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Abstract 
 

The main aim of this work was to obtain conductive polymer-based materials by 

incorporation of different amounts of multiwalled carbon nanotubes (MWCNTs) into 

poly(lactide)(PLA) using the electrospinning technique. Fiber-based nonwovens with 

0.2, 0.5, 1, and 3 wt% of MWCNTs were characterized regarding conductivity, 

morphology, thermal, and mechanical properties. It was confirmed that an increase of 

the MWCNTs content does not influence the increase of the material conductivity, since 

the conductivity was 170 ohm sq 
1
 for all composites. Scanning electron microscopy and 

transmission electron microscopy analyses revealed that smooth and beadless fibers 

were obtained, but also average diameters of composite nanofibers decreased with the 

increase of the MWCNTs content. Differential scanning calorimetry analysis showed that 

the presence of MWCNTs in the PLA matrix had a significant influence on the 

crystallization behavior of PLA nanofibers, because the decrease in crystallization tem-

perature (Tc) was detected. Also, the incorporation of MWCNTs into PLA fibers affected 

the melting process, enabling the generation of α’ form, while had no influence on 

ordered α crystal. The enthalpy of composite degradation decreased, because 

MWCNTs are well-known for good heat conductivity, and with that the second step of 

degradation slowed down, as it was confirmed by thermogravimetric analysis. The 
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addition of MWCNTs improved mechanical properties of composite fibers and caused the 
increase of both elasticity and tensile strengths of nanofibers. 
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Introduction 
 
Hybrid polymer-based materials with tailored properties are under development in recent 

years. Enhanced thermal, mechanical, optical, electrical, and other properties of hybrid 

materials are the result of combining two or more phases in materials processing. 

Nowadays, the trend in the production of hybrid materials is the substitution of synthetic 

materials with biomaterials. The use of bio-based polymers gives added value to hybrid 

materials due to their biocompatibility, biodegradability, and easy processing. One of the 

most promising and often used bio-based polymers is poly(lactide) (PLA), which can be 

produced from sugar-based raw materials.
1
 PLA can be used for many applications, such as 

biomedical, pharmaceutical, or packaging, but, due to its good processability, also for some 

industrial applications, especially in the automotive industry. Even if PLA has some good 

properties, the main drawback is its brittleness, and because of that, it lacks in mechanical 

and thermal properties.
2
 Slow crystallization rate present in PLA limits wider use of this 

biomaterial.
2
 These deficiencies can be overcome by adding some filler, macro or nano, 

into the PLA matrix. Many types of nanofillers were already used for improving PLA 

properties, such as silicon (IV)-oxide and titanium oxide nanoparticles, nanocellu-lose, 

different nanoclays, and carbon-based fillers.
3–10

 With the addition of fillers, besides 

improving mechanical and thermal properties, many scientists strive for obtaining con-

ductive polymers. The main aim is to obtain light materials with mechanical and electrical 

properties similar to metals, but the main issue is to produce conductive polymer-based 

materials. As polymers are inert and used as insulators, it is necessary to incorporate 

conductive material into the matrix. Carbon-based materials like graphite, carbon black and 

recently nanoforms of these, graphene and carbon nanotubes (CNTs), are most commonly 

used conductive materials.
11–13

 Carbon nanofillers induce conductivity of composites when 

added to the polymer, even in a small amount, up to 5 wt%. The main issue in the 

production of CNT-based nanocomposites is achieving homogenous disper-sion of CNTs 

into the polymer matrix. Many different methods, such as incorporation in situ, solvent 

dispersion, and melt mixing, were commonly used for dispersing of CNTs. Because of 

CNTs’ poor solubility in organic solvents, it is hard to obtain a good dispersion, especially 

when higher concentrations of CNTs are used, and because of this, melt compounding is the 

most efficient method for the preparation of CNT-based polymer composites. During the 

last decade, electrospinning as a new method for the production of composite materials has 

been employed.
14

 The main principle of this technique is the use of high voltage as driving 

force for the production of nanofibers from polymer-based solutions. In this case, CNTs are 

dispersed not only by mechanical dispersion in solvent 



 
 
but also under the influence of the electric field. With more or less success, PLA/CNT 
 
nanofibers were produced by electrospinning and conductive polymer mats were 

obtained.15–17 CNTs in the PLA matrix do not only induce conductivity of polymer but  
also have an influence on the crystallization of PLA and separation of different forms of 

crystals thereby improving mechanical properties by increasing the PLA strength. The 

influence on the thermal stability of PLA/CNT composite materials is also observed.
18,19

