
1 
 

Energy level determination in bulk heterojunction systems using 

photoemission yield spectroscopy: case of P3HT:PCBM 

Raitis Grzibovskis*, Aivars Vembris 

Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, Riga, LV-1063, Latvia 

E-mail: raitis.g@cfi.lu.lv *; aivars.vembris@cfi.lu.lv 

Phone number: +371 67260787 

Raitis Grzibovskis ORCID ID:  0000-0001-5863-2295 

Aivars Vembris ORCID ID: 0000-0002-9346-946X 

 

ABSTRACT: 

Ultraviolet photoelectron spectroscopy (UPS) is commonly used method for energy level 

determination using planar heterojunction samples in either metal/organic or organic/organic 

systems. Only some attempts have been made in bulk heterojunction system studies. Photoemission 

yield spectroscopy (PYS) could be applied as a method for organic compound- organic compound 

interface studies in bulk heterojunction samples. Contrary to the UPS, PYS method does not require 

ultra-high vacuum which simplifies experiment setup. Also, scanning depth of PYS is in the range of 

tens of nanometers which allows studying deeper layers of the sample instead of only surface layer.  

In this work poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester 

(PCBM) bulk heterojunction thin films were studied as a model system. A mass ratio between P3HT 

and PCBM in the system was varied from 1:0 to 1:50. Ionization energy dependence on this ratio 

was studied using two methods- UPS and PYS. To study the influence of sample morphology on the 

PYS measurements and obtainable results, phase separated and homogeneously distributed samples 

were prepared for analyses. P3HT ionization energy shift of 0.40eV was observed in the samples 

made from chloroform solution. Experiments showed the need for a low degree of phase separation 

between P3HT and PCBM to observe P3HT ionization energy shift using PYS. On the contrary, no 

ionization energy shift of P3HT was observed in the UPS measurements for the same systems. 
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1. INTRODUCTION 

Devices made of organic materials often consist of several layers, such as electrodes, electron/hole 

transport layers, and an active layer. Each of these layers is only up to 100nm thick [1–5]. At this 

thickness, various surface and interface effects become more pronounced. Energy level compatibility 

at the organic compound-organic compound (OC-OC) and the electrode-organic compound interface 

can greatly influence the performance of the devices such as organic light emitting diodes (OLEDs) 

[6, 7] and organic photovoltaic (OPV) cells [8–10]. At small film thickness, the ionization energy 

and electron affinity level shift can be observed due to the Fermi level alignment between two 

different materials [11, 12]. Thereby, energy level values obtained from bulky layers cannot be used 

anymore. Therefore energy level shift at the both OC-OC and the metal-organic interface is being 

actively studied [12–16]. 

Ultraviolet photoelectron spectroscopy (UPS) is a common method for molecule ionization energy 

determination in thin films [17–19]. This method can also be used for the study of the molecule 

ionization energy shifts at the OC-OC interfaces [14, 20]. Usually, ionization energy dependence on 

the layer thickness in planar heterojunction samples is studied.  Few attempts have been made to 

investigate the molecule ionization energy in the bulk heterojunction samples obtained from the 

solution by the UPS method [21, 22]. Tsoi et al. [22] have investigated pure poly(3-hexylthiophene-

2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) films and their blends. 

Their experimental results showed that there is no P3HT energy level difference between neat and 

blend films and there is no PCBM contribution on the energy level alignment. Authors explain it 

with the almost pure P3HT top layer of the blend. UPS sensitivity is only 2-3 nm thickness which 

means that they have measured mostly P3HT. Ze-Lei Guan et al. [23] addresses the same issue. The 

problem was solved by lifting off the film from the substrate. In this way, authors obtained the 

surface that was rich in both- donor (P3HT) and acceptor (PCBM) compound- which is a better 
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representation of the P3HT:PCBM blend. But they had to deal with the substrate influence on the 

“once-buried surface” energy levels.  

Recently, X-ray photoelectron spectroscopy (XPS) has been used as a method for OC-OC interface 

studies in blend systems. A constant energetic separation between core levels and ionization energy 

was assumed to obtain ionization energy shift in the blend. Such approach was applied for 

monolayer and multilayer blend systems of pentacene and phthalocyanine derivatives [24] as well as 

for P3HT/ DFPyC60 film [25]. In the second case, oxygen influence on energy level shift was 

investigated. Still, XPS method did not show any energy level shift between compounds in the blend 

(P3HT/ DFPyC60) without oxygen and separate thin films without oxygen.  

