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a b s t r a c t 

SrAl 2 O 4 : Eu, Dy, B particles were added in a phosphate glass (90NaPO 3 -10NaF (in mol%)) using the direct 

doping method. For the first time, the composition of the particles prior to and after embedding them 

in the glass was analysed using EPMA analysis. Boron was found to be incorporated in already distorted 

surroundings creating new trapping centers in the particles which are thought to be favourable for the 

tunnelling process and so for the afterglow at 10K. Despite the partial decomposition of the particles, 

the glass exhibit afterglow at low temperature confirming to be promising materials for low temperature 

applications. 

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b  

l

 

E

[  

s  

f  

c  

g  

t  

p  

H  

b  

g  

t  

a  

m  

t  

p  

c  

g  

p  

c  

f  

a

 

Persistent luminescence is light emission from excited material

that can last for several minutes or even hours after the termina-

tion of the excitation [1] . Luminescent materials use energy from

some external source, such as sunlight for example and store it

by the means of localizing charge carriers in some trapping cen-

ters. The charge carriers are released gradually from the trapping

centers, followed by recombination process and emission of light.

SrAl 2 O 4 :Eu,Dy is one of the most efficient persistent luminophores

known up-to-date [ 2 , 3 ]. The afterglow can be observed for up to

20 hours after removing the excitation [1–3] . Due to its strong and

extensive afterglow, SrAl 2 O 4 : Eu, Dy luminophore is widely used

in many applications – emergency signs, luminous paints, lumines-

cent coatings, in vivo imaging [2–6] . 

However, luminophores from Eu doped aluminate group lose

90% of their afterglow efficiency in temperatures below zero Cel-

sius, which is a major problem for material outdoor use [7] . Re-

cently it has been observed, that the addition of boron between

5 and 7 at% in SrAl 2 O 4 :Eu,Dy during the synthesis led to parti-

cles with afterglow even in temperatures as low as 10K, however

the reasoning for this is unclear [8] . As for the other drawback,

the PL (persistent luminescent) luminophores are usually obtained

during synthesis in the form of non-transparent powders thus lim-

iting the excitation and emission to the surface of the material and

therefore wasting the material in the volume. Therefore, a possible

solution is to disperse these luminophores in a transparent matrix

to increase the intensity of the persistent luminescence emission
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y exciting the entire volume of the host optimizing the usage of

uminescent microparticles. 

Glasses based materials have been successfully prepared with

u 

2 + ,Dy 3 + -doped SrAl 2 O 4 using the “Frozen sorbet method”

9] and also using the direct doping method [10] . In the “Frozen

orbet method”, the luminophore precipitates using the elements

rom the glass and therefore, the composition of the luminophore

an not be controlled. On the other hand, persistent luminescent

lasses can be prepared independently of their composition using

he direct doping method as the luminophore with target com-

osition and spectroscopic properties are added in the glass melt.

owever, as explained in [10] , the direct doping method needs to

e optimized as decomposition of the particles occurs during the

lass preparation. The decomposition of the particles depends on

he temperature at which the particles are added in the melt and

lso on the duration the particles are in contact with the glass

elt. Using optimized doping parameters, phosphate glasses with

he composition 90NaPO 3 -10NaF (in mol%) were successfully pre-

ared with persistent luminescence by adding various commer-

ial persistent luminescent particles in the glass melt [ 11 , 12 ]. This

lass was chosen due to its low melting temperature and high ca-

acity for dopant particles. The addition of the promising boron

ontaining SrAl 2 O 4 :Eu,Dy particles in this glass would allow the

abrication of a promising composite for low-temperature sensing

pplications. 

In this paper, we present, for the first time, a glass-based com-

osite that exhibits afterglow at very low temperatures. The mor-

hological and luminescent properties of the luminophores are dis-
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w  
ussed, as well as the change in the distribution of the trapping

enter when embedding the luminophores in the glass. 

In the present study, Eu, Dy, and B doped SrAl 2 O 4 samples were

ynthesized using the sol-gel method described in [8] . 1 at% Eu,

 at% Dy SrAl 2 O 4 samples were prepared with 5 and 7 at% of

oron (labelled as 5% B and 7% B, respectively). However, not all

he added boron successfully incorporates in the lattice of the mi-

roparticles as shown in the XPS analysis in [8] – the resulting

amples contain 3.70 and 6.05% of B, respectively. The SrAl 2 O 4 :

u, Dy (with 0.05 and 0.07 B addition) particles were then added

n the glass with the composition 90NaPO 3 -10NaF (in mol%) using

he direct doping method as in [10] . The glass was prepared us-

ng Na 6 O 18 P 6 (Alfa-Aesar, technical grade), Na 2 CO 3 (Sigma-Aldrich,

 99.5%) and NaF (Sigma-Aldrich, 99.99%). After melting the glasses

t 750 °C, the temperature of the glass melt was reduced to 575 °C
efore adding 0.25 weight-% of the PL particles. 3 min after adding

he particles, the glasses were quenched and finally annealed at

0 °C below their respective glass transition temperature for 6h in

ir. The glasses prepared with the particles doped with x = 0.05 and

.07 of boron are labelled 5% glass and 7% glass, respectively. 

