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Abstract 

In this paper, we analized experimental annealing kinetics of the primary electronic F centers 

and dimer F2 centers observed in MgF2 at higher radiation doses and temperatures.  The 

developed phenomenological theory takes into account the interstitial ion diffusion and 

recombination with the F2-centers, as well as mutual sequential transformation with 

temperature growth of three types of experimentally observed dimer centers: F2(1), F2(2), 

F2(3) (which  differ tentatively by charges (0. +1, +2) with respect to the host crystalline sites).  

The results of the electron, neutron and ion irradiation are compared. As the result, the 

relative initial concentrations of three types of F2 electronic defects before annealing are 

obtained, along with energy barriers between their ground states as well as the relaxation 

energies.  
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1. Introduction 

Primary radiation defects in ionic solids consist of Frenkel defects—pairs of anion vacancies 

with trapped electrons (F-type centers) and interstitial ions [1-4]. Upon temperature increase 

after irradiation, the electronic F-type centers are annealed due to recombination with much 

more mobile interstitials [1, 5-9] or become mobile themselves, thus forming more complex 

electronic centers (dimer F2-type, trimer F3-type etc) or even, under certain conditions, 

creating metallic colloidal particles [10-14]. F2, F3 centers consist of 2 or 3 nearest vacancies 

with trapped electrons [2,11].  The appropriate analysis of the recombination (annealing) 

kinetics allows us to obtain important information on the interstitial migration [9]. Relevant 

theoretical models have been developed and described in detail in Ref, [9, 15-17]. Note the 

complex F2-type, trimer F3-type electron centers as well as metallic colloids can also be 

formed at high radiation doses even at temperatures where the F-centers are immobile [18-20]. 

(This is the case in the present paper.) All the above mentioned processes strongly depend on 

the type of material, the structure of the crystal lattice, and the efficiency of the corresponding 

defect formation process [21-23]. Detailed understanding of the radiation damage 

mechanisms and kinetics  is important for improving materials radiation properties.  

The situation is more or less well understood in simple NaCl-type structures, of which the 

alkali-halide crystals and simple oxides (MgO) are representatives [21-30], however in the 

case of more complex structures, such as fluorides, spinels and rutiles the current level of 

understanding is still far from the completed [23, 30-33].  In many ways, this is due to the 

lack of sufficient experimental data, which, in turn, is related to a low efficiency of defect 

formation and a sufficiently high thermal stability of the radiation defects.     

Among the materials with a complex crystalline structure, MgF2 crystals, in particular, were 

extensively investigated due to their excellent electronic and optical properties and use as 

lenses, optical window, in laser active elements etc [34].  MgF2  has a tetragonal (rutile) 
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structure with the unit cell consisting of 2 Mg2+   and 4 F-  ions.    This structure  allows  

defect configurations different from those observed in the NaCl–type alkali halides and simple 

oxides or the fluorite-structured alkaline earth halides (CaF2, SrF2 and BaF2) [35,36,37] . 

 MgF2 has attracted the attention of a number of researchers in the context of irradiation-

induced defects and radiation damage mechanisms. Various types of radiation defects were 

observed and studied in MgF2 under irradiation with various types of ionizing and particle 

radiation, including VUV, γ- and X-ray radiation, fast electron, neutron, high energy protons 

and GeV heavy ions [38-45].  Just as in the case of alkali halides and MgO and Al2O3, 

radiation defects in MgF2 can also be created without irradiation, namely, by additive 

coloration (TCR) [39].  Such F and F-aggregate centers were produced in high concentration, 

when crystal is heated to a high temperature and under high Mg vapour pressure.    

As known from experiments with 60Co, γ- rays, X-rays, electrons, neutrons and more recently 

also with low-energy ions [36, 38-46], the most dominant band with maximum optical 

absorption at 255-260 nm is due to the single F-centers.  

The other absorption bands at 320 and 370 nm were ascribed to F2-centers (two electrons 

localized at two neighbouring anion vacancies) with different orientations in the tetragonal 

lattice, called F2(1) with D2h and F2(2) with C2h symmetry [46].  The optical absorption band 

at 430 nm is attributed to F2(3) - another F2-centers of unknown symmetry, appearing only 

after irradiation at high ion fluencies [46].  The exact position of the band is difficult to 

determine, since it lies on the tail of the more pronounced F2(2) component. Note that charge 

state of these F2 centers is  unknown.  

