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Abstract. The results of ab initio (first-principles) computations of structural, elastic and 

piezoelectric properties of Ba(1-x)SrxTiO3 (BSTO) and Ba(1-x)CaxTiO3 (BCTO) perovskite solid 

solutions are presented, discussed and compared. Calculations are performed with the 

CRYSTAL14 computer code within the linear combination of atomic orbitals (LCAO) 

approximation, using advanced hybrid functionals of the density-functional-theory (DFT). 

Supercell model allows us to simulate solid solutions with different chemical compositions (x 

= 0, 0.125 and 0.25) within ferroelectric tetragonal phases (x<0.3) of both solid solutions. It is 

shown that configurational disorder has to be taken into account in simulations of BCTO solid 

solutions, while for BSTO this effect is rather small. Both BSTO and BCTO show significantly 

enhanced piezoelectric properties, in a comparison with pure BaTiO3. However, these solid 

solutions demonstrate opposite behaviour of a tetragonal ratio c/a and elastic constants as the 

functions of chemical composition. It is predicted that due to decrease of the elastic constants 

in BCTO, it has much higher converse piezoelectric constants than BSTO. 
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1.  Introduction 

In 1839, in the Ural Mountains of Russia, new mineral CaTiO3 was discovered by Gustav 

Rose and named perovskite after Russian mineralogist L.A. Perovski. Later this name was used 

for a designation of large class of compounds with the same (ABO3) crystalline structure. 

ABO3-type compounds are interesting for materials science because of their ferroelectric and 

piezoelectric properties. Perovskite-type ferroelectrics are important materials for many 

technological applications, this is why they have been intensively investigated for a long time 

[1–4]. So far, lead-zirconate-titanate (PZT) is the most widely used piezoelectric material. 

Nowadays interest is increased in developing of “green” piezoelectric materials due to the lead 

toxicity [5]. BaTiO3 (BTO) is a typical ferroelectric material with a perovskite-type structure. 

Although piezoelectric properties and temperature stability of pure BTO are worse than PZT, 

the reasonable large piezoelectric response of BTO makes it a promising material for novel 

“green” BTO-based piezoelectric compounds [6,7]. 

Development of new lead-free materials with good piezoelectric properties is a challenging 

problem. Chemical modification is the common approach for tuning dielectric and 

electromechanical properties of ferroelectrics. In perovskites, doping generally involves the 

replacement of either A- or B-type cations. In this work, we consider change of functional 

properties of BTO upon the chemical substitution of Ba atoms (A cations) by isovalent Sr or 

Ca atoms, i.e., Ba(1-x)SrxTiO3 (BSTO) and Ba(1-x)CaxTiO3 (BCTO) solid solutions with a 

perovskite structure. We investigate these compounds by means of first-principles calculations, 

with a focus on structural, elastic and piezoelectric properties, ending with conclusions about 

similarities and differences in behaviour of these two systems. 

From a structural point of view, the high-temperature phases of BTO, SrTiO3 (STO) and 

CaTiO3 (CTO) have the ideal cubic structure, where Ti ion sits in the center of a cube and are 

octahedrally coordinated to the 6 nearest O ions. Such structure has centrosymmetric Pm-3m 

space group (SG 221) symmetry and therefore cannot be piezoelectric and ferroelectric. 

However, the situation changes upon decreasing the temperature. In BTO, at 393 K (at ambient 

pressure), Ti ions are displaced from the cube center along one of main cube axes, which leads 

to a structural (from cubic to tetragonal P4mm, SG 99) and paraelectric-ferroelectric phase 

transition accompanied by spontaneous polarization directed parallel to the tetragonal edge of 

the unit cell. With the further cooling, BTO undergoes two more inter-ferroelectric structural 

transitions: at 278 K to the orthorhombic phase (Amm2, SG 38) and at 183 K to the 

