r

zr ,,ϕ ) are cylindrical polar coordinates. 

  Y

l

X

                         Z

0

-l

eΙ

0=σ
1=µ
1=ε

 
Fig.2.1. A linear harmonic emitter in free space 

 51 
                                                                            

 



In the present case, due to axial symmetry, the magnetic vector potential does not depend 

on the coordinate ϕ , and it has only the -component (see [57]): z

zezrAzrA ),(),( = .                                                                                                        (2.57) 

The external current vector has the form (see [6]): 

eI =
⎪⎩

⎪
⎨

⎧

−∉

<<−

).,(,0

,,)(

llz

lzle
r
rI zπ

δ
                                                                                       (2.58) 

The use of the form 
r
r)(δ  on the right-hand side of Eq. (2.58) was suggested in [13]. The 

right-hand side of Eq. (2.58) is chosen so that the full current vector in the wire is equal to I : 

2
e

0 0

( ) 12
2D

r .I dxdy d I rdr I I
r

π δϕ π
π π

∞

= = ⋅∫∫ ∫ ∫ =

e

                                                              (2.59) 

In cylindrical polar coordinates, the mathematical formulation of the problem on 

electromagnetic waves spreading from a linear harmonic emitter has the form (see Eq. (1.26)): 

2
0A k A Iµ µ∆ + = − .                                                                                                   (2.60)                    

Since the vector potential has only the -component, the problem for  has the form z AAz ≡

⎪⎩

⎪
⎨

⎧

−∉

<<−−
=+∆

),,(,0

,,)(
02

llz

lzl
r
rI

AkA π
δµµ

                                                                  (2.61) 

where   (since 2
00

2 ω̂εµεµ=k 0=σ  in free space),  2

2

2

2 1
zrrr ∂
∂

+
∂
∂

+
∂
∂

=∆   is the Laplacian 

for the -component of the vector potential in a system of cylindrical polar coordinates for 

the case of independence from the variable 

z

ϕ .  

The conditions for the vector potential at infinity are Sommerfeld’s radiation conditions 

(see [65], page 509): 

:222 ∞→+= zrR      ⎟
⎠
⎞

⎜
⎝
⎛=+

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛=

R
ojkA

R
A

R
OA 1,1   ,                                           (2.62) 

where εµεµω ˆ00=k .  

In order to solve problem (2.61)-(2.62), it is sufficient to use the integral representation of 

the solution to Helmholtz’ equation in vector form in cylindrical polar coordinates (see 

Section 2.1.2): 
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e0 exp( )
( , ) ( )

4
MM

V MM

jkr
A r z I M rdrd dz

r
µ µ ϕ
π

−
= ∫∫∫ ,                                                       (2.63)                      

where the integration is performed over the points Vzr ∈)~,~,~( ϕ  where . Here 0≠eI

,1=µ 1ˆ =ε , 0=σ , since the wire is situated in free space, and  is the distance given by 

the formula (see Eq.(2.20)): 

MMr ~

222
~ )~()~cos(~2~ zzrrrrr MM −+−−+= ϕϕ .                                                                (2.64) 

Substituting Eq. (2.58) for eI  into the projection of Helmholtz’ equation (2.63) onto the -

axis, and taking into account that 

z

1=µ , the solution for the -component of the Helmholtz 

equation has the form  

z

=
−

= ∫ ∫ ∫
∞

−

zd
r

jkr
r
rrdrd

I
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MM

MM
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~)exp(
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)~(~~~
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0 0
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π δϕ
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           rd
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δϕ
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µ π

.        (2.65) 

In order to calculate the integral of Eq. (2.65) with respect to r~ , the main property of the 

Dirac delta function is used. That is, for any continuous function  on :  )(xf ],[ ba

∫
⎪
⎪
⎩

⎪⎪
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⎧

∉

==
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dxxxxf
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0δ                                                   (2.66) 

Using Eq. (2.66), it follows from Eq. (2.65) that 
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zzrjkIzd
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                                                                                                                                      (2.67)                   

Substituting z z ξ− =  with dz dξ= −  into Eq. (2.67) yields  

ξ
ξ

ξ
π

µ d
r

rjkIzrA
lz

lz
∫
+

− +

+−
=

22

22
0 )exp(

4
),( .                                                                      (2.68) 

It can be verified that  given by Eq. (2.68) satisfies Sommerfeld’s conditions (2.62). 

Consequently, Eq. (2.68) is the solution of problem (2.61) - (2.62), and it gives the 

electromagnetic field’s vector potential created by a linear harmonic emitter of length 2l in an 

exact formulation without using the dipole approximation. 

),( zrA
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In the limit case as , Eq. (2.68) gives the result known in the literature. The term 

 in Eq. (2.61) represents the displacement current. This term is neglected in free space 

and for sufficiently low frequencies. Consequently, substituting  into Eq. (2.68), the 

vector potential can be written in the form 

02 →k

Ak 2

02 =k

=
=0

),(
k

zrA  =
+

∫
+

−

lz

lz r
dI

22
0

4 ξ

ξ
π

µ
22

22
0

)(

)(
ln

4 rlzlz

rlzlzI

+−+−

++++
π

µ .                                    (2.69) 

In particular, at 1ˆ,1 == εµ  and ),( zrAA = , it follows from Eq. (2.69) that the complex-

valued amplitude magnetic induction vector B  (everywhere below it is called the magnetic 

induction vector) has the form: 

curl AB A
r

eϕ
∂

= = −
∂

.                                                                                                    (2.70) 

The known formula for the magnetic induction vector, produced by the current of an 

infinite length wire (see, for example, [61]), can be easily obtained from Eq. (2.70) as ∞→l : 

.1
2

0
ϕπ

µ e
r

IB =                                                                                                                 (2.71) 

Equations (2.68), (2.70) and (2.71) correspond to the quasi-steady case, because 0≠ω  in 

tjeAA ω=
~  and tjeBB ω=~  (see Eq. (2.25)). Eq. (2.70) can also be obtained by using the Bio-

Savare law.  

It is to be noted that Eq. (2.68) gives the possibility to apply easily the dipole 

approximation as , but 0→l ∞→I  so that the product 2 coI l P nst⋅ = = . Before passing to 

the limit, we transform the integral in Eq. (2.68) by using the mean value theorem for a 

definite integral. That is, if the function ),( rf ξ  (in the present case, the integrand in Eq. 

(2.68)) is continuous in the integration domain { }lzlz +≤≤− ξ , there exists a point ξ  in 

this domain such that the integral in Eq. (2.68) is equal to the product of the integrand ),( rf ξ  

and the length of the integration interval, 2l: 

),,(
4

2),(
4

),( 00 rfPlrfIzrA ξ
π

µξ
π

µ
=⋅=     lzlz +≤≤− ξ .                                       (2.72) 

Now let  and  so that 0→l ∞→I 2 coI l P nst⋅ = = , then z→ξ  and it follows from Eq. 

(2.68) that 

.
4

),(),(
22

0
0

22

rz
ePrzPfzrA
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+
==

+−

π
µ

µ                                                                           (2.73) 
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Equation (2.73) coincides with the known formula in the literature for the vector potential of a 

linear harmonic emitter (see for example, [65], [56]). But instead of SI measurement units the 

authors use the CGSE units in the above mentioned books; therefore Eq. (2.73) differs from 

the similar formula in [65] and  [56] by the factor π41 .  

2.2.2. Solution to the problem of electromagnetic waves spreading from a harmonic 

emitter having the form of a circular arc 

Consider a wire in the form of a circular arc of radius R  situated in the domain 

 },0{ =z ,aRr = 00 ϕϕϕ ≤≤−  (see Fig.2.2). In this case, the vector potential depends on all 

variables, i.e. ),,( ϕzrAA = . 

  Y

X

                         Z

0

0ϕ0ϕ−

0=σ
1=µ
1=ε

aR

 
Fig.2.2. An emitter in the form of a circular arc in free space 

The external current vector has the form (see the similar formula in [6], page 24): 

0e

0 0

( ) ( ) ,

0, [ , ].
aI r R z e

I ϕ 0,δ δ ϕ ϕ ϕ

ϕ ϕ ϕ

− − ≤⎧
= ⎨

∉ −⎩

≤
                                                                   (2.74) 

The mathematical formulation of the problem has the form 

eIAkA µµ0
2 −=+∆ ,                                                                                                   (2.75) 

with the Sommerfield’s conditions of radiation at infinity: 
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In cylindrical polar coordinates, the Laplacian of the vector function has the form 

2 2 2 2
2 2r

r r z

A AAA e A e A e A
r r r r

ϕ ϕ
ϕ ϕϕ ϕ

∂⎛ ⎞ ⎛ ⎞∂
∆ = ∆ − − + ∆ − + + ∆⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

r
z

A ,                                 (2.77) 

where 
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ϕ

ϕ                                                                     (2.78) 

and ),,( zrf ϕ∆  is the Laplacian of a scalar function. It is easy to see from Eq. (2.77) that 

problem (2.74)-(2.78) for the -component of the vector potential is decoupled. Besides, the 

problem for  is homogeneous and it has a unique zero solution, . Consequently, 

 can be substituted into Eq. (2.77). According to Eqs. (2.74) and (2.75), the problem 

for the 

z

zA 0=zA

0=zA

r -component, , is also homogeneous, but it does not have a zero solution, rA 0=rA . 

Indeed, substituting  into Eq. (2.77), we find that 0=rA 0=∂∂ ϕϕA , but this is a 

contradiction. The problem for  is not homogeneous due to Eq. (2.74). Thus, the problems 

for  and  cannot be decoupled. 

ϕA

rA ϕA

Consequently, the vector potential A  must have the form 

ϕϕ ϕϕ ezrAezrAA rr ),,(),,( += .                                                                                   (2.79) 

Then the solution of problem (2.74)-(2.78) for the two non-zero components of the vector 

potential is obtained by the integral representation of the solution to Helmholtz’ equation in 

vector form in cylindrical polar coordinates (see Section 2.1.2): 

e0 exp( )
( , , ) ( )sin( )
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r
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A r z I M rdrd dz
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µ µϕ ϕ ϕ ϕ
π
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where  

222
~ )~()~cos(~2~ zzrrrrr MM −+−−+= ϕϕ .                                                                (2.82)  

Substituting Eq. (2.74) for eI  into the projection of Helmholtz’ equation (2.80) on the r - 

axis, and taking into account that 1=µ , Helmholtz equation for the r -component has the 

 form  
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Using the main property of Dirac’s delta function, it follows from Eq. (2.83) that 
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Similarly, the solution for the ϕ -component can be obtained, and it has the form 
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It follows from Eqs. (2.84) and (2.85), by substituting ψϕψϕϕ dd =−=− ~,~ , that 
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It can easily be verified that ),,( zrAr ϕ  and ),,( zrA ϕϕ  in Eqs. (2.86) and (2.87) satisfy 

Sommerfeld’s conditions (2.76). Consequently, Eqs. (2.86) and (2.87) give the solution of 

problem (2.74)-(2.78) with Sommerfeld’s conditions (2.76) at infinity. 

Remark. By substituting πϕ =0  into Eqs. (2.86) and (2.87), one can obtain the solution 

for the problem on electromagnetic waves spreading from a coil carrying harmonic current. 

Then in Eqs. (2.86) and (2.87) the interval of integration is equal to the period of the functions 

ψψ cos,sin  and, consequently, the parameter ϕ  can be deleted from the limits of 

integration. Besides, in this case the vector potential does not depend on the variable ϕ  due to 

the axial symmetry. Then it follows from Eq. (2.86) that 0),( =zrAr , since the integrand in 

Eq. (2.86) is odd with respect to ψ . Thus we have  

ψ
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)cos2exp(
cos

2
),( .                                    (2.88) 

For , solution (2.88) coincides with the one known in the literature (see for example, Eq. 

(2.1.15) in [6]) for the case of a bare single-turn coil located in free space: 

0=k
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∫= ,                                                               (2.89) 

where  is the Bessel function of the first kind of order 1 of a real argument. This can be 

easily verified by using the package “Mathematica”. 

)(1 sJ

One can see that if the multiplication of the Bessel functions in Eq. (2.89) is expressed in 

terms of the integral of trigonometric functions, by using formula (4) on page 426 in [55], i.e. 

by the formula 
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∞
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)()( dtctJbtJte at
νµ
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+Γ π
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ννµ
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)12()2()2(

bciaca
dcb , 

0]Re[ >±± cibia ,    21]Re[ −>µ .                                                                           (2.90) 

then at  formula (2.89) may be expressed in terms of full elliptic integrals.    0=k

2.3. Exact analytical solution to the vector potential problem of a wire of 

arbitrary form with given current 

In the previous section, an exact solution to the problem on electromagnetic waves 

spreading has been obtained for the case of a finite length wire in the form of a straight line 

and of a circular arc. In this section (see also the author’s paper [15]), an exact solution to the 

similar problem is obtained for the case of a finite length wire of an arbitrary form. Writing 

the equation for the curve describing the wire in cylindrical polar and Cartesian coordinates 

and using Helmholtz’ equation and the integral representation of its solution, the solution is 

obtained in the form of a single definite integral of an elementary function. Moreover, using 

the obtained solution, some new formulae for electromagnetic waves spreading are also found 

for the particular cases of a wire in the form of an Archimedes’s spiral, of an elliptical or 

circular helix and in the form of a fractal wire. The case of the fractal wire is interesting for 

antenna analysis in radio engineering.  
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2.3.1. Solution to the problem of electromagnetic waves spreading from a harmonic 

emitter of an arbitrary form 

Consider a wire located on a curve  (see Fig.2.3). In cylindrical polar coordinates 

(

L

zr ,,ϕ ) centered at 0, with the -axis directed upwards, the parametric equation describing 

the curve  is 

z
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⎩
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=
=

)(ˆ
)(ˆ

ϕ
ϕ

zz
rr

,    21 ϕϕϕ ≤≤ .                                                                                            (2.91) 

where )(ˆ ϕr  and )(ˆ ϕz  are given functions of the angle ϕ . In Cartesian coordinates ( zyx ,, ) 

the same curve is given by the parametric equations in the form 

⎪⎩
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=
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,sin)(ˆ
,cos)(ˆ

ϕ
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Fig.2.3. An arbitrary form wire in free space 

The equation of the curve can be also written in the vector form 

kzjrir ⋅+⋅+⋅= )(ˆsin)(ˆcos)(ˆ)( ϕϕϕϕϕϕr .                                                               (2.93) 

The unit tangent vector, τe , to the curve )(ϕrr =  is 

|)(|
)(

ϕ
ϕ

τ r
r
′
′

=e .                                                                                                                 (2.94) 
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Taking into account Eq. (2.93), the unit tangent vector can be written in the form 

{ }zyx ezerrerre )(ˆ]cos)(ˆsin)(ˆ[]sin)(ˆcos)(ˆ[
|)(|

1 ϕϕϕϕϕϕϕϕϕ
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where    )(ˆ)(ˆ)(ˆ|)(| 222 ϕϕϕϕ zrr ′+′+=′r , and the angle ϕ  is 

arctan( ), 0,
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⎪ − < <⎩

>                                                                          (2.96)                   

The vector potential has the form 

zzyyxx ezyxAezyxAezyxAA ),,(),,(),,( ++= ,                                                          (2.97) 

where the variables zyx ,,  are functions of the angle ϕ  given by Eq. (2.92). 

 The mathematical formulation of the problem on electromagnetic waves spreading from 

the segment of the curve )(ϕrr =  according to Eq. (1.2.26) has the form: 

2
0A k A I eµ µ∆ + = − ,                                                                                                    (2.98) 

where ; 2
00

2 ˆωεµεµ=k 1=µ , 1ˆ =ε  and 0=σ , since the wire is located in free space. 

The external current density is 
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The conditions at infinity for all the components  of the vector potential are 

Sommerfeld’s conditions of radiation (see Eq. (2.62)): 
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Substituting Eq. (2.96) for τe  into the right-hand side of Eq. (2.99) for eI , and projecting the 

vector equation (2.98) onto the yx, , z  axes, one can obtain three scalar problems for the 

components  of the vector potential in the form: zyx AAA ,,
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In order to solve problems (2.101)-(2.103) with Sommerfeld’s conditions (2.100), one uses 

the solution of the Helmholtz equation in the vector form (see Eqs. (2.4) - (2.5)): 
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where εµεµω ˆ00=k  and  is the distance between the points  and MMr ~ ),,( zyxM )~,~,~( zyxM : 
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It follows from Eq. (2.105) at 1=µ  that the solution of Eq. (2.101) for the x -component has 

the form: 
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Using the main property of the delta function (see Eq. (2.66)) for the integration with respect 

to z~  yields  

yd
r

jkr
rrxdIzyxA

zzMM

MM
x

~)exp(
)~()]~(ˆ~[~

4
),,(

)~(ˆ~~

~

1
0

ϕ

ϕϕδ
π

µ

=

+∞

∞−

+∞

∞−

−
Φ−= ∫∫ .                           (2.108) 

Substituting ϕ~cos~~ rx = , ϕ~sin~~ ry = , ϕcosrx = , ϕsinry =  and ϕ~~~~~ drdrydxd =  into Eq. 

