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Abstract: 

BiFeO3  perovskite attracts great attention due to its multiferroic properties and potential use of  

Bi1-xSrxFeO3-δ  and Bi1-xSrxFe1-yCoyO3-δ  solid solutions as intermediate temperature cathodes of oxide 

fuel cells. Similar LaFeO3 material is a limiting material for well-known highly effective cathode 

materials (La1-xSrxFe1-yCoyO3-δ) for oxide fuel cells and other electrochemical devices. In this study 

ab initio hybrid functional approach was employed for investigation of thermodynamic stability of 

both BiFeO3 and LaFeO3 with respect to decompositions to binary oxides and to elements as the 

function of temperature and oxygen pressure. The localized (LCAO) basis sets describing the 

crystalline electron wave functions were carefully re-optimized within the CRYSTAL09 computer 

code.  The results obtained by considering Fe as all-electron atom and within the effective core 

potential are compared in detail. Based on our calculations, the phase diagrams were constructed 

which allow us to predict the stability region of stoichiometric BiFeO3 in terms of atomic chemical 

potentials. This permits determining environmental conditions for existence of stable BiFeO3 and 

LaFeO3. These conditions were presented as contour maps of oxygen atoms chemical potential as a 

function of temperature and partial pressure of oxygen gas. A similar analysis was also performed 
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using experimental Gibbs energies of formation. The obtained phase diagram and contour map are 

compared with the calculated ones. 

PACS number(s): 71.15.Mb, 71.15.Nc, 81.30.Bx, 88.30.pn 

 

1. INTRODUCTION 

Both lanthanum and bismuth ferrates are limiting compounds for a set of very efficient 

cathode materials for solid oxide fuel cells (SOFCs) operating at intermediate temperatures 

(500-700 ºC), while ordinary SOFCs operate at higher temperatures (700-1000 ºC).  

Lanthanum ferrate LaFeO3 (LFO) is base for solid solutions La1-xSrxFe1-yCoyO3-δ which are 

well-known highly efficient cathodes for SOFCs1. Bismuth ferrate BiFeO3 (BFO) is base for 

the perovskite solid solutions Bi1-xSrxFeO3-δ and Bi1-xSrxFe1-yCoy O3-δ  , which were recently 

also proposed as promising cathodes for SOFCs. 2-5  In the same time BFO continues to 

attract considerable attention due to its multiferroic properties6 at ambient conditions. It 

has also been found that photocatalytic7 and photovoltaic8 properties of BFO are enhanced 

due to its ferroelectricity.  

Independently from area of application, understanding the thermodynamic stability of 

LFO and BFO is vital to provide a foundation for future investigations of the formation of 

intrinsic defects, surface structures, solid solutions, and surface chemical reactions (e.g. 

oxygen reduction reaction), as well as formation of solid solutions, like the mentioned 

above cathode materials, their possible structures and stability. The stability behavior also 

provides valuable guidance to the appropriate conditions to be used when synthesizing 

these materials. 

Exploration of formation energies of LFO was performed in many experimental studies9-

14 using various calorimetric and electrochemical techniques. However, spread of Gibbs 

free energy of formation of LFO from La2O3 and Fe2O3 oxides obtained in different 

experiments is very large: from13 23 kJ/mol  to 92 kJ/mol .14  Such a difference come out of 

various electrochemical experiments. It appears to be due to neglect of formation of oxygen 

vacancies at high temperatures and polarization of electrodes.10  Only one measurement of 



the energies of formation BFO has been attempted to our knowledge. It was performed 

using solution calorimetry and calvet calorimetric measurements.15 

Estimates of the energy (enthalpy) of formation for LaBO3 (where B stands for fourth-

period transition metals here, sitting in respective B-site of ABO3 perovskite structure) has 

been calculated using generalized gradient approximation16 (GGA) within density 

functional theory (DFT) and DFT+U technique17, where on-site Hubbard U-correction for 

intra-atomic Coulomb interactions is applied. Following to analysis18 performed for oxides, 

this works applied correction to the energies of formation on overbinding in O2 in DFT 

calculations. A dependence on electron correlation (self-interaction) in transition metal can 

be accounted18 by choosing appropriate for each metal Hubbard U parameter. Such 

approach was employed to study oxygen vacancy formation energetics in the bulk17,19  and 

at (001) BO2-terminated surfaces17 as well as O adsorption at the same surfaces17. Hybrid 

density functionals (hDF) , wherein DFT exchange functionals are mixed with precise non-

local Fock exchange terms, were recently used for modeling of oxygen vacancies and 

protonic defects formation in LaFeO3 and La1-xSrxFeO3 solid solutions20-22. 

Several relevant theoretical studies of BFO have been performed within the last few 

years. In particular, the relative stability of various charged defects was considered in refs. 

23, 24, and the formation enthalpy of defect-free BFO is analyzed in ref. 25, aimed at 

optimizing conditions for BFO thin film growth. The local density approximation (LDA) 

with on-site Hubbard U-correction (LDA+U) was applied in these calculations in order to 

estimate BFO formation enthalpy, with a focus on BFO formation from binary oxides Bi2O3 

and Fe2O3. However, it is well-known that all DFT+U approaches have difficulties for 

simultaneous modeling materials (especially oxides) containing transition metals or f-

elements having different degrees of the metal oxidation. One of reasons is that the 

effective one-center Coulomb interaction parameter Ueff depends on the oxidation state of 

the transition or f- metals is well described by a single Hubbard-U parameter.  This 

problem could be avoided by using hDF. Such hDFs have been shown to yield substantially 

better results for the atomic and electronic structure (including band gaps) of transition 

metal oxides26-28 than other approaches do. In addition, such hDFs treat anions and 

ordinary (e.g. Ba, Sr) metal ions in the same way as transition and f- metal ions, while in 

DFT+U the one-site Coulomb correction is applied usually to the latter ions only. Also, hDFs 



produce pretty good the binding energy in O2;29  therefore, there is no need for the 

correction of the energies of formation on the overbinding. 

Here we present the results of ab initio calculations using hDFs on all LFO, BFO and the 

products of their decomposition – lanthanum oxide La2O3, bismuth oxide Bi2O3 and Fe 

oxides (FeO, Fe2O3, and Fe3O4) in various phases – and we determine the range of possible 

chemical potentials for all involved elements (La, Bi, Fe and O) within which LFO or BFO 

can exist. These data are used for the thermodynamic stability analysis allowing us to 

predict the LFO and BFO stability regions as a functions of temperature and oxygen 

pressure.  In the next Section 2 details of employed theoretical approach are described. The 

results of ab initio calculations and LFO and BFO stability analyses are described and 

discussed in Section 3. Summary of the performed study and conclusions are given in the 

last Section 4. 

2. THEORETICAL 

A. Computational details 

Ab initio calculations were performed using the CRYSTAL09 computer code30 with the 

localized atomic (Gaussian-type) basis functions centered at atomic nuclei and applied to 

expand one-electron orbitals (linear combination of atomic orbitals). The B3PW30-35 hDF 

was employed, which includes a “hybrid” (mixture) of nonlocal exact Fock’s exchange, 

gradient-corrected (used in GGA), and LDA exchange potentials combined with the GGA 

correlation potential of Perdew and Wang. The presence of Fe ions in materials under 

study suggests the presence of electron correlation effects. The use of the hDF in modelling 

Fe-containing materials considerable reduces self-interaction errors of the standard 

density functionals. As it was mentioned above, employing hDF allows to avoid a need in 

correcting the formation energies on overbinding in O2 molecules.  