rhombohedral phase (R3m, SG 160). In contrast to BTO, STO and CTO do not show 
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piezoelectric properties over whole temperature range. STO and CTO belong to a family of 

incipient ferroelectrics or quantum paraelectrics [8]. At around 105 K, STO undergoes a 

structural phase transition from the paraelectric cubic phase to another paraelectric tetragonal 

phase (I4/mcm, SG 140), i.e., it has a cubic structure at room temperature. CTO has not been 

studied in such detail as BTO and STO. On decreasing temperature, CTO undergoes a sequence 

of structural phase transitions, but the number of these transitions and exact phase transition 

temperatures are still the subject of debate ([9] and references therein). Thus, Yashima and Ali 

[9,10] reported two subsequent phase transitions through neutron powder diffraction 

measurements in the temperature range 296 K – 1720 K. These are structural transitions from 

the cubic phase to a tetragonal (I4/mcm, SG 140) at ~1635 K and from the tetragonal to an 

orthorhombic (Pbnm, SG 62) at ~1510 K. 

The aim of this work is the theoretical study and comparison of structural and 

electromechanical properties of BSTO and BCTO solid solutions. For BTO and STO complete 

solubility occurs, and, thus, Ba(1-x)SrxTiO3 solid solution may be obtained for a whole range of 

dopant concentration (x = 0 – 1). In contrast, BTO and CTO are only partially miscible and 

form the Ba(1-x)CaxTiO3 solid solution only up to the solubility limit of Ca, x ~ 0.25 – 0.30 

[11,12]. It is known from experiments that at room temperature and around x≈0.3 BSTO 

undergoes a ferroelectric-paraelectric and structural (from tetragonal to cubic) phase transition, 

i.e., for higher Sr concentrations this solid solution no longer exhibits piezoelectric properties 

[13,14]. The experiments, concerning BCTO solid solutions, confirm its existence in the 

tetragonal phase up to the limit of solubility (at least x~0.25; this limit can vary depending on 

processing) [11,12,15]. Moreover, experiments show the possibility of using BCTO solid 

solutions as piezoelectrics with high piezoelectric performance [11,15]. Direct comparison of 

BSTO and BCTO solid solutions has been performed in a few experimental and theoretical 

works [12,16], but these studies have focused rather on local structures and structural properties 

than elastic and piezoelectric properties. 

Thus, in this study we focus our attention on the properties of tetragonal (room temperature) 

phases of BSTO and BCTO perovskite solid solutions. Computer simulations of these solid 

solutions are based on an ab initio (first-principles) approach and were performed with use of 

supercell calculations. Obtained structural, elastic and piezoelectric properties for both solid 

solutions at different chemical compositions are compared below. 
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2.  Computational details 

Methods of calculations, used in this work, have previously been described in detail in our 

paper [17], devoted to BSTO simulation. Here only basic information and details specific to the 

present study are given. 

We performed our computations within the approximation of linear combination of atomic 

orbitals (LCAO) of the density functional theory (DFT) by means of the computer code for 

quantum chemical ab initio simulations CRYSTAL14 [18]. Three hybrid exchange-correlation 

functionals were used during the computations: PBE0 functional (PBE exchange functional, 

combined with 25% of Hartree-Fock (HF) exchange and the PBE correlation functional), 

B1WC functional (Wu-Cohen WCGGA exchange functional with 16% of HF exchange and 

the Perdew-Wang PWGGA correlation functional) and B3LYP functional (a three parameter 

functional, which combines BECKE exchange functional with 20% of HF exchange and LYP 

(Lee-Yang-Parr) correlation functional with NONLOCAL parameters 0.9 and 0.81) [19]. Basis 

sets with Hay and Wadt small core effective core pseudopotential were used for Ba, Ti and Sr 

atoms [20], while the all-electron basis sets — for description of O [21] and Ca [22] atoms. 