(2.108), one obtains 

rdr
r

jkr
rrdIzrA

zzMM

MM
x

~~)exp(
)~()]~(ˆ~[~

4
),,(

)~(ˆ~~

~

1
0

0
2

1 ϕ

ϕ

ϕ

ϕϕδϕ
π

µ
ϕ

=

∞ −
Φ−= ∫∫ ,                         (2.109) 

where      

=−+−+−=
=

222
)~(~~ )]~(ˆ[)~()~( ϕ

ϕ
zzyyxxr

zzMM  
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                  222 )]~(ˆ[)~cos(~2~ ϕϕϕ zzrrrr −+−−+= .                                              (2.110) 

It follows from Eq. (2.109) by using the main property of the delta function (see Eq. (2.66)) 

that     

ϕϕϕ
π

µ
ϕ

ϕ

ϕ

~)exp()~(ˆ)~(
4

),,( 1
0

2

1

d
F

jkFr
I

zrAx
−

Φ= ∫ ,                                                         (2.111) 

where   

222 )]~(ˆ[)~cos()~(ˆ2)~(ˆ ϕϕϕϕϕ zzrrrrF −+−−+= ,                                                  (2.112) 

]~sin)~(ˆ~cos)~(ˆ[
|)~(|

1)~(1 ϕϕϕϕ
ϕ

ϕ rr −′
′

=Φ
r

,                                                                (2.113) 

)~(ˆ)~(ˆ)~(ˆ|)~(| 222 ϕϕϕϕ zrr ′+′+=′r .                                                                           (2.114) 

Similarly, the solution of Eqs. (2.102) and (2.103) has the form  

ϕϕϕ
π

µ
ϕ

ϕ

ϕ

~)exp()~(ˆ)~(
4

),,( 2
0

2

1

d
F

jkFr
I

zrAy
−

Φ= ∫ ,                                                        (2.115) 

ϕϕϕ
π

µ
ϕ

ϕ

ϕ

~)exp()~(ˆ)~(
4

),,( 3
0

2

1

d
F

jkFr
I

zrAz
−

Φ= ∫ ,                                                        (2.116) 

where 

]~cos)~(ˆ~sin)~(ˆ[
|)~(|

1)~(2 ϕϕϕϕ
ϕ

ϕ rr +′
′

=Φ
r

,                                                                (2.117) 

|)~(|
)~(ˆ

)~(3 ϕ
ϕϕ

r′
′

=Φ
z .                                                                                                       (2.118)                    

In order to get the solution of the same problem in terms of cylindrical polar coordinates, the 

components  and  are to be expressed in terms of the components  and  as (see 

[68]) 

xA yA rA ϕA

ϕϕ sincos yxr AAA += ,  ϕϕϕ cossin yx AAA +−= .                                                (2.119) 

Substituting Eqs. (2.111) and (2.115) into Eq. (2.119), we can write the solution of the 

problem in terms of cylindrical polar coordinates as  

[ ] ϕϕϕϕϕϕϕ
ϕ

ϕ
π

µ
ϕ

ϕ

ϕ

~)exp()~sin()~(ˆ)~cos()~(ˆ
|)~(|

1)~(ˆ
4

),,(
2

1

0 d
F

jkFrrr
I

zrAr
−

−+−′
′

= ∫ r
, (2.120)    
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[ ] ϕϕϕϕϕϕϕ
ϕ

ϕ
π

µ
ϕ

ϕ

ϕ
ϕ

~)exp()~sin()~(ˆ)~cos()~(ˆ
|)~(|

1)~(ˆ
4

),,(
2

1

0 d
F

jkFrrr
I

zrA −
−′−−

′
= ∫ r

, (2.121) 

ϕ
ϕ
ϕϕ

π
µ

ϕ
ϕ

ϕ

~)exp(
|)~('|

)~(ˆ
)~(ˆ

4
),,(

2

1

0 d
F

jkFzr
I

zrAz
−′

= ∫ r
.                                                       (2.122) 

It can be easily verified that if the functions )(ˆ ϕr  and )(ˆ ϕr ′  are continuous on the closed 

segment 21 ϕϕϕ ≤≤  and, consequently, they are bounded on this segment, then the functions 

),,( zrAr ϕ , ),,( zrA ϕϕ  and ),,( zrAz ϕ  in Eqs. (2.120)-(2.122) satisfy Sommerfeld’s 

conditions (2.100). Consequently, Eqs. (2.120)-(2.122) are the solutions to problem (2.98)-

(2.100).  

2.3.2. Some examples of the particular exact solutions obtained by using solutions of 

Section 2.3.1 

Example 1. Consider a wire given in the form of a fragment of the Archimedes’ spiral: 

ϕϕ ar =)(ˆ ,  consta = ,  0)(ˆ =ϕz ,  21 ϕϕϕ ≤≤ .                                                       (2.123) 

The solution to the problem for ),,( zrAr ϕ , ),,( zrA ϕϕ  and ),,( zrAz ϕ  can be easily found 

from Eqs. (2.120)-(2.122) by substituting ϕϕ ~)~(ˆ ar = , ar =′ )~(ˆ ϕ , 0)~(ˆ =′ ϕz , 

1~|)~(| 2 +=′ ϕϕ ar  and 

2222 )~cos(~2~ zararF +−−+= ϕϕϕϕ .                                                                   (2.124) 

Then the solution to the problem has the form 

[ ] ϕϕϕϕϕϕ
ϕ

ϕ
π

µ
ϕ

ϕ

ϕ

~)exp()~sin(~)~cos(
1~

~

4
),,(

2

0
2

1

d
F

jkFaIzrAr
−

−+−
+

= ∫ ,                (2.125) 

[ ] ϕϕϕϕϕϕ
ϕ

ϕ
π

µ
ϕ

ϕ

ϕ
ϕ

~)exp()~sin()~cos(~
1~

~

4
),,(

2

0
2

1

d
F

jkFaIzrA −
−−−

+
= ∫ ,                (2.126) 

0),,( =zrAz ϕ .                                                                                                            (2.127) 

Example 2. Consider a wire given in the form of the elliptical helix: 

12

2

2

2

=+
b
y

a
x ,     ( ϕϕ hz ˆ)(ˆ = π2ˆ hh = ),     21 ϕϕϕ ≤≤ ,                                            (2.128) 

or by the substitution ϕϕ cos)(r̂x =  and ϕϕ sin)(r̂y =  into Eq. (2.128), the wire is described 

by 
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2
1

2

2

2

2 sincos)(ˆ
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

ba
r ϕϕϕ ,    ,   ϕϕ hz ˆ)( = 21 ϕϕϕ ≤≤ .                                        (2.129)  

In this case, the solutions for ),,( zrAr ϕ , ),,( zrA ϕϕ  and ),,( zrAz ϕ  are obtained from Eqs. 

(2.120)-(2.122) by substituting 

2
1

2

2

2

2 ~sin~cos)~(ˆ
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

ba
r ϕϕϕ ,      ( ) ⎟

⎠
⎞

⎜
⎝
⎛ −−=′ −

22
2

3 112sin)~(ˆ
2
1)~(ˆ

ab
rr ϕϕϕ ,     

 ϕϕ ~ˆ)~(ˆ hz = ,    hz ˆ)~(ˆ =′ ϕ ,    222 ˆ)~(ˆ)~(ˆ|)~(| hrr +′+=′ ϕϕϕr ,                         

222 )~ˆ()~cos()~(ˆ2)~(ˆ ϕϕϕϕϕ hzrrrrF −+−−+= .                                                    (2.130) 

Example 3. Consider a wire given in the form of the circular helix (circular solenoid): 

Rr =)(ˆ ϕ ,    ( ϕϕ hz ˆ)(ˆ = π2ˆ hh = ),    21 ϕϕϕ ≤≤ .                                                  (2.131)   

In this case, the solutions for ),,( zrAr ϕ , ),,( zrA ϕϕ  and ),,( zrAz ϕ  are obtained from Eqs. 

(2.120)-(2.122) by substituting 

Rr =)~(ˆ ϕ ,      0)~(ˆ =′ ϕr ,     ϕϕ ~ˆ)~(ˆ hz = ,    hz ˆ)~(ˆ =′ ϕ ,     22 ˆ|)~(| hR +=′ ϕr ,    

222 ]~ˆ[)~cos(2 ϕϕϕ hzrRRrF −+−−+= .                                                              (2.132)  

Thus, the solution to the problem has the form 

ϕϕϕ
π

µ
ϕ

ϕ

ϕ

~)exp(
ˆ

)~sin(
4

),,(
22

2
0

2

1

d
F

jkF

hR

RIzrAr
−

+

−
= ∫ ,                                                    (2.133) 

ϕϕϕ
π

µ
ϕ

ϕ

ϕ
ϕ

~)exp(
ˆ

)~cos(
4

),,(
22

2
0

2

1

d
F

jkF

hR

RI
zrA −

+

−
= ∫ ,                                                   (2.134) 

ϕ
π

µ
ϕ

ϕ

ϕ

~)exp(
ˆ

ˆ

4
),,(

22

0
2

1

d
F

jkF

hR

hIzrAz
−

+
= ∫ .                                                          (2.135) 

It is to be noted that in the limit case as  and  (i.e. on the axis of the solenoid), 

this example gives the result known in the literature (see [69]). The term  in Eq. (2.98) 

for the vector potential represents the displacement current. For sufficiently low frequencies 

and at the absence of conductivity in free space, the multiplier  can be directly 

substituted into Eq. (2.98) and, consequently, into solutions (2.120)-(2.122) for , and 

. In this case, integrals (2.120)-(2.122) and, consequently, the vectors 

02 →k 0→r

Ak 2

02 =k

rA ϕA

zA B  and E  given by 
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Eqs. (1.8) and (1.30), respectively, can be expressed in terms of elliptical integrals. Besides, 

substituting  into the same equations, integrals (2.133)-(2.103) can be expressed in terms 

of elementary functions.   

0=r

It follows from Eqs. (2.133)-(2.135) as  that 02 →k

F
d

hR

RIzrAr
ϕϕϕ

π
µ

ϕ
ϕ

ϕ

~
)~sin(

ˆ4
),,(

2

1
22

2
0 −

+
= ∫ ,                                                           (2.136) 
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RIzrA ϕϕϕ
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ϕ
ϕ

~
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ˆ4
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2
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+
= ∫ ,                                                          (2.137) 
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ϕ

π
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ϕ

~

ˆ

ˆ

4
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1
22

0 ∫
+

= .                                                                            (2.138) 

In particular, in calculating the component of the magnetic induction vector B  on the 

axis of the solenoid, i.e. the -component, the formula for cuz rl A  is used in polar cylindrical 

coordinates:  

curlB A= (curl ) (curl ) (curl )r r z zA e A e A eϕ ϕ= + + ,                                                    (2.139) 

where       

1(curl ) ( ) r
z

AA r A
r r ϕ ϕ
⎛ ∂ ∂

= −⎜
⎞
⎟∂ ∂⎝ ⎠

.                                                                                  (2.140) 

The magnetic induction vector zzeBB =  on the axis of the solenoid has the form 

0 0
(curl )z zr r

B A
= =
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∂
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∂

→ 0
0

)(
lim

0 r

ArA
r

r

r

ϕϕ

 

          =⎥
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∂
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ϕ .                                                        (2.141) 

Substituting Eq. (2.136) for  and Eq. (2.137) for  into Eq. (2.141), one obtains   rA ϕA

 
0=rzB −⎟
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⎜
⎝
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⎝
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⎨
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)~ˆ(
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ˆ4

ϕ

ϕ ϕ

ϕ
π
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hzR

d

hR

RI .                                                             (2.142) 

Substituting hL ˆˆ
1 −=ϕ , hL ˆˆ

2 =ϕ ,  zh ~~ˆ =ϕ ,  hz ˆ~~ =ϕ  and hzdd ˆ~~ =ϕ  into Eq. (2.142), 

where  is half the length of the solenoid, the magnetic induction vector on the axis of the 

solenoid takes the form 

L̂

=
=0rzB [ ]∫

− −++

L

L zzR
zd

hhR

RI ˆ

ˆ
232222

3
0

)~(

~
ˆ
1

ˆ4π
µ .                                                           (2.143)                    

Substituting  into Eq. (2.143) and calculating the integral, yields  tanz z R t− =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+

−
+

++

+

+
=

= 222222

0
0

)ˆ(

ˆ

)ˆ(

ˆ

ˆˆ4 zLR

zL

zLR

zL

hRh

IRB
rz

π

µ ,                                     (2.144) 

where πϕϕ 2ˆ hhz == . It means that  is the pitch of a screw. Therefore, if there are  h N2
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 single-turn coils of the solenoid, then the length of the solenoid is equal to , but the 

number of the single-turn coils on one unit length of the solenoid is equal to 

hN2

hhNNn 1)2(2 == . Consequently, in the case , Eq. (2.144) can be rewritten as  22ˆ Rh <<

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+

−
+

++

+
=

= 2222

0
0

)ˆ(

ˆ

)ˆ(

ˆ

2 zLR

zL

zLR

zLnIB
rz

µ .                                                  (2.145) 

Eq. (2.145) coincides with a known formula in the literature (see [69]). 

Example 4. Consider a fractal wire i.e. wire in the form of a broken curve. There exist 

linear branches on some links of this curve. Due to the linearity of the problem, it is sufficient 

to solve the problem for one linear segment of the wire that is given by the equation 

k

k

k

k

k

k

n
zz

m
yy

l
xx 111 −

=
−

=
− ,    kk xxx 21 ≤≤ ,                                                               (2.146) 

where  

kkk xxl 12 −= ,  ,  kkk yym 12 −= kkk zzn 12 −= , Nk ,,2,1 …= . 

Then we must add the results of the solutions. The coordinate system XYZ  may be chosen 

such that , , 0  for the each 0≠kl 0≠km ≠kn Nk ,,2,1 …= , and such that the each of 

segments (2.146) does not pass through the point (0,0,0). Substituting ϕϕ cos)(r̂x = , 

ϕϕ sin)(r̂y =  and )(ˆ ϕzz =  into Eq. (2.146), we can write the equation for the linear segment 

given by Eq. (2.146) in cylindrical polar coordinates as 
1

11 )sincos)(()(ˆ −−−= ϕϕϕ kkkkkk lmylxmr ,                                                                        

1
11 )cos)(ˆ()(ˆ −−+= kkkk lnxrzz ϕϕϕ .                                                                            (2.147) 

The solutions for ),,( zrAr ϕ , ),,( zrA ϕϕ  and ),,( zrAz ϕ  are obtained by substituting 

1
11 )~sin~cos)(()~(ˆ −−−= ϕϕϕ kkkkkk lmylxmr ,           

1
11 )~cos)~(ˆ()~(ˆ −−+= kkkk lnxrzz ϕϕϕ , 

)~cos~sin()~sin~cos)(()~(ˆ 2
11 ϕϕϕϕϕ kkkkkkkk lmlmylxmr −−−= − , 

1
11 )~cos)~(ˆ()~(ˆ −−+= kkkk lnxrzz ϕϕϕ , 

)~(ˆ)~(ˆ)~(ˆ|)~(| 222 ϕϕϕϕ zrr ′+′+=′r ,       1 1 1 ,   and  arctan k ky xϕ = 2 2 2arctan k ky xϕ =

 222 )]~(ˆ[)~cos()~(ˆ2)~(ˆ ϕϕϕϕϕ zzrrrrF −+−−+=                                                   (2.148) 

into the same Eqs. (2.120)-(2.122). This case of a fractal wire can be applicable in radio 

engineering for the design of antennas.  
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3. SOME PROBLEMS ON IMPEDANCE CHANGE OF 

HOMOGENEOUS MEDIA 

3.1. Evaluation of new classes of definite integrals 

As mentioned in the Introduction, analytical solutions to eddy current testing problems 

are rare and can be found only for domains and emitters of simple geometry. However, even 

in these cases, the change in impedance is usually expressed in terms of improper integrals 

(see [6]). 

The integrands of these integrals are either combinations of irrational and trigonometric 

functions, or combinations of irrational and Bessel functions, so that one can consider two 

classes of definite integrals. Thus, applications require the evaluation of different types of 

improper integrals. New classes of improper integrals which can be evaluated in closed 

analytical form and have direct applications to eddy current testing methods are considered in 

this section (see also the author’s papers [12], [8]). The integrals are evaluated in closed form 

by means of divergent integrals that converge in the sense of Abel [4]). 

Consider the following classes of definite integrals 

∫
∞

−++
=

0
1222 )(

cos)(
nn

xax
dxxA γγ ,              ∫

∞

−

+

++
=

0
1222

1

,
)(

)()(
n

m
m

mn
xax

dxbxJxbB ,                          (3.1) 

where , , and  is the Bessel function of the first kind of order 

. Only the particular case  is evaluated in closed form in the literature (see [48]) and 

the used method is appropriate only for calculating . The general formula for  

and even particular cases for 

,...3,2,1=n ,...2,1,0=m )(zJ m

m )(0,1 bB

)(0,1 bB )(, bB mn

)(γnA  seems to be absent in the literature.   

 3.1.1. Evaluation of the integral )(γnA   

In order to evaluate )(γnA , one uses divergent integrals, which converge in the sense of 

Abel (see [4]). For example, for 0>γ  the integral 

γδγ
γγγ

δ

δ

δ

1limsinlimsin 22
0 0

00
=

+
==∫ ∫

∞ ∞

+→

−

+→
xdxedxx x .                                                      (3.2) 

Differentiating both sides of Eq. (3.2) with respect to γ  yields that, in the sense of Abel, 
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∫
∞

−=
0

2

1cos
γ

γ dxxx ,  ∫
∞

−=
0

3
2 2sin

γ
γ dxxx ,     ∫

∞ ⋅
=

0
4

3 32cos
γ

γ dxxx , …  ,                     (3.3) 

and, in general, 

∫
∞

+
++ +

−=
0

22
112 )!12()1(cos n

nn ndxxx
γ

γ ,     ,...2,1,0=n .                                                      (3.4) 

Consider the integral (see [41]) 

∫
∞ +−

+=
+0

22
022

)(cos
22

γδγ
δ

aKdxx
ax

e ax

,                                                                         (3.5) 

where  is the modified Bessel function of the second kind of order 0 and )(0 zK consta = , 

. Differentiating both sides of Eq. (3.5) with respect to 0>a δ  and using the formula 

, one obtains )()( 10 zKzK −=′

∫
∞

+−

+

+
=

0
22

22
1 )(

cos
22

γδ

γδδ
γδ aKa

dxxe ax ,  0>δ ,                    (3.6) 

where  is the modified Bessel function of the second kind of order 1. Differentiating 

( )-times both sides of Eq. (3.6) with respect to 

)(1 zK

12 +n δ , one obtains the formulas 
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It follows from Eqs. (3.7), (3.8) and (3.4) that, in the sense of Abel, 
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In view of the transformation  
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n κκκ  

                  ⎥⎦
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− −− 12342
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)2)(1( nn xxppp κ ,  a x2 2 2 , ,         (3.12) κ= − 12 −= np

one can see that )(γnA  is a finite sum of integrals (3.4) and (3.11) for 22 ax +=κ . 

Consider the right-hand side of Eq. (3.12). The first term is 

( ) 12
2212

−
− +=

n
n axκ 22122 )( axax n ++= − .                            (3.13) 

Thus, the first term is a finite sum of the products of the term 22 ax +  and even powers of x  

(see the integrand in Eq. (3.11). The second term is 

2 2 2 2 2 2 2 2 1( ) ( )n n np x p x a x p x a xκ − −= + = + − .                                              (3.14) 

Thus, the second term is a finite sum of odd powers of x  (see the integrand in Eq. (3.4)). The 

third term is 

2 3 2 2 2 2 3 2 2 2 1 2 2( 1) ( 1) ( 1)( ) ( )
2! 2! 2!

n n np p p p p p 2x x a x x a x x aκ − − −− − −
= + = + + .       (3.15) 

Thus, the third term has the same structure as the first term of Eq. (3.12). Similarly, the fourth 

term has the same structure as the second term of Eq. (3.11), and so on. 

