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Nelineāras plaisu problēmas ar pielietojumiem kompoz̄¬tos
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Anotācija

Nelineāru problēmu risinājums mehānikā parasti ir sareµzǵ̄¬ts uzdevums. Tas
prasa lielu darba ieguld̄¬jumu anal̄¬tiskajā un skaitliskajā risinājuma daļā
(anal̄¬tiskais risinājums lielākai problēmu daļai neeksistē). �̄¬s darbs ietver
sev̄¬nelineāru problēmu risinājumu ieskaitot plaisu izplat̄¬�anos un materiāla
sabruk�anu.

Darba pirmā daļā tika izstrādāta eksperimentāla metodika ar mērķi
noskaidrot vienvirziena un transversāli stiegrotu kompoz̄¬tu atslāņo�anas
¬̄pa�̄¬bas. �ķērssai�u likums, kas var tikt aprēķināts, izmantojot eksperi-
mentālus datus tiek uzskait̄¬ts par svar̄¬gu materiāla ¬̄pa�̄¬bu. Vienkār�a
skaitliska procedūra ar iepriek�noteiktu �ķērssai�u likuma izmanto�anu ir
ierosināta plaisu palielinā�anās slāņainos kompoz̄¬tos simulē�anai.

Darba otrā daļā tiek piedāvāts tr̄¬sdimensiju matemātiskais modelis Hot
Dry Rock ǵeotermāla rezervuāra anal̄¬zei. Izmantojot Laplasa integrālo
transformāciju un Gr̄¬na funkciju risinājums tiek pārvērsts integrāla vienādo-
juma veidā plaisas virsmā, kas izslēdz vajadz̄¬bu diskredizēt bezgal̄¬gu 3D
rezervuāru.

Izmantojot eso�o modeli temperatūra un inducētie termiskie spriegumi
var būt noteikti rezervuārā jebkura laika momentā, kas padara sistēmu ļoti
efekt̄¬vu ǵeotermālu rezervuāru anal̄¬µzu veik�anā.
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Abstract

The solution of non-linear problems in mechanics is usually a complex task.
It requires much more e¤orts in analytical and numerical part of the solution
(pure analytical solution for most problems is not possible at all). This work
comprises solutions of several non-linear problems involving cracks growth
and fractures.

In the �rst part of the work experimental procedure was elaborated in
order to �nd delamination properties of the unidirectional and translaminar-
reinforced composites. Bridging law, which can be calculated from experi-
mental data, is found to be important material property. Simple numerical
procedure, which uses previously found bridging law, is proposed in order
to simulate crack growth in composite laminates.

In the second part the mathematical model for three-dimensional non-
stationary analysis of Hot Dry Rock geothermal reservoirs is presented. By
utilizing Laplace integral transform and Green�s function the solution is
reduced to integral equation over the surface of the fracture, which eliminates
the need for discretizing the unbounded 3D reservoir. Using presented model
temperature and thermally induced stresses can be found anywhere in the
reservoir at any time, which makes this model quite e¢ cient in geothermal
reservoirs analysis.
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1. INTRODUCTION

1 Introduction

The history of facture mechanics started from pioneering work of British
engineer Alan Arnold Gri¢ th in 1920 [1], where he addressed the problem
of rupture of elastic solids using the theorem of minimum energy.

�Rupture of the soil has occurred, if the system can pass from the un-
broken to the broken condition by a process involving a continuous decrease
in potential energy. In order, however, to apply this extended theorem to
the problem of �nding the breaking loads of real soil, it is necessary to take
account of the increase in potential energy, which occurs in the formation of
new surfaces in the interior of such solids. It is known that, in the formation
of a crack in a body composed of molecules which attract one another, work
must be done against the cohesive forces of the molecules on either side of
the crack. This work appears as potential energy, and if the width of the
crack is greater than the very small distance called the �radius of molecular
action�, the energy per unit area is a constant of the material, namely its
surface tension�.

Applying his theory to an in�nite cracked panel he came up with the
condition that the crack may extend as

@

@a

�
U elrel � Usep

�
� 0 (1)

where U elrel is the change of elastic strain energy due to crack and second
term, Usep, is the potential energy of two crack surfaces per unit thickness
of the panel,

Usep = 2a
 (2)

where a is the crack length and 
 is the �surface tension�, having the di-
mension of an energy per area.

Crack propagation criteria can be rewritten in such form:

@U el

B@a
� G (3)

where B is the thickness of plate and G is the energy release rate (amount
of energy necessary to create new fracture surfaces and which is supposed
to be a material constant in fracture mechanics).

Gri¢ th�s theory was based on experiments on brittle materials and did
not include ductile materials in its consideration. Almost four decades later
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George R. Irwin investigated how the theory would apply to small-scale
yielding conditions, meaning �that a region of large plastic deformations
may exist closer to the crack but does not extend away from the crack by
more than a small fraction of the crack length�[2]. In order to account for
crack tip plasticity, crack propagation criteria becomes

@U el

B@a
� Gel +Gpl (4)

where Gpl is a plastic contribution to the energy necessary to separate body.
The other fracture parameter, called the stress intensity factor, intro-

duced by Irwin at the same time, is widely used in linear elastic fracture
mechanics (LEFM). It was shown that in case of linear elastic material stress
intensity factor (K) is directly connected to Gri¢ th�s energy release rate,

G =
K2

E0
(5)

where E0 is Young�s modulus in plane stress or plane stress conditions. How-
ever, since stress intensity factor is a coe¢ cient at singular term in stress
solution near crack tip in case of elastic material, its usage for non-linear
problems is limited to the case of small scale yielding only.

Another big step in development of fracture mechanics theory was made
by Rice in 1968 with introduction of the J-integral [3]. In elasticity, J-
integral equalsGel, and in plasticity it is an energy release rate, J = @U=B@a
The J-integral is de�ned as

J =

Z
�

�
Wnx � Ti

@ui
@x

�
ds (6)

where � is any path beginning at the lower crack face and ending at the
upper crack face,W is an strain energy density, nx is the x-component of the
outward normal to �, Ti = �ijnj and ui are the traction and displacement
vector evaluated on �, respectively, and ds is di¤erential arc length.

The J-integral plays an important role in non-linear fracture mechanics,
since small scale yielding restriction places rather severe limitations on the
applicability of linear elastic mechanics solutions to low and intermediate
strength metals and other materials with high plasticity. In large scale
yielding elastic-plastic solutions must be used in their place. The J-integral
is used to extend fracture mechanics into the large scale yielding range.

With introduction of R-curves (resistance curves, energy release rate as
a function of crack extension - J(�a)) it was found, that R-curves reveal
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1. INTRODUCTION

signi�cant geometry and loading dependences. J-integral gives the total
amount of dissipated energy; in case of plasticity it is the energy of plastic
deformations and the energy necessary for new surface formation. Local and
global contributions of plastic strain energy to J could not be separated.

Phenomenological �cohesive models�describing the fracture process by
a relation between surface tractions � and crack opening � were found very
useful in numerical fracture simulations. Cohesive model approach refers
to Dugdale�s [4] and Barenblatt�s [5] idea of introducing a �process zone�
ahead of the crack tip where material degradation and separation occur. In
�nite element simulations special cohesive surface elements are introduced at
the boundaries of solid elements along a prede�ned crack path. The consti-
tutive relation of the interface elements represents the e¤ective mechanical
behavior due to the physical processes of micro-void nucleation, growth and
coalescence in a ductile material. The fracture toughness in this model is
represented by the area under the traction-opening law.

G =

�cZ
0

�(�)@� (7)

The cohesive models allow to separate the total dissipated work into the
local work of separation in the process zone and the global plastic work in
the embedding material.

The cohesive fracture model was successfully used for concrete fracture
since the work by Hilleborg et al. (1976) [6]. The zone of material non-
linearity that exists in the neighborhood of the crack tip in a concrete struc-
ture is called fracture process zone (FPZ). The FPZ is characterized as a
zone of di¤use failure in which both micro- and macro-cracks exist. Mi-
crocracks are created on the surfaces of aggregates and from voids in the
cement paste. Some microcracks stabilize after nucleation while others grow
and eventually coalesce with other microcracks. When the coalescence of
microcracks becomes su¢ ciently localized macrocracks are formed. In the
work of Hilleborg et al. discrete crack is assumed with cohesive stresses �
applied on the crack surfaces near the crack tip. But contrary to the model
of Dugdale for metals, the cohesive stresses are function of crack opening,
which is called softening law.

Current work attempts to solve several problems in non-linear fracture
mechanics: delamination of unidirectional �ber composites in presence of
large scale bridging and non-stationary coupled hydro-thermal-elastic prob-
lem for Hot Dry Rock geothermal reservoirs.

3
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2 Delamination properties of composites

The fracture process of composites laminates is often accompanied by ex-
tensive �ber crossover bridging phenomenon. In Papers I-III applicability
of cohesive model is examined for composites.

2.1 Delamination of unidirectional composites

The resistance to interlaminar fracture is one of the most important char-
acteristics of laminate and unidirectional composites. The most popular
method of determining the iterlaminar fracture toughness in composites is
the test of double cantilever beam (DCB) specimens [7].

It is well known that the crack faces in unidirectional composites with a
crack propagated parallel to �bers are joined by more or less extensive �ber
crossover bridging. Such bridging increases the crack growth resistance G
during crack growth, which is expressed and measured by R-curves � G as
a function of crack extension. More then 10 years ago [8], it was noted that
the R-curves for DCB specimens, due to extensive bridging, depend not only
on the material properties but also on the geometry of specimens. Various
papers on the problem were published during this decade. In 1992 [9], it was
noticed that the DCB specimens with a higher bending sti¤ness required a
longer crack extension before the steady-state crack growth resistance was
attained. In 1991 [10] the concept of a bridging law was introduced to
characterize the R-curve for DCB specimens.

Papers I-II describe the experimental procedure for determination of
bridging law. Standard DCB specimens with additional strain clip gauge
located at the initial precrack tip for crack opening measurements were
used. The energy release rate (G) was calculated from experimental load
displacement curve and bridging law then can be computed as

�(�) =
@G

@��
(8)

where �� is the crack opening at the initial precrack tip.
It was shown that bridging law does not depend on specimen thickness,

contrary to R-curves, and therefore can be considered as a material prop-
erty. The bridging law is then used in �nite element analysis as constitutive
relation for interface elements de�nition. Numerical simulations show that
bridging law obtained from experiments with specimens of one thickness only
can be used to predict material resistance to delamination for laminates of
other thicknesses.
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2. DELAMINATION PROPERTIES OF COMPOSITES

2.2 Delamination of tanslaminar-reinforced composites

In order to improve delamination properties of composites laminates through-
the-thickness reinforcement is used. The reinforcement acts as crack bridg-
ing, greatly improving material resistance to delamination. Glass and carbon
�ber composites with volume fraction of transverse �bers equal 2-5% and
produced by 3TEX company were used in experiments. In Paper III ex-
periments with this materials have been performed using double cantilever
beam technique and models elaborated for large scale bridging in unidirec-
tional composites.

High performance �brous composites usually consist of stacked layers
in which the �bers can have any in-plane orientation. The main disadvan-
tage of these composites is low resistance to interlaminar crack propagation.
Interlaminar stresses generated during impacts or near the edge are often
su¢ cient to initiate damage in the form of delamination. Several types of 3D
composites have been recently developed to improve interlaminar properties:
3D woven and braided structures, orthogonal and angle stitched laminates.
The orthogonal 3D woven laminate used in this work was elaborated and
produced by 3TEX Inc (USA). These laminates consist of unidirectional in-
plane layers oriented in 0� and 90� directions. The transversal reinforcements
are yarns oriented along normal to mid-plane. These yarns bind the material
and hold the in-plane �bers together. This is achieved without interweaving
the in-plane �bers, and hence avoids reduction of in-plane sti¤ness caused
by �ber waviness.

Materials with through-the-thickness �bers have much higher fracture
toughness then usual layered composites, therefore specimen�s arms break
when loading regular DCB specimen. In order to prevent this, special side-
grooved specimens with metal tabs glued to bottom and upper sides of the
specimen were designed.

The elaborated methodology was used to estimate the in�uence of trans-
verse �bers to fracture resistance of glass and carbon �ber composite lam-
inates. For investigated material it is found that the fracture toughness of
glass and carbon �ber composite without transverse �bers is close to known
fracture toughness data for laminated composites: 0.4 0.5 kJ/m2 for carbon
and 0.2 kJ/m2 at crack initiation and 2 kJ/m2 at steady state propagation
for glass �ber composite. The microcracking at the tip of crack in 3D woven
material starts at the same GIC values as matrix cracking: 0.3 - 0.6 kJ/m2.
These results show that translaminar reinforcement does not delay damage
initiation. At crack opening equal to 0.2 mm, the crack propagation resis-
tance increases up to 10 times and for steady state propagation at crack
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opening 0.5 mm reaches very high values (till 20 kJ/m2).

3 Three-dimensional analysis of Hot Dry Rock reser-
voir

Hot rocks and geothermal �uids in the subsurface can be an economical
source of energy. The temperature in the subsurface rock can rise to 350
C at a depth of 5 km. According to [11], seventy two countries have re-
ported direct utilization of geothermal energy (space heating, industrial use,
bathing and swimming, etc.) with total installed capacity 28,268 MWt. The
total annual energy use is 273,372 TJ (75,943 GWh), indicating a 43% in-
crease over 2000. Geothermal electricity is currently being generated in 24
countries with total running capacity approximately 8030 MWe and electric
energy production is nearly 57,000 GWh [12].

The Hot Dry Rock (HDR) concept of geothermal energy production
involves drilling two or more wells into the reservoir to intersect permeable
fractures of natural or man-made origin, injecting cold water into one part
of the well system, and recovering hot water from the other.

Physical and mathematical models play an important role in the plan-
ning and development of geothermal reservoirs. A number of analytical and
numerical solutions exist for the prediction of heat extraction from fracture
systems in geothermal reservoirs. The physical mechanisms are sometimes
complicated and include mechanical, hydraulic, thermal, and chemical ef-
fects and their coupling. The geometry, however, is often simpli�ed. Par-
ticularly, the heat conduction in the reservoir is typically modeled as one-
dimensional heat �ow perpendicular to the fracture surface. The primary
reason for such simpli�cation is the ine¢ ciency in modeling an unbounded
three-dimensional domain by numerical discretization.

In Paper IV the e¤ect of three-dimensional heat conduction in hot dry
rock is studied. The physical mechanisms considered are limited to the ad-
vective heat transport in the fracture by �uid �ow and the heat exchange
with the reservoir. The numerical di¢ culty of modeling a three dimensional,
unbounded domain is overcome by utilizing the integral equation formula-
tion and the three-dimensional Green�s function of heat conduction. The
need for discretizing the reservoir is entirely eliminated, and the �nal nu-
merical solution system involves only the two-dimensional fracture plane,
resulting in a much more e¢ cient numerical scheme. The three-dimensional
heat conduction e¤ect is investigated against its one-dimensional simpli�ca-
tion. It is demonstrated that the simpli�cation of reservoir heat �ow to one

6



3. 3-D ANALYSIS OF HOT DRY ROCK RESERVOIR

dimension can signi�cantly underestimate the extraction temperature and
reservoir life.

Paper V is focused on the thermo-mechanical coupling during injection
operations with time scale of months to years. Thermally induced stresses
can signi�cantly contribute to seismicity in petroleum and geothermal �elds.
The mechanism by which seismicity occurs is shear slip on natural fractures
resulting from a reduction of normal stress across the fracture.

The magnitude of the thermal stresses associated with advective cooling
has been estimated analytically [13] using an axisymmetric model of injec-
tion into a planar reservoir and a 1D heat �ow in the rock mass. It has been
shown that one- and two-dimensional heat �ow models underestimate heat
transfer to the �uid from the crack. Thus, rock cooling and the associated
thermal stresses should be studied using three-dimensional heat transfer and
stress models. This requires coupling a 3D heat �ow model to a 3D elasticity
model.

A reason for ignoring the three-dimensional nature of heat conduction
in the reservoir is the di¢ culty in treating the in�nite geothermal reservoir
geometry by numerical discretization. However, using 3D Green�s function
for heat conduction in an integral equation formulation, the need for dis-
cretizing the 3D reservoir is eliminated.

In this paper a technique for evaluating the thermal stresses induced by
water injection into enhanced geothermal reservoirs is presented. Key to this
technique is that Green�s function is used to model the three-dimensional
in�nite space such that the numerical discretization is needed only on the
planar fracture surface. The technique is �rst applied to the solution of
water injection into a in�nite fracture for the comparison with a semiana-
lytical solution. It is next applied to an injection/extraction problem in an
arbitrarily shaped fracture.

In Paper VI a 3D heat extraction/thermal stress model is coupled with
a 3D elastic displacement discontinuity method to investigate the fracture
opening and slip in response to �uid pressure and cooling of the rock under a
given in-situ stress �eld. Using this approach, the e¤ects of each mechanism
on fracture slip is estimated. The closed part of the fracture is modeled us-
ing a rigid perfectly plastic Mohr-Coulomb element. The standard Coulomb
friction model assumes that no relative motion occurs if the equivalent shear
stress is less than the critical stress. Iterative procedure is used to solve elas-
tic problem with friction. The results indicate that under the conditions of
the numerical experiments, a substantial increase in fracture slip is observed
when thermal stresses are taken into account.

Mathematical model developed for analysis of Hot Dry Rock reservoirs in

7
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Papers IV-VI includes system of non-stationary hydro-thermo-mechanical
equations. Solution of this complex set of equations involves:

a) Laplace integral transform is used to eliminate time variable. At the end
obtained solution is transformed back into time domain using approx-
imate Laplace inversion method. The Stehfest method is adopted for
this purpose.

b) The �uid �ow in facture is laminar and governed by lubrication �ow
equation. For circular fracture �uid �ow can be found analytically
using method of images, for fracture of general shape �nite element
procedure is used to solve �ow equation. The �ow singularities at the
wells locations were treated using singularity extraction and superpo-
sition procedure.

c) The heat energy transport by di¤usion (in rock mass) and advection (in
fracture) was solved using integral equation. By means of Green�s
function the three-dimensional di¤usion equation is reduced to a two-
dimensional integral equation, where integral is taken over the fracture
surface only.

d) The temperature solution from previous step is then used to calculate
thermally induced stresses anywhere in the reservoir.

e) 3D displacement discontinuity method is used to solve elastic problem of
fracture opening and slip due to injected �uid pressure and thermally
induced stresses.

This mathematical model was implemented in a computer program for
the solution of temperature and stresses in cold-water injection into hot
fracture problem. Program has a user-friendly graphical interface (Figure
1.) to set up the properties of reservoir and for solution visualization. The
three-dimensional plot of inclined fracture with one injection well and two
production wells is presented in Figure 2.

4 Conclusions

Experimental procedure has been developed for determination of unidirec-
tional composite intralaminar fracture toughness. This procedure allows not
only measure R-curves, which are dependent on the specimens geometry, but
also it is possible to calculate bridging law. It was demonstrated, that bridg-
ing law is characterictics of material and therefore can be used to predict
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4. CONCLUSIONS

Figure 1: Screenshot of the program (temperature distribution in fracture).
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Figure 2: Inclined fracture with one injection well and two production wells.
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fracture propagation in other situations. Simple numerical procedure has
been used to simulate crack propagation in unidirectional composites, using
experimentally calculated bridging law.

Similar methodology can be applied to tanslaminar-reinforced compos-
ites. The additional parameter crack opening displacement at the initial
precrack tip (ICOD) was measured to obtain the bridging law, which is
independent on the geometry of specimen. It is recommended to use the
graphs GIC vs. ICOD, instead of traditional R-curves (GIC vs. �a) for
characterization of delamination fracture resistance of composite with ex-
tensive bridging.

The elaborated methodology is used to estimate the in�uence of trans-
verse �bers to fracture resistance of laminate glass and carbon �ber com-
posites. For investigated material it is found that the fracture toughness of
glass and carbon �ber composite without transverse �bers is close to known
fracture toughness data for laminated composites: 0.4�0.5 kJ/m2 for carbon
and 0.2 kJ/m2 at crack initiation. The microcracking at the tip of crack in
3D woven material starts at the same GIC values as matrix cracking: 0.3�0.6
kJ/m2. Presence of transefse �bers does not delay damage initiation, but
resistance to crack propagation is greatly improved for such matrials. For
steady state crack propagation fracture toughness could reach value of 20
kJ/m2 for carbon �ber composites.

A 3D boundary element model for heat extraction/thermal stress has
been coupled with a 3D elastic displacement discontinuity method to inves-
tigate the fracture opening and slip in response to pressure and cooling of
the rock under a given in-situ stress �eld. Using this approach, the e¤ects
of each mechanism on rock stress and fracture slip have been estimated. It
has been found that not only tensile stresses develop due to the cooling, but
also compressive stresses are generated in the range just outside the fracture
or the �uid front. The results of displacement analysis indicate that under
typical �eld conditions, a substantial increase in fracture slip is observed
when thermal stresses are taken into account. The amount of slip would
depend on the rock properties, in-situ stress, pressure, injection rate, and
degree of cooling. This slip can be accompanied by seismicity; it would also
result in redistribution of stresses in the rock mass and may induce slip and
seismicity elsewhere in the reservoir.

This work can be distinguished form other analytical and numerical
studies that treat the heat conduction in the geothermal reservoir as one-
dimensional and perpendicular to the fracture. For the few numerical work
that treats three dimensional heat �ow and thermal stresses, the three di-
mensional in�nite reservoir needs to be discretized. In comparison, the

10



5. SUGGESTIONS FOR FUTURE WORK

present integral equation scheme only discretizes the planar fracture sur-
face, which is a much reduced numerical solution system.

5 Suggestions for future work

There are several subjects that would be of interest for continued investiga-
tions, based on the results presented in this thesis. Some of them are shortly
described here.

The �rst is to perform a systematic evaluation of the DCB method to
measure fracture energies and bridging laws in composite materials. Possible
sources of error such as non-linear beam behavior and specimen preparation
should be investigated.

The second is to pursue further investigation of the e¤ect of mixed-
mode delamination of composite materials. New sets of experiments should
be performed.