  

In this work, PLA-based composite nanofibers with different amounts of 

multiwalled carbon nanotubes (MWCNTs) were produced using the electrospinning 

technique in order to obtain conductive materials. Morphology of nanofibers and also 

electrical, mechanical, and thermal properties were examined and the impact of the amount 

of  
MWCNTs on the obtained composites properties was tested. 

 

Experimental 
 

Materials 
 
The PLA used in this study was provided by Esun, China. Parameters of the neat PLA 

are number-average molecular weight (Mn ¼ 60,520 g mol 1), weight-average 

molecular weight (Mw ¼ 160,780 g mol 1), and polydispersity (Q ¼ 2.6; determined 
using gel permeation chromatography). PLA was dried 6 h at 50 C prior to use.  

MWCNTs with a diameter of 13 nm, length of 1 mm, and purity of 95% were 

supplied by a Bayer Material Science. Dichloromethane (DCM) (Fisher Scientific, 

Loughborough, UK) and dimethylformamide (DMF) (Centrohem, Stara Pazova, 

Serbia) were used as solvents without further purification. 

 

Preparation of solutions for electrospinning and obtaining of 
PLA-based nanofibers 
 
For experimental purpose, in this work, five different PLA-based fibers were prepared: one 

pure PLA nonwoven, which served as a control, and four composite PLA fibers containing 

0.2, 0.5, 1, and 3 wt% of MWCNTs, respectively. PLA solution was prepared by mixing 

appropriate amount of PLA in solvent mixture of DCM/DMF (in the ratio 6:5 v/v). 

Composite PLA solutions were prepared in a two-step mixing process: first pure PLA 

solution was prepared and then to this solution, a matching amount, which corre-sponds 

with a concentration of MWCNTs, was added (Table 1). This solution was treated in an 

ultrasonic bath for 20 min to ensure the dispersion of MWCNTs within the PLA matrix. 

After 24 h of mixing on a magnetic stirrer at room conditions, the solution was transferred 

to a plastic syringe which was connected to the system in the electro-spinning machine 

Fluidnatek LE-10 (Bioinicia, Paterna, Spain). Process parameters for electrospinning were 

adjusted for the preparation of each sample (Table 1). 

 

Characterization of nanofibers 
 
Morphology of obtained samples was analyzed using scanning electron microscopf 

(SEM), Lyra (Tescan, USA) operated at 25 kV. 



 

 
Table 1. Process parameters for PLA-based samples preparation by electrospinning.  
 
     Needle to  

 Solvent mixture PLA MWCNTs Feed rate collector Voltage 

Sample DCM/DMF (g) (g) (g) ( μ l h 
1
) distance (cm) (kV) 

       

Pure PLA fibers 12.7 2.24 - 2000 10 8 

PLA-0.2% MWCNT 12.7 2.242 0.00448 2500 10 8 

PLA-0.5% MWCNT 12.7 2.243 0.01121 2000 12 9 

PLA-1% MWCNT 12.7 2.245 0.02245 2500 15 9.5 

PLA-3% MWCNT 12.7 2.253 0.06759 2000 15 10.5 
       

 
PLA: poly(lactide); DCM: dichloromethane; DMF: dimethylformamide; MWCNTs: multiwalled 
carbon nanotubes. 

 
 

Validation of the morphology nanofibers and verification of successful incorporation of 

MWCNTs into PLA-based nanofibers were confirmed using transmission electron 

microscopy (TEM; Tecnai G2 F20, FEI, USA). The samples for TEM imaging were placed 

on a holey carbon-coated grid AGS147-4 (Agar Scientific, Essex, UK). 
 

The conductivity of nanofibers was explained by measuring sheet resistivity of sam-

ples.20 The sheet resistivity of PLA/MWCNT nanocomposites was taken on four-point 
probe device and was measured at five different places on the surface of the samples, 
and the average values were taken. All measurements were done at room temperature. 
 