Hence, the integral )(γnA  indeed is the finite sum of integrals (3.4), (3.10) and (3.11). 

For example, it follows from Eq. (3.1) and decomposition (3.12) that 
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γ
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⎡ ⎤= + − − + +⎣ ⎦∫ dx .                         (3.17) 

 70                                                                         
 



 

Consider the expressions for )(1 γA  in detail. The first integral on the right-hand side of Eq. 

(3.16) can be evaluated by using Eq. (3.9) and the formula 

ν
ν

ν
ν

z
zK

z
zK

dz
d )()( 1+−=⎥⎦

⎤
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⎡ ,                                                                                              (3.18) 

and it has the form 
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γ
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but the second integral on the right-hand side of Eq. (3.16) is found by Eq. (3.3). Similarly, in 

order to calculate )(2 γA , four integrals on the right-hand side of Eq. (3.17) are evaluated by 

using Eq. (3.10), (3.4), (3.11) and (3.18). Thus,  
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where  and   are the modified Bessel functions of the second kind of order 1 and 

3, respectively. The correctness of Eqs. (3.20) and (3.21) has been verified numerically by 

using the package “Mathematica”.  

)(1 zK )(3 zK

Moreover, the correctness of Eq. (3.20) is rigorously proved by using the following 

analytical methods of Van der Pol [48]. Performing the transformation 
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we can rewrite the integral on the left-hand side of Eq. (3.20) in the form 
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If one uses the integral        

)(cos
0

0
22

vK
xv
dxx γγ

=
+

∫
∞

,                                                                                                  (3.24) 

where )(0 vK γ  is the modified Bessel function of the second kind of order 0 (see [54], vol.1, 

page 18), then it follows from Eq. (3.23) that   
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                                                                                                                                      (3.25) 

Thus, Eq. (3.20) is also proved analytically. 

3.1.2. Evaluation of the integral  )(, bB mn

As in the previous evaluation of the integral )(γnA , divergent integrals that converge in 

the sense of Abel are used to evaluate the integral . Consider the integral (see [41], Eq. 

6.623(2)): 

)(, bB mn
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where  is Euler’s gamma function, and consider the integral (see [58], p.171, Eq. 

(6.15.6)): 
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where 1,0,0,0 −>>>> νδba , and  is the modified Bessel function of the second 

kind of order 

)(zKµ

µ . Substituting ,21=µ  m=ν  into Eq. (3.27) yields 
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If we use the equations  
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then it follows from Eq. (3.28) that 
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and, in the case 0=m , the sum in Eq. (3.31) is equal to 1.  

Differentiating both sides of Eq. (3.26) ( 12 +n )-times with respect to δ , one obtains   
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or in the sense of Abel: 
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Differentiating both sides of Eq. (3.30) -times with respect to n2 δ  yields   
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We introduce the operator  such that mL
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Then it follows from Eq. (3.34) that, in the sense of Abel, 
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                                                                                                                                      (3.36) 

where , and the operator  is chosen such that  …,2,1,0=r mL

)()]([ 2 bxJxbxJL mmm −= ,                             (3.37) 

and it gives the multiplier on the left-hand side of Eq. (3.36). rx2
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The next transformations are the same as for the integral )(γnA . The transformation 

given by Eq. (3.12) allows representing the integral  as a finite sum of integrals (3.33) 

and (3.36).  

)(, bB mn

For example, for 0=m  it follows from Eqs. (3.33), (3.36) and (3.37) that 
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It follows from Eq. (3.1), by using decomposition (3.12) and Eqs. (3.38) and (3.40) at ,1=n  
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Similarly, at  , , we have  ,1=n 0=m 0=r
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The correctness of Eqs. (3.41)-(3.42) has been verified numerically by using the package 

“Mathematica”. However, there remains the question whether the following two limits are 

equal, i.e. the integrals 

∫
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and 
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Equation (3.7) is used for evaluating the integral (3.44), but for the evaluation of integral 

(3.43), a similar formula does not exist. Integral (3.43) can be expressed only in terms of the 

Lommel functions, and for these functions, it is difficult to find the limit as 0+→δ . It is 

rigorously proved that 
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dxxaxee axx γδδ

δ
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i.e. limits (3.43) and (3.44) are equal. The correctness of Eq. (3.45) has also been verified 

numerically by using the package “Mathematica”. 

It is to be noted that the multiplier xγcos  in Eq. (3.45) is very important. It is proved that 

without this multiplier, the limit 
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despite the fact that 
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3.2. Closed form solutions to some eddy current testing problems 

In this section, we apply some of the integrals that have been evaluated in the previous 

section to some mathematical problems of eddy current testing. In particular, the integrals 

)(1 γA  and  given by Eqs. (3.20) and (3.41), respectively, are used for evaluating 

impedance change in the cases of a double conductor line and a single-turn coil located on the 

surface of a conducting half-space. In the case of a double conductor line, the expression for 

the impedance change has been evaluated in closed form, but in the case of a single-turn coil, 

the impedance has been transformed into the simpler form of a fast-convergent series. 

Furthermore, we obtain the simple asymptotic formulae for the impedance of arbitrarily 

situated double lines and coils in the limit as the frequency tends to infinity. The obtained 

results are published in [9] and [7].  

)(0,1 bB
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3.2.1. Double conductor line above a half-space 

Consider two infinitely long wires carrying an alternating current and located in region 

 at height  above a uniform conducting half-space (see Fig.3.1). The wires are 

parallel to the 

}0{0 >= zR h

x -axis and pass through the points  and . The conducting 

half-space is located in region 

0(0, , )y h 1(0, , )y h

}0{1 <= zR .  

  YX

R0

 R1

Z

                    (y1,h)                    (y0,h)

0

 
Fig.3.1. A double conductor line in free space at height  above a uniform 0R h

 conducting half-space  1R

The vector potential has only the x -component (see the 1st boundary value problem):  

xx ezyAA ),(=  .                                                                                                            (3.48) 

The mathematical formulation of the problem has the form (see the 1st boundary value 

problem, Eqs. (1.48) and (1.49)): 

)]()()()([ 1000 hzyyhzyyIA −−−−−−=∆ δδδδµ ,          ,                            (3.49) 0>z

01
2

11 =+∆ AkA ,                                                                    0<z ,                      (3.50) 

where , and 10
2

1 σµωjk −= 1~
0 =µ , 1ˆ0 =ε  and 0=σ  in free space. The displacement current 

is assumed to be absent, but the relative magnetic permeability of region  is equal to 1. The 

boundary conditions are 
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−=+=
=

0100 zz
AA ,             

−=+= ∂
∂

=
∂
∂
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1
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0

zz z
A

z
A                                                      (3.51) 

and the following conditions hold at infinity:  
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The solution of problem (3.49)-(3.52) for region  has the form (see [6]) 0R
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where 2
1

2 kq −= λ .  

Note that the first term on the right-hand side of Eq. (3.53) represents the vector potential 

due to the presence of the two solitary wires in unbounded free space and is associated with 

the primary field, while the second term on the same side gives the contribution  to 

 due to the conducting medium and is associated with the secondary field. Thus, the 

induced vector potential is 
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The induced change in impedance, indZ , due to the conducting medium, is given by Eq. 

(1.111), i.e.  

∫=
c

ind
l

ind dlA
I
jZ 0
ω ,                                                                                     (3.55) 

where  is the contour of the source of current. In the case of the double line, the equation of 

the contour  is given by {

C

C hz = , 0yy = , 10 ≤≤ x  and hz = , , 1yy = 10 ≤≤ x }. 

Introducing dimensionless variables, it follows from Eqs. (3.54) and (3.55), that the 

impedance change in the double conductor line per unit length has the form (see [6]): 

l
ind ZZ

π
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s
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jss

jss
jZ s

l )cos1(
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ˆ2

2

2

ββα −
++

+−
= ∫

∞
− jYX +=: ,               (3.56)                    

where dh /ˆ =α , 01µωσβ d=  and 01 yyd −=  is the distance between the wires.  

Consider the case 0ˆ =α , i.e. the current source is located on the surface . In order 

to evaluate integral (3.56) in closed form, we use Eq. (3.20) of the new classes of definite 

integrals, obtained in Section 3.1.1, i.e. the integral 

0=z
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where   is the modified Bessel function of the second kind of order 1. )(1 zK

In order to transform integral (3.56) to the form of integral (3.57) at 0ˆ =α , one uses the 

formula 
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To avoid the divergent integrals in Eq. (3.56) at 0ˆ =α , we replace the multiplier ( xβcos1− ) 

with the multiplier ( xx βα cosˆcos − ). Then by Eq. (3.58), the integral on the right-hand side 

of Eq. (3.56) at 0ˆ =α  (and assuming ) can be rewritten as 2: aj =

∫
∞

=−
++

+−

0
22

22

)cosˆ(cos
x

dxxx
axx
axx βα  dx

axx
xx

∫
∞

++

−

0
22

cosˆcos2 βα dx
x

xx
∫
∞ −

−
0

cosˆcos βα .(3.59)      

The second integral on the right-hand side of Eq. (3.59) is known in the literature (see [41]): 

α
ββα
ˆ

lncosˆcos

0

=
−

∫
∞

dx
x

xx .                                                                                       (3.60)                    

The first integral on the right-hand side of Eq. (3.59) is evaluated by Eq. (3.57): 

∫
∞

=
++

−

0
22

cosˆcos dx
axx

xx βα
=− )()ˆ( 11 βα AA

αγ

βγ

γ
γγ

ˆ

122 )(11
=

=

⎥
⎦

⎤
⎢
⎣

⎡
− aKa

a
.                               (3.61) 

Substituting Eqs. (3.60) and (3.61) into Eq. (3.59) yields 

∫
∞

=−
++

+−

0
22

22

)cosˆ(cos
x

dxxx
axx
axx βα

αγ

βγ

γ
γγ

ˆ

122 )(12
=

=

⎥
⎦

⎤
⎢
⎣

⎡
− aKa

a α
β
ˆ

ln−  

 [ ]
α
ββα
ˆ

ln)()ˆ(2
2 −−= FF

a
,                                                                                         (3.62) 

where  

 )(1)( 12 γ
γγ

γ aKaF −= .                                                                                               (3.63) 

In order to take the limit as 0ˆ →α  in Eq. (3.62), i.e. the limit of the part  

2ˆ 0

2 ˆlim ( ) ln
ˆ

F
aα

βα
α→+

⎡ −⎢⎣ ⎦
⎤
⎥ ,                                                                                                 (3.64) 

the asymptotic behaviour of   as  is to be found, and not only by using the known )(1 zK 0→z
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 formula (see [58], p.142, formula (5.7.12)): 

( ) n

zn znzK −

→
−≈ 2)!1(

2
1)(

0
, …,2,1=n ,      i.e.      zzK

z
1)(

01 →
≈ . 

The general expression for  is )(zKn

( )∑
−

=

−−−−
=

1

0

22
!

)!1()1(
2
1)(

n

k

nk
k

n z
k

knzK  

           ( )2
1

0

21 ( 1) 2ln ( 1) ( 1)
2 !( )! 2

k n
n

k

z z k k n
k k n

ψ ψ
+∞

+

=

⎡ ⎤+ − − + − + +⎢ ⎥+ ⎣ ⎦
∑ ,    ,      (3.65) …,2,1,0=n

where )(zψ  is the logarithmic derivative of Euler’s gamma function, whose values can be 

calculated by means of the following formulae, 

C−=)1(ψ ,  1)2( +−= Cψ ,  
2
11)3( ++−= Cψ ,  …  ,  

m
Cm 1

3
1

2
11)1( +++++−=+ψ , 

where   is Euler’s constant. Besides, at …577215,0=C 0=n , the first sum in Eq. (3.65) 

for  is equal to zero. )(0 zK

It follows from Eq. (3.65) at 1=n  that 

2
ln)(1)( 11

zzI
z

zK +=
( ) [

2 1

0

21 ( 1) ( 2)
2 !( 1)!

k

k

z
k k

k k
ψ ψ

+∞

=

− + +
+∑ ]+ ,                                     (3.66)   

where        

( )∑
∞

=

+

+
=

0

12

1 )!1(!
2)(

k

k

kk
zzI                                                                                                       (3.67) 

and  is the modified Bessel function of the first kind of order 1. It follows from Eq. 

(3.66) that 

)(1 zI

3

1 1
1 1 1 1( ) ( ) ln [ (1) (2)] [ (2) (3)]

2 2 1! 2 1!2! 2
z z zK z I z

z
ψ ψ ψ ψ

⎧ ⎫⎪ ⎪⎛ ⎞− = − + + + +⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

,           (3.68) 

where, in order to find the limit as , the term 0→z
31 [ (2) (3)]

2! 2
z ψ ψ⎛ ⎞ +⎜ ⎟

⎝ ⎠
 can be neglected, 

because this term gives zero contribution in the limit as  and,  0→z

3

1
1( )

2 1!2! 2
z zI z ⎛ ⎞= + +⎜ ⎟

⎝ ⎠
                                                                                            (3.69) 

The term 
31

1!2! 2
z⎛ ⎞

⎜ ⎟
⎝ ⎠

 in Eq. (3.69) does not give the contribution as  either. Thus, as 0→z
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 , Eq. (3.68) holds  0→z

1
1( ) ln (1 2 )

2 2 4
z z zK z C

z
− = − − .                                                                                    (3.70) 

Besides, it follows from Eqs. (3.63) and (3.69) that 

)(1)( 12 γ
γγ

γ aKaF −= ⎥
⎦

⎤
⎢
⎣

⎡
−−+−= )21(

42
ln

2
11

2 Caaa
a

a γγγ
γγγ

 

         )21(
42

ln
2

22

Caaa
−+−=

γ ,    as 0→γ .                                                              (3.71) 

Substituting Eq. (3.71) at αγ ˆ=  into limit (3.64) yields  

2ˆ 0

2 ˆlim ( ) ln
ˆ

F
aα

βα
α→+

⎡ ⎤−⎢ ⎥⎣ ⎦ ˆ 0

ˆ 1lim ln (1 2 ) ln
ˆ2 2

a C
α

α β
α→+

⎡ ⎤= − + − −⎢ ⎥⎣ ⎦
 

ˆ 0

1ˆ ˆlim ln ln (1 2 ) ln ln
2 2
a C

α
α β α

→+

⎡ ⎤= − − + − − +⎢ ⎥⎣ ⎦ 2
ln5.0 βaC −−= . 

Hence,                                  

2ˆ 0

2 ˆlim ( ) ln
ˆ

F
aα

βα
α→+

⎡ ⎤−⎢ ⎥⎣ ⎦ 2
ln5.0 βaC −−= .                                                                    (3.72) 

At last, it follows from Eq. (3.62), by taking the limit as 0ˆ →α  and using Eq. (3.72), that 

∫
∞

→
=−

++

+−

0
22

22

0ˆ
)cosˆ(coslim

x
dxxx

axx
axx βα

α 2ˆ 0

2 ˆlim ( ) ln ( )
ˆ

F F
a aα

β
2

2α β
α→+

⎡ ⎤− −⎢ ⎥⎣ ⎦
                   

2
ln5.0 βaC −−= )(2

2 βF
a

− .                                                                                       (3.73) 

We substitute )(βF  given by Eq. (3.63) into Eq. (3.73) and if 0ˆ =α , then integral (3.59) 

takes the final form 

∫
∞

=−
++

+−

0
22

22

)cos1(
x

dxx
axx
axx β

2
ln5.0 βaC −− ⎥

⎦

⎤
⎢
⎣

⎡
−− )(12

122 β
ββ

aKa
a

.                   (3.74) 

Therefore, if we substitute Eq. (3.74) into Eq. (3.56) for  and if lZ 0ˆ =α  and ja = , 

then the impedance change in the double conductor line has the form 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−−=

=
)(12

2
ln5.0 120ˆ jK

j
j

j
CjZl β

ββ
β

α
,                                            (3.75) 

or if we take into account that  
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  ⎥⎦
⎤

⎢⎣
⎡ +−=− j

j
ln

2
ln

2
ln ββ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−= 2ln

2
ln

πβ j
e ⎥

⎦

⎤
⎢
⎣

⎡
+−= 4ln

2
ln

πβ j
e ⎥⎦

⎤
⎢⎣
⎡ +−=

42
ln πβ j , 

then the impedance change takes the final form 

⎥
⎦

⎤
⎢
⎣

⎡ +
−−⎥⎦

⎤
⎢⎣
⎡ −−+=

=
)(

2
112

2
ln

2
1

4 120ˆ jKjCjZl β
ββ

βπ
α

.                                           (3.76) 

The Bessel function in Eq. (3.76) can be expressed in terms of the Kelvin functions, 

)(ker1 β  and  )(kei1 β , which are tabulated in [53]: 

 )](kei)([ker)( 111 βββ jjjK += .                                                                             (3.77) 

Eq. (3.77) allows separating the real and the imaginary parts in Eq. (3.76): 

[ )(kei)(ker22
4

Re)( 112 ββ
ββ

πβ +−−== lZX ],                                                       (3.78) 

 [ )(kei)(ker2
2

ln
2
1Im)( 11 ββ

β
ββ −+−−== CZY l ].                                                (3.79) 

Computational results obtained by means of Eqs. (3.78) and (3.79) are presented in Fig.3.2 for 

different values of the parameters α̂  and β  (see curve 0ˆ =α ). 

As can be seen from Fig.3.2, in the case 0ˆ =α , i.e. when the current source is located on 

the surface of the conducting half-space, the curve becomes parallel to the imaginary axis as 

∞→β .  

-2.5

-1.5

-0.5
0.2 0.4 0.6 0.8

-2

-1

)(βY
)(βX

2.0ˆ =α

1.0ˆ =α

05.0ˆ =α

0ˆ =α

 
Fig.3.2. Curves describing the change in impedance of a double 

conductor line for different values of α̂  and β  
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Computational results obtained by means of Eqs. (3.78) and (3.79) at 0ˆ =α  completely 

coincide with the computational results obtained by means of integral (3.56) with the use of 

the package “Mathematica”. 

3.2.2. Single-turn coil above a half-space 

Consider a circular single-turn coil of radius , carrying an alternating current and 

located at height h  in free space, 

cr

}0{0 >= zR , above a uniform conducting half-space in 

region  (see Fig.3.3). }0{1 <= zR

  YX

R0

 R1

Z

0
h

rc

 

Fig.3.3. A single-turn coil of radius  in free space, , at height  above cr 0R h

the uniform conducting half-space,  1R

In this case, the vector potential has only the ϕ -component, 

ϕezrAA ),(= ,                                                                                                               (3.80) 

The mathematical formulation of the problem for the vector potential has the form (see the 3rd 

boundary value problem, Eqs. (1.89)-(1.92)) 

0 0

2
1 1 1 1

( ) ( ), in

0, in
cA I r r z h

A k A R
ϕ

ϕ

µ δ δ∆ = − − −⎧⎪
⎨
∆ + =⎪⎩

0

.

