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Abstract

The annealing kinetics of the primary electronic
F -type color centers (oxygen vacancies with
trapped one or two electrons) is analysed for
three ionic materials (Al2O3, MgO and MgF2)
exposed to intensive irradiation by electrons,
neutrons and heavy swift ions. Phenomenologi-
cal theory of diffusion- controlled recombination
of the F -type centers with much more mobile
interstitial ions (complementary hole centers)
allows us to extract from experimental data
the migration energy of interstitials and pre-
exponential factor of diffusion. The obtained
migration energies are compared with available
first principles calculations. It is demonstrated
that with the increase of radiation fluence, both
the migration energy and pre-exponent are de-
creasing in all three materials, irrespective of
the type of irradiation. Their correlation sat-
isfies the Meyer-Neldel rule observed earlier in
glasses, liquids, and disordered materials.The
origin of this effect is discussed. This study
demonstrates that in the quantitative analysis
of the radiation damage of real materials, the
dependence of the defect migration parameters
on the radiation fluence plays an important role
and cannot be neglected.

Introduction

Irradiation resistance is important material
property, vital for many applications, includ-
ing nuclear fuels,1 reactor materials, and nu-
clear waste storage.2,3 MgO, α-Al2O3 (sapphire,
corundum), and MgF2 are three wide gap insu-
lating materials with different crystalline struc-
tures and chemical bonding. All three materials
are radiation resistant and have many impor-
tant applications, e.g. sapphire, is a promising
material for fusion reactors, mainly for diag-
nostics as a general insulator or optical compo-
nents,4 whereas optical lenses and devices from
MgF2 are transparent in an extremely wide
range of photon energies, from IR to UV.5 To
control radiation stability, it is very important
to predict/simulate the kinetics of defect accu-
mulation and thus radiation damage in these
materials as well as long-time defect structure
evolution.6–11

There were numerous experimental measure-
ments of the primary defect accumulation ki-
netics (first of all, F - and F+ color centers
- oxygen vacancy with two and one trapped
electrons, respectively) as a function of radia-
tion dose rate and temperature with subsequent
post-irradiation annealing.12–14 Defect kinetics
in solids are controlled by defect diffusion. Un-
like liquids, where diffusion coefficients of par-
ticles and impurities are similar,15,16 in solids
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diffusion coefficients of different defects could
vary by many orders of magnitude.6,13 As is well
known, the F center mobility is much smaller
than that of the complementary Frenkel defects
interstitial oxygen ions.17,18 Thus, at moderate
radiation fluences and temperatures, the kinet-
ics of the F -type center annealing is governed
by their diffusion-controlled recombination with
mobile oxygen interstitials. Despite numerous
experimental data on defect kinetics, very few
theoretical efforts were devoted so far to the
quantitative analysis of available data, in order
to extract main kinetic parameters - interstitial
migration energy Ea and diffusion pre-exponent
D0 - necessary for further prediction of the sec-
ondary defect kinetics and radiation stability of
sapphire and related materials.
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Figure 1: The kinetics of the F or F+ center
annealing in Al2O3 (see Table 1 for details, only
four representative kinetics are plotted here for
illustration).

Recently, a simple phenomenological theory
of diffusion-controlled bimolecular recombina-
tion of Frenkel defects was developed and ap-
plied to irradiated ionic solids.19,20 We devel-
oped the alternative approach based on the for-
malism of joint correlation functions6,7 of spa-
tial distribution of similar (F − F centers) and
dissimilar (Frenkel pair of defects: the F cen-
ter - interstitial Oi ions) which is well suited
for the study of radiation defect kinetics and
aggregation.

The atomistic model of radiation damage
takes into account the following steps: (i)
Frenkel defect production (F center - intersti-
tial) (ii) Defect migration with the diffusion co-
efficient determined by the activation energyEa

and pre-exponent D0. (iii) Dissimilar defect re-
combination upon mutual approach within the
critical radius R. (iv) Post-irradiation anneal-
ing with linear increase of temperature.

One could estimate the diffusion coefficients
of defects in solids, from measurements of the
defect concentration changes (by optical ab-
sorption and ESR) under different conditions,
e.g. sample heating (annealing) which stimu-
lates defect reactions and recombination. The
reaction rate K is related to a mutual diffusion
coefficient D via simple relation K = 4πDR,21

where D = D0 exp(−Ea/kBT ) and R recom-
bination radius. The non-isothermal kinetics
(heating)19,20 is considered in this paper.
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Figure 2: The kinetics of the F+ center anneal-
ing in MgO for different types of radiation (see
Table 2 for details).

