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The contact electrification of polymer interfaces provides an energy 

harvesting function to triboelectric (nano)generators (TEG). The 

electron transfer between contacted-separated surfaces has been 

considered as the main electrification mechanism for polymers in 

TEG. The electron transfer mechanism widely proposed in literature 

requires a contact between chemically different polymer materials, as 

well as subsequent increase of the specific contact area, which is 

commonly accomplished via nanostructuring. Herein, we showed that 

contact electrification could be controlled by intramolecular forces in 

the polymer bulk and adhesive forces at the contact interface, and the 

chemical contact between different polymers was not needed for 

contact electrification. The results also confirm the breaking of the 

covalent bond as a mechanism of the contact electrification of 

polymer insulators. 
 

 
 
 
Broader context 
 
Triboelectric nanogenerators (TEG) that harvest ambient mechanical energy 

through contact electrification can be used as a power source in autonomous 

devices. The same phenomenon could also be applied to create local electric 

fields in applications such as electroactive filters. The polymeric TEG devices 

are currently designed based on the understanding that charging occurs through 

electron transfer. However, several recent studies have demonstrated that 

triboelectrification is instead caused by a heterolytic covalent bond breakage. In 

the present study, we provided a substantial proof of the occurrence of covalent 

bond scission to further establish the understanding of its underlying role in 

polymer contact electrification. We also showed, by example, how the proposed 

new princi-ples could be followed in the design of superior TEG devices. 

 
 
TEG devices have the potential to satisfy the increasing energy 

needs in portable electronics and sensors, providing a clean 

alternative to conventional batteries.
1
 The TEG devices are produced 

from cheap, lightweight, flexible, widely used polymer materials and 

offer promise to capture the neglected and unutilized forms of 

mechanical energy. These devices consist of two conductive 

electrodes, where at least one electrode is covered with a polymer 

insulator film.
1
 The two electrodes in TEG are connected by an 

outer circuit, and upon electrode oscillation, a surface charge on 

polymer layers and an electric potential are created that drive the 

electrons to flow between two electrodes to balance this electric 

potential difference; the TEG devices can be operated in different 

modes: vertical separation, sliding, rotating, single electrode etc.;
2
 

however, the  
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key feature for high TEG efficiency is the generation of surface 

charge from contact electrification.
3 

 
Different mechanisms are responsible for contact electrifi-cation 

and depend on the material used. It is well demonstrated that upon 

metal–metal, metal–semiconductor or semiconductor– 

semiconductor contact, electron transfer occurs;
4,5

 however, this is 

not very obvious for polymer insulators.
6
 Moreover, three 

mechanisms for polymer insulator contact electrification are 

considered: electron transfer,
7
 ionic transfer,

6
 and covalent bond 

cleavage.
8
 The electron transfer between polymers is doubtful 

because there are no available free electrons in insulators. The usage 

of the term ‘‘effective work function’’ in connection to the driving 

force for charge exchange between polymer insulators is also 

questionable even if the polymer is in contact with the metal.
6
 

Therefore, ion exchange between contacted polymer insulators has 

been considered because water under ambient conditions is adsorbed 

even on hydrophobic polymers.
9
 The water layers on contacted 

surfaces fuse together upon contact, and as different polymer 

materials may have different affinities towards cations and anions in 

water, an imbalance between ions is formed during separation, thus 

creating the surface charge.
6
 However, contact electrification is 

known to occur if the same polymer material is used on both sides.
10

 

The same material, however, should also exhibit the 
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same affinity towards different ions in water, and should not lead to 

contact charging. In addition, it has been shown that contact 

electrification of polymer insulators occurs in the complete absence 

of water.
11 

Baytekin et al. have observed that nanoscopic mosaic-like 

structures carrying positive and negative charges are formed on 

polymer insulators after contacting-separating.
8
 The non-equality 

between the positive and negative species adds up to the net surface 

charge. The fact that different charges may be observed on the same 

surface has not been reported earlier. The formation of charged 

species was attributed to heterolytic covalent bond cleavage. The 

covalent bond breaking on polymer surfaces is accompanied by 

reversible material transfer from one surface to another.
12 

 
If covalent bond cleavage is the mechanism for contact 

electrification, it must be higher for soft polymers with smaller 

cohesion energy or higher molecular weight between crosslinks 

because they are more prone to mechanical damage and bond 

breaking. In the present study, we investigated contact electri-

fication of a large variety of polymer materials with different 

physicochemical properties.  
Fig. 1(a) shows surface charge for various thermoplastic 

polymers with different elastic moduli. Polymer full names, surface 

charge and nanoindentation measurements are described in the 

(ESI†) and listed in the ESI† Table S1. Polymers with lower moduli 

exhibit higher surface charge values than those with higher moduli, 

and modulus is directly proportional to the cohesive energy of the 

material. The specific surface contact area-enhanced electrification 

can be excluded because all samples are flat (prepared with the same 

hot-pressing approach) and have similar surface roughness values, 

which have been measured by atomic force microscopy (ESI,† Table 

S2). The average surface roughness for the polymers shown in Fig. 