The third is to continue development of Hot Dry Rock reservoir nu-
merical model. The basic steps could be to extend current computer code
for multiple fractures interactions and to �nd stress intensity factors at the
fracture edges to answer the question of fracture stability.
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Progressive delamination and �ber bridging
modeling in double cantilever beam composite

specimens

V. Tamuzs1, S. Tarasovs, U. Vilks

Institute of Polymer Mechanics, 23 Aizkraukles St., Riga, LV 1006,
LATVIA

Abstract

The dependence of R-curves on the geometry of double cantilever beam (DCB)
specimens was investigated for a unidirectional epoxy-carbon composite. Extended
bridging was observed during the crack propagation and R-curves for three di¤er-
ent thicknesses were obtained. A simple numerical procedure was proposed for the
crack propagation modeling by taking into account linear and nonlinear bridging
laws. The results were compared with di¤erent approximate formulae for the energy
release rate calculations and an appropriate formula was found. By measuring the
de�ection in two points of a DCB specimen and the applied load as a function of
crack propagation, an exact bridging law for the composite investigated was found.
These data and the numerical procedure proposed allowed us to predict the R-curve
for any thickness of a DCB specimen.

Keywords: Unidirectional composite; R-curve; Bridging; Double cantilever beam.

1Corresponding author: Tel.: +371-2525705; fax: +371-7820467, e-mail -
tamuzs@pmi.lv
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1 Introduction

The resistance to delamination is one of the most important characteristics
of laminate and unidirectional composites. The most popular method of
determining the delamination toughness in composites is the test of double
cantilever beam (DCB) specimens [1].

It is well known that the crack faces in unidirectional composites with a
crack propagated parallel to �bers are joined by more or less extensive �ber
crossover bridging. Such bridging increases the crack growth resistance G
during crack growth, which is expressed and measured by R-curves �G as
a function of crack extension. As long as 10 years ago [2], it was noted that
the R-curves for DCB specimens, due to extensive bridging, depend not only
on the material properties but also on the geometry of specimens. Various
papers on the problem were published during this decade. In 1992 [3], it was
noticed that the DCB specimens with a higher bending sti¤ness required a
longer crack extension before the steady-state crack growth resistance was
attained. In [4] (1991), the concept of a bridging law was introduced to
characterize the R-curve for DCB specimens.

Among the last papers on the subject, the publications [5] should be
mentioned, where the DCB specimens with di¤erent geometries loaded by
pure bending moments were investigated. An appropriate bridging law was
found by measuring the crack opening at the beginning of the bridging zone.

In the present paper, we investigate the peculiarities of R-curves ob-
tained on traditional DCB specimens loaded by wedge forces, the in�uence
of specimen geometry on R-curves and propose a scheme of measurements
and calculations to predict the resistance of crack propagation in specimens
of di¤erent thicknesses.

2 Energy release rate in double cantilever beam
specimens

The geometry of a DCB specimen is shown in Fig. 1, where h is the thickness
of the specimen, which was varied, a0 is an initial notch, a is the length of a
propagated crack, d is the crack opening under the applied wedge forces P ,
and �� is the crack opening at the tip of the initial notch. The description
of the loading and measurement method is given later, in the experimental
part.
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Figure 1: The specimen geometry and loading scheme and parameters mea-
sured.

The energy release rate in a DCB specimen is de�ned in a usual way:

G = � @�
b@a

; (1)

where b is the width of a specimen, a is the crack length, � is the potential
energy accumulated in the system, and P is the force by which both sides of
the specimen are loaded. The potential energy of a linearly elastic system
is equal to

� =
1

2

Z
v

�ij�ijdv �
uZ
0

P (u)du; (2)

where �ij and �ij are the stress and strain, v is the volume, and P (u) is the
the force applied, which is a function of displacement. The �rst term is an
energy stored in the linearly elastic body and the second one is the work
produced by the applied external force. The displacement u is a full opening
of the DCB specimen at the point where P is applied. The �rst term is also
expressed through the force acting on the system,

� =
1

2
Pu�

uZ
0

P (u)du (3)
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From Eqs. (1) and (3) it follows that

G = � 1
2b

@P

@a
u� 1

2b
P
@u

@a
+
1

b
P
@u

@a
=
1

2b

�
P
@u

@a
� u@P

@a

�
or

G =
P 2

2b

@c

@a
(4)

where c = u=P is the compliance of the system. The formula (4) is well-
known and widely used. Note that no assumptions about the type of the
crack tip structure was made, therefore the formula (4) is general and should
be valid for any bridging law and specimen shape. But the G values obtained
can be functions of the specimen shape, not only of the characteristics of
the material. G depends on the compliance c = u=P , which is measured
experimentally or calculated theoretically by using some bridging law.

Neglecting the bridging e¤ect, the de�ection of an ideal cantilever beam,
with length a and bending sti¤ness EI = Ebh3=12, under a load P is equal
to a3P=3EI. The full opening of the DCB equals the doubled de�ection,

d =
2a3P

3EI
(5)

and the compliance is

c =
2a3

3EI
(6)

Using Eqs. (4) and (6), the most popular formula for the DCB is ob-
tained:

G(P; a) =
P 2a2

EIb
(7)

Combining Eqs. (7) and (5), we get three another modi�ed formulae for G

G(P; a; d) =
3Pd

2ba
(8)

G(P; d) =
P 2

EIb

�
3EId

2P

�2=3
(9)

G(a; d) =
9EId2

4ba4
(10)

Applying Eqs. (7) � (10) to an ideal isotropic cantilever beam, equal
results will be obtained. But, strictly speaking, they are all invalid for
DCB specimens since boundary conditions at the end of cracked part of
specimen are not the same as at the clamped end of cantilever beam. As
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result, the de�ection of real specimen for given load and crack extension
always will be greater, then it is predicted by beam theory (Eqn. (5)). The
de�ection is even higher for unidirectional composites, since in Eqn. (5)
we neglect the interlaminar shear. The error is very big for short crack
and diminishes when the crack propagates. Therefore, formulas (7) �(10)
will give di¤erent results and it is expedient to compare the predictions
obtained by Eqs. (7) � (10) and by general formula (4). For this aim
the �nite element model of DCB specimen without and with bridging was
used. Comparing G calculated directly from �nite element analyses with
formulas (7) �(10), we can conclude, that formula (9) performs better even
for very short cracks. Very rough explanation of this fact could be following:
we exclude crack length form formula (7) and, in result, the formula (9)
is written in term of compliance, as it was before derivation (Eqn. (4)).
The results of �nite element simulation of specimen with bridging will be
presented in next section.

3 Experimental

The specimens investigated were produced from the commercialy available
�Sika Carbo Dur S�epoxy/carbon sheets of thickness 1.3 mm. The initial
crack was precut by a diamond saw of thickness 0.1 mm. The crack tip was
sharpened by a thin blade to extend the initial crack to 25 mm. The width
of the cracked specimen was b = 11:1 mm. Then the strips of the same
material and the same width were glued on both sides of the precracked
strip to produce specimens of di¤erent total thicknesses, namely 3.93, 6.56
and 9.15 mm corresponding to 3, 5, and 7 layers. The �bers were oriented
along the specimen. The length of a specimen was 80 mm for 3- and 5- layer
samples, and 200 mm for 7- layer ones.

The material is characterized by the following elastic constants: modulus
in the �ber direction E1 = 155 GPa, transverse modulus E2 = E3 = 9 GPa,
shear modulus G12 = 5 GPa and Poisson ratio � = 0:28.

The specimens were loaded by a wedge load under displacement control
with a constant speed of 1 mm/min. Six specimens of thicknesses 3.93 mm
and 6.56 mm and three of thickness 9.15 mm were tested.

The load value was registered by the dynamometer of a MTS testing
device, but the crack opening d at the edge of specimens was measured
by a strain clip gauge as shown in Fig. 1. When testing the thick (9.15
mm) specimens, the crack opening �� at the precrack tip was also measured
by second strain clip gauge attached to the top and bottom sides of the
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a)

b)

Figure 2: (a) Specimens of three di¤erent thicknesses after testing. (b)
Enlarged bridging zone of a 7- layer specimen.
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specimen. The accuracy of load and de�ection measurements was 1%. The
crack propagation was measured visualy. For this aim, the lateral sides of
specimens were painted white with marks drawn in two millimeter intervals.
So, the values of P , d, and � were measured and stored for each crack
increment �a equal to 2mm. Extensive bridging was observed during the
crack propagation. The specimens with extended and opened cracks are
displayed in Fig. 2a, b.

The measured load-displacement curves for all specimens tested are shown
in Fig. 3a, b, c. Each point on the curves corresponds to a crack increment
�a = 2 mm. These curves are used later for constructing R-curves G(a).

4 Numerical simulation by FEM

In this section, we will describe a numerical procedure for the simulation of
crack propagation taking into account �ber bridging. The procedure is based
on the �nite element method with nonlinear �interface elements�embedded
along a potential delamination line, Fig. 4. The crack propagation is then
modeled by introducing an appropriate stress-displacement relationship for
the interface elements.

To model adequate the e¤ect of �ber bridging, we will separate the to-
tal energy dissipation in a sample into two speci�c terms associated with
the crack tip propagation and with �ber bridging, respectively. We need,
therefore, to choose an appropriate stress-displacement relationship for the
interface elements, Fig. 5, where � is the traction across the element and
� is the opening of crack faces. This paper will concentrate on the Mode I
fracture only, therefore, the stresses and displacements are both normal to
the crack face.

The �(�) curve, Fig. 5, comprises three parts corresponding to the dis-
placement intervals (0; �0), (�0; �1), and (�1; �2). The �rst and second part
is responsible for the crack initiation and crack tip propagation. When the
stress ahead of the crack tip reaches �t (the tensile strength of the material),
the distance between the elements (interface thickness) is equal to �0, and
the crack starts to propagate. Behind the crack tip, the stress decrease,
and the distance between the crack faces increases up to �1. This region
is called the �fracture process zone� (Fig. 6). The numerical tests have
shown that the precise value of �0 has little e¤ect on the solution, provided
that �0 is su¢ ciently small to simulate an initially very sti¤ interface. The
crack opening �1 depends on the initial critical fracture energy G0c, which
is supposed to be a characteristic of the material. So, the crack opening is
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Figure 3: Experimental load-displacement curves: (a) h = 3:93, (b) h =
6:55, and (c) h = 9:15 mm.
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a)

b)

Figure 4: (a) The �nite element mesh with interface elements inserted along
the delamination path. (b) An enlarged area of the crack tip with a bridging
zone: (1) normal �nite elements; (2) open interfacial elements with a user-
de�ned stress-displacement relationship.

Figure 5: Stress-displacement relationship for interfacial elements.
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Figure 6: Stress distribution near the crack tip.

chosen such that the area under the curve to the point �1 is equal to G0c.
In practice, �0 is very small and �1 = 2G0c=�t.

The third part of the stress-displacement relationship (interval from �1
to �2) depends on the bridging law, which is initialy unknown, and the area
under the curve represents the energy dissipation due to bridging, Gbr.

Fig. 6 shows the stresses distributions ahead of the crack tip, in the
fracture process zone and in the bridging zone. Ahead of the crack tip, we
have a singular stress �eld. At the crack tip, the normal stress component is
equal to the tensile strength of the material. Behind the crack tip, we have
the fracture process zone, which should be quite small in real material, but,
in the �nite element analysis, its size depends on the size of elements in the
model. As pointed out in Ref. [7], for good results, a �ne mesh must be
used. It was found there that the mesh must be �ne enough to include at
least two interface elements in the �fracture process zone�at the crack tip.
As the crack opens, the stress level decreases being equal to zero at the end
of the bridging zone. The �nite element code FRANC2DL was used in this
work.

Since, for the materials with extensive bridging, the energy release rate
during steady state crack propagation, Gss, is up to ten times higher then at
the crack initiation, Gc, �2 will be many times greater then �1. A typical its
value for carbon-�ber reinforced plastics is several millimeters. If the actual
bridging law for a material is known, it must be utilized when de�ning the
properties of the interface elements.
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Figure 7: A comparison of the calculated energy release rates G for di¤erent
linear bridging lengths and di¤erent approximated formulae and FEM.

5 Calculation of an R-curve with a linear bridging
law

The energy release rate G as a function of crack propagation (R-curve) can
be calculated using the above-discussed modi�ed FEM taking into account
the bridging stress-displacement relationship �(�). It is possible to get di-
rectly the value of G by calculating the J -integral along the contour around
the crack tip and the bridging zone.

Another possibility consists in calculating the applied load P (d) and
crack opening d(a) as functions of the crack length a, after which the energy
release rate is obtained from Eq. (4) or Eqs. (7) �(10). A comparison of
the results obtained will reveal the degree of accuracy of Eqs. (7) � (10),
which, strictly speaking, are invalid for any bridging law.

The calculations were performed at G0c = 0:2 kJ/m2 and Gss = 2:2
kJ/m2, but the length of the bridging zone was varied from 2 to 10 mm.
Two formulae were used forG calculation namely Eq. (7) forG(P; a) and Eq.
(9) for G(P; d). The results obtained were compared with those, calculated
by the J -integral using the FEM and are shown in Fig. 7. It is seen that the
di¤erence between Eqs. (7) and (9) increases as the length of the bridging
zone increases. For extended bridging zones, the formula (7) leads to the so
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called �overshoot�of G above the asymptotic value of Gss. In contrary, Eq.
(9) gives a good agreement with the directly calculated values of G even for
the largest bridging length.

Thus, we conclude, that Eq. (9) gives a good approximation for G, and
therefore we used it for calculating G from the experimentaly measured P (a)
and d(a) (Fig. 3a�c).

The results are shown in Fig. 8a�c. It is seen that the shape of R-curves
depend on the thickness of specimens, while the G0c and the asymptotic
value of Gss, within the accuracy of the data scatter, are independent of
the geometry. The crack length at which Gss is achieved depends on the
specimen thickness, as predicted by Spearing and Evans [3], � it increases
with the thickness of specimens. We note that the specimen length L = 80
at h = 6:56 mm was unsu¢ cient to reach the asymptotic value of Gss.

In Fig. 9, an attempt to simulate the experimentally obtained R-curves
by a linear bridging law is made. The thin lines are the experimental ones for
h = 3:93 mm (these are the same as in Figs. 3a and 8a), which are compared
with the best possible prediction for two linear bridging laws. It can be noted
that the linear bridging law simulates the real crack propagation poorly.

6 A nonlinear bridging law

Calculating the J -integral (Rice 1968 [8] ) around the crack tip and along the
crack faces with a bridging zone, the following result for the energy release
rate is obtained:

G = J =

Z
S

w(�ij)dy�
Z
S

Pi
@ui
@x
dS = 2

a0Z
a

�(x)
@uy
@x
dx+G0 =

��Z
0

�(�)d�+G0

(11)
from which it follows [9,10] that

�(�) =
@G

@��
(12)

And the problem is solved as follows. For a specimen having a thickness h,
the dependences P (a), d(a) and ��(a) are measured, where �� is the crack
opening at the point where the tip of the initial precrack has been located.

Then, the R-curve G(a) is calculated from Eq. (9) and the experimental
data P (a) and d(a) for the investigated specimen. With G(a) and ��(a)
known, the bridging law �(�) is obtained from Eq. (12). Applying the
bridging law obtained as a characteristic of the interface element in FEM
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Figure 8: Experimental R-curves as functions of the specimen thickness. (a)
h = 3:93, (b) h = 6:55 and (c) h = 9:15 mm.

29



V.Tamuzs, S.Tarasovs and U.Vilks

0

20

40

60

80

100

120

0 4 8 12 16

d, mm

P
, N

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50

∆a, mm

G
, k

J/
m

^2

Figure 9: Description of the R-curve by a linear bridging law: (a) experimen-
tal and predicted load-displacement curves. (b) experimental and predicted
R-curves. The curves - - correspond to the bridging vanishing at �2 = 2
mm, �-�-� - the same at �2 = 4 mm.
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the load-displacement curve P (d) and R-curve G(a) are predicted for any
thickness of the DCB specimen.

7 Comparison with the experimental data

In Fig. 10a the experimental dependenceG(��) is plotted for a 9.15 mm thick
specimen. In Fig. 10b, the bridging law �(�) obtained is shown using the
averaged data from Fig. 10a and Eq. (12). It is seen that the bridging law
is highly nonlinear and similar to that obtained by Sorensen and Jacobsen
[5].

Using this law as a characteristic of the interface elements in FEM, the
load-displacement curves and R-curves are calculated for all investigated
specimens. The results are summarized in Fig. 11a and b, and a su¢ ciently
good agreement with the experimental data for all specimen geometries is
observed.

8 Conclusions

1. The results obtained con�rm that the initial energy release rate G0c
and the steady-state value Gss are material characteristics even at extended
bridging between the delamination crack faces, whereas the shape of R-
curves depend on the specimen geometry.
2. The simultaneous measurements of the wedge load, crack opening
under the load, and crack opening at the tip of the initial precrack are nec-
essary for determining the bridging law and predicting R-curves for di¤erent
geometries of DCB specimens.
3. The linear bridging law doesn�t allow one to predict the behavior of
R-curves.
4. The use of the simple energy release rate formula G(a; P ) (7) which
is valid for an ideal cantilever beam, leads to a signi�cant error in the case
of bridging and can lead to an apparent �overshoot�of the R-curve. In the
contrary the formula G(d; P ) (9) reveals a rather su¢ cient agreement with
the accurate R-curve even for extended bridging zones.
5. The numerical procedure proposed, with the interface �nite elements
inserted along the line of the expected crack propagation, reveals a good
agreement between the numerical and experimental load-displacement curves
and R-curves obtained for di¤erent DCB specimen thicknesses using the ini-
tial data from only one specimen geometry. This procedure allows one to
simulate the crack growth in �ber-reinforced composites taking into account
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the �ber bridging.
6. The obtained result show, that the bridging law is a material prop-
erty, at least within the accuracy of performed experiments, which allow to
predict delamination process in composites with di¤erent thickness.
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Delamination and �ber bridging phenomenon
experimental and numerical investigation

V. Tamuzs, S. Tarasovs, U. Vilks

Institute of Polymer Mechanics, 23 Aizkraukles St., Riga, LV 1006,
LATVIA

Abstract

In this work the dependence of R-curve and bridging law on the geometry of
DCB specimen was investigated for a unidirectional epoxy-carbon composite. Three
types of specimens, with thickness 3.93, 6.56 and 9.15 mm, were used.

In order to obtain bridging law experimentally, the crack opening at the initial
crack tip position was measured. This data then have been implemented in �nite
element analyses. The non-linear interface elements, embedded along a potential
delamination line, were used to model the crack propagation. The appropriate
stress-displacement relationship for the interface elements, which can adequately
model both the crack tip movement and �ber bridging creation and transport, was
used.

The R-curves and bridging laws for specimens with di¤erent thickness are found
experimentally and compared. The proposed �nite element procedure reveals a
good agreement between numerical and experimental load-displacement curves and
R-curves for specimens with di¤erent thickness using the initial data from only one
specimen geometry. The obtained results show, that the bridging law is a material
property, at least within the accuracy of performed experiments, which allow to
predict delamination process in composites with di¤erent thickness.

Keywords: unidirectional composite, bridging, double cantilever beam, R-curve.
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1 Introduction

The resistance to delamination is one of the most important characteristics
of laminate and unidirectional composites. One of the interesting features of
crack propagation in laminates is extensive �ber bridging which often can be
observed during delamination. This phenomenon can increase the fracture
toughness of composites in Mode I up to ten times and therefore it is very
important to know how this material property should be measured and how
implement it in numerical calculations.

The most popular method of determining the interlaminar fracture tough-
ness in composites is the test of double cantilever beam (DCB) specimens
[1]. One of the standard methods to express the ability of material to in-
crease the fracture toughness during crack propagation is so called R-curves
- fracture resistance as a function of crack extension. However, as long as 10
years ago [2], it was noted that R-curves for double cantilever beam speci-
mens, due to large scale bridging, depend not only on the material properties
but also on the geometry of the specimen. Various papers on the problem
were published during this decade. In 1992 [3], it was noticed that the DCB
specimens with a higher bending sti¤ness required a longer crack extension
before the steady-state crack growth resistance was attained.

The concept of a bridging law, traction on a crack faces as a function of
crack opening, was introduced in 1991 [4] to characterize the crack growth
resistance of a material.

Among the last papers on the subject, the publications [5] should be
mentioned, where the DCB specimens with di¤erent geometries loaded by
pure bending moments were investigated. An appropriate bridging law was
found by measuring the crack opening at the beginning of the bridging zone.

In the present paper, we investigate the peculiarities of R-curves ob-
tained on traditional DCB specimens loaded by wedge forces, the in�uence
of specimen geometry on R-curves and propose a scheme of measurements
and calculations to predict the resistance of crack propagation in specimens
of di¤erent thicknesses.

2 Energy release rate in DCB specimens

The geometry of a DCB specimen is shown in Fig. 1, where h is the thickness
of the specimen, which was varied, a0 is an initial notch, a is the length of a
propagated crack, d is the crack opening under the applied wedge forces P ,
and �� is the crack opening at the tip of the initial notch. The description
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Figure 1: The specimen geometry, loading scheme and parameters measured.

of the loading and measurement method is given later, in the experimental
part.

The energy release rate in a DCB specimen is de�ned in a usual way:

G = � @�
b@a

(1)

where b is the width of a specimen, a is the crack length, � is the potential
energy accumulated in the system. For linear elastic system it can be written
as:

G =
P 2

2b

@c

@a
(2)

where c = d=P is the compliance of the system. The Eq. (2) is well-known
and widely used. No assumptions about the type of the crack tip structure
was made in this formula, therefore it should be valid for any bridging law
and specimen shape. But the G values obtained can be functions of the
specimen shape, not only of the characteristics of the material. G depends
on the compliance c = d=P , which is measured experimentally or calculated
theoretically by using some assumptions about bridging law [6].

Neglecting the bridging e¤ect, the de�ection of an ideal console, with
length a and bending sti¤ness EI = Ebh3=12, under a load P is equal to
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a3P=3EI. The full opening of the DCB equals the doubled de�ection,

d =
2a3P

3EI
(3)

and the compliance is

c =
2a3

3EI
(4)

Using Eqs. (2) and (4), the most popular formula for the DCB is ob-
tained:

G(P; a) =
P 2a2

EIb
(5)

Combining Eqs. (5) and (3), we get another modi�ed formulae for G

G(P; d) =
P 2

EIb

�
3EId

2P

�2=3
(6)

Applying Eqs. (5) and (6) to an ideal isotropic cantilever beam, equal
results will be obtained. But, strictly speaking, they are all invalid for DCB
specimens, since boundary conditions at the end of cracked part of specimen
are not the same as at the clamped end of cantilever beam. As result, the
de�ection of real specimen for given load and crack extension always will
be greater, then it is predicted by beam theory (Eq. 3). The de�ection is
even higher for unidirectional composites, since in Eq. (3) we neglect the
interlaminar shear. The error is very big for short crack and diminishes
when the crack propagates. Therefore, obtained above formulas will give
di¤erent results and it is expedient to compare the predictions obtained by
Eqs. (5) and (6) and by general formula (2). For this aim the �nite element
model of DCB specimen without and with bridging was used. Comparing
G calculated directly from �nite element analyses with Eqs. (5) and (6), we
can conclude [7], that Eq. (6) performs better even for very short cracks
and in presence of large scale bridging.

