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Abstract 

Scanning Kelvin probe is a method for material surface studies. It is used to 

determine the work function of metals. In the case of organic semiconductors, the 

measured surface potential is considered to be the Fermi level of the material which 

has been shown in some cases. But in most papers, the surface potential dependence 

on the metal electrode or film thickness was observed. Material properties and their 

influence on the measured surface potential and its relation to the Fermi level 

previously have not been systematically studied.  

In this work, the surface potential was measured for different materials- metal, 

organic dielectric material, and organic semiconductors. In most of the cases, the 

obtained surface potential was dependent on the metal electrode work function. This 

dependence decreased with the increase in electrical conductivity of the material. 

Several materials were chosen for studies where sample thickness was varied. Results 

showed that for most of the studied semiconductors the sample thickness of around 

1.5- 2 µm was required to obtain surface potential values which do not depend on the 

electrode work function. 
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Introduction 

Scanning Kelvin probe (SKP) method is a relatively simple method, often 

used in material surface analysis. Kelvin probe principle was described by Lord 

Kelvin in 1898 [1]. It states that when two metals are connected with the electrical 

circuit and brought close to each other, electrons from metal with lower work function 

flow to the metal with higher work function until their work functions (Fermi levels) 

are equal. It results in one surface being negatively charged and other surface being 

positively charged. In that case, a parallel plate capacitor with an electric field that is 

equal to the difference in the work function of the metals is created. In 1932 Zisman 

made a system with vibrating probe [2]. As the probe vibrates, the capacity of the 

capacitor changes and the alternating current flows. It is possible to apply a backing 

potential which stops the flow of current. The applied voltage is equal to the work 

function difference between both metals. If the work function value of the probe is 

known, the work function of the sample can be easily calculated.  

SKP is a simple and well-explained method when it comes to metal work 

function measurements. It is possible to use SKP not only to determine the work 

function of pure metals but also to measure the changes of work function, caused by 

external effects, for example, changes of indium tin oxide (ITO) work function caused 

by the UV radiation [3, 4].  

In the case of organic materials, layered samples (substrate/ metal electrode/ 

organic material) are always made due to their poor electrical conductivity. In this 

way, a parallel plate capacitor similar to the pure metal samples is obtained. 

In some cases, SKP has been successfully employed in organic material 

studies. Particularly, researching the interaction between metal and polymer [5] as 

well as in the Fermi level energy level “mapping” in perovskite solar cells [6]. In the 

latter case, it was possible to combine a Kelvin probe with ultraviolet photoelectron 

spectroscopy (UPS) to understand the energy level alignment at the interface between 

the materials. N.Hayashi et al. show that there is almost no influence of metal work 
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function on C60 surface potential at the metal/C60 interface [7]. Similar results were 

obtained by T. R. Ohno et al., who have studied C60 on various substrates using UPS 

[8]. Authors conclude that Fermi level pinning is achieved and obtained results 

describe the Fermi level of C60 thin film. 

On the contrary, E.Kinbara et al. discovered that for some poly(3-

arylthiophene) derivatives the measured surface potential value was proportional to 

the metal work function during the investigation of these materials and their interfaces 

with metal electrodes in the air [9]. Similar surface potential dependence on metal 

work function was reported by Y.Harima et al. [10]. Such results are explained by 

poor charge carrier exchange at the metal/ organic interface due to the blocking layer 

on the metal electrode, rather than effect originating from the properties of organic 

material. By measuring the diffusion potential and applying it as a correction 

according to the Schottky-Mott rule [11], the surface potential dependence on metal 

work function could be reduced in the cases of phthalocyanines. Yet for some 

materials, there was a considerable difference between surface potential obtained by 

SKP and surface potential obtained from Schottky-Mott rule and diffusion potential 

measurements. This difference was explained by the oxygen and moisture induced 

surface states which SKP is sensitive to.  

In the studies of metal/ TPD interfaces, the surface potential dependence on 

the metal work function was observed [12, 13]. Authors give two possible explanation 

of this phenomenon: 1) the system is in thermal equilibrium and the Fermi level of 

metal and TPD align, but the obtained surface potential is not a value that 

characterizes material, but rather than the system; 2) the system is not in thermal 

equilibrium and the work function of metal and a Fermi level of TPD do not align due 

to the poor charge carrier exchange between both materials [14].  

There is a variety of obtained results as well as a variety of given possible 

explanations and effects. Yet there still has not been systematic research to show what 

characteristics of the material itself will determine the results obtained by Kelvin 

probe and their dependence on other factors, like metal work function, film thickness, 

etc. Till now, the results are explained in a case-by-case manner. This has led to 

situation, where SKP is often used in relative measurements, testing gas (for example, 

hydrogen) diffusion in materials [15, 16] as well as  in the research of different metal 
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alloys and their corrosion [17–19], instead of being well explained and understood 

method for absolute measurements, like Fermi level determination of organic 

materials.  