A series of Coulomb and exchange integrals were truncated using overlap thresholds of  

10-8, 10-8, 10-8, 10-8, and 10-16. 36 The Monkhorst–Pack grid for integration over the Brillouin 

zone in the reciprocal space was chosen to ensure that distances between neighbor points 

of the net are smaller than 0.18 Å-1 for materials and unit cells under study. The self-

consistent calculations were continued until the total energy changes decreased below 10-8 



Hartree. The atomic structures were optimized completely (both unit cell parameters and 

internal atomic positions), until simultaneously the following four conditions were fulfilled: 

the largest absolute (la) value and the root mean square (rms) values of atomic forces are 

smaller than 4.510-4 and 3.010-4 a.u., and the la and rms values of the atomic 

displacements smaller than 1.810-3 and 1.210-3 a.u., respectively. 

 

 

B. Effective Core Potentials 

In order to save computational time, the inner core electrons of heavy atoms were 

replaced by effective core potentials (ECPs) (or pseudopotentials). The latter mimic 

potentials of the replaced core electrons interacting with the rest of electrons in the system. 

The scalar-relativistic energy-consistent ECPs from the Stuttgart/Cologne group37 were 

used in this paper. Electrons of two external (valence and core-valence) electron shells 

were not included into the ECPs but described explicitly. Therefore, the ECP46MWB38-40 

and ECP60MFD41,42 potentials were used for heavy La and Bi atoms. In contrast, O atoms 

have only two electron shells (with main quantum numbers n=0, 1), thus all electrons at O 

atoms were described explicitly (all-electron basis set). Computational time saved by using 

ECPs at Fe atoms is moderate because only 10 electrons occupy two inner core shells with 

main quantum numbers n=0,1. (Therefore, before starting calculations, one has to evaluate 

savings due to the use of the ECP). Here we performed our modelling for both cases: (i) 

ECP10MFD43,44 at Fe atoms and (ii) all-electron Fe ion treatment, in order to decide upon 

the best choice for further simulations. 

C. Basis sets optimization 

The essential element of the LCAO calculations is a choice of the atomic basis sets. Some 

recommended basis sets are available at the CRYSTAL code homepage45, but no small-core 

basis set was available so far for Bi. We also needed a consistent basis set for all elements, 

involved in  Thus, we performed the basis set optimization employing our own computer 

code46,47. It was designed as the external utility driving the basis set optimization through 

minimization of the total energy. This code creates the input for the CRYSTAL09, call it for 

execution, reads necessary information from output file and determines the next set of 



parameters for which the CRYSTAL09 has to be run at the next step, according the 

conjugated gradient optimization method. The optimization was performed until the forth 

significant digit of each optimized basis set parameter had converged. 

In our previous CRYSTAL studies46,47, the oxygen basis set was based on “O_8-

411_muscat_1999” or “O_8-411_towler_1994” basis sets45. Then two uncontracted d-

orbitals were added and all split s-, sp- and d- Gaussian basis functions were re-optimized, 

in order to minimize the total energy. However, in the beginning of the present study we 

performed additional tests which indicated that all basis functions noticeably change 

during optimization when allowed. Therefore, the basis set was re-optimized completely. 

Our previous experience suggested that it is sufficient to optimize s- and sp-orbitals in the 

O2 molecule and that further optimization in an oxide crystal does not produce any 

significant changes and improvements. However, if only a single d-orbital is included to the 

oxygen basis set, then the parameter α defining diffusivity of this Gaussian function 

strongly depends on surrounding atoms. If the oxygen basis set was optimized in the free 

O2 molecule, the d-orbital becomes less diffuse than in a crystal. Also, the d-orbital had to 

be optimized in the O2 molecule, to reproduce the experimental bond length and the 

dissociation (binding) energy. These values need to be evaluated accurately enough in the 

simulations such as the present one, where the results strongly depend on the correct 

calculation of the energies of formation for various oxides. To ensure a good description of 

both free molecule and oxide crystals, we used two d-functions in the oxygen basis set, 

where a more contracted d-function was optimized in the O2 molecule whereas another, 

more diffuse d-orbital was optimized in an oxide crystal.  A similar approach was adapted 

in the present work.  The oxygen basis set was built according to the s8sp411d11 

contraction scheme (8 contracted together s-Gaussian type functions, 3 sp-basis functions, 

where the first of which contains 4 Gaussians, while other two sp-functions contain a single 

Gaussian function each, and two uncontracted d-functions the Gaussian-type functions with 

the same exponential parameters are used in sp-functions for expression of the 

corresponding basis function). All basis functions except the most diffuse d-function were 

optimized in the O2 molecule with the experimental bond length of 1.21 Å.48 The most 

diffuse d-function was taken from the basis set46 and then re-optimized in SrO crystal. The 

basis set for Sr was optimized with the original polarization d-orbital (more diffuse of two 



d-basis functions) before the latter was re-optimized in its turn. Similarly, 28 inner 

electrons on Sr ion were replaced by the ECP28MDF49,50 pseudopotential, while the 

remaining electrons were described explicitly, using the basis set with s411p411d11 

contraction scheme. The optimization of the basis set for Sr ion was done for the 

experimental face centered cubic (fcc) SrO crystal structure51 with the lattice constant 

a0=5.198 Å. During the following re-optimization of the polarization (diffuse) d-function on 

the O-atom, it did not change. Therefore, there was no need for further adjustment of the 

basis set on Sr ion. 

Both all-electron and pseudopotential basis sets for Fe atoms were optimized for the FeO 

crystal, where the O atom was treated with the newly optimized basis set. At ambient 

conditions, FeO has the fcc structure52 (space group Fm3m , #225) with the lattice constant 

a0= 4.332Å. For the Fe ion basis set optimization, this structure was slightly compressed 

along the [111] direction53, to ensure splitting between d-orbitals at Fe ions and reliable 

convergence of the electronic structure calculations. These calculations were done for the 

ferromagnetic spin order what allows us to use the smallest possible unit cell of FeO 

containing only two atoms. The all-electron basis set for Fe was produced according to the 

s86411p6411d411 contraction scheme. For calculations employing ECP, 10 core electrons 

were replaced with the ECP10MFD43,44 pseudopotential and the rest of electrons were 

described using the basis set with s411p411d411 structure.  

Optimization of basis sets for La and Bi atoms was performed using LaAlO3 and BiAlO3 

compounds taken in cubic perovskite structures corresponding54 to high-temperature 

phase of LaAlO3 with its experimental lattice constant 3.81 Å. Such choice was made 

because both La and Bi atoms are surrounded by environment very similar to the one 

which we are studying, which has the same symmetry (group  Pm3m  , #221) . Aso, the Bi 

oxide Bi2O3 contains 20 atoms in unit cell and has relatively low symmetry, which greatly 

complicates its direct use in the basis set optimization. And lastly, ionic radii of La3+ and 

Bi3+ ions are very close. Despite the fact that BiAlO3 crystal is, unlike LaAlO3, 

thermodynamically unstable, it was sufficient for the Bi atom basis set optimization and for 

representing its position in a similar perovskite type crystal. The quality of these optimized 



basis sets is checked below in Section 3 for the calculations of basic properties of the two 

different phases of La2O3 and Bi2O3 . 

