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ABSTRACT

Influence of the irradiation with 13.5 MeV 3He and 5MeV 4He ions on the micro-structure and 

mechanical properties of LiF single crystals was studied. The depth profiles of nanoindentation, 

dislocation mobility, selective chemical etching and photoluminescence served for the 

characterization of damage. Strong ion-induced increase of hardness and decrease in dislocation 

mobility at the stage of track overlapping due to accumulation of dislocations and other extended 

defects was observed. At high fluences (1015 ions/cm2) the hardness saturates at about 3.5 GPa 

(twofold increase in comparison to a virgin crystal) thus confirming high efficiency of light 

projectiles in modifications of structure and properties. The depth profiles of hardness indicate

on a notable contribution of elastic collision mechanism in the damage production at the end-of-

range region. The effects of ion-induced increase of hardness and decrease of dislocation 

mobility are observed also beyond the ion range and possible mechanisms of such damage are 

discussed.  

 Highlights 

 The depth profiles of damage in LiF irradiated with 3He and 4He ions were studied. 
 High-fluence irradiation creates dislocation-rich structure and induces strong hardening. 
 Changes of LiF structure and properties were observed also beyond the ion range. 
 Mechanisms of damage beyond the ion range are discussed.
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1. Introduction
Irradiation with swift ion beams offers ample opportunities to modify under controlled 

conditions the structure, physical and mechanical properties of functional materials by creation of 

radiation defects and defect aggregates, extended defects (ion tracks, dislocations, colloids), 

surface and bulk nanostructures [1-5].
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In radiation damage studies, LiF crystals play an important role because of their wide 

application possibilities (dosimeters, color-center lasers, fluorescent imaging detectors, etc.). LiF 

serves as a well-studied model material exhibiting high radiation sensitivity and stability of 

radiation defects at room temperature, and maintains crystallinity under severe irradiation. 

Besides, LiF is a well-known model material in studies of dislocation structures [6, 7]. 

Generally, it is widely accepted that swift heavy ions if compared with light ions at likewise 

fluences are more efficient in production of damage in LiF [1]. However, recent studies have 

shown that severe irradiation with light ions  (12C, 14N) also creates strong structural damage, can 

cause high concentration of color centers even exceeding that reached by irradiation with high-

energy heavy ions [4, 8] and can induce notable strengthening effect despite of large differences 

in the ion mass, energy, energy loss and track morphology [3, 9].

In this study, damage processes in LiF under irradiation with light projectiles (3He and 4He 

ions) were investigated. The main attention has been devoted to high dose irradiation at which the 

overlapping of tracks and formation of complex color centers (Fn), defect nanoclusters and 

extended defects can occur. 

The peculiarity of structural damage in LiF under irradiation with some ions (12C, 64Ni)   is 

the formation of color centers not only in the directly irradiated zone, but also beyond the 

calculated ion range [10-14].  In order to reveal possible damage effect beyond the range, the 

damage profiles were studied in an extended depth range. 

2. Experimental

Samples were obtained from a single-crystal LiF block grown from a melt in an inert 

atmosphere (Korth Kristalle, Germany). Thin platelets of 8×8 mm2 were cleaved along the (100) 

plane with a thickness of about 1 mm.  Samples were irradiated 13.5 MeV 3He ions at a 7 MV 

Van-de-Graaff accelerator (Frankfurt/M, Germany) and with 5 MeV 4He ions at the UNILAC 

linear accelerator of GSI (Darmstadt, Germany). All samples were irradiated at room temperature 

and at the normal incidence of ion beam to (001) crystal face. The fluences (Φ) were 1011 – 

5×1012 ions/cm2 for 3He ions and 1014 and 1015 ions/cm2 for 4He ions. The ion range (R) and 

energy loss were calculated using SRIM 2013 [15]. The ion range was in all cases less than the 

sample thickness, i.e., the beam was stopped within the crystals. Average absorbed energy was 

estimated as Ea= Eion×Ф/R where Eion is the energy of incoming ions. 