3 Experimental part

The specimens investigated were produced from the commercially available
�Sika Carbo Dur S�epoxy/carbon sheets of thickness 1.3 mm. The initial
crack was precut by a diamond saw of thickness 0.1 mm. The crack tip
was sharpened by a thin blade to extend the initial crack to 25 mm. The
width of the cracked specimen b was 11.1 mm. Then the strips of the same
material and the same width were glued on both sides of the precracked
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Figure 2: Specimens of three di¤erent thicknesses after testing and enlarged
bridging zone of a 7-layer specimen.

strip to produce specimens of di¤erent total thicknesses, namely 3.93, 6.56
and 9.15 mm corresponding to 3, 5, and 7 layers. The �bers were oriented
along the specimen. The length of a specimen was 80 mm for 3- and 5- layer
samples, and 200 mm for 7- layer ones. The specimen length 80 mm was
insu¢ cient to reach the asymptotic value of energy release rate and these
tests were repeated with specimen length 200 mm.

The material is characterized by the following elastic constants: modulus
in the �ber direction E1 = 155 GPa, transverse modulus E2 = E3 = 9 GPa,
shear modulus G12 = 5 GPa and Poisson ratio � = 0:28.

The specimens were loaded by a wedge load under displacement control
with a constant speed of 1 mm/min. Seven specimens of thickness 3.93 mm,
eight specimens of thickness 6.56 mm and three of thickness 9.15 mm were
tested.

The load value was registered by the dynamometer of a MTS testing
device, but the crack opening d at the edge of specimens was measured by
a strain clip gauge as shown in Fig. 1. When testing the thick (9.15 mm)
specimens and long specimens from 3 and 5 layers, the crack opening ��

at the precrack tip was also measured by second strain clip gauge attached
to the top and bottom sides of the specimen. The accuracy of load and
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de�ection measurements was 1%. The crack propagation was measured
visually. For this aim, the lateral sides of specimens were painted white
with marks drawn in two millimeter intervals. So, the values of P , d, and �
were measured and stored for each crack increment �a equal to 2 mm.

Extensive bridging was observed during the crack propagation. The
specimens with extended and opened cracks are displayed in Fig. 2.

The measured load-displacement curves for all tested specimens are shown
in Fig. 3. Each point on the curves corresponds to a crack increment �a = 2
mm. These values are used later in R-curves calculations (Fig. 4). Energy
release rate in all cases was calculated using Eq. (6).

4 Bridging law

Calculating the J -integral [8] around the crack tip and along the crack faces
with a bridging zone, the following result for the energy release rate is ob-
tained:

G = J =

Z
S

w(�ij)dy�
Z
S

Pi
@ui
@x
dS = 2

a0Z
a

�(x)
@uy
@x
dx+G0 =

��Z
0

�(�)d�+G0

(7)
from which follows [9,10] that

�(�) =
@G

@��
(8)

where �(�) is traction on a crack faces as a function of crack opening.
For a specimen having a thickness h, the dependences P (a), d(a) and

��(a) are measured, where �� is the crack opening at the point where the tip
of the initial precrack has been located. With G(a) and ��(a) known, the
bridging law �(�) is obtained from Eq. (8) and later can be used for numer-
ical simulation of crack propagation in DCB specimens with any thickness.

In Fig. 5a the energy release rate G as a function of the crack opening is
plotted for all investigated specimens. The curves for specimens of di¤erent
thickness almost coincide, taking into account typical scatter of fracture
tests. Calculated bridging laws for these specimens are plotted in Fig. 5b.

5 Numerical simulation by FEM

In this section, we will describe a numerical procedure for the simulation of
crack propagation taking into account �ber bridging.
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Figure 3: Experimental load-displacement curves: h = 3:93 mm, h = 6:55
mm and h = 9:15 mm respectively.
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Figure 4: Experimental R-curves for specimens with di¤erent thickness:
h = 3:93 mm, h = 6:55 mm and h = 9:15 mm respectively.
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law.
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Figure 6: Stress-displacement relationship for interface elements.

The procedure is based on the �nite element method with nonlinear
�interface elements� embedded along a potential delamination line. The
crack propagation is then modeled by introducing an appropriate stress-
displacement relationship for the interface elements.

To model the e¤ect of �ber bridging, we will separate the total energy
dissipation in a sample into two speci�c terms associated with the crack
tip propagation and with �ber bridging, respectively. We need, therefore,
to choose an appropriate stress-displacement relationship for the interface
elements, Fig. 6, where � is the traction across the element and � is the
opening of crack faces. This work will concentrate on the Mode I fracture
only; therefore, the stresses and displacements are both normal to the crack
face.

The �(�) curve, Fig. 6, comprises three parts corresponding to the dis-
placement intervals (0; �0), (�0; �1), and (�1; �2). The �rst and second part
is responsible for the crack initiation and crack tip propagation. When the
stress ahead of the crack tip reaches �t (the tensile strength of the material)
the distance between the elements (interface thickness) is equal to �0, and
the crack starts to propagate. Behind the crack tip, the stress decrease, and
the distance between the crack faces increases up to �1. This region is called
the �fracture process zone�. The numerical tests have shown that the precise
value of �0 has little e¤ect on the solution, provided that �0 is su¢ ciently
small to simulate an initially very sti¤ interface. The crack opening �1 de-
pends on the initial critical fracture energy G0c, which is supposed to be a
characteristic of the material. So, the crack opening is chosen such that the
area under the curve to the point �1 is equal to G0c. In practice, �0 is very
small and �1 = 2G0c=�t. The size of fracture process zone, which should be
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quite small in real materials, in the �nite element analysis depends on the
size of elements in the model. As pointed out in [11], for good results, a
su¢ ciently �ne mesh must be used. It was found there that the mesh must
be �ne enough to include at least two interface elements in the �fracture
process zone�at the crack tip.

The third part of the stress-displacement relationship (interval from �1
to �2) depends on the bridging law and the area under the curve represents
the energy dissipation due to bridging, Gbr. As the crack opens, the stress
level decreases, being equal to zero at the end of the bridging zone.

Since, for the materials with extensive bridging, the energy release rate
during steady state crack propagation, Gss, is up to ten times higher then at
the crack initiation, Gc, �2 will be many times greater then �1. A typical its
value for carbon-�ber reinforced plastics is several millimeters. If the actual
bridging law for a material is known, it must be utilized when de�ning the
properties of the interface elements.

Using calculated in previous section bridging law of specimen with thick-
ness 9.15 mm as a stress-displacement relationship for the interface elements
in FEM, the load-displacement curves and R-curves are calculated for all
specimens investigated. The results are summarized in Fig. 7, and a su¢ -
ciently good agreement with the experimental data for all specimen geome-
tries is observed.

The �nite element code FRANC2DL was used in this work.

6 Conclusions

The obtained results con�rm that the initial energy release rate G0c and the
steady-state value Gss are material characteristics even at extended bridging
between the delamination crack faces, whereas the shape of R-curves depend
on the specimen geometry.

The simultaneous measurements of the wedge load, crack opening under
the load, and crack opening at the tip of the initial precrack are neces-
sary for determining the bridging law and predicting R-curves for di¤erent
geometries of DCB specimens.

The obtained result show that the bridging laws for specimens with dif-
ferent thicknesses are in good agreement with each other, at least within
the accuracy of performed experiments, and can be considered as a mate-
rial property. This fact allows to predict delamination process in compos-
ites with di¤erent thickness using experimental data from experiments with
specimens of only one thickness.
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The numerical procedure proposed, with the interface �nite elements in-
serted along the line of the expected crack propagation, reveals a good agree-
ment between the numerical and experimental load-displacement curves and
R-curves obtained for di¤erent DCB specimen thicknesses using the initial
data from only one specimen geometry. This procedure allows one to simu-
late the crack growth in �ber-reinforced composites taking into account the
�ber bridging.
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Abstract

In the paper the delamination crack propagation is investigated in 3D woven
carbon and glass �ber composites. Composites were produced in 3TEX company
and had volume fraction of transverse �bers equal 2-5 percents of total volume
of �bers. The reinforcement acts as crack bridging, greatly improving material
resistance to delamination. In this paper investigation of this material has been
performed using double cantilever beam technique and models elaborated for large
scale bridging in UD composites. The following alterations and novelties are in-
troduced: 1) The appropriate form and shape of specimens with glued additional
metallic tabs was elaborated allowing to avoid the premature break of specimen
arms; 2) Original loading device was designed to transfer high load directly to
crack faces, and additional measurement of crack opening was proposed (as in the
case of UD composite) to �nd the bridging law; 3) The convenient analytical for-
mula for GIc calculation was proposed and used; 4) Instead of traditional R-curve
which is geometry dependent it was proposed to characterize the delamination re-
sistance as function of crack opening displacement. The quantitative delamination
characteristics for materials investigated are presented.

Keywords: 3D composites; C. Delamination; C. Fibre bridging beam.
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1 Introduction

Delamination properties of laminated composites are very important ma-
terial characteristics. Fracture toughness of regular laminated composites
has rather low values (usualy the critical delamination energy release rate
in mode I �GIC does not exceed 0.2 �0.4 kJ/m2). One of the way to im-
prove the delamination toughness consists in introducing the small amount
of �bers in transverse direction of plate.

Comprehensive review in di¤erent aspects of stitched composites was
published by Dickinson et all. [1]. In work [2] �nite element analysis was
used to investigate failure initiation in translaminar reinforced composites.
It was found that translaminar reinforcement does not delay damage initia-
tion, even tough it restricts damage progression.

The theoretical modelling of fracture of stitched composites was elab-
orated by Cox and Massaba [3], where fracture behaviour in mode II of
stitched composite was analyzed. However the reliable experimental meth-
ods and fracture characteristics of stitched composites are still rather few [4]
because of very high delamination resistance and corresponding di¢ culties
of testing.

In contrast the delamination properties of regular UD and laminate com-
posites are investigated rather well. Fore mode I the most popular method
is the double cantilever beam test, for which the corresponding standard is
elaborated [5]. It should be noted that even for regular (non stitched) com-
posites the delamination usually is accompanied by bridging phenomena,
resulted in the dependence of delamination resistance upon crack propaga-
tion i.e. the distinct R-curve appearance.

It was found that the crack bridging, requires new concepts and meth-
ods to be used for fracture resistance calculation [6,7]. The linear elastic
fracture mechanics cannot correctly describe delamination in laminates in
presence of large scale bridging. Crack growth cannot be described by a sin-
gle parameter, such as fracture toughness, which is not a material constant
in this case but depends on crack size, geometry of specimen and loading
conditions.

One of the results of [6,7] consists in the statement that using the double
cantilever beam (DCB) and an additional strain slip gauge at precrack tip
it is possible to obtain from experimental data not only R-curves, but also
stresses at crack faces as function of crack opening displacement in the pres-
ence of large scale bridging. This bridging law is the property of material (in
contrast to R-curve, which shape depends on the sti¤ness of specimen). The
elaborated methodology can be adapted for investigation of delamination of
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3D composites with some alterations caused by signi�cantly higher fracture
toughness values. It is the actual aim of the present paper.

2 The materials and specimens investigated

High performance �brous composites usually consist of stacked layers in
which the �bers can have any in-plane orientation. The main disadvan-
tage of these composites is low resistance to interlaminar crack propagation.
Interlaminar stresses generated during impacts or near the edge are often
su¢ cient to initiate damage in the form of delamination. Several types of 3D
composites have been recently developed to improve interlaminar properties:
3D woven and braided structures, orthogonal and angle stitched laminates.
The orthogonal 3D woven laminate used in this work was elaborated and
produced by 3TEX Inc (USA). These laminates consists of unidirectional
in-plane layers oriented in 0� and 90� directions. The transversal reinforce-
ments are yarns oriented along normal to mid-plane. These yarns bind
the material and hold the in-plane �bers together. This is achieved with-
out interweaving the in-plane �bers, and hence avoids reduction of in-plane
sti¤ness caused by �ber waviness. The mechanical properties of materials
are described in details in [8].

Four types of composites were studied: fracture toughness of glass and
carbon �ber composites with transverse �bers and two similar materials
without �bers in transverse direction were tested and the increase of the
fracture toughness caused by the reinforcement in transverse direction was
estimated.

The specimens for measurement of the fracture toughness of material
without transverse �bers were cut from the plates having initial precrack
which was introduced by insert of 1 inch wide 0.05 mm thick te�on �lm
between two 3D mats before the moulding of composite plates. So the
specimens had classic DCB shape of thickness 10 mm for carbon composite
and 6.1 mm for glass-�ber specimens, width equal 15 mm length 250 mm
and initial precrack equal 25 mm.

The specimens for measurement of the fracture toughness of material
with transverse �bers having the same size were cut from 3D woven panels
having thickness 6.9 mm for glass�ber composite and 7 mm for carbon �ber
composite. The width of specimen was the same �15 mm. Initial notches
having length 25 mm and opening equal to 0.3 mm for 3D glass �ber com-
posite and 0.5 mm for 3D carbon specimens were introduced by a thin saw.
The crack tip was sharpened with a thin blade.
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Figure 1: Cross-section of side-grooved specimen (all dimensions in plot are
millimetres).

In order to monitor the position of the crack front the edges of the spec-
imens were painted with a white brittle paint (typewriter erasing �uid) and
�ne lines were drawn at 2mm intervals on the white surface. The operator
measured the crack length visually with a magnifying glass.

Materials with through-the-thickness �bers have much higher fracture
toughness then usual layered composites, therefore specimen�s arms break
before the crack propagation. In order to prevent this, metal tabs were glued
to bottom and upper sides of specimen. Steel tabs with thickness of 2.0, 2.2
and 2.5 mm and width 17 mm were used. The most suitable adhesive has
been found to be Polyurethane power adhesive �Bison�.

When testing the tabbed 3D carbon-�ber specimens, delamination of
metal tabs from surface of specimen before crack initiation was observed in
all initial experiments. In order to prevent tabs delamination, side-grooved
specimens were used. The corresponding drawing of crossection is shown on
Fig. 1.

3 Procedure of experimental loading andmeasure-
ments

The MTS testing rig (model 309) with the 20 kN load cell was used. Because
of rather high load level, the force was applied not through glued metallic
blocks (as recommended in [5]), but by specially designed test device. By
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Figure 2: The loading device in separated position.

means of �comb tooth�of the device the load was applied directly to the faces
of the initial precrack as wedgeforces (see Figs. 2 and 3). The loading was
performed under the displacement control at a constant rate of 2 mm/min.

The geometry of a DCB specimen, where the places of attached ex-
tensometers are shown, is displayed in Fig. 4. The total thickness of the
specimen is marked as 2h, a0 is the size of initial notch, a is the length of a
propagated crack, d is the crack opening under the applied wedge forces P ,
and �� is the crack opening at the tip of the initial notch.

The picture of glass �ber 3D specimen with attached extensometers un-
der load is shown on Fig. 5. Two extensometers, one attached to the loading
device test jig for measuring of crack opening along the load line and second
attached to the top and bottom sides of the specimen at the end of ini-
tial crack, were used (Fig. 4). The displacement of actuator of the testing
machine was recorded too.

The load�displacement curve was monitored throughout the test and
length of the crack on one side of the specimen was also noted on the load�
displacement trace at regular intervals. The specimens were unloaded after
crack propagation equal to 10 mm, and then loading was continued.
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Figure 3: The specimen and loading device before testing.
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Figure 4: Geometry of the specimen and parameters measured.
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Figure 5: 3D glass-�ber specimen installed in MTS machine under load.

4 Energy release rate calculation

The energy release rate in a DCB specimen is de�ned in a common way:

G = � @�
b@a

(1)

where c = d=P is the compliance of the system. The formula (1) is well-
known and widely used.

Neglecting the bridging e¤ect, the de�ection of an ideal cantilever beam,
with length a, width b and bending sti¤ness EI = Ebh3=12, under load
P is equal to a3P=3EI. The full opening of the DCB equals the doubled
de�ection,

d =
2a3P

3EI
(2)

and the compliance is

c =
2a3

3EI
(3)

Using Eqs. (1) and (3), the most popular formula for the DCB specimen
is obtained:

G(P; a) =
P 2a2

EIb
(4)
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Combining Eqs. (4) and (2), we get three another modi�ed formulae for G

G(d; P; a) =
3Pd

2ba
(5)

G(d; P ) =
P 2

EIb

�
3EId

2P

�2=3
(6)

G(a; d) =
9EId2

4ba4
(7)

Applying Eqs. (4)�(7) to an ideal isotropic cantilever beam, equal results
will be obtained. But, strictly speaking, they are all invalid for real DCB
specimens since boundary conditions at the end of cracked part of specimen
are not the same as at the clamped end of cantilever beam. In results of
interlaminar shear deformation and crack tip rotation the de�ection of real
specimen for given load neglecting the bridging always will be greater, then
it is predicted by beam theory (Eq. (2)). It is especially important for
unidirectional composites, because they have low interlaminar shear mod-
ulus. The error is very big for short crack and diminishes when the crack
propagates. Therefore, formulas (4)�(7) will give di¤erent results and it is
expedient to compare the predictions obtained by Eqs. (4)�(7) and by gen-
eral formula (1). For this aim the �nite element model of DCB specimen
without and with bridging was used [7]. Comparing G calculated directly
from �nite element analyses with formulas (4)�(7), as shown in Fig. 6, it
was concluded, that formula (6) performs better even for very short cracks.
In this comparative theoretical analysis the de�ection d in formulas (5)�(7)
is taken from �nite element calculations.

Applying these formulas to experimental results the de�ection is taken
from experimental graphs and therefore re�ects real compliance of specimen
including the in�uence of bridging e¤ect as well.

The ASTM standard [5] recommends to use for calculation the formula
(5) �G(d; P; a), which overestimates the value of G as it is seen in Fig. 6.
For correction of results, it is recommended to use some �ctitious crack size
a+�a, and correction �a is determined by generating a least square plot of
the cube root compliance c1=3 as a function of crack length a. The method
is called �Modi�ed Beam Theory (MBT)�[5]. It is clear that introduction
of arti�cially enlarged crack size will improve the results of formula (5) and
(4) as well. By this method the similar accuracy to Eq. (6), where crack
length is excluded and substituted by experimentally measured compliance,
can be achieved. However, the method has two disadvantages. First, MBT
technique assumes that c1=3 is a linear function of crack length a, but only in
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Figure 6: The comparison of energy release rate values calculated using Eq.
(4)-(7) with G obtained directly from �nite element model for di¤erent crack
length to thickness ratio.

case when fracture toughness has a constant value during crack propagation
the experimental points can be �tted by a straight line. In case of large scale
bridging the experimental ponts in these coordinates will form curved line
and therefore we can not use �tting procedure to �ng correction. Second,
�tting procedure requires many experimental points in order to increase ac-
curacy. Applying this method in situation, where only few experimental
points available, could lead to large error. In the so-called Modi�ed Compli-
ance Calibration Method (MCC) [5] the formula (6) is actually used. Below
the all mentioned calculation methods are compared.

Finally the consumption of energy at crack propagation can be measured
directly by area method, using the unloading of specimen after some crack
advance

GIC =
S

b�a
(8)

where S is the area of one loading-unloading cycle, b is the specimen�s width
and �a is crack increment. The area method was used for comparison with
calculated GIC values where possible.
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Figure 7: Load de�ection curve of carbon-�ber specimen without transverse
�bers.

5 Results and analysis

5.1 Fracture toughness of carbon-�ber specimens without
�bers in transverse direction.

Four specimens were tested. The thickness of the specimen is 10 mm, width
� 15 mm. A typical load�de�ection curve is presented in Fig. 7. Crack
propagation for all specimens was unstable. The cause of such behaviour
is rough structure of crack surface. Crack tip was arrested at some points,
until enough elastic energy was accumulated in specimen�s arms and then
crack propagated dynamically till next stable position. This behaviour is
responsible for sharp peaks in load-de�ection curves and large scatter in
calculated fracture toughness.

Six formulas for fracture toughness calculation were used (Eqs. (4)�(6)
and three data reduction techniques from ASTM standard). The results for
one specimen are shown in Fig. 8. Results for other specimens are very
similar. Values of fracture toughness for all four specimens calculated using
Eq. (6) (Fig. 9) lie between 0.4�0.8 kJ/m2. However, since for energy
release rate calculation peak values of load were used, these results should
be slightly overestimated. Area method was used for comparison and results
are presented in Fig. 10. Results of area method lie between GIC = 0.4 �
0.6 kJ/m2, which coincides rather satisfactory with data in Fig. 9. It should
be noted that GIC does not increase with the crack propagation.
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Figure 8: Fracture toughness of carbon-�ber specimen. Six di¤erent formu-
las for GIC calculation were used.

0
0.2

0.4
0.6

0.8
1

1.2

0 20 40 60 80 100 120 140 160 180 200

∆ a, mm

G
, k

J/
m

^2

Figure 9: Fracture toughness of carbon-�ber specimens without transverse
�bers. Results for all four specimens are obtained using Eq. (6).
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Figure 10: Fracture toughness of carbon-�ber specimens. Results for all four
specimens are obtained using area method.

5.2 Fracture toughness of glass-�ber specimens without �bers
in transverse direction.

Four specimens were tested. Typical load-de�ection curve is shown in Fig.
11. Fiber bridging was observed during loading of all specimens, resulting
in R-curve e¤ect. The values of fracture toughness calculated by di¤erent
formulas are very similar and only results obtained by formula (6) are pre-
sented for this material. R-curves for all four specimens calculated using
Eq. (6) and area method are presented in Figs. 12 and 13 respectively. The
fracture toughness at the crack growth initiation is about 0.3 kJ/m2 and in-
creases up to 2 kJ/m2 after crack propagation equal 30 mm. Such R-curve
behavior is caused by �ber cross-over during the delamination. The crack
opening �� at the position of the tip of initial precrack was also measured
for these and all following specimens, allowing to calculate bridging laws
for these materials. Bridging law, traction at the crack faces versus crack
opening, could be calculated using Eq. (9) [6,7].

�(�) =
@G

@��
(9)

The plot of fracture toughness versus crack opening at the initial precrack
position and corresponding bridging law are presented in Figs. 14 and 15
respectively.
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Figure 11: Load-de�ection curve of glass-�ber specimen without transverse
�bers.
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Figure 12: R-curves for glass-�ber specimens without transverse �bers, cal-
culated by Eq. 6.
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Figure 13: R-curves for glass-�ber specimens without transverse �bers, cal-
culated by area method.

