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We present the results of detailed first principles study of the piezoelectric properties of
(SrTiO3)m/(BaTiO3)M−m heterostructure using 3D STOm/BTOM−m superlattice model. The atomic
basis set, hybrid functionals and slabs with different number of STO and BTO layers were used.
The interplay between ferroelectric (FEz) and antiferrodistortive (AFDz) displacements is carefully
analyzed. Based on the experimental data and group theoretical analysis, we deduce two possi-
ble space groups of tetragonal symmetry which allow us to reproduce experimentally known pure
STO and BTO bulk phases in the limiting cases, and to model the corresponding intermediate
superlattices. The characteristic feature of the space group P4mm (#99) model is atomic displace-
ments in the [001] direction, that allows us to simulate the FEz displacements, whereas the P4
(#75) model besides FEz displacements permits oxygen octahedra antiphase rotations around
[001] direction and thus AFDz displacements. Our calculations demonstrate that for m/M ≤ 0.75
layer ratios both models show similar geometries and piezoelectric constants. Moreover, both
models predict approximately 6-fold increase of the piezoelectric constant e33 compared to the
BaTiO3 bulk value, albeit at slightly different layer ratios. Obtained results clearly demonstrate
that piezoelectricity arise due to a coordinated collective FEz displacements of atoms in both STO
and BTO slabs and interfaces and reaches maximum when superlattice approaches the point
where tetragonal phase becomes unstable and transforms to a pseudo-cubic phase. We demon-
strate that even a single or double layer of BTO is sufficient to trigger a FEz displacements in STO
slab, in P4mm and P4 models, respectively.

1 Introduction
Development of effective energy harvesting devices requires
search for a new energy conversion materials1,2. For a very
long time, lead-zirconate-titanate (PZT) perovskite was the most
widely used piezoelectric material for electromechanical applica-
tions3. In recent years, alternative lead-free perovskites were
sought for PZT replacement4. Potential candidates are BaTiO3-
based piezoelectrics5 whose performance, however, is worse
compared to PZT. As we have shown recently6–8, the (Ba,Sr)TiO3

solid solutions considerably improve piezoelectric properties.
However, the main problem here is quite limited Sr concentra-
tions that could be added to BaTiO3 without transition to para-
electric cubic phase. In this paper, we performed first principles
study of the (SrTiO3)m/(BaTiO3)M−m (hereafter STOm/BTOM−m)

a Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga,
Latvia.
b Max Planck Institute for Solid State Research, Heisenberg str. 1, Stuttgart D-70569,
Germany.
∗ Corresponding author. E-mail: guntars.zvejnieks@cfi.lu.lv

superlattice which is free from this limitation. Moreover, the
Curie temperature of STOm/BTOM−m superlattice could be al-
tered considerably depending on composition comparing to a
bulk BTO9.

Numerous experimental studies were performed recently on
STO/BTO superlattices10–15. These studies, starting with
Tabata et al.16, were motivated by very high dielectric constants
of superlattices, in a comparison with the pure constituent materi-
als. Later O’Neill et al.17,18 proposed that the high dielectric con-
stants, at least for fine superlattice structures, can be attributed to
Maxwell-Wagner relaxation, i.e. they are an artifact of increased
interfacial polarization (increased carrier mobility) rather than
relaxor type of behavior (engineered nanoscale heterogeneities).
Most of superlattice studies focused on the ferroelectric rather
piezoelectric properties.

The symmetry of STOm/BTOM−m superlattice is quite compli-
cated and, in general, depends on the number of STO and BTO
layers, temperature, substrate induced strain, and the total thick-
ness of superlattice. Experimental studies of STO/BTO superlat-
tices could be separated into two groups depending on STO slab
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symmetry at ambient temperatures: (i) for STOm/BTOm super-
lattices grown on the STO (001) substrate, STO slabs were found
to be orthorhombic (mm2) for m ≤ 30 with a polar axis paral-
lel to [110] and [110] pseudo-cubic directions19,20. STO becomes
centrosymmetric above critical thickness of 30 unit cells and STO
slabs with m = 10 and 30 layers transform from orthorhombic to
tetragonal and centrosymmetric phase at elevated Curie temper-
atures of Tc = 540 and 599 K19,20, respectively. In these experi-
ments it was initially proposed that at ambient temperatures BTO
slabs have orthorhombic symmetry19, while later it was clari-
fied20 that BTO phase has a tetragonal symmetry with a polar-
ization along the [001] direction. Orthorhombic STO slabs were
found also in [STO4/BTO8]40 superlattice on the SmScO3 (110)
substrate with Curie temperature Tc = 660 K21.

Alternatively, (ii) STO slab within the STOm/BTOm superlat-
tice on the STO (100) (with m = 1− 250)16,22, MgO (100) (with
m= 1−125)22–24, MgO (001) (with m= 6−10)25 could be tetrag-
onal and ferroelectric, with the polar axis along the surface nor-
mal. It was also demonstrated that the tetragonal phase for
STO10/BTO10 superlattice remains stable down to 77 K, while the
phase transition to the paraelectric state is diffused and shifted
up to Tc = 650− 700 K25. Lastly, the very recent study14 claims
that strained [STO4/BTO8]50 superlattice on the DyScO3 (110)
has the tetragonal P4mm symmetry below 550 K (another phase
transition between 200 and 300 K was also suggested14).

