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Abstract. Energy-dispersive X-ray absorption spectroscopy at the Mo K-edge was used to
study pressure-induced (up to 36 GPa) changes in the local atomic structure of 2D layered oxide
α-MoO3. A linear combination analysis based on the low and high-pressure X-ray absorption
near edge structure (XANES) spectra shows clear evidence of two high-pressure phases, existing
at 18-25 GPa and above 32 GPa. The first transition is due to gradual decrease of the interlayer
gap, whereas the second one – to its collapse and oxide structure reconstruction. The local
atomic structure around molybdenum atoms at 0.2, 18.5 and 35.6 GPa was determined from
the extended X-ray absorption fine structure (EXAFS) using reverse Monte Carlo calculations.

1. Introduction
After the discovery of graphene, other members of 2D layered materials family, including
molybdenum trioxide (MoO3), have been intensively investigated due to their unique properties
[1]. MoO3 is known to exist in six different phases: α-MoO3, h-MoO3, β-MoO3, β

′-MoO3,
MoO3-II and MoO3-III [2, 3]. Only orthorhombic α-phase (space group Pbnm) is the
thermodynamically stable at ambient conditions. The structure of α-MoO3 (Fig. 1) is composed
of strongly distorted MoO6 octahedra, which share edges and form chains linked into layers
stacked on top of each other with rather weak van der Waals forces [4]. The oxidation state of
molybdenum ions is +6, corresponding to the electronic configuration 4d0, which is responsable
for their displacement from the octahedron centre due to the second-order Jahn-Teller effect [5].
α-MoO3 attracts much attention because of its electrochromic and photochromic properties

[6, 7]. Layered structure makes it prospective for applications in solar cells [8], catalysis [9, 10]
and gas sensing devices [11, 12, 13]. At the same time, technologically relevant electric and
optical properties can be affected when high pressure is applied.

The high-pressure behaviour of microcrystalline α-MoO3 has been investigated in the past by
angle-dispersive synchrotron X-ray powder diffraction and Raman spectroscopy techniques up
to 43 GPa [3]. Two phase transitions were found at room temperature – to monoclinic MoO3-II
phase (P21/m) at ∼12 GPa and to monoclinic MoO3-III phase (P21/c) at ∼25 GPa (Fig. 1).
Note that MoO3-II phase was observed before only at high-pressure and high-temperature in [14].

http://creativecommons.org/licenses/by/3.0
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Figure 1. Structures of molybdenum trioxide: orthorhombic α-MoO3 (Pbnm) [4], monoclinic
MoO3-II phase (P21/m) and monoclinic MoO3-III phase (P21/c) [3, 14]. Two ways of structure
representation are shown for MoO3-III using MoO7 (left) and MoO6 (right) polyhedra.

While the first two phases, α-MoO3 and MoO3-II, are quite similar from the local environment
point of view, a collapse of the interlayer gap occurs in MoO3-III phase [3].

In this study, we report on the pressure-dependent X-ray absorption spectroscopy (XAS)
study of α-MoO3 up to ∼36 GPa to evaluate the influence of pressure on the local atomic
and electronic structure. Since XAS is extremely sensitive to the distortions in the local
environment around the absorbing atom, its spectral features in X-ray absorption near edge
structure (XANES) and extended X-ray absorption fine structure (EXAFS) regions can be used
to monitor and identify structural changes during compression.

2. Experimental
Pressure-dependent Mo K-edge (20000 eV) X-ray absorption spectroscopy of microcrystalline
α-MoO3 was performed at room temperature using energy-dispersive setup of bending-magnet
ODE beamline [15] located at SOLEIL synchrotron facility. The SOLEIL synchrotron operated
in the top-up mode with the energy E=2.75 GeV and current I=450 mA. A dispersive
polychromator Si(311) was employed to focus X-rays, and the X-ray intensity was measured by
a Princeton Instruments PIXIS-400 CCD camera coupled with a scintillator. A membrane-type
nano-polycrystalline diamond anvil cell (NDAC) [16] was used to control the sample pressure
up to 36 GPa. The silicon oil was used as a pressure transmitting media. The pressure in the
cell was determined from a position of the R1-line of ruby fluorescence excited at 473 nm.

