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a b s t r a c t 
 

The comprehensive spectral study of lithium metagallate LiGaO2 crystal has been done including methods of pump-probe 

techniques, optical absorption, photoluminescence, luminescence kinetics, thermoluminescence and polarised luminescence in 

broad temperature region. Luminescence spectrum of the crystal contains the main emission bands at 4.43, 3.76, 2.38 and 1.77 

eV. The novel data on luminescence excitation spectra including VUV area, kinetics and polarization are presented. The cor-

relation between pump-probe experiment results and luminescence properties is found. Conclusions are done about the 

recombination character of all the observed emission bands, implying tunnel recombi-nation of donor-acceptor pairs.  

 

 
 
 
 
1. Introduction 
 

Lithium metagallate LiGaO2 is arousing interest of investigators as a 

material potentially attractive for various practical applications. Previously 

this crystal was studied due to its piezoelectric proper-ties [1] and proposed 

for ultrasonic devices [2], it was investigated as a laser material when doped 

with chromium [3] and vanadium ions [4]. Recently LiGaO2 was proposed as 

a lattice-matched sub-strate for heteroepitaxy of GaN [5], InN [6] and ZnO 

[7e9]. Alloying of LiGaO2 with ZnO creates a material with a band gap 

tunable in 3.3e5.6 eV range [10]. Besides when doped with cupper ions this 

crystal was studied as a material for optically and thermally stim-ulated 

dosimetry [11]. 

 

Lithium metagallate is a wide band gap ternary mixed-metal oxide 

compound (I-III-VI). LiGaO2 has a wurtzite-derived struc-ture with a 

particular ordering of Li and Ga cations accompanied by structural relaxation 
compensating slight difference in LieO and GaeO bonds [12]. The space 

group of LiGaO2 is Pna21 determining polarity of the crystal along c-axis 

[13]. LiGaO2 is optically negative biaxial crystal with a principal optical axis 

directed along c. Data on its band gap Eg varies from 5.26 eV [14] to 5.76 eV 

[15], but the most usual value referred at room temperature is 5.6 eV [16]. In 
the recent paper [17] it was shown that the band gap is about 6.1 eV and 
fundamental absorption edge starts with exciton transitions. The exciton 
energy, which corresponds to the band gap energy minus the exciton binding 
energy, was determined as 6.03, 6.08, and 5.92 eV for Ejja, Ejjb, and Ejjc 
polarizations, respectively.  

Though many potential applications of LiGaO2 imply use of its optical 

properties there are not many studies of its luminescence characteristics. As to 

our knowledge, there are some works devoted to luminescence of dopants in 

LiGaO2, such as ions of Cr
3þ [18,19], Cuþ [11], V

3þ [4], but very few studies 

deal with luminescence of pure crystals e among them the early work of 

Dirksen [15], where the observed emission band at 360 nm and its excitation 

band at 220 nm were explained by charge transfer transitions between Ga and 

O ions, and the recent work [20] on luminescence of LiGaO2 nanoflakes with 

the same interpretation of the emission and excitation bands, located at lower 

energies compared to bulk crystal. 

 

Recently a large b-LiGaO2 single crystal was grown by a Taiwan group 

with an aim to provide a high quality lattice-matched sub-strate for ZnO 

heteroepitaxy [14]. The authors have done the basic characterization of the 

grown material including cath-odoluminesence at room temperature.  

 

 

 

 

 

 

However, still more detailed study of LiGaO2 properties, especially those 

connected with lumi-nescence seems to be necessary. 



  

 
The aim of the present paper is investigation of the luminescent properties 

of pure lithium metagallate in general, and elucidation of luminescence 

mechanisms in particular. 

 
2. Materials and methods 

 
2.1. Sample 
 

A large b-LiGaO2 crystal was produced by Taiwan authors of this paper 

using Czochralski method from mixture of raw material powders of LiCO3 

and Ga2O3 (5 N purity) according to stoichio-metric ratio [14]. The producers 

found that LiGaO2 evaporated congruently at the melting point in the used 

growth atmosphere, so neither Li nor Ga compensation was necessary. The 

bulk crystal was cut into samples along the main crystallographic directions. 

Most of the experiments were done using the LiGaO2 (100) sample, having 

size of 10 10 1 mm. X-ray fluorescence elemental analysis showed presence 

of no impurities except of Al ions with concen-tration 0.2 w%. 

 

 
2.2. Experimental 
 

LiGaO2 crystal was investigated using several luminescence and pump-

probe experimental methods for study of luminescence processes and non-

equilibrium states of excited charge carriers.  
Optical absorption was measured using a spectrophotometer (Specord 

210, Analytic Jena) in the 190e1100 nm (6.5e1.12 eV) spectral range. Study 

of thermal dependence of absorption was done inserting a sample into a 

closed cycle refrigerator (CCS-100/ 204, Janis Research Corporation), which 

provided fixed tempera-tures in the 10e300 K range. For this experiment a 

sample with two polished faces was used. 

 
Photoluminescence PL and photoluminescence excitation PLE 

were studied using two types of self-made experimental set-ups operating in 

UV-VIS and VUV ranges. 1. In the UV-VIS set-up excitation light in the 

190e400 nm (6.5e3.1 eV) range was pro-vided either by a deuterium lamp 

(LDD-400) conjugated with a grating monochromator (MDR-2, LOMO) or a 

solid state laser DTL-389QT (263 nm, or 4.71 eV); luminescence registration 

in 240e900 nm (5.16e1.38 eV) range was done either by photo-multipliers 

(Hamamatsu H7468-03, H7468-20) connected with a prism monochromator 

(SPM-2, Carl Zeiss) or with CCD camera (Andor DV 420A-BU2) conjugated 

with a grating monochromator (Andor Shamrock SR-303i-B); a sample was 

mounted on the cold finger of a close cycle refrigerator (CCS-100/204, Janis 

Research Corporation). 