Dielectric properties (conductance) of the samples were measured by Digital LCR 
Meter 4284A, in the frequency range from 20 Hz to 1 MHz at the room temperature.  

Differential scanning calorimetry (DSC) measurements were performed using a 
Setaram 151 R instrument (software SETSOFT 2000 from Setaram) in the temperature 

range from 25 C to 200 C under nitrogen atmosphere at a heating rate of 5 C min 1. 

Cold crystallization degree (Xcc) was estimated according to the following equation:  

  
where DHm refers to the enthalpy of melting, DHc refers to the cold crystallization 

enthalpy of PLA/CNT composites; DHm
0 refers to the enthalpy value of 100% 

crystalline PLA, which is 93 J g 
1
 and wtPLA refers to the weight ratio of PLA in 

PLA/CNT composites.21 
 

Thermogravimetric analysis (TGA) was performed on the Setaram Setsys 
Evolution-1750 instrument. Samples (average weight 5 mg) were heated from 30 C to 

500 C at the heating rate of 10 C min 1 in an argon atmosphere with the gas flow rate 

of 20 cm3 min 1. During the heating period, the weight loss and temperature difference 
were recorded as a function of temperature.  

Mechanical properties of electrospun nonwovens were determined using an Instron 

1122 tensile testing machine (UK), with a crosshead speed of 1 mm min 1 at room 
conditions. Samples were cut from prepared nonwoven mats in the form of a rectangle, 

with approximate dimensions 10 50 mm2. 



    

    

    
 
 
Figure 1. SEM micrographs of (a) pure PLA fibers and (b) composite fibers with 0.5 wt% 
of MWCNTs, and (c) 3 wt% of MWCNTs.  
SEM: scanning electron microscopf; PLA: poly(lactide); MWCNTs: multiwalled carbon nanotubes. 

 

Results and discussion 
 
SEM images of pure and MWCNT-loaded PLA-based nanofibers are shown in Figure 

1, where pure PLA nanofibers are shown in Figure 1(a). It can be seen that smooth and 
uniform fibers without beads and drops were obtained using appropriate process para-

meters. The addition of nanofiller did not disrupt the morphology of nanofibers; smooth 

and beadless fibers were obtained from all prepared PLA-based solutions containing 

MWCNTs (Figure 1(b) and (c)). Due to the higher conductivity of composite polymer 
solutions caused by the presence of MWCNTs, the elongation of the viscoelastic 

solution in high-voltage electric field increased,22 so with the higher amounts of filler, 

fibers with lower diameters were obtained (Table 2). 
 

In the electric field, MWCNTs orient in the direction of the electric field, so they are 

distributed along the nanofibers.
15

 Due to good dispersion of MWCNTs within PLA, they 

are encapsulated into fibers, and it was not possible to notice them using SEM microscope. 

TEM results revealed the presence of by-products (carbon-type materials) of MWCNTs into 

the fibers, which is shown in Figure 2(b). Even the best quality MWCNTs have some 

carbon by-products and if these by-products are successfully incorporated into the nano-

fibers, this ensures that MWCNTs are also incorporated into the polymer matrix. Within 

nanofibers with a lower amount of MWCNTs (0.2 wt% and 0.5 wt%), nanotubes existed as 

single tubes, randomly dispersed through the fiber volume, because concentration was too 

low and no strong forces between them were present (Figure 2(c)). With the increase of the 

MWCNTs’ amount, attraction forces between MWCNTs are becoming stronger and they 

start to form aggregates (Figure 2(d)). Even though aggregates of MWCNTs are present, 

this did not hinder the conductivity of the fibers.  
For all composite fibers, sheet resistivity was around 170 ohm sq 1, so once the 

conductivity percolation was achieved, the increase in the MWCNTs’ amount had no 



 
 

 
Table 2. Average diameters of obtained PLA-based nanocomposite fibers.  
 