The internal 46 electrons at La toms were replaced by ECP. As it is usual for La ions, it is 

important to examine effects of f-orbitals. Therefore, two valence basis sets were optimized 

and then employed in this work: (i) the one with s4411p411d411 contraction scheme and 

(ii) another with s4411p411d411f11 contraction scheme, where two separate f-orbitals 

were added to the basis set. 

The ECP replaced 68 of Bi ion core electrons whereas the valence and core-valence 

electrons were represented using the basis set for s4411p411d411 contraction scheme. An 

additional s-basis function was introduced because in the Bi3+ ion s-orbital of the outer 

valence atomic shell is occupied by two electrons, while in many other ions such as in the 

above mentioned Sr2+, Al3+, Fe3+, or La3+ the outer valence atomic shell usually is only 

slightly occupied in crystals.  

Electrons on Al atoms are described using the all-electron basis set with s8511p511d11 

contraction structure.  

At the first step basis sets for La (without f-orbitals) and Al were optimized in LaAlO3 

simultaneously. We used basis set for O optimized earlier in this work. Then, we added two 

uncontracted f-orbitals to La and re-optimized all orbitals at La atom, keeping obtained 

basis set for Al the same. Following attempt to further optimize basis set at Al, while using 

basis set of La with f-orbitals, showed that the basis set at Al is stable and does not change. 

Finally, basis set at Bi atoms was optimized in BiAlO3, where basis sets at Al and O had been 

already obtained. 

The optimized basis sets for all mentioned elements (O, Al, La, Bi, Fe, and Sr) are 

provided in Supplementary material55 (Tables S1-S7) and could be also found at CRYSTAL’s 

website.45 

 

D. Thermodynamic analysis of material stability 

The stability region of ABO3 perovskite could be estimated by comparing the Gibbs free 

energies of the perovskite crystal with those of the binary oxides and elemental A and B 

metals (in this study A=La or Bi, B=Fe). The pV term in the Gibbs free energy of solids is 



very small and thus is traditionally neglected. The vibrational (phonon) contribution to the 

Gibbs free energy of crystals usually depends very weakly on temperature due to nearly 

complete cancelation of changes in the vibrational contributions to the internal energy and 

to the entropy term TS.56 Therefore, we also neglected the phonon contribution to the 

Gibbs free energy. This approximation allows us to replace the Gibbs energies (per formula 

unit) g for solids by the total electron energies E obtained in the standard electronic 

structure calculations, g ≈ E. To express the Gibbs free energies of metals, we use deviation 

of chemical potentials of the metals M from their values in the standard states the latter 

coincide with the Gibbs energies of an atom in respective metals:  

bulk

MM M MM
g E     

 .                                                   (1) 

The variation of the O atom chemical potential is defined with respect to the O atom 

energy in a free O2 molecule: 
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Here p0=1 atm. is the standard pressure, kB  Boltzmann constant, the first term in brackets 

is the temperature change of the oxygen Gibbs free energy at the standard pressure, and 

the correction 0
Oδμ  is chosen as to match the origin of the experimental variation of the O 

chemical potential and the reference point in our theoretical estimates ( 
2OE /2 ).  

2

0( , )gas

OG T p  could be taken either directly from the experiments, or estimated 

theoretically, using the ideal gas model and representation of the O2 molecule as a rigid 

dumbbell, e.g. ref. 57. The experimental data from NIST Chemistry WebBook48 were used in 

this paper.  As a consequence of neglecting the temperature dependence of the Gibbs 

energy for solids (due to neglecting vibrational contributions), it is only the oxygen 

chemical potential, for which the temperature dependence and oxygen gas partial pressure 



are explicitly taken into consideration. Therefore, the temperature dependence of the Gibbs 

energies of formation is determined here entirely by the chemical potential of O2 gas. 

In ABO3 the chemical potentials of three elements involved are connected by the relation 

3 3
3A B O ABO ABOg E         .                                       (4) 

Using definitions (1) and (2), this can be replaced by the equivalent relation 

3,3A B O f ABOE                                                     (5) 

Hereafter the energies of formation ΔEf for a compound AaBbOc (any of stoichiometric 

coefficients a or b can be equal to 0, to include simple oxides to this definition) are  
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where EA is the energy of atom A in metal A, 
a b cA B OE   is the total energy of the compound 

AaBbOc (per unit cell). According to Eq. (5), only two of three chemical potential variations 

are independent variables. O  has to be chosen as one of these independent variables, in 

order to relate the results of our analysis with the environmental conditions; 
Fe  is used 

here as the second independent variable. 

Using the approximation g ≈ E, definitions of the chemical potential variations, Eqs. (1) 

and (2) together with Eq.(5), the range of the chemical potentials within which ABO3 is 

stable and formation of other materials is prevented, could be formulated as follows. The 

variation of the O atom chemical potential cannot be positive  

0
O
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                                                                   (7) 

whereas formation of a pure metallic A or B is prevented, provided 

0
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and  
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formation of iron oxides is avoided, provided 
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whereas growth of A2O3 oxide cannot occur, provided 

3
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Usually hDFs, as the B3PW used in this study, provide very good description of molecules 

and non-metallic materials, but energies, unit cell dimensions and atomic positions 

obtained for metals are not very reliable. In calculations with local basis sets even more 

uncertainty is introduced because calculations of metals demand adding more diffuse basis 

functions, which could be very difficult to optimize in metals. Also, calculations performed 

with different basis sets are not consistent and difficult to compare or to use in the same 

simulations. Therefore, another approach was applied here avoiding need for calculations 

of metals. Instead, this approach requires use of experimental values of the oxide energies 

of formation. The same approach was earlier applied for a similar investigation of LaMnO3 

stability.58 

Usually, several oxides exist for a given metal. In the case of LFO and BFO only one stable 

oxide (La2O3 and Bi2O3) exists for each La and Bi metals, but three different oxides (FeO, 

Fe2O3, Fe3O4) for Fe. Energies of the metals in their standard states EM could be obtained 

using the definition of the Gibbs energies of formation for the binary oxides x yM O 56,57  
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where 0

, x yf M OG  is the Gibbs energy of formation for oxide x yM O  under the standard 

conditions available from thermodynamic tables56, 𝐸𝑀𝑥𝑂𝑦
total energy of x yM O  oxide (per 

unit cell) and 
2

0 0( , )gas

OG T p  change of the Gibbs energy of oxygen gas from 0 K to the 

standard conditions. The metal energies obtained from several different oxides (e.g. for Fe 

atom from three oxides) are then averaged to get a common reference.  

Using the above defined energies of formation (6) and the variation of the O atom 

chemical potential, the Gibbs energies of formation for compound AaBbOc can be expressed 

as 
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This illustrates also meaning of the energies of formation (6) as the Gibbs energies of 

formation at T=0K. 

