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Abstract

The contribution of static and thermal disorder is one of the largest challenges for the

accurate determination of the atomic structure from the extended X-ray absorption fine

structure (EXAFS). Although there are a number of generally accepted approaches to

solve this problem, which are widely used in the EXAFS data analysis, they often

provide less accurate results when applied to outer coordination shells around the ab-

sorbing atom. In this case, the advanced techniques based on the molecular dynamics

and reverse Monte Carlo simulations are known to be more appropriate: their strengths

and weaknesses are reviewed here.

Keywords: X-ray absorption spectrocopy, Extended X-ray absorption fine structure

(EXAFS), Molecular dynamics, Reverse Monte Carlo, Static and thermal disorder

1. Introduction

X-ray absorption spectroscopy (XAS) is an excellent tool to probe the local en-

vironment in crystalline, nanocrystalline and disordered solids, liquids and gases in a

wide range of in situ and in operando conditions (van Oversteeg et al. (2017); Mino
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et al. (2018)). With the increased availability of synchrotron radiation sources and the

tremendous improvement in their parameters, the popularity of the technique has in-

creased, and the quality of the experimental X-ray absorption spectra has improved

significantly. As a result, more accurate and reliable structural information can be ex-

tracted from the extended X-ray absorption fine structure (EXAFS) located above the

absorption edge of an element.

The quantitative analysis of EXAFS became possible due to significant advance-

ments in the theory (Rehr and Albers (2000); Natoli et al. (2003); Rehr et al. (2009)),

however, accurate treatment of disorder effects is still the biggest difficulty. The prob-

lem becomes especially acute when it comes to the outer coordination shells around

the absorbing atom, where the overlap of the shells and the effect of the disorder are

mixed with the multiple-scattering (MS) contributions.

This paper reviews the existing approaches commonly used to solve the problem

of disorder in EXAFS and discusses the strengths and weaknesses of two advanced

techniques based on the molecular dynamics and reverse Monte Carlo methods.

2. Conventional approach to disorder in EXAFS

In this section, we will briefly summarize different conventional approaches to the

treatment of disorder in EXAFS.

The X-ray absorption coefficient µ(E) in the one-electron approximation is propor-

tional to the transition rate between the initial core-state i and the final excited-state f

of an electron, which is given by the Fermi’s Golden rule

µ(E) ∝
∑

f

∣∣∣〈 f |Ĥ|i〉∣∣∣2 δ(E f − Ei − E) (1)

where E = ~ω is the X-ray photon energy, and the transition operator Ĥ = ε̂ · ~r in the

dipole approximation. Note that the final state of the electron is the relaxed excited

state in the presence of the core-hole screened by other electrons.

The characteristic time of the photoabsorption process (1) is about 10−15–10−16 s

and is determined by several processes: the transition time between initial (i) and fi-

nal ( f ) states, the core-hole lifetime, the excited photoelectron relaxation time and the
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lifetime of the photoelectron out of atom related to its mean-free path (MFP). Note

that this time is significantly shorter than the characteristic time (∼10−13–10−14 s) of

thermal vibrations. Therefore, atoms can be considered as frozen at their instanta-

neous positions during the excitation process, and the experimental X-ray absorption

spectrum corresponds to the average over all atomic configurations during the time of

experiment.

The oscillating part of the absorption coefficient χl(E) located above the absorption

edge of orbital type l is defined as

χl(k) = (µ(E) − µ0(E) − µb(E))/µ0(E)) (2)

where µb(E) is the background absorption, and µ0(E) is the atomic-like absorption due

to an isolated absorbing atom (Lee et al. (1981)). The wave number k of the excited

photoelectron is related to its kinetic energy (E − E0) by k =
√

(2me/~2)(E − E0),

where me is the electron mass, ~ is the Plank’s constant, and E0 is the threshold energy,

i.e., the energy of a free electron with zero momentum.

Within the framework of MS theory, EXAFS χl(k) is described using a series

χl(k) =

∞∑
n=2

χl
n(k),

χl
n(k) =

∑
j

Al
n(k,R j) sin[2kR j + φl

n(k,R j)] (3)

which includes contributions χl
n(k) from the (n − 1)-order scattering processes of the

excited photoelectron by the neighbouring atoms, before it returns to the absorbing

atom (Ruiz-Lopez et al. (1988); Rehr and Albers (2000)). The fast convergence of the

MS series occurs at least at high-k values due to the finite lifetime of the excitation, the

scattering path lengths, interference cancellation effects and path disorder. In practice,

the MS contributions up to the 8th-order can be calculated using ab initio FEFF code

(Ankudinov et al. (1998); Rehr et al. (2010)).