,R
                                                                 (3.81) 

where   

f
rz

f
r
f

rr
fzrf 22

2

2

2 11),( −
∂
∂

+
∂
∂

+
∂
∂

=∆ϕ ,                                                                        (3.82) 

with the boundary conditions  
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0100 zz
AA ,             

−=+= ∂
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=
∂
∂

0

1

0

0

zz z
A

z
A ,                                                                (3.83) 

and the conditions at infinity 

,,,, 10
10 r

A
r

AAA
∂
∂

∂
∂ 0, 10 →

∂
∂

∂
∂

z
A

z
A ,    as    ∞→+ 22 zr .                         (3.84) 

The solution of problem (3.81)-(3.84) for region  has the form (see [6]) 0R

∫
∞

−− +=
0

11
0

0 ])()(
2

),( λλλ
µ λ derJrJIrzrA hz

c
c ∫

∞
+−

+
−

0

)(
11

0 )()(
2

λλλ
λ
λµ λ derJrJ

q
qIr hz

c
c ,   (3.85) 

where   is the Bessel function of the first kind of order 1. The first term on the right-

hand side of Eq. (3.86) represents the vector potential of a solitary single-turn coil in 

unbounded free space, while the second term on the same side gives the contribution 

 into  due to the conducting medium. Thus, the induced vector potential is 

)(1 zJ

ind
0 ( , )A r z ),(0 zrA

ind ( )0
0 1 1

0

( , ) ( ) ( )
2

z hc
c

Ir qA r z J r J r e d
q

λµ λ λ λ
λ

∞
− +−

=
+∫ λ .                                                       (3.86) 

Substituting  into Eq. (3.55) for ind
0 ( , )A r z indZ , the induced impedance change in the coil 

located above the conducting half-space (see [5]) has the form 

ind
0 c cZ r Zµ ωπ= ,         dsesJ

jss

jss
jZ s

c ∫
∞

−

++

+−
=

0

ˆ22
12

2

)( βαββ jYX +=: ,                   (3.87) 

where ˆ 2 / ch rα =  and 0ωσµβ cr=  are dimensionless variables. Formula (3.87) was 

obtained by [62] for the first time in 1960, although this problem was considered before in 

connection with expansion of electromagnetic waves in monograph [56] and textbook [57] 

under the magnetic dipole approximation assuming that the radius of the coil, , tends to 

zero, but the amplitude of the current tends to infinity so that multiplier remains 

constant. In this case, integral (3.87) is simplified and can be expressed in terms of elementary 

functions for the case 

cr

MIrc =

0ˆ =α  (see  [48]). However, in the case of non-destructive testing, the 

magnetic dipole approximation is not appropriate, as the size of the defect can be 

commensurable with the diameter of the coil. Thus, one needs to simplify the integral (3.87).  

Consider the case 0ˆ =α , i.e. when the current source is located on the surface 0=z . In 

order to evaluate integral (3.87) in closed form, divergent integrals convergent in the sense of 

Abel are used, i.e. the integral 
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∫
∞

++
=

0
22

0
0,1

)()(
xax

dxbxJxbB ⎥
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⎤
⎟
⎠
⎞

⎜
⎝
⎛ +−⎢⎣

⎡= −abe
b

a
bba

1111
232 .                                                 (3.88) 

Integral (3.87) at 0ˆ =α  can be rewritten by using Eq. (3.58) as 

dxxJ
axx
axx

∫
∞

++

+−

0

2
122

22

)(β
2

21
12 2

0 0

( )lim 2 ( )
b b

b

x J x dx J x dx
x x a

β β
→∞

⎡ ⎤
= −⎢ ⎥

+ +⎣ ⎦
∫ ∫ ,                          (3.89) 

where ja = . In Eq. (3.89) both integrals can be transformed by using the formula (see [55], 

page 166, formula (2)): 

∫−=
2

0
0

2
1 2cos)cos2(2)(

π

θθθ
π

dzJzJ ,                                                                          (3.90)  

Then it follows from Eq. (3.90), by using formula 

b
dzbzJ 1)(0

0

=∫
∞

, ,                                                                                                (3.91) 0>b

that the second integral on the right-hand side of Eq. (3.89) is                           

2
2
1 0

0 0 0

2lim ( ) cos2 lim (2 cos )
b b

b b
J x dx d J x dx
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β θ θ β θ
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= − =∫ ∫ ∫ ∫
−

+→
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ε
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θ
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2

0
0 cos2

2coslim2 d .    

                                                                                                                                      (3.92) 

Using Eqs. (3.90) and (3.88) for , the first integral on the right-hand side of Eq. (3.89) 

takes the form 

)(0,1 bB

dx
axx

xJx
22

2
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)(
++

∫
∞ β

=
++
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xax
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∫ ⎥
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⎠
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0
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1
)cos2(

1
)cos2(

112cos2
π

θβ θ
θβθβθβ

θ
π

dea
a

a .              (3.93) 

Substituting Eqs. (3.92) and (3.93) into Eq. (3.89), integral (3.89) is transformed to the form 

=
++

+−
∫
∞

dxxJ
axx
axx

0

2
122

22

)(β −− ∫
2

0 cos2
2cos2

π

θ
θβ
θ

π
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∫ ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
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⎞
⎜⎜
⎝

⎛
+−− −
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0
22

cos2
222 cos4

1
cos2cos4

1
cos2

2cos2
π

θβ θ
θβθβθβθβ

θ
π

dae
a

a .                     (3.94) 
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Substituting Eq. (3.94) into Eq. (3.87) for  when cZ 0ˆ =α , the impedance change in the coil 

is obtained in the form of a convergent integral that does not contain Bessel functions any 

longer, and it has the form  

( )∫
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−−−=

−
−

2

0

cos2
cos2

222 cos
1

cos2
111

cos
2cos

π
θβ

θβ θ
θβθβθ

θ
π

daee
a

jZ
a

a
c ,      ja = .      (3.95) 

If θ  tends to 2
π , the leading terms of the expansion in power of θβ cos2a  for the 

expression in parentheses have the form: 

…+− θβθβ 222 coscos
3
4 aa                                                                                                 

Therefore, the integrand in Eq. (3.95) has a finite limit as 2
πθ → . Computational results 

obtained by means of Eq. (3.95) are presented in Fig.3.4 for different values of the parameter 

β  (see the curve 0ˆ =α ). These computational results completely coincide with results 

obtained by means of Eq. (3.87) at 0ˆ =α . 

0.05 0.1 0.15 0.2 0.25

-0.8

-0.6

-0.4

-0.2

2.0ˆ =α
1.0ˆ =α

05.0ˆ =α

0ˆ =α

)(βY
)(βX

 
Fig.3.4. Curves describing the change of impedance in a coil 

for different values of  α̂  and β  

Besides, it follows from Eq. (3.95) that  

∫ −=⎥
⎦

⎤
⎢
⎣

⎡ 2

0

cos22 2cos4)(1
π

θβ θθ
π

β
βββ

deajZ
d
d

d
d a

c ,    ja = .                                           (3.96) 
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Expanding the exponential function of integrand in Eq. (3.96) in series in powers of θcos  and 

using the formula 

( )
( ) n

n B
n
nd =
+Γ
+Γ

=∫ :
2)2(
2)1(

2
cos

2

0

π

πθθ ,                                                                          (3.97)   

where  is the Euler gamma function, it follows from Eq. (3.96) that )(zΓ

∑
∞

=

+

+ ++
−−=
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2 )3)(1(
)2()2()1(4)(
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aBBajZ β
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or  
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)3)(2)(1(
)()1(8)( 2

1

1

nnnnn
ajZ

n

nn

c Γ+++
−

= ∑
∞

=

+ββ ,      ja = .                                           (3.99) 

Series (3.99) converge very rapidly. If 3≤β , then the first five terms of the series are 

sufficient for error less than 3%, compared with the exact solution. 

3.2.3. Asymptotic formula for the impedance as ∞→β     

In order to calculate the limit of the impedance, , in the case of a double line above a 

conducting half-space as 

lZ

∞→β   (skin effect), it is convenient to substitute ηβ =s  into Eq. 

(3.56) for , lZ

η
ηη

βηη

βηη ηα de
j

j
jZl )cos1(

0

ˆ2

22

22

−
++

+−
= ∫

∞
− .                                                               (3.100) 

Eq. (3.100) is more convenient for calculations than Eq. (3.57) for all ),0( ∞∈β . It follows 

from Eq. (3.100) by taking the limit as ∞→β  that 

ll ZZ
∞→∞ =

β
lim: ,     ∫

∞
−

∞
−

−=
0

cos1 η
η

ηη dejZ p
l ,    α̂2=p .                                          (3.101) 

In order to calculate integral (3.101), the following property of the Laplace transform is used, 

[ ] )()( pFtfL =                   ⇒ ∫
∞

=⎥⎦
⎤

⎢⎣
⎡

p

dqqF
t
tfL )()( ,                                                  (3.102) 

that provide the convergence of the right-hand side of Eq. (3.102). We have  

]cos1[ tL − )(:
1

1
2 pF

p
p

p
=

+
−= .                                                                               (3.103) 
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Hence, it follows from Eqs. (3.102) and (3.103) that 

dq
q

q
q

jZ
p

l ∫
∞

∞ ⎥
⎦

⎤
⎢
⎣

⎡
+

−−=
1

1
2 p

p
j

1
ln

2 +
−=

α
α

ˆ2
1ˆ4ln

2 +
−= j .                                   (3.104) 

Eq. (3.104) gives the asymptotic value of the impedance for a double line above a conducting 

half-space as ∞→β . Formula (3.104) seems to be absent in the literature. The computational 

results obtained by means of Eq. (3.100) for different values of the parameter β  and for 

0,05.0,1.0,2.0ˆ =α  are shown in Fig. 3.2. As can be seen from this figure, all curves cross 

the imaginary axis at the points given by Eq. (3.104). 

In order to calculate the limit of the impedance  in the case of the coil located above a 

conducting half-space as 

cZ

∞→β  (skin effect), it is convenient to substitute ηβ =s  into Eq. 

(3.88): 

ηη
βηη

βηη ηα deJ
j

j
jZc ∫
∞

−

++

+−
=

0

ˆ22
122

22

)( .                                                                      (3.105) 

Eq. (3.105) is more convenient for calculations than formula (3.88) for all ),0( ∞∈β . Taking 

the limit as ∞→β , it follows from Eq. (3.105) that 

∫
∞

−
∞∞→

−==
0

2
1 )(:lim ηηη

β
dJejZZ p

cc ,   α̂2=p .                                                            (3.106) 

Integral (3.106) is evaluated in [55] and [60]: 

[ ])(2)()2(1 2 ϑϑϑ
πϑ

EKjZc −−−=∞ ,        ,                                          (3.107) 
2ˆ1

1
α

ϑ
+

=

where )(ϑK  and )(ϑE  are the full elliptic integrals of the first and second kind, respectively, 

tabulated, for example, in [53]. The computational results obtained by means of Eq. (3.105) 

for different values of the parameter β  and for 0,05.0,1.0,2.0ˆ =α  are shown in Fig.3.4. As 

can be seen from this figure, all curves cross the imaginary axis exactly at the points given by 

Eq. (3.107). 
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3.3. Exact analytical solution to the problem on impedance change of a 

rectangular frame with current inside a cylindrical tube 

3.3.1. Formulation of the problem 

The change in impedance of a rectangular frame with current inside a conducting 

cylindrical tube has been studied theoretically only in the double conductor line 

approximation (see [6]). In this section, (see also the authors’ paper [14], [35]), the exact 

analytical solution of the similar problem is obtained without using any approximation.  

Consider a thin-wall tube located in the region ,{ 1RrR ≤≤  ,20 πϕ ≤≤  , 

where r , ϕ ,  are cylindrical polar coordinates. The rectangular frame  is located 

inside the tube. The sides  and CD  are linear segments located on the lines 

z ABCD

AB ,{ 0rr =   

,0ϕϕ ±=   , but  and  are arcs of a circle located on the lines 

 ,

,lzl ≤≤− )}0( 0 Rr << BC DA

,{ 0rr = 00 ϕϕϕ ≤≤−  }. Due to the linearity of the problem, it is sufficient to consider 

separately the vector potential problem on electromagnetic waves spreading from each side of 

the rectangle. The impedance change 

lz ±=

indZ  of the whole frame is formed by the impedances of 

the sides , ,  and : AB BC CD DA

}+∞<<∞− z

ind ind ind ind ind
AB BC CD DAZ Z Z Z Z+ + += .                                                                                     (3.108) 

3.3.2. Emitter in the form of a linear segment 

Consider an emitter located on the linear segment  of the rectangular frame inside the 

tube (see Fig.3.5). It is known that in the case of a linear emitter, there are two components of 

the vector potential: 

AB

),,( zrAz ϕ  and ),,( zrAr ϕ  (see [6]). However, only  contributes to the 

impedance of frame ABCD. Besides, the problem for  is solved independently.  

zA

zA

The mathematical formulation of the problem has the form (see [6]): 

),,(0 zrAAz ϕ= , ;       Rr <<0

),,(1 zrAAz ϕ= , ;                                                                                      (3.109)                    1RrR ≤≤

),,(2 zrAAz ϕ= , , +∞<≤ rR1

where the functions , ,  satisfy the following equations (assuming that the relative 

magnetic permeability of the wall is 

0A 1A 2A

1=µ ). 
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Fig.3.5. Emitter of the form of a linear segment located inside a tube 

⎪⎩

⎪
⎨

⎧

<<−∉

<<<<−−
−

−
=

,0),,(,0

,0,),(
)(

0
0

0
0

0

Rrllz

Rrlzl
r

rr
I

LA
ϕϕδ

δ
µ

                                       (3.110) 

01
2

1 =+ AkLA ,         ,   1RrR << +∞<<∞− z ,                                                     (3.111) 

02 =LA ,                   +∞<< rR1 ,  +∞<<∞− z ,                                                    (3.112) 

where       

2

2

2

2

22

2 11
zrrrr

L
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
ϕ

,  

σµω 0
2 jk −=  and σ  is the conductivity of the tube. The right-hand side of Eq. (3.110) is 

selected so that the full current in each cross section constz =  ( lzl ≤≤− ) of the wire is 

equal to I : 

ϕϕϕδ
δπ

rdrd
r

rrI )()(
0

2

0 0 0

0 −
−

∫ ∫
∞

  rdrrrd
r
I
∫ ∫

∞

−−=
π

δϕϕϕδ
2

0 0
00

0

)()( .I=  

The boundary conditions are 

:Rr =  ,10 AA = ;        :1Rr =   ,21 AA =  
r

A
r
A

∂
∂

=
∂
∂ 21 ,                              (3.113) 

r
A

r
A

∂
∂

=
∂
∂ 10

∞±→z :  ;           0,, 210 →AAA +∞→r :  .                                               (3.114) 02 →A
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Due to the symmetry of the problem, the functions ),,( zrAi ϕ  ( 2 ) are even with 

respect to , i.e. the following additional condition holds: 

,1,0=i

z

0
0

=
∂
∂

=z

i

z
A ,   2,1,0=i .                                                                                             (3.115)                    

Applying the Fourier cosine transform with respect to , z

∫
∞

=
0

cos),,(2),,( zdzzrArA i
c
i νϕ

π
νϕ ,                                                                        (3.116) 

to problem (3.110)-(3.115), one obtains that 

ν
ν

π
ϕϕδ

δ
µν

l
r

rrIAL c sin2)()(
0

0

0
00 −

−
−= ,      Rr <<0 ,                                        (3.117) 

01
2

1 =+ cc AkALν ,    ,                                                                                 (3.118)  1RrR <<

02 =
cALν ,                +∞<< rR1 ,                                                                              (3.119)           

where  

 2
2

2

22

2 11 ν
ϕν −
∂
∂

+
∂
∂

+
∂
∂

=
rrrr

L .                                                                                 (3.120) 

The boundary conditions are 

:Rr =    ,10
cc AA = ;           :1Rr =     ,21

cc AA =
r

A
r

A cc

∂
∂

=
∂
∂ 21 ,                    (3.121) 

r
A

r
A cc

∂
∂

=
∂
∂ 10

+∞→r :  .                                                                                                     (3.122) 02 →
cA

The Fourier series of the function )( 0ϕϕδ −  has the form (see [6]):                                                             

∑
∞

=

−+=−
1

00 )(cos1
2
1)(

n
n ϕϕ

ππ
ϕϕδ ,                                                                         (3.123) 

and series (3.123) converges conditionally in the sense of Abel (see [6]). The solution of 

problem (3.117)-(3.122) is sought in the form: 

∑
∞

=

−+=
1

0
0 )(cos),(1
2

),(),,(
n

in
ic

i nrararA ϕϕν
ππ

ν
νϕ ,  2,1,0=i ,                                  (3.124) 

where ),(0 νrai  and ),( νrain  are unknown coefficients. Substituting Eqs. (3.123) and (3.124) 

into Eqs. (3.117)-(3.122), one obtains a boundary value problem for a system of ordinary 

differential equations with respect to the coefficients ),( νrain , 2,1,0=i . Solving this system 

and substituting the coefficients ),( νrain  into Eq. (3.124), one obtains the solution of problem 
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(3.117)-(3.122). Applying the inverse Fourier cosine transform, one obtains the solution of 

problem (3.109)-(3.115) in the form 

∫
∞

=
0

cos),,(2),,( νννϕ
π

ϕ zdrAzrA c
ii ,  2,1,0=i .                                                      (3.125) 

Since for calculating the impedance change we need only the value , we consider the 

solution for this component in detail: 

0A

 )(coscos),(21),,( 0
0

0
0

0 ϕϕνννγ
ππ

ϕ −= ∫∑
∞∞

=

nzdrazrA n
n

n ,                                       (3.126) 

where        

2
1

0 =γ , 1=nγ , ( ), ,...3,2,1=n

⎩
⎨
⎧

≤≤+
≤≤

=
,),()(
,0),(

),(
032

01
0 RrrrKCrIC

rrrIC
ra

nnnn

nn
n νν

ν
ν                                                       (3.127) 

)]()()()()([
)( 00001 ννννν

ν nnnnn
n

n fRKrIrRIrKr
RI

EC +−= ,                                        (3.128) 