Note also, that in the studies [47, 48] the appropriate positions of the bands are given at 255, 

320, 370 and 400 nm at 300 K in heavy ion irradiated MgF2 [47], while Nakagawa et al [48] 

instead of previous assignment gave rather different interpretation.  Four different types of the 

F-F vacancy bonds in MgF2 could be possibly associated with  the observed F2 absorption: 

the 300 nm band to the F2(D2h), the 325nm band to the F2(C1), the 355nm band to the F2(C2v), 
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and the 400 nm band to the F2(C2h) centers [48], while 430 nm band is hardly related to the  F2 

centers. Complicated character of the optical absorption spectra in the region of the F2 

absorption has been also emphasized in Ref. [42, 43]. In particular, both Davidson et al [42], 

Amolo et al [43], and earlier Nakagawa et al [49] have suggested the emergence of the Mg–

colloid absorption band   produced at 290-300 nm. In this paper, we follow F2 band 

interpretation suggested in  Ref. [46]. 

Inlike the F centers, interstitial fluorite ions in MgF2 are practically unstudied, neither 

experimentally nor theoretically. It was suggested [35] that stable and low mobile interstitial 

molecules F2 are formed which  decay at relatively high temperatures. This is in agreement 

with two hole centers observed by Ueda [50], one of them (produced in MgF2 crystals 

irradiated with γ-rays and neutrons at low temperature and designated as HN ) was assigned to  

an interstitial fluorine F atom which forms an asymmetric (F-0.4 –F-0.6 ) molecular ion with a 

lattice F ion,  decays at 560 K.  Probably, thermal decay of such or similar centers is 

responsible for the main annealing stage of the F centers in MgF2. The F center annealing 

upon sample heating  was studied more than once and (depending on radiation dose and type 

of radiation) in the temperature range between 500 K and 800 K. 

The general methodology for describing and analyzing a dynamic many-body system in its 

complexity taking into account its physical (interactions between components: particles, 

molecules, clusters etc.) and chemical (reactions) properties was introduced and discussed by us 

in Refs. [51-59]. In particular, recently we developed phenomenological theory describing the 

diffusion-controlled kinetics of radiation defect annealing in ionic solids [9, 15] and 

demonstrated how its fitting to the experimental curves allows one to extract two control 

parameters:  the migration energy of the interstitial ions Ea and the pre-exponent X=N0RD0/β, 

where N0  is initial defect concentration,   R  recombination radius,  D0  diffusion pre-exponent, 

and   β heating rate.  Assuming standard parameters N0 =1017 cm-3, R=10 Å,  D0 =10-3 cm2 s-1,   

β= 10 K/min, one gets the estimate X= 108 K-1 for a normal diffusion. In this paper, we 
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analyzed available experimental kinetics of the single F- and dimer F2 type center annealing 

in MgF2   in a wide temperature range (300-800 K).  

 

2. Results 

2.1. The F centers  

The F centers in MgF2 show a distinctive optical absorption at 255 nm [45,46]. The results of 

theoretical analysis of the F center annealing in MgF2 irradiated by electrons, neutrons and 

heavy ions are presented in Fig.1 and Table 1. The first conclusion is a big scattering of the Ea, 

and X parameters depending on the irradiation dose. In particular, increase of the electron 

irradiation dose by a factor 20 of leads to a dramatic reduction of Ea, from 1.6 eV (normal 

diffusion, X= 108 K-1) down to 0.35 eV (anomalous diffusion, X= 3.5·100 K-1). Similar effects 

take place also under neutron irradiation. Decrease of the diffusion energies is accompanied 

with the decrease by orders of magnitude of the pre-exponential factors. This is not result of 

bad fitting – theoretical curves are very smooth and close to the experimental points at all 

conditions. We believe that the observed diffusion parameter dependence on the radiation 

dose and correlation between Ea and X are related to the increased material disordering under 

increasing irradiation dose which will be discussed in oncoming paper [60]. Thus, the largest 

migration energy of 1.6 eV is attributed to the interstitial (hole center) migration energy in 

almost perfect crystal. Very likely, this energy corresponds to the above mentioned interstitial  

delocalization from traps (impurities) or interstitial  F2 molecule dissocistion, and real 

migration energy of a free interstitials is considerably smaller.  