 
 

2. In the VUV set-up excitation sources were presented by ArF (193 nm, 

or 6.42 eV, pulse energy of about 5 mJ with a duration of 5 ns) and F2 (157 

nm, or 7.90 eV, pulse energy of about 0.5 mJ with a duration of 5 ns) pulse 

lasers (PSX-100, Neweks) and by a deute-rium discharge lamp with a MgF2 

window (VUV Light Source Unit L10366 Series, Hamamatsu) conjugated 

with a 0.5 m vacuum monochromator (Seya-Namioka); luminescence 

detection was realized with a grating monochromator (MCD-2 Belorussia) 

and a photomultiplier tube (H6780-04, Hamamatsu). Sample tempera-ture in 

the 80e300 K was provided by a liquid nitrogen cryostat, additional cooling 

down to 60 K was done by evaporation of liquid nitrogen. In both set-ups 

laser intensity was attenuated by means of metal sieve filters. All necessary 

instrumental spectral corrections were made. 

 

 

Time-resolved photoluminescence (TRPL) measurements including 

time-resolved spectra and luminescence decay curves were performed on the 

VUV set-up, for luminescence detection using a photomultiplier tube H6780-

04 (0.7 ns rise) with 50 Ohm resistive load in time range 10 
9
 e 10 

4
 s and 

Hamamatsu H8259- 

 

02 module in photon counting mode in time range 10 
5
 e 10 

2
 s. An 

oscilloscope (Textronic TDS 2022B) was exploited for decay curve 

registration. Each curve was averaged for 128 pulses. The time resolved PL 

spectra were measured by registration of the decay curve for each point of the 

PL spectrum in nanosecond and microsecond ranges. 

 
Pump-probe measurements including Light induced transient grating 

(LITG) [21] and Differential transmittivity (DT) [22] were used to obtain 

information on ultra-fast carrier recombination phenomena during crystal 

excitation process. In DT experiments LiGaO2 sample was hit by a pump 

pulse, which generated excitation in the sample, then the sample was 

irradiated by a probe pulse and its transmittivity was measured. Analysis of 

DT gives information on the decay of the generated excitation, i.e. excited 

carriers. These measurements were done using picosecond Nd:YAG laser 

pulses at 213 nm (5.82 eV) (pump) for excitation and 1064 nm (1.17 eV) 

(probe) wavelengths for probing of excited carrier dynamics. Dif-ferential 

transmittivity DT ¼ DT/T, where T is the sample trans-mittivity for probe 

pulse at 1064 nm wavelength, determines absorption change, and thus excess 

carrier density in the sample. Detailed description of the equipment can be 

found in Ref. [23]. 

 

LITG decay was monitored by diffraction of a delayed probe beam at 

1064 nm on interference pattern, generating a dynamic spatial diffraction 

grating in the sample and leading to refractive index modulation by free 

carriers and thus providing an instanta-neous diffraction efficiency DE(t). 

Comparison of the LITG grating decay times, tG, at few different grating 

periods (L ¼ 2, 4 mm) al-lows determination of the carrier diffusion 

coefficient D and their lifetime tR as 1/tG ¼ 1/tRþ4p
2
D/L

2
. 

 

Thermoluminescence was measured on the UV-VIS experi-mental set-

up, using monochromator-filtered emission of the deuterium lamp for 

preliminary irradiation of the sample with definite wavelengths. Heating in the 

10e300 K temperature range was done with heating rate 2 K/s in the helium 

closed cycle refrigerator. 

 
Polarised luminescence was studied on the UV-VIS experi-mental set-

up, modified by insertion of polariser P1 (Rochon prism) in the excitation 

channel, and polariser P2 (UV polarization film) in the perpendicular 

luminescence detection channel. Besides, a depolariser was mounted before 

monochromator of the registra-tion system in order to prevent interference of 

polarised light with optical system of monochromator. During luminescence 

polariza-tion measurements P1 was oriented vertically, corresponding to 

vertical orientation of electric field vector of excitation light wave, and 

luminescence signal was detected for two orientations of P2 e vertical and 

perpendicular, denoted, correspondingly I0 and I90 . Polarization degree was 

calculated according to a formula: 

 

 

3. Results 

 

3.1. Optical absorption 
 

Investigation of spectral properties of LiGaO2 started with measurement 

of absorption spectra in 10e300 K temperature range, shown in Fig. 1. The 

sample orientation was not determined during the absorption and 

luminescence measurements, so the results are averaged for all crystal 

polarizations. The curves are presented by the optical edge of fundamental 

absorption around 5.17 eV at RT and a long absorption tail (shown up to 4 

eV) stretching up to 1 eV without any features. The saturation level of optical 

density at value 3 is instrumental. Temperature rise from 10 
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Fig. 1. Absorption spectra of LiGaO2 measured at 10 K (1), 100 K (2), 200 (3) and 300 K Fig. 3. Photoluminescence excitation of LiGaO2 for emission 4.43 eV (1), 3.76 eV (2), 

(4). 1.77 eV (3) at 10 K. 

 

to 300 K (curves 1 to 4) causes red shift of the optical band gap by ~ 0.1 eV. 

The experimentally observed absorption edge for the sample investigated is 

located at lower energy than the value of the exciton energy, determined in 

Ref. [17] (5.92e6.03 eV, depending on crystal orientation), which could be 

explained by presence of an impurity or other defect absorption band. 