For calculations on BSTO and BCTO solid solutions we used a 2×2×2 supercell, based on 

the tetragonal (SG 99) BTO unit cell. This supercell contains 40 atoms (8 unit cells) and allowed 

us to study ordered Ba(1-x)SrxTiO3 and Ba(1-x)CaxTiO3 solid solutions with different chemical 

compositions (Sr/Ba and Ca/Ba ratio). We replaced one or two Ba atoms by Sr or Ca atoms and 

thus considered 3 different dopant concentrations: x=0 (without substitution; pure BTO), 

x=0.125 (replacement of one Ba atom by dopant atom) and x=0.25 (replacement of two Ba 

atoms by dopant atoms) — according to that fact, that BSTO and BCTO solid solutions reveal 

tetragonal symmetry with ferroelectric and piezoelectric properties at room temperature for 

x ≤ 0.25–0.3. In order to preserve maximal symmetry and to accelerate the calculations, for the 

composition x=0.125 we replaced the Ba atom at the origin of coordinates. For the x=0.25 

composition we also replaced one Ba atom at the origin as well as one other. In this case, for 

the 40-atom supercell, we have 7 different possibilities to choose a second atom. The effect of 

this configurational disorder (different arrangement of A atoms) was considered in detail in 

[17], where all 7 configurations in Ba0.75Sr0.25TO3 solid solution were discussed. In brief, for 

the x=0.25 composition, the 7 different substitutions lead to 3 cases where the system symmetry 

remains tetragonal and 4 cases where the symmetry is reduced to orthorhombic. As was shown 

[17], the effect of configurational disorder for BSTO is small enough (less than 10% and 4% 

for piezoelectric and elastic properties, respectively, and much less for structural and electronic 
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parameters). However, our computations reveal that the effect of configurational disorder for 

BCTO is far larger (see below for details). Hence, it is necessary to consider this in the study 

of BCTO solid solution. Therefore, in this work we perform averaging of properties of both 

solid solutions (for their correct comparison) on three tetragonal configurations. Moreover, a 

high level of DFT integration accuracy (“extra extra large grid” XXLGRID [19]) was used for 

computations of BCTO properties (it was especially important for calculations of elastic and 

piezoelectric properties). Though the XLGRID parameter ensured stable results for BSTO solid 

solutions, the BSTO data were recalculated with the XXLGRID parameter to allow for correct 

direct comparison with the results from the BCTO solid solutions. 

A few words should be said here about methods of computation of elastic and piezoelectric 

properties of crystals. Fully-automated procedures for calculating of elastic and piezoelectric 

constants are implemented in the CRYSTAL14 program. Elements of elastic and direct 

piezoelectric tensors are calculated based on fully-optimized and deformed geometries — 

elastic constants as the second derivatives of total energy with respect to pairs of lattice 

deformations, but direct piezoelectric constants via the Berry phase approach [19]. At the same 

time, simple relation exists between the direct and converse (e and d) piezoelectric tensors and 

the elastic tensor C: d = e C -1. Thus, tensor d is calculated based on C and e tensors, calculated 

earlier. 

 

3.  Results and discussion 

In order to estimate the quality of calculations with our computational setup (first of all, 

chosen functionals and basis sets), before performing the solid solution computations, we 

calculated basic properties of pure BTO, STO and CTO and compared them with the 

experimental data. The lattice constants for cubic structures (SG 221) of BTO, STO and CTO 

crystals, calculated using three hybrid exchange-correlation functionals, as well as their 

experimental values, are given in Table 1. This table demonstrates that both theoretical and 

experimental lattice constants decrease with decreasing of A cation size (Ba, Sr or Ca) in the 

cubic phase of BTO, STO and CTO perovskites. 

 

Table 1. Calculated and experimental lattice constants (Å) for cubic phases of BTO, STO and CTO. 

 PBE0 B1WC B3LYP Expt. 