The aim of this work was to study the properties of organic materials, which 

can determine the obtained surface potential dependence on metal work function. 

 

Experimental 

All of the investigated thin films were made on ITO covered glass. At first, 

ITO was etched using hydrochloric acid (HCl) and zinc (Zn), leaving 5mm wide 

electrode at the side of the substrate. Other electrodes- aluminum (Al), silver (Ag), 

gold (Au), or copper (Cu) - were thermally evaporated in the vacuum by Edwards 

Auto 306. Electrodes were deposited at the 1∙10-5 mbar pressure with the speed of 

about 0.2 nm s-1. Each electrode was 5 mm wide with about 1 mm wide gaps between 

them. The placement and shape of each electrode were obtained using shadow masks. 

In this way, a substrate covered by four electrodes with various work function values 

was obtained (see Fig. 1). 

 

Fig. 1 Scheme of the studied samples 

For this research, various materials were chosen. Most of the studied materials 

were commercially available organic semiconductors. Poly(3,4-ethylene 

dioxythiophene) polystyrene sulfonate  (PEDOT:PSS) which is charge carrier 

transport material, poly(methyl methacrylate) (PMMA) which is a dielectric polymer, 

and metal (Al) were also included. These materials are not organic semiconductors 

but exhibit extremely different electrical properties.  

Additionally, two original indandione derivatives – 2-(4-[N,N-

dimethylamino]-benzylidene)-indene-1,3-dione  (DMABI) and its derivative 2-(4-
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(bis(2-(trityloxy) ethyl)amino)benzylidene)-2H-indene-1,3-dione (DMABI-6Ph) – 

were included. Their synthesis has been described elsewhere [20, 21] and their energy 

level values have been determined previously [22]. 

Thin films of such organic materials as DMABI, fullerenes (C60, phenyl-C61-

butyric acid methyl ester (PC61BM), phenyl-C71-butyric acid methyl ester 

(PC71BM)), 7,7,8,8-tetracyanoquinodimethane (TCNQ), and N,N′-bis(3-methyl 

phenyl)-N,N′-diphenyl benzidine (TPD) were made by thermal sublimation in 

vacuum using self-built thermal evaporation system. The deposition rate was between 

0.2 and 0.5 nm s-1 and was monitored by pre-calibrated quartz resonators. The 

pressure during evaporation was 1∙10-5 mbar or lower. Only half of the sample surface 

was covered with the studied material during the thermal evaporation in vacuum to 

measure the work function of the metal as well as the surface potential of the organic 

material above each electrode. Scheme of the obtained samples is shown in Fig. 1. 

In other cases, the samples were made using the spin-coating method. To 

obtain the solution, the necessary amount of organic compound was dissolved in 

chloroform. Spin coating parameters were: rotation speed- 400 rpm; acceleration- 400 

rpm s-1; rotation time- 40 s. Afterward, the samples were dried on a hotplate at 70°C 

for 15 minutes. In this way DMABI-6Ph and polymer ( poly(3-hexylthiophene-2,5-

diyl) (P3HT), poly(9-vinylcarbazole) (PVK), PMMA) samples were obtained. 

Scanning Kelvin probe (KP Technology SKP5050) was used as equipment of 

surface potential and work function measurements. Probe vibration frequency was 79 

Hz with 80 data points per one full vibration. Measurements for organic materials 

were done at several points above each electrode for 30- 60s at each point. By 

averaging these points, the surface potential difference between the probe and the 

sample was obtained. To determine the absolute value of work function/ surface 

potential, a highly oriented pyrolytic graphite (HOPG) was used as reference material 

with a known work function of 4.93±0.03eV [10]. Surface potential measurements 

were done in the air at room temperature. 

The electrical conductivity of the studied materials was measured using 4-

probe method employing the samples and procedure described previously in [23]. 

Measurements were done for 700 nm – 1 µm thick samples. It was assumed that the 
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specific electrical conductivity (S/cm) of each material is constant regardless of the 

thickness of the sample. 

 

Results and discussion 

At first, the surface potential of the electrodes was measured. From that, the 

work function (WF) of each electrode was obtained. These values were: ΦAl = 3.80 

eV, ΦAg = 4.28 eV, ΦITO = 4.78 eV, ΦCu = 4.83 eV, ΦAu = 4.95 eV. Between separate 

measurement sessions and sample series, the work function of the electrodes was 

stable within the uncertainty of the experiment (± 0.03 eV). The work function of 

metals can vary depending on the technique used to measure WF, the crystal plane of 

metal, etc. WF values obtained in this work using SKP were in good agreement with 

the values found in the literature [24].  