 

 
3.2. PL emission and excitation 

 
Characteristic features of PL at 10 K are presented by emission and 

excitation spectra in Figs. 2 and 3, correspondingly. These spectra are 

measured on UV-VIS experimental set-up, using a deuterium lamp as a 

source of excitation light. At low temperatures (<140 K) the emission 

spectrum contains four main bands at 4.43 eV (280 nm), 3.76 eV (330 nm), 

2.38 eV (520 nm) and 1.77 eV (700 nm). Such set of luminescence bands 

coincides well with the emission bands observed in cathodoluminescence 

spectrum at RT [14]. Heating of the sample to temperatures up to 700 K and 
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Fig. 2. Photoluminescence of LiGaO2 under deuterium lamp excitation 6.42 eV (1), 5.85 eV 

(2), 4.96 eV (3) at 10 K. 

 
following cooling to RT causes redistribution of the long wave-length bands: 

the 2.38 eV band increases and the 1.77 eV band decreases, probably due to 

thermal restructuration of intrinsic defects. Excitation of the 4.43 eV emission 

band seems to form an excitation band with maximum 6.29 eV (see Fig. 3, 

curve 1), which is located inside the fundamental absorption region; the 

observed shape of this excitation band is not completely reliable because the 

spectral region below 6.2 eV lies on the brink of sensitivity capa-bilities of 

the equipment, taking into account the weak excitation light. The excitation 

band's apparent tail at 5.9e5.4 eV is explained by interference with the 3.76 

eV band due to use of wide mono-chromator slits when monitoring the weak 

luminescence signal. Excitation of the 3.76 eV emission band forms a band, 

centred around 5.8 eV (Fig. 3, curve 2), while both 2.38 and 1.77 eV emission 

bands are excited in the 4.9 eV excitation band (Fig. 3, curve 3). The partial 

overlapping of the 4.43 eV emission band with the 4.9 eV excitation band 

makes possible the reabsorption of 4.43 eV light by the excitation band of the 

1.77 eV emission. 

 

 

Increase of temperature causes thermal quenching of all emis-sion bands, 

but quenching rate of the 4.43 eV band is the fastest. In the case of the 

deuterium lamp excitation the 4.43 eV emission band together with its 

excitation band disappears at temperature 140 K, while the rest bands survive 

at RT and higher temperatures. At RT under lamp excitation the luminescence 

spectrum contains the 3.76, 2.38 and 1.77 eV bands. Arrhenius plot of the 

thermal behaviour of luminescence bands excited by deuterium lamp (not 

shown graphically) gives the following values for the activation energies: 47, 

43 and 52 meV for the 4.43, 3.76 and 1.77 eV emission bands, 

correspondingly. Under high excitation intensity, which will be described 

later, activation energy of the 4.43 eV band is 86 meV. 

 

Use of the VUV experimental set-up allows measurement of excitation 

spectra at much higher photon energies compared to UV-VIS set-up, covering 

the spectral region of LiGaO2 fundamental absorption. The excitation sources 

of the VUV set-up include ArF (193 nm, or 6.42 eV) and F2 (157 nm, or 7.9 

eV) lasers and a deuterium lamp, and the temperature range is limited by 

60e300 K. At low temperatures PL emission spectrum has the same 4.43, 

3.76, 2.38 and 1.77 eV bands under all excitation sources, no additional 

emission was observed. At RT the 4.43 eV emission band is seen only under 

laser excitation. 

 

PL excitation spectra measured at 80 K are shown in Fig. 4, for 



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Photoluminescence excitation spectra in VUV region at 80 K for emission bands 4.43 eV (1), 3.76 eV (2) and 1.77 eV (3). Insert: comparison of the excitation spectrum of the 4.43 eV band 

with imaginary part of dielectric functions for polarizations along the a, b and c crystallographic axes, data taken from Ref. [17]. 

 
this measurement the emission bands were selected by optical glass filters or 

interference filters. Excitation spectrum of the 4.43 eV emission band (Fig. 4, 

curve 1) is presented with a broad band of a complex structure in the 6e9 eV 

range with a sharp feature around 6 eV standing apart. The excitation subband 

at 6 eV practically coincides with the curves of imaginary part of dielectric 

functions for polarizations along the a, b and c crystallographic axes (see 

insert of Fig. 4) based on results of ellipsometric measurements and assigned 

to exciton absorption [17]. Excitation of the 4.43 eV emission band is located 

entirely in the spectral range of funda-mental absorption, no additional 

excitation bands are observed in the band gap region. Structure of the 

excitation spectrum most probably corresponds to superposition of exciton 

and band-to-band transitions of LiGaO2 crystal. 

 

 

Excitation spectrum of the 3.76 eV (Fig. 4, curve 2) in addition to the 5.8 

eV band contains also features in the VUV region, with the dominant subband 

at 7.4 eV, while the excitation spectrum of the 
 

 

integrated 2.4e1.8 eV emission presented by curve 3, consists of the already 

mentioned 4.9 eV band, and two subbands in VUV region e 6.05 and 7.29 

eV. Bands in below bandgap excitation region correspond to photo-ionisation 

processes of luminescence centres. Latter processes also possess few higher 

energy subbands due to electron transitions from luminescence centres (which 

could be impurities or intrinsic defects) to higher energy conduction sub-

bands with further thermalization. 

 

 

3.3. Effects of excitation intensity on luminescence properties 

 

Presence of the 4.43 eV emission band in PL emission spectra produced 

by excitation with 193 nm (6.42 eV) laser and its absence under deuterium 

lamp excitation (at 195 nme6.36 eV) at RT sug-gested an idea about 

dependence of LiGaO2 PL properties on exci-tation intensity. 