3. RESULTS AND DISCUSSION 

A. Structure and relative energies for various related materials 

As the first step, the basic properties of the equilibrium atomic structure for several 

phases of Bi and Fe oxides and BFO were calculated and compared with available 

experimental data. Several magnetic states of iron oxides were considered, in order to 

determine the state lowest in energy. The B3PW hybrid functional gives for the free O2 

molecule (used in our calculations as the reference state) a bond length of 1.202 Å and a 

binding energy of 5.38 eV that agree well with the experimental values of 1.208 Å and 5.12 

eV.48 

At ambient temperatures spins of Fe atoms in both LFO and BFO have anti-ferromagnetic 

(AFM) ordering.  There are three possible AFM phases in a perovskite lattice: (i) in the A-

type AFM the Fe ion spins have ferromagnetic (parallel) ordering within the (001) planes, 

but spins in nearest neighboring planes are oriented oppositely (ii) in the C-type AFM 

order spins are ferromagnetically ordered along one of the [001] directions, but AFM-

ordered (anti-parallel) in the planes perpendicular to this direction and (iii) in the G-type 

AFM case spins of all nearest neighbor iron ions are oppositely directed. The later ordering 

is the most stable one in the both considered here perovskites.59,60  

The observed structure of LFO crystal is orthorhombic and belongs to Pnma space group 

(#62) converting to the cubic perovskite structure at high temperature (T= 1253 K). Since 

the low temperature orthorhombic structure of LFO contains 4 perovskite unit cells. The 

cubic extended (2x2x2) cell was used in the calculations for the cubic phase of LFO. This 

cell allows to model easily all magnetic structures possible in perovskite lattice. The 

complete set of results of LFO calculations is provided in Supplementary material55 (Table 

S8). It includes lattice parameters and relative energies (per the smallest perovskite unit 

cell from 5 atoms) calculated for both structural phases of LFO, for all 4 magnetic orders, 



and performed using all combinations of basis sets at Fe and La. A shortened version of this 

results is given in Table I, where results for FM and AFM (G) magnetic orders are shown. 

The lowest in the total energy magnetic order in both phases and for all employed basis 

sets is AFM (G) in agreement with experimental data.59,61 The next in the energy is AFM (C) 

magnetic state. The AFM (A) follows. And FM state is the highest. All calculated lattice 

constants pretty well reproduce their experimental values for both phases. The obtained 

lattice constants are overestimated by less than 1%. Introduction of more approximations 

to the calculations (ECP at Fe atoms or omission of f-orbitals in the basis set at La) leads to 

a very small expansion of the unit cells. The optimized internal coordinates in the 

orthorhombic lattice of LFO for AFM (G) magnetic order are compared with experimental 

data in Table II. In all calculations obtained coordinates are nearly coincide with 

experimental values. 

Under ambient conditions, BFO has the ferroelectric (FE) perovskite structure62, similar 

to a common ferroelectric LiNbO3 (the symmetry space group R3c, #161) its rhombohedral 

unit cell contains two formula units (10 atoms). In turn, we used the same cell from 8 

formula units (2x2x2 extended unit cell) to model the cubic BFO as it was done for cubic 

LFO.  

In the cubic BFO perovskite structure, both FM and possible AFM orders were modeled 

whereas for the FE structure only FM and the G-type AFM spin orders were considered. 

The main results are presented in Table 3. In agreement with experiments, AFM (G) spin 

order is the most stable configuration for both FE and cubic BFO. The experimental atomic 

structure of the lowest in energy FE (the space group R3c, #161) state with AFM (G) spin 

order is very well reproduced in the present calculations: the largest deviation between 

calculated vs. experimental lattice parameters is only 0.9%. The cubic structure is by ~1eV 

higher than the FE one. The FM state is the highest in energy. The AFM C-type state is lower 

in the total energy than the A-type state. The calculated and experimental atomic positions 

within FE unit cell of BFO are compared in Table 4. The optimized atomic coordinates are in 

a very good agreement with the results of measurements62 for both Fe ion basis sets. 

 



The atomic structures of the two most stable experimentally observed phases of each 

La2O3 and Bi2O3 were optimized and are presented in Tables V and VI.  These oxides are not 

magnetic.   

The most stable phase of La2O3 is cubic belonging to 3Ia  space group (#206) with the 

next one being trigonal with space group 3 1P m  (#164). The same result is obtained in the 

present calculations. The lattice constant of the cubic phase is only by 0.5% larger than the 

experimental one, if f-orbitals are present in the basis set for La. Exclusion of these orbitals 

from the basis set causes increase of the lattice constant by another percent over the 

experimental value63. Similarly, in calculations of the trigonal phase the excess over 

experimental results63,64 of the lattice constants is within 0.5% if the basis set includes f-

orbitals and about a percent more, when these orbitals are omitted.  

In agreement with experimental observations65-67, monoclinic phase with 1P2 / c , #14 

symmetry group has the lowest energy. Two lattice parameters a and b are slightly 

overestimated, while the third one is slightly underestimated. The largest deviation occurs 

only for the parameter a (2%), while two other lattice parameters deviate from the 

experimental values by less than 1%. In the tetragonal β-phase of Bi2O3 (symmetry group 

1P 2 / c4 , #114) the lattice parameter a(=b) is more overestimated, by 4% whereas c 

parameter is overestimated only by 1.35%.  

Under ambient temperatures FeO has the rock salt lattice structure (face-centered cubic, 

fcc) in the absence of spin ordering, it belongs to Fm3m  (#225 symmetry group).52 Below 

the Neel’s temperature TN=198 K, spins on Fe atoms acquire anti-ferromagnetic (AFM) 

order with a spin alteration along the [111] direction. Correspondingly, the crystal 

symmetry becomes reduced to R3  group (#148). The results of our (TABLE VIIError! 

Reference source not found.) are in good agreement with experiments. The state with the 

lowest energy, indeed, has AFM order with spins that alternate in the [111] direction. The 

FM states have higher energies than the AFM state of the same symmetry. The AFM state 

with alternating spins along the [001] direction has larger energy than the FM state with 

the rhombohedral symmetry. The lattice constant in the lowest energy state (AFM with 

opposite spin orientations in the neighbor (111) planes) for the electronic structure 

calculations. The final lattice parameters are in very good agreement with the is 



underestimated by 1.6% in comparison with experiment. The cubic lattice is slightly 

compressed along the cube diagonal, in contrast to the experimentally determined 

structure, where the lattice is slightly stretched in this direction. Since under the standard 

conditions FeO has the fcc lattice, it was necessary to recalculate the lowest in energy AFM 

state at this geometry. To do this, the symmetry of the lowest state was kept while angles 

between axes were pulled back to 90º within several steps of optimizing lattice spacing 

manually. At each step, the density matrix from a previous step was used as the initial 

guess for iterative procedure experiment (TABLE VII). The obtained total energy of the 

lowest state for the fcc lattice is only by ≈12 meV/f.u. higher than in the fully optimized 

crystal structure. The total energy of this state obtained for fcc lattice was used later for 

constructing the BFO phase diagram. 

There are four known Fe2O3 phases, and by convention they are labelled from α to ε.68 

However, Fe2O3 in γ- phase has a large number of randomly distributed cation vacancies, 

and modelling such a material requires complicated and much more expensive techniques 

than just standard electron structure calculations. On the other hand, the calculations of 

this phase do not contribute to the phase diagram of BFO and analysis of its stability 

because the present approach uses only a single representative structural phase which 

usually is the most stable one under the standard conditions. Therefore, we did not 

calculate the γ-phase in the present study. Similarly, because β- and ε-phases contain many 

magnetic Fe atoms in their unit cells with a large number of possible spin orders, and since 

also their magnetic structures are not well known, only the FM spin ordering was 

considered for these two phases. The most extensive consideration was given to the α-

phase, the most stable and thus most relevant for our study. 

The results of calculations for Fe2O3 are summarized in TABLE VIII. The experimentally 

observed sequence of the three considered Fe2O3 phases is well reproduced in our 

calculations. The α-phase with AFM spin ordering has the lowest energy, in agreement with 

experiment. This phase has the same hexagonal crystalline lattice as corundum (α-Al2O3). 