The depth profiles of damage were studied using nanoindentation and dislocation mobility 

methods which are sensitive mainly to dislocations, colloids and other extended defects. 
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Changes of micro-mechanical properties were characterized by an instrumented nano-

indentation unit G200 (Agilent) using a Berkovich diamond tip. Measurements were performed 

in ambient air at room temperature. The strain rate was 0.05s−1. For the calculation of hardness 

and Young’s modulus from experimentally obtained loading–unloading curves, the Oliver–Pharr 

model was used [16]. Profile surfaces suitable for indentation were prepared by cleaving the 

samples along the direction of ion beam. A basic nanoindentation method was utilized and 

comparatively small indents (depth 150 nm) were used to ensure a reasonably large number of 

data points with still acceptable errors.  The distance between the irradiated surface and the 

position of indentation imprints was measured by means of optical microscopy. The Vickers 

indentation technique was used for the evaluation of dislocation mobility based on the 

measurements of the arm-length of dislocation rosettes around indentation imprints [17]. 

The dislocation structure in irradiated LiF samples was revealed by a short-time (~1 s) 

selective chemical etching in a saturated aqueous FeCl3 solution and a subsequent imaging by 

atomic force microscope (AFM) in the tapping-mode. 

The depth profiles of complex color centers (F2) were studied by a confocal laser scanning 

spectromicroscopy. All measurements were performed at room temperature using a confocal 

microscope with spectrometer Nanofinder-S (SOLAR TII) through a Nikon CF Plan Apo 100× 

(NA = 0.95) optical objective. A diode pumped solid-state (DPSS) Nd:YAG laser (532 nm, max 

cw power Pex=150 mW) was used as the excitation source, and the photoluminescence spectra 

were dispersed by 150 grooves/mm diffraction grating mounted in the 520 mm focal length 

monochromator. The Hamamatsu R928 photomultiplier tube was employed in confocal-spectral 

imaging experiments to measure a variation of the intensity of the photoluminescence band 

maximum at 660 nm across the sample during raster scan. 

3. Results and discussion

3.1 Changes of structure and  mechanical properties of LiF irradiated with 3He and 
4He ions

Fig.1a, b shows the depth profiles of hardness, dislocation mobility and calculated ion 

energy loss in LiF crystals irradiated with 3He ions at different fluences. At fluences Ф≥5×1011 

ions/cm2 an ion-induced increase of hardness and a decrease of dislocation mobility were 

observed. The hardening effect increases with the fluence confirming the accumulation of nano-

scale defects responsible for the hardening. In the major part of the range the depth profiles of 
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hardness and dislocation mobility correlate with the depth profiles of electronic energy loss of 

ions determined by SRIM (Fig.1b). However, the effect of ion-induced hardening occurs also at 

the depth by few tens of µm exceeding the calculated ion range. The ion-induced effect in 

dislocation mobility behaves likewise and is observed at even greater depth.

 As shown in previous studies, the threshold fluence for ion-induced hardening in LiF 

corresponds to the initial stage of track overlapping [9] at which the average distance between 

tracks d=2(πΦ)-1/2 approaches the diameter 2rF of the track halo where rF is the Thevenard radius 

[4]. For 3He ions, the calculation of the track halo diameter from the optical absorption data gives 

2rF ≈ 8.2 nm.  Estimates show that, in order to reach such distance between tracks, the fluence 

about 5×1011 ions/cm2 is required, which is in good agreement with the observed threshold 

fluence for detectable hardening (Fig.1a). 

Fig.1. Depth profiles of hardness (a), dislocation mobility (in irradiated at 5×1012 ions/cm2 and 
annealed at 520 K samples) and calculated electronic and nuclear energy loss of ions (b) in LiF 
irradiated with 13.5 MeV 3He ions; 
AFM image of etched structure in irradiated zone (c) and confocal spectral image of laser-excited 
photoluminescence for samples irradiated at 5×1012 ions/cm2 (d).
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Selective chemical etching [6] on cleaved profile surfaces of irradiated samples reveals etch 

pits (Fig.1c), which we ascribe to ion-induced dislocations as the main extended defects created 

in LiF under room-temperature irradiation with swift ions [3, 9]. The rounded shape of etch pits 

characterizes small dislocation loops or dislocations decorated with radiation defects [7]. Their 

density at the fluence Ф=5×1012 ions/cm2 reaches ~ 109 cm-2.

The peculiarity of the obtained experimental results is the appearance of ion-induced 

hardening and decrease of dislocation mobility beyond the calculated ion range (Fig.1a, b). With 

increasing the depth the magnitude of effects gradually decreases, however, the effect in 

dislocation mobility even at about 300 m depth still surpasses 10%. 