Next, a surface potential of studied materials above each of the four electrodes 

was measured. In this way, the surface potential dependence on the electrode work 

function for each studied material was obtained (Fig. 2 a). As it can be seen, in the 

case of Al the obtained surface potential does not depend on the metal beneath it. On 

the other hand, in the case of PMMA, there is a constant difference between the 

surface potential of polymer and the work function of the metal beneath it. Based on 

this, we can introduce the so-called slope coefficient (S), which describes the relation 

between surface potential and metal work function. Slope coefficient can be defined 

as 

𝑆 =
𝑑Φ𝑠𝑢𝑟𝑓.

𝑑Φ𝑚𝑒𝑡
     (1) 

where dΦsurf. is the change of the surface potential of the studied material (Φsurf.) and 

dΦmet is the change of metal work function (Φmet). If S= 0, the surface potential of the 

material does not depend on the electrode beneath the thin film. This is the case of Al. 

If S= 1, there is a direct correlation with the constant difference between the surface 

potential of the sample and the metal work function. S= 1 was obtained for PMMA. 

This shows that insulating material works as a surface “modificator” for the metals. In 

the cases of organic semiconductors, the slope coefficient S was between 0 and 1, 

depending on the material (see Fig. 2 a). Generally, the obtained surface potential and 

metal work function are related as 

Φ𝑠𝑢𝑟𝑓. = 𝑆 ∙ Φ𝑚𝑒𝑡 + 𝐶    (2) 

where C is a constant, depending on studied material.  
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As S= 0 for metal (Al), S= 1 for dielectric material (PMMA), and 0< S <1 for 

other materials, one parameter which affects the slope coefficient could be an 

electrical conductivity of studied material. In Fig. 2 b, the relation between slope 

coefficient and the electrical conductivity of the material is shown. When the 

electrical conductivity of the material increases, the slope coefficient (the surface 

potential dependence on metal electrode work function) decreases. The thickness of 

the studied samples was in the range from 300- 800nm. Such thickness was enough to 

avoid the problems related to the coverage of the substrate surface [22] or band 

bending at the interface. 

 

Fig. 2 a) Surface potential dependence on metal work function for different materials. Dashed lines are 

guides for eyes; b) Slope coefficient dependence on the electrical conductivity of the materials. Red 

data points represent the materials chosen for further studies 

As the thickness of the samples in all cases was not the same, several materials 

were chosen for further studies. These materials represent the full range of electrical 

conductivity (round data points in Fig. 2 b): the polar opposites- metal (Al) and 

dielectric polymer PMMA-, semiconducting polymers P3HT and PVK, and two 

fullerene derivatives- C60 and PC71BM. For each these materials, samples with 

various thicknesses were made. 

In the case of Al, no surface potential dependence on metal work function was 

observed (Fig. 3 a) within the limits of measurements precision. On the other hand, 

Fig. 3 b and c show that the surface potential of PMMA depends not only on the metal 

work function but also on the film thickness. As the film thickness increases, the 

difference between ΦPMMA and metal work function increases as well, while the slope 

coefficient stays the same and is S= 1. By modifying Eq.(2), the surface potential of 

PMMA can be written as 

Φ𝑃𝑀𝑀𝐴 = Φ𝑚𝑒𝑡 + 𝐶(𝑑)    (3) 

where C(d) is thickness-dependent constant. In Fig. 3 c, PMMA surface potential 

dependence on film thickness for different electrodes is shown. Here, the surface 
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potential is inversely proportional to the film thickness (d), which is proportional to 

the capacitance of the sample (C0): 

Φ𝑃𝑀𝑀𝐴 = Φ𝑚𝑒𝑡 + 𝐴
1

𝑑
= Φ𝑚𝑒𝑡 + BC0   (4) 

where A and B are constants. According to M. Pfeiffer et al., SKP can be applied to 

samples with low conductivity if: 1) the adjustment of the applied voltage is slow 

enough to allow the sample to dielectrically relax; 2) the capacity of the sample is 

larger than the capacity of the medium between the probe and the sample. [25] 

Usually these conditions are easily met. However, when the sample thickness is in the 

range of several micrometers (µm), one should be cautious, as the capacity of the 

sample decreases with increased film thickness. In this case, the capacity of air 

between the probe and sample is not negligible anymore and can influence the 

obtained results. Second, the SKP used in this research is based on so-called “peak-to-

peak voltage” principle, which was developed by I.D.Baikie. Here the applied voltage 

(Vb) is changed in large amplitude and the resulting voltage (Vptp) is measured. [26] 

While in the “zero-current” method the applied voltage is adjusted within the range of 

tens or couple of hundred of Hz, the direction of peak-to-peak voltage is being 

changed with the frequency of over 10 kHz, which may be too fast for dielectric 

material. 