2.2. Dimer centers 

The dimer F2 centers (electrons trapped by two nearest vacancies) were observed under heavy 

ion irradiation and characterized tentatively by the absorption bands at 320 nm  - F2(1), 370 

nm - F2(2) and 430 nm - F2(3) [46].  They assume  that  “under annealing the F2(1)-centers are 

probably converted into F2(2)- or F2(3)-centers before finally recombining with hole centers”.  
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The normalized annealing kinetics of the F- and three F2- centers are plotted in Fig. 2. As one 

can see, concentration of the single F centers monotonous decreases (see also Fig. 1) whereas 

three dimer centers show very different behavior:  similar but faster monotonous decay for 

F2(1), a sharp F2(2) peak in the temperature range of the F2(1) decay, and F2(3) peak at higher 

temperatures where F2(2) centers decay. Note that the F centers are immobile  in the 

termperature range considered here and thus F2 centers were created during irradiation rather 

formed due to the F center diffusion and aggregation. 

This supports idea of mutual transformation of three types of dimer centers. The fact that the 

F center decay is not affected by the mentioned peculiarities in the F2 kinetics indicates at 

negligible concentration of dimer centers compared to that of the F centers.  This allows us to 

treat kinetics of the F and F2 centers independently which greatly simplifies the problem. In 

particular, while considering the kinetics of dimer centers, the concentration of hole centers 

could be taken from solution for the kinetics for single centers.  

The annealing kinetics of dimer centers is a combination of the two independent processes: 

recombination of immobile electron centers with mobile interstitials (hole centers) and mutual 

transformation of three types of F2-type centers: 𝐹 (1) → 𝐹 (2) ,  𝐹 (2) → 𝐹 (3) . Let us 

introduce the dimensionless defect concentrations: CF(t)=  n(t)/n(0). It could be shown that the 

decay of the total dimer center concentration is related to that of the F centers: CF(t)κ, where 

κ=R2/R, R and R2 are recombination radii for interstitials with single and dimer centers. Three 

dimers could be characterized by probabilities Wi(t), i=1,2,3, with the normalization W1(t)+ 

W2(t)+ W3(t)=1 and initial condition Wi(0)=wi. The dimer concentrations are defined as 

products Wi(t)C(t)κ . These concentrations are additionally rescaled in Fig.2 in order to make 

small peaks more pronounced.  

The probabilities to find centers are defined by the following set of kinetic equations: 

𝒅 𝑾𝟏(𝒕)

𝒅𝒕
= −𝒑𝟏𝑾𝟏(𝒕) ,                                                   (1) 

𝒅 𝑾𝟐(𝒕)

𝒅𝒕
= 𝒑𝟏𝑾𝟏(𝒕) − 𝒑𝟐𝑾𝟐(𝒕),                                             (2) 



  Final, July 13, 2017 

 
 

8

𝒅 𝑾𝟑(𝒕)

𝒅𝒕
= 𝒑𝟐𝑾𝟐(𝒕).                                                    (3) 

These equations describe dimer center mutual transformations  𝐹 (1) → 𝐹 (2), with the rate 

p1=p1
0exp(-Eb/kBT), and then  𝐹 (2) → 𝐹 (3)  (with the rate p2=p2

0exp(-Ec/kBT)). The 

equation set could be numerically solved, provided the constant heating rate β(t) = β = const. 

By means of the least square method, one can get the main kinetic parameters – activation 

energies  Eb and Ec, two pre-exponents P1=p1
0/β and P2=p2

0/β, recombination parameter κ 

and initial defect populations wi. Our analysis shown that w3=0, so that w1=1-w2.  