Photoemission yield spectroscopy (PYS) could be used as an alternative method for OC-OC 

interface studies. The method is based on the photoemission yield dependence on photon energy 

(𝑌(ℎ𝜈)) [26–28]. It offers a possibility to make measurements in the air [28], however more precise 

results could be obtained in a vacuum (~10-5 mBar). Comparing to the UPS measurements which can 

be performed only in ultra-high vacuum (< 10-9 mBar), PYS is less complex and less expensive 

method. One more and the most important advantage of the PYS method is it’s scanning depth, 

which is in the range of tens of nanometers due to the relatively low photon energy (in the range of 

4-8eV) [29]. In comparison, the scanning depth of the UPS is only up to 2-3nm.  

In this work, we have evaluated the applicability and limitations of PYS for OC-OC interface studies 

in bulk heterojunction samples. Similarly, as in the case of UPS, PYS has been mostly used in the 

ionization energy measurements of metal and pure organic compound films [27, 30]. There are only 

some research done in metal/organic compound [26] or OC-OC interface studies [31, 32]. 

P3HT:PCBM bulk heterojunction thin films were chosen as a model system in this study. P3HT 

ionization energy shift was measured at various mass ratios between P3HT and PCBM. The mass 

ratio in the system was changed to obtain similar conditions as in planar samples where usually film 

thickness is varied. P3HT:PCBM system was chosen due to a large amount of research on P3HT and 

PCBM thin films and their energy level values. Such approach gives a possibility to evaluate the 

validity of our results and the method itself. Thus far only pure films of P3HT [33] and PCBM [31] 

have been studied using PYS. To our best knowledge this method has not been applied to 

P3HT:PCBM as well as any other bulk heterojunction system thus far. 
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To study the influence of the sample morphology on the PYS measurements and obtainable results, 

phase separated and homogeneously distributed samples were prepared for analyses. Such systems 

were obtained by using two solvents in the sample preparation: chlorobenzene and chloroform. 

Samples made from chloroform were additionally investigated by UPS for comparison with its 

alternative – PYS method. 

 

2. EXPERIMENTAL 

2.1 Studied compounds 

In this work bulk heterojunction samples made from two well-known OPV materials- hole transport 

polymer P3HT (regioregular, 99.995%, Sigma Aldrich) and electron transport fullerene derivative 

PCBM (>99.5%, Sigma Aldrich) - were studied. Molecule structure of the studied compounds is 

shown in Figure 1. 

 

Fig.1 Chemical structure of the studied compounds: a) P3HT and b) PCBM 

2.2 Sample preparation 

Two series of the bulk heterojunction samples with structure ITO/P3HT:PCBM were prepared on 

ITO covered glass substrates (Präzisions Glas & Optik GmbH). In one case as a solvent, we used 

chlorobenzene while in the other series chloroform was applied. As the boiling point of chloroform 

is relatively low (61°C) it evaporates fast. This rapid evaporation ensures low phase separation of 
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P3HT and PCBM within the bulk of the samples. It leads to the decreased distance between two 

PCBM molecules as PCBM concentration increases in the system. It would be similar to a decrease 

of P3HT layer thickness for multilayer samples. On the contrary, the chlorobenzene evaporates 

slowly as the boiling point of it is relatively high (131°C). This slow evaporation ensures that phase 

separation between P3HT and PCBM can occur and organic compounds are no more homogenously 

distributed within the bulk of the sample. Therefore chlorobenzene [34–38] or dichlorobenzene 

(boiling point of 180°C) [39, 40] is often used as a solvent in the production of highly efficient 

P3HT:PCBM solar cells. 

Solutions with the concentration of 30 mg ml-1 were prepared. In both series the samples with the 

mass ratio between P3HT and PCBM of 1:0 (pure P3HT layer), 1:1, 1:3, 1:5, 1:10, 1:20, and 1:50 

were made. The solution was spin-coated using Laurell WS–650Sx–GNPP/Lite spin-coater on the 

ITO covered glass. Spin-coating parameters were kept unchanged: spinning speed- 400 rpm, 

acceleration- 400 rpm s-1, spinning time- 40 s. The samples were dried on a hot plate. The samples 

made from the chloroform solution were heated at 70°C for 20 minutes. The samples made from the 

chlorobenzene solution were dried at 120°C for 20 minutes and then additional 10 minutes at 150°C. 

The thickness of all obtained samples was about 300nm. This thickness was enough to exclude any 

influence of the ITO/organic compound interface. 

The sample morphology was studied by scanning electron microscope Tescan Lyra FE-FIB-SEM. 