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

δ∗ , mm

G
, k

J/
m

^2

Figure 14: Fracture toughness versus crack opening at the initial precrack
position.
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Figure 15: Bridging law for glass-�ber specimens without transverse �bers.

0
10
20
30
40
50
60
70
80

0 5 10 15 20 25 30
d, mm

P,
 k

g

Figure 16: Load-de�ection curve of 3D glass-�ber specimen.
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Figure 17: R-curves for six 3D glass-�ber specimens, calculated by Eq. 6.
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Figure 18: R-curves for six 3D glass-�ber specimens, calculated by area
method.
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5.3 Fracture toughness of 3D glass-�ber composite.

The load�de�ection curve for one specimen is presented in Fig. 16. Cor-
responded R-curves are presented in Figs. 17 and 18. It is seen that the
fracture toughness values directly measured by area method (Fig. 18) prac-
tically coincide with data calculated by Eq. (6) (Fig. 17). But using area
method much smaller number of points in R-curves can be obtained and
details of shape of R-curves are not clear. Therefore the use of Eq. (6) and
data on Fig. 17 is preferable for analysis, leaving the data of area method
only for control. The initial value of fracture toughness is 0.3 kJ/m2, and
fracture toughness during steady-state crack propagation is about 8 kJ/m2.
Crack growth is initiated by cracking of matrix, at typical G value for reg-
ular composite, then it increases. R-curves show (Fig. 17) that G value
increases signi�cantly after crack propagation on 10 mm. But it is not the
characteristic of the material, because it is known [6,7] that slope of R-curve
depends on the geometry of specimen, i.e. on the thickness of composite and
glued tabs. More informative and geometry independent parameter is the
ICOD (crack opening displacement at the initial precrack tip) in Fig. 19. It
is seen that at the initial crack opening equal to 0.2mm the fracture resis-
tance increases 10 times (till 3 kJ/m2) and reaches 7 kJ/m2 at ICOD equal
to 1 mm. Bridging law, which also can be considered as characteristic of
material, is presented according to Eq. (9) in Fig. 20.

In Fig. 20 the bridging law for glass �ber composite without transverse
�bers is also shown (from Fig. 15) for comparison. The di¤erence is clearly
seen. The bridging law of regular laminate composite is nonlinear monoto-
nously decreasing function, and bridging traction almost disappears at crack
opening equaling 2mm. In contrary the bridging law for 3D composite has
a nonmonotonous character. Initial value of traction is close to the same for
regular composite, then signi�cantly increases till crack opening equal 0.5
mm then monotonously drops till the opening of 4 mm. Apparently the high
value of bridging traction is caused by resistance of through the thickness
�bers which break at opening equal 0.5 mm, and following by the pull out
process up to full separation of crack faces.

5.4 Fracture toughness of 3D carbon-�ber composite.

Load�displacement curve for one specimen is presented in Fig. 21. Corre-
sponded R-curves, fracture toughness vs. crack opening and bridging law
are presented in Figs. 22�24 respectively. Values of critical fracture tough-
ness in plots are calculated using formula (6). The initial fracture toughness
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Figure 19: Fracture toughness versus crack opening at initial precrack tip.
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Figure 20: Traction at crack faces versus crack opening for 3D glass �ber
composite.
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Figure 21: Load-displacement curve of 3D carbon-�ber specimen.

is 0.6 kJ/m2 and fracture toughness of steady state propagation is about 20
kJ/m2. It is seen from Fig. 23 that at ICOD equal to 0.25 mm the value
of G increases to 6 - 10 kJ/m2, reaching the steady state propagation value
above 20 kJ/m2 at ICOD equal 0.5 - 1 mm. Looking at the shape of bridg-
ing law for specimens with 3D reinforcement, (Figs. 20 and 24), we see one
distinct feature of 3D composites� the value of traction at the crack faces is
low at the beginning of delamination and reaches its maximum when ICOD
equals 0.2�0.5 mm. During this period of crack propagation vertical yarns
of through-thickness reinforcement are still not broken and crack propagates
due to debonding process between yarns and in-plane layers of composite.
After this point the vertical yarns are broken and remaining bridging trac-
tion is caused by friction of pull-out of transverse yarns. In Fig. 25 the
magni�ed view of 3D carbon specimen after testing is shown. It is seen that
vertical yarns have been pulled out approximately 2mm in length.

It can be concluded that knowledge of bridging law allows to predict crit-
ical load for this type of composites much more accurate, then it is possible
using linear fracture mechanics. This behavior of bridging law in through-
thickness reinforced composites explains the fact, that fracture initiations
occurs at low fracture toughness values, but much more energy is required
for fracture propagation.
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Figure 22: R-curves for 3D carbon-�ber specimens.
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Figure 23: Bridging law (traction at the crack faces versus crack opening).
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Figure 24: Carbon-�ber 3D specimen after testing (magni�ed view).

6 Conclusion

1. In order to perform delamination experiments with 3D composite ma-
terial, modi�ed DCB specimens were designed. The usual composite
plates are comparably thin and the arms of DCB specimen break be-
fore the crack propagation. The specimen arms should be sti¤ened by
additional tabs glued at both sides of specimen.

2. The comb-like loading device was used and can be recommended for
applying high stretching load directly to the crack faces.

3. Di¤erent formulas for GIC calculation from experimental data ob-
tained on DCB specimen are veri�ed and analytical formula G(P; d)
is found to give the best results, which well coincide with GIC mea-
surements by area method.

4. The additional parameter crack opening displacement at the initial
precrack tip (ICOD) is measured to obtain the bridging law, which is
characteristic of material, independent on the geometry of specimen. It
is recommended to use the graphsGIC vs. ICOD, instead of traditional
R-curves (GIC vs. �a) for characterization of delamination fracture
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resistance of composite with extensive bridging.

5. The elaborated methodology is used to estimate the in�uence of trans-
verse �bers to fracture resistance of laminate glass and carbon �ber
composites. For investigated material it is found that the fracture
toughness of glass and carbon �ber composite without transverse �bers
is close to known fracture toughness data for laminated composites:
0.4�0.5 kJ/m2 for carbon and 0.2 kJ/m2 at crack initiation and 2
kJ/m2 at steady state propagation for glass �ber composite. The mi-
crocracking at the tip of crack in 3D woven material starts at the same
GIC values as matrix cracking: 0.3�0.6 kJ/m2. These results corre-
spond to the numerical analysis in [2], where was found that translami-
nar reinforcement does not delay damage initiation. At crack opening
equal to 0.2 mm, the crack propagation resistance increases up to
10 times and for steady state propagation at crack opening 0.5 mm
reaches very high values (till 20 kJ/m2).
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Paper IV: An integral equation solution for 3D heat extraction

An integral equation solution for
three-dimensional heat extraction from planar

fracture in hot dry rock
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Abstract

In the numerical simulation of heat extraction by circulating water in a fracture
embedded in geothermal reservoir, the heat conduction in the reservoir is typically
assumed to be one-dimensional and perpendicular to the fracture in order to avoid
the discretization of the three-dimensional reservoir geometry. In this paper we
demonstrate that by utilizing the integral equation formulation with a Green�s
function, the three-dimensional heat �ow in the reservoir can be modelled with-
out the need of discretizing the reservoir. Numerical results show that the three-
dimensional heat conduction e¤ect can signi�cantly alter the prediction of heat
extraction temperature and the reservoir life as compared to its one-dimensional
simpli�cation.

Keywords: hot dry rock; integral equation method; point heat source; geother-
mal reservoir
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1 Introduction

Hot rocks and �uids in the subsurface can be an economical source of energy.
The temperature in the subsurface can rise to 350�C at a depth of 5 km;
and further to 500 � 1200�C at 40 km. The hot dry rock (HDR) concept
of geothermal energy production involves drilling two or more wells into the
reservoir to intersect permeable fractures of natural or man-made origin,
injecting cold water into one part of the well system, and recovering hot
water from the other (Figure 1). A comprehensive review of the concept of
HDR systems may be found in Hayashi et al. [1].

Physical and mathematical models play an important role in the plan-
ning and development of geothermal reservoirs. A number of analytical and
numerical solutions exist for the prediction of heat extraction from fracture
systems in geothermal reservoirs. See, for example, Reference [2] for a re-
view. The physical mechanisms modelled are sometimes complicated and
include mechanical, hydraulic, thermal, and chemical e¤ects and their cou-
pling. The geometry, however, is often simpli�ed. Particularly, with only
a few exceptions such as the �nite element solution by Kolditz [3], Kolditz
and Clauser [4], and Kohl et al. [5] and the boundary element model by
Cheng et al. [6], the heat conduction in the reservoir is typically modelled
as one-dimensional heat �ow perpendicular to the fracture surface [7�10].
The primary reason for such simpli�cation is the ine¢ ciency in modelling
an unbounded three-dimensional domain by numerical discretization.

In this work, we emphasize the three-dimensional heat conduction e¤ect
in hot dry rock. The physical mechanisms considered are limited to the
advective heat transport in the fracture by �uid �ow and the heat exchange
with the reservoir. The numerical di¢ culty of modelling a three dimen-
sional, unbounded domain is overcome by utilizing the integral equation
formulation and the three-dimensional Green�s function of heat conduction.
The need for discretizing the reservoir is entirely eliminated, and the �nal
numerical solution system involves only the twodimensional fracture plane,
resulting in a much more e¢ cient numerical scheme. The three-dimensional
heat conduction e¤ect is investigated against its one-dimensional simpli�ca-
tion. It is demonstrated that the simpli�cation of reservoir heat �ow to one
dimension can signi�cantly underestimate the extraction temperature and
reservoir life.
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Figure 1: Heat extraction from a planar fracture.

2 Governing Equations

2.1 Fluid �ow

Figure 1 gives a schematic view of heat extraction from a hot dry rock
system by circulating water through a natural or man-made fracture. The
fracture is assumed to be �at, of �nite size and with arbitrary shape. The
geothermal reservoir, on the other hand, is of in�nite extent. Other physical
assumptions are similar to these postulated in Reference [6]. Speci�cally,
it is assumed that the geothermal reservoir is impermeable to water and
is non-deformable. It has constant heat conduction properties. The heat
storage and dispersion e¤ects in the fracture �uid �ow are negligible. We
further postulate that the fracture width is small such that the �ow in the
fracture is laminar and governed by the lubrication �ow equation:

r2 p(x; y) = �
�2�

w3(x; y)
q(x; y); x; y 2 A (2)

where r2 is the gradient operator in two spatial dimensions (x and y), p
is the �uid pressure, � the �uid viscosity, w the fracture width, and A the
fracture surface (see Figure 1). We note that:

q = w v (3)
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is the discharge per unit width, and v is the average �ow velocity given by

v(x; y) =
1

w(x; y)

Z w(x;y)

0
v(x; y; z) dz (4)

where v is the �ow velocity.
Assuming that the �uid is incompressible, the reservoir is impermeable

to �uid �ow, and the fracture width does not change with time, we can write
the �uid continuity equation as

r2 � q(x; y) = Q�(x� xe; y � ye)�Q�(x� xi; y � yi) (5)

where r2� is the divergence operator in two dimension. In the above we
have considered an injection well located at (xi; yi), and an extraction well
at (xe; ye), both with discharge Q, and � is the Dirac delta function.

Combining (1) and (4), we obtain the following second order partial
di¤erential equation

r2 �
�
w3(x; y)r2 p(x; y)

�
= �2�Q [�(x� xi; y � yi)� �(x� xe; y � ye)] (6)

which is subject to the boundary condition

@p

@n
= 0 on @A (7)

where @A is the rim of the planar fracture (Figure 1), and n is the outward
normal of @A. With known fracture width, the above equation can be solved
for the pressure distribution in the fracture. The discharge q and average
velocity v are then obtained from (1) and (2).

2.2 Heat transport

The heat transport takes place both in the geothermal reservoir and the
fracture. For the geothermal reservoir, the heat conduction is governed by
the three-dimensional di¤usion equation:

Krr23 T (x; y; z; t) = �rcr
@T (x; y; z; t)

@t
; x,y,z 2 
 (8)

where T is the temperature, �r is the rock density, cr is the speci�c heat
of rock, r23 is the Laplacian operator in three dimensions, and 
 represents
the in�nite domain that is the geothermal reservoir (Figure 1).

For heat transport in the fracture, in addition to the heat storage and
di¤usion terms as found in (7), we also need to consider advection by �uid
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�ow and the heat source e¤ects. However, under the conditions of relatively
large advection velocity and the continuous injection of cooling water, it can
be demonstrated that the heat storage and di¤usion e¤ects are negligible
[6,11]. Dropping these terms, the governing equation becomes

�wcwr2 � [q(x; y)T (x; y; 0; t)] = 2Kr
@T (x; y; z; t)

@z

����
z=0+

(9)

+�wcwQ [T (xe; ye; 0; t) � (x� xe; y � ye)
�Tinj� (x� xi; y � yi)] ; x; y 2 A

where �w is the water density, cw is the speci�c heat of water, Kr is the rock
thermal conductivity, and Tinj is the injection water temperature. In the
above, the term on the left hand side of (8) represents the heat advection
by fracture �uid �ow, the �rst term on the right-hand side gives the heat
supply through the fracture walls (two sides) by conduction, and the last two
terms correspond to a heat sink and a heat source, respectively, caused by
the extraction and injection of water. We note that in (8) a single notation
T (x; y; z; t) is used to denote the temperature of the rock and the fracture
�uid, because temperature is continuous across the two media. The water
temperature Tw is equal to the rock temperature on the fracture plane z = 0,
i.e., Tw(x; y; t) = T (x; y; 0; t); x; y 2 A.

Equation (8) can be simpli�ed by expanding the quantities under the
divergence operator and utilizing the �ow equation (4). It becomes

�wcw q(x; y) � r2 T (x; y; 0; t)� 2Kr
@T (x; y; z; t)

@z

����
z=0+

= 0 (10)

We notice that the Dirac delta functions are removed from the equation.
The governing equations (7) and (9) are subject to initial and boundary

conditions. Before the heat extraction operation, the temperature of the
rock and the fracture �uid is assumed to be at a constant,

T (x; y; z; 0) = T0; x,y,z 2 
 (11)

At the injection point (xi; yi; 0), the temperature is equal to that of the
injected water:

T (xi; yi; 0; t) = Tinj; t > 0 (12)

The extraction temperature T (xe; ye; 0; t) is unknown. It is of interest
to note that there is no explicit boundary or interfacial condition for the
geothermal reservoir. The heat �ux and temperature continuity at the in-
terface with the fracture is automatically contained in the coupling term
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in (9) and the inherent assumption of a single temperature for the entire
system. The only boundary value introduced to the system is the injection
temperature shown in (11).

2.3 Normalized solution system

It is desirable to normalize the solution �eld to become dimensionless with
value between zero and one. Therefore, we introduce the normalized tem-
perature de�cit given by

Td =
T0 � T
T0 � Tinj

(13)

Equations (7) and (9) retain their original forms under this new variable,

Krr23 Td(x; y; z; t) = �rcr
@Td(x; y; z; t)

@t
(14)

�wcw q(x; y) � r2 Td(x; y; 0; t)� 2Kr
@Td(x; y; z; t)

@z

����
z=0+

= 0 (15)

The initial condition is then

Td(x; y; z; 0) = 0 (16)

and the boundary condition becomes

Td(xi; yi; 0; t) = 1 (17)

2.4 Laplace transform

To facilitate the treatment of time variable, we apply Laplace transform to
the above equations and obtain:

Krr23 eTd(x; y; z; s) = s�rcr eTd(x; y; z; s) (18)

�wcw q(x; y) � r2 eTd(x; y; 0; s)� 2Kr @ eTd(x; y; z; s)@z

�����
z=0+

= 0 (19)

eTd(xi; yi; 0; s) = 1

s
(20)

where the wiggle overbar denotes the Laplace transform and s is the trans-
form parameter. We note that the initial condition (15) has been absorbed
into (17). Equations (17)�(19) hence form a complete solution system.
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For later reference, we also introduce the alternative form of (18), based
on (8), as follows

�wcwr2 �
h
q(x; y) eTd(x; y; 0; s)i� 2Kr @ eTd(x; y; z; s)

@z

�����
z=0+

(21)

= �wcwQ

� eTd(xe; ye; 0; s) �(x� xe; y � ye)� 1
s
�(x� xi; y � yi)

�

3 Integral Equation Formulation

The system of equations (17)�(19) is de�ned in three spatial dimensions. We
shall demonstrate that by utilizing Green�s function of three-dimensional
di¤usion equation, the solution system can be reduced to a two-dimensional
integral equation. The numerical discretization is performed on the fracture
surface only, signi�cantly reducing the computational cost.

The Laplace transform of temperature de�cit in the reservoir due to a
continuous point heat source of unit magnitude and located at (x0; y0; z0) is
given by the fundamental solution of the modi�ed Helmholtz equation (17)
as eG = 1

4�Kr

1

R
exp

�
�
r
�rcrs

Kr
R

�
(22)

where
R =

p
(x� x0)2 + (y � y0)2 + (z � z0)2 (23)

is the Euclidean distance. The temperature in the reservoir due to a distri-
bution of sources on the fracture surface A is then written as

eTd(x; y; z; s) = 1

4�Kr

Z
A
e� �x0; y0; s� 1

R1
exp

�
�
r
�rcrs

Kr
R1

�
dx0dy0 (24)

where e� is the source intensity, and
R1 =

p
(x� x0)2 + (y � y0)2 + z2 (25)

We realize that the heat lost in the reservoir is just the heat gained by the
fracture �uid through the wall; hence the source strength is

e� (x; y; s) = �2Kr @ eTd(x; y; z; s)
@z

�����
z=0+

(26)

According to (18), the heat source can also be expressed as

e� (x; y; s) = ��wcw q(x; y) � r2 eTd(x; y; 0; s) (27)
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Substituting (26) into (23), we obtain:

eTd(x; y; z; s) =
��wcw
4�Kr

Z
A

h
q(x0; y0) � r2 eTd(x0; y0; 0; s)i (28)

1

R1
exp

�
�
r
�rcrs

Kr
R1

�
dx0dy0

Equation (27) is the integral equation representation of the solution of tem-
perature at any point (x; y; z) in the reservoir, provided that the temperature
on the fracture surface eTd(x; y; 0; s) is known.

To solve the temperature on the fracture surface, we restrict (27) to only
points on the fracture surface A, and it becomes

eTd(x; y; 0; s) =
��wcw
4�Kr

Z
A

h
q(x0; y0) � r2 eTd(x0; y0; 0; s)i (29)

1

r
exp

�
�
r
�rcrs

Kr
r

�
dx0dy0

where
r =

p
(x� x0)2 + (y � y0)2 (30)

Equation (28) is entirely de�ned on the two-dimensional plane A. Together
with the boundary condition (19), it forms a complete solution system for
�uid temperature in the fracture.

Equation (28) contains the temperature gradient as an unknown, which
requires a �nite di¤erence approximation in the numerical solution. Some-
times it is desirable to directly model temperature for better accuracy. An
alternative formula of (28) hence can be derived as follows. Utilizing (20)
instead of (18) in (26) and (27), we obtain

eTd(x; y; z; s) =
��wcw
4�Kr

Z
A
r2 �

h eTd(x0; y0; 0; s)q(x0; y0)i
1

R1
exp

�
�
r
�rcrs

Kr
R1

�
dx0dy0 (31)

+
�wcwQ

4�Kr

� eTd(xe; ye; 0; s) 1
Re
exp

�
�
r
�rcrs

Kr
Re

�
�1
s

1

Ri
exp

�
�
r
�rcrs

Kr
Ri

��
where

Re =
p
(x� xe)2 + (y � ye)2 + z2 (32)

Ri =
p
(x� xi)2 + (y � yi)2 + z2
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The divergence operator in (30) can be relaxed by the divergence theoremZ
A
r2 �

h eTd(x0; y0; 0; s)q(x0; y0)i 1
R1
exp

�
�
r
�rcrs

Kr
R1

�
dx0dy0 (33)

=

Z
A
r2 �

� eTd(x0; y0; 0; s)q(x0; y0) 1
R1
exp

�
�
r
�rcrs

Kr
R1

��
dx0dy0

�
Z
A

eTd(x0; y0; 0; s)q(x0; y0) � r2 � 1
R1
exp

�
�
r
�rcrs

Kr
R1

��
dx0dy0

=

Z
@A

eTd(x0; y0; 0; s)qn(x0; y0) 1
R1
exp

�
�
r
�rcrs

Kr
R1

�
dx0dy0

�
Z
A

eTd(x0; y0; 0; s)q(x0; y0) � r2 � 1
R1
exp

�
�
r
�rcrs

Kr
R1

��
dx0dy0

where qn is the normal component of q on @A. We further note that in
(32) the line integral performed over the fracture boundary @A vanishes by
virtue of the no �ux condition qn = 0 as indicated in (6). Substituting (32)
into (30) and applying the equation to the fracture surface only, we obtain
the alternative solution system to (28) as

eTd(x; y; z; s) =
��wcw
4�Kr

Z
A

eTd(x0; y0; 0; s)q(x0; y0)
�r2

�
1

r
exp

�
�
r
�rcrs

Kr
r

��
dx0dy0 (34)

+
�wcwQ

4�Kr

� eTd(xe; ye; 0; s) 1
re
exp

�
�
r
�rcrs

Kr
re

�
1

s

1

ri
exp

�
�
r
�rcrs

Kr
ri

��
where

re =
p
(x� xe)2 + (y � ye)2 (35)

ri =
p
(x� xi)2 + (y � yi)2

We note that in this formulation the gradient operator is transferred to the
known fundamental solution, which can be exactly executed.

4 Numerical Implementation

The general scheme for solving the system represented by (28) or (33) in-
volves discretizing an arbitrary shaped fracture surface into a number of
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Figure 2: Computational mesh.

elements de�ned by a total of n+1 nodes. An unknown temperature de�citeT id is associated with each node, with the exception of the injection point,
where eTd = 1=s is the imposed boundary condition. As a result, there are
n unknown discrete temperatures. Equation (28) or (33) is then applied
to the n nodes by selecting in turn their nodal locations as the base point.
This produces n equations to solve for the n unknowns. Some detail of the
numerical implementation is given below.