Thus, tetragonal phase of STO (cubic bulk STO lattice con-
stant 3.905 Å) is stabilized, if STO slabs are in-plane tensilely
strained, while BTO slabs (in-plane tetragonal bulk lattice con-
stant 3.992 Å) are compressively strained, e.g., on the DyScO3

(110) (with almost perfect square lattice with parameters 3.946
and 3.952 Å)14. Contrary, orthorhombic STO slab phase domi-
nates, if STO slabs experience strong tensile in-plane strain, while
BTO are almost unstrained, e.g., for superlattices on the SmScO3

(110) (surface lattice constant 3.987 Å)21.
Synthesis of the high quality defect-free superlattices are far

from trivial. As demonstrated in Refs.11,12,26,27 using reflection
high-energy electron diffraction (RHEED)-assisted laser molecu-
lar beam epitaxy (MBE) and conventional MBE from elemental
sources, even a single BTO layer in [STO30/BTO1]20 strained su-
perlattice grown on the STO (001) substrate forms a commensu-
rate ferroelectric superlattice. When this superlattice is grown on
STO substrate, the STO slabs are unstrained, but become polar
due to neighboring BTO layer12,26. On different substrates, e.g.,
DyScO3, GdScO3, or SmScO3, the STO slabs are not only polar,
but become strained and exhibit also strain-induced ferroelectric-
ity26. Moreover, tetragonality and polarity of BTO and STO slabs
within the superlattice where suggested in Ref. 12 along with the
concerted mechanism of a transition to paraelectric state (polar-
ization in STO slabs disappears with BTO paraelectricity).

Theoretical studies of STOm/BTOM−m superlattices are quite
extensive. Using first-principles calculations, it was shown28 that
for a tetragonal symmetry (P4mm) the polarization is a function
of the ratio of the STO/BTO layers and it exceeds the bulk BTO
value, if a fraction of BTO in the superlattice exceeds 40%.

It has been demonstrated theoretically29 using monoclinic
symmetry (Cm) that experimentally observed in-plane polariza-

tion19,20 in STO/BTO superlattice are developed only in SrTiO3

slab while polarization in the [001] direction is nearly uniform.
The ultrashort period superlattice BTO1/STO1 was studied the-

oretically30 using first-principles calculations. It was found that
either tetragonal (P4mm) or monoclinic (Cm) phase is stable un-
der compressive or tensile in-plane strain, respectively, while or-
thorhombic phase is unstable irrespective of the applied strain.
Polarization is increasing with strain and directed along the [001]-
in tetragonal structure, or rotates towards the [110] direction in a
monoclinic phase, respectively.

Similarly, detailed studies31 have shown that the unstrained
BTO/STO superlattice ground state is a polar monoclinic phase
(Cm), and a compressive in-plane strain stabilizes the tetrago-
nal (P4mm) phase. Contrary to Ref. 30, Lebedev31 argues that
orthorhombic (Amm2) phase should be observed for tensile in-
plane strain31. Moreover, he studied in detail spontaneous po-
larization, dielectric, piezoelectric, and elastic properties of short
period STO1/BTO1 superlattice depending on in-plane strain31.
Polarization properties of short period superlattices were studied
also in Ref. 32.

The motivation for the current research was to find the optimal
structural composition of STO/BTO superlattice that promises the
enhanced piezoelectric properties suitable for energy harvesting
and other applications. Our model neglects the effect of substrate-
induced strain and considers fully relaxed superlattice of infinite
periodicity [STOm/BTOM−m]∞ (below we omit periodicity abbre-
viation). We consider the lowest symmetry of the superlattice to
be tetragonal, that allows us to reproduce the experimentally well
established phases of perovskites in the limiting cases of pure bulk
STO and BTO perovskites.

2 Superlattice models
As discussed above, the experimental information regarding sym-
metry of the STOm/BTOM−m superlattice varies considerably,
mainly suggesting different STO phases, starting from tetrago-
nal to orthorhombic (and monoclinic in the first principles calcu-
lations29–31). We limit our superlattice model to the tetragonal
symmetry as suggested in recent experiment studies 12–14 and de-
velop a model on the basis of the space-group symmetry relations.

We require that STOm/BTOM−m model in the limiting cases of
bulk STO and BTO crystals reproduces experimentally established
symmetries Pm3m or I4/mcm for STO (above/below below 105 K)
and Pm3m or P4mm for BTO (above/below 396 K). To this end,
let us build the Bärnighausen group–maximal subgroup tree,34

Fig. (1), starting from the cubic Pm3m aristotype structure of both
STO and BTO high temperature phases up till lowest possible
tetragonal phase P4 using Bilbao Crystallographic Server35.

Upon transformation from supergroup to its maximal sub-
group, the kind (translationengleiche (t) or klassengleiche (k)) and
index of the subgroup is given next to the corresponding arrow in
Fig. (1). If subgroup basis vectors change, the transformation is
given in the terms of the corresponding supergroup basis vectors.
Dashed lines indicate that alternative route of transformation ex-
ists. The fixed coordinates of atom Wyckoff positions are given as
fractions, while free to change coordinates are given as displace-
ments, δ , from the corresponding pseudo-cubic structure coordi-
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Pm3m (#221)

STO(>105K), BTO(>396K)
Pm3m
A:1b Ti:1a O:3d
m3m m3m 4/mm.m
1/2 0 1/2
1/2 0 0
1/2 0 0

t3

P4/mmm (#123) P4/mmm
A:1d Ti:1a OI:1b OII:2f
4/mmm 4/mmm 4/mmm mmm.

1/2 0 0 1/2
1/2 0 0 0
1/2 0 1/2 0

k2
a−b,a+b,2c

I4/mcm (#140)

STO(<105K)

t2

I4/mcm
A:4b Ti:4c OI:4a OII:8h
42m 4/m.. 422 m.2m
0 0 0 0.25+δ a

1/2 0 0 0.25−δ a

1/4 0 1/4 0
a Alternative setting is possible using
δ = 0.25−δ ′.