 

To examine effect of the excitation intensity on PL properties of  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. PL under 193 nm (6.42 eV) laser excitation with excitation intensity 50 mJ/cm
2 (a) and 0.3 mJ/cm

2 (b), at temperatures 10 K (1), 100 K (2), 200 K (3) and 300 K (4). Line at 3.20 eV is the 

second order of laser excitation line.  
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LiGaO2 we have measured PL spectra in identical conditions under 193 nm 

(6.42 eV) laser excitation with varied intensity at 10e300 K temperatures. In 

Fig. 5 there is shown the short wavelength part of the normalised emission 

spectra containing the 4.43 and 3.76 eV emission bands. At 10 K the spectra 

are similar; they are repre-sented with the 4.43 eV band notwithstanding 

excitation intensity (Fig. 5a, curve 1 and b, curve 1). Rise of temperature 

causes decrease of relative contribution of the 4.43 eV band and increase of 

the 3.76 eV band. From comparison of two PL spectra sets it is seen that 

thermal evolution of spectra evidently depends on excitation in-tensity: the 

lower excitation intensity - the faster thermal quenching of the 4.43 eV band 

and building-up of the 3.76 eV band's contribution. As a result in the RT 

spectra obtained under the lowest excitation intensity the 4.43 eV band is 

nearly not observed (see Fig. 5b, curve 4). Similar situation was observed in 

PL spectra excited by very weak light from deuterium lamp. 

 

 

Dependence of the 4.43 eV band intensity on temperature for different 

excitation cases is shown in Fig. 6. The curves are nor-malised to maximum 

intensity. Two regions are observed in ther-mal evolution of all dependences: 

1) growth until maximum value is reached and 2) thermal quenching. The 

lamp-excitation case stands apart, characterised with turning point at 70 K 

and complete disappearance at 150 K. Almost parallel laser-excitation curves 

demonstrate a shift of turning point to higher temperatures ac-cording to 

excitation intensity increase e the higher excitation in-tensity, the higher 

temperature of the turning point and higher temperature of the 4.43 eV band's 

survival. Activation energy for the 4.43 eV band under the highest excitation 

intensity constitutes 86 meV. 

 

 

Besides, increase of excitation intensity causes a blue shift of the 4.43 eV 

band's spectral position. Fig. 7 shows normalised PL spectra for 3 different 

intensities of the 193 nm (6.42 eV) laser light at 60 K e temperature, at which 

shape of the 4.43 eV band is not distorted by presence of the 3.76 eV band. 

The observed spectral shift con-stitutes around 0.1 eV. 

 

 

3.4. PL kinetics and time-resolved spectra 

 

PL kinetics was measured in the 80e300 K temperature range. Measured 

luminescence decay time was limited by nanosecond range due to exciting 

pulse duration of ArF (193 nm, or 6.42 eV) and F2 (157 nm, or 7.9 eV) 

constituting 5 ns.  
The 4.43 eV decay curve has a complex nonexponential shape;  
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Fig. 6. Dependence of 4.43 eV emission band intensity on temperature, for excitation using 1) 

6.29 eV light from deuterium lamp selected by monochromator; and 193 nm (6.42 eV) laser 

light with intensity 2) 0.3 mJ/cm
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Fig. 7. 4.43 eV emission band under 193 nm (6.42 eV) laser excitation with intensity 50 (1), 3.5 

(2) and 0.3 (3) mJ/cm
2
 at temperature 60 K. 

 

at 80 K it consists of 3 components with decay time of: 1) several 

nanoseconds; 2) several hundreds of nanoseconds and 3) several hundreds of 

microseconds. The second and third decay compo-nents are demonstrated in 

Figs. 8 and 9, correspondingly. PL decay pulses are almost independent of the 

laser used. Approximation of the slowest component, showed in Fig. 9 fits the 

law I ~ t 
1.1

 describing dependence of luminescence intensity I on decay time 

t, which is typical for the case of tunnel luminescence [24]. With temperature 

rise up to RT all components become faster e the fastest component reaches 2 

ns and disappears, the second component reaches several tens of nanoseconds 

and the slowest component e several tens of microseconds. 

 

 

Decay pulse of the 3.76 eV band is also represented with a complex 

nonexponential curve comprised of microsecond and millisecond 

components, whose duration become slightly shorter with temperature rise 

from 80 to 300 K.  
No effect of excitation intensity on luminescence decay time was 

observed.  

Time resolved spectra of LiGaO2 excited by the 193 nm (6.42 eV) laser at 

80 K is shown in Fig. 10 in comparison with the steady-state spectrum, 

presented by the 4.43 eV band with a tail in the long wavelength side. PL 

pulses with 3 ns, 3 ms and 80 ms were chosen for  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. PL decay of LiGaO2 (second component) at 80 K under excitation with 193 nm (6.42 

eV) laser (1) and 157 nm (7.9 eV) laser (2), fit t z 900 ns is shown by line (3). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 9. PL decay of LiGaO2 (the slowest component) at 80 K under excitation with 193 nm 

(6.42 eV) laser (1) and 157 nm (7.9 eV) laser (2), fit I ~ t 
1.1

 is shown by line (3).  
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Fig. 10. Time resolved PL spectra of LiGaO2 under 193 nm (6.42 eV) laser excitation at 80 K 

detected in steady state mode (1), and selecting PL pulses with decay time 3 ns (2), 3 ms (3) 

and 80 ms (4). 

 

spectral depiction. Spectral distribution of PL pulses with decay time 80 ms 

corresponds to the 3.76 eV band (Fig. 10, curve 4)  

 
responsible for the tail of the emission spectra. Spectral distribution of the 3 

ns and 3 ms pulses forms two subbands inside the steady-state 4.43 eV band 

(Fig. 10, curve 1); the “faster” subband (Fig. 10, curve 2) is blue-shifted 

compared to the “slower” subband (Fig. 10, curve 3) by 0.1 eV. 
 