1(a) was 59.76 nm with the standard deviation of 21.78 nm. 

Moreover, we examined the influence of roughness on the surface 

charge for different polymers in contact with ITO, as shown in the 

ESI,† Fig. S3 and Table S3. As expected, polymers with larger 

roughness produced over an order of magnitude higher surface 

charge values than their smooth counterparts. For example, upon 

increasing the surface roughness of polycarbonate (PC) from 70 nm 

to 654 nm, the surface charge value increases from 0.052 to 0.152 

nC cm 
2
, whereas the soft styrene-ethylene-butylene-styrene 

copolymer (SEBS) with the surface roughness of 79.40 nm exhibits 

the surface charge value 0.92 nC cm 
2
 after contacting ITO. SEBS, 

in accordance with nanoindenta-tion measurements (Fig. 1(a) and 

ESI,† Table S1), shows lowest modulus. Thus, the polymer cohesion 

energy has a significantly stronger influence on contact 

electrification than the surface roughness. 

 

 
We also contacted and separated chemically different poly-mers 

with the same or different hardness values (Fig. 1(b)). Although 

chemically different, a hard polymer (PI, polyimide) in combination 

with other hard polymers (PS, polystyrene) produces a small surface 

charge. The same was observed for soft polymers by contacting-

separating low-density polyethylene (LDPE) and 

polytetrafluoroethylene (PTFE), which have similar 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 Contact-electrification charge of thermoplastic polymers related to 

their mechanical properties. (a) Correlation between the modulus of 

polymer material and surface charge. (b) Contact-electrification charge 

density and hardness gap for different polymer combinations.   
 
 
hardness values. When hard polymers were contacted with soft 

polymers, surface charges higher by an order of magnitude were 

obtained. Interestingly, the mutual contact of chemically different 

soft and hard polymers with the same difference between hardness 

produces very similar surface charge values. Open circuit voltage 

(VOC) and short circuit current (ISC) mea-surements for TEG 

devices based on polymers shown in Fig. 1 are presented in ESI,† 

Fig. S4–S20.  
To date, there is a general understanding that to observe surface 

charge, the contacted materials must have different chemical 

compositions;
13

 polymers are even empirically ordered into a so-

called ‘‘triboelectric series’’ based on their ‘‘electron affinity’’-a 

tendency to acquire a positive or negative charge when in contact 

with a distinct material.
13

 These electron affinity values are 

commonly used to select materials for TEG. Herein, we showed that 

there is no need to contact chemically different polymers for 

electrification to occur. Fig. 2 shows the current generated by the 

TEG device constructed from the same poly-propylene (PP) films. If 

the thermal history of the PP films was same, no current was 

observed; however, when PP films with different thermal histories 

were contacted-separated, the current of 35 nA and surface charge of 

0.071 nC cm 
2
 were generated. 

 
 



 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Short-circuit current peaks generated by the contact-electrification of 

PP with similar and different thermal histories. Blue figures represent 

original polymer films and red figures represent polymer films subjected to 

thermal treatment (130 1C, 60 min).  

 

Different thermal histories change macromolecular ordering and 

cohesion energy, as indicated by lower phase transition temperatures 

(ESI,† Fig. S21) and hardness change from 107.6 MPa to 96.2 MPa, 

respectively. This is in sharp contrast with the recently reported 

theory of contact electrification.
7,13 

 
Further, we studied contact electrification of polydimethyl-

siloxane (PDMS) with a different cross-linking degree, which was 

varied by changing the ratio between pre-polymer and the curing 

agent.
14

 The surface charge increased from 0.31 to 3.39 nC cm 
2
 

with an increase in the molecular weight between crosslinks (MC, g 

mol 
1
) (Fig. 3(a)). The method and measure-ments for the 

determination of MC are described in ESI,† and the MC values are 

shown in Table S4 (ESI†). The TEG device constructed from flat 
PDMS with the curing agent to prepolymer ratio 1 : 30 in contact 

with ITO generate VOC 400 V (80 V cm 
2
) (voltage and current for 

all PDMS based TEG devices are shown in ESI,† Fig. S22 and S23). 

 
Further, we contacted and separated chemically identical PDMS 

and studied contact electrification. When the cross-linking degree 

between contacting PDMS films was same, almost no  

 
contact electrification was observed. The surface charge values for 

TEG when PDMS films in the ratio of 3 : 1 vs. 3 : 1 and 20 : 1 vs. 20 

: 1 were contacted were 0.00143 nC cm 
2
 and 0.00161 nC cm 

2
, 

respectively. When PDMS films with different cross-linking degrees 

were contacted (3 : 1 vs. 20 : 1), surface charge (0.0168 nC cm 
2
), 

voltage, and current higher by an order of magnitude were obtained 

(ESI,† Fig. S24 and S25), thus confirming the above-mentioned 

results obtained from TEG based on thermoplastic polymers. 