I4cm (#108)

t2

I4 (#79)

k2

t2

P4mm (#99)

BTO(>278K)

k2
a,b,2c

P4mm
A:1b Ti:1a OI:1a OII:2c
4mm 4mm 4mm 2mm.
1/2 0 0 1/2
1/2 0 0 0
0.5+δ δ 0.5+δ δ

P4mm (#99)

k2
a−b,a+b,c

P4mm (#99)

Enlarged P4mm
A:2c1 A:2c2 Ti:1a1 Ti:1a2 Ti:1b1 Ti:1b2
2mm. 2mm. 4mm 4mm 4mm 4mm
0 0 0 0 1/2 1/2
1/2 1/2 0 0 1/2 1/2
0.25+δ 0.75+δ δ 0.5+δ δ 0.5+δ

OI:1a1 OI:1a2 OI:1b1 OI:1b2 OII:4d1 OII:4d2
4mm 4mm 4mm 4mm ..m ..m
0 0 1/2 1/2 0.25+δx 0.25+δx
0 0 1/2 1/2 0.25+δx 0.25+δx
0.25+δ 0.75+δ 0.25+δ 0.75+δ δz 0.5+δz

t2

P4 (#75)
P4
A:2c1 A:2c2 Ti:1a1 Ti:1a2 Ti:1b1 Ti:1b2 OI:1a1 OI:1a2 OI:1b1 OI:1b2 OII:4d1 OII:4d2
2.. 2.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 4.. 1 1
0 0 0 0 1/2 1/2 0 0 1/2 1/2 0.25+δx 0.25+δx
1/2 1/2 0 0 1/2 1/2 0 0 1/2 1/2 0.25+δy 0.25+δy
0.25+δ 0.75+δ δ 0.5+δ δ 0.5+δ 0.25+δ 0.75+δ 0.25+δ 0.75+δ δz 0.5+δz

Fig. 1 Space-group – maximal subgroup relation tree for STO and BTO perovskites in a cubic and tetragonal symmetries. The coordinate origin shift
is absent in all transformations, while dashed line indicate the existence of alternative routes. Wyckoff positions for (A)TO, where A=S or B, atoms in
Pm3m, P4/mmm, I4/mcm, P4mm, enlarged P4mm and P4 are given in tables. Atom fractional coordinates (x,y,z) are given as columns, where δ denote
displacements from pseudo-cubic Pm3m positions, that are free to change. In different columns δ values are independent, while for different δ values
in a single column different subscripts are used. Experimentally determined temperature of the phase stability is given in brackets 33.

nates given as decimals. We provide information in framed boxes,
for experimentally known STO and BTO phases along with their
temperature limits.

In a cubic ATO perovskite structure Pm3m (where A stands for
either Sr(S) or Ba(B)) atoms could be placed in one of two al-
ternative Wyckoff positions: (a) A:1b, Ti:1a, O:3d or (b) A:1a,
Ti:1b, O:3c, respectively, that differ by ( 1

2 , 1
2 , 1

2 ) origin shift. Let us
now consider STO in Pm3m symmetry, where transition to lower
tetragonal I4/mcm phase is driven by antiferrodistortive instabil-
ity mode at R-point36. The STO transition to tetragonal I4/mcm
phase with experimentally detected Wyckoff positions S:4b, Ti:4c,
OI:4a, OII:8h37 without coordinate origin change is possible only
from Wyckoff position set (a), to be used in this paper. In the
I4/mcm structure the antiphase rotation of neighboring TiO6 oxy-
gen octahedra around the [001] axis is described by a single free
parameter δ , i.e., antiferrodistortive displacements (AFDz) of OII

in Wyckoff positions 8h from their cubic positions, see Figs. 1
and 2a.

A BTO from a cubic Pm3m phase transforms to a tetragonal

P4mm one due to ferroelectric instability mode at the Γ-point38.
Druing this step Wyckoff position set (a) splits to Ba:1b, Ti:1a,
OI:1a and OII:2c, see Fig. 1 (in agreement with experimentally
determined set Ba:1a, Ti:1b, OI:1b and OII:2c39 due to equiva-
lency of these Wyckoff positions). Geometrically this corresponds
to atom relaxation along the [001] direction, i.e., ferroelectric dis-
placements (FEz), see Fig. 2a. This relaxation leads to the loss of
center of inversion and appearance of piezoelectric and ferroelec-
tric properties in tetragonal P4mm BTO.

In general three tetragonal STO/BTO superlattice models are
possible, that in the limiting cases of pure STO and BTO would
lead to the above considered perovskite phases. Two superlat-
tice models could be constructed straightforwardly on the basis of
P4mm or I4/mcm symmetries, respectively. (i) Within the P4mm
model FEz displacements and piezoelectric behavior is allowed by
symmetry. Here oxygen octahedra rotation, i.e., AFDz displace-
ments is absent, see Fig. 1. (ii) Within the I4/mcm model only
AFDz displacements are allowed, see Figs. 1. However, FEz dis-
placements and thus piezoelectric effects in this model are absent
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due to existence of center of inversion.
(iii) In order to built a general model that combines both FEz

and AFDz displacements, let us increase the original P4mm unit
cell size

P4mm (99)→ k2 (a,b,2c)→ P4mm (99)→

k2 (a−b,b+b,c)→ P4mm (99) , (1)

firstly, by doubling it in the c direction and, secondly, by a rota-
tion and increase along the a and b basis vectors, that could be

described by a transformation matrix
(1 1 0

1 1 0
0 0 2

)
. The corresponding

splitting of Wyckoff positions for the enlarged P4mm are given in
Fig. (1). The x and y coordinates of OII:4d are free to change,
however, still in a constrained δx = δy manner, that allows no ro-
tation of oxygen octahedra as in I4/mcm. Further reduction of
symmetry to P4 is required to obtain a single superlattice model
that in the limiting cases of bulk STO and BTO crystals leads to
I4/mcm and P4mm symmetries, respectively.

Thus, the symmetry considerations allow us to choose two
tetragonal STOm/BTOM−m superlattice models for a further
piezoelectric property studies (i) P4mm with FEz displacements
and (iii) P4 with both FEz and AFDz displacements.

3 Computational details
The first-principles calculations were performed using the CRYS-
TAL1740,41 computer code within the density–functional theory
(DFT) formalism. The single particle wave functions are ex-
panded as a linear combination of Bloch functions that, in turn,
are linear combination of atomic orbitals (Gaussian type func-
tions). For O atom we use all-electron basis sets42, while for Ti,
Sr and Ba atoms – the Hay and Wadt small core effective core
pseudo-potentials (ECP)43.

We used a single parameter hybrid exchange-correlation func-
tional B1WC, that combines Wu and Cohen (GGA-WC) exchange
functional with 16% of HF exchange and the Perdew–Wang
(PWGGA) correlation functional41,44. B1WC was designed to im-
prove the calculated electronic and structural properties of proto-
typical oxides44.