An Electron Probe MicroAnalyzer (EPMA) (CAMECA, SX100) was

sed to determine the composition of the glasses and of the par-

icles with an accuracy of ± 0.1 at % using the Cameca QUANTI-

OOL analytical programme. The EPMA was operated at 15 keV and

0 nA. Prior to the measurement, the samples were polished and

oated with a carbon layer to prevent charging. 

The persistent luminescence spectra were recorded using An-

or Shamrock B303-I spectrometer. The samples were excited by

ulsed laser excitation. Excitation source was YAG:Nd laser LCS-

TL-382QT (266 nm, 8 ns). The decay profiles were also recorded

sing the same equipment. For thermally stimulated luminescence

TSL) measurements, the samples were cooled with Sumitomo HC-

 closed-cycle helium cryostat, temperature range 9 – 325 K. Lake

hore 331 Temperature controller was used for temperature con-

rol as well as for sample heating (6 K/min) during TSL measure-

ents up to 320 K. The excitation source for TSL measurements

as X-ray tube with W target (30kV, 10 mA), the samples were ir-

adiated for 20 minutes and the measurement was initiated right

fter the termination of excitation. 

SrAl 2 O 4 : Eu, Dy particles with 5% and 7% B addition were cho-

en in this study due to their excellent afterglow at 10K as re-

orted in [8] . The reader is referred to this paper for a complete

haracterization of the particles. EPMA was used to analyse the

omposition of the particles prior to adding them in the glass. 

According to the composition analysis ( Fig. 1 ), boron seems to

e unevenly distributed throughout the particles. There are some

oubts in the scientific community about the role of boron, when

t enters the lattice of SrAl 2 O 4 [13–15] . Boron is believed to create

 shrinkage of lattice and a distortion of the Dy 3 + environment, but

he thermally stimulated luminescence data are not consistent in

etween different publications when discussing the trapping cen-

ers in the material that are altered due to the introduction of B

one point of view is that boron itself without Dy does not con-

ribute to creation of trapping centers significant for persistent lu-

inescence and the key to long afterglow is the Dy-borate com-

lex [13] , however more recent papers talk about boron induced

rap levels, that are present even without Dy [14] . The concentra-

ion of Al decreases while the concentration of B increases indicat-

ng that B is incorporated in the lattice site of Al. Dy follows the

ame pattern, as visible in compositional analysis ( Fig. 1 .), leading

o the conclusion that B tends to incorporate in close proximity

f Dy, confirming the Dy-borate complex creation. Recently it has

een discussed that the low temperature luminescence in SrAl 2 O 4 :

u, Dy is due to the creation of excited Eu 

2 + via direct tunnelling

rom some trapping centers, that can not be emptied thermally

ue to lack of thermal energy [16] . One of the possibilities of the
nknown electron trapping centers in SrAl 2 O 4 luminophores is the

y - distorted AlO 4 tetrahedra [3] . If B incorporates instead of Al

n the crystal lattice, the smaller ion size of B leads to distortion

f the lattice. Previous research confirmed the existence of substi-

utional BO 4 units in the samples when adding boron [14] . BO 4 is

ore ionic in comparison to AlO 4 due to the higher electronega-

ivity and smaller size of B compared to Al [14] . Therefore, the B

ddition presumably would create lattice distortions, that can lead

o electron trapping. Dy ions, when incorporating in the Sr lattice

ite, has an uncompensated charge stimulating the charge trapping

n BO 4 units. The EPMA analysis allow us to conclude, that B in-

orporates in already distorted surroundings creating new trapping

enters in the material which are thought to be favourable for the

unnelling process. 

The particles were added in the glasses using the direct doping

ethod. The glasses exhibit homogeneous green PL confirming the

urvival of well dispersed particles in the glasses. The photolumi-

escence spectra ( Fig. 2 a and b) show a broad emission band with

aximum at 530 nm, that can be attributed to the Eu 

2 + emission

and. 