An alternative description of the EXAFS χl(k) in terms of the n-order distribution

functions gn(R) is also known

χl(k) =

∫
4πR2ρ0g2(R)[χoio

2 (k) + + . . .]dR
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+

∫∫∫
8π2R2

1R2
2 sin(θ)ρ2

0g3(R1,R2, θ)

× [2χoi jo
3 (k) + 2χoio jo

4 (k) + . . .]dR1dR2dθ

+ . . . (4)

where ρ0 is the average density of a system and χm(k) are the MS EXAFS signals of

the (m − 1) order generated within a group of atoms (o, i, j, . . . ) described by gn (Fil-

ipponi et al. (1995); Filipponi and Di Cicco (1995)). This approach was realized in the

GNXAS code (Di Cicco (1995); Filipponi and Di Cicco (2000)), which is able to ac-

count for the two-body (g2), three-body (g3) and four-body (g4) distribution functions.

The analytical expression for EXAFS can be greatly simplified when one needs to

extract information only on the first coordination shell of the absorbing atom.

The contribution of the first coordination shell to the total EXAFS spectrum can be

usually isolated by Fourier filtering procedure and analysed within the single-scattering

approximation, since the length of all MS paths is longer than the first coordination

shell radius. Thus, only the first term of the series given by Eq. (3) remains. In the case

of a Gaussian distribution (or in the harmonic approximation), the EXAFS expression

takes a simple form

χl
2(k) = S 2

0

∑
i

Ni
| f l

eff
(k,Ri)|

kR2
i

exp
[
−

2Ri

λ(k)

]
× sin[2kRi + φl(k,Ri)] exp(−2σ2

i k2) (5)

where S 2
0 is a scaling factor; Ni is the coordination number; Ri is the interatomic dis-

tance; λ(k) is the photoelectron MFP; f l
eff

(k,R) and φl(k,R) are the photoelectron ef-

fective scattering amplitude and phase shift functions (Sayers et al. (1971); Lee and

Pendry (1975)). The sum in Eq. (5) is taken over groups of atoms located at different

distances from the absorber.

For moderate disorder, when distribution of interatomic distances becomes asym-

metric, the EXAFS equation can be expressed using the cumulant decomposition (Bunker

(1983); Dalba et al. (1993)). The cumulant model is often useful for the analysis of an-

harmonic and thermal expansion effects (Tranquada and Ingalls (1983); Fornasini et al.

(2017)), nanoparticles (Clausen and Nørskov (2000); Sun et al. (2017)) and disordered

materials (Dalba et al. (1995); Okamoto et al. (2002)).
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Sometimes, the first coordination shell around the photoabsorber is so strongly

distorted that the cumulant series does not converge. In this case, the EXAFS formula

expressed in terms of the radial distribution function (RDF) G(R)

χl
2(k) = S 2

0

∫ Rmax

Rmin

G(R)
| f l

eff
(k,R)|

kR2

× sin[2kR + φl(k,Ri)] exp
[
−

2Ri

λ(k)

]
dR (6)

should be used instead (Stern et al. (1975); Lee et al. (1981)). The RDF G(R) defines

the probability of finding an atom in a spherical shell dR at the distance R from the

photoabsorber. The number N of atoms located in the range between Rmin and Rmax

is given by the integral N =
∫ Rmax

Rmin
G(R)dR. To determine RDF G(R) from Eq. (6),

the regularization technique (Babanov et al. (1981); Ershov et al. (1981); Kuzmin and

Purans (2000)) can be used to solve this integral equation as an ill-posed problem with-

out any preliminary assumption on the shape of the RDF. This approach was recently

used to reconstruct the local structure in several tungstates MWO4 (M=Ni, Cu, Zn and

Sn) (Kalinko and Kuzmin (2011); Anspoks et al. (2014); Kuzmin et al. (2015)) and in

molybdate CuMoO4 (Jonane et al. (2018b)), where the Jahn-Teller effect is responsible

for a strong distortion of structural units. It was demonstrated recently that the RDF

G(R) of atoms can be reliably extracted up to distant coordination shells using neural

network approach (Timoshenko et al. (2018)).

