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The present paper proposes canonical Dirac framework adapted for 
application to the electronic processes in solid state. The concern is a spatially 
periodic structure of atoms distinguished by birth and annihilation of particle 
states excited due to interaction with the electromagnetic field. This implies 
replacing the conventional energy-momentum relation specific of the canonical 
Dirac framework and permissible for particle physics by a case specific relation 
available for the solid state. The advancement is a unified and consistent 
mathematical framework incorporating the Hilbert space, the quantum field, 
and the special relativity. Essential details of the birth and annihilation of the 
particle states are given by an illustrative two-band model obeying basic laws 
of quantum mechanics, special relativity, and symmetry principles maintained 
from the canonical Dirac framework as a desirable property and as a prerogative 
for the study of the particle coupling and correlation.
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1. INTRODUCTION

The long-standing challenge to describe charged particles in solids exposed 
by electromagnetic fields is how to incorporate the Hilbert space, the quantum field 
theory, and the special relativity into a consistent unified framework. Current theory 
for these processes is founded on the study of particle creation. In the original context, 
the key issue is an electromagnetic field sufficient to create pairs of photoexcited 
particles from vacuum in high-intensity laser experiments [1], [2]. Though the 
particle production from vacuum has yet to be experimentally verified, the electronic 
processes in solids brought benefits from a consistent description of quantum many-
body phenomena far from equilibrium. Conventionally, for photoexcited particles 
created from vacuum in high-intensity laser experiments, we have a solution of the 
Dirac equation with the classical electromagnetic four-vector potential incorporated. 
Expanding these two fields in Fourier modes reveals that their wavelengths are much 
larger than the wavelength of the quantized modes of the Dirac field functions. The 
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physical picture is that in this case a photon of the classical four-vector potential does 
not resolve the quantum nature of the photoexcited electron. It allows the equations 
of motion for the observables and the slowly varying four-vector fields to be solved 
self-consistently at the long wavelength scale [3]. However, well-accepted solutions 
for a free particle and even for quantum fields comprise a quantity identified to the 
Einstein energy-momentum relation as an element of particle physics and violated in 
the solids. In this manuscript, we reconsider the energy-momentum relation making 
it case specific and available for solid-state applications. The viewpoint acquired 
from the Dirac framework is that physically acceptable solutions imply two mutually 
consistent equations: the first is Klein-Gordon type related to the Schrödinger 
equation, and the second is the modified Dirac equation.

Going beyond the canonical Dirac framework, we focus attention on a 
compound system constituted of the Schrödinger type Hamiltonians. The novelty 
we claim and the modification we propose is that the equation of motion for this 
compound system is consistent with the tensor product of its components. Emerging 
entities are both the expected energy-momentum relation and the (equation of motion 
for) joint wave function of the compound system.

Ongoing investigations were successful in the oscillator representation for 
the joint wave function of the compound system [4], [5], and in the mathematical 
technique for the creation and annihilation operators accepted in this work [6]. In the 
physics of semiconductors, the excitation of electron-hole pair has attracted much 
attention and was extensively studied in [7] and [8]. Central in these pioneering 
approaches is the composite system specified by macroscopic dispersion relations 
for noninteracting electrons and holes that appear as correlated in the momentum 
and energy. Charge conjugation of these particles with optical radiation is obtained 
within the framework of minimal substitution, which the electromagnetic vector 
potential considered as a macroscopic entity [9]. 

What we learn from the aforementioned references is that, certainly, the oscillator 
equation for the composite system is central and plays the role of the Klein-Gordon 
equation in the canonical Dirac theory, and the canonical Dirac equation, indeed, 
seems to be consistent with both relativity and even the probability interpretation 
for a single relativistic particle. What exactly is the challenge, is transition to more 
general energy-momentum relations spanned by the lattice environment with a 
variable number of particles. In this context, we give preference to the quantum field 
functions that a priori imply the Lorentz covariance and the quadratic dispersion of 
constituting particles. Under these conditions, the Lagrangian density for quantum 
field functions appears at once, encodes the parameters of macroscopic Hamiltonians, 
and is available for canonical quantization as desirable properties. This means that 
component of a composite system is not described independently by its own wave 
function, without consideration of the state of the other and, generally, arising as a 
result of interactions between the component degrees of freedom. Finally, as the main 
result of this work, we obtain a set of differential equations of birth and annihilation 
operators for an illustrative electron-hole model.