BTO 3.993 3.975 4.037 3.996 [23] 

STO 3.901 3.884 3.937 3.905 [24] 

CTO 3.850 3.835 3.882 3.887 [10] 
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The PBE0 functional gives the best (and excellent) agreement with the experimental data 

for BTO and STO crystals, whereas the B3LYP functional shows the worst results. In contrast, 

for the CTO crystal the B3LYP functional gives the best agreement with experiment. However, 

it is necessary to notice here, that the cubic phase of CTO is a very high temperature phase 

(above ~1630 K) and, therefore, agreement between results of ab initio calculations and 

experiment may not be so remarkable. 

The results of calculations of lattice constants, bulk modulus and band gap for the 

orthorhombic (Pbnm, SG 62) phase of CTO and the corresponding experimental data are given 

in Table 2. Note that the Pbnm crystal structure consists of 4 units of ideal cubic perovskite 

structure; therefore 20-atom unit cell is used in the calculations of the orthorhombic CTO phase. 

 

Table 2. Calculated and experimental lattice constants (a, b, c), bulk modulus B and band gap Eg for 

the orthorhombic phase of CTO. 

 PBE0 B1WC B3LYP Expt. 

a (Å) 5.372 5.343 5.412 5.371 [10], 5.387 [25] 

b (Å) 5.445 5.425 5.497 5.428 [10], 5.439 [25] 

c (Å) 7.629 7.590 7.690 7.627 [10], 7.646 [25] 

B (GPa) 196 199 185 171 [26], 177 [27] 

Eg (eV) 4.56 3.77 4.07 3.4 [28] 

 

The PBE0 and B1WC functionals exhibit the best results in calculations of lattice constants, 

whereas the B3LYP functional gives the best agreement with the experiment for bulk modulus, 

but B1WC functional is again (as well as in ref. [17]) the most suitable for the calculations of 

band gap. Calculations by means of all three functionals yield the direct band gap for 

orthorhombic phase of CTO, while for the cubic phase of CTO we obtain the indirect band gap 

in agreement with [29]. Note that Moreira et al. [25] obtained a direct band gap of 3.98 eV for 

the orthorhombic phase of CTO using the B3LYP functional in CRYSTAL06. It should be 

noticed, too, that experimental lattice constants in Table 2 are room temperature values. The 

temperature dependence of lattice constants for the orthorhombic and cubic phases of CTO is 

available in ref. [10] and for the orthorhombic phase (7 K – 400 K) in [30]. Information about 

the experimental CTO band gap, obtained by different methods and at different conditions, is 

presented in ref. [31]. Some experimental and calculated data for different ABO3 perovskites 

may be found in ref. [32]. 

Let us start discussion of BSTO and BCTO solid solutions. We begin with a consideration 

of the structural parameters of these crystals (in the tetragonal phase) at different dopant 

concentrations. These data are presented in Table 3. However, before discussion, it is necessary 
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to return to the question of the configurational disorder. Data for x=0.25 composition (2 Ba 

atoms are replaced by dopant atoms) represent averaging on three tetragonal configurations (see 

below). It is not so important for BSTO, because the difference in contributions of each atomic 

configuration is small, but for BCTO it is necessary to take into account these differences. For 

example, in the simulation of the x=0.25 composition of BSTO, the tetragonal ratios c/a for 3 

configurations are 1.029, 1.027, 1.028 (average — 1.028) for PBE0 functional; 1.014, 1.013, 

1.014 (average — 1.014) for B1WC; and 1.067, 1.056, 1.058 (average — 1.060) for B3LYP. 