In crystalline and nanocrystalline materials, the experimental EXAFS spectrum of-

ten contains a significant amount of structural information on outer coordination shells,

which is challenging to extract. It is possible to estimate the region of a structure around

the absorber, which can potentially contribute into EXAFS, from the photoelectron

MFP. Examples for bulk and nanocrystalline nickel oxide (Anspoks et al. (2012)) and

body-centred-cubic (bcc) tungsten (Jonane et al. (2018a)) are shown in Fig. 1. A half

of the MFP λ(k) gives an estimate of how far the excited photoelectron can propagate

to be able to return back to the absorbing atom. The MFP λ(k) depends strongly on

the photoelectron wavenumber k and increases at large k-values. It is equal to about

10–20 Å for NiO or bcc W at k ≈ 16–20 Å−1. This means that when high-quality

experimental EXAFS data are available in large k-space range, one can expect to see
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structural contributions from atoms located in distant coordination shells. For exam-

ple, the structural peaks in Fourier transforms of EXAFS can be recognized up to about

11 Å in Fig. 1 for bulk and nanosized NiO at T = 10 K and for bcc W at T = 300 K.

The possibility to analyse contributions from distant coordination shells is useful

since it provides access to additional structural information. However, such analysis

based on the conventional approaches faces a number of problems even for crystalline

materials with a known structure, in which at least the mean-square relative displace-

ment (MSRD) factors are variable model parameters.

The main problem is related to the number of model parameters, which increases

exponentially when more coordination shells are included to the model (Kuzmin and

Chaboy (2014)). For example, in the case of bulk NiO with a rock-salt structure, the

total number of scattering paths, the number of unique paths due to the cubic symmetry

and the maximum number of fitting parameters, which can be used in the EXAFS

model according to the Nyquist criterion (Npar = 2∆k∆R/π) evaluated for relatively

long EXAFS signal with ∆k=20 Å−1, are shown in Fig. 2 as a function of the cluster

radius R around the photoabsorbing nickel atom. Note that the Nyquist criterion is not

satisfied above R∼5.5 Å, when cubic crystal symmetry is taken into account, but this

distance decreases significantly down to R∼3.5 Å in a nanomaterial.

To reduce the number of model parameters, one can evaluate the MSRD factors

semiempirically from correlated Einstein or Debye models (Sevillano et al. (1979);

Vaccari and Fornasini (2006)), but again different Einstein or Debye temperatures are

required for each MS path. Besides, these models of lattice dynamics ignore anisotropy

of the phonon spectra.

Another approach is to calculate MSRD parameters from the phonon projected

density of states using the Debye integral

σ2
R(T ) =

}
2µR

∫ ∞

0

1
ω

coth
(
}ω

2kBT

)
ρR(ω)dω (7)

where µ is the reduced mass associated with the MS path, and kB is the Boltzmann’s

constant. The vibrational density of states ρR(ω) projected on R can be obtained from

first-principles calculations of the dynamical matrix of force constants (Vila et al.

(2007); Rehr et al. (2009, 2010)). However, this approach uses (quasi-)harmonic ap-
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proximation, requires a priori knowledge of structure and can be computationally ex-

pensive.

An alternative solution which allows one to account simultaneously for the MS

contributions and disorder effects is to rely on atomistic simulations such as the molec-

ular dynamics (MD) and reverse Monte-Carlo (RMC) methods combined with ab initio

MS calculations.

3. Atomistic simulations of EXAFS

MD (Alder and Wainwright (1957)) and RMC (McGreevy and Pusztai (1988))

methods are known for a long time, however their application in the field of X-ray

absorption spectroscopy is still scarce. The use of both methods requires significant

computing resources, so their development has been directly related to the advances in

computer technologies.

The first use of MD simulations to reproduce the experimental EXAFS is dated

back to the middle of nineties, when the method was applied to study the hydration of

ions in aqueous solutions (D’Angelo et al. (1994, 1996); Palmer et al. (1996); Kuzmin

et al. (1997)). The advantages of the RMC method were realized even earlier at the

beginning of nineties, when it was used to interpret EXAFS of amorphous Si and crys-

talline AgBr (Gurman and McGreevy (1990)), liquid KPb alloys (Bras et al. (1994))

and superionic glasses (Wicks et al. (1995)).