In the present work, we choose formulation (28) instead of (33) for the
convenience of implementing an upwind scheme similar to the �nite di¤er-
ence method. First, we subdivide the domain A into ne rectangular elements
using a �nite di¤erence mesh as shown in Figure 2. The area integration
in (28) is performed element by element with reference to local co-ordinates
(�; �) (see Figure 2):

eTd(x; y; s) =
��wcw
4�Kr

neX
m=1

Z
Am

"
qx(�; �)

@ eTd(�; �; s)
@�

+ qy(�; �)
@ eTd(�; �; s)

@�

#
1

r
exp

�
�
r
�rcrs

Kr
r

�
d�d� (36)

The values of qx, qy, @ eTd=@�, and @ eTd=@� within the element are interpolated
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from their nodal values based on bilinear shape functions; for example

@ eTd
@�

=

 
@ eTd
@�

!
1

N1 +

 
@ eTd
@�

!
2

N2 +

 
@ eTd
@�

!
3

N3 +

 
@ eTd
@�

!
4

N4 (37)

where the subscripts ( )i denote the discrete nodal values; and

N1 =
1

4
(1� �)(1� �) (38)

N2 =
1

4
(1 + �)(1� �)

N3 =
1

4
(1 + �)(1 + �)

N4 =
1

4
(1� �)(1 + �)

are the shape functions. Values of qx and qy are directly speci�ed on the
nodes; @ eTd=@�, and @ eTd=@� on the other hand, need to be approximated
using �nite di¤erence formula based on nodal temperature values. Due to
the presence of strong advection, an upwind di¤erencing scheme is needed to
maintain solution stability. At a grid point (i; j) (see Figure 2), the temper-
ature derivatives are expressed as the backward or the forward di¤erences
according to the direction of the �ow: 

@ eTd
@�

!
i;j

=
eTi;j � eTi�1;j

�x
; if qx > 0 (39) 

@ eTd
@�

!
i;j

=
eTi+1;j � eTi;j

�x
; if qx < 0

and similarly for @ eTd=@�. Substitution of (38) into (36) gives the tempera-
ture derivative within an element, which is represented by discrete tempera-
tures not only on the current element, but also on its neighbouring elements.
Green�s function in (35) is exactly calculated within the elements. An adap-
tive Gaussian quadrature is used for integration. On each element, 4-point
and 9-point rules are applied and the results are compared for convergence.
If the accuracy is not satisfactory, the element is continuously subdivided
into smaller ones for integration until a speci�ed accuracy is reached. The re-
sulting linear system contains the nodal values of temperature as unknowns.
An LU decomposition scheme is then employed to solve the matrix.

The solution obtained above is in the Laplace transform domain. It
is necessary to transform the solution back into the time domain. This is
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Figure 3: An in�nite fracture with an injection well.

achieved by using an approximate Laplace inversion method. The widely
used Stehfest method [12,13] is adopted for this purpose.

5 Numerical Examples

5.1 In�nite fracture

We �rst solve the problem of an in�nite planar fracture with a single injection
well located at the origin (Figure 3). The initial reservoir temperature is at
a constant T = T0. At t = 0+, water is injected at temperature Tinj with
�ow rate Q. Due to axial symmetry, the �uid �ow in the in�nite fracture is
easily resolved as

qr =
Q

2�r
(40)

For the numerical solution, the in�nite region is truncated using a circle
that is large enough to enclose the temperature de�cit front to ensure that
the boundary e¤ect is small (Figure 3). The following data are used in the
simulation [14]

Q = 1� 10�2 m3/s; �w = 1000 kg/m
3; �r = 2700 kg/m

3

Kr = 2:0 W/m K; cw = 4:2� 103 J/kg K; cr = 1:0� 103 J/kg K
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In Figure 4 we plot the normalized temperature de�cit, Td, on the fracture
(z = 0) along the radial direction r, at times t = 1�107; 1�108; and 1�109
s, using symbols connected by dash lines.

To validate the solution, it is desirable to compare the numerical result
with known analytical solution. Unfortunately, it is not to our knowledge
that any analytical solution simulating threedimensional heat �ow exists.
Hence, only an indirect comparison can be made using a onedimensional
reservoir heat �ow model, which is brie�y presented below.

The temperature in the fracture varies in the radial direction only, hence
(14) simpli�es to

Q�wcw
2�r

@Td(r; 0; t)

@r
� 2Kr

@Td(r; z; t)

@z

����
z=0+

= 0 (41)

Assuming that the heat conduction in the reservoir is one-dimensional and
perpendicular to the fracture surface, (13) becomes

Kr
@2Td(r; z; t)

@z2
= �rcr

@Td(r; z; t)

@t
(42)

The normalized temperature de�cit solved from the above set of equations
is

Td(r; z; t) = erfc
��
�Krr

2

Q�wcw
+
z

2

�r
�rcr
Krt

�
(43)

where erfc is the complementary error function. In Figure 4, the analytical
solution is shown in solid curves. We observe that the two solutions are
very close to each other at early times. As time increases, the di¤erence
between them becomes more noticeable, but is still small. Hence the three-
dimensional heat �ow e¤ect is insigni�cant in this in�nite fracture case.

5.2 Circular fracture

In the second example, heat extraction from a circular fracture is studied.
In this case, the �uid �ow is no longer simple. Nevertheless, the �uid �ow
in the fracture induced by multiple injection/extraction wells can still be
presented in an exact solution, which is constructed using the method of
images [15]. For a fracture of radius R centred at the origin and containing
any number of injection and extraction wells, the discharge per unit width
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Figure 4: Normalized temperature distribution in the in�nite fracture at
various times.

is given by

qx =
1

2�

nwX
i=1

Qi

�
x� xi

(x� xi)2 + (y � yi)2
(44)

+
r2i (xr

2
i � xiR2)

(xr2i � xiR2)2 + (yr2i � yiR2)2

�
qy =

1

2�

nwX
i=1

Qi

�
y � yi

(x� xi)2 + (y � yi)2
(45)

+
r2i (yr

2
i � yiR2)

(xr2i � xiR2)2 + (yr2i � yiR2)2

�
where Qi is the �uid extraction rate of the ith well, xi and yi denote the
well location, nw is the number of wells, and

ri =
q
x2i + y

2
i (46)

Due to the condition of mass balance of incompressible �uid, it is necessary
that the extraction/injection rates sum to zero

nwX
i=1

Qi = 0 (47)
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Figure 5: Computational mesh for heat extraction in a circular crack. Flow
vectors are shown in arrows.

It is easy to check that the above solution (43) and (44) satis�es the continu-
ity equation (4), and also the boundary condition that normal �ux vanishes
at the edge of the fracture, qn = 0 at r = R.

In this example, we solve the problem of a pair of injection and extraction
wells located at (�a; 0) and (+a; 0) with equal but opposite discharge rate
(�Q and +Q). The resultant �ow �eld is illustrated in Figure 5 for the
fracture radius of 50 m and the spacing between two wells that equals 62.5
m.

For the solution of temperature, the fracture surface is discretized into
5024 four-noded bilinear elements similar to those shown in Figure 5. The
following data set used in Rodemann [16] is adopted for the numerical solu-
tion:

Q = 5� 10�3 m3/s; Kr = 2:58 W/m K;
�w = 1000 kg/m

3; �r = 2650 kg/m
3

cw = 4:05� 103 J/kg K; cr = 1:1� 103 J/kg K

The initial reservoir temperature is 140�C, and the injected water tempera-
ture is 60�C. In Figure 6, we plot the water temperature in the fracture in
isothermal lines at the time t = 3 days. Note that the isolines correspond
to 85, 108, 125, 134 and 139�C.
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Figure 6: Temperature distribution in a circular fracture at t = 3 days based
on integral equation solution.

Next, we examine the e¤ect of fracture size on the extraction tem-
perature. In Figure 7, we present the time history of normalized extrac-
tion temperature (Textr � Tinj)=(T0 � Tinj) for di¤erent fracture sizes, R =
100; 150; 200; 250 and 300 m. The injection and extraction wells are lo-
cated at �R=2 on the x-axis. The integral equation solution is presented in
dash lines. We clearly observe the trend that the larger the fracture size,
the higher the extraction temperature, due to longer residence time.

To compare the e¤ect of three-dimensional versus one-dimensional reser-
voir heat �ow model, we have separately written a Finite Volume Method
(FVM) program using the one-dimensional heat �ow assumption. The nu-
merical results based on the FVM are plotted in solid lines in Figure 7.
We observe that the 1-D model always under-predicts the extraction tem-
perature. This is a consequence of the fact that the part of the reservoir
beyond the fracture footprint is e¤ectively cut o¤ from heat supply in the
one-dimensional model. The di¤erence between the two models is more sig-
ni�cant for smaller fracture sizes. This observation is consistent with the
in�nite fracture case. The result demonstrates that the use of correct reser-
voir geometry is important in predicting the life of HDR reservoir with a
�nite fracture size.
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Figure 7: Extraction temperature for various fracture sizes.

5.3 Arbitrary shape fracture

In a last example, we consider a fracture with arbitrary geometry. Figure
8 shows the fracture and its discretization into surface elements. The heat
extraction operation involves 3 wells: one injection well with a �ow rate of
10 l/s, and two extraction wells each with a �ow rate of 5 l/s. All other
reservoir parameters are the same as the preceding example.

In this case, the �uid �ow can no longer be calculated by an analyti-
cal solution. The Finite Element Method is utilized to solve the potential
�ow in the two-dimensional fracture geometry. The �ow singularities were
treated using a singularity extraction and superposition procedure [17]. The
resultant �ow �eld is plotted in velocity vectors in Figure 9. The normalized
temperature de�cit in the fracture after 6 months of operation is shown in
contour lines in Figure 10.

6 Summary and Conclusion

In this paper we have presented an integral equation formulation for heat
extraction from a planar fracture in an in�nite hot dry rock reservoir. Most
of the existing work, analytical and numerical, treats the heat conduction in
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Figure 8: A fracture with arbitrary geometry.

Figure 9: Fluid �ow in an arbitrarily shaped fracture with one injection well
and two extraction wells.
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Figure 10: Normalized temperature de�cit in a fracture with an injection
well and two extraction wells.
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the geothermal reservoir as one-dimensional and perpendicular to the frac-
ture. This assumption signi�cantly restricts the heat supply to the HDR
system, hence under-predicts the system�s performance. One of the reasons
that the threedimensional nature of heat conduction is ignored is the dif-
�culty in treating the in�nite geothermal reservoir geometry by numerical
discretization.

In the present work, we demonstrate that by the use of three-dimensional
Green�s function for heat conduction and the integral equation formulation,
the need for discretizing the three-dimensional reservoir is completely elim-
inated. The resultant discretization involves the fracture surface only.

To demonstrate the solution algorithm, three examples, an in�nite frac-
ture with a single injection well, a circular fracture with a pair of injection
and extraction wells, and an arbitrarily shaped fracture with one injection
and two extraction wells, are solved. Unfortunately, due to the lack of ana-
lytical solution that models the three-dimensional heat conduction, compar-
isons are made only with an analytical solution and a FVM solution, both
with the one-dimensional heat conduction assumption. Partial validation is
achieved by observing the consistency in asymptotic behaviour as the frac-
ture size becomes large. The proposed methodology is then used to solve an
HDR heat extraction system involving an arbitrarily shaped fracture with
multiple injection and extraction wells. Numerical investigation shows that
the threedimensional heat conduction can signi�cantly alter the prediction
of heat extract temperature and the reservoir life, particularly for smaller
fractures.

Although the present integral equation solution has been applied to a
single fracture, the same concept can be applied to a reservoirs with a num-
ber of fractures. Other improvements that can be implemented in the model
include the modelling of reservoir elasticity and thermoelasticity. Work in
these directions are under development and will be reported in the future.

Acknowledgments

The �nancial support of the US Department of Energy under the Grant
DE-FG07-99ID13855 is gratefully acknowledged.

References

[1] Hayashi K, Willis-Richards J, Hopkirk RJ, Niibori Y. Numerical models
of HDR geothermal reservoirs}a review of current thinking and progress.
Geothermics 1999; 28:507�518.

98



Paper IV: An integral equation solution for 3D heat extraction

[2] Willis-Richards J, Wallroth T. Approaches to the modeling of HDR reser-
voirs: a review. Geothermics, 1995; 24: 307�332.

[3] Kolditz O. Modelling �ow and heat transfer in fractured rocks: Dimen-
sional e¤ect of matrix heat di¤usion. Geothermics, 1995; 24:421�437.

[4] Kolditz O, Clauser C. Numerical simulation of �ow and heat transfer
in fractured crystalline rocks: Application to the hot dry rock site in
Rosemanowes (U.K.). Geothermics 1998; 27:1�23.

[5] Kohl T, Evans KF, Hopkirk RJ, Ryback L. Coupled hydraulic, thermal,
and mechanical considerations for the simulation of hot dry rock reser-
voirs. Geothermics 1995; 24:345�359.

[6] Cheng A-D, Ghassemi A, Detournay E. A two-dimensional solution for
heat extraction from a fracture in hot dry rock. International Journal for
Numerical and Analytical Methods in Geomechanics 2001; 25:1327�1338.

[7] Abe H, Mura T, Keer LM. Heat extraction from a hydraulically fractured
penny-shaped crack in hot dry rock. Proceedings of the 2nd Workshop
Geothermal Reservoir Engineering, Stanford University, CA, 1976; 200�
212.

[8] Bodvarsson G, Tsang CF. Injection and thermal breakthrough in
fractured geothermal reservoirs. Journal of Geophysical Research 1982;
87:1031�1048.

[9] Heuer N, Kupper T, Windelberg D. Mathematical model of a hot dry
rock system. Geophysical Journal International 1991; 105:659�664.

[10] Kruger P, Dyadkin YD, Gendler S, Artemieva E, Smirnova N. Com-
parison of thermal cooldown estimates in the Russkie Komarovtsy pet-
rogeothermal reservoir. Proceedings of the 16th Workshop Geothermal
Reservoir Engineering, Stanford University, CA, 1991; 159�164.

[11] Lowell RP. Comments on �Theory of heat extraction from fracture hot
dry rock� by AC Gringarten, PA Witherspoon, Y Ohnishi. Journal of
Geophysical Research 1976; 81:359�360.

[12] Stehfest H. Numerical inversion of Laplace transforms. Communication
ACM 1970; 13: 47�49 and 624.

[13] Cheng AH-D, Sidauruk P, Abousleiman Y. Approximate inversion of
the Laplace transform. Mathematica Journal 1994; 4:76�82.

99



A.Ghassemi, S.Tarasovs and A.H.-D.Cheng

[14] Mossop A, Segall P. Injection induces stresses in geothermal �elds. Jour-
nal of Geophysical Research, in press.

[15] Strack ODL. Groundwater Mechanics. Prentice Hall: Englewood Cli¤s,
NJ, 1989.

[16] Rodemann H. Analytical model calculations on heat exchange in a frac-
ture. In Urach Geothermal Project, Haenel R (ed.). Stuttgart, 1982; 351�
353.

[17] Liggett JA, Liu PL-F. The Boundary Integral Equation Methods for
Porous Media Flow. George Allen & Unwin, 1983.

100



Paper V





Paper V: Integral equation solution of heat extraction

Integral Equation Solution of Heat Extraction
Induced Thermal Stress in Enhanced Geothermal

Reservoirs
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Abstract

During �uid injection in enhanced geothermal systems the thermo-mechanical
processes can play an important role. In fact, the phenomena of reservoir seismicity
and the variation of injectivity with respect to injection water temperature can be
attributed to the induced thermal stresses. In this paper, a three-dimensional inte-
gral equation formulation is presented for calculating thermally induced stresses
associated with the cooling of a fracture in a geothermal reservoir. By utiliz-
ing Green�s function in the integral equation, the three-dimensional heat �ow and
stresses in the reservoir are modeled without discretizing the reservoir. The for-
mulation is implemented in a computer program for the solution of injection into
an in�nite fracture as well as for the injection/extraction in an arbitrarily shaped
fracture.

Keywords: enhanced geothermal system; hot dry rock; geothermal reservoir;
integral equation method; Green�s function; thermal stress
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Figure 1: Heat extraction from a planar fracture.

1 Introduction

Hot rocks and geothermal �uids in the subsurface can be an economical
source of energy. The temperature in the subsurface rock can rise to 350�C
at a depth of 5 km (at less than 3 km in Coso Geothermal Field, central
eastern California), and further to 500� 1200�C at 40 km. These conditions
generally occur in rock masses consisting of igneous and metamorphic rocks
with low matrix permeability. Therefore, cracks and fractures are the major
pathways for �uid �ow and provide the necessary heat exchange surfaces for
the extraction of geothermal energy. The production of geothermal energy
from this type of reservoir is achieved by water circulation in natural and/or
man-made fractures, and is often referred to as enhanced or engineered
geothermal systems (EGS). The concept involves drilling two or more wells
into the reservoir to intersect permeable fractures, injecting cold water into
one part of the well system and recovering hot water from the other (Figure
1). A comprehensive review of this concept, alternatively called the Hot Dry
Rock, may be found in Reference [1].

Poromechanical, thermal, and chemical processes can play a signi�cant
role in enhanced geothermal systems [2]. These processes occur on various
time scales and the signi�cance of their interaction varies with the problem
of interest. Of particular importance is the thermo-mechanical coupling dur-
ing injection operations (time scale of weeks to years). In fact, the variation
of injectivity with injection water temperature can be attributed to thermal
stresses. Also, thermally induced stresses signi�cantly contribute to seismic-
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ity in petroleum and geothermal �elds [3, 4]. Stark [4] found that half the
earthquakes in the Geysers geothermal �eld (northern California) seemed to
be associated with cold water injection. The mechanism by which seismicity
occurs is believed to be mostly shear slip on natural fractures resulting from
a reduction of normal stress across the fracture.

The magnitude of the three-dimensional thermal stresses associated with
advective cooling has been estimated semi-analytically [5] using an axisym-
metric model of injection into a planar reservoir. However, the temperature
�eld in the rock mass is modelled as onedimensional heat �ow perpendicular
to the fracture surface. A reason for ignoring the threedimensional nature
of heat conduction in the reservoir in the above study [5] and in most of
the previous studies [6�8] is the di¢ culty in treating the in�nite geothermal
reservoir geometry by numerical discretization. However, it has been shown
that one- and two-dimensional heat �ow models underestimate heat trans-
fer to the �uid from the crack [9]. Thus, rock cooling and the associated
thermal stresses should be studied using the coupling of a three-dimensional
heat �ow model and a three-dimensional elasticity model. It is not to our
knowledge that this has been accomplished.

In two of our previous papers [9, 10] we have demonstrated that the use
of Green�s function in an integral equation formulation can exactly model the
heat conduction in in�nite reservoir, which is accomplished without the need
of discretizing the reservoir. By coupling the integral equation with the heat
transport in the fracture, the e¤ect of three-dimensional heat conduction in
the reservoir has been properly modelled.

In this paper, we shall extend the above studies to consider the thermal
stress induced by water injection into enhanced geothermal reservoirs. Key
to the approach is the utilization of Green�s function to model not only the
three-dimensional heat conduction but also the three-dimensional thermal
stress problem, all done without the discretization of the reservoir. The nu-
merical discretization is needed only on the fracture surface. The technique
is �rst applied to the solution of water injection into an in�nite fracture for
the comparison with a semi-analytical solution for veri�cation purpose. It
is then applied to an injection/extraction problem in an arbitrarily shaped
fracture.

2 Heat transport and conduction

Before the thermal stress problem can be solved, the �uid �ow and heat
transport in the fracture and heat conduction in the reservoir must �rst
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be examined. Investigation and treatment of these types of problems have
been carried out by Ghassemi et al. [9]. A brief presentation of the �uid
�ow/heat transport model is provided below for the sake of completeness.

A schematic view of the heat extraction by circulating water in a natural
or man-made fracture or a fracture zone in rock is illustrated in Figure 1.
With only a few exceptions such as the �nite element solution by Kolditz
[11], Kolditz and Clauser [12], and Kohl et al. [13], and the boundary
element model by Cheng et al. [10] the heat conduction in the reservoir
is typically modelled as a one-dimensional heat �ow perpendicular to the
fracture surface [6�8]. The primary reason for such simpli�cation is the
ine¢ ciency in modelling an unbounded threedimensional domain by numer-
ical discretization. The numerical di¢ culty can be overcome by utilizing the
integral equation formulation [10] and the three-dimensional Green�s func-
tion of heat conduction, allowing three-dimensional problems to be solved
in two-dimensional geometry [9].

In this work, the fracture is assumed to be �at, of �nite size and with
arbitrary shape. The geothermal reservoir, on the other hand, consists of a
homogeneous, isotropic rock of in�nite extent. Although mineral elasticity
and thermal conductivity are anisotropic, a granite that is composed of a
random distribution of these minerals tends to have isotropic properties [14].
The presence of cracks and other discontinuities with preferred orientation
can cause the rock mass to become thermally and elastically inhomogeneous
and anisotropic. However, in the absence of data regarding these properties
in in situ conditions, the simpler homogeneity and isotropy assumptions are
used.

Other physical assumptions are similar to those postulated by Cheng
et al. [10]. Speci�cally, it is assumed that the geothermal reservoir is im-
permeable to water and has constant heat conduction properties. The heat
storage and dispersion e¤ects in the fracture �uid �ow are negligible, and
production rate of hot water is equal to the injection rate in the fracture.
It is further postulated that the fracture width does not change during the
production, and it is small such that the �ow in the fracture is laminar and
governed by the lubrication �ow equation. Some of these assumptions ap-
pear to be idealistic. Nevertheless, in the absence of the detailed knowledge
of the fracture and the reservoir in practical cases, these assumptions can
provide guidelines for assessment of operational plans and the understanding
of phenomena in the �eld.

The heat transport occurs both in the geothermal reservoir and the frac-
ture. For the geothermal reservoir, the heat conduction is governed by the
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three-dimensional di¤usion equation:

Krr2 Td(x; y; z; t) = �rcr
@Td(x; y; z; t)

@t
; x,y,z 2 
 (2)

where �r is the rock density, cr is the speci�c heat of rock, Kr is the rock
thermal conductivity, 
 represents the in�nite geothermal reservoir (Figure
1), and Td is the normalized temperature de�cit with a value between zero
and one:

Td =
T0 � T
T0 � Tinj

(3)

in which T is the temperature, T0 is the initial rock temperature, and Tinj
is the temperature of injected water.

For heat transport in the fracture the governing equation is

q(x; y) � rTd(x; y; 0; t) =
2Kr
�wcw

@Td(x; y; z; t)

@z

����
z=0+

(4)

where �w is the water density, cw is the speci�c heat of water, and

q(x; y) =

Z w(x;y)

0
v(x; y; z) dz (5)

is the discharge per unit width in the transverse direction of the �ow, with
v the �ow velocity in the fracture and w the fracture width. In (3), the
term on the left-hand side represents the heat advection by fracture �uid
�ow, and the term on the right gives the heat supply through the fracture
walls (two sides) by conduction. We note that in (3) a single notation
T (x; y; z; t) is used to denote the temperature of the rock and the fracture
�uid, because temperature is continuous across the two media. The water
temperature Tw is equal to the rock temperature on the fracture plane z = 0,
i.e. Tw(x; y; t) = T (x; y; 0; t); x; y 2 A.