The samples were cooled to 10K temperature and the spectra

ere recorded. Both particles exhibit a narrowing of the emission

and due to the lack of phonon interactions and a second peak also

merges at 455 nm. This peak is attributed to Eu 

2 + emission from

ifferently coordinated Sr sites and is thermally quenched at tem-

eratures above 150 K as explained in [3] . We can note that the PL

pectra measured at RT do not change significantly when incorpo-

ating the luminophores in glass matrix: the intensity of the band

t 455 nm compared to the main band at 530 nm increases when

erforming the measurement at 10K, as well as a slight change in

he position of the second peak indicating that the site of the RE

ons in the particles is slightly changed after embedding the parti-

les in the glass. As explained in [10] , the changes in the site of the

E ions can be due to the partial decomposition of the particles oc-

urring during the glass preparation. As depicted in Fig. 3 , Al and

r can be found in the glass at the glass-particles interface con-

rming the partial decomposition of the particles associated with

he diffusion of the elements from the luminophore to the glass. 

The average size of the particles found at the surface of the

lasses is around 100 μm indicating that the particles have ag-

lomerated in the glass increasing their size and therefore decreas-

ng the surface/volume ratio. The composition analysis reveals that

he particles conserved their compositional integrity: they exhibit

 quite homogeneous distribution of Al 2 O 3 and SrO in their center.

t should be noted that there are no characteristic Eu 

3 + lines visi-

le in the photoluminescence spectra of the glasses. Therefore we

an conclude that although Eu 

2 + are also suspected to diffuse in

he glass, there is no (or little) oxidation from Eu 

2 + to Eu 

3 + taken

lace during the melting process. 

The PL decay of the particles prior to and after being embedded

n the glass are shown in Fig. 4 a. The microparticles alone show an

fterglow of several hours in room temperature and close to one

our in the low temperature region before they reach the level of

. 32 mcd, as discussed in [8] – the afterglow times do not sig-

ificantly differ in 5% and 7% B particles. However, when incorpo-

ated in glass, the afterglow time is reduced due to the particle

egradation during melting procedure ( Table 1 ). What is interest-

ng to note is that the sample with more boron shows a greater

fterglow time in 10 K temperature and smaller afterglow time in

oom temperature. This would serve as a confirmation to the claim

hat boron addition contributes to energetically deeper trap cre-

tion that are in close vicinity to the luminescence center [14] , as

hey are favourable for tunnelling process, but less favourable for

hermal release in room temperature. 

The TSL analysis of the particles and particles containing glass

ere carried out in temperature range 10-320K ( Fig. 4 b). The parti-



88 V. Vitola, V. Lahti and I. Bite et al. / Scripta Materialia 190 (2021) 86–90 

Fig. 1. Composition analysis of the SrAl 2 O 4 : Eu, Dy particle with 5% B (a) and 7% B (b). μ

Fig. 2. Photoluminescence spectra of the PL glass and of the PL particles alone with a) 5% B and b)7 % B. The spectra were measured at room temperature and at 10K. 
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Fig. 3. Composition analysis of the SrAl 2-x B x O 4 : Eu, Dy particle after embedding in glass with with 5% B (a) and 7% B (b). 

Fig. 4. Photoluminescence decay kinetics comparison of the particles alone and of the glasses (a) and thermally stimulated luminescence (TSL) spectra of the particles with 

7% B prior to and after being embedded in the glass (b). 
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Table 1 

Afterglow time until reaches 1% of initial intensity of the investigated particles containing glass mea- 

sured at room temperature (RT) and at 10K. 

5% B 7% B 

RT 10K RT 10K 

Particles alone > 8 hours > 50 min > 8 hours > 50 min 

Particles embedded in glass 150 min ± 10s 50 s ±10s 20 min ± 10s 300 s ± 10s 
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cles alone exhibit quite distinct TSL peaks which can be related to

well-defined trapping center (intrinsic SrAl 2 O 4 defects as discussed

in [17] ) energies. However, the wide TSL peak with maximum at

around 100K of the particles embedded in the glass is a clear in-

dication that the trapping center energies are spread out after em-

bedding the particles in the glass. The defect concentration in the

particles increases when adding the particles in the glass and the

defects might migrate with respect to their position in particles

due to the partial decomposition of the particles during the glass

melting, resulting in a different trapping center distribution. 

In summary, phosphate glasses containing SrAl 2 O 4 :Eu 

2 + , Dy 3 + 

were successfully prepared with persistent luminescence at low

temperature by adding the B containing PL particles in the glass

melt. From the EPMA analysis of the particles alone, B tends to

incorporate in already distorted crystal lattice surroundings in the

proximity of those Sr lattice sites, that have been replaced by Dy.

The addition of B presumably creates different lattice distortions,

that can lead to electron trapping. The afterglow decay of the

glasses was considerably lower compared to that of the particles

alone due to the decomposition of the particles occurring during

the glass preparation. However, due to B in the particles, the glass-

based materials exhibit afterglow at low temperature creating pos-

sible sensing and biomedical applications. 
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