As it was shown therein, the kinetics of bi-
molecular recombination of the primary radia-
tion defects F type centers and interstitial ions
- is controlled by the two parameters: the ac-
tivation energy Ea for migration (diffusion) of
more mobile component (interstitial) and the
pre-exponential factor A = N0RD0/β, where
N0 is initial defect concentration and β heating
rate.
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Assuming standard parameters N0 =
1017cm−3, R = 10Å, D0 = 10−3 cm2 s−1 (typ-
ical estimate for solid state diffusion), β = 10
K/min, one gets the estimate A = 108 K−1

(normal solid state diffusion). First results
of this theory were discussed for the neutron
irradiated sapphire.19 The analysis has demon-
strated that the diffusion energy of oxygen
interstitials varied considerably from one ex-
periment to another, very likely due to differ-
ent radiation fluences. To led more light to
the problem, in this paper we analyze available
experimental data of F -type center annealing
in three above-mentioned materials – Al2O3,
MgO and MgF2 irradiated by electrons, neu-
trons and heavy ions with very different flu-
ences (and respectively, defect concentrations).
As mentioned, these three materials represent a
wide class of radiation resistant solids and have
quite different crystalline structure and chemi-
cal bonding: MgO is cubic and ionic, MgF2 has
rutile structure and ionic, sapphire (α-Al2O3)
has hexagonal structure and partly covalent.
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Figure 3: The kinetics of the F+ center anneal-
ing in MgF2 for different types of radiation (see
Table 3 for details).

Results

We demonstrate in this paper that the first
recent observation for neutron irradiated sap-
phire19 could be a quite general phenomenon:

diffusion of interstitial ions in many heavily ir-
radiated ionic materials depends strongly on
the radiation fluence and is characterized by
unusually high mobility and low migration bar-
riers.

The experimental kinetics of the F - and F+

center annealing in neutron irradiated sapphire
obtained in several studies and their theoreti-
cal analysis described in refs.19,20 are presented
in Fig.1 and Table 1. One can see a trend in
decrease of both the migration energy and pre-
exponential A with fluence (defect concentra-
tion). Note that the F - and F+ centers show
very similar annealing energies. The migration
energy of 0.8− 0.9 eV obtained at low fluences
is close to the calculated activation energy for
charged oxygen interstitials22 (to be published).
The relevant pre-factor is the largest and close
to above-mentioned theoretical limit for a per-
fect solid.

Similar data for MgO crystals irradiated with
electrons, neutrons and heavy swift ions are
presented in Fig.2 and Table 2. Table 2 shows
the same trend in the decrease of the migra-
tion energy and pre-factor A with the fluence,
irrespective the type of radiation. The largest
migration energy of 1.7 eV is close to theoretical
calculations (1.5 eV, ref.23).

Lastly, Fig.3 and Table 3 present similar re-
sults for MgF2 crystals. The annealing kinetics
for the F centers in MgF2 monitored by means
of the two different methods – optical absorp-
tion and EPR – under electron irradiation and
neutrons24 is presented in Fig. 3, respectively.
All data agree very well each with other, in-
dicating that the effect is not restricuted by a
particular irradiation type. This is also not re-
sult of the increase of initial defect concentra-
tion with dose (with longer irradiation or large
local concentration in narrow incident particle
tracks): this would lead to increase of N0 and
thus parameter A, which in fact, decreases with
dose by orders of magnitude.

As was mentioned above, in a crystalline
structure the pre-factor is expected to be of the
order of A = 108 − 109 K−1. This is indeed
close to values obtained for the lowest radiation
doses (curve I in Fig.3). The relevant migration
energy of 1.6 eV corresponds to the intersti-
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Table 1: The explanation of curves I-IV in Fig.1 and the obtained migration energy of
interstitial ions Ea and pre-exponential factor A in sapphire under different condition
of radiation and different doses (Nr.1-10). The information is ordered with respect to
the activation energy increase

Nr. Type Ea (eV) A (K−1) Legend
1 (I) F+ 0.89 7.0 · 101 Neutron fluence 2 · 1017 n/cm2, Ref.36

2 F 0.79 2.1 · 101 Same as 1, Ref.36

3 (II) F+ 0.47 1.2 · 100 Fast neutron (En > 1.2 MeV), fluence 9.1 ·
1017 n/cm2, Ref.37