These governing equations are subject to initial and boundary condi-
tions. Prior to the heat extraction operation, the temperature of the rock
and the fracture �uid is assumed to be a constant, T (x; y; z; 0) = T0, and
at the injection point (xi; yi; 0) the temperature equals that of the injected
water: T (xi; yi; 0; t) = Tinj. The extraction temperature T (xe; ye; 0; t) is un-
known. The initial and the boundary condition can be expressed in terms
of Td:

Td(x; y; z; 0) = 0; Td(xi; yi; 0; t) = 1 (6)

To facilitate the treatment of the time variable, we apply Laplace transform
to the above equations and obtain

Krr2 eTd(x; y; z; s) = s�rcr eTd(x; y; z; s) (7)
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q(x; y) � r eTd(x; y; 0; s) = 2Kr
�wcw

@ eTd(x; y; z; s)
@z

�����
z=0+

(8)

eTd(xi; yi; 0; s) = 1

s
(9)

where the wiggle overbar denotes the Laplace transform, and s is the trans-
form parameter. Equations (6)�(8) form a complete solution system.

The solution obtained from the above system is in the Laplace transform
domain. It is necessary to transform the solution back into the time domain.
This is accomplished by solving the above system for a number of di¤erent
values of s to produce data in the Laplace transform space. An approximate
inversion method is then employed to �nd the solution in time. Particularly,
the Stehfest method [15, 16] is chosen for the task.

The system of Equations (6)�(7) is de�ned in three spatial dimensions. It
has been demonstrated that by utilizing Green�s function of three-dimensional
di¤usion equation, the solution system can be reduced to a two-dimensional
integral equation [9]. For the temperature on the fracture surface (z = 0)
we obtain

eTd(x; y; 0; s) = � �wcw
4�Kr

Z
A

h
q(x0; y0) � r eTd(x0; y0; 0; s)i

1

r
exp

�
�
r
�rcrs

Kr
r

�
dx0dy0; x; y 2 A (10)

where r =
p
(x� x0)2 + (y � y0)2. Equation (9) is entirely de�ned on

the two-dimensional fracture plane A. Together with the boundary condition
(8), it forms a complete solution system for �uid temperature in the fractureeTd(x; y; 0; s).

In the numerical implementation, a rectilinear grid like that in Figure 2 is
imposed. A �nite di¤erence formula (upwind scheme) is used to approximate
the temperature gradient in (9). We note that Green�s function in (9) has a
weak (integrable) singularity 1=r. Although special quadrature rules can be
applied, the regular 9-point Gaussian quadrature produces quite an accurate
result. These and other numerical details of solving the integral equation
(9) can be found in Reference [9] and are not repeated here. Once the
temperature distribution in the fracture is found, the temperature at any
point in the reservoir can be evaluated by carrying out the integration over
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Figure 2: Computational mesh.

the fracture surface A:eTd(x; y; z; s) = � �wcw
4�Kr

Z
A

h
q(x; y) � r2 eTd(x; y; 0; s)i

1

R1
exp

�
�
r
�rcrs

Kr
R1

�
dx0dy0; x; y; z 2 
 (11)

where R1 =
p
(x� x0)2 + (y � y0)2 + z2.

3 Thermal stress

Solving the above system of equations yields the temperature distribution
in the geothermal reservoir at any location and any time as the consequence
of the injected cooling water. It is the purpose of this paper to evaluate the
transient thermal stress induced by the temperature �eld.

Let us assume that the reservoir rock is isotropic, homogeneous and elas-
tic. The change in temperature �T = T �T0 can be related to the Goodier
thermoelastic displacement potential � through this Poisson equation:

r2� = m�T (12)

where

m =
(1 + �)�T
(1� �) (13)
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is the thermoelastic constant, �T is the coe¢ cient of linear thermal expan-
sion and � is the Poisson ratio. Here we recall the de�nition

u = r� (14)

where u is the displacement vector. Expressing the displacements in terms
of a potential is possible because thermally generated displacement �eld is
irrotational.

Given a distribution of temperature at any given time, the potential �
can be calculated from the Poisson integral [17]:

�(x; y; z; t) = �m
4�

Z



�T (x0; y0; z0; t)

R
dx0 dy0 dz0 (15)

where R =
p
(x� x0)2 + (y � y0)2 + (z � z0)2. Although (14) can ful�l our

purpose for evaluating thermal stresses, we note that it is ine¢ cient to in-
tegrate �the integration is in three dimensions and the domain is in�nite.
Also, to generate data for integration, the value of �T needs to be evaluated
from (10), which itself is a two-dimensional integration. We hence seek an
alternative to (14). This is accomplished by utilizing Green�s function of
three-dimensional di¤usion.

Consider an instantaneous heat source of unit intensity located at (x0; y0; z0)
and at time t0. The transient temperature distribution is given by [18]

T �(x� x0; y � y0; z � z0; t� t0) = 1

(�#)3=2 �rcr
exp

�
�R

2

#

�
(16)

where
# = 4�(t� t0) (17)

and

� =
Kr
�rcr

(18)

is the thermal di¤usivity. Solving for the displacement potential de�ned in
(11), we obtain Green�s function

��(x� x0; y � y0; z � z0; t� t0) = � m

4��rcrR
erf

�
Rp
#

�
(19)

Now, for a distribution of heat sources with the intensity �(x; y; t) over the
fracture surface A, the resultant displacement potential at any given location
and time can be obtained from the Duhamel�s principle of superposition:

�(x; y; z; t) =

tZ
0

Z
A

�(x0; y0; t0) ��(x� x0; y � y0; z; t� t0) dx0dy0dt0 (20)
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Similar to (10), the above equation involves the integration over the �nite
fracture surface only. To facilitate the treatment of time, we apply Laplace
transform to (19) and obtain

e�(x; y; z; s) = Z
A

e�(x0; y0; s) e��(x� x0; y � y0; z; s) dx0dy0 (21)

where e��(x� x0; y � y0; z; s) = � m

4�s�rcrR

�
1� exp

�
�
r
s

�
R

��
(22)

We realize that the source intensity e� is just the cooling �uid-induced tem-
perature �ux on the fracture surfaces, and

e� = �2Kr
@ eT
@z

�����
z=0+

(23)

Utilizing the heat transport equation (7) in the above and substituting it
into (20), we obtain

e�(x; y; z; s) =
m�w cw
4�s�rcr

Z
A

h
q(x0; y0) � r eT (x0; y0; 0; s)i (24)�

1

R1
� 1

R1
exp

�
�
r
s

�
R1

��
dx0 dy0

The right-hand side of the above equation consists entirely of known quan-
tities, because the �uid �ow and the temperature in the fracture has been
obtained from the previous stage of solution based on (9). In fact, the same
grid system as shown schematically in Figure 2 can be used in the evalua-
tion. So, the problem of �nding thermal stresses induced by the injection
of cooling �uid is reduced to integration on only the fracture surface, not
the entire domain. For �nding the displacement potential on the fracture
surface, (23) is reduced to

e�(x; y; 0; s) =
m�w cw
4�s�rcr

Z
A

h
q(x0; y0) � r eT (x0; y0; 0; s)i (25)�

1

r
� 1
r
exp

�
�
r
s

�
r

��
dx0 dy0

As our interest lies in the stresses, not the displacement potential, (23) and
(24) need to be further processed. The stresses are related to the displace-
ment potential by the following formula

e�ij = 2G @2e�
@xi@xj

� �ijr2e�! (26)
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where �ij is the Kronecker delta. Similar to (20), it is possible to evaluate
the stresses from the integral

e�ij(x; y; z; s) = Z
A

e�(x0; y0; s) e��ij(x� x0; y � y0; z; s) dx0dy0 (27)

where e��ij the Green�s function that can be obtained by substituting e��
in (21) into (25). Equation (26) can be used to evaluate thermal stresses
without the need of obtaining the displacement potential �rst. We note,
however, that while the kernel e�� in (24) is non-singular, e��ij in (26) has
a strong singularity for integration. Although the singularity can be reg-
ularized and removed, in the present work, we choose to avoid the strong
singularity and use the nonsingular form (24) to �nd the displacement po-
tential. The stresses are evaluated using a �nite di¤erence approximation
of (25). For di¤erentiation in the z-direction, the displacement potential is
calculated at some distance (1 element size) above and below the fracture
surface for the evaluation of stresses on the fracture surface.

4 Numerical examples

4.1 Injection into in�nite fracture

A computer program is developed based on the above procedures. If we
compare (23) and (24) with (9) and (10), which was solved in the previous
work [9], we can see that the numerical procedure is similar.

As a �rst example, we solve a case with simple geometry in order to
compare with a semianalytical solution. Consider the problem of injection
into an in�nite planar fracture with the injection well located at the origin
(Figure 3). The initial reservoir rock temperature is at a constant T = T0.
At t = 0+, water is injected at temperature Tinj with �ow rate Q. The data
for this problem are roughly based on the conditions in the Coso Geothermal
Field during the stimulation of Well 86-13 [19], and are shown in Table 1.

Even for this simple geometry, the exact solution actually does not exist.
However, if one assumes that the heat conduction in the reservoir is one-
dimensional normal to the fracture plane, rather than three-dimensional as
indicated in (1), then a closed form solution based on the set of governing
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Figure 3: An in�nite fracture with an injection well (plan view in the z-
direction).

E Young�s modulus 3:75� 104 MPa
� Poisson�s ratio 0:25

�r rock density 2650 kg/m3

�w water density 1000 kg/m3

cr rock heat capacity 790 J/(kg �K)
cw water heat capacity 4200 J/(kg �K)
� thermal di¤usivity 5:1� 10�6 m2=s
�T rock linear thermal expansion coe¢ cient 8:0� 10�6 1=�K
Q injection rate 25 `=s
TR rock temperature 350 �F
Tinj injection water temperature 86 �F
w initial average fracture aperture for �ow 10�3 m

Table 1: Input parameter for in�nite fracture problem.

113



A.Ghassemi, S.Tarasovs and A.H.-D.Cheng

equations

@T

@t
+

Q

2�r

@T (r; 0; t)

@r
=
2Kr
�wcw

@T (r; z; t)

@z
(28)

Kr
@2T (r; z; t)

@z2
= �rcr

@T (r; z; t)

@t
(29)

is possible and has been found by Mossop [5] as

T = T0 � (T0 � Tinj) erfc
"
1=2((2�Kr=�wcwQ)r

2 + zp
� (t� (�w=Q)r2)

#
; for t� �w

Q
r2 > 0

= 0; for t� �w
Q
r2 < 0 (30)

We note that (27) has a heat storage term that is not included in (3) as its
e¤ect is typically negligible [10]. This solution for T is then used in a singular
volume integral to evaluate the thermoelastic stresses [5]. In contrast, the
current methodology requires the integration only on the fracture surface.

To isolate the error in the numerical solution, we shall use the exact tem-
perature given in (29) to �nd the thermal stresses. First, Laplace transform
is applied to T and then the heat �ux into the reservoir is found from (22)
as e� = �4Kr(T0 � Tinj)p

�s
exp

�
�2
r
s

�

�
�Kr
�wcwQ

r2 + z

��
(31)

This source intensity is substituted into (20) and the surface integral is
performed to �nd the displacement potential. The numerical results in terms
of cooling-induced stresses are presented in Figures 4�6.

For the numerical solution, the mesh pattern shown in Figure 2 is adopted.
The results are shown in three di¤erent times, 7, 14, and 30 days, using sym-
bols. For each of the solutions, an 80 � 80 square mesh is used. Although
the planar fracture is of in�nite horizontal extent, the mesh can cover only
a �nite region. The proper region to cover can be easily estimated by the
speed of the injection �uid front. For the current simulations, the element
sizes of 3.25, 3.5 and 4.25 m are, respectively, used for the three times. The
80 � 80 mesh was selected based on error convergence studies progressing
up from a 40 � 40 and then a 60 � 60 mesh. The error was reduced and
localized around the well. It was determined to be acceptable.

The cooling-induced normal stress �zz (perpendicular to the fracture)
from the stimulation of Well 83-16 [19] is illustrated in Figure 4. The current
solution is presented using plotting symbols while the solution by Mossop [5]
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Figure 4: Normal stress (�zz) distribution on a fracture surface around an
injection well.
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Figure 5: Radial stress (�rr) distribution around an injection well for various
injection times.
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Figure 6: Tangential stress (���) distribution around an injection well for
various injection times.

is shown in solid lines. We note that except for some error near the injection
well, where a �ow singularity exists, the current solution compares quite well
with the semi-analytical solution. We identify that the main source of error
in the stress calculations around the well is due to the relatively large size of
the element near the injection well, where the �uid velocity drops sharply.
Expressing various derivatives in terms of the �nite di¤erence approximation
can further enhance the error. But as we commented, the overall accuracy
is quite satisfactory.

A few features about the stress distribution in Figure 4 are worth noting.
First, we note that the induced thermal stress near the injection well is
tensile (meaning an reduction from the in situ compressive stress). It is
largest near the well as it has the most time for cooling. Away from it,
the tensile stress decreases and eventually turns into compressive. This is a
result of strain compatibility requirement in three-dimensional elasticity �
as rock contracts near the injection well due to cooling, it tends to pull on
the exterior rock material inducing a compressive stress ahead of it.

In Figures 5 and 6, we plot �xx and �yy along the x-axis, which rep-
resent, respectively, the radial (�rr) and tangential (���) normal stresses.
The agreement between the numerical and the semi-analytical solution is
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Figure 7: A fracture with arbitrary geometry, its computational mesh and
�uid �ow �eld due to one injection well and two extraction wells.

excellent. From the result, we observe that both of these stresses are an
order of magnitude larger than the axial stress �zz. The tangential stress
in Figure 6 has a similar pattern as the axial stress�it changes from tensile
to compressive at a certain distance. The extent of the compressive stress,
however, is much smaller. The radial stress in Figure 5, on the other hand,
is tensile throughout. As expected, all induced stresses increase with the
injection time.

It is of interest to note that the induced tensile stress near the injection
well causes the rock to contract. This can cause the aperture to open wider.
For a constant injection rate, the injection pressure will drop due to the
increased conductivity. This is indeed observed in Well 83-16 of the Coso
Geothermal Field [19]. This thermal stress-induced aperture change may
have a e¤ect on the �ow pattern, which in turn a¤ects the heat transport.
This coupled e¤ect is not contained in the current model. However, if the
injection is controlled by a constant �ow rate, not by pressure, and the �ow
pattern is radial as in the current case, then only the injection pressure will
change and the heat transport pattern will not. The above prediction of
heat extraction is correct in spite of the thermal stress-induced aperture
change. The pressure �eld can be calculated at any given instant with the
known aperture width.
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4.2 Arbitrary shape fracture

The numerical procedures can also be applied to an injection/extraction
operation involving an arbitrarily shaped fracture. Consider a fracture with
arbitrary geometry. Figure 7 shows one such fracture and its discretization
into surface elements. The fracture surface is divided into 3384 rectangular
elements. The heat extraction operation involves 3 wells: one injection well
with �ow rate 10 l=s and two extraction wells each with �ow rate 5 l=s.
Assume that the rock and �uid properties are given by cw = 4:2 � 103
J/kg K, cr = 1:0 � 103 J/kg K, �w = 1000 kg/m3, �r = 2700 kg/m3 and
Kr = 2:0 W/m K. The reservoir and the injection water temperature are,
respectively, 200 and 20�C. Also, E = 4:5 GPa and �T = 1:0 � 10�5 K�1.
All other reservoir parameters are the same as the preceding example.

In the arbitrary shape fracture case, we �rst need to solve the incom-
pressible �uid �ow in the two-dimensional fracture geometry. Based on
continuity, the governing equation for the �uid discharge is

r � q(x; y) = �
nX
i=1

Qi�(x� xi; y � yi) (32)

where r� is the divergence operator in two dimensions, Qi the injection rate
at well i, which is negative for extraction, (xi; yi) the well location, and �
the Dirac delta function. As in lubrication theory, the �ow in the fracture
is driven by the pressure gradient

rp(x; y) = ��
2�

w3
q(x; y) (33)

where p is the �uid pressure, � the �uid viscosity, and w the fracture width.
Combining the above, we obtain

r2p(x; y) = �2�

w3

nX
i=1

Qi�(x� xi; y � yi) (34)

which is subject to the boundary condition

@p

@n
= 0 on @A (35)

where @A is the rim of the planar fracture (Figure 1), and n is the outward
normal of @A. With known fracture width, the above equation can be solved
for the pressure distribution in the fracture.
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The solution of (33) and (34) can be handled by many methods. The
�nite element method is utilized here. To obtain smooth solution, the �ow
singularities at the injection and extraction points are treated using a singu-
larity extraction and superposition procedure [20]. In the presence of sources
and sinks, we decompose the pressure �eld into a homogeneous solution and
a particular solution:

p = ph + pp (36)

The particular solution is

pp =
��

2w3

nX
i=1

Qi ln ri (37)

where ri =
p
(x� xi)2 + (y � yi)2. The homogeneous part satisfying

r2ph(x; y) = 0 (38)

and the boundary condition

@ph
@n

= �@pp
@n

on @A (39)

is without singularities. The ph �eld treated by the FEM is then smooth
and accurate. The �ux values are then obtained as

qx = � w
3

�2�

�
@ph
@x

+
@pp
@x

�
(40)

qy = � w
3

�2�

�
@ph
@y

+
@pp
@y

�
The resultant �ow �eld is shown in Figure 7.

The temperature distributions on the fracture surface after 20 years of
operation is shown in Figure 8. The large white region (about 20�C) around
the injection well (see Figure 7 for injection well location) indicates that
heat depletion has reached a large part of the reservoir at that time. Figure
9 plots the normal thermal stress �zz on the fracture surface. We observe
that a large tensile region (dark shade) is developed around the injection
well. Outside the fracture region, we �nd compression zones (in light shade)
which is consistent with the preceding case of single injection well. We also
note that compression zones are developed just behind the extraction wells.
As before, we note some error at and near the injection/extraction wells,
where a �ow singularity exists. The sensitivity of the results to mesh size is
similar to that described in the previous section, i.e. improved accuracy is
achieved by using a �ner mesh.
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Figure 8: The temperature distribution (�C) on the fracture surface after
20 years of operation.

Figure 9: The normal stress (Pa) distribution on the fracture surface after
20 years of operation.

120



Paper V: Integral equation solution of heat extraction

5 Summary and conclusion

An integral equation formulation for three-dimensional heat extraction from
a planar fracture in an in�nite hot rock reservoir has been used to calculate
the temperature and heat �ux distributions within the crack and the forma-
tion. The resulting transient temperature �eld is then employed in another
integral scheme to determine the distribution of three-dimensional thermal
stresses induced by the cooling. This is in contrast to most existing works,
analytical and numerical, that treat the heat conduction in the geothermal
reservoir as one-dimensional and perpendicular to the fracture. For several
numerical works that treat three-dimensional heat �ow and thermal stresses,
the three-dimensional in�nite reservoir needs to be discretized. In compari-
son, the present integral equation scheme only discretizes the planar fracture
surface, which is a much reduced numerical solution system.

The mathematical formulation and numerical implementation were ver-
i�ed by solving a problem with simple geometry involving a single injec-
tion well in an in�nite fracture. The comparison of the result with a semi-
analytical solution was satisfactory. Next, the temperature history and the
thermally induced stresses were calculated for an injection�extraction exper-
iment in the �eld. It has been found that not only tensile stresses develop
due to the cooling; compressive stresses are also found in the range just out-
side the fracture or the �uid front. Near the injection well, the tensile stress
is expected to increase the fracture aperture width and reduce the injection
pressure. This is consistent with the observation in the �eld.

Although the present integral equation solution is applied to only a single
fracture, the same methodology can be applied to a reservoir with multiple
fractures. One issue that is not addressed in this article is the thermal
stress-induced fracture response in the reservoir, which leads to a change in
aperture width. This width change may have the coupled e¤ect of causing
the �ow pattern change. Works in these directions are under development
and will be reported in the future.

Acknowledgments

The �nancial supports of the U.S. DOD (N-68936-02-C-0214) and University
of North Dakota Faculty Seed Money Program are gratefully acknowledged.

121



A.Ghassemi, S.Tarasovs and A.H.-D.Cheng

References

[1] Hayashi K, Willis-Richards J, Hopkirk RJ, Niibori Y. Numerical models
of HDR geothermal reservoirs �a review of current thinking and progress.
Geothermics 1999; 28:507�518.

[2] Ghassemi A, Zhang Q. Poro-thermoelastic mechanisms in wellbore sta-
bility and reservoir stimulation. Proceedings of the 29th Stanford Geother-
mal Workshop, February 2004; 295�301.

[3] Sherburn S. Seismic monitoring during a cold water injection experiment,
Wairakei Geothermal Field: preliminary results. Proceedings of the 6th
New Zealand Geothermal Workshop, vol. 6. 1984; 129�133.

[4] Stark MA. Imaging injected water in the Geysers reservoir using mi-
croearthquakes data. Geothermal Resources Council Transactions 1990;
14(II):1697�1704.

[5] Mossop A. Seismicity, subsidence and strain at the Geysers geothermal
�eld. Ph.D. Dissertation, Stanford University, 2001.

[6] Bodvarsson G, Tsang CF. Injection and thermal breakthrough in
fractured geothermal reservoirs. Journal of Geophysical Research 1982;
87:1031�1048.

[7] Heuer N, Kupper T, Windelberg D. Mathematical model of a hot dry
rock system. Geophysical Journal International 1991; 105:659�664.

[8] Kruger P, Dyadkin YD, Gendler S, Artemieva E, Smirnova N. Com-
parison of thermal cooldown estimates in the Russkie Komarovtsy pet-
rogeothermal reservoir. Proceedings of the 16th Workshop Geothermal
Reservoir Engineering, Stanford University, CA, 1991; 159�164.

[9] Ghassemi A, Tarasovs A, Cheng AH-D. An Integral equation method
for modelling three-dimensional heat extraction from a fracture in hot
dry rock. International Journal for Numerical and Analytical Methods in
Geomechanics 2003; 27:989�1004.

[10] Cheng A-D, Ghassemi A, Detournay E. A two-dimensional solution for
heat extraction from a fracture in hot dry rock. International Journal for
Numerical and Analytical Methods in Geomechanics 2001; 25:1327�1338.