 
The increased surface charge for PDMS with a smaller cross-

linking degree can also be related to higher adhesion at the contact 

interface. The force necessary for the separation of the two contacted 

films increased when the cross-linking degree was reduced. Based on 

our understanding, to provide high net surface charge density on the 

polymer, the polymer should show strong surface adhesion and low 

cohesion energy in bulk, such that the energy of the adhesive 

(physical) bonds formed between contacting surfaces is larger than 

the energy of the chemical or/and physical bonds in bulk. This could 

potentially allow enhanced covalent bond scission and material 

transfer between two contacting surfaces.
15 

 
To observe higher adhesion, we increased the contacting force as 

described in ESI.† With the increasing contacting force, the adhesion 

between contacted surfaces and force to separate them increases, and 

as shown in Fig. 3(b), when separation stress between two films is 

larger, the surface charge increases drastically. 

 
If the reason for contact electrification is a heterolytic covalent 

bond break, the mass transfer should occur alongside with surface 

charging.
12

 The mass transfer was confirmed by atomic force 

microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) 

studies. As demonstrated in the ESI,† Fig. S26, the ITO surface 

viewed by AFM contains polymer pieces after being contacted with 

PDMS. The mass transfer of PDMS was also confirmed by the XPS 

studies, where the Si 2s (153.9 eV) and Si 2p (102.7 eV) signal peaks 

were observed in the photoelectron spectrum from the ITO surface 

after contact with PDMS (ESI,† Fig. S27). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Contact-electrification charge of PDMS: (a) surface charge density and adhesion force increase as we increase the molecular weight between 

PDMS crosslinking points. (b) Relationship between the charge and separation stress required when the contacting force before separation step is 

gradually increased for PDMS (10 : 1 ratio).  
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Fig. 4 Hydrogen peroxide-modified SEBS TEG energy density measurements. (a) Power and energy densities of hydrogen peroxide-treated SEBS-based 

TEG. (b) Energy density stored in the capacitor after contact-electrification of hydrogen peroxide-treated SEBS TEG. The corresponding voltages are 

shown besides the energy.  

 

 

 
Although material transfer occurred, the TEG devices were stable 

because material transport could also occur in both ways. The 

covalent bonds could restore during contacting due to frictional 

heat,
16

 and thus, the long-term performance had a relatively simple 

explanation. The long-term stability is demon-strated in the ESI,† 

Fig. S28 for TEG devices from three different polymers: hard 

(PMMA), soft (SEBS) and soft-crosslinked (PDMS). In the 

beginning, all the TEG devices showed smaller voltage; however, it 

became saturated at about 2000 cycles and did not change in the 

further 10 000 cycles.  
Finally, we produced a TEG device using the soft thermo-plastic 

SEBS block copolymer (ESI,† Fig. S10), which showed highest 

surface charging, as depicted in Fig. 1(a). We modified the surface 

of SEBS to make it more adhesive by treatment with a hydrogen 

peroxide solution, as described in ESI.† Via this, we observed an 

increase in the separation stress by 38% from 2.97 N cm 
2
 to 4.11 N 

cm 
2
. The increased adhesion of the peroxide-treated SEBS surfaces 

can be attributed to the formation of quasi-free ends of 

macromolecular chains.
17

 As expected, for modified SEBS, the 

surface charge increased 3.14 times from 0.92 nC cm 
2
 to 2.89 nC 

cm 
2
, ISC increased 2.4 times from 0.14 mA cm 

2
 to 0.33 mA cm 

2
 

and VOC increased from 60 V cm 
2
 to 156 V cm 

2
. Further, our 5 

cm
2
 TEG device generated 780 V, as demonstrated in the ESI,† Fig. 

S29. Moreover, the hydrogen peroxide-treated SEBS reached 375.27 

mW m 
2
 power density under the optimized load resistance of 1 10

9
 

O (Fig. 4(a)). The energy density was obtained by integral E ¼ Pdt, 

which yielded 15.32 mJ m 
2
 under load resistance of 1 10

10
 O (Fig. 

4(a)). The hydrogen peroxide-treated SEBS was also used to charge 

a variable capacitor circuit. The energy density stored in the 

capacitor after one contact–separation cycle and the corresponding 

voltage are shown in Fig. 4(b) for each capacitor value. The highest 

energy stored in the capacitor (1.58 mJ m 
2
), calcu-lated by E = 

0.5CU
2
, was reached when the capacitance of the capacitor circuit 

was set to approximately 40 pF. Note that the 

 
TEG device based on SEBS was produced for simple readily 

industrializable hot pressing approach. Thus, the expensive and 

complex nanostructuring approaches that have been con-sidered 

essential for high-performance TEG devices can be excluded. 

 
 

 

Conclusions 
 
The surface charge for polymers can be controlled by varying their 

physicochemical properties, such as the strength of macromolecular 

interactions in bulk and the surface adhesion, and thus, our 

experiments confirm the covalent bond cleavage as the mechanism 

for the contact electrification. Higher surface charge can be expected 

from the polymers that show strong surface adhesion and low 

cohesion energy in bulk. Thus, our strategy enables the improvement 

in the performance of TEG, leaving aside the expensive and complex 

nanostructuring approaches. 
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