4 F+ 0.40 2.3 · 10−1 Fluences from 5 ·1018 to 2 ·1021 n/cm2, Ref.38

5 F+ 0.39 5.3 · 10−1 Fast neutron, fluence > 1017 n/cm2, Ref.39

6 F+ 0.35 1.4 · 100 Isochronal thermal anneal of F band in
Al2O3: fission-spectrum neutrons, Ref.40

7 (IV) F+ 0.27 4.0 · 10−1 14-MeV and fission-neutrons, fluence of 1017

n/cm2, Ref.41

8 (III) F 0.22 3.3 · 10−2 Same as 7, Ref.41

9 F 0.17 1.3 · 10−2 Fast neutron, fluence 4 · 1016 n/cm2, Ref.39

10 F 0.14 1.9 · 10−3 Fast neutron (En > 1.2 MeV), fluence 4 ·1016

n/cm2, Ref.42

tials in almost perfect MgF2 crystals. However,
there are strong arguments25,26 that indicates
that fluoride interstitials in MgF2 form neutral
immobile F2 molecules and the observed energy
energy could be related not entirely to the mi-
gration of a single interstitial but includes also
the energy necessary to break a bond and to
release it.

Measurements 2, 4, 7 (Table 3) performed
on the same sample allow us to estimate de-
pendence of the migration energy on the flu-
ence. The insert in Graphical TOC Entry
shows the exponential dependence Ea(d) =
Ea(0) exp (−d/d0), where d is dose. The fitting
gives Ea(0) = 1.75 eV and d0 = 1.25 · 1017

e/cm2. This energy is close to our estimate
above for the limit of low doses, as well as
theoretical calculations.14,23 As the fluence in-
creases, the migration energy strives asymptot-
ically to zero.

The above observed correlation of the migra-
tion energy Ea and pre-factor A (Tables 1-3) fits
quite well to the relation known as the Meyer-
Neldel rule:28,29

ln(A) = ln(A0) + Ea/kBT0, (1)

where A0 is a constant and T0 some charac-
teristic temperature. Eq.(1) shows how reduc-
tion of the activation energy with growing disor-
der is compensated by orders of magnitude de-
crease of the pre-factor A. Fig.4 demonstrates
that this relation indeed is well satisfied for all
three materials, and more importantly, for dif-
ferent types of irradiations (and initial defect
spatial distributions). Note that all experimen-
tal points lie below the characteristic tempera-
ture T0. Eq.(1) could be also interpreted as the
diffusion coefficient with exponentially depen-
dent pre-exponent

D ∝ exp(Ea/kBT0 − Ea/kBT ), T < T0. (2)

The decrease of both the migration energy
and pre-exponential A with radiation fluence
(defect concentration) is very well documented
for the MgF2 case discussed above where ex-
periments were performed on the same sam-
ples. In the case of sapphire this effects is partly
hidden by use of different samples with differ-
ent history, pre-existing defects and irradiation
by neutrons of different energies and at differ-
ent temperatures. It would be of great inter-
est to perform focused experiments on the same
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Table 2: The explanation of curves I-V in Fig.2 and the obtained migration energy
of interstitial ions Ea and pre-exponential factor A in MgO under different types of
radiation and different doses (Nr.1-12)

Nr. Type Ea (eV) A (K−1) Legend
1 ion 1.74 1.4 · 105 Fluence 5 · 1014 Kr+/cm2 with energy 150

keV, Ref.43

2 (I) ion 1.28 1.3 · 103 Fluence 1 · 1015 Kr+/cm2, Ref.43

3 ion 0.86 5.4 · 100 Fluence 1 · 1015 Ar+/cm2 with energy 100
keV, Ref.44

4 electron 0.71 1.5 · 102 1.7 MeV, F centers 1.6 · 1018 cm−3, Ref.45

5 (III) electron 0.68 1.1 · 101 Optical absorption, 1.8 MeV, fluence similar
to 8 · 1019 n/cm2, Ref.47