There are several common features for the MD and RMC methods. The simulation

result is represented as one or more atomic configurations (“snapshots”), suitable to

generate the configuration-averaged (CA) EXAFS, which includes static and dynamic

disorder and can be directly compared to experimentally measured EXAFS. The static

disorder is due to a number of different atomic dispositions, corresponding to minima of

the potential energy surface. Examples of systems with the static disorder include non-

crystalline materials such as glasses, amorphous solids and liquids, nanocrystals and

thin films with atomic structure relaxed due to the size or thickness reduction effect,

and materials with structural defects (e.g., vacancies or grain boundaries). Dynamic

disorder arises from temperature-dependent fluctuations in the atomic positions from

7
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the equilibrium structure.

The CA EXAFS spectra for different absorption edges can be calculated from the

same set of atomic coordinates and used in the analysis, thus improving the reliability

of the structural model (Timoshenko et al. (2014a)). During a simulation, the atoms are

placed in a cell of the required size and shape, often with periodic boundary conditions

(PBC) in order to avoid effects associated with the surface. Note that using PBC limits

the maximum cluster radius, for which EXAFS calculations can be safely performed

to avoid artificial correlation effects, to half the minimum cell size. There are also two

non-structural parameters, ∆E0 and S 2
0, which are required for comparison with the

experimental EXAFS. They can be determined from the analysis of reference materials

or obtained by best matching the experimental and calculated EXAFS spectra.

The scheme of the MD and RMC methods is shown in Fig. 3. The structural model

of a material is constructed first in both cases, and the ab initio MS code, such as

FEFF (Ankudinov et al. (1998)) or GNXAS (Filipponi and Di Cicco (2000)), is used

to calculate EXAFS for each atomic configuration during the simulation.

The principal difference between two methods is that no fitting of experimental EX-

AFS is performed in the MD-EXAFS approach, and the structure obtained in the MD

simulation is used “as-is” for the calculation of the CA EXAFS. Note that the number

of required atomic configurations and the time step between them should be carefully

estimated for each particular case to obtain the proper CA signal. On the contrary, the

structural model is modified at each RMC iteration to minimize the difference between

the experimental and CA EXAFS in the RMC-EXAFS approach.

To perform MD simulations, a model of interactions between atoms is required. In

classical MD (CMD), the empirical interatomic potential is employed, that significantly

reduces the requirements for computing resources. Besides, the MD-EXAFS approach

is suitable for a validation of interatomic potential along with other conventionally em-

ployed properties of a material (Di Cicco et al. (2002); Kuzmin and Evarestov (2009);

Kuzmin et al. (2016); Bocharov et al. (2017)). Ab initio MD (AIMD) based on den-

sity functional theory (DFT) formalism is also accessible nowadays but is extremely

computationally expensive. It is important that in the MD simulation, initial model of

the atomic structure is evolving in time within one of the canonical (NVT), isother-
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mal–isobaric (NpT) or microcanonical (NVE) ensembles following to classical New-

tonian laws of motion both in CMD and AIMD. Therefore, such simulations cannot

be used to model the motion of atoms at low temperatures, where the zero-point os-

cillations of atoms play an important role (Yang and Kawazoe (2012)). In this case,

instead, more complex methods should be used, such as, for example, the path-integral

MD (Marx and Parrinello (1996)).

Note that recent developments of X-ray free-electron laser (X-FEL) facilities open

new possibilities to probe the ultrafast excited state dynamics using X-ray absorption

spectroscopy (Lemke et al. (2017)). Such experiments provide information on the

femtosecond nuclear wavepacket dynamics, which can be described by first-principles

quantum dynamics simulations (Capano et al. (2015)).

The MD simulations can be performed, for example, either by one of the CMD

codes as LAMMPS (Plimpton (1995)), GULP (Gale and Rohl (2003)) or DL POLY

(Todorov et al. (2006)), or using AIMD codes as CP2K (VandeVondele et al. (2005)),

VASP (Kresse and Furthmüller (1996)) or SIESTA (Soler et al. (2002)). After accu-

mulating the required number of atomic configurations, one can employ, for example,

the EDACA code (Kuzmin and Evarestov (2009); Kuzmin et al. (2016)) to generate the

CA EXAFS spectrum.