In order to access the saturation stage of damage, the irradiation with 4He ions was 

performed at higher fluences than in the experiments with 3He ions. The obtained results show a 

remarkable increase of hardness in LiF irradiated with 5 MeV 4He ions compared with that for a 

virgin crystal (Fig.2). The hardness of samples inside the irradiated zone shows indications of 

saturation at Ф=1015 ions/cm2 (dose 166 MGy, average absorbed energy 2.3×1024 eV/cm3). The 

saturation of hardness is observed in the depth range above 10 μm where its values by a factor of 

2.1 exceed the hardness of a virgin crystal (the hardening effect ΔH/H0= 120%). 

The measurements of dislocation mobility show a strong decrease of dislocation arm length 

around imprints in entire irradiated zone that confirms the presence of strong obstacles for 

dislocations (Fig.2d). The depth behavior of dislocation mobility is similar to that observed for 

the depth profiles of hardness (Fig.2a). 

Selective chemical etching on irradiated samples reveals numerous square-based etch pits 

typical for dislocations (Fig.2c and Fig.2e). The density of etch pits at the fluence of 1014 

ions/cm2 exceeds 1010 cm-2. At the highest irradiation fluence (Ф=1015 ions/cm2) the estimates 

become impossible due to decrease of etching selectivity and an overlap of etch pits. Etched 

structures in irradiated zone and outside it are compared in Fig.2c. Generally, outside the 

irradiated zone the density of etch pits is lower, their respective size is smaller and some of them 

include few even smaller pits, thus pointing to a possible presence of larger agglomerates. 

The effects of hardening and decrease of dislocation mobility in samples irradiated with 
4He ions are also observed beyond the ion range.  The hardening effect is present at the depth 

exceeding the calculated ion range by more than 10 μm (Fig.2a) and thus exceeding values of 

longitudinal straggling of tracks (~0.7 μm) provided by SRIM. The ion-induced effect in 

dislocation mobility as a more sensitive characteristic is observed in a broader depth range.
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Fig.2. The depth profiles of hardness at different fluences (a) and dislocation mobility (in as-
irradiated and annealed at 520 K samples) (b) in LiF irradiated with 5 MeV 4He ions in 
comparison with the depth behavior of calculated energy loss;
AFM images of etched extended defects in irradiated zone (left) and beyond it (right) in sample 
irradiated at Φ=1015 ions/cm2 (c);
Dislocation rosettes around indents in irradiated zone (left) and beyond it (right) – (d); 
Dislocation structure in irradiated zone at a higher magnification (e) and the confocal spectral 
image of laser-excited photoluminescence at Φ=1014 ions/cm2 (f). The direction of ion beam is 
shown by arrows.
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3.2. Ion-induced change of optical properties

An additional insight in the evolution of structure of LiF irradiated with 3He and 4He ions is 

provided by the measurements of optical absorption spectra (Fig.3). Absorption bands at 245 nm 

(related to F centers) and 445 nm (related to aggregate centers, such as F2 and F3
+) are observed. 

In the case of 3He ions, the band of aggregate color centers becomes detectable at the fluence 

Ф≥1011 ions/cm2 which is close to the threshold fluence for ion-induced hardening. For 4He ions, 

the used fluences ensure strong overlapping of tracks that leads to aggregation and saturation of 

primary radiation defects. 

In order to visualize the distribution of complex color centers along the ion range, we used 

confocal microscopy with laser excitation and spectroscopic registration of the F2 center 

photoluminescence at 660 nm. The method was effectively used for the investigation of defect 

distribution along the ion trajectory [19] and provided promising results in visualization of 

individual tracks of 4He ions [20].

The confocal spectral image of laser-excited photoluminescence of F2 centers in LiF 

irradiated with 13.5 MeV 3He ions at Ф=5×1012 ions/cm2 is shown in Fig.1d. The brightness of 

the image on profile surface irradiated to moderate fluences gradually increases along the range 

and reaches a maximum at the depth of 115 µm (about 15 µm beyond the range). The discrete 

distribution of bright spots in the obtained image indicates partial overlapping of tracks at the 

given fluence. In the case of 4He ions (Fig.2f), a uniform coloring is observed, which points to a 

strong overlap of tracks. The maximum intensity of photoluminescence was observed beyond the 

range (~2 µm for 4He and ~15 µm for 3He ions).