To calculate the piezoelectric properties of STOm/BTOM−m su-
perlattices, we consider two tetragonal models, based either on
P4mm symmetry with 5 atoms (a single layer) per unit cell, or P4
– with 20 atoms (two layers) per unit cell. The STOm/BTOM−m

superlattices with a total number (period) of M = 8, 16 and 32
layers are created containing also a different number, m, of STO
and, M−m, BTO layers. The periodic boundary conditions in 3D
are imposed on the lattice, see Fig. 2a. The limiting cases of pure
bulk STO and BTO perovskites within Pm3m, I4/mcm, P4mm, and
P4 symmetries are also considered.

For I4/mcm and P4 we use 6×6×N Monkhorst-Pack k-point
mesh, while for Pm3m and P4mm – 8×8×N Monkhorst-Pack k-
point mesh45. In bulk I4/mcm and P4 cases we used N = 6 and 4,
respectively, while for Pm3m and P4mm cases N = 8. For all super-
lattices we set N = 1, independently on a total number of layers,
M. Exceptions are superlattices that are build on I4/mcm model,
where we set N = 6, due to primitive cell type used in CRYSTAL

Ba1

Ba2

Sr3

Sr4

BTOM−m

STOm

STO/BTO
interface

BTO slab

BTO/STO
interface

STO slab

(a)

Ti

OI

OII

(b)

Fig. 2 (a) Schematic view of a fraction of STOm/BTOM−m superlattice (Ti-
grey, O-red, Ba-dark green, Sr-light green). FEz and AFDz displacements
are marked with blue and black arrows, respectively. (b) Modules of oxy-
gen octahedra rotation angles, θ

TiO6
z , in the P4 model for m/M = 14/16

(circles) and 30/32 (crosses) superlattices.

calculations.

Tolerances for Coulomb and exchange sums are set to 8 8 8 8
16, while SCF convergence threshold on total energy – to 10−10

hartree41. Integration is performed on a predefined pruned grid
consisting of 99 radial and maximum of 1454 angular points (XXL-
GRID) (in order to achieve accurate convergence of geometry
that is required for piezocoefficient estimates); DFT density and
DFT grid weight tolerances are kept as 9 and 18, respectively; for
SCF convergence acceleration Fock/KS matrices mixing percent-
age (FMIXING) is set to 60 and Anderson’s method (ANDERSON)
is used; pseudo-potential tolerance (truncation criteria for inte-
grals involving ECPs) are set to 10; maximum order of multipolar
expansion set to 6 (POLEORDR)41.

Full geometry optimization was performed provided the en-
ergy difference between two steps threshold (TOLDEE) is less
than 10−10 hartree, and the root-mean-square of the gradient
(TOLDEG) and displacement (TOLDEX) is 0.00003 hartree/bohr
and 0.00012 bohr, respectively, using no trust radius to limit dis-
placement (NOTRUSTR).

First-order direct piezoelectric constant, e33, describes the po-
larization P in [001] direction induced by strain along the same
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[001] direction, η , at a constant electric field41,46

e33 ∼=
(

∂P
∂η

)
E
, (2)

where Voigt’s notations are used. In order to calculate the proper
direct piezoelectric constant, e33, we use the Berry phase, ϕ, (BP)
approach41,47 within the framework of the modern theory of po-
larization. Then the piezoelectric constant is calculated as a nu-
merical derivative of the BP projection along the [001] direction,
ϕ, with respect to strain, η ,

e33 =
|e|

2πV
c

δϕ

δη
, (3)

where e is electron charge, V is supercell volume, and c is the
supercell height. Note that we restrict ourselves to the diago-
nal e33 parameter calculations since (a) it is experimentally the
mostly reliably measured parameter, and (b) the symmetry of the
supercell in this particular case is preserved during piezoelectric
constant calculations that allows us to estimate the piezoelectric
constant e33 for any tetragonal symmetry without the center of
inversion considered in this paper. In general estimates of other
piezoelectric tensor elements in ferroelectrics with several phases,
e.g. BTO, according to algorithm implemented in CRYSTAL1741

are limited only to the energetically most stable phase since un-
strained geometry should be the lowest in energy. Otherwise the
structural deformation during strain modeling might lead to an
undefined situation, when the strained system is in a state with a
lower symmetry and energy than the unstrained one.

The maximal strain values, η , used in the calculations must be
chosen with a care. For a large m/M, when superlattice is close to
a pseudo-cubic phase, excessive compressive strain in the [001] di-
rection may force the system to swap the dipole orientation, that
biases the calculated piezoelectric constant. In most calculations,
we set the symmetric Lagrangian elastic tensor component with
indexes (3,3) to η = 0.001 (ELASTIC). In very demanding cases,
for m/M = 30/32 in P4 model, we calculated the piezoelectric co-
efficient using a single deformation, i.e. by applying the smallest
tensile strain of 0.0005. In order to compare accurately systems
with close energies (including strained geometries), we used a
FIXINDEX setting41.

4 Simulation results

4.1 Bulk STO and BTO crystals

Let us test both P4mm and P4 superlattice models in the limits of
pure bulk STO and bulk BTO perovskites and verify that simula-
tions lead to experimentally established perovskite phases. There-
fore we need to consider both bulk STO and BTO perovskites in
each of the four possible cases: in a single cubic (Pm3m) and three
tetragonal ( I4/mcm, P4mm and P4) symmetries, Table (1).

(i) Our gedankenexperiment with STO in the tetragonal P4mm
symmetry leads to a trivial result. After full structure optimiza-
tion, STO remains in a cubic Pm3m phase since within the P4mm
symmetry rotations of oxygen octahedra are forbidden, see Ta-
ble (1). Both lattice constant, a0, and tetragonality parameter,
(c0/a0)−1, of P4mm coincide with those of a cubic phase Pm3m

within the numerical accuracy of the order of 10−3 Å. Similarly,
the atomic displacements agree with the corresponding cubic
ones (δ X=0) and the total energy difference between both struc-
tures, ∆EATO, is zero.