LiGaO2 revealed luminescence afterglow, which was better seen 

after X-ray irradiation. Afterglow luminescence detected in the range of tens 

of seconds at 60 K, was fitted by the laws I ~ t 
0.8

 and I ~ t 
1.2

 for the 4.43 

and 3.76 eV emissions, correspondingly. 

 

3.5. Pump-probe experiments 

 

In pump-probe experiments including measurements of differ-ential 

transmittivity and light induced transient grating decay excitation was done 

by picosecond laser with emission wavelength 213 nm (5.82 eV), which 

corresponds to the edge of the band gap and in the same time falls into 

excitation band of the 3.76 eV emission. 

 

Measurements of Differential transmittivity characterises change of 

absorption corresponding to laser excitation pulse caused excess carrier 

density, which could be either free or trapped.  
Differential transmission decays measured at different temper-atures were 

fitted with two-exponential functions DT ¼ A1exp(-t/ t1) þ A2exp(-t/t2) (Fig. 

11a). Fast decay component (t1 ¼ 100e700 ps) and slow one (t2 > 4 ns) were 

observed. The fast component appears due to absorption by free carriers 

(presumably electrons) of probe photons and subsequent scattering of free carriers 

to en-ergy bands with help of optical phonons. Slow component is due to photo-

ionisation of shallow donors by probe photons, which were quickly filled (z1 ns) 

by electrons after excitation; photoionized electrons are scattered to higher energy 

bands with help of optical phonons. Holes shortly after excitation are quickly 

captured to shallow acceptors and further are being slowly released, they 

recombine with electrons through nonradiative midgap defects and provide slow 

decay (electrons cannot recombine non-radiatively if holes are not released and 

captured to midgap defects). 

 

 

 

Fast component amplitude A1 increases with temperature as ~ T
1/2

, 

which corresponds to temperature dependence of ab-sorption cross section on 

optical phonons [25]. Fast component lifetime decreased with temperature 

approximately as T 
1
 (Fig. 11b), indicating possible increase of carrier capture 

cross sec-tion with temperature and/or density of electrically active traps due 

to their ionisation [25]. Thermal activation energy of Ea ¼ 104 meV was 

found from slow trapped carrier component A2 differential transmission 

signal decrease with temperature. A2 was fitted with  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Characteristics of LiGaO2 differential transmission: (a) differential transmission decays at different temperatures and (b) temperature dependences of slow component amplitude and fast 

component decay time, which slope is fitted as t1 ~ T 
1.1

. 



  
 

const*T
1/2

/(1 þ a*exp(-Ea/kT)) relationship, where T
1/2

 corresponds to 

electron absorption cross section on optical phonons tempera-ture 

dependence. Latter explains DT signal increase in 80e100 K range. 

Activation energy pointed out to activation of presumably shallow acceptors 

(probably responsible for 4.43 eV band, having similar activation energy and 

temperature dependence, see Fig. 6). Remaining slow component part at the 

highest temperatures (DT ¼ 0.0015) should indicate for deeper defects (e.g. 

related to 3.76 eV band). 

 
Simultaneously with differential transmittivity the pump laser induced 

luminescence was recorded. It was found that the carriers generated in pump-

probe experiments were quickly captured to impurities or native defects 

leading to dominant 3.76 eV defect emission as 213 nm (5.82 eV) excitation 

corresponds to excitation of this emission band. Carrier density of 10
18 19

 cm 
3
 was esti-mated from 3.76 eV band saturation: Ntrap ¼ aIsat/hn. Latter trap 

DT decay was slow. 

 
Light induced transient grating decay characterises free elec-trons 

excitation and their recombination through diffraction effi-ciency (DE). The 

LITG measurements showed considerably fast diffraction efficiency decays: 

their lifetime reduced from 200 to 30  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 12. Recombination lifetime dependence on carrier density DN determined by LITG.  

 
ps with excitation increase (Fig. 12). DE decay fast component lifetime at low 

excitation intensity coincides with that from DT fast component 

measurements. At low excitation intensities the fast free carrier relaxation 

could be explained by nonradiative capture of carriers to traps connected with 

defects or impurities, followed by 4.43e3.76 eV luminescence with much 

slower decays (see Fig. 11a). At higher excitations linear decrease of carrier 

lifetime with excited carrier density DN can be explained by trap assisted 

Auger recombination [26] through midgap defects. In LiGaO2 midgap defects 

are responsible for the 2.38e1.77 eV emission bands. The trap assisted Auger 

recombination process presumably involves two free electrons and a hole 

bound to a close midgap defect. 

 

 

 

3.6. Thermoluminescence 
 

It was found that LiGaO2 reveals thermoluminescence after preliminary 

irradiation with UV light. TL is excited in the region of PL excitation bands 

(4.5e6 eV) and the most efficiently in the band-to-band transitions region 

(6e8.5 eV). For TL measurements in the 10e300 K range irradiation was 

done with light corresponding to the PL excitation bands: at 6.26, 5.59 eV 

(shown in Fig. 13a) and 4.96 eV. At all irradiation wavelengths TL curves 

have 2 main TL peaks at 120 and 170 K (Fig. 13a). In TL emission the 2.38 

and 1.77 eV bands are dominant, the 3.76 eV band is hardly seen, and the 

4.43 eV band is not observed e see Fig. 13b. Spectral distribution of TL 

response varies with temperature and depends on particular irradiation 

wavelength. The tentative study of TL at elevated tem-peratures after 

preliminary irradiation at RT implies the presence of an intensive peak around 

400 K with TL emission in 2.4e1.5 eV spectral region. 

 

 

 

3.7. PL polarization 
 

PL polarization study of LiGaO2 showed that PL reveals polari-zation 

almost in all emission bands in the 10e300 K temperature range. Fig. 14 

shows PL spectra measured at parallel (solid line) and perpendicular (dotted 

line) orientations of the analyser at 10 K (Fig. 14a) and 300 K (Fig. 14b). 