(Note that the calculated energy of α-phase with FM order is higher than that for β-phase 

with FM order.) Lastly, the ε-phase has the highest energy among three considered. The 

lattice constants of Fe2O3 in α-phase with AFM order exceed the experimental ones by less 

than 0.5%, for β-phase the error is larger, 0.8%, and reaches 2.5% in ε-phase. 



Finally, iron oxide Fe3O4 at T > 120K has the cubic inverse spinel structure with the 

symmetry corresponding to the Fd3m (#227) group. This phase has a ferri-magnetic (FiM) 

spin ordering, where Fe ion spins at two tetrahedral sites in the elementary unit cell have 

the same direction, while those in four octahedral sites have the opposite direction. Upon 

cooling below TV≈ 120K, Fe3O4 undergoes the Verwey phase transition,70,71 which is 

supposedly associated with a localization of electron charge on two of four Fe atoms in 

octahedral sites, resulting in their formal charges +2e  while another pair of Fe atoms in 

octahedral sites retaining formal charges  +3e. Simultaneously, the crystalline lattice is 

slightly compressed along the chains of Fe atoms with formal charges +2e and elongates 

along the chains of Fe atoms in the octahedral sites with charges +3e. Formal charges of Fe 

atoms in tetrahedral sites are +3e and did not change during Verwey phase transition. This 

charge ordering suggests reduction of the lattice symmetry from cubic to orthorhombic.  

However, the real structure of this phase is still subject of investigation. According to x–

ray and neutron diffraction experiments performed on powders (see ref. 72 and 

discussions in it), there is also a monoclinic distortion of the lattice. These experiments 

suggest a doubling of unit cell of the spinel along the [001] crystallographic direction. 

Theoretical investigation of this distorted structure continues73-75, but still remains 

controversial. Note that the purpose of this study is not investigation of the structure of this 

oxide, but calculation of BFO stability region. Therefore, we applied a simplified model, 

using just a regular spinel unit cell without doubling it. All possible magnetic orders were 

tested, to find out which order shows the lowest total energy.  

The lattice parameters and relative energies of several low-in-energy magnetic 

configurations are presented in TABLE IX. The magnetic configuration of the state with the 

lowest energy reveals the same ferrimagnetic ordering as that observed at temperatures 

above the Verwey transition: spins on Fe atoms in tetrahedral and octahedral sites are 

oppositely directed. However, the optimized crystalline structure of this lowest-energy 

state shows the orthorhombic symmetry (space group Fddd, #70). Deviations of the 

calculated lattice constants from the experimental ones lie within 1.5%. The Mulliken 

atomic charges on Fe atoms in tetrahedral sites are +1.98 e (all-electron calculations) or 

+1.86 e (ECP calculations). In its turn, the charges on Fe atoms in two types of octahedral 

sites are +1.64 e and +1.96 e (all-electron calculations) or +1.55 e and +1.87 e (ECP 



calculations), respectively. The relevant magnetic spins on the Fe atoms calculated by 

means of the Mulliken population analysis are 4.10 Bμ   (Fe atoms in tetragonal sites), 3.72

Bμ  and 4.20 Bμ  (Fe atoms in octahedral sites) in all-electron calculations in the ECP 

calculations the Fe atoms have magnetic moments of 4.18 Bμ , and 3.76 Bμ /4.28 Bμ , 

respectively. This is qualitatively consistent with the expected value for the mechanism of 

the phase transition proposed originally by Verwey himself70,71 Fe formal charges +2e, +3e 

and magnetic moment projections 4 Bμ  and 5 Bμ , respectively. However, the difference of 

the charges in the octahedral sites is just ~0.3e and in spins ~0.5 Bμ  probably due to the 

considerable covalence of the Fe-O chemical bonding. 

There are several close in energy magnetic configurations which reveal the AFM ordering 

within the chains of Fe2+ ions (TABLE IX). The crystalline lattice symmetry in these states 

becomes monoclinic (space group P2/m, #10). This suggests another possible explanation 

for the monoclinic structure of Fe3O4 below the Verwey transition that is based on flipping 

of spins in one of chains of Fe atoms in octahedral sites, in contrast to the “tri-polaron” 

model, refs. 72-74.  Still, the present simulations are insufficient to make final conclusions 

about the crystalline structure, and thus further investigations are necessary. 

Since under standard conditions Fe3O4 instead of low-temperature monoclinic (or orthorhombic) 

structure is cubic, two crystalline structures were additionally considered. One of these was the 

usual cubic spinel structure (space group Fd3m, #227) supposedly observed under the standard 

conditions. The optimized lattice constants in this structure for both Fe basis sets exceed the 

experimental values by less than 0.3% and the total energies per Fe3O4 f.u. exceed those for a 

fully optimized structure, by 0.52 eV in calculations with ECP and core-valence basis set on Fe 

atoms and by 0.39 eV in all-electron calculations. Another structure is the rhombohedrally 

distorted spinel lattice (space group R m3 , #166). In such a structure, one of octahedrally 

coordinated Fe atoms retains the charge +3e and the two electrons are spread over the remaining 

three Fe atoms in octahedral sites. This structure corresponds to a barrier configuration for the 

switching direction of the orthorhombic distortion in the cubic spinel lattice mentioned above. If 

Fe3O4 crystal were heated at high enough temperature to overcome this barrier, the localized 

electrons will continuously jump from one pair of iron ions in octahedral sites to another. In 

other words, these electrons will delocalize over all Fe atoms in octahedral sites. This 



corresponds to the phase transition from the low-temperature phase to the cubic higher-

temperature one (space group Fd3m, #227). The energy of such a state can be estimated by the 

barrier configuration as 0.18 eV for the ECP and 0.12 eV for the all-electron basis set above the 

energy of fully relaxed orthorhombic unit cell (space group Fddd, #70).  That is, in this study the 

total energy of the barrier structure corresponds to the energy of Fe3O4 crystal in the higher-

energy state, which is stable under standard conditions it will be used below to construct the 

BFO phase diagram. 

Overall, good agreement between the experimental and optimized structures for La2O3 , 

Bi2O3 and iron oxides demonstrates the sufficiently high quality of the optimized basis sets.  

 

B. Stability regions 

Eq. (12) was used to obtain the reference energies of La, Bi and Fe metals. In these 

calculations, cubic AFM structures of FeO and the barrier rhombohedral structure of Fe3O4 

are used because these structures represent the most stable ones under standard external 

conditions. For all other materials the most energetically stable phases were also 

employed. Eq. (6) was then used to calculate the energies of formation for all relevant 

oxides, LFO and BFO. As was mentioned before, these energies of formation represent the 

Gibbs free energies of formation for materials at T= 0K. All calculated energies are 

summarized in TABLE X and were used to build the phase diagrams (Figs. 1-4) necessary for 

the analysis of LFO and BFO stability. The obtained energies for La, Bi and Fe metals were also 

used to obtain the standard Gibbs energies of formation, Eq. (13), for La, Bi and Fe oxides and 

for LFO and BFO perovskites. The calculated Gibbs energies of formation for iron oxides allow 

us to estimate the quality of employed hybrid functional and the procedure used for 

calculating the energies of formation.  

 

1. Iron oxides. 

The largest discrepancy between calculated and experimental standard Gibbs energies of 

formation is for FeO (5.9% for calculations with ECP and 7.6% for all-electron calculations). 