The manuscript is organised as follows. Section 2 presents a general 
introduction to the problem and some standard information on theory that is used 
later in the paper. In Section 3, we give details of the modified Dirac equation and the 
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associated quantum field functions. In Section 4, the Lagrangian density is built from 
the modified Dirac equation and available for the minimum action mathematical 
technique. Finally, Section 5 summarises the results of this study. We use natural 
units, 1c= =  restoring them explicitly where adding insight.

2. BASIC CONCEPTS AND DEFINITIONS

 While the basis of quantum mechanics is provided through purely algebraic 
relations, for specific results a complementary representation of the Hilbert space, 
the quantum field theory and the special relativity are used. To bring rationale of all, a 
special attention is paid to the quantum mechanical wave functions defined so that the 
Hilbert space is given by a set of elements ( ), , ,...H ψ ϕ χ= obeying postulates 
for scalar product, linearity, completeness, and separability. This is definitely the 
case of Schrödinger type wave functions for Hamiltonians comprising both the 
kinetic and time independent potential energy terms. For arbitrary dimensionality, 
the joint wave function implies linearly independent vector spaces { }1 2 3, ,V v v v=
and { }1 2 3, ,W w w w= , where{ }1 2, ,..., ne e e  

is the basis vectors of V , and similarly 
{ }1 2, ,..., mf f f
  

for W . The tensor product of the vector spaces V W⊗  is spanned by 
the basis vectors i je f⊗

  as given by relation 

( )n m n m
i i j j i j i j

i j i j
v w v e w f v w e f

  ⊗ = ⊗ = ⊗∑ ∑ ∑∑  
   

    
 .  (1)

We categorize this property as a fundamentally new multi-particle approach 
available for the creation and annihilation of particle states in far-from-equilibrium 
conditions.

Consequences for the Dirac framework [10] are that instead of the prototypical 
Klein-Gordon equation for a free relativistic particle we have the oscillator equation 
for the case specific energy-momentum relation. The associated Dirac equations 
for spinor functions turn into a modified Dirac equation distinguished by first order 
in space and time derivatives and by numerical coefficients connecting it with the 
oscillator equation. Requested consistence between both equations is fully defined 
by drawing comparison between their differential operators of appropriate order. 
Necessary restrictions of the special relativity are encoded in appropriate quantum 
field functions. This allows the Lagrange and Hamilton transition from the joint 
wave function of the composite system to the Lagrangian density for the canonically 
quantized field operators of the Hamiltonian density and the methods of quantum 
statistics available.

The observable quantities emerge in a standard way as integrals over time-
dependent distribution functions, however, being beyond the scope of this manuscript.
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3. BUILDING THE MODIFIED DIRAC EQUATION

In this section, we follow the canonical Dirac framework distinguished by the 
wave equation that is first order in both space and time derivatives and linear in the 
momentum

( )ˆ ( ) 0E p m xα β− ⋅ − Ψ =


,   (2)

where, conventionally, solutions for the entities α  and β  imply drawing a 
comparison between the Dirac equation (2) and the Klein-Gordon equation [11].

The concern is the momentum-energy relation of composite systems given 
implicitly by the tensor product mathematical technique. As an example, we present 
a two-band model specified by the conduction and valence states as well as by width 
of the band gap. We set the Dirac equation (2) modified for the electron and the hole 
as

( ) 0
2

i i i x
t

α γ β∂ ∆ + ⋅∇ + ⋅∇ − Ψ = ∂ 

 
    .  (3)

Here the constraints on the constantsα , γ  and β follow from drawing a 
comparison between the (i) extended Dirac equation (3) squared and (ii) the oscillator 
equation.