),( 0012 rKErCC nnn ν−=    ),( 003 rEIrC nn ν=    ,sin2

0
0 r

lIE
ν
ν

π
µ=                              (3.129) 

1

0 0
4 5

( ) ( )( ) [ ( ) ( )
( ) ( )

n n
n n

n n

r I r I Rf q C I qR C K qR
R I R I R

ν νν
ν ν n

−
⎡ ′

′ ′= − +⎢
⎣ ⎦

⎤
⎥ ,                                         (3.130) 

6111114 )]()()()([ CRKqRKqqRKRKRC nnnn ννν ′−′= ,                                                    (3.131) 

6111115 )]()()()([ CqRIRKRKqRIqRC nnnn ννν ′−′= ,                                                      (3.132) 

{ )]()()()()[(1
111

1
6 RKqRIqRIqRKRK

R
C nnnnn ννν −′=  

      ,                                               (3.133) } 1
111 )]()()()()[( −′+′+ qRIqRKqRKqRIRqK nnnnn ν

22 kq −= ν ,   
Rz

n
n dz

zdIRI
ν

ν
=

=′ )()( ,   
Rz

n
n dz

zdKRK
ν

ν
=

=′ )()( ,                                  (3.134) 

( ) and ( )n nI z K z  are the modified Bessel functions of the first and the second kinds, 

respectively, of order . As n ∞→1R  (the thick-wall tube), the expression for )(νnf  is much 

simpler, and it has the form 

)()()()(
)()()( 00

qRKRqIRIqRK
qRKrI

R
rf

nnnn

nn
n ′−′

=
ννν

ν
ν .                                                            (3.135) 

 91                                                                         
 



 

The vector potential ),,(0 zrA ϕ  for side CD  is found from Eq. (3.126) by replacing 0ϕ  with 

0ϕ−  and by changing the sign of the sum to its opposite. From the expression for ),,(0 zrA ϕ  

in Eq. (3.126), we obtain , i.e. the part of the vector potential corresponding to the 

reaction of the tube’s walls to the wire on side . Thus, it is sufficient to consider only the 

terms which depend on , 

ind
0 ( , , )A r zϕ

AB

q R  and  in Eq. (3.126): 1R

ind
0 0

0 0

1 2( , , ) ( , )cos cos ( )ind
n n

n

A r z a r zd n 0ϕ γ ν ν ν ϕ
π π

∞∞

=

= −∑ ∫ ϕ ,                                     (3.136) 

ind
0 0 0( , ) [ ( ) ( ) ( )] ( )

( )n n n n
n

Ea r f r I r K R I r
I R nν ν ν ν
ν

= − ν                                                   (3.137) 

(the exact solution of the problem on electromagnetic waves spreading of the isolated frame 

 with current has been obtained in [13]). The formula for calculating the impedance 

change, 

ABCD
indZ , has the form (see Section 1.4 and [6]): 

ind ind
0l

C

jZ A dl
I
ω

= ∫ .                                                                                                     (3.138) 

It follows from Eq. (3.138) that, in the case of two wires located on sides  and CD , the 

impedance change has the form                           

AB

ind ind
AB CD

ind ind
0 0 0 0 02 [ ( , , ) ( , , )] .

l

AB o CD
o

j A r z A r z dz
I
ω ϕ ϕ= +∫                                                 (3.139) Z Z+

Substituting  taken from Eq. (3.136) and the corresponding expression for  

 into Eq. (3.139), one obtains 

ind
0 0 0( , , )ABA r zϕ

ind
0 0 0( , , )CDA r zϕ

ind ind
AB CD )2cos1()]()()([

)(
)(sin4

000
0 0

0
2

2

0
2

0 ϕνννν
ν
ν

ν
νγ

π
ωµ ndRKrIrf

RI
rIl

r
j

nnn
n n

n
n −−= ∑ ∫

∞

=

∞

.  Z Z+

                                                                                                                                    (3.140) 
Calculations have been made only for the case where there exists only one emitter on the axis 

of the cylinder and  (the thick-wall cylinder). In order to find  and ∞→1R ind
0A indZ , it is 

enough to take the limit in Eq. (3.136) as . Then all terms of series (3.136) tend to zero 

except the term with . The induced impedance change, 

00 →r

0=n indZ , has the form: 

2
ind 0

02
00

ˆ2 sin ( ) (
( )

l C K qR)Z j
I R

ν ν dωµ
π ν ν

∞ −⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ν ,                                                            (3.141) 

)()()()(
)(1)(ˆ

1001

0

RIqRKRIqRqK
qRK

R
C

ννν
ν

+
= ,          0

2 ωσµν jq += .                      (3.142) 
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Fig.3.6. Curves describing the change in impedance for 

 01.0=α (⎯), 1.0=α  (--  --), and for different values of β   

Introducing the dimensionless variables lR=α , 0ωσµβ =  and βν ls = , we obtain 

from Eqs. (3.141) and (3.142) that  

ind
02

2Z l Zωµ
π

= ⋅ ,  ds
sI

sKsC
s

sjZ ∫
∞ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0 0

0
2

)(
)()(ˆsin

αβ
αβ

β
ββ ,                                      (3.143) 

where 

)()()()(

)(1)(ˆ
1

2
00

2
1

2
0

sIjssKsIjsKjs

qRKsC
αβαβαβαβαβ ++++

= .                  (3.144) 

Calculation results of the impedance by means of Eq. (3.143) are presented in Fig.3.6. As 

can be seen from the figure, the influence of the conducting walls to the impedance increases 

as lR=α  decreases, i.e. as the emitter gets closer to the wall of the cylinder. 

3.3.3. Circular arc emitter 

The problem is solved for an emitter located on the arc CB ~~ ={  ,0rr = ,00 ϕϕϕ ≤≤−  

} (see Fig.3.7). However, one can easily obtain the solution of the prescribed problem, 

when the emitters are located on arcs and , from the obtained solution by replacing  

with  and , respectively. In the case of emitter located on arc 

0=z

BC DA z

Lz − Lz + CB ~~ , the equations 

for the vector potential components  and , are not decoupled (see [6]) so that the 

solution of this problem is more complicated. Consider only the case  (thick-wall 

tube), in order to explain the main idea of the method on deriving the solution. The solution 

for the case of finite  is performed similarly, but it is more bulky. 

ϕA rA

∞→1R

1R
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Fig.3.7. Circular arc emitter located inside a thick-wall tube 

The formulation of the problem has the form: 

,,0,
02~

2~

0
20

0
0

20

+∞<<∞−<<

⎪
⎪
⎭

⎪⎪
⎬

⎫

=
∂

∂
−

−=
∂
∂

+

zRr
A

r
AL

IA
r

AL

r

er

ϕ

µ
ϕ

ϕ

ϕ

                          (3.145), (3.146) 

,,,
02~

02~

1
21

2
1

1
21

2
1

+∞<<∞−+∞<<

⎪
⎪
⎭

⎪⎪
⎬

⎫

=
∂

∂
−+

=
∂
∂

++

zrR
A

r
AkAL

A
r

AkAL

rr

r

ϕ

ϕ

ϕ

ϕϕ

                   (3.147), (3.148) 

where 

⎩
⎨
⎧

−∉
≤≤−−

=
),,(,0
,),()(

00

000

ϕϕϕ
ϕϕϕδδ rrzI

I e                                                                        (3.149) 

2

2

2

2

222

2 111~
zrrrrr

L
∂
∂

+
∂
∂

+−
∂
∂

+
∂
∂

=
ϕ

,   i.e. 2
2

1L
r

= ∆ −  .                                          (3.150) 

Assuming that 1=µ , the boundary conditions at Rr =  for the components , , , 

, have the form (see similar boundary conditions on pp.19-20 in [6] for the case of a linear 

horizontal finite length emitter above a conducting half-space): 

ϕ0A rA0 ϕ1A

rA1

:Rr =         ,10 ϕϕ AA = ,10 rr AA =
r

A
r

A
∂

∂
=

∂

∂ ϕϕ 10 ,                                                         (3.151)  
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:Rr =     ⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
+

∂
∂

+=⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
+

∂
∂

+
ϕϕ
ϕϕ 11

12
00

02
0

~
1

~
1 A

r
ARA

k
A

r
ARA

k
r

r
r

r ,                              (3.152) 

:∞→r   ,                                                                                               (3.153) 0, 11 →rAA ϕ

where εµεωµ ˆ~
00

2
0 jk = , )ˆ(~

00
2 εωεσµµ jk +=  and ε̂  is the relative permittivity. Since the 

solution is an even function of , the following additional boundary condition takes place, z

   :0=z 0=
∂
∂

z
Ai ,   .                                                                                         (3.154) 1,0=i

Applying the Fourier cosine transform given by Eq. (3.116) to problem (3.145)-(3.154) and 

expanding the function ecI  (the Fourier cosine transform of the function eI  in Eq. (3.149)) 

and the unknown functions ,  into the Fourier series, we have: ),,( νϕϕ rAc
i ),,( νϕrAc

ir

  ⎥
⎦

⎤
⎢
⎣

⎡
+−= ∑

∞

=1

0
00 cossin2)(2

2
1),,(

n

ec n
n
nrrrI ϕ
ϕ

ϕδ
ππ

νϕ ,                                        (3.155)                   

∑
∞

=

+=
1

0 cos),(2),(1),,(
n

c
in

c
i

c
i nrararA ϕν

π
ν

π
νϕϕ ,     1,0=i ,                                        (3.156) 

∑
∞

=

=
1

sin),(2),,(
n

s
in

c
ir nrbrA ϕν

π
νϕ ,  1,0=i ,                                                                (3.157)  

where   )  are unknown coefficients. Substituting series (3.155)-

(3.157) into the equations for the functions ,  and comparing the 

coefficients of 

),,(0 νrac
i ),,( νrac

in ,( νrbs
in

),,( νϕϕ rAc
i ),,( νϕrAc

ir

ϕncos  and ϕnsin , one can obtain the boundary value problem for the system 

of ordinary differential equations with respect to the coefficients : ),,( νrac
in ),( νrbs

in

,0,
02~

)(sin2
2
12~

020

0
0

0020

Rr
a

r
nbL

rr
n
nIb

r
naL

c
n

s
nn

s
n

c
nn

<<

⎪
⎪
⎭

⎪⎪
⎬

⎫
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−−=+ δ
ϕ

µ
π                     (3.158), (3.159) 
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                                                (3.160), (3.161) 

where   

2
2

2

2

2 11~ ν−+
−+=

r
n

dr
d

rdr
dLn ,   ,,2,1,0 …=n  0 .                                      (3.162) 1000 == ss bb
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The boundary conditions are 

:Rr =   ,   ,             c
n

c
n aa 10 = s

n
s
n bb 10 = :∞→r  , b ,                            (3.163)                   01 →c

na 01 →s
n

:Rr =    

⎪
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02
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n
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s
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c
n

c
n

na
dr

dbRb
k

na
dr

dbRb
k

dr
da

dr
da

                    (3.164), (3.165) 

Since  ( 1), condition (3.165) at 00 =ib ,0=i 0=n  is correct and the problem for  (0ia 1,0=i ) 

is decoupled. Then the solution  has the form: ),(00 zra

∫
∞

=
0

0000 cos),(2),( ννν
π

zdrazra c ,                                                                             (3.166) 

where  

)()(),( 11000 rICrac ννν = ,      00 rr ≤≤ ;   

)()()()(),( 13012000 rICrKCrac ννννν += ,      Rrr ≤≤0 ; 

)()()( 01003010 rKErCC νννν += ,      )()( 010020 rIErC ννν = ,       IE
πν

ϕµ 2
2

00
0 = ,   

)]()()()[()( 1200
1

130 RKCCRIC ννννν −= − ,   

)]()()()([)()()( 1111
1

1200 RIRKqRKRIRRKCC νννννννν ′−′= − ,   22 kq −= ν .           (3.167) 

The solution for  allows one to obtain the sum ),(00 zra ind ind
BC DAZ Z+  in the case the detector coil 

of radius  is concentric with respect to the tube (see [5]). Using boundary condition 

(3.163), , the solution of the problem for the coefficients  and  

has the form: 

Rrc ≤

…,3,2,1=n ),( zrain ),( zrbin

 ∫
∞

=
0

cos),(2),( ννν
π

zdrazra c
inin ,         ∫

∞

=
0

cos),(2),( ννν
π

zdrbzrb s
inin ,              (3.168) 

where 

)],(),([
2
1),( ννν rvrura c

in
c
in

c
in += ,           )],(),([

2
1),( ννν rvrurb c

in
c
in

s
in −= ,                (3.169) 

)()(),( 10 rICru mn
c
n ννν = ,     00 rr ≤≤ ;   

)()()()(),( 320 rICrKCru mnmn
c
n ννννν += ,   Rrr ≤≤0 ; 

)()()(~),(1 qRKqrKCru mmn
c
n νν = ,            )()()( 0031 rKErCC mnnn νννν += ,  

)()( 002 rIErC mnn ννν = ,            )]()()(~)[()( 2
1

3 RKCCRIC mnnmn ννννν −= − ,   
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n
nIEn

00 sin2
2

ϕ
πν

µ
= , 1−= nm    for    ( 1),( νruc

in ,0=i ).                                        (3.170) 

The expressions for  are obtained from the formulas for  by replacing  

with  and 

),( νrvc
in ),( νruc

in m

1+n )(~ νnC  with , where )(ˆ νnC )(~ νnC  and  are unknown constants that are 

found by substituting Eq. (3.169) into the two boundary conditions (3.164) and (3.165).  

)(ˆ νnC

The solution to problem (3.145)-(3.154) for ),,(0 zrA ϕϕ  has the form: 

∑
∞

=

+=
1

0000 cos),(2),(1),,(
n

n nzrazrazrA ϕ
ππ

ϕϕ ,                                                        (3.171) 

where  and  are given by Eqs. (3.166)-(3.170). In order to obtain the 

expression of the vector potential 

),(00 zra ),(0 zra n

DABC AA + , we replace zνcos  with 

)(cos)(cos LzLz +−− νν . 

It follows from Eq. (3.138) that in the case of two wires located on arcs  and  the 

impedance change is 

BC DA

ind ind
BC DAZ Z+

ind ind0
0 0 0 0

0

2 [ ( , , ) ( , , )]
lj r A r L A r L dz

I ϕ ϕ
ω ϕ= +∫ .ϕ−                                                 (3.172) 

Choosing ind
0A ϕ  in Eq. (3.171) and putting it into Eq. (3.172), we finally obtain: 

ind ind
BC DAZ Z+ ×=

ππ
ω 24 0

I
rj   

        νν
ϕ

ννννν ν dL
n
nrIDrICrIC

n
nnnn∫ ∑

∞ ∞

=
+−

⎭
⎬
⎫

⎩
⎨
⎧

−++×
0 1

0
013013030 )2cos1(sin)]()()()([)()( ,   

)]()()(ˆ)[()( 1010
1
13 RKrIErCRID nnnnnn νννννν ++

−
+ −= .                                                   (3.173) 

Eqs. (3.140) and (3.173) give the solutions of the problem on the impedance of a frame with 

current inside a conducting tube. One possible application of the solution is the following. If 

the ratio of the frame’s sides CD  and , and the gap between the frame and tube’s wall are 

sufficiently small, then the eddy currents in the tube’s wall are mainly excited only under the 

frame. Therefore, the solution obtained can be used to determine the tube’s wall thickness 

directly under the frame for the case of non-concentric wall’s surfaces. The eccentricity in the 

tube’s geometry arises in the exploitation process of heat exchanger tubes. 

AB
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4. SOME PROBLEMS ON THE IMPEDANCE CHANGE OF  

MEDIA CONTAINING FLAWS 

4.1. Calculation of impedance change by using the method of additional 

currents 

The exact analytical solution for the problem of the influence of a conducting medium 

with an arbitrary flaw on a source of current is not known. Therefore, since 1960 different 

approximate analytical and numerical methods for that kind of problem have been used. The 

influence of a non-uniform conducting medium on a source of current has been investigated 

in monograph [6], by using the small parameter 121 σσε −= , where 1σ  and 2σ  are the 

conductivities of the conducting medium and the flaw, respectively. In order to obtain 

approximate and exact analytical solutions of that kind of problems two methods of additional 

current in a non-uniform conducting medium are developed in this thesis (see also the 

author’s paper [10], [11], [34]). The presence of additional current in the region of a flaw is 

assumed by the first method. The direction of this current is opposite to the direction of the 

eddy current that flows in the same region when the flaw is absent. The additional current 

used in the second method is chosen so that the differential equation for the uniform 

conducting medium is transformed into a differential equation for the flaw. Both methods are 

illustrated for the problem of a double conductor line above a two-layer conducting half-

space. This problem has an exact analytical solution that allows one to estimate the error for 

both methods. 