However, the absolute error in the calculated standard FeO Gibbs energy of formation is 

even smaller than for Fe3O4. This occurs because the Gibbs energy of formation for FeO is, 



approximately by a factor of three, smaller than for Fe3O4. Ultimately, accumulation of 

errors resulted in a noticeable discrepancy in the Gibbs energy of formation for BFO from 

elemental materials (~10%). 

Lines 1-3 at the phase diagrams presented in Fig. 1 and 3 represent iron oxides (FeO, 

Fe2O3, and Fe3O4). Precipitation of the oxides occurs at these lines. According inequalities 

(10) stability regions for the ferrates (LFO and BFO) lay below these lines. (The presented 

phase diagrams are described in details in the next subsection).  

At high oxygen chemical potential iron oxidizes to Fe(III) and exists in the form of Fe2O3. 

When   O   larger than crossing point of precipitation lines for Fe2O3 and Fe3O4, Fe2O3 is 

more stable than Fe3O4. Below this crossing point iron exists in the form of Fe3O4. At this 

point both Fe2O3 and Fe3O4 oxides coexist. The values of oxygen atoms chemical potentials 

at this and other significant crossings of precipitation lines are collected in Table XI.  

At the diagrams built on the ground of experimental data the line representing FeO is 

always above the lines representing Fe2O3 and Fe3O4, what means that FeO cannot be stable 

(but can be metastable) at any temperature and oxygen partial pressure; full reduction of 

Fe to metallic phase occurs at higher ∆𝜇𝑂 than FeO can become stable. If the diagrams are 

built using the formation energies obtained from calculations, the line corresponding to 

FeO crosses the line corresponding to Fe3O4. The later suggests that FeO becomes stable at 

O chemical potential lower, than these line cross.  

Complete reduction of iron is reached at the point where precipitation line for respective 

oxide crosses the axis at ∆𝜇𝐹𝑒 = 0 𝑒𝑉 (which is precipitation line for pure Fe).  

 

2. LaFeO3  

The calculated energy of formation and the Gibbs energy for creation LFO out of 

elemental materials seems to well reproduce respective experimental data shown in Table 

IX. However, the same energies for creation a perovskite out of oxides (La2O3 and Fe2O3) 

are much more sensitive to accuracy of applied computational or experimental techniques 

because it involves subtraction of energies of formation of the oxides from the energy for 

the perovskite, where all three values appeared to be relatively large in comparison to the 

final result. Such situation can result in poor accuracy of the obtained energies of formation 



from oxides. As it was mentioned in Introduction, there is a large spread of experimental 

values9-14 for Gibbs free energy of formation of LFO from the oxides due to various possible 

deficiencies in employed measurements methods. Here we selected a few experimental 

results obtained by the most careful approaches. We selected one value (-0.66 eV) obtained 

from electrochemical technique10, which explicitly tried to avoid shortcomings of other 

electrochemical measurements. And two other values were obtained combining enthalpy of 

formation LFO from the oxides measured by high-temperature oxide melt solution 

calorimetry11 and entropy of formation obtained by adiabatic calorimetry12 (-0.68 eV) or by 

calvet calorimetry13 (-0.74 eV). All these experimental Gibbs energies of formation 

appeared to be reasonably consistent among themselves. The calculated here values (-0.56 

⎼ -0.63 eV) are smaller in magnitude by not more than 30% ; Gibbs energies of formation 

calculated without f-orbitals at La are ~17% larger than the energies calculated with these 

orbitals. It also has to be noted that the energies of formation from the oxides are 

important also because they determine the width of the stability region in the phase 

diagrams, shown on the figures in this paper. 

The calculated and experimental energies of formation were used to build the phase 

diagrams in Fig. 1. This figure contains the diagrams built on calculations with f-orbitals in 

basis set at La. The diagrams based on calculations without f-orbitals at La are similar to 

the presented at Fig. 1. Therefore, they are left in Supplemental Materials.55  Each of the 

phase diagrams here is composed from three panels. The phase diagrams are plotted in the 

center panels. The numbered lines represent conditions for precipitation of La metal, La 

and Fe oxides, and LFO according Eqs. (9)-(11). The green areas represent the region of the 

LFO stability defined by conditions in Eqs. (7)-(11). Our theory assumes that within the 

stability regions a stoichiometric ratio of metals is strictly preserved or, in other words, the 

number of La and Fe atoms is equal and no defects are created. This restriction is, 

obviously, an idealization and one of our basic approximations. Under this condition, the 

external environment (temperature T and partial oxygen pressure 𝑝𝑂2
) determine only the 

sum of metal’s chemical potentials, according to Eqs. (3) and (5). The chemical potentials of 

the involved metal atoms could be determined separately, provided at least one additional 

material exists in the system. 



If a system contains more Fe atoms than La atoms, the excess Fe atoms will be oxidized 

and present as one of iron oxides depending on oxidizing conditions (temperature and 

oxygen gas partial pressure). The chemical potentials of Fe and O atoms (∆𝜇𝐹𝑒 , ∆𝜇𝑂) will lay 

at the right boundary of the stability region; then corresponding chemical potential of La 

atoms ∆𝜇𝐿𝑎 can be determined from Eq. (5). At high oxygen chemical potential iron oxidizes 

to Fe(III) and exists in the form of Fe2O3. On the way down to lower values of oxygen 

chemical potential iron reduces. The evolution of the iron oxides is described in the 

previous subsection. After complete reducing of the excess iron there is still a range of 

chemical potentials where LFO yet stable and LFO coexists with pure Fe. While the upper 

boundary of this range is defined by the point where excess Fe atoms fully reduced, the 

lower boundary corresponds to the crossing of precipitation line for La2O3 with the ∆𝜇𝑂 

axis ( ∆𝜇𝐹𝑒 = 0 𝑒𝑉), which corresponds to precipitation of pure iron metal. At this point 

LFO decomposes to lanthanum oxide La2O3, pure iron and oxygen gas (4𝐿𝑎𝐹𝑒𝑂3 →

2𝐿𝑎2𝑂3 + 4𝐹𝑒 + 3𝑂2). 

If there is excess of La atoms in the system, these atoms are oxidized too and exist in form 

of La2O3 oxide. LFO and La2O3 will co-exist in equilibrium. Chemical potentials (∆𝜇𝐹𝑒 , ∆𝜇𝑂) 

lay at the left boundary of LFO stability region. Such situation will continue during decrease 

of O atoms’ chemical potential until the precipitation line for La2O3 will cross the 

precipitation line for pure Fe, where the same reaction of LFO decomposition will occur. 

 In the case where the number of La and Fe atoms in the system will be equal, what is 

stoichiometric ratio in LFO, only LFO should exist and chemical potentials (∆𝜇𝐹𝑒 , ∆𝜇𝑂) will 

belong to LFO stability region. Decrease of O atoms’ chemical potentials causes movement 

of (∆𝜇𝐹𝑒 , ∆𝜇𝑂) point inside the stability region down until it will reach the lowest point of 

the stability region, where LFO will decompose the same way as in the previous cases. 

Overall, the obtained from presented calculations range of the O atom chemical 

potentials, where the LFO exists and stable, and obtain is only by ~0.1 eV narrower than 

derived from the experimental energies of formation what is pretty good agreement. 