We build the constituting equations for the prototypic composite system 
making use of the macroscopic constituting Hamiltonians cH and vH as

( )2
/ / 2 / 2c v eH m= ± ± ∆p   ,  (4)                                                                                    

where the momentum p and the (electronic) band gap ∆  are classical 
quantities. Quantization of classical dynamic quantities implies the energy operator 

  and the momentum operator . Finally, the equation of motion 
for this composite system (oscillator equation) is built up by tensor product (1) at 

  as

 .  (5)

Treatment of the tensor product implies components of the vector 
spaces V  and  W  in the operator representation as ˆ ˆ/ 2 ( )c cv E ε= − ∆ − p and

ˆ ˆ/ 2 ( )v vw E ε= + ∆ + −p gives the expected oscillator equation for the composite 
system as

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ , 0
4 2 2c c v v c vE E E tε ε ε ε ε ε

 ∆ ∆ ∆
− + − − − − + − − − Ψ =  
 

p p p p p p x . (6)                                
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3.1 SQUARED REPRESENTATION OF THE MODIFIED DIRAC EQUATION

In this subsection, we are  drawing comparison between the Dirac equation (4) 
squared and the oscillator equation (6) resulting in the relations for the coefficients 
α ,γ and β  as 2 2 2 / (4 )x y y emα α α= = = −∆ , 2 2 2 / (4 )x y z hmγ γ γ= = = −∆  and 

2β = 1  . The mixed projections of α  and γ satisfy    anticommutation relations  
0j k k jα α α α+ =  and 0j k k jγ γ γ γ+ =  at , , ,j k x y z= , j k≠ . The anticommutation 

relations of αβ  type is ( ) 0;j jβα α β+ =  , ,j x y z=  and of γβ  type is 
( ) 0; , ,j j j x y zβγ γ β+ = = . These anticommutation relations imply that at least for 
the illustrative two-band model the classical Dirac α − matrices given by relation 

2 2 2
x y zα α α= = = 1  and supporting anticommutation conditions in the canonical Dirac 

framework are violated. Instead, the anticommutation conditions must be encoded in 
the appropriate quantum field function(s).

The same concern is for the γ − factor in (3). The consequences for the mixed 
projections of αγ are that all of it turns to zero and the similarity with canonical 
anticommutation relations [11] is definitely formal. As a result, the full solution of 
(11) implies explicit relations / (4 )emα = −∆  , / (4 )emγ = −∆  .

The unknown yet overall wave function must obey the Fourier mode expansion    
as 

( ) ( ) ( )44( ) 2x dp p exp ipxπ −Ψ = Ψ −∫  ,  (7)

where properties of the composite system are encoded in the momentum space 
field )(~ pΨ  and the 4-vector scalar product / /px Et= − ⋅p x   is in the { }−−−+ ,,,
metric signature. In full detail, the Dirac equation (3) is written in differential 
operators as

( )
( )
2

0

t z z y y x x

z z y y x x

i i i i

i i i

α α α

γ γ γ

∆
− Ψ + Ψ + Ψ + Ψ + Ψ

+ Ψ + Ψ + Ψ =

   

  

  (8)

where the spatial gradient terms are included in brackets. Finally, implementing 
(7) in (8) turns the equation of motion for the overall quantum wave function of 
composite system as 

( ) ( )( )2 2 0
2 e h iε ε∆
Ψ − ∆ + ∆ − Ψ + Ψ =p p  .  (9)

3.2 QUANTUM FIELD FUNCTIONS

Extensions of (9) to more realistic systems interacting with external fields and 
exhibiting variable number of excited states require transition from quantum field 
functions to the quantum operator functions. The search is, first, the Lorentz invariance 
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[12] and the four Fourier representations of field functions related to positive 
(conduction) and negative (valence) energy states and, second, harmonization of the 
relativistic invariant integration measure with the macroscopic dispersion relations 
of the electrons and holes. To this end, we apply the Lorentz invariant representation 
for quantum field functions as [12].