In RMC simulation, the position of atoms in the configuration is usually randomly

modified at each iteration, and the CA EXAFS signal is calculated. The decision to

accept or reject the new atomic configuration is made based on the Metropolis algo-

rithm (Metropolis et al. (1953)), taking into account the difference (residual) between

the experimental and simulated data in either k or R space, or simultaneously in k and

R-spaces using the wavelet transformation (Timoshenko and Kuzmin (2009)). At this

point, various chemical or geometrical constraints can be easily implemented, by as-

signing some penalty to the residual value. For example, one can avoid situations when

the atoms are getting too close or too far from each other, when non-physical values

of some bond angle are found (Tucker et al. (2007)), or when the coordination number

for some atom deviates from the expected one (McGreevy (2001)), etc. The efficiency

of the RMC process can be significantly improved by using an evolutionary algorithm

(EA) together with a simulated annealing scheme (Timoshenko et al. (2012, 2014b)).
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The RMC method relies on stochastic process, so it will generate different final sets

of atomic coordinates upon restarting simulation several times from different starting

conditions. However, it is expected that the results will be statistically close in terms

of the distribution functions. Note that RMC method tends to converge to the most

disordered solution consistent with the experimental data (Tucker et al. (2007)).

Some of the software packages for RMC-EXAFS simulations include RMC-GNXAS

(Di Cicco and Trapananti (2005)), RMCProfile (Tucker et al. (2007)), EPSR-RMC

(Bowron (2008)), SpecSwap-RMC (Leetmaa et al. (2010)), RMC++/RMC POT (Gereben

et al. (2007); Gereben and Pusztai (2012)) and EvAX (Timoshenko et al. (2014b)).

Note that in addition to the MD and RMC methods, the average atomic config-

uration required to compute CA EXAFS can also be generated from a Monte Carlo

simulation based on interatomic potentials (Hansen et al. (1997); Canche-Tello et al.

(2014); House et al. (2017)) or atomic displacement parameters obtained from lattice

dynamics calculations (Duan et al. (2016); Lapp et al. (2018)).

4. Examples of MD/RMC-EXAFS applications

In this section the specific capabilities of the MD-EXAFS and RMC-EXAFS meth-

ods will be demonstrated.

The first example is concerned with the lattice dynamics in bcc tungsten (Jonane

et al. (2018a)). High-quality experimental W L3-edge EXAFS spectrum was recorded

at T = 300 K up to k = 18 Å−1 (Fig. 4 (upper panel)) and includes contributions from

the coordination shells with a radius of at least up to ∼11 Å (Fig. 1 (lower panel)).

The NVT MD simulations were performed by the GULP code (Gale and Rohl (2003))

using a supercell of 7a0×7a0×7a0 size (a0 = 3.165 Å) and a time step of 0.5 fs. The

interactions were described by the second nearest-neighbour modified embedded atom

method (2NN-MEAM) potential (Lee et al. (2001)). After equilibration during 20 ps,

the atomic configurations were accumulated during the production run of 20 ps and

used to calculate the CA EXAFS. The RMC/EA calculations were performed by the

EvAX code (Timoshenko et al. (2014b)) using a supercell of 5a0×5a0×5a0 size to get

best possible agreement between the Morlet wavelet transforms (WTs) of the experi-
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mental and calculated EXAFS spectra. Good agreement with the experimental EXAFS

data was obtained for both MD-EXAFS and RMC-EXAFS approaches (Fig. 4 (upper

panel)). Next, the atomic configurations were used to calculate the RDFs GW−W(R) and

the radial dependence of the MSRD factors σ2(R). At long distances, when correlation

in atomic motion becomes negligible, the MSRD σ2
W−W = 2σ2

W (see the inset in Fig. 4

(lower panel)). The obtained mean square displacements (MSD) σ2
W are in agreement

with previously reported experimental and theoretical results (Jonane et al. (2018a)).

Thus, the analysis of distant coordination shells allows extracting information on the

MSD of atoms, which otherwise requires a diffraction experiment.

In the second example, the use of the MD-EXAFS approach for the validation of

the interatomic potential model is shown on the example of iron fluoride (FeF3) (Jo-

nane et al. (2016)). The crystalline lattice of rhombohedral FeF3 is composed of FeF6

octahedra joined by corners with the bond angle Fe–F–Fe between two adjacent octa-

hedra equal to ∼153◦. The MD simulations were carried out using a simple empirical

potential, including two-body (Fe–F and F–F) and three-body (Fe–F–Fe) interactions.