6 electron 0.65 1.5 · 102 Optical absorption, 3 MeV, F centers 5 ·1018

cm−3, Ref.46

7 (II) ion 0.60 6.0 · 10−1 Fluence 5 · 1015 Kr+/cm2 with energy 150
keV, Ref.43

8 neutron 0.54 1.0 · 101 Fluence 1 · 1017 n/cm2, Ref.48

9 ion 0.41 1.7 · 10−2 Same as 3, Ref.44

10 ion 0.39 2.2 · 10−2 Same as 3, Ref.44

11 Ne ions 0.24 2.5 · 10−3 Fluence 1 · 1015 Ne/cm2, Ref.49

12 (IV) neutron 0.23 3.6 · 10−2 Fluence 6 ·1017 n/cm2 with energy > 1 MeV,
Ref.45

Table 3: The explanation of curves I-V in Fig.3 and the obtained migration energy
of interstitial ions Ea and pre-exponential factor A in MgF2 under different types of
radiation and different doses (Nr.1-7)

Nr. Type Ea (eV) A (K−1) Legend
1 electron 1.87 4.8 · 1010 Optical absorption, 2 MeV electron irradia-

tion, dose 1 · 1016 e/cm2, Ref.24

2 (I) electron 1.60 1.0 · 108 EPR, 2 MeV electron irradiation, dose 1·1016

e/cm2, Ref.24

3 (II) neutron 1.24 9.8 · 106 EPR, E > 1 MeV, irradiation 15 min, flux
3 · 1013n/cm2s, Ref.24

4 (III) electron 0.80 8.4 · 103 EPR, 2 MeV electron irradiation, dose 1·1017

e/cm2, Ref.24

5 (IV) neutron 0.56 1.8 · 102 EPR, E > 1 MeV, irradiation 10 h, flux 3 ·
1013n/cm2s, Ref.24

6 ions 0.46 9.6 · 100 Optical absorption, U ions (11.1 MeV/u),
fluence 6 · 1011 cm−2, Ref.50

7 electron 0.35 3.5 · 100 EPR, 2 MeV electron irradiation, dose 2·1017

e/cm2, Ref.24
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Figure 4: Correlation of the effective energies and pre-exponents for sapphire (a), MgO (b) and
MgF2 (c). The high quality of this correlation is characterized by the standard Pearson correlation
coefficient: (a) r = 0.92819, (b) r = 0.87847 and (c) r = 0.99291, very close to the perfect case
(r = 1). In all three cases the positive linear relationship takes place between the two variables.

sapphire samples varying only the neutron flu-
ences, similarly as it was performed for MgF2.

24

Discussion and Conclusions

Summing up, it is demonstrated, for the first
time, that in three types of strongly irradi-
ated ionic solids of different crystalline struc-
ture and chemical nature, the pre-exponential
factor of diffusion is strongly correlated with
the migration energy. In other words, the de-
fect recombination kinetics is not character-
ized uniquely by the activation energy for dif-
fusion with a constant pre-exponent (as gener-
ally accepted in solid state physics and chem-
istry) but instead these parameters depend on
the radiation fluence which considerably com-
plicates analysis of the radiation-induced ki-
netic processes. Note that this correlation
(Ea − A) effect, known as the Meyer-Neldel
rule,28 is well known in chemistry, biology, even
semi-conductor physics.29–32 The foundations
of this empirical rule are still not fully under-
stood. One of possible phenomenological mod-
els33 claims that eq.(1) holds in disordered sys-
tems with exponential probability distribution
of energy barriers of localized quasi-particles.
The relation (1) is observed usually in multi-
component systems (for example, metallurgical
slags34 containing tens of oxides). Our obser-
vation shows that this is possible in simple sys-
tems and without changes of composition. Sim-

ilar observations were also done in glasses un-
der weak neutron or ion irradiation character-
ized by small variation of activation energies:
chalcogenide glass35 and metallic glass.30

One of possible logical explanations of the ob-
served effect could be a growing disordering of
materials under irradiation with a continuous
transition from a perfect crystalline structure to
the amorphous-like one.27 However, three stud-
ied materials do not reveal considerable amor-
phization and strong disordering under irradia-
tion.51 Moreover, experiments52 show that oxy-
gen diffusion in vitrous silica (and probably,
many other disorder solids) is slower than in the
crystalline phase, whereas computer modeling
of a series of binary oxides51 indicated that ac-
tivation barriers for radiation damage recovery
increses with the material disordering. Another
explanation could be related with the simula-
tions of the radiation damage of MgO53 which
suggested extremely high mobility of small in-
terstitial clusters (and thus, average interstitial
mobility). A number of such clusters could in-
crease with the fluence growth and explain our
observation. More detailed experimental and
theoretical studies for a broader class of ma-
terials are necessary for the understanding the
observed effect.
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