3. Results and discussion
Pressure dependence of the Mo K-edge XANES in Fig. 2(a) indicates the presence of three
phases with transition points above 9.9 GPa and 26.3 GPa. After the pressure is released, the
system returns back to the α-phase. A phase fraction was evaluated from XANES in the energy
range from 19985 to 20075 eV at each pressure using a linear combination analysis (LCA). The
experimental XANES spectra at P=0.2, 18.5 and 32.4 GPa were selected as a reference spectra
corresponding to pure α-MoO3, MoO3-II, MoO3-III phases, respectively. The obtained results
are plotted in Fig. 2(b) and are in good agreement with X-ray diffraction data [3]. In the pressure
range between ∼10 and 15 GPa, the two phases, α-MoO3 and MoO3-II, coexist in a close ratio,
whereas MoO3-III phase appears above ∼26 GPa, leading to a change of the XANES.

These findings are also supported by a behavior of the Mo K-edge EXAFS (Fig. 3). The
transition from MoO3-II to MoO3-III phase is accompanied by a change of the Mo–O–Mo angles
between neighbouring molybdenum-oxygen polyhedra from ∼144◦ and ∼169◦ in MoO3-II [14]
to ∼149◦ in MoO3-III [3]. The absence of the Mo–O–Mo angle equal to 169◦ is responsible for a
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Figure 2. (a) Pressure dependence of the Mo K-edge X-ray absorption near edge structure
(XANES) in molybdenum trioxide. (b) Variation of the phase fraction as a function of applied
pressure obtained from XANES by the linear combination analysis.
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Figure 3. Pressure dependence of the Mo K-edge EXAFS spectra χ(k)k2 and their Fourier
transforms (FTs) in molybdenum trioxide.

decrease of the second shell peak (at ∼3.2 Å) amplitude in the Fourier transforms of the EXAFS
spectra due to a reduction of the multiple-scattering (MS) effects.

To follow pressure induced changes in details, the analysis of EXAFS spectra beyond the first
coordination shell of molybdenum was performed using reverse Monte Carlo (RMC) calculations
[17], including the MS effects up to the 6th order. Structural models for α-MoO3, MoO3-
II and MoO3-III phases based on the diffraction data from [2, 3] were used as initial atomic
configurations and resulted in good agreement with the experimental EXAFS data. The atomic
coordinates obtained from RMC simulations were employed to calculate the partial radial
distribution functions (RDFs) gMo−O(R) and gMo−Mo(R) for α-MoO3 (0.2 GPa), MoO3-II (at
18.5 GPa) and MoO3-III (35.6 GPa) phases (Fig. 4). Note that the peaks in the RDFs gMo−O(R)
up to about 2.6 Å correspond to the nearest oxygen atoms, forming the coordination polyhedra.

At ambient conditions, there are three groups of two oxygen atoms each at ∼1.70, 1.96 and
2.26 Å, which form strongly distorted MoO6 octahedra in α-MoO3. Already a small pressure
of about 0.2 GPa induces lattice contraction, leading to an increase of the MoO6 octahedra
distortion and splitting of some Mo–Mo peaks. In MoO3-II phase at 18.5 GPa, the layered
structure persists, MoO6 octahedra remain distorted and do not differ significantly from that in
α-MoO3, as is expected from diffraction data [2, 3]. At high pressure (35.6 GPa), the collapse of
layered structure leads to an increase of molybdenum coordination. Six nearest oxygen atoms
from the same layer are responsible for the peaks at ∼1.68, 1.88 and 2.12 Å, whereas the 7th
oxygen atom bridging two layers is located at ∼2.48 Å. The high pressure modifies also the
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Figure 4. Radial distribution functions for Mo–O and Mo–Mo atom pairs in α-MoO3 (at
0.2 GPa), MoO3-II (at 18.5 GPa) and MoO3-III (at 35.6 GPa), reconstructed by RMC method.

Mo–Mo distribution, leading to a shortening of the distance between neighboring molybdenum-
oxygen polyhedra connected by edges (peaks at 3.25 and 2.9 Å).

4. Conclusions
Two phase transitions from α-MoO3 to MoO3-II and, next, to MoO3-III were observed by the
Mo K-edge X-ray absorption spectroscopy at room temperature in the pressure range from 0 to
36 GPa. Gradual decrease of the interlayer spacing is responsible for the first transition, whereas
a collapse of the interlayer gap occurs when the oxide transforms to MoO3-III phase. The change
of the molybdenum local environment upon phase transitions was determined by RMC method.
After the pressure is released, the oxide restores its structure back to the orthorhombic α-phase.
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