As expected, STO in the I4/mcm symmetry is energetically more
favorable (by ∆EATO = −0.76 meV per formula unit) comparing
to the cubic one, Table (1). The gain is due to oxygen octahedra,
TiO6, antiphase rotation (AFDz displacements), that is reflected in
OII coordinate, δ OII , displacement from pseudo-cubic zero value
according to49†

θ
TiO6
z = arctan(4δ

OII) (4)

and slight increase of tetragonality. It was suggested in Ref. 48
that for a regular oxygen octahedra with all equal edges the ratio
c0/a0 should be equal to 1/cos(θTiO6

z ) that would allow to de-
scribe STO geometry using a single parameter. However, in our
bulk calculations the out of plane edges of octahedra are 10−3 Å
longer than the in-plane edges, and the suggested relation does
not hold. Thus, our calculations support the two parameter STO
phase transition model49,50.

Lastly, P4 is the lowest tetragonal space group that allows both
oxygen octahedra rotation (AFDz displacements) and atomic [001]
displacements (FEz displacements), see Fig. 1. When STO com-
pound is considered in such P4 symmetry, the geometry optimiza-
tion converges to the tetragonal phase I4/mcm (within the accu-
racy of 10−3 Å). Note that the oxygen octahedra rotation angles in
P4 model vary separately in each layer, see Table (1), contrary to
the I4/mcm, and therefore all rotation angles agree well. More-
over, the atomic [001] displacements are absent in both P4 and
I4/mcm models.

As is well known, the piezoelectric effect is absent in cen-
trosymmetric space groups (with the center of inversion, e.g.,
Pm3m and I4/mcm). Despite the fact that we consider STO in
space groups P4mm and P4 that have no center of inversion, our
calculations in agreement with experiments demonstrate that the
piezoelectric effect in bulk STO is absent, e33 = 0.0 C/m2, see Ta-
ble (1).

By comparison with experiments, Table (2), the STO pseudo-
cubic lattice constant, a0, is slightly underestimated in the Pm3m
and I4/mcm structures. Oxygen octahedra rotation angle as
well as tetragonality, however, is approximately twice larger for
I4/mcm, when comparing with the experiment at 77 K. (Note
however that at lower temperatures (4.2 K) rotation angle in-
creases till 2.1◦ 48 which makes agreement better). The agree-
ment between the calculated and experimental band gaps is
also good, as well as with with recent first-principles studies of
STO36,49,51,52. Note also that antiferrodistortive phase with fer-
roelectric displacements was predicted theoretically in thin STO
films53.

(ii) Another gedankenexperiment with BTO in the I4/mcm sym-
metry converges to the Pm3m phase (since displacement of atoms
in the [001] direction is forbidden and rotation of oxygen octa-
hedra are energetically unfavorable in I4/mcm, Fig. 1). In both

†See note for I4/mcm space group in Fig. 1.
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Table 1 Theoretically calculated pseudo-cubic structural parameters (a0 and c0), displacements from pseudo-cubic Pm3m positions if allowed by
symmetry (δ in fractional units, see Fig. 1, and δ A

i ≡ 0), octahedral rotation angle (θ TiO6
z ), total energy difference per formula unit (∆EATO, where Pm3m

energy is set as the zero energy level 0), band gap (Eg) and total proper direct piezoelectric (stress) tensor coefficient (e33) for STO and BTO bulk
crystals in different space groups (SG). Subscript indexes at δ denote (x,y,z) components, see Fig.1

SG a0 (Å) (c0/a0)−1 δ Ti δ OI δ OII θ
TiO6
z (◦) ∆EATO (meV) Eg (eV) e33 (C/m2)

STO:
Pm3m(#221) 3.884 0 - - - - "0" 3.36 -
P4mm(#99) 3.884 0.000 0.000z 0.000z 0.000z - 0.00 3.36 0.0
I4/mcm(#140) 3.880 0.002 - - 0.014x,y 3.2 −0.76 3.39 -

P4(#75) 3.881 0.002 0.000z
a 0.000z

a +0.014x, −0.014y, 0.000z
a 3.1 −0.76 3.39 0.0−0.014x, +0.014y, 0.000z
a −3.1

BTO:
Pm3m(#221) 3.975 0 - - - - "0" 3.20 -
P4mm(#99) 3.962 0.022 0.018z −0.028z −0.015z - −19.61 3.26 4.3
I4/mcm(#140) 3.975 0.000 - - 0.000x,y 0.0 +0.03 3.20 -

P4(#75) 3.962 0.022 0.017z
a −0.029z

a 0.000x, 0.000y, −0.016z
a 0.0 −19.65 3.26 4.30.000x, 0.000y, −0.016z
a 0.0

a The fractional coordinate δz of the space group P4 is scaled to a single unit cell height (multiplied by 2) for comparison with P4mm data.

Table 2 Experimental pseudo-cubic structural parameters (a0 and c0), displacements from pseudo-cubic Pm3m positions if allowed by symmetry (δ
in fractional units, see Fig. 1), octahedral rotation angle (θ TiO6

z ), band gap (Eg, ‖ and ⊥ stand for light polarized parallel and perpendicular to the
ferroelectric z-axis, respectively) and the total proper direct piezoelectric (stress) tensor coefficient (e33) for STO and BTO bulk crystals in different
SG 33,37,48

SG a0 (Å) (c0/a0)-1 δ Ti δ OI δ OII θ
TiO6
z (◦) Eg (eV) e33 (C/m2)

STO:
Pm3m(#221) 3.905 0 - - - - 3.40 -

(293K) (296K)
I4/mcm(#140) ≈3.905 ≈0.001 - - 0.006x,y 1.4 3.43 -

(77K) (77K) (77K)
BTO:
Pm3m(#221) 3.996 0 - - - - 3.25 -

(393K) (403K)
P4mm(#99) 3.992 0.011 0.0135z −0.025z −0.015z - 3.38‖, 3.27⊥ 6.7

(293K) (293K) (295K) (295K) (295K) (293K) (296K)

symmetries piezoelectric constants are zero, due to the presence
of the center of inversion.