 Electrical conductivity for PVK, obtained by the 4-probe method, was σPVK= 

2∙10-8 S cm-1. In this case, the slope coefficient decreased with the increase of the film 

thickness. As can be seen in Fig. 4, the changes in slope coefficient were not great- in 

the case of 70 nm thick film S= 1, while in the case of 1.8 µm thick film S= 0.82.  
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Fig. 3 a) Al work function dependence on metal work function; b) PMMA surface potential 

dependence on metal work function for samples with various thickness, c) PMMA surface potential 

dependence on film thickness with various electrodes under the PMMA layer; d) P3HT surface 

potential dependence on metal work function for samples with various thickness. Dashed lines are 

guides for eyes 

In the case of fullerene C60, it was possible to obtain the surface potential 

value which did not depend on the electrode work function. While thinnest C60 sample 

had S= 0.15, by increasing sample thickness to almost 2 µm S= 0 was achieved (Fig. 

4). Similar results were obtained for another fullerene derivative- PC71BM. While the 

thinnest sample (95 nm) had S= 1, by increasing sample thickness to 850 nm the slope 

coefficient was reduced to only S= 0.18. Further increase in sample thickness (1.45 

µm and 2.50 µm) allowed obtaining metal-independent surface potential (see Fig. 4). 

As the energy levels of the fullerenes is similar (IC60= 6.2 eV, Ea,C60= 3.6 eV [7] and 

IPC71BM= 6.1 eV, Ea,PC71BM= 4.2 eV [27]), the differences in slope coefficient cannot be 

explained by the metal/ organic interface effect, but rather by the material properties. 

The measured electrical conductivity for C60 was higher than that of PC71BM (σC60= 

1∙10-4 S cm-1 and σPC71BM= 1∙10-8 S/cm, respectively), the slope coefficient S for C60 

samples was lower at small sample thickness, following the trend shown in Fig. 2 b. 

Similarly to the fullerenes, in the case of P3HT a strong slope coefficient 

dependence on film thickness can be observed (Fig. 3 d). For the 50nm thick P3HT 

film S= 0.42. As the thickness of the film increases, the slope coefficient decreases. 

At the thickness of around 1.8µm the slope coefficient S= 0, meaning that the surface 
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potential of the film becomes independent on the metal electrode work function. 

Further increase in the film thickness did not change the obtained surface potential 

(see Fig. 3 d). The obtained surface potential value for P3HT, which does not depend 

on metal work function, was ΦP3HT= 4.80 eV. Our previous research shows that the 

ionization energy of P3HT is IP3HT = 4.54 eV [28]. It means that the obtained surface 

potential value is around 0.25 eV higher than the ionization energy of P3HT 

molecules and its relation to the Fermi level of P3HT is questionable.  

 

Fig. 4 Slope coefficient S dependence on film thickness for various materials. Dashed lines are guides 

for eyes 

In Fig. 4 a summary of slope coefficient dependence on film thickness for the 

studied materials is shown. Two tendencies can be observed. One, with increased film 

thickness, the slope coefficient decreases and reaches S= 0 at a certain point. The 

exceptions are polymers with a poor electrical conductivity: PMMA (S stays at 1 for 

all of the samples) and PVK whose slope coefficient seems to “saturate” at the value 

of around 0.80. Second, as the electrical conductivity of the material increases, S is 

lower even at thinner films and allows obtaining metal-independent surface potential.  

As the P3HT and fullerene derivatives showed, the film thickness of around 

1.5 - 2 µm is required to obtain S= 0 and to avoid the electrode work function 

influence on the measured surface potential. 

 

Conclusions 

It was shown that for studied materials there is a surface potential dependence 

on electrode work function. In the case of Al, no such dependence was observed. On 
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the other hand, dielectric material (PMMA) works as a “surface modificator”, 

meaning that at a fixed film thickness there is a fixed difference between the surface 

potential of the sample and work function. This could be related to the capacity 

effects of the film. 

In the case of P3HT electrode-independent surface potential was obtained. Its 

relation to the Fermi level of P3HT is questionable as it is 0.25 eV higher than the 

molecule ionization energy, while in all other cases, the obtained surface potential 

values were between molecule ionization energy and electron affinity level of studied 

materials.  

For organic semiconductors surface potential dependence on metal work 

function decreased by the increased electrical conductivity of studied material as well 

as by increased film thickness. P3HT and fullerene derivatives showed that around 

1.5- 2 µm thick organic semiconductor film is required to obtain a surface potential 

value that does not depend on metal work function. In that case, the obtained surface 

potential describes the studied material itself, instead of the metal/organic material 

system. Further studies to show the relation between electrode-independent surface 

potential and the Fermi level of the material should be done. 
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