( ) ( )44( ) 2 ( )expx d p p ipxπ −Ψ = Ψ −∫  ,  (10)

( ) ( )4* 4 *( ) 2 ( )expx d p p ipxπ −Ψ = Ψ∫  ,  (11)

where after (1), (2) the momentum space field is given by expansion in δ −
functions as

( )

( ) ( ) ( ) ( ) ( )

,

, , ,
2 2c v

E

E E E g E Eδ ε ε ψ δ ψ

Ψ →

∆ ∆   − − + + − =      

p

p p p p p



,  (12)

( )

( ) ( ) ( ) ( ) ( )

*

* *

,

, , ,
2 2c v

E

E E E g E Eδ ε ε ψ δ ψ

Ψ →

∆ ∆   − − + + − =      

p

p p p p p



 .  (13)

Equations (12), (13) support the necessary connection between the macroscopic 
parameters of the compound system and the quantum field functions (10), (11). 

Optical radiation implies a spatially homogeneous time-dependent electric 
field, represented (at appropriate wavelength) by the vector potential in the Coulomb 
gauge 0∇ ⋅ =A . In full, the momentum space field contributes as a replacement 

( )t→ ±p p A in quantum field functions, in the Lagrangian density, and, finally, in 
the birth and annihilation operators of associated quasiparticles, here – electrons and 
holes. However, this desirable property involves complexities, and, in this illustrative 
example, we restrict the calculations in free field mode, restating the effect of time-
dependent electric field in the final relations.

    Going over the technicalities for connection between the macroscopic 
parameters of the compound system and the quantum field functions (10), (11) we 
write the expected field functions decomposed in sums over momentum p  

( )
( ) ( )

( ) ( )
2 2

, ,3/2
1 1,

c vi t i t
i

e h
c v

t a e a e e
L

ε ε

ε ε

∆ ∆   − + + −   
   

−

  
  Ψ = +∑  ∆ + + −   

p p
px

p p
p

x
p p

, (14)

( )
( ) ( )

( ) ( )* * *2 2
, ,3/2

1 1,
c vi t i t

i
c v

c v

t a e a e e
L

ε ε

ε ε

∆ ∆   + + − + −    −   
−

  
  Ψ = +∑  ∆ + + −   

p p
px

p p
p

x
p p

. (15)
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4. LAGRANGE AND HAMILTON FORMALISM

The Lagrange and Hamilton formalism implies mathematical abstractions 
regarded to the fundamentals of quantum electrodynamics, whereas on physical 
grounds the expectations is to describe evolution of the particle distribution functions 
during the external field evolution. Having the Lorentz invariant quantum field 
functions (10), (11) we accept that sufficient condition for the Lagrangian density to 
have physical sense is to return the modified Dirac equation (8), (9). To this end we 
set the Lagrangian density for the quantum field functions (14),  (15)  as

( ) ( )( )
2

* * * * *2 2
2 e hp p i iε ε∆

= ΨΨ − ∆ + ∆ − ΨΨ + Ψ Ψ − Ψ Ψ + Ψ Ψ
∆

      L .  (16)

The canonically conjugate momentum fields read in usual way as

( ) ( )
2

*, :
,

x t i
x t

π
 ∂

= → Ψ + Ψ∑  ∆∂Ψ  p

  
L ,  (17)

( )
( )

2
*

*, :
,

x t i
x t

π
 ∂

= → − Ψ + Ψ∑  ∆∂Ψ  p

  
L

,  (18)

and the free field Hamiltonian density is given by

( ) ( )( )

( ) ( )

* *

2
* *

, ,

2 2
2

tot

e h

H x t x t

p p

π π

ε ε

= Ψ + Ψ − →∑

 ∆ − + ∆ + ∆ − ΨΨ + ΨΨ∑   ∆  

p

p

  

    

L

                         (19)

Implementation of the quantum field functions (14), (15) in (19) gives the free 
field Hamiltonian density  in quasiparticle representation as

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2

*

2
2

*

2 2
2

1

2 2
2

c c e v

e e
c v

tot

v v e v

h h
c v

a a
H

V

a a

ε ε ε ε

ε ε

ε ε ε ε

ε ε

 ∆  ∆ + − + ∆ + − 
  + ∆ + + −

 = ∑
 ∆ ∆ − + − − + ∆ + −  

  − − ∆ + + − 

p

p p p p
p p

p p

p p p p
p p

p p

     (20)
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that is available for the minimal action treatment. The factors before the creation 
and annihilation operators in (20) are functions of the macroscopic parameters of the 
compound system as desirable property.