The tetragonal P4mm symmetry is energetically more favorable
for BTO than cubic Pm3m. This is related to the cation and anion
movement in opposite [001] directions from pseudo-cubic posi-
tions and appearance of tetragonality. The BTO lattice tetrago-
nality is an order of magnitude larger than that of the STO in
I4/mcm symmetry, Table 1.

Lastly, BTO modeling in the P4 symmetry shows that lattice
constant and tetragonality converge to the P4mm phase, within
high accuracy of 10−3 Å, Table 1. In this case displacements from
pseudo-cubic positions in [001] direction, absence of oxygen octa-
hedra rotation, energy gain comparing to cubic Pm3m symmetry,
and band gap agrees well with the P4mm model, Table 1.

Similarly to bulk STO case, the piezoelectric effect is absent for
BTO in Pm3m and I4/mcm symmetries due to the presence of cen-
ter of inversion, Table 1. In turn, in both other P4mm and P4 sym-
metries we obtain equal piezoelectric coefficient, e33, estimates,
within the accuracy of 10−1 C/m2, Table 1.

The BTO pseudo-cubic lattice constant, a0, in both Pm3m and
P4mm symmetries is slightly underestimated, while tetragonality
of P4mm is twice larger, comparing to experiment, Table 2. The
fractional atomic displacements, band gap and piezoelectric con-
stant agrees well with experiments and previous first-principle

studies36,38,44,54–56. Moreover, the vibrational analysis of pure
BTO and STO crystals not present here were in complete agree-
ment with earlier results36,38.

Thus, our bulk STO and BTO calculations demonstrate that the
tetragonal STOm/BTOM−m superlattice could be simulated using
two models. The first one, that is based on STOm/BTOM−m cal-
culations within P4mm symmetry, in the limiting cases of bulk
STO and BTO structures, leads to the formal cubic STO (Pm3m)
and tetragonal BTO (P4mm) symmetries, respectively. The second
model, on the basis of tetragonal STOm/BTOM−m superlattice in
P4 symmetry, in the limiting cases of bulk STO and BTO, in turn
gives the tetragonal STO (I4/mcm) and BTO (P4mm) symmetries,
respectively.

4.2 P4mm model of STOm/BTOM−m superlattice

Let us consider now the STOm/BTOM−m superlattice within the
P4mm model. The direct piezoelectric constant e33 increases with
the number of STO layers, Fig. 3a. However, after reaching a
maximum at m/M = 14/16 ∼ 0.88, addition of one more STO
layer (ratio of 15/16 ∼ 0.94) leads to the abrupt disappearance
of piezoelectric effect (we have confirmed this behavior also for
m/M = 30/32∼ 0.94). The piezoelectric coefficients for a various
number of total layers, M, but identical ratios, m/M, are similar
for m/M≤ 0.75. Strong dependence on M is observed at higher ra-
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(a)

(b)

(c)

(d)

Fig. 3 STOm/BTOM−m superlattice in the P4mm model. a) Direct proper piezoelectric constant, e33 (including atomic position relaxation) and b)
"clamped-ion" contribution, eCI

33 (in the absence of atomic position relaxation), respectively. c) Displacement between AOI and TOII planes, sATO, see
text for details. The continues lines show variation of sATO under compressive and tensile dimensionless strain, η = 0.0025. d) Derivative of, sATO, with
respect to strain, η . The dashed lines are guides for the eye. The total number of layers M is given in the legend.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4 Decomposition of Figs. 3c,d into contributions. (a,b) Displacement, sATO, (see Fig. 3c) decomposition into contributions, sy
x. Subscript, x,

indicates the contribution of either BTO/STO interface, STO slab, STO/BTO interface or BTO slab. Superscript, y, denotes normalization to a single
formula unit (ATO) or to single layer (from BTO/STO interface, STO slab, STO/BTO interface or BTO slab), respectively. (c-f): Displacement derivative,
dsATO/dη (see Figs. 3d) decomposition into contributions, dsy

x/dη . Total number of layers (a-d) M = 16 and (e-f) M = 8, respectively.

tio m/M ∼ 0.88. At this ratio for M = 8 layer model (m/M = 7/8∼
0.88) we find ∼ 6-fold increase of e33, while for M = 16 and 32 su-
perlattices piezoelectric constant decreases and saturates to only
∼ 4-fold increase, comparing to its bulk BTO value, Fig. 3a. The
purely electronic contribution to piezoelectric constant (without
atomic relaxations) is calculated using "clamped-ion" approxima-
tion, eCI

33, see Fig. 3b. It is an order of magnitude smaller than e33

for bulk BTO and tends to zero with an increase of the number of
STO layers. The electronic contribution alone cannot explain an
enhancement of e33 in STOm/BTOM−m with the number of STO
layers, similarly to Ba(1−x)SrxTiO3 solid solution6.

In order to relate the atomic relaxation effect with piezoelectric
constant, let us note that piezoelectric constant, e33, is related to
the variation of polarization, P, under strain, η , in [001] direction,
Eq. (2). In turn polarization, P, is proportional to a total dipole
moment p in [001] direction, P =V−1 p, and the dipole moment is
proportional to a displacement, s, that separates charges (under
assumption that separated charges for all dipoles are similar and

weakly affected by strain values used in our calculations) within
the lattice volume, V . Thus, let us define the total displacement in
[001] direction sATO (displacement, from here on), as a sum of par-
tial displacements between planes of AOI, sAOI , and TOII, sTiOII ,
(in fractional coordinates that for a convenience are normalized
per a single ATO formula unit)

sATO = sAOI+sTiOII , (5)

see Fig 2a. According to the definition, sATO approaches zero
when atoms tend to occupy their pseudo-cubic structure posi-
tions. Let us note that for bulk crystal the displacement in Eq. 5
could be estimated as

sATO = |δ A
z |+|δ OI

z |+|δ Ti
z |+|δ OII

z | , (6)

where z-displacements from pseudo-cubic Pm3m positions could
be obtained from Table 1.