4.1.1. Formulation of the problem 

Consider two horizontal infinitely long parallel wires carrying an alternating current and 

placed in free space above a two-layer conducting medium. The wires are situated on the lines 

 ,{ 0yy = ,hz = }+∞<<∞− x  and },,{ 1 +∞<<∞−== xhzyy . The upper layer of 

thickness  and conductivity d 1σ  is situated in the region }0,,{ ≤≤−+∞<<−∞ zdyx ; the 

lower layer situated in the region },,{ dzyx −≤<∞−+∞<<−∞  is a half-space with 

conductivity 2σ  (see Fig.4.1).  
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Fig.4.1. A double conductor line above a two-layer conducting medium 

In this case the vector potential has only the x-component, i.e.  (see the 1),( zyAA x= st 

boundary value problem) and the formulation of the vector potential problem for the x-

component has the form (see [6]): 

,00
eIA µ−=∆  ,         ,                               (4.1)            )]()()[( 10 yyyyhzII e −−−−= δδδ 0>z

,01
2

11 =+∆ AkA           0<<− zd ,                                                                                (4.2)   

,02
2
22 =+∆ AkA           ,dz −<<∞−                                                                               (4.3) 

where ,  (i.e. the displacement current is absent) and ii jk σµω 0
2 −= 2,1=i iσ  is the 

conductivity of region . The boundary conditions are iR )2,1( =i

:0=z           ,10 AA = ,10

z
A

z
A

∂
∂

=
∂
∂                                                                                   (4.4) 

:dz −=        ,21 AA = .21

z
A

z
A

∂
∂

=
∂
∂                                                                                    (4.5) 

Problem (4.1)-(4.5) has been solved in [6]. The reaction of the conducting plate on the 

double conductor line is the following 

12 ( )
ind 0 1 2 1 1 2 1
0 2

1 1 2 1 2 10

[( )( ) ( )( ) ]( , )
2 ( )( ) ( )( )

q d z h

qd
I q q q q q q e eA y z

q q q q q q e

λµ λ λ
π λ λ

∞ − − +

−

+ − + − +
=

+ + − − −∫  

                
λ
λλλ dyyyy )](cos)([cos 10 −−−× ,                                                               (4.6) 

where 2
1

2
1 kq −= λ  and 2

2
2

2 kq −= λ . The induced change in impedance due to a 

conducting medium, per unit length of contour C  of a double conductor line, is given in [6]: 
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ind ind 0
0 ( , )

y y
z h

jZ A y z Z
I
ω µ ω

π=
=

= = .                                                                                  (4.7) 

4.1.2. Approximate solution to the problem by the first method of additional currents 

In order to solve problem (4.1)-(4.5) approximately, using the first method of additional 

current, the two-layer conducting medium should be replaced by the conducting half-space 

 (this means that Eq. (4.2) takes place in the whole region ). In this 

case, the vector potential  in the region 

}0{ <<−∞ z }0{ <<−∞ z

1A }0{ <z  has the form (see [6]): 

.)](cos)([cos:),(
0

10
1

0
11

1

∫
∞ −

∞ −−−
+

== λλλ
λπ

µ λ

dyyyy
q

eIAzyA
hzq

                                   (4.8) 

In the region  the eddy current  }0{ <z eI~  is defined by the formula (see [6]): 

.~
11 ∞−= AjI e ωσ                                                                                                              (4.9) 

First, consider the more explicit case 02 =σ  ) : the region 0( 2
2 =k }{ dz −<<−∞  is free space 

and the conducting plate of thickness  is located in the region d }0{ <<− zd . In order to pass 

from the conducting half-space to the conducting plate of finite thickness, it is assumed that 

there is an additional current, eÎ , in the region }{ dz −<<−∞  of the conducting half-space, 

and this current is opposite to the current given by Eq. (4.9): 

.~ˆ
11 ∞=−= AjII ee ωσ                                                                                                    (4.10) 

Then the equation for the vector potential in the region }{ dz −<<−∞  takes the form: 

,1
2

11
2

11 ∞=+∆ AkAkA        ,dz −<<∞−                                                                        (4.11) 

where  is given by Eq. (4.8). ∞1A
In general, if 02 ≠σ  ) , then, instead of Eq. (4.11), the following equation is 

obtained: 

0( 2
2 ≠k

,)( 1
2
2

2
11

2
11 ∞−=+∆ AkkAkA        .dz −<<∞−                                                             (4.12) 

Then the problem can be formulated as follows: 

,00
eIA µ−=∆   ,   ,                                  (4.13) )]()()[( 10 yyyyhzII e −−−−= δδδ 0>z

⎩
⎨
⎧

−<<∞−−
<<−

=+∆
∞ .,)(

,0,0

1
2
2

2
1

1
2

11 dzAkk
zd

AkA                                                                (4.14) 
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The boundary conditions are 

:0=z       ,10 AA = .10

z
A

z
A

∂
∂

=
∂
∂                                                                                      (4.15) 

The right-hand side of Eq. (4.14) is transformed to the form , where ∞∞ =− 1
2

11
2
2

2
1 )( AkAkk ε

2
1

2
212 11 kk−=−= σσε .  Therefore, one can prove that the solution of problem (4.13)-

(4.15) completely coincides with the approximate solution of problem (4.1)-(4.5) obtained by 

the perturbation method (see [3]), if one assumes that 

),,(),(),( )1()0( zyAzyAzyA iii ε+=      .2,1=i                                                                (4.16) 

The function  in Eq. (4.16) is the solution of problem (4.1)-(4.5) if )0(
iA 0=ε  (i.e. 12 kk = ). 

The terms  in Eq. (4.16) give a solution of problem (4.13)-(4.15), if we assume that the 

right-hand side of Eq. (4.13) is equal to zero, and substitute 

)1(
iA

1=ε  (i.e. ) into the right-

hand side of Eq. (4.14). This method had been used first in [3] for the problem of a double 

conductor line above a flawed medium when the flaw with conductivity 

02 =k

)1(12 εσσ −=  was 

situated in the rectangular domain ,,{ lylx ≤≤−+∞<<−∞  })( azba −≤≤+− . The change 

in impedance at 02 =σ  is obtained from the solution of problem (4.13)-(4.15) in the form 

ind 0
1Z Zµ ω

π
= ,          ξ

βξξ

βξξ
ξ

β

βξ
αξ

d
j

j
ee

Z

jd

∫
∞
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−

++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−−

=
0

222

22

2
2

2
1

)(

1)cos1(
22

,                          (4.17) 

where  

01µσωβ c= ,  ,  01 yyc −= ch=α ,  cdd = .  

The difference between indZ  obtained from the solution of problem (4.13)-(4.15) and the 

exact value of indZ  by means of Eq. (4.7) does not exceed 2% if .2.00 ≤≤ ε  However, if 

1=ε , the difference tends to 20% (see Fig.4.2). 

4.1.3. Approximate solution to the problem by the second method of additional currents 

Using this method one should replace a two-layer conducting medium with a conducting 

half-space of conductivity 1σ . However, instead of equation (4.12) the following equation is 

considered: 

.)( 2
2

2
11

2
11

eIkkAkA −=+∆                                                                                              (4.18) 
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The additional current, eI , is selected so that Eq. (4.18) is transformed into Eq. (4.3). For this 

purpose, we substitute 2
~AI e =  into Eq. (4.18), where 2

~A  is the solution of Eq. (4.3) of the 

domain , i.e. for the case where the layer }0{ <<−∞ z }0{ <<− zd  of conductivity 1σ  is 

absent: 

.)](cos)([cos),(~

0
10

2

0
2

2

∫
∞ −

−−−
+

= λλλ
λπ

µ λ

dyyyy
q

eIzyA
hzq

                                          (4.19) 

Then Eq. (4.18) can be written as  

.~)~( 2
2
221

2
11 AkAAkA −=−+∆                                                                                          (4.20) 

Substituting 21
~AA =  into Eq. (4.20), we obtain 

,0~~
2

2
22 =+∆ AkA                                                                                                            (4.21) 

i.e. Eq. (4.3) is obtained. In this case a complete formulation of the problem is given by Eqs. 

(4.13)-(4.15), where the value  is replaced by ∞1A 2
~A  on the right-hand side of Eq. (4.14). If 

02 =σ , the induced impedance change has the form 

2
0 ZZ ind
π
ωµ

= ,      
ξ
ξξ

βξξ
β εξ

βξξ de
j

eZ
jd

∫
∞

−
++−

−
++

−
=

0

2

222

)(
2

2 )cos1(
)(

1
22

.                           (4.22) 
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Fig.4.2. Curves describing the change in impedance 

for 1.0=α  and for different values of β ,  

where the continuous line is the exact solution by means of formula (4.7), 

the dotted line is obtained by the second method by means of formula (4.22), 

the dashed line is obtained by the first method by means of formula (4.17)). 
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The real and imaginary parts of the impedance change as functions of the parameter β  

are plotted in Fig.4.2 by means of the exact formula (4.7), and by the approximate formulas 

(4.17) and (4.22) for .1.0=α  Calculations show that the approximate solution (4.22) gives an 

error less than 6% for the value indZ  given by Eq. (4.7), while the error in Z  by means of Eq. 

(4.17) reaches 20%. 

Note that the second method gives a result that completely coincides with the exact 

solution if one uses the exact value of . FA

4.2. Impedance change of a conducting medium with a flaw of an arbitrary 

shape 

This section is devoted to the proof of a new exact analytical formula for the impedance 

change and the well-know formula in the literature (see [50] and [47]). Both formulas are 

proved in this thesis (see also the author’s papers [16], [19], [34], [37]). The derivation of the 

new formula is based on Green’s formula, since Lorentz’ theorem is used for obtaining the 

other formula. The newly obtained formula for the impedance change has the form of a triple 

integral of a scalar product of two vector potentials: the vector potential in the flaw and the 

vector potential in the same region in the absence of the flaw over the region containing the 

flaw. A similar formula obtained earlier by previous authors has the form of a triple integral 

of a scalar product of amplitude electric field vectors.  

4.2.1. Formulation of the problem 

The formula for the change in impedance used in the literature (see [50], [47]) has the 

form 

ind
2

( ) ,
F

F
F

V

Z E E dV
I

σ σ−
= − ⋅∫∫∫                                                                                   (4.23)                    

where  is the region of the flaw, FV Fσ  and σ  are the conductivities of the flawed and 

flawless regions, respectively, FE  is the amplitude electric field vector in the flawed region, 

E  is the amplitude electric field vector in the same region in the absence of the flaw and I  is 

the amplitude of the current vector density. 

The displacement current is neglected in Eq. (4.23) as it is used in the problems of eddy 

current testing and in the case of harmonic oscillations of the external current with frequency 
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ω  (see [6]). In this section (see also the author’s papers [16], [19], [34], [37]), a new formula 

for indZ  is obtained in a form more suitable for computations: 

2
ind

2
( ) ,

F

F
F

V

Z A A dV
I

ω σ σ−
= ∫∫∫ ⋅                                                                                  (4.24)                   

where FA  is the amplitude vector potential in the flawed region, A  is the amplitude vector 

potential in the same region in the absence of the flaw (i.e. the case when all physical 

properties of the region  are the same as the physical properties of the conducting region 

outside of region ) and  is the frequency. 

FV

FV ω

The aim is to prove that the right-hand sides of Eqs. (4.23) and (4.24) coincide (see also 

the author’s papers [19] and [37]), i.e.  

=⋅∫∫∫ dVEE
FV

F dVAA
FV

F∫∫∫ ⋅− 2ω .                                                                               (4.25) 

Note that the relationship between the vectors E  and A  in the case of harmonic oscillations 

of the external current with frequency  is given by (see [6]):  ω

2
1

1 grad divE j A
k

ω= − + A ,                                                                                          (4.26)                    

where ω)εjε(σµµk 00 ˆ~2
1 +=  if the displacement current is taken into account and σµµk 0=2

1
~  if 

the displacement current is neglected,  and  are the electric and magnetic constants, 

respectively; 

0ε 0µ

ε̂  and µ  are the relative permittivity and relative magnetic permeability of the 

medium, respectively, and 1−=j  is the imaginary unit. 

It follows from Eq. (4.26) that Eq. (4.25) is correct if 

div 0A = ,    div .                                                                                               (4.27) 0FA =

In fact Eq. (4.27) is only valid in the case of a homogeneous half-space as the conducting 

region and the external current located either on a single-turn coil or double conductor line in 

the plane parallel to the half-space. Eq. (4.27) is also valid if the flaw of the inhomogeneous 

half-space is a cylindrical body coaxial with a single-turn coil carrying the external current 

(see [66], [67]) or if the flaw is an infinitely long cylinder parallel to double conductor line 

carrying the external current (see [5]). In all other cases, div 0A ≠ ,  in the region 

. However, Eqs. (4.23), (4.24) and (4.25) are still true as it will be shown below. 

div 0FA ≠

FV

It follows from Eqs. (4.25) and (4.26) that for a flaw situated in an arbitrary region  FV
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2 2
1 1[ graddiv graddiv

F

F F F
V

j A k A j A k Aω ω− ⋅ − ⋅ + graddiv graddiv ] 0FA A dV∫∫∫ ⋅ = ,     (4.28)                    

where )ˆ~2
1 ωεjε(σµµk F0F0F += .  

At first sight, assuming the continuity of the functions A , FA , , graddivA graddiv FA , 

one may conclude that graddiv 0A = , graddiv 0FA =  (using the known theorem: if a 

function  is continuous in a closed region  and for any region )(Mf FV FVV ⊂~  the formula 

 is valid, then 0)( =∫∫∫V dVMf 0)( =Mf  for all FVM ∈ ). However, this is not true. In fact, 

by changing the region , the functions FV A  and FA  are changed too. Therefore, Eq. (4.28) is 

also valid if ,  in the region .   div 0A ≠ div 0FA ≠ FV

In the previous studies (see [50], [47]) in trying to prove Eq. (4.23) for impedance 

change, it was assumed that div 0A =  in Eq. (4.26). Besides, in [50] it was assumed that the 

scalar potential gives a change in the static field only. That statement is not true. It was 

suggested in [47] to use the Coulomb’s gauge, i.e. div 0A = . At the same time, the authors 

use the following equation for the vector potential A : 

extIµµAkA 0
2 =+∆ , .                                                                          (4.29)  µωσµ0

2 jk −=

It is well known that Eq. (4.29) is not correct in this case. In fact, in the case of Coulomb’s 

gauge the equation for the vector potential is more complicated (see [6], p.10), and has the 

form 

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+∇
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+∇=∆
t
A

tt
AA ϕεµεµϕσµµ ˆ000

eIµµ0 ,                                        (4.30) 

where ϕ  is the scalar potential.  

Note also that in this problem by taking the displacement current into account, the 

coefficient 2)( IσσF −  in Eqs. (4.23) and (4.24) is transformed into the coefficient  

2
0

2

)ˆˆ(
I

j
I

FF εεεωσσ −
+

− ,                                                                                              (4.31) 

where Fε̂  and ε̂  are the relative electric permittivity in the flawed and flawless regions. 
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4.2.2. New convenient formula for the change in impedance 

Let us prove the new formula (4.24) for the impedance change, which describes the 

influence of a conducting medium with a flaw of arbitrary shape on a source of current. 

Consider a conducting half-space situated in the region ={1V +∞<<∞− yx, , 0<<∞− z } 

with a flaw in the region . The source of current is located in free space, , on the 

closed curve described by the equation: 

1VVF ∈ 0V

hz = ,  )(ϕρρ = ,   πϕ 20 ≤≤ ,                                                                                  (4.32) 

where z,,ϕρ  are cylindrical polar coordinates. One also can use the Cartesian coordinates 

zyx ,,  (see Fig.4.3). 

  Y

X

Z

0

V0

 V1

L

VF

 
Fig.4.3. Contour  with current above a conducting half-space, ,  L 1V

containing a flaw of arbitrary form in region  FV

The current in the contour is given by 

τδϕρρδ ehzII e )()]([ −−= ,    πϕ 20 ≤≤ ,                                                                (4.33) 

where I  is the complex amplitude of the current’s density, )(xδ  is the Dirac delta function 

and τe  is the unit vector to the tangent of line (4.32). In this case the complex amplitude 

),,( zyxA  of the vector potential has three components , ,  (see [6]):  xA yA zA

zzh ezyxAzyxAzyxA ),,(),,(),,( += ,                                                                          (4.34)  

yyxxh ezyxAezyxAzyxA ),,(),,(),,( += .                                                                    (4.35) 
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Since the source of current is situated in the horizontal plane, then only the horizontal 

component of the vector potential, ),,( zyxAh , contributes to the impedance. It is known that 

the problem for the horizontal component can be solved separately (see [6]).  The solution of 

the problem to the vertical component needs only satisfy all boundary conditions for the 

components , ,  in the plane xA yA zA 0=z . That is why it is not necessary to solve the 

problem for .  zA

The mathematical formulation of the problem for the horizontal component has the form 

e
0h IµA −=∆ 0 ,        +∞<<∞− yx, ,      ,0 +∞<< z                                                  (4.36) 

,01
2

11 =+∆ hh AkA     +∞<<∞− yx, ,   ,0<<∞− z    FVzyx ∉),,( ,                          (4.37) 

,02 =+∆ FhFFh AkA    +∞<<∞− yx, ,   ,0<<∞− z    FVzyx ∈),,( ,                          (4.38) 

with the corresponding boundary conditions on the boundaries of regions ,  and . The 

problem for a non-uniform medium can be transformed into the problem for a uniform 

medium with non-uniform right-hand side so that system (4.36)-(4.38) can be rewritten in the 

form 

0V 1V FV

e
0h IµA −=∆ 0 ,                     +∞<<∞− yx, ,        ,0 +∞<< z                                   (4.39) 

=+∆ hh AkA 1
2

11
⎩
⎨
⎧

− ,)(
,0

22
1 FhF Akk

  
,0,),,(
,0,),,(

<<∞−∈
<<∞−∉
zVzyx
zVzyx

F

F                                  (4.40) 

with the boundary conditions 

:0=z  ,10 hh AA =   
z
A

z
A hh

∂
∂

=
∂
∂ 10 ;                                                                                 (4.41) 

∞→++ 222 zyx  ( ):  0>z ;00 →hA        (∞→++ 222 zyx 0<z ):   .      (4.42) 01 →hA

It is to be noted that  on the right-hand side of Eq. (4.40) is taken from the solution of 

problem (4.36)-(4.38) with the corresponding boundary conditions. Besides, the right-hand 

side of Eq. (4.40) is chosen such that substituting 

FhA

Fhh AA =1  into Eq. (4.40), Eq. (4.40) is 

transformed into Eq. (4.38). 

In order to obtain Eq. (4.24) for indZ , and due to the linearity of the problem, the 

functions  and  can be written in the form ),,(0 zyxA h ),,(1 zyxA h

absnt
0 0 0 ,ind 0 ,ind( , , ) ( , , ) ( , , ) ( , , ),h h h hA x y z A x y z A x y z A x y z′ ′′= + +                                         (4.43) 
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),,,(),,(),,( 111 zyxAzyxAzyxA hhh ′′+′=                                                                         (4.44) 

where  
absnt
0hA   is the solution of Eq. (4.39) in the absence of the conducting half-space in the 

region ;   0<z

0 ,indhA′  is the reaction of the conducting medium under the condition that the medium is 

uniform, i.e.  (in other words, the right-hand side of Eq. (4.40) is equal to zero), 

but ;  

1kkF =

0≠I

0 ,indhA′′  is a contribution to the reaction of the conducting medium under the condition that 

the medium is non-uniform , i.e. 1kkF ≠ , but 0=I  (in other words,  is the 

solution of problem (4.39) - (4.42) when 

0 ,indhA′′

0=I , but 1kkF ≠ ). 

Similarly, 

hA1′   is the solution of Eq. (4.40) at 1kkF = , but 0≠I ; 

hA1′′   is the solution of Eq. (4.40) at 1kkF ≠ , but 0=I .  