Spectral dependences of polarization degree P calculated according to 

formula (1) at 10 and 300 K are shown on (Fig. 14c and d, correspondingly). 

Luminescence polari-zation was not observed in the 4.43 eV band, which 

occurs under 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. a) TL curves after irradiation with 5.59 eV light at 10 K for emission selecting 3.76 eV (1), 2.38 eV (2), 1.77 eV (3) and b) TL emission spectra at temperatures 105 K(1), 120 K(2), 170 K 

(3). 
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Fig. 14. Polarised PL measured at parallel (solid line) and perpendicular (dotted line) orientations of analyser at 10 K (a) and 300 K (b) and spectral dependences of polarization degree at 10 K (c) 

and 300 K (d) under excitation 6.2 eV (1), 5.74 eV (2), 5.46 eV (3) and 4.96 eV (4). 

 
deuterium lamp excitation 6.2 eV only at low temperature (Fig. 14a, curve 1), 

while all other bands demonstrated rather high polari-zation degree up to 

20e25%. Character of spectral dependence of P within the emission bands 

4.2e2.9 eV and 2.7e1.5 eV speaks in favour of complex nature of the 

corresponding emission, contain-ing several subbands. 

 

 
4. Discussion 

 
Different experimental methods have been used to explore processes 

caused by light in lithium metagallate LiGaO2. The pump-probe methods 

brought information about excitation and relaxa-tion of charge carriers, while 

photoluminecence, thermolumines-cence and polarised luminescence 

identified luminescence processes in this material. Luminescence spectra of 

LiGaO2 contain 4 main emission bands peaking at 4.43, 3.76, 2.38 and 1.77 

eV. Their presence in TL emission spectra and/or luminescence afterglow 

testifies that all these emissions are due to recombination pro-cesses. Let us 

discuss the observed luminescence bands in more detail. 

 
 

Discussing the luminescence mechanisms we will use a concept of donors 

and acceptors. Free charge carriers e electrons and holes, which are generated 

during excitation are seized on electron and hole trap levels, creating donor 

and acceptor centres, correspond-ingly. Donor and acceptor centres 

participate in recombination processes. Depending on generation process the 

recombining donor-acceptor pairs are characterised by either random distribu-

tion of separation distance between components (random DAP) or close 

separation distance between genetically related pair com-ponents (geminate 

DAP). 

 
The 4.43 eV band is excited only at energies at and above 6 eV e in the 

spectral range corresponding to exciton states and band-to-band transitions. 

The excitation spectrum of this band (Fig. 4) containing a sharp feature at 6 

eV, which is assigned to exciton absorption [17] allows assuming exciton 

character of the emission band. However, the further speculations based on 

experimental results show the 4.43 eV band is due rather to donor acceptor 

radiative recombination than exciton (free or bound) emission. 

 
Properties of the 4.43 eV emission band depend on excitation: rise of 

excitation intensity causes blue shift of the band's maximum (Fig. 7) and 

decrease of the thermal quenching rate e the emission band survives at higher 

temperature (Figs. 5 and 6). Kinetic mea-surements of PL demonstrate a 

complex shape of 4.43 eV decay consisting of superposition of exponents 

with time constants from nanosecond to microsecond range (Figs. 8 and 9) 

and X-ray caused afterglow decay time reaches several tens of seconds. 

Fitting of the decay of PL signal and afterglow gives the law close to I ~ t 
1
, 

which is typical for tunnel luminescence. Time resolved spectra show that the 

luminescence signal of 4.43 eV emission with the faster decay time is blue 

shifted by ~100 meV compared to that with the slower decay time (Fig. 10). 

 

 

All these facts allow conclusion that the 4.43 eV band is caused by tunnel 

luminescence of donor-acceptor pairs with random dis-tribution of separation 

distance between components. Excitation with UV with photon energies >6 

eV in LiGaO2 generates (through excitonic processes or/and band-to-band 

transitions) a set of do-nors and acceptors with different separation distances. 

Rise of excitation intensity causes increase of concentration of donors and 

acceptors and decrease of the mean separation distance r between DAP 

components. It leads to increase of the recombination 



  

 

emission energy, described by expression [27]: 

 

. 

EðrÞ ¼ Egap Ea þ EdÞ þ e
2
 εr; 

 

observed in the emission spectra of TL caused by irradiation by UV light with 

photon energies higher than 5.4 eV. Presence of the emission polarization 

with rather high polarization degree (up to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2) 20%) speaks in favour of regular distribution of the recombination 

partners in crystallographic lattice of LiGaO2. All these experi-mental 

facts allow conclusion that the 3.76 eV emission band is caused by tunnel 

recombination of genetically related or geminated DAPs. Origin of the 

luminescence centres of the 3.76 eV emission is not clear at the moment. 

Slower decay of this band in comparison to that of 4.43 eV indicates that 

the band could be related to deeper acceptor and the observed activation 

energy of the 3.76 eV band, ~43 meV, could be related to activation of 

donor of the geminate DAP pair.
 

The 2.38 and 1.77 eV emission bands are excited in the same excitation 

bands e peaking at 8.3, 7.0 and 4.9 eV and will be dis-cussed together. These 

bands also have recombination character and are connected with some defects. The 

2.38 and 1.77 eV bands emerge efficiently in the TL emission spectrum after 

irradiation in 8.3e4.4 eV region. Mutual relation of the 2.38 and 1.77 eV bands 

varies depending on irradiation wavelength and TL peaks (Fig. 14). 