A comparison of the depth profiles of photoluminescence and hardening shows that the 

hardening effect occurs in a deeper zone confirming that hardness is determined mainly by non-

luminescent extended defects. The difference in depth profiles of photoluminescence of F2 

centers and hardening can be related to luminescence quenching at high absorbed energies (above 

1024 eV/cm3) due to the increase of recombination processes at high defect concentration as well 

as to creation and growth of larger aggregates [19, 21]. The growth of larger aggregates at high 

fluences can be partly ascribed to interaction of complex color centers with dislocations. The 

interaction distances between them under conditions of high density of color centers and 

dislocations (above 1010 cm-2) can be achieved despite of the fact that F centers are almost 

immobile at room temperature. 
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 AFM images of structure in irradiated zone and beyond it for sample irradiated with 4He ions at 
Ф=1015 ions/cm2 (c) and for samples LiF irradiated with 3He ions at Ф=5 ×1012 ions/cm2 (d) after 
annealing at 550K.

In order to investigate the thermal stability of ion-induced structural defects, the annealing 

of irradiated samples at moderate temperatures (up to 550 K) during 15 min was performed. After 

such annealing, the F and Fn center maxima are reduced due to evolution of recombination 

processes (Fig.3 a,b). Besides,  in the heavily irradiated samples (irradiations with 4He ions), 

annealing leads to a broadening of 445 nm optical absorption band and formation of the band at 

415 nm (Fig.3a), indicating accumulation of complex color centers and possible formation of 

small colloids or their embryos [22].  The structure, created under irradiation with high fluences 

survives annealing at 550 K (Fig.3c, left). A noteworthy recovery of structure and properties is 

observed in less damaged areas including zone, irradiated with 3He (Fig.3d,left and Fig,1b)  and 
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beyond–the-range zone for 4He (Fig.3c, right, Fig.1b) where square-based etch pits typical for 

stable dislocation loops were observed.    

3.3. Ion-induced damage and hardening beyond the range

Few decades ago an interesting effect of color center formation in LiF was found at a depth 

of up to 3 mm beyond the range of swift 12C ions [10]. Recently, color centers far beyond the 

projected ranges were observed for some heavy ions (8–11 MeV/u 64Ni, 102Ru,197Au, 208Pb, and 
238U) in LiF crystals, irradiated with high fluences (1012–1013 ions/cm2) [14]. 

In the present study, severe damage in LiF including formation of extended defects 

(presumably dislocation loops) and improvement of hardness was observed also beyond the range 

of 3He and 4He ions. The strongest modifications appear at the vicinity of irradiated zone (few 

tens of μm beyond the range), however, detectable effect in dislocation structure manifests in 

even deeper zone.  

Numerous mechanisms of damage beyond the range have been analyzed and the ion 

channeling and secondary irradiation accompanying nuclear reactions of incident ions with target 

nuclei are considered as probable reasons for deep coloring of irradiated samples [14]. The 

observed formation of color centers and strengthening beyond the range of 12C ions in LiF is 

ascribed to the channeling effect and secondary irradiations from nuclear reactions of incident 

ions with target nuclei [10, 11, 14]. 

The channeling effect in our experiments could be excluded because it was found to 

become negligible at high- fluence irradiations of LiF due to dechanneling of ions on radiation 

defects and aggregates [23]. Also photoluminescence measurements show no detectable signal 

from the adjacent out-of-range zone (Fig.1d and Fig. 2f).

In order to assess briefly the impact of secondary particles emitted from nuclear reactions, 

we have considered all possible non-elastic nuclear reactions with Z≤2 and A≤4 products. 

Secondary particle flux from the irradiation of 6Li, 7Li, and 19F nuclei with 4He and 3He ions was 

evaluated using nuclear reaction cross-section data from [24] and nuclear structure data from 

[25]. When LiF samples are irradiated with 5 MeV 4He ions, the largest cross-sections have: a) 

inelastic scattering reactions (α,αʹ); and b) direct nucleon transfer reactions (6Li(α,p)9Be, 
6Li(α,d)8Be, 7Li(α,n)10B, 7Li(α,p)10Be, 7Li(α,t)8Be, 19F(α,p)22Ne). Since the energy of scattered 
4He ions would be less than that of the primary ion beam, the only secondary nuclear reaction 

products which could have energy high enough to cause ionization beyond implantation zone are 

protons, deuterons, tritons and γ-rays. With regard to the proton/4He range ratio in LiF, secondary 
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proton energy should be greater than 1.3 MeV. At 4He fluence ~1015 ions/cm2, evaluated total 

secondary particle fluence (without γ, e- and e+) is ~1.7×1010 cm-2. Estimated secondary particle 

(protons, deuterons and tritons) fluence beyond the range of 4He ions in LiF is ~109 cm-2. The 

greatest impact on the creation of structural defects would be provided by protons constituting 

almost 80% of the secondary particle flux.