Sample Average diameter ( μm) Standard deviation 
   

Pure PLA fibers 1.65 0.5 

PLA-0.2% MWCNT 1.53 0.46 

PLA-0.5% MWCNT 1.28 0.16 

PLA-1% MWCNT 1.16 0.38 

PLA-3% MWCNT 0.87 0.6 
   

 
PLA: poly(lactide); MWCNT: multiwalled carbon nanotube.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. TEM micrographs of (a) pure PLA fibers and (b) composite fibers with 0.5 
wt% of MWCNTs and (c) and (d) 3 wt% of MWCNTs.  
TEM: transmission electron microscope; PLA: poly(lactide); MWCNTs: multiwalled 
carbon nanotubes. 



   

   

   
 
 
Figure 3. Conductance of pure PLA fibers (&) and composite fibers with 3 wt% of MWCNTs ( ).  
PLA: poly(lactide); MWCNTs: multiwalled carbon nanotubes. 
 
 
 
effect on the conductivity of the fibers. In our experiment, the lowest concentration of 

CNTs was 0.2 wt%, and even this small amount of carbon filler is sufficient for 

obtaining conductive material. SEM images illustrated that MWCNTs are not 

connected to each other along the fibers, but they are randomly arranged. Conductivity, 

in this case, is achieved with specific morphology of samples, where fibers form an 
unregular three-dimensional network which is enhancing the formation of percolation 

network.23,24 As the fiber diameter is small and the fibers are thin, MWCNTs in two 

connected fibers interact and transfer conductivity further along with the network. With 

the increasing MWCNTs content, conductivity was not changed, because the fiber 
network forms the same number of active places that take part in electron transfer. 
 

It was shown that specific morphology achieved using the electrospinning technique 

enables the preparation of conductive materials with the addition of very low con-

centrations of MWCNTs, which is hard to achieve with conventional process techniques. It 

can be explained by the fact that MWCNTs are embedded in polymer fibers, and because of 

this, when the conductive threshold was achieved, further addition of MWCNTs had no 

influence on the value of conductance. This was confirmed by con-ductance measurement 

on the frequency range from 100 kHz to 1 MHz (Figure 3). MWCNTs had a strong 

influence on the ionic and dipole interaction in the PLA matrix, increasing conductance and 

shifting this transition to the higher frequency. 
 

The results of DSC analysis of obtained nanofibers are summarized in Table 3 and 
Figure 4. It is evident that the presence of CNTs in the PLA matrix had a significant 
influence on the crystallization behavior of PLA nanofibers, because decreasing of 

crystallization temperature (Tc) was detected. As referenced in the literature, MWCNTs 



 
Table 3. Thermal properties of PLA-based composite nanofibers.   

Sample Tc (° C) Tm1 ( °C) Tm2 (°C) Xcc (%) 
     

Pure PLA fibers 128.83 155.8 160.8 24.69 

PLA-0.2% MWCNT 110.8 151 160.1 32.17 

PLA-0.5% MWCNT 116.4 151.8 159.7 27.14 

PLA-1% MWCNT 109.24 150.5 160 17.84 

PLA-3% MWCNT 114.54 152.1 160.6 31.20 
      
PLA: poly(lactide); MWCNT: multiwalled carbon nanotube; Tc: crystalline temperature; Tm: melting 

temperature; Xcc: degree of crystallinity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. DSC thermograms of pure PLA fibers and composite fibers with 0.2 wt% and 
0.5 wt% of MWCNTs.  
DSC: differential scanning calorimetry; PLA: poly(lactide); MWCNTs: multiwalled carbon 
nanotubes. 

 

can serve as nucleating agents and they ease crystallization of PLA.
18

 The highest 

decrease of Tc occurred with the addition of 1 wt% of MWCNTs amounted for almost  
20 °C. With the decrease of Tc, separation of different crystal forms in PLA was more 
prominent, so two different melting points were detected on DSC graphs. The first 
melting point decreased with the addition of MWCNTs for 3–4 °C, which is the con- 
 
sequence of ease crystallization, but the second melting point remained the same. 
Considering two crystal forms of PLA, α i α’, this kind of behavior was expected, related to 
the fact that MWCNTs can act as a nucleating agent. Namely, PLA belongs to the 
 
group of semicrystal polymers and dominant form of crystals present in the PLA matrix is a 

form. The melting temperature of these crystals is related to the ratio of L-lactide as well as 

to the presence of filler. The addition of MWCNTs definitely leads to an increase 



   

   

   
 