Firstly, let us consider the displacement, sATO, in the absence
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(a)

(b)

Fig. 5 a) In-plane lattice constant, a0, and tetragonality dependence on
the layer ratio, m/M, for the P4mm (dashed lines) and P4 models (solid
lines with stars). b) The energy difference, ∆EATO

P4−P4mm, between superlat-
tices in P4 and P4mm models (per formula unit ATO) and maximal rotation
angle of the oxygen octahedra in P4. Symbols denote total layer number,
M, see Fig. 3.

of strain. With an increase of the number of STO layers, m, the
displacement sATO decreases from the bulk BTO (sATO = 0.061, see
Table 1) value to that in STO (sATO = 0), Fig. 3c.

Due to additivity of terms in Eq. (5), we can decompose the
displacement sATO into four components describing contributions
from BTO/STO interface layer, STO slab, STO/BTO interface
layer and BTO slab, respectively, see Fig. 2a,

sATO = sATO
BTO/STO + sATO

STO + sATO
STO/BTO + sATO

BTO , (7)

that are normalized to an ATO formula unit, Eq. 7. The con-
tribution of BTO slab displacements dominates for m/M < 0.5,
Fig. 4b. For larger m/M ratios the STO slab displacements prevail,
while interface effect remains small for all ratios that demonstrate
piezoelectric effect. This behavior could be understood by intro-
ducing displacements normalized to a single (BTO/STO interface,
sBTO/STO

BTO/STO; STO slab, sSTO
STO; STO/BTO interface, sSTO/BTO

STO/BTO; and BTO slab,
sBTO

BTO) layer contributions. It can be shown, that the single layer dis-
placement contribution to the displacement sATO is proportional
just to the layer number in the superlattice

sATO =
1
M

sBTO/STO
BTO/STO +

m−1
M

sSTO
STO +

1
M

sSTO/BTO
STO/BTO +

M−m−1
M

sBTO
BTO . (8)

Single layer displacement representation, Eq. (8), demonstrates,
that displacements in all single layers of BTO and STO as well
as their interfaces are approximately equal, Fig. 4a. A remark-
able behavior is observed for m/M = 15/16 ∼ 0.94 ratio (e33 = 0
C/m2) when there is a rumpling on both STO and BTO interfaces
(marked with arrows in Fig. 4a), but the displacements in both
STO and BTO slabs are absent (sSTO

STO = sBTO
BTO = 0) indicating that

both slabs are in a pseudo-cubic phase, Figs. 4a,b.
Secondly, let us consider compressively and tensilely strained

superlattices. Then the displacement, sATO, decreases with the
number of STO layers, however, in a non-proportional way, see
solid lines in Fig. 3c. The displacement derivative with respect
to a strain, dsATO/dη , behaves quantitatively similarly to e33,

Figs. 3a and d, that allows us to interpret the piezoelectric be-
havior in terms of displacements. More so, for m/M = 7/8∼ 0.88
ratio the displacement derivative increases ∼ 6-fold comparing to
the bulk BTO value, i.e., despite the small sATO value (the su-
perlattice is close to the point where tetragonal phase stability
decreases tending towards pseudo-cubic phase) the displacement
variation, ∆sATO, reaches maximum upon strain variation.

The displacement derivative could be partitioned into contri-
butions using Eqs.(7–8), see Fig. 4c-f. When contributions are
normalized per formula unit, the impact of BTO and STO lay-
ers decrease and increase with m/M ratio proportionally to the
number of BTO and STO layers in the superlattice, respectively,
Fig. 4d,f. In turn, contribution from single layers are similar, irre-
spectively of the layer position (STO slab, BTO slab, or STO and
BTO interfaces), Fig. 4c,e. Let us now analyze the components
for two identical ratios m/M ∼ 0.88, but different total number
of layers M, i.e., m/M = 14/16 and 7/8, Fig. 4c-f, that lead to
different piezoelectric constants e33 = 22 and 32 C/m2, Fig. 3a,
respectively. The BTO slab region is absent in the M = 8 layer
superlattice, since there is just a single layer of BTO. In this case
contribution from both single STO slab and BTO/STO interface
layers are ∼ 30% larger than from STO/BTO interface, Fig. 4e.

For P4mm group the in-plane lattice constant, a0, decreases
approximately linearly with the ratio, m/M, see dashed line in
Fig. 5a. The tetragonality estimate also decreases with m/M and
reaches zero value at the same m/M ≥ 15/16 ≡ 30/32 ∼ 0.94 ra-
tios, when piezoelectric constant, e33, becomes zero and superlat-
tice becomes pseudo-cubic. Thus the absence of piezoelectricity
could be explained by the recovery of the center of inversion in
pseudo-cubic slabs.

4.3 P4 model of STOm/BTOM−m superlattice

Similarly to P4mm results discussed above, the direct piezoelec-
tric constant e33 in P4 model increases with the number of STO
layers m/M, Fig. 6a. The clamped-ion contribution eCI

33 is by an or-
der of magnitude smaller than the piezoelectric constant for the
bulk BTO and it tends to zero for the bulk STO, Fig. 6b. For small
and average ratios, m/M ≤ 6/8 ∼ 0.75, the piezoelectric constant
behaves similarly for both space groups, P4mm and P4. However,
for larger ratios, e.g., at m/M = 30/32∼ 0.94 we observe a qualita-
tively different behavior. At this ratio e33 reaches maximum (∼6-
fold increase compared to the bulk BTO) in P4 model and shows
clearly a ferroelectric behavior, while within P4mm symmetry, the
ferroelectric effect was already lost.

The displacement sATO decreases with m/M, Fig. 6c. However,
the variation of the displacement under compressive and tensile
strain increases with m/M, see solid lines in Fig. 6c, leading to
a maximum of 6-fold increase of sATO derivative, Fig 6d. This
increase correlates with the growth of direct piezoelectric coeffi-
cient in Fig. 6a.