Two side panels in the phase diagrams such as in Fig.1 serve for a conversion of oxygen 

atom chemical potential to the observable values, which are temperature and oxygen gas 

partial pressure here. Variation of the oxygen chemical potential, Eq. (3), is plotted in both 

side panels. On the right panels the oxygen chemical potential is presented as a function of 



temperature for a set of selected oxygen gas pressures, so that each line corresponds to a 

given pressure. Instead, on the left panel the oxygen chemical potential is presented as a 

function of gas pressure for a given set of temperatures, with the temperature increment of 

100 K. These panels could be used in two ways. One can draw vertical lines on the panels 

for a selected temperature (on the right panel) or pressure (on the left panel). This is 

illustrated by vertical lines at side panels in Fig. 1a. Crossings between these vertical lines 

and the functions plotted at the panels allow us to determine the pressure (temperature) 

for the selected temperature (pressure) at the right (left) panel, correspondingly. 

Alternatively, if temperature (pressure) at a specific pressure (temperature) for a point in 

the phase diagram has to be determined, a horizontal line could be drawn through this 

point, then the temperature (pressure) sought for can be found at the crossing of this 

horizontal line with the line for desirable pressure (temperature) at the right (left) panel.  

This approach is illustrated in Fig. 1a by a broken horizontal line and vertical arrows. As it 

can be seen from these side panels increase of temperature and/or decrease of oxygen 

partial pressure causes decrease of chemical potential for O atoms ∆𝜇𝑂. 

The phase diagrams in Fig.1 allow us to analyze the equilibrium between compounds as a 

function of chemical potentials and to determine the range of the chemical potentials 

where relevant compounds are stable. However, despite this range of measurable 

environmental parameters (T, 𝑝𝑂2
) is indirectly defined though the chemical potentials, it is 

not trivial to extract it from such diagrams. It is much more convenient to mark the window 

of LFO stability at the maps of the chemical potentials, which are functions of the 

environmental variables, as defined by Eq. (3). Such contour maps for the all-electron 

calculations and experimental data are plotted in Fig. 2. As before, this figure contains maps 

drown using experimental data and the calculated energies obtained employing all-

electron basis set at Fe  and the basis set for La which contains f-orbitals. The rest of maps 

can be found in Supplemental Materials55  at Fig. S3.  

Each contour line in Fig. 2 and S3 corresponds to a constant value of ∆𝜇𝑂 , ranging 

between 0 eV and –8 eV with the increment of -0.5 eV. The lower boundary of the stability 

region for LFO is defined by the oxygen chemical potential, where the material 



decomposes. The upper boundary of the LFO stability is the line for ∆𝜇𝑂 = 0 eV, as follows 

from the phase diagrams in Fig. 1. 

The stability regions in Figs. 2 and S3 are shown in green. Additional lines are also shown 

in these maps. The dotted line corresponds to the oxygen chemical potential, where the 

oxidation state of Fe changes and two oxides Fe2O3 and Fe3O4 coexist. In the case of iron 

excess, this line divides the stability region into the two areas: the area where LFO coexists 

either with Fe2O3, or the area where it coexists with Fe3O4. At this line LFO is in equilibrium 

with both oxides. The dot-dashed additional line in the maps in Figs. 2 and S3 corresponds 

to the oxygen chemical potential at which the second iron reduction step from Fe3O4 to FeO 

occurs. This line separates areas, where LFO co-exists with one of these oxides; all three 

materials (LFO, Fe3O4 and FeO) co-exist at this line. The dot-dashed line is not present at 

the map based on experimental data because FeO never becomes stable, as it was noted 

above.   The dashed line marks O atoms’ chemical potential ∆𝜇𝑂, where complete reduction 

of Fe takes place. Below the later line LFO co-exists with pure non-oxidized iron until 

chemical potential for O atoms  O reaches point of LFO decomposition. At this line LFO 

co-exists with both pure iron and respective iron oxide. The values of chemical potential for 

O atoms ∆𝜇𝑂 corresponding to all these lines and the lower boundary of LFO stability 

region can be found in Table XI. 

   

3. BiFeO3 

 The calculated energies of formation and the Gibbs energies for BFO formation from 

Bi2O3 and Fe2O3 are only -0.05 eV, hence considerably underestimated with respect to the 

enthalpies of formation calculated from the experimental data.15,65 However, these Gibbs 

energies of formation still have correct sign indicating a weakly stable BFO with respect to 

its decomposition into Bi and Fe binary oxides. A large deviation in the energy of formation 

for BFO from the binary oxides could arise for two reasons: (i) due to shortcoming of the 

used B3PW hybrid density functional, or (ii) neglect of the phonon contributions to the 

energies of formation. However, based on the experimental temperature dependence of the 

energy of formation for BFO15 and those for Bi2O3 and Fe2O3 65, one can conclude that the 

contribution of the phonons to the BFO energy of formation from the oxides is negligible 



(of the order of 0.03 eV in the wide temperature range from room to 1200 K). This is why 

we believe that limitations of the employed functional bear primary responsibility for the 

underestimate of this energy of formation therefore, further testing of available hybrid 

functionals has to be performed soon. 

A similar estimate performed with the LDA+U method and plane wave basis set for the 

BFO energy of formation from the binary oxides yielded -0.2 eV.23 This value is more 

negative than that in our calculations but still much smaller compared to the experimental 

results15 (-0.7 eV).  

The respective subset of calculated and experimental energies of formation from TABLE 

IX is used to build the phase diagrams (Fig. 3) similar to the diagrams built for LFO (Fig. 1). 

Design of these diagrams is described in the previous subsection.   As before, BFO stability 

region is colored in green. It is limited on top by precipitation lines for iron oxides, on right 

by Fe precipitation line, and below by Bi2O3 and Bi precipitation lines. 

Due to much smaller energies gained at oxidation of Bi and respectively smaller Gibbs 

energy of formation for BFO in comparison to the one for LFO, Bi precipitation line lays at 

significantly higher O atoms’ chemical potentials. La precipitation line in the diagrams for 

LFO is located much lower than La oxide precipitation line and LFO stability region, but Bi 

precipitation line runs right through BFO stability region and crosses Bi2O3 precipitation 

line. Moreover, Bi precipitation line crosses Fe precipitation line above the chemical 

potential  O  where complete reduction of iron occurs. All these means that Bi completely 

reduces at larger ∆𝜇𝑂 (smaller temperatures T and/or larger oxygen gas partial pressures 

𝑝𝑂2
) than Fe.  

In the systems with more Fe atoms than Bi atoms, the excess Fe atoms are present in the 

oxidized form as Fe2O3 or Fe3O4 oxides. This corresponds to the right boundary of BFO 

stability region. Which of these two oxides is formed, depends on the oxygen chemical 

potential. At high oxygen chemical potential iron oxidizes to Fe(III) and exists in the form of 

Fe2O3 and BFO co-exists with this oxide. In the diagrams based on experimental data or on 

the calculations which use all-electron basis set on Fe the crossing of precipitation lines for 

Fe2O3 and Fe3O4 occurs above Bi precipitation line. Such location of the crossing point 

suggests that reduction of iron oxide from Fe2O3 to Fe3O4 can happen while BFO can exist 



and is still stable. At the crossing point all three BFO and both Fe2O3 or Fe3O4 oxides co-

exist. Below the crossing point BFO co-exists only with Fe3O4 oxide. Further reduction of O 

atoms’ chemical potential  O brings such a system to the crossing with Bi precipitation 

line. Above this point BFO still co-exists with Fe3O4. In the later crossing point BFO 

decomposes to Fe3O4 and metallic Bi with emission of oxygen gas (3𝐵𝑖𝐹𝑒𝑂3 → 𝐹𝑒3𝑂4 +

3𝐵𝑖 + 𝑂2). Since the precipitation lines for Fe3O4 and FeO cross below the precipitation line 

for Bi metal, coexistence of FeO and BFO does not occur under thermodynamic equilibrium 

conditions. Of course, FeO can be found at  ∆𝜇𝑂 larger than mentioned limits, but under 

such conditions this oxide has to be metastable and can exist for a long time usually due to 

slow diffusion kinetics. 