2.3 Photoemission measurements 

Photoemission yield spectroscopy measurements were done in a vacuum (pressure of about 10-5 

mBar) using a self-built measurement system. ENERGETIQ Laser-Driven Light Source (LDLS EQ-

99) was used as a source of ultraviolet radiation. The spectral range of the measurements was 

between 4eV and 6.5eV. Incident photon energy was changed by diffraction grating monochromator 

MYM-1 with the step of 0.05eV. The samples were irradiated through the quartz window of the 

vacuum chamber. The distance between the sample and electrons collecting electrode was about 

2cm. Keithley 617 electrometer was used as the equipment for electrical current measurements as 

well as a voltage source. Applying a voltage of 50V between the sample and the electrode did not 
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change the form of the obtained spectrum but improved signal to noise ratio by one order of 

magnitude. The set-up of the measurement system is published elsewhere [41].  

Ultraviolet photoelectron spectroscopy measurements were carried out using PHI VersaProbe III. He 

I lamp with a photon energy of 21.2eV was used as an excitation source. Ionization energy (I) of the 

material with the respect to the vacuum level is calculated as  

 ( )SECO LBE
I h E E= − −     (1) 

where hν is excitation photon energy, ESECO  is secondary electron cutoff energy, and ELBE is the low 

binding energy onset. 

 

3. RESULTS AND DISCUSSION 

3.1 Sample morphology 

A pure P3HT film made from chlorobenzene was smooth without any structures (not shown here). 

Other samples made from chlorobenzene solution were different. As the PCBM mass in the sample 

increased, PCBM crystallites could be observed on the surface of the sample (Fig.2 c and d). When 

the P3HT:PCBM mass ratio was 1:3, the PCBM crystallites were around 20μm long (Fig.2 c). When 

P3HT:PCBM mass ratio was changed to 1:10, PCBM crystallites covered even more of the surface 

and their size increased to 50-60μm. Formed crystallites were no more linear but created branch-like 

structures (see Fig.2 d). It is in contradiction with few previous papers which state that in 

P3HT:PCBM samples the surface layer is almost pure P3HT due to the lower surface energy of 

P3HT [21, 22, 42]. Nevertheless, there is a report [43] where result similar to our case was shown. 

Most likely preparation conditions like annealing temperature could influence PCBM aggregation on 

the surface. High PCBM concentration and the high annealing temperature can lead to extensive 

PCBM aggregation on the surface of the sample. This leaves regions around fullerene crystallites to 

be PCBM-depleted. In Fig.2 c clear contrast between P3HT and PCBM regions can be observed.  

Samples made from chloroform were smooth and without visible structures (Fig.2 a and b). Within 

the chosen observation range (tens of micrometers) the films seemed to be amorphous where P3HT 
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and PCBM are homogeneously distributed in the bulk of the sample. Even when the mass ratio of 

P3HT:PCBM was 1:10, no PCBM crystallites could be observed (Fig.2 b). Similarly, samples with 

higher PCBM concentration were still smooth and without any fullerene crystallites. Fast 

evaporation of chloroform and relatively low annealing temperature (70°C) precludes extensive 

phase separation between P3HT and PCBM. It has been reported that P3HT:PCBM films made from 

chloroform solution have the surface roughness of around 1nm and aggregates in the range of a 

couple of tens of nanometers [44]. 

 

 

Fig.2 SEM images of a) P3HT sample made from the chloroform solution; b) P3HT:PCBM (1:10) sample made from the 

chloroform; c) P3HT:PCBM (1:3) sample made from the chlorobenzene solution; d) P3HT:PCBM (1:10) sample made 

from the chlorobenzene solution. Magnification in all the cases is 1000x 
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3.2 Ionization energy measurements 

Photoemission yield Y(hν) can be calculated as  

 ( ) ( ) ( )Y h I h P h  =       (2) 

where I(hν) is the number of emitted electrons and P(hν) is the number of incident photons with the 

energy of ℎ𝜈. In threshold region, a relation between photoemission yield Y(hν) and ionization 

energy Eioniz can be expressed as a power law 

 ( ) ( )
n

ioniz
Y h h E  = −       (3) 

where α is constant showing amplitude of the signal and n=1…3 depending on studied materials 

[45]. n=2 is used in the case of metals [30, 46], while n=2.5 or n=3 is used in the case of 

semiconductors [14, 26, 27]. In this work, we have used n=2.5 as it gave better approximation than 

n=3.  

3.2.1 Bulk heterojunction samples made from chlorobenzene 
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Fig.3 Photoemission yield spectra of bulk heterojunction samples depending on P3HT:PCBM mass ratio. Samples 

made from chlorobenzene solution 

To obtain ionization energy value Eioniz from photoemission yield measurements, Y2/5(hν) is 

calculated and plotted depending on photon energy. Then the linear part of Y2/5(hν) curve is 

extrapolated till Y2/5(hν)=0. Cross section point with the x-axis is considered to be the ionization 

energy of the studied compound (Fig.3). 