It was found that different sets of the optimized potential parameters, corresponding

to the iron effective charge q(Fe) in the range of 1.2–3.0, reproduce equally well the

static crystallographic structure of FeF3. This ambiguity was resolved by performing

NVT CMD simulations and calculating the CA Fe K-edge EXAFS spectra (Fig. 5).

Strong sensitivity of EXAFS to the strength of the Coulomb interactions was found,

thus allowing one to select the iron effective charge q(Fe)=1.71 giving the best overall

agreement between the experimental and CA EXAFS spectra.

Final example demonstrates the possibility to probe anisotropy and correlation of

atomic motion in copper nitride (Cu3N) using the RMC-EXAFS approach (Fig. 6)

(Timoshenko et al. (2017)). Cu3N has a unique cubic anti-perovskite-type structure

(AB3X), composed of NCu6 octahedra joined by the corners with the A sites being

vacant. High symmetry of its lattice is responsible for strong overlap of coordination

shells in the RDF, large MS contributions in EXAFS due to the presence of linear –

Cu–N–Cu– chains and an anisotropy of atom vibrations due to tilting motion of NCu6

octahedra. Since RMC simulation results in a 3D model of the structure, one has an

opportunity to analyse separately behaviour of atoms, belonging to different coordina-
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tion shells but located at close distances from the absorber. Temperature dependences

of the MSRD factors for selected Cu–N and Cu–Cu atom pairs were calculated from

atomic configurations obtained by RMC and are shown in Fig. 6 (lower panel). Strong

correlation in atomic motion was found for atoms (N1, Cu3a and N7a) located in the

chains along the crystallographic axes. Moreover, it is possible to distinguish clearly

large difference in the MSRD factors of non-equivalent atoms located in the 3rd (Cu3a

and Cu3b) and 7th (N7a and N7b) shells. Strong increase of the MSRD of Cu3a, Cu2 and

Cu3b points to the anisotropic vibration of copper atoms in the direction orthogonal to

–N–Cu–N– chains.

5. Conclusions

Atomistic simulation methods such as molecular dynamics and reverse Monte Carlo

provide a natural way to include disorder (static and dynamic) into the EXAFS formal-

ism taking into account multiple-scattering effects.

The two methods have several common points. In both cases, multiple absorption

edges can be easily simulated or fitted, thus improving the reliability of the accessible

structural information. The analysis of EXAFS contributions from outer coordination

shells of the absorbing atom is feasible, which is rather challenging in conventional

approach but provides an access to some useful structural and dynamic properties of a

material as, for example, mean-square displacements.

Opposite to conventional analysis, dealing with a set of structural parameters, MD-

EXAFS and RMC-EXAFS approaches provide a result in terms of atomic configura-

tions, giving information on atom-atom and bond-angle distributions and correlations.

Moreover, an access to atomic coordinates makes it possible to distinguish contribu-

tions of non-equivalent atom pairs with equal or close path lengths.

At the same time, there are also several differences between the two methods.

The MD-EXAFS approach does not require any structural fitting parameters, and

the structural model of a material is uniquely defined by the results of the MD sim-

ulation. The agreement between the experimental and calculated CA EXAFS spectra

depends on the accuracy of interatomic potential model, therefore, EXAFS spectrum
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can be used to validate the interatomic potentials.

3D structure models obtained by the RMC method from experimental EXAFS can

be directly compared with the results of other atomistic simulations. Moreover, they

can be employed to include disorder effects into first-principles simulations to pre-

dict temperature dependent material properties. Note that constraints can be easily

incorporated into the RMC analysis to account for information from other experiments

(diffraction, total scattering, etc) or chemical/geometrical information (bond-lengths,

bonding angles, coordination, energetics, etc).
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Figure 1: Upper panel: Calculated photoelectron mean free path (MFP) λ(k) for c-NiO and bcc W. Lower

panel: Fourier transforms of the experimental W L3-edge and Ni K-edge EXAFS spectra χ(k)k2 in bulk and

nanosized NiO at T = 10 K and in bcc tungsten at T = 300 K, respectively.
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GW−W(R) obtained by RMC and MD simulations. Inset: Dependence of the MSRD σ2
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Figure 5: Comparison of the experimental and calculated Fe K-edge MD-EXAFS χ(k)k2 spectra and their

Fourier transforms (FTs) (modulus and imaginary parts are shown) in FeF3 at T=300 K. Only few spectra

calculated for different effective iron charges are shown for clarity.
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