Decomposition of the sATO into contributions from single STO
and BTO slab layers and their interfaces (sx

x, where x is STO, BTO,
BTO/STO interface and STO/BTO interface) shows that all single
layers contribute to sATO approximately equally, Fig. 7a. The con-
tribution of single layers, sx

x, to the total displacement, sATO, is
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(a)

(b)

(c)

(d)

Fig. 6 STOm/BTOM−m superlattice in P4 model, description identical to Fig. 3.

(a)

(b)

(c)

(d)

Fig. 7 Decomposition of Figs. 6c,d into contributions, description identical to Fig. 4a-d.

proportional to the number of these layers according to Eq. (8),
see Fig. 7b. Contribution from BTO and STO layers is decreasing
and increasing with m/M ratio, respectively.

The displacement derivative normalized to a single layer,
dsx

x/dη , is independent of the layer type and increases with the
m/M ratio, see Fig. 7c. In turn the contribution to the total dis-
placement derivative, dsATO/dη , is proportional to the number of
individual layers, Fig. 7d. Since the largest piezoelectric constant,
e33, value is observed for m/M = 30/32∼ 0.94 ratio, the dominant
contribution to it comes from STO slab.

For P4 model the in-plane lattice constant, a0, within the calcu-
lation accuracy coincides with that of P4mm model and decreases
approximately linearly with the STO and BTO layer ratio, m/M,
see solid line with stars in Fig. 5a. The tetragonality estimate
also decreases with m/M and saturates at bulk STO value for
m/M ≥ 30/32∼ 0.94 ratios.

In all m/M ratio range the P4 superlattice model is energet-
ically more favorable than the P4mm one, Fig. 5b. The energy
gain increases for P4 almost linearly up till m/M ≤ 0.75, in the ab-
sence of oxygen octahedra rotation, Fig. 5b. For a larger ratios we
observe a considerable energy gain for P4 model, that is accom-
panied with an increasing maximal oxygen octahedra rotation an-
gle, Fig. 5b. The rotation of octahedra (in opposite directions in

neighboring layers) occurs only in STO slab, while octahedra in
BTO slab doesn’t rotate, Fig. 2b.

5 Discussion and Conclusions
Limiting ourselves to the tetragonal space group symmetry, we
compared two models for STOm/BTOM−m superlattices, which
differ by symmetry, P4mm and P4, respectively. For both models
our calculations predict a considerable enhancement of the piezo-
electric properties of STOm/BTOM−m superlattices compared to
the pure bulk BTO. Moreover, the largest effect is expected for low
concentrations of BTO, i.e., in the predominantly STO-containing
superlattices. With an increase of a number of STO layers, m, in
superlattices we observed the change of: (i) the STO slab phases:
either P4mm→ Pm3m or P4mm→ P4→ I4/mcm in P4mm and P4
models, respectively; (ii) the BTO slab phases: P4mm→ Pm3m,
irrespectively of the model used. The largest piezoelectric coef-
ficient is predicted in P4mm and P4 models close to the point,
where phase of superlattice changes from non-centrosymmetric
to centrosymmetric, at ratio of STO/(STO+BTO) layer numbers
m/M = 7/8∼ 0.88 and 30/32∼ 0.94, respectively.

Our results suggest that piezoelectric effect in the superlattice
arises as a collective FEz atomic displacements in all layers (both
Ba and Sr slabs and both Ba/Sr and Sr/Ba interfaces) simultane-
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ously and contribution to e33 from each individual layer is approx-
imately equal. And, when the STOm/BTOM−m hetereostructure is
considered at the layer ratios leading to maximal e33 values, the
main contribution to e33 comes from m STO layers just due to their
increased number. Interface rumpling (boundary effect) is a key
for induction of the FEz displacements in STO slab. If STO slab
exceeds a critical thickness, the rumpling at the interface albeit
present triggers no FEz displacements in STO and piezoelectric
effect in both STO and BTO superlattice slabs disappears.

The calculations performed in the framework of tetragonal
STOm/BTOM−m superlattice allow us also to interpret some basic
experimental results. (i) Thus, the observed cooperative behav-
ior between collective ionic displacements along the [001] axis in
both STO and BTO slabs in ferroelectric regime support the con-
clusion15 on a ’strong coupling between slabs’ model rather than
decoupled (BTO slab only polarization) model.

(ii) Our model puts a constrain on the symmetry of ferroelec-
tric superlattice STOm/BTOM−m with ratio m/M = 30/31 ∼ 0.97,
which was experimentally synthesized and analyzed in Ref. 11. In
our simulations, the P4mm model becomes paraelectric already
as m/M ≥ 15/16 ∼ 0.94 which contradicts superlattice ferroelec-
tric behavior found experimentally. However, our P4 model still
remains ferroelectric at ratio m/M = 30/32 ∼ 0.94 (and demon-
strates oxygen octahedra rotation) in agreement with experimen-
tal data11.

(iii) The very fact that inclusion of the octahedra rotations in
P4 model allows the ferroelectric mode to survive at larger STO
ratios (m/M = 30/32 ∼ 0.94) than in P4mm model indicates that
in our superlattice model the AFDz mode cooperate with the FEz

mode and thus promotes the ferroelectric behavior, similarly to
Ref. 57 (also at much smaller octahedra rotation angles).

In order to analyze AFDz mode in the absence of FEz mode,
we have simulated STOm/BTOM−m superlattice up till m/M ≤
12/16 ∼ 0.75 ratio in I4/mcm model. We have observed no ro-
tation of oxygen octahedra in a STO slab, that indicate that BTO
slab with its non-rotated oxygen octahedra reacts as a resisting
force at STO/BTO slab interface. This trend explains the octahe-
dra rotation (AFDz displacement) behavior in P4 model, where
rotation occurs only in a STO slab (rotation angle increases with
the distance from interface) and for large m/M ≥ 14/16∼ 0.88 ra-
tios, see Figs. 2b and 5b. Our conclusion addresses different sit-
uation than that considered in Ref. 58, where antiferrodistortive
and ferroelectric modes trend to compete with each other in the
bulk.
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