[11] Kolditz O. Modelling �ow and heat transfer in fractured rocks: Dimen-
sional e¤ect of matrix heat di¤usion. Geothermics, 1995; 24:421�437.

122



Paper V: Integral equation solution of heat extraction

[12] Kolditz O, Clauser C. Numerical simulation of �ow and heat transfer
in fractured crystalline rocks: Application to the hot dry rock site in
Rosemanowes (U.K.). Geothermics 1998; 27:1�23.

[13] Kohl T, Evans KF, Hopkirk RJ, Ryback L. Coupled hydraulic, ther-
mal, and mechanical considerations for the simulation of hot dry rock
reservoirs. Geothermics 1995; 24:345�359.

[14] Schon JH. Physical properties of rocks: fundamentals and principles
of petro-physics. Seismic Exploration, vol. 18. Pergamon Press: Oxford,
1996.

[15] Cheng AH-D, Sidauruk P, Abousleiman Y. Approximate inversion of
the Laplace transform. Mathematica Journal 1994; 4(1):76�82.

[16] Stehfest H. Numerical inversion of Laplace transforms. Communications
of the ACM 1970; 13:47�49, 624.

[17] Nowacki W. Thermoelasticity. Pergamon Press: Oxford, New York,
1973.

[18] Carslaw HS, Jaeger JC. Conduction of Heat in Solids. Oxford University
Press: New York, 1959.

[19] Petty S. Thermal stimulation of well 83-16. In Creation of an Enhanced
Geothermal System through Hydraulic and Thermal, Rose PE et al. (eds).
University of Utah Energy and Geoscience Institute, Quarterly Report,
December 2002.

[20] Liggett JA, Liu PL-F. The Boundary Integral Equation Methods for
Porous Media Flow. George Allen & Unwin: London, 1983.

[21] Ghassemi A, Zhang Q. A transient �ctitious stress boundary element
method for poro-thermoelastic media. Journal of Engineering Analysis
with Boundary Elements 2004; 28(11):1363�1373.

123



A.Ghassemi, S.Tarasovs and A.H.-D.Cheng

124



Paper VI





Paper VI: A 3-D study of the e¤ects of thermomechanical loads

A 3-D Study of the E¤ects of Thermomechanical
Loads on Fracture Slip in Enhanced Geothermal
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Abstract

Heat extraction from enhanced geothermal systems (EGS) can greatly a¤ect the
behavior of joints and other discontinuities in the reservoir. Fracture permeability
can change in response to �uid injection/extraction, rock cooling, variations of
stress �eld, and mineral dissolution/precipitation. The reduction in e¤ective stress
caused by pore pressure increase can cause the slippage of discontinuities, thus
inducing seismicity. Studies have shown that thermal stresses generated by cold
water injection have a similar e¤ect. In order to assess the in�uence of thermal
stresses on fracture opening and slippage, a 3-D coupled heat extraction/thermal
stress/elastic displacement discontinuity model is used in this study. The e¤ects
of each mechanism on fracture slip is estimated with particular reference to the
Coso geothermal �eld. The results indicate that under typical �eld conditions, a
substantial increase in fracture slip is observed when thermal stresses are taken
into account. The temporal evolution of the thermal stresses suggests that the rock
mass deformation will not cease upon stoppage of water injection, which can be a
cause of delayed seismic activity.

1Revised and resubmitted to the International Journal of Rock Mechanics and Mining
Sciences & Geomechanics Abstracts, September 2006.
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1 Introduction

Hot subsurface rocks can be an economical source of renewable energy. The
temperature in the subsurface can rise to 350�C at a depth of 5 km (at
less than 3 km in the Coso Geothermal Field, central eastern California),
and further to 500 � 1200�C at 40 km. According to the United States
Geological Survey (USGS) estimates, geothermal reservoirs at a depth of
3 km potentially can yield 100; 000 MWe for 30 years. The production of
geothermal energy from these generally dry and low permeability reservoirs
is achieved by water circulation in natural and/or man-made fractures, and
is often referred to as enhanced or engineered geothermal systems (EGS).
Two or more wells are drilled into the reservoir to intersect permeable frac-
tures, and cold water is injected into one part of the well system and hot
water/steam is recovered from the other (Fig. 1). The injection/extraction
operation perturbs the in situ stress state in the reservoir, leading to frac-
ture initiation and/or activation of discontinuities such as faults and joints.
These events often manifest as microseismicity in the reservoir, which can be
monitored. The information gathered can be used to interpret the geometry
of the geological structures and the in situ stress state, and to predict stim-
ulation outcome [1�3]. Slippage on preexisting discontinuities can enhance
fracture permeability and thus is a positive outcome of �uid injection. To
better understand these events, it is necessary to investigate the processes
and mechanisms associated with �uid-induced changes in the reservoir to
improve reservoir development and management [4].

It is generally believed that the stresses generated by poromechanical and
thermal processes cause fracture opening and slip in EGS [5�7]. Poroelastic
and thermoelastic e¤ects on reservoir seismicity can be viewed from two re-
lated standpoints: (a) the impact on the reservoir�s large scale, in situ stress
state and (b) the in�uence on the local fracture and fracture zone behav-
ior, with emphasis on fracture opening, slip, and/or propagation. Segall [8]
and Rudnicki [9], among others, have considered the in�uence of poroelas-
tic e¤ects on reservoir seismicity, and have provided some quantitative and
qualitative analyses of their importance on the state of stress and induced
seismicity. Germanovich et al. [10] considered the in�uence of poroelastic-
induced stress changes on fault slip in 2-D using semi-analytical solutions.
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Figure 1: Heat extraction from a planar fracture. Also shown are the local
fracture coordinates and the in situ stress orientation.

Segall and Fitzgerald [6] investigated both poro- and thermoelastic induced
stresses and their impact on the reservoir, with the conclusion that ther-
moelastic stresses are more signi�cant for geothermal reservoirs. Mossop
[7] and Bruel [11] studied thermal stresses associated with injection and
suggested that they could contribute to reservoir seismicity.

Poromechanical and thermomechanical processes can occur at di¤erent
time scales, depending on the problem of interest and the formation prop-
erties involved. For example, the thermomechanical coupling is important
during injection operations (time scale of months to years) [12,13]. It can
be expected that changes in pore pressure may in�uence deformations on a
discontinuity much more rapidly than temperature [5,14]. As a result, injec-
tionrelated seismicity is often attributed to shear slip on natural fractures
caused by a reduction of the normal stress across the fractures in response
to an increase in the pore pressure �eld. It is, therefore, commonly sug-
gested that microseismic activity is indicative of water �ow and enhanced
permeability. This is not necessarily the case though. As it has been pointed
out, pore pressure increase does not necessarily correspond to the existence
of �ow [15,16]. Furthermore, injection pressure in geothermal reservoirs is
often insu¢ cient to open a fracture, pointing to the importance of ther-
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mal stresses [7,11,17]. According to Stark [17], half the earthquakes in the
Geysers geothermal �eld (northern California) appears to be related to cold
water injection at less than critical injection pressures.

As the behavior of joints and other discontinuities plays an important
role in heat extraction from EGS and reservoir seismicity, it would be bene-
�cial to gain a better understanding of their response to various mechanisms
related to cold water injection. Geomechanical models are particularly use-
ful in this regard [18].

The study of thermal stresses, as well as its application to geomechanics,
has a long history of development. Nowacki [19] provided a detailed exposi-
tion of theoretical and applied thermoelasticity and presents a broad array of
solutions for stresses due to heat sources with many references going back to
the early 1900s. He also showed detailed derivations of equations including
Green functions for stresses associated with point heat sources. Thermoelas-
ticity has been used to study inter- and intra-granular thermal cracking in
certain igneous rocks [20]. Temperature, anisotropy and mismatch in grain
thermal expansion coe¢ cient, initial porosity, and grain size were found to
control cracking. Also, experiments have shown that the presence of wa-
ter enhances thermal cracking [20]. The importance of thermal stress to
hydraulic fracture initiation and stress measurement was also investigated
[21].

In the petroleum sector, the role of thermal stress in injection operations
has been studied [22,23] with regard to the reduction of reservoir stresses
and injection pressure, and fracture propagation. There have also been a
number of early investigations of thermoelastic e¤ects in geothermal systems
and earth science [24�29]. Bodvarsson and Lowell [25], as well as Lister [28],
discussed the interaction between thermoelastic e¤ects and �uid circulation
in the ocean �oor. Bodvarsson [24] derived the stress �eld and surface de-
formation due to temperature changes in a geothermal system, and their
impact on fracture aperture. A 1-D heat �ow and elasticity model was used
to calculate surface deformation of an in�nite half-space, and the derived ex-
pressions were applied to calculate fracture opening/closure in response to
non-isothermal �ow. Lowell [29] applied the same approach to Black Smok-
ers formation. Elsworth [30] used a 1-D heat transfer model to study the
impact of thermal stress on fractured rock opening and permeability. Lowell
et al. [31] coupled the 1-D model of Lowell [29] with a silica precipitation
model and studied the permeability change in fractures in oceanic hydrother-
mal zones.Nygren and Ghassemi [32,33] and Nygren et al. [34] investigated
the role of combined injection-induced thermoelastic and poroelastic stresses
on joint slip, opening, and injection pressure, utilizing semi-analytical mod-
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els of 1-D heat and �uid di¤usion into the rock matrix. The 1-D approach
to fracture opening in response to cooling has the shortcoming of predicting
an unbounded fracture opening as time increases to in�nity. Therefore, at
least a 2- D elasticity is necessary to obtain a physically realistic long term
behavior.

The heat extraction aspect of the problem has been numerically treated
by many investigators [35�41]. The magnitudes of the 3-D thermal stresses
associated with advective cooling for an axisymmetric model of injection
into a planar reservoir have been obtained [7]. A coupled hydro-thermo-
mechanical model has been developed by Kohl et al. [38] using the �nite
element method. Also, the problem of injection pressure variation in a frac-
tured geothermal reservoir has been investigated [11,41,42] using a �nite ele-
ment model and a statistically generated fracture network. In those studies,
the temperature �eld and the thermal stresses in the rock mass have been
modeled using a 1-D approach. A 1-D heat transport model can underesti-
mate the heat transfer from the rock to the �uid [35], and a 1-D treatment
of the elasticity problem does not predict the correct distribution of ther-
mal stresses. Rock cooling and the induced thermal stresses were previously
studied using a 3-D heat �ow model coupled with a 3-D thermoelasticity
model [43].

In the present work, the 3-D heat extraction/thermal stress solution is
coupled to a 3-D elastic stress/displacement analysis to obtain the opening
and ride of a fracture under a given in situ stress �eld in response to cooling of
the rock. The 3-D treatment is made possible by the use of Green�s function
to model not only the 3-D heat conduction, but also the 3-D thermal stress
problem without the discretization of the reservoir. The fracture response is
also modeled using a 3-D DD boundary element technique. The DD method
is particularly suitable for studying faults and joints, and has been applied
to fracture problems in plane strain [13,44], as well as in three dimensions
[45�47].

It should be pointed out that Sekine and Mura [48] considered a penny-
shaped crack in hot dry rock. Crack stability (i.e., condition of no change
in radius or closure of the crack) with respect to mode 1 propagation in the
presence of thermal stress was studied. A linear variation of temperature
from the inlet to the outlet was assumed, resulting in a constant heat �ux
across the crack surfaces. It was found that the fracture toughness of the rock
had little in�uence on the upper critical �ow rate, and that the crack radius
variation became more pronounced with larger inlet �ow rates, indicating
the impact of cooling. It should be emphasized that the above-cited work
was based on a di¤erent conceptual model than the present study. It consid-
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ered an injection �uid driven mode 1 (opening mode) fracture propagation
based on the linear fracture mechanics criterion of stress-intensity-factor and
fracture toughness. The focus of the present study is on fracture slip and
induced seismicity during and after the injection operation. A 3-D model is
used to study the contribution of thermal stresses to fracture slip. Both an
in�nite fracture and a �nite irregularly shaped fracture are considered.

In the following, the 3-D �uid �ow/heat extraction problem is brie�y de-
scribed, and then the 3-D DD formulation is presented. Following a concise
exposition of the numerical procedures, application examples are provided
to highlight the in�uence of thermomechanical processes on fracture slip and
the potential seismicity.

2 Heat Conduction and Transport

Prior to dealing with the thermal stress and displacement analysis, the �uid
�ow and heat transport problem in the fracture and heat conduction in the
reservoir need to be examined. The treatment of this problem, along with
the assumptions and their justi�cation, has been described in more detail in
Ghassemi et al. [35,43]. Here, it is brie�y presented for completeness and
easy reference.

A schematic view of the heat extraction by circulating water in a nat-
ural or man-made fracture in rock is illustrated in Fig. 1. The fracture is
assumed to be �at, of �nite size, and of arbitrary shape. The geothermal
reservoir is considered homogeneous, isotropic, and of in�nite extent. Gen-
erally speaking, minerals are anisotropic both in elasticity and in thermal
conductivity. However, it is reasonable to consider that a granite composed
of a random distribution of these minerals to have isotropic properties [49].
On the other hand, the presence of cracks and other discontinuities with
preferred orientation can cause the rock mass to become thermally and elas-
tically inhomogeneous and anisotropic. However, in the absence of data
regarding these properties under in situ conditions, the simpler homogene-
ity and isotropy assumptions are used in the present study.

Due to the computational di¢ culty associated with discretizing the 3-D
reservoir geometry, in most studies the heat transport in the rock is con-
sidered in 1-D geometry perpendicular to the fracture surface [36,50,51].
There exist a few exceptions, however, such as the �nite element solution by
Kolditz [52], Kolditz and Clauser [39], and Kohl et al. [38], and the bound-
ary element solution by Cheng et al. [53]. Particularly, in the boundary
element solution [53], the di¢ culty in discretizing the 3-D, in�nite reservoir
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is circumvented by utilizing the integral equation formulation and the 3-D
Green�s function of heat conduction. Hence the 3-D problem is solved in a
2-D geometry [35].

In developing the model, a number of simplifying assumptions are made.
Similarly to Cheng et al. [53], it is assumed that the geothermal reservoir
is impermeable, hence the poromechanical e¤ects are not considered in the
present study. The reservoir has constant heat conduction properties. The
heat storage e¤ects i.e., is the transient heat storage in the �uid associated
with @T (x; y; 0; t)=@t, and dispersion e¤ects in the fracture �uid �ow are
negligible, as demonstrated in the early study [53]. It is further postulated
that the �ow, heat extraction, and elasticity problems are uncoupled. The
�ow in the fracture is considered to be laminar and governed by the lubri-
cation �ow equation; and the production rate of hot water is equal to the
injection rate in the fracture. Although the single fracture geometry along
with these simplifying assumptions represent an idealized system, such sys-
tem can provide useful insight regarding the reservoir�s thermomechanical
response to cold water injection.

The heat transport occurs both in the geothermal reservoir and the frac-
ture. For the geothermal reservoir rock, the heat conduction is governed by
the 3-D di¤usion equation [35] (see e.g., Nowacki [19] for a generic deriva-
tion):

Krr2Td(x; y; z; t) = �rcr
@Td(x; y; z; t)

@t
; x; y; z 2 
 (2)

where �r is the rock density, cr is the speci�c heat of rock, Kr is the rock
thermal conductivity, 
 represents the in�nite geothermal reservoir (Fig. 1),
and Td is the normalized temperature de�cit with a value between zero and
one:

Td =
T0 � T
T0 � Tinj

(3)

were T is the temperature, T0 is the initial rock temperature, and Tinj is
the temperature of injected water, both are assumed to be constant.

For heat transport in the fracture the governing equation is:

q(x; y) � rTd(x; y; 0; t) =
2Kr
�wcw

@Td(x; y; z; t)

@z

����
z=0+

(4)

where �w is the water density, cw is the speci�c heat of water, and

q(x; y) =

Z w(x;y)

0
v(x; y; z) dz (5)
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is the discharge per unit width in the transverse direction of the �ow, with
v the �ow velocity in the fracture and w the fracture width. The term
on the left hand side of (4) represents the heat advection by fracture �uid
�ow, and the term on the right gives the heat supply through the fracture
walls (two sides) by conduction. A single notation, Td(x; y; z; t); is used
in (4) to denote the temperature of the rock and the fracture �uid. This is
because the temperature is continuous across the two media. On the fracture
plane (z = 0) the water temperature Tw equals the rock temperature i.e.,
Tw(x; y; t) = T (x; y; 0; t), x; y 2 A.

In arriving at (4), it has been assumed that the e¤ects of heat dispersion
due to a velocity gradient across the fracture and heat conduction in the
�uid are negligible (advection dominant heat transport). The validity of
these assumptions has been shown in Cheng et al. [53] and Nemat-Nasser
and Ohtsubo [40].

These governing equations are subject to initial and boundary condi-
tions. Prior to the heat extraction operation, the temperature of the rock
and the fracture �uid is assumed to be a constant, T (x; y; z; 0) = T0, and at
the injection point (xi; yi; 0), the temperature is equal to that of the injected
water: T (xi; yi; 0; t) = Tinj . The extraction temperature T (xe; ye; 0; t) is un-
known. The initial and the boundary condition can be expressed in terms
of Td:

Td(x; y; z; 0) = 0; Td(xi; yi; 0; t) = 1 (6)

Laplace transform is applied to the above equations to facilitate the treat-
ment of the time variable:

Krr2 eTd(x; y; z; s) = s�rcr eTd(x; y; z; s) (7)

q(x; y) � r eTd(x; y; 0; s) = 2Kr
�wcw

@ eTd(x; y; z; s)
@z

�����
z=0+

(8)

eTd(xi; yi; 0; s) = 1

s
(9)

where the tilde overbar denotes the Laplace transform, and s is the transform
parameter.

The system of equations (7)�(8) is de�ned in three spatial dimensions.
It has been demonstrated that by utilizing Green�s function of 3-D di¤usion
equation, the solution system can be reduced to a 2-D integral equation
[35]. In this way, the temperature on the fracture surface (z = 0) can be
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expressed as

eTd(x; y; 0; s) = � �wcw
4�Kr

Z
A

h
q(x0; y0) � r eTd(x0; y0; 0; s)i

1

r
exp

�
�
r
�rcrs

Kr
r

�
dx0 dy0; x; y 2 A (10)

where r =
p
(x� x0)2 + (y � y0)2. Equation (10) is entirely de�ned on the

2-D fracture plane A. Together with the boundary condition (9), it forms a
complete solution system for �uid temperature in the fracture eTd(x; y; 0; s).
The solution of the system is in the Laplace transform domain. It is nec-
essary to transform the solution back into the time domain. This is ac-
complished by solving the above system for a number of di¤erent values of
s to produce data in the Laplace transform space. An approximate inver-
sion method namely, the Stehfest method [54, 55], is chosen for this work.
The numerical details of solving the integral equation (10) can be found in
Ghassemi et al. [35], and are not repeated here.

3 Thermal Stress

The purpose of this paper to evaluate the mechanical response of the fracture
to water injection and cooling of the rock. Thus, it is necessary to �nd the
transient thermal stress induced by the temperature �eld obtained in the
previous section.

For an isotropic, homogeneous, and elastic reservoir, the change in tem-
perature �T = (T � To) can be related to the Goodier thermoelastic dis-
placement potential � through the following Poisson equation:

r2� = m�T (11)

where:

m =
(1 + �)�T
(1� �) (12)

is the thermoelastic constant, �T is the coe¢ cient of linear thermal expan-
sion, and � is the Poisson ratio. Recall that the displacement �eld can be
expressed as

u = r� (13)

where u is the displacement vector. Expression of displacement in terms
of a potential is possible because thermally generated displacement �eld is
irrotational.
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Figure 2: Computational mesh on the fracture plane showing element geom-
etry, and nodal distribution where temperature, stress, and slip are calcu-
lated. The �ow components qx and qy are also shown.

Given a distribution of temperature at any given time, the potential �
can be calculated from the Poisson integral [19]:

�(x; y; z; t) = �m
4�

Z



�T (x0; y0; z0; t)

R
dx0 dy0 dz0 (14)

where R =
p
(x� x0)2 + (y � y0)2 + (z � z0)2. Equation (14) can be directly

evaluated to obtain the potential and the thermal stresses, but it is ine¢ -
cient to integrate as the integration is in three dimensions over an in�nite
domain. The problem can be reduced to 2-D by using Green�s function of
3-D di¤usion in the Laplace domain as shown in Ghassemi et al. [43]:

e�(x; y; z; s) =
m�w cw
4�s�rcr

Z
A

h
q(x0; y0) � r eT (x0; y0; 0; s)i (15)�

1

R
� 1

R
exp

�
�
r
s

�
R

��
dx0 dy0

The right hand side of the above equation consists entirely of known quan-
tities, because the �uid �ow and the temperature in the fracture have been
obtained from the previous stage of solution based on (10). In fact, the same
grid system as shown schematically in Fig. 2 can be used in the evaluation.
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So, the problem of �nding thermal stresses induced by the injection of cool-
ing �uid is reduced to integration on only the fracture surface. To obtain
the displacement potential on the fracture surface, Eq. (15) is evaluated at
z = 0:

e�(x; y; 0; s) =
m�w cw
4�s�rcr

Z
A

h
q(x0; y0) � r eT (x0; y0; 0; s)i (16)�

1

r
� 1
r
exp

�
�
r
s

�
r

��
dx0 dy0

The stresses are related to the displacement potential by the following for-
mula [19]:

e�ij = 2G @2e�
@xi@xj

� �ijr2e�! (17)

where �ij is the Kronecker delta. The stresses are evaluated using a �nite
di¤erence approximation of (17).

4 Displacement discontinuity

As mentioned above, fracture permeability and reservoir seismicity are re-
lated to slip along preexisting discontinuities. Useful information can be ob-
tained by studying the response of fracture to �uid pressure and rock cooling
under a given state of stress. In this work, the fracture opening and slip are
determined using a 3-D elastic DD method. The DD method is an indirect
boundary element method which is based on the fundamental solution of a
point DD in an in�nite elastic or poroelastic medium. This technique has
been used extensively in mining and hydraulic fracturing [44,45,47]. The
most extensive developments are due to Crouch and Star�eld [44] who used
the solution of a constant line displacement discontinuity in an in�nite elas-
tic medium as the singular solution. Other investigators [56] use the 2-D
and 3-D point DD as the fundamental solution. This solution is then inte-
grated over a desired element shape to form the building block of the DD
method. Then, a fracture is modeled by dividing its surface into a number
of DD elements and requiring that the superposition of their e¤ects satis�es
the prescribed boundary conditions.