 
Figure 5. DTA curves of obtained composite nanofibers.  
DTA: differential thermal analysis. 
 
 
in PLA crystallinity rate through the increase in enthalpy of melting of a crystals. 
However, because of irregularity and the shape of the nucleating agent, less ordered α’ 
form crystal has been formed, which is proved with melting peak that occurred at a 
lower melting temperature compared to a form. The addition of MWCNTs to PLA 
fibers enables α’ form formation, while has no influence on ordered a crystal. Because 

of this, with increasing of MWCNTs’ loading, decreasing of Tm1 (derived from α’ 

form) is detected, which is a consequence of increasing the number of nucleating places 
that further eases the crystallization. This causes a slight increase in the crystallinity of 
PLA fibers, because the overall enthalpy of melting, which presents the sum of 
enthalpies of melting of a and α’ crystals, increased (Table 3).  

Comparison of thermal properties of pure PLA and PLA-based composite fibers is 

shown in Figure 4, where the influence of the presence of MWCNTs in the PLA matrix 

can be clearly noticed. Crystallization and melting peaks are sharper and separation of 

different forms of crystals is more evident within a sample with 0.2 wt% of MWCNTs. 
 

Thermal stability of the obtained nanofibers was examined using the TGA method. It 

was shown that the overall stability of the samples was not affected by the presence and the 

amount of MWCNTs (Figure 5). Pure PLA and the PLA composite with the 0.2 wt% of 

MWCNTs had slightly delayed degradation for a few degree Celsius, but that was not a 

significant difference in thermal stability. Considering SEM and TEM micrographs, it was 

proved that MWCNTs were present inside the polymer fibers, so an increase of thermal 

stability was not expected, because the degradation process starts from the surface of the 

fibers, on which the filler particles, that are inside, did not have any influence. In other 

words, a filler that was inside the fibers did not have influence on heat flow and fiber 

degradation process itself. However, when differential thermal analysis 



 
Table 4. Mechanical properties of PLA-based nanofibers.  
 
Sample ε (%) σ (MPa) 
   

Pure PLA fibers 14 0.43 

PLA-0.2% MWCNT 14.4 0.64 

PLA-0.5% MWCNT 15 1 

PLA-1% MWCNT 20 1.74 

PLA-3% MWCNT 22 1.92 
   

 
PLA: poly(lactide); MWCNT: multiwalled carbon nanotube.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Mechanical properties of pure PLA fibers and PLA composite fibers.  
PLA: poly(lactide). 

 
curves of pure PLA and composite fibers were compared, no influence of the filler on 
thermal stability was observed (Figure 4).  

Values of mechanical properties, elongation at break (ε, %), and tensile strength (σ, 

MPa) are summarized in Table 4. The addition of MWCNTs caused the increase of 

both elasticity and tensile strengths of nanofibers (Figure 6). It was noticed that the 

presence of MWCNTs had a higher influence on tensile strength, increasing it up to 

five times, which was expected due to tensile properties of CNTs themselves. The 

increase rate of elongation was lower, but significant when compared pure PLA and 

PLA-based composite with 3 wt% of MWCNTs. 

 

Conclusions 
 
This article illustrates that the electrospinning technique enables the production of 
conductive fibers made of biobased and biodegradable polymers with the addition of 
small amounts of MWCNTs, where specific morphology plays a significant role in 
transferring of conductivity. In this research, it was shown that MWCNTs are 



 

 

successfully incorporated into the PLA matrix and that uniform, smooth, and beadless 
fibers were obtained. The decrease of the average diameter with the increased amount 

of MWCNTs was observed, due to higher conductivity of polymer solution. Applied 
technique allowed good dispersion of MWCNTs into the PLA matrix and enabled their 
orientation in the direction of the fibers. The addition of MWCNTs increased crystal-

lization rate of composite nanofibers, eased formation of a
0
 crystal form and lowered 

melting temperature compared to pure PLA fibers. Thermal stability of the fibers was 

increased with the addition of MWCNTs, through slowing down of second degradation 
step. With the addition of nanofiller, elasticity and tensile strength of fibers increased, 
together with the toughness of the samples. Materials obtained this way are conductive, 

mechanically persistent, and thermally stable, which open brand new possibilities of 
their applications. 
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