It follows from the boundary conditions (4.41) and Eqs. (4.43), (4.44) that the following 

equalities are to be satisfied: 

:0=z   ,10 hh AA =        ⇒    abst
0 0 ,ind 0 ,indh h hA A A′ ′′+ + = hh AA 11 ′′+′ ;                                     (4.45) 

:0=z   
z
A

z
A hh

∂
∂

=
∂
∂ 10 ,    ⇒    

absnt
0 ,ind 0 ,ind0 h hh A AA

z z z
′ ′′∂ ∂∂

+ + =
∂ ∂ ∂ z

A
z
A hh

∂
′′∂

+
∂
′∂ 11 .                       (4.46) 

Thus, it follows from Eqs. (4.45) and (4.46) that 

:0=z    

absnt
1 0 0 ,ind

absnt
0 ,ind1 0

;

;

h h h

hh h

A A A

AA A
z z z

⎧ ′ ′= +
⎪
⎨ ′∂′∂ ∂

= +⎪
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1 0 ,ind

0 ,ind1

;

.

h h

hh

A A

AA
z z

′′ ′′=

′′∂′′∂
=

∂ ∂

                                               (4.47) 

Since  is the solution of the inhomogeneous Eq. (4.39), then the functions absnt
0hA 0 ,indhA′  and 

 must be the solutions of the corresponding homogeneous equations 0 ,indhA′′

0 ,ind 0,hA′∆ =         .                                                                           (4.48), (4.49)                    0 ,ind 0hA′′∆ =

Since  is the solution of the homogeneous Eq. (4.40) when hA1′ 1kkF = , then the function hA1′  

satisfies the equation 

01
2

11 =′+′∆ hh AkA .                                                                                                         (4.50) 
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In the case of problem (4.36)-(4.38) for a non-uniform medium, the change in impedance due 

to a flaw in the conducting medium has the form (see [6]):   

ind
0 ,ind ( , , )h

L

jZ A x y z d
I

lω ′′= ∫ .                                                                                      (4.51)                

Consider Green’s formula  

Sd
n
uv

n
vudVuvvu

SV
∫∫∫∫∫ ∂

∂
−

∂
∂

=∆−∆ )()( ,                                                                    (4.52) 

where  is the closed surface bounding the region V , S 222222 zyx ∂∂+∂∂+∂∂=∆ , n  is 

the outer normal to surface , and the functions S vuvu ,,  are continuous in the closed 

region. It is easy to prove that Green’s formula (4.52) takes place for the two vector functions 

∆∆ ,

zzyyxx eMAeMAeMAA )()()( ++=     and     zzyyxx eMBeMBeMBB )()()( ++=  

in Cartesian coordinates, and has the form 

( )
V S

B AA B B A dV A B dS
n n

⎛ ⎞∂ ∂
∆ − ∆ = −⎜ ∂ ∂⎝ ⎠

∫∫∫ ∫∫ ⎟ .                                                            (4.53) 

In order to prove Eq. (4.53), it is enough to write Eq. (4.52) for the three pairs of projections 

, ,  and to sum the written results. ),( xx BA ),( yy BA ),( zz BA

Now in order to evaluate a formula for indZ  of Eq. (4.51), it is necessary to consider the 

contour of integration in detail. 

I. Consider the region . Taking the scalar product of Eq. (4.40) with  and Eq. 

(4.50) with , and subtracting the first product from the second one, one obtains that  

0<z hA1′

hA1

a)   times Eq. (4.40) equals hA1′

=′+∆′ hhhh AAkAA 11
2

111
⎩
⎨
⎧

′− ,)(
,0

1
22

1 FhhF AAkk
 

,0,),,(
,0,),,(

<<∞−∈
<<∞−∉
zVzyx
zVzyx

F

F                     (4.54) 

b)   times Eq. (4.50) equals hA1

,011
2

111 =′+′∆ hhhh AAkAA                                                                                                (4.55) 

c)  Eq. (4.55) minus Eq. (4.54): 

FhhFhhhh AAkkAAAA 1
22

11111 )( ′−−=∆′−′∆ .                                                                        (4.56) 

It follows from Eq. (4.56) by integrating over the region 0<z  that 
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dVAAkkdVAAAA Fhh
V

Fhhhh
z F

1
22

11111
0

)()( ′−−=∆′−′∆ ∫∫∫∫∫∫
<

,                                            (4.57) 

and it follows from Eq. (4.57) by using Green’s formula (4.53) that  

2 21 1
1 1 1 1( )

F

h h
h h F Fh h

S V

A AA A dS k k A A dV
n n

⎛ ⎞′∂ ∂′ − = −⎜ ⎟∂ ∂⎝ ⎠
∫∫ ∫∫∫ ′ ,                                              (4.58) 

where  is the closed surface of the integration (see Fig.4.4).  S

  Y

X

Z

0

R
S

n

 
Fig. 4.4. Closed integration surface  (S 0<z ) 

Since ,  as , and hA1 01 →′hA ∞→++= 2222 zyxR 0<z , then instead of the surface integral 

over the closed surface  (see Fig. 4.4.), only the double integral over the plane S 0=z  

remains on the left-hand side of Eq. (4.58), and in the plane 0=z : 

∫∫∫∫ ∫ ′−=
∂
′∂

−
∂
∂′

=

+∞

∞−

+∞

∞− FV
hFhF

z

h
h

h
h dVAAkkdxdy

z
AA

z
AA 1

22
1

0

1
1

1
1 )()( .                                        (4.59) 

Using the boundary conditions (4.47) and the decomposition (4.44), one can perform the 

transformations 

:0=z  
z
AAAAA

z
A

z
AA

z
AA h

hhhhh
h

h
h

h ∂
′∂′′+′−′′+′

∂
∂′=

∂
′∂

−
∂
∂′ 1

11111
1

1
1

1 )()(   

                 0 ,ind1 1
1 1 0 0 ,ind ,hh h
h h h h

AA A AA A A A
z z z

′′∂′′ ′ ′∂ ∂ ∂′ ′′ ′ ′′= − = −
∂ ∂ ∂ ∂

0h

z

d′

                                  (4.60) 

where  Then it follows from Eqs. (4.59) and (4.60) that  absnt
0 0 0 ,in .h h hA A A′ = +

0 ,ind 2 20
0 0 1

0

( ) ( )
F

h h
h h F Fh

Vz

A AA A dxdy k k A A dV
z z

+∞ +∞

−∞ −∞ =

′′∂ ′∂′ ′′− = −
∂ ∂∫ ∫ ∫∫∫ 1h′ .                                 (4.61) 
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II. Consider the region . By a similar way, one can perform the same 

transformations with Eq. (4.39) for 

0>z

hA0  and with 0 ,ind 0hA′′∆ =  in the region . Taking the 

scalar product of Eq. (4.39) with 

0>z

0 ,indhA′′  and 0 ,ind 0hA′′∆ =  with hA0 , and subtracting the first 

product from the second one, we obtain 

0 0 ,ind 0 ,ind 0 0 0 ,ind
e

h h h h hA A A A I Aµ′′ ′′ ′∆ − ∆ = .                                                                           (4.62) 

It follows from Eq. (4.62) by integrating over the region  that 0>z

0 0 ,ind 0 ,ind 0 0 0 ,ind
0 0

( ) e
h h h h h

z z

A A A A dV I A dVµ
> >

′′ ′′ ′′∆ − ∆ =∫∫∫ ∫∫∫ ,                                               (4.63) 

and it follows from Eq. (4.63) by using Green’s formula (4.53) that  

0 ,ind 0
0 0 ,ind 0 0 ,ind

0

( )h h
h h h

S z

A AA A dS I A dV
n n

µ
>

′′∂ ∂′′ ′′− =
∂ ∂∫∫ ∫∫∫ e ,                                               (4.64) 

where  is the closed surface of integration (see Fig.4.5).  S

Since ,  as , and , then instead of the surface 

integral over the closed surface , only the double integral over the plane  remains on 

the left-hand side of Eq. (4.64), and in the plane 

hA0 0 ,ind 0hA′′ → ∞→++= 2222 zyxR 0>z

S 0=z

0=z : 

0 ,ind 0
0 0 ,ind 0 0 ,ind

00

( )h h
h h h

zz

A AA A dxdy I A dV
z z

µ
+∞ +∞

−∞ −∞ >=

′′∂ ∂′′ ′′− − =
∂ ∂∫ ∫ ∫∫∫ e .                                    (4.65)   

  Y

X

Z

0

R S

n

0>z

 
Fig. 4.5. Closed integration surface  ( ) S 0>z

The minus sign on the left-hand side of Eq. (4.65) comes from the fact that the outer normal 

to the surface  in region  is opposite to the direction of the -axis.  0=z 0>z z
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Using the decomposition absnt
0 0 0 ,ind 0 ,ih h h hA A A A nd′ ′′= + + , we perform the transformations 

:0=z  0 ,ind absnt 0 ,ind0
0 0 ,ind 0 0 ,ind 0 ,ind( )h hh
h h h h h

A AAA A A A A
z z
′′ ′′∂ ∂∂′′ ′ ′′− = + +
∂ ∂ z∂

  

                absnt
0 ,ind 0 0 ,ind 0 ,ind( )h h h hA A A A

z
∂′′ ′ ′′− + + =
∂

0 ,ind 0
0 0 ,ind ,h h
h h

A AA A
z z
′′∂ ′∂′ ′′−
∂ ∂

                    (4.66) 

where  Then it follows from Eq. (4.65), by using Eqs. (4.66) and (4.33), 

that 

absnt
0 0 0 ,in .h h hA A A′ = + d′

0 ,ind 0
0 0

0

( )h h
h h

z

A AA A dxdy
z z

+∞ +∞

−∞ −∞ =

′′∂ ′∂′ ′′− =
∂ ∂∫ ∫ 0 0

0

[ ( )] ( ) h
z

,indI z h e A dVτµ δ ρ ρ ϕ δ
>

′′− − −∫∫∫ .   (4.67) 

Transforming the right-hand side of Eq. (4.67) by using the main property of the delta 

function, we have 

0 ,ind
0

[ ( )] ( ) h
z

z h e A dxdydzτδ ρ ρ ϕ δ
>

′′− −∫∫∫ 0 ,ind[ ( )] h

z h

e A dxdyτδ ρ ρ ϕ
+∞ +∞

−∞ −∞ =

′′= −∫ ∫ .            (4.68) 

It follows from Eq. (4.68), passing to polar cylindrical coordinates by substituting 

ϕρ cos=x , ϕρ sin=y , ϕρρ dddxdy = , that 

2

0 ,ind
0 0

[ ( )] h

z h

F d e A d
π

τϕ δ ρ ρ ϕ ρ ρ
∞

=

′′≡ −∫ ∫
2

0 ,ind
0

( ( ), ) ( )hA h e
π

τ dρ ϕ ρ ϕ′′= ∫ ϕ .                   (4.69) 

But  . Consequently, it follows from Eqs. (4.69) and (4.51) that lddlede == ττ ϕϕρ )(

ind
0 ,ind ( ( ), )h

L

IF A h dl Z
j

ρ ϕ
ω

′′= ∫ =

1

.                                                                              (4.70) 

Since the left-hand sides of Eqs. (4.61) and (4.67) are equal, then the right-hand sides must be 

equal as well, 

2 ind 1 2 2
0 1( ) ( )

F

F Fh h
V

I Z j k k A A dVµ ω − ′− = − ∫∫∫ .                                                                  (4.71) 

Since  2
1k jω µ1 0σ=  and , it follows from Eq. (4.71) that  2

0F Fk jω µσ=

2 ind 1
0 0 1( ) ( )

F

F Fh h
V

1I Z j j A A dVµ ω ωµ σ σ− ′− = − ∫∫∫ .                                                         (4.72) 

It follows from Eq. (4.72) that 

2
ind 1

12
( )

F

F
Fh h

V

Z A A dV
I

ω σ σ− ′= ∫∫∫ ,                                                                                (4.73) 
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i.e. the obtained formula is similar to formula (4.24). 

4.2.3. Formula for impedance change known in the literature 

In the literature (see [50], [20]) formula (4.23) for induced changes in impedance, 

describing the influence of a conducting medium with a flaw of arbitrary shape on a source of 

current, seems to have been used without any strict proof before. In particular, it is usually 

obtained without describing the source of external current. This fact creates difficulties for 

estimating the degree of mathematical basis of the formula. In the present thesis (see also 

author’s paper [19], [37]), this formula is analytically proved and its correctness is verified. 

The proof is performed taking into account the displacement current.  

Let an emitter be located on a closed curve described in parametric form in polar 

cylindrical coordinates ),,( zϕρ  by the equation: 

⎩
⎨
⎧

=
=

),(
),(

ϕ
ϕρρ

zz
  πϕ 20 ≤≤ ,                                                                                              (4.74) 

where )(),( ϕϕρ z  are prescribed functions and ϕ  is a parameter. An equation describing any 

closed curve can be written by using Eq. (4.74) and choosing the appropriate system of 

rectangular coordinates .   ),,( zyx

Consider a sphere  of radius RS R  with an interior closed surface  of arbitrary form 

(see Fig.4.6). The surface  covers a region  containing a single-turn coil, and a region 

 of the conducting medium. A closed surface  bounds the region  containing only a 

single-turn coil. A closed surface  bounds the region V  containing a conducting medium 

with conductivity 

S

S coilV

V coilS coilV

VS

constσ =  and the relative permittivity ˆ constε = , and a region  with 

conductivity 

FV

constFσ =  and the relative permittivity ˆ constFε = . The region  is bounded 

by a closed surface . Finally, V

FV

FS
~  is a region bounded by the surfaces  and , and VS RS

~~  is a 

region bounded by the surfaces ,  and . S coilS VS

In the case of harmonic oscillations of the external current with frequency ω  in the 

closed coil, Maxwell’s equations for the complex-valued amplitude electric field vector E  

and the complex-valued amplitude magnetic field vector H  have the form (see [6]):   

curl 0E jωµ µH= − ,                                                                                                      (4.75) 

ˆcurl e
0H (σ jε εω)E I= + + .                                                                                          (4.76) 
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V~

V
~~

coilV

V

S
RS

VS

FS

coilS R

coilL

+n

+n

+n

FV
+n

 
Fig.4.6. The disposition of the regions and closed surfaces 

According to Eq. (4.74), one can write 

τϕδϕρρδϕρ ezz,hII e )]([)]([)( −−= ,                                                                       (4.77) 

where τe  is a unit vector of the tangent to the curve given by Eq. (4.74), I  is the complex-

valued amplitude current vector density. The coefficient ),( ϕρh  in Eq. (4.77) has the form: 

222 )]([)]([1),( ϕϕρρ
ρ

ϕρ zh ′+′+= .                                                                        (4.78) 

The coefficient ),( ϕρh  is chosen so that the triple integral of eI  over the whole space is 

equal to the following constant: 

coil coil coil coil
eI dV I L Lσ

+∞ +∞ +∞

−∞ −∞ −∞

= = Ε∫ ∫ ∫ ,                                                                            (4.79) 

where coilσ  is the conductivity of the coil,  is the length of the closed contour given by 

Eq. (4.74) with the current density 

coilL

constI = , coil coilLΕ  is the electromotive force that is 

necessary for supporting the current of density constI =  in this closed contour. It follows 

from Eq. (4.74) that the contour’s length, , is equal to coilL

2
2 2

coil
0

[ ( )] [ ( )] [ ( )]L
π

2z dρ ϕ ρ ϕ ϕ′ ′= + +∫ ϕ ,                                                                (4.80) 
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assuming that the origin of the coordinate system is located inside the coil. In order to prove 

Eq. (4.79), we substitute eI  given by Eq. (4.77) into the integral of Eq. (4.79). Using the 

main property of the delta function and Eq. (4.80), we obtain 

=∫ ∫ ∫
+∞

∞−

+∞

∞−

+∞

∞−

dxdydzI e ×′+′+∫∫
∞

ρρϕϕρρ
ρ

ϕ
π

dzdI 222

0

2

0

)]([)]([1   

=−−× ∫
+∞

∞−

dzzz )]([)]([ ϕδϕρρδ =′+′+∫ ϕϕϕρρ
π

dzI
2

0

222 )]([)]([      

coil coil coil coilI L Lσ= = Ε .                                                                                                  (4.81) 

Hence, formula (4.79) is proved. 

Consider the system of Eqs. (4.75)-(4.76) for the following two cases: for the case when 

the flaw is absent, i.e. σσ =F  in the region  (by substituting FV absE E= , ), and in 

the presence of the flaw (by substituting 

absH H=

FEE = , FHH = ). Then assuming that the external 

current vector density eI  is the same in both cases and is defined by Eq. (4.77), one obtains 

abs 0 abscurlE jωµ µH− = ,                                                                                               (4.82) 

2
abs abs abscurl eH k E I= +

F

,                                                                                                (4.83) 

0curl FE jωµ µH− = ,                                                                                                  (4.84) 

2curl e
F F FH k E I= + ,                                                                                                    (4.85) 

where  

2
absk =

⎩
⎨
⎧ +

,ˆ
,ˆ

0

0

ωεε
ωεεσ

j
j

 
,),,(
,),,(
VzyxM
VzyxM

∉
∈

                                                                              (4.86) 

=2~
Fk

⎩
⎨
⎧

+
+

,ˆ
,ˆ

0

0

ωεεσ
ωεεσ

j
j FF  

.),,(
,),,(

F

F

VzyxM
VzyxM

∉
∈

                                                                          (4.87) 

In the above,  and  are the solutions of Eqs. (4.82)-(4.83) such that:  absE absH

1) the tangent components of the vectors absE  and absH  are continuous on the surface    VS

   (see [6]); 

2) the vectors  and  satisfy the radiation condition at infinity (see [65]). absE absH

Similarly, FE  and FH  are the solutions of Eqs. (4.84)-(4.85) such that: 

1) the tangent components of the vectors FE  and FH  are continuous on the surfaces    FS

    and ;  VS
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2) the vectors FE  and FH  satisfy the radiation condition at infinity. 

In order to prove Eq. (4.23) we use Lorentz’ reciprocity theorem (see [6]). Taking the 

scalar product of Eq. (4.83) with FE  and of Eq. (4.84) with absH , and summing both 

products, one obtains 

abs abscurl curlF FE H H E⋅ − ⋅ = 2
abs abs abs

e
F F 0k E E I E jωµ µH HF⋅ + ⋅ + ⋅ .                      (4.88) 

From  

abs abs absdiv ( ) curl curlF F FE H H E E H× = ⋅ − ⋅ ,                                                            (4.89) 

and Eq. (4.84), it follows 

absdiv ( )FE H− × = 2
abs abs abs

e
F F 0k E E I E jωµ µH H⋅ + ⋅ + ⋅ F

)

.                                        (4.90) 

Interchanging the subscripts ab  and  in Eq. (4.90) (i.e. doing the similar operations 

with Eqs. (4.82) and (4.85)), we obtain 

s F

absdiv ( )FE H− × = 2
abs abs abs

e
F F 0 Fk E E I E jωµ µH H⋅ + ⋅ + ⋅ .                                        (4.91) 

Subtracting Eq. (4.90) from Eq. (4.91) yields 

abs absdiv ( )F FE H E H× − × = 2 2
abs abs abs( ) (e

F F Fk k E E I E E− ⋅ − ⋅ − .                              (4.92) 

I. Integrating Eq. (4.92) over the region V~  bounded by the closed surfaces  and  

yields 

RS S

abs absdiv ( )F F
V

E H E H dV× − × = 2 2
abs abs( )F F

V

k k E E dV∫∫∫ − ⋅ −∫∫∫ abs( )e
F

V

I E E dV⋅ −∫∫∫ .                    