The maximal differences of total electronic energies (after geometry optimizations) between 

these three tetragonal configurations are 0.06 eV, 0.08 eV and 0.09 eV for the calculations by 

means of PBE0, B1WC and B3LYP functionals, respectively. At the same time, dispersion of 

the parameters for BCTO solid solutions is far larger: tetragonal ratios are 1.065, 1.038, 1.044 

(average — 1.049) for the PBE0 functional; 1.033, 1.018, 1.025 (average — 1.025) for B1WC; 

1.157, 1.101, 1.110 (average — 1.123) for B3LYP. The maximal differences of total electronic 

energies are 0.23 eV, 0.21 eV and 0.33 eV for PBE0, B1WC and B3LYP functionals, 

respectively. However, even such differences in the electronic energies are insufficient for a 

reliable conclusion about preference of any configuration. Such decision should be based on 

the analysis of the Gibbs free energies, but it lies beyond the scope of this work. 

 

Table 3. The lattice constants (a=b and c) of BSTO and BCTO crystals at different chemical 

compositions x, calculated by three functionals. 

 PBE0 B1WC B3LYP 

x= 0 0.125 0.25 0 0.125 0.25 0 0.125 0.25 

BSTO 

a (Å) 3.971 3.963 3.955 3.962 3.954 3.945 3.991 3.982 3.976 

c (Å) 4.131 4.100 4.066 4.050 4.026 4.000 4.292 4.262 4.215 

BCTO 

a (Å) 3.971 3.950 3.931 3.962 3.944 3.927 3.991 3.954 3.925 

c (Å) 4.131 4.131 4.122 4.050 4.041 4.026 4.292 4.369 4.406 

 

As seen in Table 3, the B3LYP functional gives an increase of the c lattice constant with 

increase of x for BCTO. This contradicts other results in this table, which show that a and c 

constants of the tetragonal structures shrink with increase of Sr (or Ca) concentration. Based on 

data from Table 3, the dependences c/a vs. x are plotted in Figure 1. Essentially different 

behaviour of these dependences for BSTO and BCTO solid solutions (the decrease for BSTO, 

but the rise for BCTO) attracts the attention. These trends are qualitatively reproduced using all 

three functionals. The decrease of c/a for BSTO is consistent with the fact that at large values 

of x BSTO exists in a cubic phase. Such behaviour of c/a ratio for BSTO coincides with existing 
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experimental data [12,33]. Detailed comparison of experimental and calculated (without taking 

into account configurational disorder) structural properties of BSTO solid solutions in 

tetragonal and cubic phases is presented in our paper [34]. In BCTO the situation is more 

complicated (tetragonal ratio grows, perhaps, with a saturation) and may be related to essential 

size mismatch between Ba and Ca atoms (off-center displacement of the smaller Ca ion in the 

Ba site) and the specific bond lengths of Ca ions in BCTO [11,12,16]. More detailed local 

structural analysis is necessary to clarify this problem and we plan to do this in a future paper. 

The compositional dependences of c/a for BSTO and BCTO shown in Figure 1 agree, at least, 

qualitatively, with the experimental data [12] (for BSTO — the fall of c/a ratio with increasing 

of dopant concentration, for BCTO — the rise with saturation and, perhaps, the fall afterwards). 

However, other experimental work [35] has shown an opposite trend in BCTO, i.e. a decrease 

in tetragonal ratio with increasing x, similar to that in BSTO. 

 

 
(a) 

 
(b) 

Figure 1. Dependences of tetragonal ratio c/a vs. chemical composition x for BSTO (a) and BCTO 

(b), calculated by 3 functionals. 

 

On the other hand, the trends in dependences of the unit cell volume of BSTO and BCTO 

vs. x (see Figure 2) are, at least, qualitatively identical — in the calculations, using all three 

functionals, volume decreases continuously with increasing dopant concentration. Such 

behaviour of unit cell volume in dependence on dopant concentration is logical — Ba atoms 

are replaced by smaller Sr atoms or far smaller Ca atoms. It is also reasonable to assume that 

this decrease should be larger for BCTO solid solution. Experimental data [12] indeed confirm 

this assumption. In our calculations, such trends are demonstrated only by data, obtained for 

the B1WC functional (volume of BCTO unit cell at x=0.25 is approximately 2.4% smaller than 
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of pure BTO). Moreover, the data, obtained by the B1WC functional, quantitatively are the 

closest to the experimental data [12]. 