The necessary equations of motion for the creation and annihilation operators, 
implies the quantum field functions (14), (15) in the canonical quantized fashion as

( )
( )

( ) ( )( )1, , ,
,

i
e ht a t a t e

V t

 ∆ Ψ = + −∑
 Ω 

px

p
x p p

p
,  (21)

( )
( )

( ) ( )( )† † †1, , ,
,

i
c vt a t a t e

V t
−

 ∆ Ψ = + −∑
 Ω 

px

p
x p p

p
.  (22)

Then, going back to the canonically conjugate momentum fields (17), (18) we 
turn to the standard definition  

* *
totHπ π= Ψ + Ψ − L  .  (23)

                                                    
where the Lagrangian density (23) is consistent with the integrand of the minimal 
action relation S dx= ∫ L  and the equations of motion are given by functional 
derivatives over the time dependent amplitudes , ( , )e ha tp .

Parameters of the compound system are encoded by factor 
( ) ( ) ( ), , ,c vt t tε εΩ = ∆ + + −p p p and the dispersions are given by (3), (4). Similarly 

to [7], extensions of the free field relations to the case of electromagnetic radiation 
is obtained by the replacement ( )t→ ±p p A  in quantum field functions (21, (22).

5. CONCLUSIONS

In this manuscript, the canonical Dirac framework is adapted for application 
to the electronic processes in solid state. The advancement is in replacing the 
conventional energy-momentum relation permissible for particle physics by a case 
specific relation available for solid-state applications. As a result, a complementary 
representation of the Hilbert space, the quantum field theory and the special relativity 
are applied. Emerging entities are both the expected case specific energy-momentum 
relation and the (equation of motion for) joint wave function of the compound 
system of particles. We claim that this result is original, previously unpublished, and 
from the best of our knowledge no such modification of Dirac theory is published 
elsewhere. Because of application to solid state and as an illustration of the proposed 
modification of the canonical Dirac framework, the electron-hole pair is discussed 
in full detail.

While conventionally we are concerned with fermionic particles, the modified 
Dirac framework describes fields on a level where the particles are not there from 



68

the start. It is only if to solve the field equations in presence of a pulse of external 
field that gives rise to the emergence of quasiparticles. This desirable property is a 
prerogative for strong coupling and correlation approaches having come to the fore 
of modern condensed matter physics. 
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ELEKTRONU PROCESI CIETĀ VIELĀ: DIRAKA IETVARS

Ē. Klotiņš

K o p s a v i l k u m s

Raksts veltīts kanoniskās Diraka teorijas modifikācijai elektronu procesu 
aprakstam cietā vielā. Nepieciešamā pāreja no Diraka daļiņu fizikas uz fotoierosinātu 
elektriski lādētu daļiņu kinētiku cietā vielā izveidota kā matemātiska struktūra, kurā 
ietilpst savstarpēji saistīti Hilberta telpas, kvantu lauka, un speciālās relativitātes 
pielietojumi. Attiecīgā fizikālā situācija ietver telpiski periodisku atomāru struktūru, 
kuru raksturo daļiņu dzimšana un anihilācija elektromagnētiskā lauka ietekmē. 
Detalizēta daļiņu dzimšana un anihilācija ilustrēta, izmantojot divu zonu modeli, 
kurā saglabāti arī kanoniskai Diraka teorijai raksturīgie kvantu mehānikas, speciālās 
relativitātes un simetrijas principi kā nepieciešamais priekšnoteikums daļiņu 
mijiedarbības un korelācijas kvantu kinētiskam aprakstam.
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