For all the samples made from chlorobenzene solution, the photoelectron emission signal was 

obtained only from P3HT with an insignificant influence of PCBM (see Fig.3). Even when the mass 

ratio of P3HT:PCBM was 1:10, no notable signal coming from PCBM was observed. This could be 

explained by two effects. First, in our previous research, we observed that signal created by pure 

PCBM film at the photon energy of 6.50eV is at least one order of magnitude lower than signal 

created by pure P3HT film [32]. It might be related to the difference in hole mobility of the studied 

compounds- P3HT is hole conducting material while PCBM is electron conductor. Second, the 

ionization energy of PCBM is close to 6.00eV [32], but the ionization energy of P3HT is close to 

4.50eV (see Fig.3). It means that UV radiation with photon energy just above 6.00eV can ionize only 

small part of PCBM molecules while it is almost 1.50eV over the ionization threshold energy of 

P3HT. Thus polymer molecules can be easily ionized. The combination of these two effects can 

“hide” any PCBM influence on the photoemission signal. 

In all the cases obtained ionization energy value of P3HT was the same (IP3HT=4.54±0.03eV) which 

matches the energy value of the pure P3HT sample. The signal of measurements is a sum of two 

separate signals [26, 47], in our case the signal created by the molecules at the interface and the 

signal created by the molecules within the region of pure P3HT. It seems that in this case most of the 

signal comes from the bulky part of the P3HT and not the OC-OC interface. It means that phase-

separated samples made from chlorobenzene even at high PCBM concentrations cannot be used for 

P3HT:PCBM interface studies due to the small amount of the molecules at the P3HT/PCBM 

interface comparing to the molecules at regions of pure P3HT. To observe interface effects, we need 

as many P3HT molecules as possible at the interface with PCBM. 

 



10 
 

3.2.2 Bulk heterojunction samples made from chloroform 

To increase the number of molecules at the OC-OC interface, series of the samples were made from 

chloroform solution. As discussed in section 2.2, the fast evaporation of chloroform precludes 

extensive aggregation of P3HT and PCBM within the bulk of the sample.  

Photoemission yield spectrum and the ionization energy of pure P3HT sample made from 

chloroform was the same as for the sample made from chlorobenzene (see Fig.4): 

IP3HT=4.54±0.03eV. It means that there is no distinguishable influence of used solvents and thermal 

annealing on the energy levels of P3HT. 

 

Fig.4 Photoemission yield spectra of P3HT thin films made of chlorobenzene and chloroform solution 

Photoemission yield spectra of P3HT:PCBM samples made from chloroform solution are shown 

in Figure 5. At the P3HT:PCBM mass ratio of 1:1, the ionization energy of P3HT still remained the 

same as in the case of a bulky P3HT layer: IP3HT=4.54±0.03eV. Our obtained bulky layer ionization 

energy level values are in good agreement with the values obtained by UPS. While we have obtained 

values of 4.54±0.03eV for P3HT, Tsoi et al. report values of 4.60eV [22]. P3HT molecule ionization 

energy level shifts to a higher value when PCBM molecule concentration increases (see Fig.5).When 

the P3HT:PCBM mass ratio was 1:50, the ionization energy of P3HT had shifted by more than 



11 
 

0.40eV to the higher energy and reached IP3HT=4.96±0.03eV. It means that at the interface there is a 

higher difference between ionization energy of P3HT and electron affinity energy of PCBM than just 

comparing bulk values. P3HT ionization energy dependence on P3HT:PCBM mass ratio is shown in 

the inset of Fig.5. Energy shift could be attributed to either interface dipole or Fermi level alignment. 

It has been reported that interface dipole between P3HT and PCBM can create vacuum level shift of 

around 0.50eV [23, 48]. While it is in good agreement with our obtained energy shift value of 

0.40eV still it cannot explain continuous threshold energy shift depending on P3HT:PCBM mass 

ratio. It has been reported that already 0.5nm thick film is enough to reach maximum vacuum level 

shift at metal/organic interface in PYS measurements [26]. If the situation is similar in the case of 

OC-OC interface, P3HT:PCBM mass ratio of 1:3 or 1:5 should be enough to observe constant 

vacuum level shift. Further increase in the PCBM concentration should only increase the number of 