 

 
(a) 

 
(b) 

Figure 2. Dependences of unit cell volume V vs. chemical composition x for BSTO (a) and BCTO 

(b), calculated by 3 functionals. 

 

As was pointed out earlier [17], the experimental value of c/a for BTO in the tetragonal 

phase is 1.011. As one can see in Figure 1, the results of calculations using all functionals are 

overestimated for x=0. The B1WC functional demonstrates the best agreement, the worst — 

B3LYP. In our opinion, both PBE0 and B1WC functionals are suited well for the simulation of 

BSTO solid solution, but only B1WC (from 3 functionals which are used in this work) is 

preferable for BCTO computation. In turn, it is necessary to notice that the results in Table 3 

are calculated with the XLGRID parameter and with increase of accuracy (the use of XXLGRID 

parameter) results change very little. On the other hand, computations of the electromechanical 

properties (especially of BCTO solid solution) are more sensitive to the accuracy of 

calculations; therefore, our further discussions are based on the computations with the 

XXLGRID parameter, performed for BSTO and BCTO solid solutions using the B1WC 

functional. 

In the last part of the paper, we discuss and compare elastic and piezoelectric properties of 

BSTO and BCTO solid solutions for different chemical compositions. However, before this, let 

us consider in detail three tetragonal configurations of BCTO solid solution at the x=0.25 

composition (we do not discuss here the four orthorhombic configurations). We report in 

Table 4 selected structural and electromechanical properties of these three configurations (a 

similar table providing information about all seven possible configurations for BSTO, is given 

in ref. [17]). 
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Table 4. Lattice constants and selected elastic and piezoelectric constants of the BCTO solid solution 

at the x=0.25 chemical composition, calculated using the B1WC functional for the tetragonal atomic 

configurations. 

 (0.5, 0.5, 0.5)a (0.5, 0.5, 0.0)a (0.0, 0.0, 0.5)a averageb 

 lattice constants, Å 

a=b 3.921 3.933 3.926 3.927 

c 4.051 4.003 4.024 4.026 

 elastic constants, GPa 

C11 317.0 327.7 325.5 323.4 

C12 117.2 127.8 117.9 121.0 

C13 98.3 94.0 95.3 95.9 

C33 117.8 142.1 141.1 133.7 

 direct piezoelectric constants, C/m2 

e31 0.842 0.934 0.928 0.901 

e33 4.762 6.128 5.168 5.353 

 converse piezoelectric constants, pC/N = pm/V 

d31 -11.586 -9.427 -8.140 -9.718 

d33 59.755 55.610 47.608 54.324 

a Fractional coordinates in supercell of second Ca atom, which replaces of Ba atom. The first Ca atom 

is located at the origin of coordinates (0, 0, 0). 
b Average value of parameter on 3 configurations. 

 

Average values of lattice constants of BCTO solid solution at x=0.25 from Table 4 were 

used already in Table 3. Table 4 shows large differences in some parameters for the three 

configurations. For example, maximal difference for the elastic C33 constants is 21%, for the 

direct piezoelectric constants e33 — 29%, for the converse piezoelectric constants d31 — even 

42% (cf. a value of 9% for d31 in the case of BSTO). These are rather big differences, therefore 

it is necessary to take into account configurational disorder in simulation of BCTO solid 

solutions. 