The tractions on the fracture surface (A) due to displacement disconti-
nuities can be written in form of integral equation of the �rst kind:

�ij(x) =

Z
A
��ijkn(x

0;x) �Dkn(x
0) dx0 (18)
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with known values of �ij and unknown values of DD tensor, �Dkn. The
kernel ��ijkn represents the e¤ect of a point DD at point x0(= (x0; y0; z0))
on the stresses at point x(= (x; y; z)). A general analytical solution of this
equation is not possible, therefore it is necessary to solve it numerically by
transforming the integral equation into a system of algebraic equations. The
fracture surface is divided into number of elements. The induced stresses
on element �m�due to a constant spatial distribution of normal and shear
DD�s on element �r�are given by

�mij (x) = S
rm
ijkn(x

0;x)�Drkn(x
0) (19)

where �Dkn are the strength of the components of the DD tensor. The
superscripts m and r refer to the in�uenced and the in�uencing elements,
respectively. The quantities with those superscripts are in the local coor-
dinate system of the in�uenced and in�uencing elements, respectively. The
coe¢ cients relating the DDs on the in�uencing elements (with surface Sr)
to the stresses on the in�uenced elements are given by:

Srmijkn(x
0;x) = ailajm

Z
sr

��lmkn(x
0;x)dx0 (20)

where ail is the rotation matrix from the in�uencing to the in�uenced coordi-
nate system. The spatial integration is a relatively easy process for constant
elements in 3-D problems. Superposition of in�uences of all elements to
element m gives a system of algebraic equations:

�mij (x) =
NX
r=1

Srmijkn(x
0;x)�Drkn(x

0); m = 1; N (21)

It should be noted that the stresses on the left hand side include both
in-situ �eld stresses and those induced by the injection/extraction problem
which is solved separately for a given time as described before. ��ijkn rep-
resent the 3-D fundamental solutions for stresses �ij due to a point shear
(k 6= n) and normal (k = n) displacement discontinuities at point x0 in an
in�nite elastic medium. It is given as follows [47]:

��lmkn = � G

4�(1� �)R3 [(1� 2�) (�ik�jn + �jk�in) (22)

� (1� 4�) �ij�kn + 3 (1� 2�) (�knR;iR;j + �ijR;kR;n)
�15R;iR;jR;kR;n + 3� (�ikR;jR;n + �jkR ;iR;n

+ �inR;jR;k + �jnR ;iR;k)]
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where R;i= @R=@xi = (xi � x0i)=R; i = 1; 2; 3; and �ij is the Kronecker
delta. For a distribution of point DD�s on a given plane the above equations
can be multiplied by a desired shape function and integrated with respect to
x0 to yield the stresses and displacements due to a given distribution of DD.
For example, for a constant (unit) variation of normal DD (k = n = z) over
a rectangle (2a� 2b) the above procedure gives the expressions from which
the in�uence coe¢ cients may be calculated at any point. For example, �zz
in the DD element coordinate system is given by [44]

�zz = � G

4�(1� �)

��
XY (r2 + Z2)

r(r2Z2 +X2Y 2)
� XY Z

2(X2 + Z2 + 2r2)

R(X2 + Z2)2

� XY Z2(Y 2 + Z2 + 2r2)

R(Y 2 + Z2)2

�a
�a

�b
�b

(23)

where r =
p
X2 + Y 2; X = x � x0; Y = y � y0; and Z = z. It should be

noted that shear stresses depend on both shear components of DD while the
normal stress components depend only upon the normal component of DD.
When the value of Z is set to zero, meaning that it is on the fracture plane,
the above equation gives the normal traction component on the crack plane
as

(�zz)Z=0 = �
G

4�(1� �)

""p
X2 + Y 2

XY

#a
�a

#b
�b

(24)

The above expression is the stress component due to a constant DD over
a rectangle. Similar expressions can be obtained for other components of
stresses and displacements, and for di¤erent type of elements, such as trian-
gular element.

5 Fracture Opening and Slip

As indicated before, for a planar fracture, shear stresses depend on both
shear components of DD; while the normal stress components depend only
upon the normal component of DD. Thus, the �zz stress component for
the elements are independent of �xz and �yz; and can be solved separately.
Applying Eq. (19) for normal and shear stress components and summing the
in�uence coe¢ cients over all elements, two systems of algebraic equations
are formed for N closure and 2N ride unknowns:

�zz = KzzDzz (25)
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�
�xz
�yz

�
=

�
Kxx Kxy
Kyx Kyy

� �
Dxz
Dyz

�
(26)

where K is the matrix of in�uence coe¢ cients; Kzz represents the normal
stresses due to normal DD�s (in the z-direction), Kxy represents the shear
stress in the x-direction due to shear DD�s in the y-direction, and so on.

When the fracture remains open, these equations can be solved in a
simple manner. In that case, the slip corresponds to the magnitude of shear
displacement discontinuities. However, a di¤erent approach is needed when
the fracture is closed. In this case, the fracture is modeled using a rigid
perfectly plastic Mohr-Coulomb element. The shear strength of the Mohr-
Coulomb element is given by

� = c0 + �n tan�ef = c0 + �n tan(�in + 'dil) (27)

where �ef is the e¤ective friction angle of the joint/fault surface, �in is
intrinsic friction angle, 'dil is dilation angle, �n is the compressive stress
acting on the fracture surface and c0 is the cohesion. The standard Coulomb
friction model assumes that no relative motion occurs if the equivalent shear
stress

� eq =
q
�2xz + �

2
yz (28)

is less than the critical stress, predicted by Eq. (27).
The fracture aperture is a¤ected by the amount of shear displacement

and is equal to

a =
q
D2xz +D

2
yz tan('dil): (29)

This is a simple joint dilation model; however, other and perhaps more
complex dilation models [41] can be implemented in the solution procedure
without restrictions.

To set up the system of equations for a given problem, the in situ stresses
and hydraulic pressure are applied in the initial solution step. If the fracture
aperture at a node associated with a fracture element is found to be negative
(overlap), penalty stresses are applied to the overlapping portion of the
fracture surface. The applied penalty stresses are proportional to the normal
DD. Then, an iterative solution process is used until the fracture aperture
becomes non-negative at any point.

During the course of the analysis, each element can be either in a state
of �separation�, �stick� or �slip�. Separation elements do not require any
additional treatment. Elements in the stick state have a �xed tangential DD
during the current solution step. Elements in the slip state are allowed to
slide in the tangential direction. After slip occurs, the excess shear stresses
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are released in this zone and slipping elements may change their status back
to stick state, but in the new deformed position (sometimes this approach
is referred as �partial slip mode�). Such an element may remain in the stick
mode for the rest of the analysis, or it might revert back to the slip mode
due to an increase of shear stresses or a decrease of the normal compressive
stresses. Therefore, each element can change its status several times during
the course of the analysis. With an increase in the shear stresses or a decrease
in the normal compressive stresses due to, e.g., thermally induced stresses,
the slip increases with time.

The thermal stress is applied incrementally by increasing the load from
zero to the calculated thermally induced stresses for a given time. Currently,
a linear variation of thermal stresses (from zero until the given stress at
a given time) is used. The new contact stresses are found for each load
increment and the slip criterion is applied. Note that for the problem of
a single injection well, the cooled zone (as well as thermal stresses) grows
monotonically with time, therefore, approximating the increase in load using
a linear variation is a good approximation, which provides good accuracy.
However, for more complex situations with several injection wells or with
several fractures, the time variation of the thermal load might become more
complex, and more accurate description of the temporal variation of loads
would be required. Doing so for the current problems would mean increased
computational e¤ort with negligible improvement in the results; hence it is
not pursued.

The process of determining the magnitude of shear slip begins by initially
setting the shear DD (ride) to zero or to a value that corresponds to the
plastic deformation obtained from a previous solution step. By �xing these
DD�s and applying an increment of thermal stresses, the new shear stresses
that act on the fracture plane are calculated. These stresses are then used
in the MC slip (27). If shear slip is predicted, the value of friction forces is
set to that given by Eq. (27), and the new slip value is calculated. Using
these shear slip values, new shear stresses are calculated and the process
continues until convergence for each loading step is achieved. Although
fracture opening and compressive forces are updated after each iteration,
the slip amount is assumed to be small enough so that the change in contact
surface due to slip can be neglected. This means that element overlap due
to slip is negligible and the upper part of the fracture is always in contact
with the same element from the lower part, so that the change in element
positions are neglected when calculating new in�uence functions. This is
justi�ed in view of the fact that slip values are of the order of a few mm and
the element sizes are of the order of several meters. The solution algorithm
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is as follows:

1. apply a new load increment m, and calculate the total load for the
current increment:

�ij = �
in�situ
ij + phydr � �ij + � frictionij + �thermalij � m

N
(30)

which is the sum of in-situ stresses, hydraulic pressure, friction forces,
and thermally induced stresses, respectively. The total number of load
increments is denoted by N .

2. solve the system of equations (25) for Dzz. If any of the calculated
Dzz is negative (overlap), apply penalty stresses (contact stresses on
overlapped portion of fracture) to these elements, and solve for new
Dzz. Adjust contact stresses until all Dzz values are non-negative;

3. apply the MC slip (27) for all elements using the compressive contact
stresses acting on them calculated in step 2. If slip is predicted, then
set friction forces:

3.a for stick elements the friction forces are equal to the shear stresses
in magnitude and opposite in direction; for slip elements the mag-
nitude of friction forces is governed by Mohr�Coulomb criterion;

3.b for elements for which slip was predicted (the shear DD�s for non-
slip elements remain �xed during this step) solve the system of
equations (26) for shear;

3.c after slip occurs, recalculate shear forces acting on the fracture
plane for all elements using (26) and taking into account the new
shear DD values;

3.d calculate fracture aperture using (29);

3.e go to step 2 and repeat until convergence is achieved;

4. apply another load increment and go to step 1, or stop in the case of
last load step.

6 Numerical Examples

6.1 Injection into In�nite Fracture
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E Young�s modulus 65:0 GPa
� Poisson�s ratio 0:185

�r rock density 2650 kg/m3

�w water density 1000 kg/m3

cr rock heat capacity 790 J/(kg K)
cw water heat capacity 4200 J/(kg K)
� thermal di¤usivity 5:1� 10�6 m2= sec
�T rock linear thermal expansion coe¢ cient 8:0� 10�6 1=K
Q injection rate 40 `= sec

TR rock temperature 180 �C
Tinj injection water temperature 30 �C
w initial average fracture aperture for �ow 10�3 m

Table 1: Input parameter for in�nite fracture problem.

A computer program is developed based on the above procedures. As
a �rst example, we consider the problem of injection into an in�nite planar
fracture with the injection well located at the origin (e.g., Fig. 3). The
fracture is considered to be at a depth of 2330m with an in situ stress of
�v = 60:13 MPa, �hmin = 34:81 MPa, �Hmax = 50:88 MPa, and a pore
pressure of P = 17:4 MPa. The orientation of �Hmax is parallel to the
fracture strike direction which is due north in the �eld (parallel to the local
x-axis). This stress �eld can be rotated to the local fracture coordinate
system to obtain �zz = 41:1 MPa, �xz = 0 MPa, and �yz = 11:0 MPa. The
fracture surface has a dip angle of 60�, and it is assumed to have friction angle
of � = 30� and a dilation angle of 3�. The initial reservoir rock temperature
is a constant T = T0. At t = 0+, water is injected at temperature Tinj with
�ow rate Q assumed to be 25 l=s. Other data for this problem are shown
in Table 1. In the solid displacement analysis, the pressure in the fracture
is assumed to be uncoupled to the pressure �eld that would be needed to
drive the advective cooling �uid. It is set to a constant and equal to 20
MPa, i.e., slightly larger than the in situ pore pressure. Fluid �ow analysis
shows that this is a good assumption as the injection-induced pressure for
the conditions considered is rather small (less than a few MPa) [33,34].

The mesh pattern used for the heat transport and thermal stress calcu-
lations in [43] (Fig. 2) is adopted for the numerical solution of the fracture
response. Although the fracture is of in�nite horizontal extent, the mesh
covers only a �nite region whose size is estimated such that the thermal
perturbation is contained within it. For the current simulations, square el-
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Figure 3: An in�nite fracture with an injection well (plan view in the z-
direction).

ements of size 4:25 m are used. An 80 � 80 mesh was selected based on
error convergence, although a 60 � 60 mesh also provides satisfactory re-
sults. The same mesh is used for the fracture opening and slip calculations.
The sensitivity of the results to element size and the suitability of the type
and number of elements used have been discussed elsewhere [43,45]. The
numerical results in terms of the cooling induced stresses are presented in
Fig. 4 for one month of injection. The accuracy of the solution has been
previously established [43], the solution compares very well with the semi-
analytical solution by Mossop [7] for the problem of injection into a fracture
of in�nite extent. The error is localized around the injection well where a
�ow singularity exists. It is noticed in Fig. 4 that all three cooling-induced
stress components shown have signi�cant magnitudes. The induced thermal
stresses near the injection well are tensile (meaning an reduction from the
in situ compressive stress). The largest values occur near the well where the
rock is cooled the most. Away from the well, the stresses decrease and �zz
and �yy components eventually become compressive. This is the result of
strain compatibility requirement in thermoelasticity� as rock contracts near
the injection well due to cooling, it tends to pull on the exterior rock mate-
rial inducing a compressive stress ahead of it. This transition from tension
to compression would also be observed in a 2-D version of the thermoelastic
problem. A 1-D formulation, on the other hand, would not capture it.

144



Paper VI: A 3-D study of the e¤ects of thermomechanical loads

Figure 4: Thermally-induced stress distribution on a fracture surface around
an injection well.

Near the injection zone, the values of induced �yy and �xx in Fig. 4 are an
order of magnitude larger than �zz. These large stresses would cause new
fractures to initiate and to open perpendicular to the original one. This
possibility also has been suggested by other investigators [40]. Although
their propagation and impact on the heat and �uid �ow is beyond the scope
of the current paper, their formation will have a microseismic signature
that can be used in monitoring reservoir stimulation [57]. Similarly to the
axial stress component, the �yy component also changes sign and becomes
compressive away from the injection point. These compressive stresses can
also contribute to slip on preexisting critically stressed cracks and potentially
contribute to seismicity.

For the current problem, the �zz thermal stress component increases the
fracture aperture through slip caused by a reduction in the e¤ective normal
stress. This is illustrated in Figs. 5 and 6 where we plot Dyz and Dxz, that
is, the shear displacement in the local fracture coordinates directions y and
x, respectively. The zone of slip and opening (light shade) is nearly circular
and extends to about 50 m. The slight ellipticity in the distribution of slip
is a result of the stronger �yz shear stress component forcing the slip zone to
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Figure 5: Distribution of Dyz displacement component on the in�nite frac-
ture.

grow more in the y-direction than in the x-direction. This is to be expected
as the shear stress is also large in the y-direction, and the resolution of the
�eld stresses yields a zero shear stress in the x-direction. The maximum
slip in the y-direction occurs at the well and equals 9 mm. This shear slip
causes some movement on the fracture in the x-direction with a maximum
value of 0:16 mm. This small slip in the x-direction is entirely due to the
slip in the y-direction that is caused by the in situ �yz stress component
(see Eq. (26)) and the cooling-indued reduction of �zz. The distribution of
the fracture opening is shown in Fig. 7, with the maximum opening of 0:45
mm. It is worth noting that the thermally induced shear stress components
�xz = �yz = 0; while �xy is non-zero and small, but it does not contribute
to shear slip on the fracture plane. The shear slip on the fracture plane
can potentially manifest itself seismically. Furthermore, the cooling front
and the stress perturbations (e.g., �zz in Fig. 8) will move into the rock
mass, causing stress redistribution and possibly contributing to seismicity
depending on factors such as coupled poro-thermoelastic mechanisms and
rock mass fracture properties.

It is worth noting that for a constant injection rate, the injection pressure
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Figure 6: Distribution of Dxz displacement component on the in�nite frac-
ture.

Figure 7: Fracture opening distribution for injection into an in�nite fracture.
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Figure 8: Distribution of cooling-induced �zz stress component in the rock
after one month of injection.

will drop due to the increased fracture conductivity [23,32,33]. This is indeed
observed in the injection experiment conducted in Well 83-16 of the Coso
Geothermal Field [12]. This thermal stress induced aperture change will
have an e¤ect on the �ow pattern, which in turn a¤ects the heat transport.
This coupled e¤ect is not contained in the current model. However, if the
injection is controlled by a constant �ow rate, not by pressure, and the �ow
pattern remains radial, as is approximately the case here, then only the
injection pressure will change without a¤ecting the heat transport pattern
so that the prediction of heat extraction is correct in spite of the thermal
stress induced aperture change.

6.2 Injection/extraction in a Finite Fracture

The numerical procedures can also be applied to an injection/extraction
operation involving an irregularly shaped fracture is shown in Fig. 9. The
fracture is assumed to have an initial aperture of 1 mm under the action
of the in situ stresses and pore pressure, due to existence of asperities or
proppant. The �uid pressure in the fracture is assumed to be uniform and
equal to 25 MPa, this applied �uid pressure by itself is insu¢ cient to further
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1
2

3

X

YZ

Figure 9: Injection/extraction operation in a fracture with arbitrary shape
and orientation.

Figure 10: A fracture with irregular geometry; the computational mesh and
�uid �ow �eld for one injection well and two extraction wells (XY is the
local fracture coordinate system).
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Figure 11: Flow magnitude in the fracture with one injection well and two
extraction wells.

open the fracture. To calculate the actual �ow �eld for the arbitrary shape
fracture, the equation for the incompressible �uid �ow is used [43]. For the
current conditions, the resultant �ow �eld and �ow magnitude are shown
in Figs. 10 and 11, respectively. The fracture surface is divided into 3384
elements. The heat extraction operation involves three wells: one injection
well with �ow rate 40 l=s, and two extraction wells each with �ow rate 20
l=s. The rock and �uid properties are given in Table 1. The injection period
is considered to be three months and the fracture orientation and in situ
stress are the same as in the previous example.

The temperature distributions on the fracture surface after 3 months
of operation are shown in Fig. 12. The small white region (about 30�C)
around the injection well (see Fig. 9 for injection well location) indicates
that heat depletion has not reached a large part of the reservoir at that
time. Fig. 13 plots the net normal stress (contact) on the fracture surface
after three months of injection. A large tensile region is developed around
the injection well. This can be understood by noting that the compressive
stresses are much reduced in that region (light shade). Zones of higher com-
pressive stress (dark shade) are developed outside of the cooled area within
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Figure 12: Temperature distribution in the fracture after 3 months of op-
eration.

the fracture, which is consistent with the preceding case of a single injection
well. Compression zones are also developed just behind the extraction wells.
As noted before, these zones of increased compression can also contribute to
slip of other fractures and induce seismicity. As before, there is some error
at and near the injection/extraction wells, where a �ow singularity exists.
The fracture is assumed to have an initial aperture (10�3), however, as can
be seen in Fig. 14, after three months of injection the fracture aperture has
increased in response to the �uid pressure, thermal stresses, and dilation
with its maximum value of 4 mm at the injection well. The shear slip in the
y- and x-direction is shown in Figs. 15 and 16, respectively. The fracture
has undergone slip over a large area and we again note that the slip magni-
tude in the y-direction is dominant with a maximum value of 7 cm. Fig. 17
shows the slip in the y-direction when thermal stresses are not included in
the analysis. It can be observed that the slip magnitude has decreased sub-
stantially. The maximum slip is now 9 mm. This is an explicit indication of
the importance of thermal stresses in fracture slip which had previously been
suggested as a potential contributor to seismicity in geothermal reservoirs
[7]. In fact, the contribution of the hydraulic pressure will disappear once in-
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Figure 13: Normal stresses acting on the fracture plane after applying the
in-situ stresses, pressure, and thermal stresses.

jection has ceased. But, the cooling front and the stress perturbations (e.g.,
�zz in Fig. 8) will continue to move into the rock mass, causing stress re-
distribution and possibly contributing to seismicity. A conclusive statement
would require a more extensive modeling e¤orts as the stress redistribution
is a function of many factors including porothermoelastic mechanisms and
rock mass fracture properties that we have not included in our analysis.

7 Summary and Conclusions

A 3-D boundary element model for heat extraction/thermal stress has been
coupled with a 3-D elastic DD method to investigate the fracture opening
and slip in response to �uid injection pressure and cooling of the rock under a
given in situ stress �eld. Using this approach, the e¤ects of each mechanism
on rock stress and fracture slip have been estimated. It has been found that
not only tensile stresses develop due to the cooling, but also compressive
stresses are generated in the range just outside the fracture or the �uid front,
consistent with strain compatibility. We note that this mechanism is similar
to the poroelastic e¤ect used by Segall [8] to explain earthquakes triggered
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Figure 14: Crack opening after 3 months of injection (maximum opening is
4 mm).

Figure 15: Slip in the y-direction (maximal slip values is about 7 cm).
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Figure 16: Slip in the x-direction (slip in this direction is very small, because
the in-situ �xz = 0 on this plane).

Figure 17: Shear slip in the y-direction in the absence of thermal stresses.
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on the �anks of petroleum reservoirs due to �uid extraction. The results
of displacement analysis indicate that under typical �eld conditions in Coso
(in situ stress, pore pressure, rock/injection temperature, injection rate and
duration), a substantial increase in fracture slip is observed when thermal
stresses are taken into account. The amount of slip would depend on the rock
joint properties, in situ stress, pressure, injection rate, and degree of cooling.
For conditions similar to the Coso geothermal �eld, the predicted slip is of
the order of several centimeter for a few months of injection/extraction. This
slip can be accompanied by seismicity; it would also result in redistribution
of stresses in the rock mass and may induce slip and seismicity elsewhere in
the reservoir. The temporal distribution of the thermal stresses also suggests
that their contribution to rock mass deformation will not stop upon cessation
of water injection and can be a factor in delayed seismic activity. A more
extensive modeling and analysis of the stress redistribution including poro-
thermoelastic mechanisms for a given rock mass fracture properties would
be necessary to assess the type and spatiotemporal extent of the events.

This work can be distinguished from other analytical and numerical stud-
ies that treat the heat conduction in the geothermal reservoir as 1-D and per-
pendicular to the fracture. For the few numerical works that treats 3-D heat
�ow and thermal stresses, the 3-D in�nite reservoir needs to be discretized.
In comparison, the present integral equation scheme only discretizes the
planar fracture surface, which is a much reduced numerical solution system.
Although the solution is in the Laplace domain, numerical inversion [55]
can easily be performed without adding signi�cant computational e¤ort. It
should be emphasized that previous studies of fracture response have been
based on a di¤erent conceptual model namely that of a conventional hy-
draulic fracture growth. The focus of this work has been on fracture slip, a
phenomenon that is generally believed to be true for geothermal reservoirs.
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