PCBM molecules close to the interface, instead of increasing interface dipole. On the other hand, the 

continuous IP3HT shift depending on P3HT:PCBM mass ratio could be caused by the Fermi level 

alignment at the OC-OC interface. When the PCBM concentration in the film increases, the number 

of P3HT molecules close to the OC-OC interface increases. It would similar to the planar 

heterojunction where the thickness of P3HT layer would decrease. The closer molecule is to the 

interface the more the energy levels will shift due to the alignment of Fermi levels. As the distance 

from the interface increases obtained ionization energy will be closer to the value of the bulk 

material.  
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Fig.5 Photoemission yield spectra of bulk heterojunction samples depending on P3HT:PCBM mass ratio. Samples 

made from chloroform solution. Inset: P3HT ionization energy depending on P3HT:PCBM mass ratio 

Signal decrease at higher PCBM concentration is related to the decreased number of P3HT 

molecules in the scanned layer. Only when the mass ratio of P3HT and PCBM was 1:20 and 1:50 

signal coming from PCBM could be observed. In these cases the measured spectrum is a sum of two 

separate spectra [47]: 

 ( ) ( ) ( ) ( ) ( )
5 5

2 2

3 3P HT P HT PCBM PCBM
Y h x h I H h I y h I H h I    = − − + − −   (4) 

where IP3HT and IPCBM  is ionization energy of P3HT and PCBM, respectively, x and y are constants 

showing relative signal intensity coming from each of the compounds, H(E) is Heaviside step 

function. In both of these cases, the obtained ionization energy of PCBM was the same: 

IPCBM=6.15±0.03eV. This value is in good agreement with our previously reported value for thin 

(below 12nm) PCBM layer on top of the P3HT film [32]. It means that despite the high 

concentration of PCBM, electrons are obtained from PCBM molecules that are close to P3HT 

molecules.  
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3.2.3 UPS measurements for bulk heterojunction samples made from chloroform 

 

Fig.6 UPS spectra depending on P3HT:PCBM mass ratio showing secondary electron cutoff and low binding 

energy onset. Energy scale is shown with the respect to the P3HT vacuum level 

The same samples made from chloroform were investigated by UPS method to compare both 

photoemission methods- UPS and PYS. Obtained ionization energy for P3HT in these measurements 

is IP3HT,UPS= 4.6±0.1eV and does not depend on P3HT:PCBM mass ratio (see Fig.6). This value is in 

good agreement with the ionization energy value of thin P3HT films obtained using PYS (IP3HT= 

4.54eV). As it can be seen in Figure 6, for the samples where the P3HT:PCBM mass ratio was 1:3 to 

1:50 we can observe increasing signal created by PCBM molecules. At the same time, P3HT signal 

is clearly diminished. Here the ionization energy of PCBM is IPCBM,UPS=5.9±0.1eV. This value is 

close to the previously reported value of IPCBM,UPS=5.80eV [22, 23]. The obtained ionization energy 

value of P3HT and PCBM correspond to the values of bulky materials instead of molecules at the 

OC-OC interface. This could be due to the low scanning depth of UPS combined with less 

homogeneously distributed compounds at the surface of the sample. UPS spectra of the samples with 

P3HT:PCBM mass ratio of 1:3, 1:10 and 1:50 are almost identical close to the secondary electron 

cutoff. Although there is a clear difference in the spectra between pristine P3HT sample and 

P3HT:PCBM samples, no secondary electron cutoff energy (ESECO) shift between pure P3HT sample 

and P3HT:PCBM samples was observed. The shift of the secondary electron cutoff (high binding 

energy cutoff) is considered to be related to the vacuum level shift, caused by the interface dipole. In 
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our experiment (Fig.6) it cannot be observed. It fits the results obtained by PYS, where we 

concluded that the observed energy level shift could be related to the Fermi level alignment rather 

than vacuum level shift.  

 

4. CONCLUSIONS 

We have shown that the photoemission yield spectroscopy is a suitable method for organic 

compound- organic compound interface studies using bulk heterojunction samples. An important 

condition for the successful experiment is a poor phase separation of organic compounds within the 

bulk of the sample. It ensures that dominant signal is created by the OC-OC interface.  

Our experiment showed that by lowering the portion of P3HT in the sample, the ionization energy of 

polymer shifted towards the ionization energy value of PCBM from 4.54eV to 4.96eV. This could be 

mostly related to the alignment of Fermi levels of P3HT and PCBM. 

In the UPS measurements, the samples made from chloroform solution showed energy level shift 

neither for P3HT nor for PCBM. The obtained ionization energy of P3HT and PCBM was similar to 

the value of bulk materials. 

As it was shown, both of methods (UPS and PYS) had the same problem- PCBM could not be 

observed until extreme cases where the fullerene derivative mass portion in the sample was over 

80%. Further research concerning signal amplitude created by each compound should be done.  
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