Note the averaging problem of converse piezoelectric constants. As calculations of d tensor 

are based on the earlier calculated C and e tensors, it seems reasonable, that average values of 

converse piezoelectric constants have to be calculated using preliminary averaged elements of 

the elastic and direct piezoelectric tensors, while in Table 4 we average converse piezoelectric 

constants, obtained earlier for each tetragonal configuration. We calculated the converse 

piezoelectric tensor d directly as the product of e and C-1 tensors using the average values of 

elastic and direct piezoelectric constants from Table 4. The results of these calculations differ 

from those presented in Table 4 by less than 1.5%. This difference is considered as negligible, 

especially as we are interested in the analysis of trend of change of piezoelectric properties 

depending on the chemical composition. 
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Let us return now to BSTO and BCTO solid solutions. The elastic and piezoelectric 

constants of BSTO and BCTO at different dopant concentrations, obtained using the B1WC 

functional, are presented in Table 5 (simulation of BSTO by PBE0 functional was described in 

[17]). 

 

Table 5. Some elastic and piezoelectric constants for BSTO and BCTO at different chemical 

composition x, calculated using the B1WC functional. 

 BTO BSTO BCTO 

 x=0 x=0.125 %a x=0.25 % x=0.125 % x=0.25 % 

Elastic constants (GPa) 

C11 328 332 1% 337 3% 326 -1% 323 -2% 

C12 122 122 0% 122 0% 121 -1% 121 -1% 

C13 97 98 1% 100 3% 97 0% 96 -1% 

C33 157 165 5% 177 13% 141 -10% 134 -15% 

Direct piezoelectric constants (C/m2) 

e31 0.681 0.728 7% 0.798 17% 0.788 16% 0.901 32% 

e33 4.391 5.015 14% 5.848 33% 4.820 10% 5.353 22% 

Converse piezoelectric constants (pC/N=pm/V) 

d31 -6.140 -6.730 10% -7.197 17% -7.990 30% -9.718 58% 

d33 35.519 38.442 8% 41.130 16% 45.120 27% 54.324 53% 

a Columns “%” are a change of constants at given x with regards to a pure BTO (x=0). 

 

Table 5 reveals contrasting behaviour of the electromechanical properties of BSTO and 

BCTO solid solutions. The elastic properties of BSTO and BCTO demonstrate opposite trends 

(as well as the tetragonal ratios): while BSTO becomes mechanically harder when Ba atoms 

are substituted with Sr atoms (it was also predicted in [17]), the elastic constants of BCTO, in 

contrast, decrease. At the same time, the piezoelectric properties of BTO are improved in both 

BSTO and BCTO solid solutions with an increase of Sr or Ca concentration from 0 till 25%, 

i.e., qualitatively similar behaviour of piezoelectric properties as a function of chemical 

composition occurs for both solid solutions (as well as for dependences of unit cell volumes). 

Let us look at the quantitative changes of electromechanical properties in more detail. The 

elements of BSTO and BCTO elastic tensors exhibit really opposite trends: changes of 

constants are similar, but with opposite signs. C33 constants demonstrate a maximal change: 

+13% for BSTO and -15% for BCTO at x=0.25. The direct piezoelectric constants show a 

gradual (and almost linear) rise, up to 20–30% at x=0.25 for both solid solutions. Thus, we 

predict a significant enhancement of the direct piezoelectric properties of BTO when replacing 

25% of Ba atoms by Sr or Ca atoms. It is possible to note, that BSTO and BCTO “complement” 

each other: e33 constant grows by ~30% in BSTO and by ~20% in BCTO; at the same time, e31 

constant grows by ~20% in BSTO and by ~30% in BCTO. The difference in behaviour of 
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converse piezoelectric properties of BSTO and BCTO is very interesting. Indeed, the absolute 

values of these constants grow in both solid solutions with increasing of dopant concentration, 

but the rise rate in BCTO is 3 times higher. In BCTO at x=0.25 these constants are increased 

more than by 50%. Thus, BCTO solid solution may be especially useful for improvement of 

converse piezoelectric constants. Such difference in converse piezoelectric properties of BSTO 

and BCTO is related, mainly, with different behaviour of the elastic constants of solid solutions. 