In the case of LiF samples irradiated with 13.5 MeV 3He ions, the resulting secondary 

particle flux from nuclear reactions would be higher, than that for irradiation with 4He ions, 

mostly due to (a)-higher projectile energy; (b)-lower binding energy of 3He nuclei resulting in 

greater energy yield of corresponding nuclear reactions. At the irradiation fluence ~1012 ions/cm2, 

evaluated total fluence of secondary particles would be ~8.1×108 cm-2, and estimated secondary 

particle (protons, deuterons and tritons) fluence beyond 3He ion range ~108 cm-2. However, 

defects in LiF crystals beyond the ion range can be created also by other products of nuclear 

reactions – deuterons and tritons, as well as electrons and positrons from the decay of radioactive 

reaction products (mostly 8Li,17F, 20F, and in the case of irradiation with 4He ions – 22Ne). The 

estimates show that the secondary particle flux for 3He and 4He ions could consist mostly of 

protons. As reported in [26] the irradiation of LiF crystals with protons at fluences above 1010 

ions/cm2 creates fluorescent aggregate centers. We can conclude that the flux of secondary 

particles could be partly responsible for formation of extended defects and decrease of dislocation 

mobility observed in our experiments. However, the estimated fluence of secondary particles 

appears to be below the threshold for detectable hardening (~5×1011 cm-2, Fig.1a). We can 

suggest that formation of extended defects and hardening beyond the range is rather a complex 

phenomenon including contribution of secondary particle flux as well as secondary emissions 

such as γ- and x-rays, and electrons created in nuclear reactions. Thus, for 100 MeV  12C ions,  

the β- emission with 156 keV energy and range in LiF of about 150 µm, which accompanies the 

creation of 14C isotope in  7Li (12C,14C(β-) 5Li nuclear reaction,  is considered as a possible cause 

of structural modification and hardening [10, 11].

4. Discussion

A relevant result is comparatively high ion-induced hardening effect created by high-

fluence irradiation with light projectiles (Fig.1a and Fig.2a). In order to compare the ion-induced 

effect for 3He and 4He ions, the dependence of hardening on average absorbed energy for LiF 

crystals is shown in Fig.4. The results show that at the saturation stage (Ф=1015 ions/cm2, average 

absorbed energy 2.3×1024 eV/cm3) the obtained hardness values approach those reached by 

irradiation with MeV and GeV energy heavy ions (Au) [27].  However, for MeV energy 3He, 4He 
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and Au ions a higher by an order of magnitude average absorbed energy (and correspondingly 

higher fluence) is required. The observed efficiency of light projectiles in modification of 

structure and properties is in agreement with previous results for irradiations with MeV energy 
12C ions [9]. An advantage of light projectiles is their higher penetration depth compared to heavy 

ions of the same energy. Thus, the range of 5 MeV 4He ions in LiF is about 19 μm while 5 MeV 

Au ions can penetrate only to 1.14 μm depth [27]. In the case of heavy ions with GeV energy, 

spontaneous fracture of heavily irradiated LiF crystals occurs under swelling induced stresses 

[28]. 
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Prismatic interstitial type dislocation loops are considered as the main extended defects 

responsible for hardening of LiF irradiated with swift heavy ions at room temperature while 

single radiation defects are of a minor importance [3, 4]. 

Embryos of dislocations are found to appear already in individual ion tracks [4] and 

peculiarities of their growth are considered by Hobbs in [28]. A perfect interstitial dislocation 

loop in LiF can be formed by the aggregation of equal numbers of anion and cation interstitials as 

required to maintain the charge neutrality. However it is well established that swift heavy ions in 

LiF create damage mainly in the anion sublattice by the electronic stopping mechanism, whereas 
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the cation sublattice remains essentially intact. Also in the present study the electronic energy 

loss at moderate fluences dominates in a major part of the range (Fig.1a). Hobbs proposed a 

model in which the formation of dislocations under conditions of electronic stopping occurs when 

an interstitial di-halide molecule occupies a lattice position and as a result expels an anion and a 

cation required for dislocation growth. Such reaction becomes possible in the local stress field on 

edges of existing dislocations and defect aggregates. Therefore, the formation of dislocations 

under irradiation with light projectiles in the depth range where the electronic stopping is 

dominating can be explained by the Hobbs’ model [29]. However, the contribution of nuclear 

stopping mechanism which creates the damage in both the anion and cation sub-lattices cannot be 

neglected, especially in the end-of-range region where the electronic energy loss decreases to low 

values while nuclear loss displays a maximum. Confirming this, the hardening, which is sensitive 

to extended defects, displays a maximum for investigated light projectiles in the end-of-range 

region (Fig.1a and Fig.2a). Due to the contribution of nuclear mechanism in the formation of 

damage, the zone of hardening at the Bragg maximum becomes extended to a larger depth.