Impermanence of TL emission spectra might be caused by presence of 

where Egap is the band gap energy, Ea and Ed are the A and D binding 

energies, ε is dielectric constant and r is the D-A separation dis-tance. The 

estimation shows, that the ~100 meV blueshift would provide donor density of 

ND ~ r 
3
 ~10

19
 cm 

3
. The closer DAPs better resist thermal quenching 

providing luminescence survival at higher temperatures. Separation distance 

between donors and ac-ceptors determines also recombination luminescence 

decay time; tunnel recombination between the closer pairs corresponds to 

faster kinetics and higher recombination emission energy, explaining the 

results of time-resolved spectra. 

There may be also another reason partially contributing to blueshift: at the 

highest excitation intensities free electron to acceptor (eA) recombination 

process can occur with a fast decay (~1 ns). If so, the difference of the 4.43 eV 

emission band's activa-tion energy at high excitation intensity (~86 meV) and 

low excita-tion intensity (~47 meV) (Fig. 6) could be explained by 

combination of two different recombination processes. At the highest 

excitations the eA recombination process prevails and 86 meV activation en-

ergy is related to acceptor. With decrease of the excitation intensity the DAP 

recombination becomes dominant and is described by ionisation of shallow 

donor (characterised with activation energy of 47 meV and saturated at the 

highest excitations). Simultaneous coexistence of both recombination 

processes could be a reason of 3 time components of the 4.43 eV PL band 

decay described in 3.3 e the fast decay component can be attributed to 

electron-acceptor process while the slower components 2 and 3 - to the DAP 

processes. 

Absence of polarization of the 4.43 eV emission (see Fig. 14) confirms the 

idea of its origin from tunnel recombination of random DAPs, because random 

distribution of recombination partners without any preferential direction in 

respect with the crystallographic axis should not produce any polarised 

lumines-cence. The eA process, if present at the highest excitation in-tensities, 

also would provide nonpolarised luminescence. Absence of the 4.43 eV in the 

TL emission spectra produced by UV light irradiation, in its turn, does not 

contradict recombination nature of this emission band e evidently 

concentration of free charge carriers generated as a result of thermal release of 

trap centres during TL process is not sufficiently high to produce close DAPs 

capable of radiative recombination, similarly to case of the 4.43 eV band's 

absence under low intensity lamp excitation at RT. 

The microscopic origin of DAP components responsible for the 4.43 eV 

emission band is not detectable from the results obtained. Acceptor component 

of the DAP responsible for the 4.43 eV could be connected with oxygen 

vacancies, which are typical intrinsic defects in oxide semiconductors, for 

example, in ZnO [28]. 

The 3.76 eV emission band is excited both in the region of fundamental 

absorption peaking at 7.29 eV and in its own excita-tion band at 5.8 eV, 

adjoining the band edge (see Fig. 4). The 5.8 eV band is observed also in 

absorption spectrum as a red shift of the fundamental absorption edge, and 

might be connected with some intrinsic defect or impurity. Kinetic 

measurements show that decay of the 3.76 eV band is complex, consisting of 

several components, and for all components time constants are longer than 

those for the 4.43 eV band. Fitting law of the luminescence afterglow is I ~ t
1.2

, which is close to decay law of tunnel luminescence. No dependence on 

excitation intensity was observed for this band. Irradiation of the sample by 

light from the 5.8 eV excitation band produces TL signal, testifying release of 

the charge carriers into conduction (or valence) bands. The 3.76 eV emission 

band with relatively low intensity is 



localized direct transitions between shallow traps 

emptied during TL, and luminescence centres e 

components of geminate DAPs, without entering of 

the heat - released charge carriers into 

conduction/valence bands. Localized transitions 

could coexist with delocalised transitions implying 

electronic band involvement. Similar situation was 

observed in thermoluminescence of AlN [29]. 

Besides, these bands are characterised with high 

polarization de-gree (up to 25%) testifying regular 

orientation of the luminescence centres in LiGaO2 

lattice. All these experimental facts allow pro-posal 

that the 2.38 and 1.77 eV bands are caused by 

recombination luminescence of geminate DAPs. 

 

 

Basing on experimental data we have presumably 

assigned the 4.43 eV band to tunnel luminescence of 

the random DAP, and 3.76,  
2.38 and 1.77 eV bands e to recombination of the 

geminate DAP. The experimental data obtained are 

not sufficient to make con-clusions about microscopic 

origin of the donor and acceptor centres participating 

in luminescence processes. Position of the corre-

sponding excitation region inside or close to the 

fundamental ab-sorption implies that the 4.43 eV and 

3.76 eV emission bands most probably are related to 

intrinsic defects of LiGaO2, while the 2.38 and 1.77 

eV emission bands could be connected also with 

presence of uncontrolled impurities. In that case DAP 

recombination process could be followed by 

intercenter luminescence. At present we cannot 

assume any particular impurity ion as responsible for 

the long wavelength emission of LiGaO2 basing on 

literature data, because none of the few investigated 

impurity luminescent centres (Cr
3þ [18,19], Cuþ 

[11], V
3þ [4]) are characterised with emission and 

excitation spectra observed. 

 

 

Pump-probe experiments give information on 

excited non-equilibrium state of charge carriers and 

in the same time help to judge about radiative 

recombination processes causing lumines-cence. 

Analysis of correlation between parameters of DT 

and LITG and those of PL allows revealing 

relationship between centres contributing to various 

emission bands. 

 

Carrier excitation and recombination processes 

are essentially affected by intensity of excitation 

light, as shown in Fig. 15. Dependence of slow DT 

signal on excitation intensity coincides rather well 

with that of PL at 3.76 eV indicating donor defect 

saturation (saturation of 3.76 eV band is evidenced by 

change of ~1.0 slope to 0.4 slope). It is worth 

reminding that the pump laser wavelength 213 nm 

(5.82 eV) corresponds to excitation band of the 3.76 

eV emission band. DT signal activation energy is 

related to ~100 meV deep acceptor impurity, the 

value of activation energy being very close to that of 

the 4.43 eV band. LITG signal, which is 
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Fig. 15. Dependence of PL, DT and LITG signals on excitation intensity at 300 K. The 3.76 eV 

band saturation point is at ~0.1 mJ/cm
2
. For PL excitation 213 nm (5.82 eV) (squares and 

circles) and 193 nm (6.42 eV) (triangles) laser light was used. 