It is possible to prove this directly, using the above mentioned relation d = e C -1. The structure 

of tensors in this relation for the tetragonal system (6 independent constants for elastic tensor 

and 3 independent elements for piezoelectric tensors) is such that d31 and d33 constants depend 

only on the elements of elastic and direct piezoelectric tensors, presented in Table 5. Direct 

calculations show that C33, as the least stable element of elastic tensor, defines the behaviour of 

converse piezoelectric constants. 

Finally, we remind that, in computations, the elastic and piezoelectric constants could be 

theoretically presented as sums of the purely electronic (“clamped-ion”) and nuclear relaxation 

components. We calculated in ref. [17] both these contributions for BTO and concluded that 

the origin of the piezoelectricity in BTO is mostly due to nuclear relaxation, whereas the 

electronic contribution is rather small. Now we have performed such calculations for both 

(BSTO and BCTO) solid solutions at all dopant concentrations. Our main conclusion is the 

same — nuclear relaxation contributes mainly to the piezoelectricity of solid solutions. 

However, it is interesting that in BCTO electronic contributions change only a little — for 

x=0.25 absolute values grow no more than by 5% in a comparison with pure BTO. In contrast, 

in BSTO the absolute values of “clamped-ion” components decrease considerably — by 13% 

for direct piezoelectric constants and by 17% for converse constants (at x=0.25). At the same 

time, the electronic component of all elastic constants in both solid solutions change very little 

(in the range of ±3% for x=0.25) and do not demonstrate excess variability at C33 constants. 

Summing up, a few experimental studies could be mentioned in order to compare our 

theoretical trends of piezoelectric properties of BSTO and BCTO solid solutions with those 

obtained experimentally. Unfortunately, there are not enough experimental data on 

piezoelectric constants of solid solutions in the literature and they are partly contradictory. 

Thus, M.M. Kržmanc et al. reported 20 pm/V for d33 in BSTO (x=0.054) plates [33]. Authors 

[15] report the value of d33 ~ 180 pm/V for the BCTO single crystal in the range of 

x = 0.1 – 0.25. Wand with coauthors obtained converse piezoelectric constant d33 ≈ 150 pm/V 

in BCTO ceramics at x=0.23 [36]. No doubt, more measurements of piezoelectric properties of 
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solid solutions are necessary. Piezoelectric properties depend on many parameters (size of 

crystal or ceramics, processing of sample, measurement conditions, etc.). Therefore, it would 

be better in the future to compare theoretical and experimental trends rather than numerical 

values of constants. 

 

4.  Conclusions 

Based on advanced hybrid functionals of DFT and using supercell model, we performed ab 

initio simulations of tetragonal (room temperature) phases of Ba(1-x)SrxTiO3 and Ba(1-x)CaxTiO3 

perovskite solid solutions and compared their structural and electromechanical properties at 

different chemical compositions x. We have shown that both PBE0 and B1WC hybrid 

functionals are well suited for a description of structural parameters and elastic and 

piezoelectric properties of BSTO solid solutions, while for BCTO simulations (these 

calculations are more sensitive to used functionals and accuracy) the B1WC functional is more 

preferable. We established that configurational disorder is important for BCTO simulations, 

while in BSTO this effect is rather small. It could be interesting in the future to analyse the 

effect of configurational disorder in BCTO by means of a thermodynamic approach [37]. BSTO 

and BCTO solid solutions reveal opposite behaviour of the tetragonal ratio c/a and elastic 

constants as the functions of chemical composition. On the other hand, both BSTO and BCTO 

reveal significantly enhanced piezoelectric properties (direct and converse) in comparison with 

pure BTO. Indeed, direct piezoelectric constants e33 and e31 grow by more than 30% at x=0.25 

in BSTO and BCTO, respectively. Due to the decrease of elastic constants, BCTO may be 

especially useful for improvement of converse piezoelectric constants of BTO — at x=0.25 the 

absolute values of converse piezoelectric constants d31 and d33 increase by ~55% in BCTO, but 

only by 17% in BSTO. 
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