Another peculiarity is the formation of extended defects and notable strengthening beyond 

the range of 3He and 4He ions in LiF. A related effect – the appearance of color centers in LiF at 

the surprisingly high depth (up to 3 mm beyond the range) for irradiations with 12C ions was 

reported in [10, 11] and for some heavy projectiles was observed in [14]. In the present study, 

stronger structural damage and even the change of mechanical properties under secondary 

irradiations in the out-of-range zone is observed. The zone of extra hardening extends over tens 

of µm beyond the calculated range, while the dislocation mobility as a more sensitive method – 

reveals an affected zone of few hundreds of µm beyond the range. Etching reveals extended 

defects which presumably could be small dislocation loops; however, the methods used do not 

allow us to identify them clearly. Moreover, a part of etching figures include few smaller etch 

pits that could indicate on the presence not only of separate extended defects but also defect 

agglomerates.  

The possible mechanisms of damage beyond the range are still under discussion [14]. We 

can suggest that formation of extended defects and hardening beyond the range is rather a 

complex phenomenon including contribution of secondary particle flux as well as secondary 

emissions such as γ- and x-rays, and electrons created in nuclear reactions. Brief estimates 

presented in Section 3.3 allow us to suggest that secondary particle flux, in which protons 

constitute almost 80%, could make a contribution to damage. However, the irradiation with 

secondary particles solely seems to be insufficient to explain the observed effects in hardening 
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and a complicity of other products of nuclear reactions including γ-rays, electrons, and others in 

damage is also suggested. 

5. Conclusion 

The depth profiles of dislocation structure, dislocation mobility, hardness and 

photoluminescence of complex color centers in LiF irradiated with 13.5 MeV 3He ions and 5 

MeV 4He ions have been studied. Comparison of the results with the depth behavior of calculated 

energy loss leads to following conclusions:

1. In LiF crystals irradiated with light ions, formation of dislocation-rich structure at 

fluences corresponding to the stage of track overlapping is observed. This leads to the 

decrease of dislocation mobility and increase of hardness. The results show that at the 

saturation stage (fluence up to 1015 ions/cm2, dose 166 MGy, average absorbed energy 

2.3×1024 eV/cm3) the obtained hardness values approach those reached by irradiation 

with MeV and GeV energy heavy ions (Au).

2. The ion-induced effects of structural modification are observed also beyond the ion 

range and include: 

(a) formation of extended defects at the depth which by few hundreds of µm exceeds the 

calculated range of ions in LiF, 

(b) the increase of hardness and decrease of dislocation mobility up to depths of few tens 

of µm beyond the range. 

The irradiation with secondary products of nuclear reactions of ions with target nuclei 

is considered as a likely reason for the beyond-the-range damage. 
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Figure 2

0

10

20

30

40

50

60

70

80

90

100

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 20 40 60 80

D
ec

re
as

e 
of

 d
is

lo
ca

tio
n 

m
ob

ili
ty

 

En
er

gy
 lo

ss
 o

f i
on

s 
[k

eV
/n

m
]

Distance from the irradiated surface l [µm]
200

0,01

b

as irradiated

annealed at 520K

Electronic Loss

Nuclear Loss

[%
]

0

0,1

0,2

0,3

0,4

0,5

1

1,5

2

2,5

3

3,5

4

0 10 20 30

En
er

gy
 lo

ss
 o

f i
on

s 
[k

eV
/n

m
]

H
ar

dn
es

s 
H

 [G
Pa

]

Distance from the irradiated surface l [µm]

a

Electronic Loss

Nuclear Loss

1015 4He/cm2

1014 4He/cm2

Ion range

c d

fe

En
d 

of
 R

an
ge

I. Manika, R. Zabels, J. Maniks, K. Schwartz, R. Grants, T. Krasta, A. Kuzmin, 
Formation of dislocations in LiF irradiated with 3He and 4He ions, 

J. Nucl. Mater. 507 (2018) 241-247.



18

Figure 3
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