 

 
equal to square root of diffraction efficiency is rather linear at low excitation 

intensity due to linear carrier generation, but saturates at higher excitation 

intensities due to reduction of carrier lifetime down to probing pulse duration 

of ~25 ps. Meanwhile the 4.43 eV band PL intensity increases superlinearly 

(slope is > 1) with 213 nm excitation indicating 4.43 eV traps are being filled 

only when 3.76 eV traps are saturated at ~0.1 mJ/cm
2
. Intensity increase of 

the 193 nm (6.42 eV) laser excitation causes linear rise of the 4.43 eV PL 

band and saturation of the 3.76 eV PL band at lower excitations because 

absorption coefficient is larger at 193 nm (see Fig. 1). Linear dependence of 

the 4.43 eV PL band intensity on excitation could indicate free e to bound 

process with PL~DN*NA. Also PL~DN*const could be an indication of fast, 

in comparison to 193 nm excitation pulse duration (5 ns), recombination of 

close DAP pairs - in that quasistationary regime the recombined close pair 

density is pro-portional to excitation intensity. DT saturation is also evident, 

indicating that the 4.43 eV band defects are saturated during 

photoneutralization because initially charged donor and acceptor impurity 

densities are similar due to crystal electrical neutrality. 

 
 

Similar saturation of the 3.76 eV band and the slow DT signal, and 

simultaneously coincident activation energies of DT slow decay and 4.43 eV 

band indicates, that the shallow donors should be the same for these two 

emission bands. This is evidenced by very close donor activation energies: 

~43 meV as derived from the 3.76 eV band thermal activation and ~47 meV 

from the 4.43 eV band thermal activation at low excitations. The fast DT 

component at low temperatures with ~1 ns decay time rather well coincides 

with the fast TRPL decays of the 4.43 eV band (free-to-bound regime), while 

the slow DT decay is attributable to the slow 4.43 eV/3.76 eV PL bands 

decays (DAP regime) - see Fig. 9. 

 
Unclear remains the reason of the unusual behaviour of the thermal 

dependence of the 4.43 eV PL band (Fig. 6) and differential transmission 

(Fig. 11b), both of which have similar low temperature region of signal 

increase with temperature rise, and most probably are interrelated. Different 

possible factors could be mentioned as responsible for this phenomenon, 

though none of them is proved at present. 

 
It can be proposed that at the lowest temperatures excitons are generated 

and quickly recombine without radiative emission through exciton-exciton 

Auger recombination [23,30] - a process when collision of two excitons 

occurs. Also defect-assisted exciton 

 
Auger recombination [31] could take place. Moreover, electron-hole droplets 

subject to fast Auger recombination also can be formed at low temperatures, 

similarly to silicon and diamond [32]. Under these conditions density of the 

trapped carriers, and hence, DAP pairs, reduces due to lower fraction of 

carriers available for capture to DAPs. That causes drop of intensity of the 

4.43 eV PL emission band. At higher temperatures, when excitons are not 

formed, PL (4.43 eV) and DT decline with temperature rise monotonously. 

Another reason of the unusual thermal dependence of the 4.43 eV PL band 

can be connected with screening of closer DAP pairs by electrons weakly 

bound to shallow donors, which leads to PL signal drop at low temperatures 

as screening radius decreases with temperature as ~ T
1/2

 [25]. The 3.76 eV 

band is supposed to be less sensitive to that effect due to higher concen-

tration of very close geminate DAP pairs, which are less sensitive to 

screening. The DT drop at lower temperatures more plausibly could be due to 

reduction of excited carrier interaction with optical phonons. 

 

 

 

In this work we have not observed direct manifestations of exciton 

luminescence, which should emerge near band edge around 6 eV. Maybe 

such luminescence, if any, is reabsorbed by excitation band 5.8 eV or deep 

acceptor traps are in excess sup-pressing free exciton formation. If excitons 

are still generated at highest excitations and lowest temperatures they could 

participate in trap assisted Auger recombination through midgap defects 

making exciton emission negligibly low. 

 

 

5. Conclusions 
 

The comprehensive spectral study of lithium metagallate LiGaO2 crystal 

was done including methods of pump-probe techniques, optical absorption, 

photoluminescence, luminescence kinetics, thermoluminescence and 

polarised luminescence.  
Excitation with UV light causes the main emission bands at 4.43, 3.76, 

2.38 and 1.77 eV. Experimental results allow conclusion that the 4.43 eV 

band is due to tunnel recombination of donor-acceptor pairs with random 

distribution of separation distance; at the highest excitation intensity the free 

electron-acceptor recombina-tion process is also possible. The 3.76, 2.38 and 

1.77 eV bands presumably arise as the result of recombination of geminate 

donor-acceptor pairs. 

 

From pump-probe experiments it was found that free carrier 

recombination is fast (<1 ns) due to electron capture to abundant traps. 

Saturation of the slow DT component and the 3.76 eV PL band is tentatively 

assigned to saturation of shallow (~43 meV) donor traps. Similar activation 

energies of slow DT component (104 meV) and the 4.43 eV PL band (86 

meV) could be explained by DT decay relation to the 4.43 eV band's acceptor. 

Linear electron lifetime reduction with excitation was explained by trap 

assisted Auger recombination. 

 

To determine the particular microscopic defects responsible for the 

recombination luminescence of LiGaO2 the further studies are necessary. 
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