The results are shown in Fig.2 in full curves.  As one can see, a simple model describes very 

well a whole set of experimental data. Three calculated activation energies are similar, 

Ea=0.46 eV, Eb=0.27 eV and Ec=0.15 eV, two of three related pre-exponents are close, third 

one is very small: X=9.6·100 K-1,  P1=8.4·100 K-1 and P2=3.0·10-3 K-1. The parameter κ=1.68 

is close to the ratio of geometric cross sections of a single and double vacancy. Lastly, the 

initial F2(1) and F2(2) dimer populations are close,  w1=0.58 и w2=0.42 whereas third one, as 

mentioned above, is negligible, w3=0. Note that the obtained activation energy of the F center 

migration Ea=0.46 eV is much smaller of that for the electron irradiation (Table 1). It could be 

shown also that there is no transformation  𝐹 (1) → 𝐹 (3) ) whereas successive 

transformations 𝐹 (1) → 𝐹 (2),  𝐹 (2) → 𝐹 (3) are irreversible.  

Additional information is presented in Fig. 3. The F2(1) after transforming into F2(2) 

practically disappears already at 600 K, whereas F2(3) is still very small (a few per cent). This 

is a reason why F2(3) band is hardly observable experimentally below 600 K [46]. This band 

starts to grow only above 600K, but here both F2(2) and F2(3) rapidly disappear due to 

recombination with highly mobile interstitials and thus their concentrations are very low. 

It is logical, to assume that three F2-type centers correspond to three possible dimer charges: 

F2, F2
+ and F2

2+ (two, one and no electrons in the di-vacancy) which explains also 

observation of three dimer centers, not two or four. The sequence of dimer center 

transformations could correspond to their thermal ionization with release each time one 
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electron, 𝐹 → 𝐹 + 𝑒 and 𝐹 → 𝐹 + 𝑒,  respectively. Indeed, thermal ionization of point 

defects is well known process in color center physics [2].  The idea of three different states is 

also confirmed by similar observation of the dimer centers in Al2O3 [61-63] and does not 

contradict also assumption [46] about different local symmetry of dimer centers.  

 

3. Conclusions 

Phenomenological theory of the annealing kinetics of single F- and dimer F2- electron centers 

in irradiated ionic solids was developed and applied to MgF2 crystals.  Theoretical analysis of 

the available experimental kinetics for the F centers under electron, neutron and heavy U ion 

irradiations shows large difference in the obtained activation energies for migration of 

interstitials (hole centers). The migration energy strongly decreases with the radiation fluence 

which will be discussed in oncoming paper [60].  

Analysis of the kinetics of the mutual transformation of three types of dimer F2-type centers  

observed under heavy ion irradiation [46] allows us to extract all kinetic parameters and 

suggest idea that these centers differ by the charge states (neutral, single- and double-charged 

defects with respect to the perfect crystal). This hypothesis is supported by our similar results 

for three types of  dimer centers in Al2O3 [61-63]  to be discussed elsewhere.   
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Figure captions 

 

Fig.1. The kinetics of the F center annealing after exposure to three types of radiation (see 

Table 1 for details).  The electron irradiation under 3 different doses – curves 1 to 3 [45], 

neutrons under two fluences – curves 4, 5 [45] and heavy U ion irradiation – curve 6 [46].  

 

 

Fig.2. Experimental points from [46] and their theoretical analysis (full lines). Initial 

concentrations of the F2(1) and F2(2) are taken as unity, whereas for weak F2(3) band the 

concentration in the peak maximum was taken for unity.  

 

Fig.3. The calculated temperature dependence of dimer center populations. 
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Table 1. The explanation of curves 1-6 in Fig.1 and the obtained migration energy of 
interstitial ions Ea and pre-exponential factor X under different types of radiation and different 
doses    
 
Nr. Legend Ea (eV) X (K-1) Reference 
1 EPR, electron irradiation dose 

1·1016 electrons/cm2 
1.60 1.0·108 [45] 

2 EPR, electron irradiation dose 
1·1017 electrons/cm2 

0.80 8.4·103 [45] 

3 EPR, electron irradiation dose 
2·1017 electrons/cm2 

0.35 3.5·100 [45] 

4 EPR,  neutron irradiation, 15 min 1.24 9.8·106 [45] 
5 EPR,  neutron irradiation, 10 h 0.56 1.8·102 [45] 
6 Optical absorption, U ions (11.1 

MeV/u) of fluence 6·1011 cm-2 
0.46 9.6·100 [46] 
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Fig.2. 
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