                                                                                                                                      (4.93) 
Since  and  in the region V2 2

abs 0Fk k− = 0=eI ~  (see Eqs. (4.77), (4.86), (4.87)), the right-hand 

side of Eq. (4.93) is equal to zero in the region V~ . The left-hand side is transformed using the 

Gauss’ divergence theorem and taking into account that the boundary of the region V~  

consists of two closed surfaces  and  (see Fig.5.6). As a result, we obtain RS S

abs abs( )
R

F F
S S

E H E H n dS+
⎡ ⎤

+ × − × ⋅⎢ ⎥
⎢ ⎥⎣ ⎦
∫∫ ∫∫ 0= ,                                                          (4.94) 

where +n  is a unit vector of the external normal to the boundary of region V~ . We assume that  

the integrand in Eq. (4.92) tends to zero faster than 2−R  as ∞→R . Since the surface  is a RS

 sphere of radius R , we have 

abs abslim ( ) 0
R

F FR
S

E H E H n dS+

→∞
× − × ⋅ =∫∫ .                                                                  (4.95) 
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Thus, it follows from Eq. (4.95) that 

0=⋅ +∫∫ dSnR
S

,                                                                                                           (4.96) 

where  

abs absF FR E H E H= × − × .                                                                                            (4.97) 

II. Integrating Eq. (4.92) over the region V
~~  bounded by the three closed surfaces ,  

and , using Gauss’ divergence theorem and taking into account that in the region V  the 

right-hand side of Eq. (4.92) is equal to zero, we obtain 

S coilS

VS
~~

coil

( )
VS S S

R n dS−+ + ⋅ =∫∫ ∫∫ ∫∫ 0 ,                                                                                   (4.98) 

where +− −= nn  is a unit vector of the external normal to the boundary of region V . It 

follows from Eqs. (4.96) and (4.98) that 

~~

coil V VS S S

R n dS R n dS R n dS− −⋅ = − ⋅ = ⋅∫∫ ∫∫ ∫∫ + .                                                                    (4.99) 

III. Integrating Eq. (4.92) over the region  bounded by the closed surface , then 

using Gauss’ divergence theorem and taking into account that in this region  and 

coilV coilS

0≠eI eI  is 

defined by Eq. (4.77), one gets 

coil coil

[ ( )] [ ( )]
S V

R n dS I z zδ ρ ρ ϕ δ ϕ+⋅ = − − −∫∫ ∫∫∫ ind( , )h e E dτρ ϕ ⋅ V ,                             (4.100) 

where  
ind

absFE E E= − .                                                                                                        (4.101) 

Using the main property of the delta function, the right-hand side of Eq. (4.100) is 

transformed as 

coil

ind[ ( )] [ ( )] ( , )
V

z z h e E dxdydzτδ ρ ρ ϕ δ ϕ ρ ϕ− − ⋅∫∫∫  

ind

( )
[ ( )] ( , )

z z
h e E dxτ ϕ

δ ρ ρ ϕ ρ ϕ
+∞ +∞

=
−∞ −∞

= − ⋅∫ ∫ dy ,                                                         (4.102) 

where        

222 )]([)]([1),( ϕϕρρ
ρ

ϕρ zh ′+′+= .                                                                                      
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Introducing the polar cylindrical coordinates ϕρ cos=x , ϕρ sin=y , ϕρρ dddxdy =  in 

Eq. (4.102) yields 

2
ind

( )
0 0

[ ( )] ( , )
z z

F d h e E d
π

τ ϕ
ϕ δ ρ ρ ϕ ρ ϕ ρ ρ

∞

=
≡ − ⋅∫ ∫  

    
2

ind

0

( ( ), ( )) ( ( ), ) ( )E z h e
π

τ dρ ϕ ϕ ρ ϕ ϕ ρ ϕ= ∫ ϕ .                                                          (4.103) 

However,  

lddledhe == ττ ϕϕρϕϕρ )()),(( ,                                                                              (4.104) 

where is a vector such that its module is equal to the differential of the length of the line 

arc and it is directed along the tangent to this curve. Thus, it follows from Eq. (4.103) that 

ld

coil

ind ind

L

F E dl Z= ⋅ = −∫ I ,                                                                                           (4.105) 

where indZ  is the change in impedance due to a flaw situated in the region  (see [6]). 

Consequently, Eq. (4.100) has the following form 

FV

coil

2 ind

S

R n dS I Z+⋅ =∫∫ .                                                                                                   (4.106) 

IV. Integrating Eq. (4.92) over the region V  bounded by the two closed surfaces  and 

, using Gauss’ divergence theorem and taking into account that the right-hand side of Eq. 

(4.92) is equal to zero in this region, we obtain 

VS

FS

+⋅ +∫∫ dSnR
VS

0=⋅ +∫∫ dSnR
FS

.                                                                                      (4.107) 

It follows from Eqs. (4.99), (4.106) and (4.107) that  

2 ind

VS

I Z R n dS =+− = ⋅∫∫ dSnR
FS

+⋅− ∫∫ .                                                                        (4.108) 

V. Finally, integrating Eq. (4.92) over the region , using Gauss’ divergence theorem 

and taking into account that  and 

FV

0=eI 2 2
abs 0 ˆ ˆ(F F Fk k j )σ σ ωε ε ε− = − + −  in this region, we 

obtain 

=⋅− +∫∫ dSnR
FS

0 absˆ ˆ[( ) ( )]
F

F F
V

j Eσ σ ωε ε ε− + − ⋅∫∫∫ FE dV .                                         (4.109) 
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The final formula follows from Eqs. (4.108) and (4.109): 

ind
02

1 ˆ ˆ[( ) ( )]F FZ j
I

σ σ ωε ε ε= − − + − abs

F

F
V

E E dV⋅∫∫∫ .                                              (4.110) 

Eq. (4.110) gives the formula for calculating the induced impedance change in the case when 

the displacement current is taken into account. If the displacement current is neglected, one 

can obtain the corresponding Eq. (4.23) from Eq. (4.110) by the simple substitution ( ˆFε  - ε̂ ) 

equal to zero. 

4.2.4. Proof of the equivalence of the two formulas.  

Let us consider two arbitrary functions ),,()( zyxuMu =  and  that are 

continuous together with their second derivatives in the region V  bounded by some closed 

surfaces , ,…, . The Green’s formula for these functions has the form 

),,()( zyxvMv =

1S 2S mS

∫∫∫ =∆−∆
V

dVuvvu )( dS
n
uv

n
vu

S SS m
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⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++∫∫ ∫∫∫∫

1 2

,                                        (4.111) 

where  is the external normal vector to the region V . Formula (4.111) is also valid for the 

two vector functions 

n

)(Mu  and )(Mv . 

Let  be the vector potential in the absence of the flaw, and abs ( )A M )(MAF  be the vector 

potential in the presence of the flaw. The vectors absA  and FA  satisfy the following equations 

(see Eq. (1.26) and [6]): 

2
abs abs abs 0

eA k A Iµ µ∆ + = − ,                                                                                           (4.112) 

e
FFF IAkA µµ0

2 −=+∆ ,                                                                                              (4.113) 

where  

2
absk =

⎩
⎨
⎧ +−

,ˆ
),ˆ(

00
2

00

εµεµω

εωεσµωµ jj
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,),,(
VzyxM
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                                                           (4.114) 
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                             (4.115) 

and eI  is defined by Eq. (4.77).  

Green’s formula (4.111) can be rewritten for the vectors absA  and FA  in the region V~  

bounded by the closed surfaces  and  in the form (see Fig.4.6): RS S
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abs abs( )F F
V

A A A A dV∆ − ∆ =∫∫∫ abs
abs

R

F
F

S S

A AA A
n n

⎛ ⎞⎛ ∂ ∂
+ −⎜ ⎟⎜⎜ ⎟ ∂ ∂⎝ ⎠⎝ ⎠

∫∫ ∫∫ dS
⎞
⎟ .                          (4.116) 

Substituting 2
abs abs abs 0

eA k A Iµ µ∆ = − −  of Eq. (4.112) and e
FFF IAkA µµ0

2 −−=∆  of Eq. 

(4.113) into the left-hand side of Eq. (4.114), the integrand can rewritten as 

abs absF FA A A A∆ − ∆ = 2 2
abs abs 0 abs( ) (eF F Fk k A A I A Aµ µ− + − ) .                                        (4.117) 

Since the external current  and 0=eI 2
abs Fk k 2=  in the region V~ , one can see that the right-

hand side of Eq. (4.117) is equal to zero. Hence the left-hand side of Eq. (4.116) is also equal 

to zero. In the limit as , the integral over  tends to zero. Consequently, it follows 

from Eq. (4.116) that 

∞→R RS

abs
abs 0F

F
S

A AA A dS
n n

⎛ ⎞∂ ∂
− =⎜ ∂ ∂⎝ ⎠

∫∫ ⎟  as ∞→R .                                                            (4.118)        

Formula (4.118) is completely equivalent to formula (4.96). Therefore, the rest of the proof of 

formula (4.24) is completely similar to the one of formula (4.23). Consequently, 

2
ind

0 abs2 ˆ ˆ[ ( )]
F

F F
V

FZ j A
I
ω σ σ ωε ε ε= − + − ⋅∫∫∫ A dV .                                                     (4.119) 

Eq. (4.119) gives the new formula for the induced change calculation when the displacement 

current is taken into account. Besides, it is to be noted that the vectors , , absE absH FE  and 

FH  are expressed in terms of the vectors absA  and FA  by using the following expressions (see 

[6]): 

abs 0 abscurl A Hµ µ= ,      abs abs abs2
0 abs

1 1E j A graddivA
k

ω
µ µ

= − + ,                                 (4.120) 

0curl F FA µ µ= H ,         2
0

1 1 graddivF F
F

E j A
k

ω
µ µ

= − + FA ,                                      (4.121) 

where the coefficients  and 2
absk 2~

Fk  are given by Eqs. (4.86) and (4.87). 
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CONCLUSIONS 

The present thesis is a theoretical work dealing with problems of non-destructive testing 

by eddy current methods. Experimental investigations in this field are costly and time-

consuming so that theoretical studies can be an attractive alternative. This thesis presents 

methods to solve some eddy current testing problems and ways to simplify the obtained 

solutions and adapt them to computational calculations in engineering. The forward problems 

are solved: mathematical models of eddy current testing are constructed and the influence of 

the parameters of the flaw and the media on the input signal of eddy current probes is 

investigated.  

In the present thesis the discussion on non-destructive testing problems starts from a 

detailed review of the literature devoted to this subject and mostly of recent papers.  

 The thesis is divided into four chapters. The first chapter is introductory. It describes the 

physics of the method, introduces the meaning of vector potential and impedance change, 

and gives the main equations and characteristics. Besides, the four mostly used boundary 

value problems, giving the form and non-zero components of vector potentials for separate 

cases, are strictly proved corresponding to the geometry of a source of current. 

The second chapter is devoted to Helmholtz’ vector equation and its solution, describing 

the problems of eddy current testing as an influence of a conducting medium on a source of 

current. In this thesis the integral representation of the solution to Helmholtz’ vector equation 

is considered not only in the well-known form of the Cartesian coordinates, but it is also 

obtained for arbitrary orthogonal curvilinear coordinates. As particular cases, the integral 

representation of the solution to Helmholtz’ vector equation is derived for cylindrical polar 

and spherical coordinates. Besides, in Chapter 2 the newly obtained representations of the 

solution to Helmholtz’ vector equation are used for solving the problems of electromagnetic 

waves spreading from emitters of different forms. These are the vector potential problems of 

a rectangular frame with current and of a wire of arbitrary form with given current. In the 

present thesis, the problem of a rectangular frame with current is solved without using the 

dipole approximation, which is widely used for problems of electromagnetic waves spreading 

from linear emitters, but not suitable for problems of eddy current inspection. To solve the 

problem of a finite length wire of an arbitrary form, the integral representation of the solution 

to Helmholtz’ vector equation is found in the form of a single definite integral of an 
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elementary function. The obtained solution is used for deriving the solution for its particular 

cases of electromagnetic waves spreading from a wire in the form of an Archimedes’s spiral, 

an elliptical or circular helix and, also, from a fractal form wire.              

The third chapter is devoted to the problems of influence of the homogeneous 

conducting medium on a source of current of different geometries. Analytical solutions to 

eddy current testing problems even in simple geometries are expressed in terms of improper 

integrals containing special functions. Hence, the effective evaluation of such integrals is an 

important practical problem. In Chapter 3 several new improper integrals are evaluated in 

closed form. The results are used to calculate the change in impedance of a double conductor 

line and a single-turn coil above a conducting half-space. An asymptotic formula for large 

frequencies is also obtained in Chapter 3. Moreover, in this chapter the impedance change is 

obtained for the problem of a rectangular frame located inside a conducting cylindrical tube. 

Moreover, in this thesis the exact analytical solution of this problem is obtained without 

using either the double conductor line approximation or any other approximation.  

The last chapter considers the problems of impedance change due to the influence of 

conducting media containing flaws (or defects) of arbitrary shapes. Since the exact analytical 

solution for the problem of the influence of a conducting medium with an arbitrary flaw on a 

source of current is not known, different approximate analytical and numerical methods have 

been developed and used. In the present thesis two methods, called methods of additional 

currents, are developed. One of these methods transforms the problem (differential 

equations) for a non-uniform conducting medium into a problem for a uniform conducting 

medium with a non-uniform right-hand side in the system of differential equations describing 

the problem. Besides, Chapter 4 is mostly devoted to the basic analytical formula of 

impedance change for non-uniform media. In the literature this well-known formula is based 

on Lorentz’ theorem, but rigorous proof seems to be absent. In this thesis the formula is 

analytically proved and its correctness is analyzed. Moreover, the similar formula for 

impedance change, whose proof is based on Green’s formula, is obtained in the present 

thesis. The last mentioned formula appears in the literature in some applied problems, but the 

connection between these two formulae and their equivalence, seems to be given only in the 

present thesis.  

Future work can be devoted to the analysis of the method of additional currents applied 

 122



to practical problems of non-destructive testing, for example, to problems with flaws in 

conducting media. In the applications, such problems presently require extensive 

computational resources and are seldom used in engineering practice because of the 

complexity of the analysis. The use of the method of additional currents may be useful for 

simplifying real world problems and obtaining practically useful engineering solutions for 

eddy current testing of conducting media with flaws. Moreover, the approximate solutions 

developed in this thesis and the simplified form of other solutions can be successfully used to 

solve important practical inverse problems in eddy current testing. 
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Appendix 1 

NOMENCLATURE 

List of Latin symbols 

A~     magnetic vector potential, tjeAA ω=~  

A     complex-valued amplitude magnetic vector potential 

FA    complex-valued amplitude magnetic vector potential in a flawed region 

iA      non-zero component of vector potential in region , iR 1,0=i  

ind
iA   induced vector potential intensity in  iR

B~       magnetic induction vector, tjeBB ω=
~  

B       complex-valued amplitude magnetic induction vector 

C       Euler constant,     …577215.0=C

D~       electric induction vector, tjeDD ω=~  

D       complex-valued amplitude electric induction vector 

E~       electric field vector, tjeEE ω=~  

E       complex-valued amplitude electric field vector 

FE       complex-valued amplitude electric field vector in a flawed region 

 h        height of emitter above conducting medium 

H~       magnetic field vector, tjeHH ω=~  

H       complex-valued amplitude magnetic field vector 

I~        current vector density, tjeII ω=~  

 I        complex-valued amplitude current vector density 

eI~       external current vector density, tjee eII ω=~  

eI       complex-valued amplitude external current vector density 

)(sIν   modified Bessel function of the first kind of order ν  

j          imaginary unit, 1−=j  

)(sJν  Bessel function of the first kind of order ν  
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)(sKν  modified Bessel function of the second kind of order ν  

1

1

ker ( )
kei ( )

x
x

   Kelvin functions 

mL      the operator   1 2
1
1 m m

m m
d dL b

b db db
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∂
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∂
∂
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ϕ

,   i.e. 2
2

1L
r

= ∆ −  

n         normal to a surface 

cr         coil radius   

0R       unbounded free space 

1R        conducting medium with or without a flaw (defect) 

FR      flaw-region 

X        real part of Z  

Y        imaginary part of Z  

)(sYν  Bessel function of the second kind of order ν  

Z       dimensionless induced change in impedance 

cZ       dimensionless induced change in impedance (case of a coil) 

∞cZ      asymptotic of impedance as ∞→β (case of a coil) 

lZ       dimensionless induced change in impedance (case of a double line) 

∞lZ      asymptotic of impedance as ∞→β (case of a double line) 

indZ     induced change in impedance 

List of Greek symbols 

)(xΓ  Euler gamma function 

∆       Laplacian,       ),,( zyxf∆ 2

2
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ϕ∆      the operator    f
rz

f
r
f

rr
fzrf 22

2

2

2 11),( −
∂
∂

+
∂
∂

+
∂
∂

=∆ϕ  

)(xδ   Dirac’s delta function 

0ε       electric constant 

ε̂        relative permittivity 

0µ       magnetic constant 

µ        relative magnetic permeability 

ρ~        charge density 

      σ       conductivity 

pΦ     primary varying magnetic field 

sΦ      secondary varying magnetic field 

ψ        scalar electric potential intensity 

ψ~        scalar electric potential, tje ωψψ =~  

ω        frequency 

Coefficients 

)ˆ( 00
2 ωεεσµµω jjk +−=  

)ˆ(~
00

2 ωεεσµµ jk +=  

Coordinate systems 

 
),,( zyx     Cartesian coordinates, ℜ∈zyx ,,  

),,( zr ϕ     cylindrical polar coordinates, ℜ∈≤≤≥ zr ,20,0 πϕ  

),,( ϕθρ     spherical coordinates, πϕπθρ ≤≤≤≤≥ 0,20,0  

Two classes of definite integrals 

∫
∞

−++
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0
1222 )(
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nn

xax
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