In the diagram obtained from calculations with the ECP, the precipitation lines for Fe2O3 

and Fe3O4 cross below the line for precipitation of metallic Bi which means that in the 

entire range of BFO stability it could be in equilibrium only with more stable Fe2O3 oxide 

until the crossing with Bi precipitation line where decomposition to Bi metal, the O2 gas 

and the same Fe2O3 oxide (4𝐵𝑖𝐹𝑒𝑂3 → 2𝐹𝑒2𝑂3 + 4𝐵𝑖 + 3𝑂2). In the latter case neither 

Fe3O4 nor FeO could be in equilibrium with BFO. 

 When there are more Bi atoms than Fe atoms in the system, excess Bi atoms form oxide 

(Bi2O3 here). In this case both Bi2O3 and BFO coexist, what corresponds to the left boundary 

of the stability region (line 4 in Fig.1). Bi2O3 exists while ∆𝜇𝑂  decreases, until the crossing 

with the Bi precipitation line (line 5) at ∆𝜇𝑂 =
1

3
∆Ef,Bi2O3, in all three models considered 

here, because the same Gibbs energy of formation is used in all models. Following this 

decrease of the O atoms’ chemical potential ∆𝜇𝑂, the system moves in the phase diagram 

along the left boundary of the stability region. At the crossing point of Bi2O3 and Bi metal 

precipitation lines Bi2O3 reduces to a metallic Bi. When this process is completed, further 

decrease of  ∆𝜇𝑂 becomes possible. Following this change in ∆𝜇𝑂, the system will move 

along the bottom section of the stability region boundary defined by the Bi precipitation 

line. Correspondingly, while this segment will be passed, BFO coexists with Bi metal.  

Finally, upon reaching the crossing with Fe3O4 precipitation line BFO will decompose on 

Fe3O4, Bi metal and oxygen gas (BiFeO3→Fe3O4+3Bi+O2) if the all-electron calculations or 

experimental energies of formation are used.  The results for the ECP calculations differ 



from the all-electron calculations only by the iron oxide products of the decomposition of 

BFO, which in this case is Fe2O3 (4BiFeO3→2Fe2O3+4Bi+3O2). 

When the number of Bi and Fe atoms is equal in the stoichiometric BFO and  O  

decreases, the system moves through the stability region to its lowest point, where the 

precipitation lines of Bi metal and Fe3O4 (in the all-electron calculations and for 

experimental data) or Fe2O3 (the ECP calculations) are crossing. And, as in the previous 

cases, BFO decomposes into Bi metal, the O2 gas and Fe3O4 or Fe2O3. 

In all possible cases, irrespective of either excess of Fe or Bi atoms or their stoichiometric 

ratio, Bi is reduced to a metal, while Fe either not reduced at all (Fe2O3 in the ECP based 

model) or gets reduced only to Fe3O4 (two other models). In our calculations the range of 

the O atom chemical potentials, where the BFO exists and stable, is by ~0.4-0.5 eV 

narrower than derived from the experimental energies of formation.  

As before, to show the region of stability BFO in experimentally accessible environmental 

values (T, 𝑝𝑂2
) we drеw contour maps like ones drawn for LFO.  The ranges of BFO stability 

in both the ECP and all-electron calculations are very close: it decomposes at     2.02O

eV, or at    2.0O eV, respectively. Therefore, both contour maps are very similar and 

only the latter is shown in Fig. 4, the results for the calculations with ECP are given in in Fig. 

S4 in Supplementary Materials.55  

The stability regions in Figs. 4 and S4 are shown in green. Two additional lines are also 

shown in the maps of Fig. 4. The dotted line corresponds to the oxygen chemical potential, 

where the oxidation state of Fe changes and two oxides Fe2O3 and Fe3O4 coexist. In the case 

of iron excess, this line divides the stability region into the two areas: the area where BFO 

coexists either with Fe2O3, or the area where it coexists with Fe3O4. At this line BFO is in 

equilibrium with both oxides. (This line does not appear in the map for the ECP 

calculations, because here Fe reduction occurs outside the stability region.) The second, 

dashed additional line in the maps in Fig. 2 corresponds to the oxygen chemical potential at 

which Bi oxidation/reduction occurs. As mentioned earlier, above this line BFO is in 

equilibrium with Bi2O3, below this line it coexists with metallic Bi, and at this line all three 

materials BFO, Bi2O3 and metallic Bi are in equilibrium. Since the oxygen chemical potential 



at this line is  1.99O  eV and thus very close to the counter line for  2.00O  eV, the 

latter contour line is replaced by the dashed line. Also, the difference between the oxygen 

chemical potential for Bi reduction/oxidation and for the BFO decomposition differ only by 

0.03 eV (for all-electron calculations), the dashed line practically coincides with the 

boundary of the BFO stability region. In reality the gap between these lines is too narrow to 

allow their distinction.  

As a final note, the present modeling explicitly shows the sequence(order?) of the 

chemical potentials for O atoms ∆𝜇𝑂 ∆𝜇
𝑂
𝑀 which correspond to complete reductions to metallic 

state for all involved metals. Also, it is straightforward to point location in this sequence for the 

chemical potentials for O atoms ∆𝜇
𝑂
𝐿𝐹𝑂  and ∆𝜇

𝑂
𝐵𝐹𝑂, at which decomposition of the considered 

perovskites takes place: 

 Bi BiFeO Fe LaFeO La

O O O O O              .                                                   (14) 

4. CONCLUSIONS 

The atomic structures of LaFeO3 and BiFeO3 and the possible products of its 

decomposition (La2O3, Bi2O3, FeO, Fe2O3, Fe3O4) were optimized, and the total energies for 

these structures were calculated by means of the B3PW hybrid density functional. To 

maximize the accuracy of these calculations, the localized basis sets for all involved atoms 

were re-optimized. To save computer resources, scalar-relativistic energy-consistent ECPs 

were used for metal atoms whereas the all electron basis set used for O atoms. For Fe atom 

both ECP and all-electron calculations were performed and carefully compared. The 

calculated atomic structures for different phases of La2O3, Bi2O3, FeO, Fe2O3, Fe3O4 and their 

sequence in energies are in good agreement with experiments. Use of ECP or neglect with f-

orbitals in basis set of La lead to a small increase in lattice constants of all modeled 

materials. Removal of f-orbitals from basis set at La causes also reduction of the energies of 

formation for LFO by ~0.05eV. 

The performed calculations yielded the Gibbs energies of formation for these 

compounds, from which the phase diagram and stability boundaries of LFO and BFO were 

determined. An analogous diagram was constructed using the experimental Gibbs energies 

of formation. These diagrams allow us the understanding of possible chemical 



transformations in the system, whenever the system contains equal numbers of La or Bi 

and Fe atoms or there is an excess of one of these metals.  

According to all phase diagrams for LFO excess of Fe or La atoms in the system are 

present in the form of respective oxides, while specific form of Fe oxide depend on  O atoms 

chemical potential.  The phase diagrams built on calculated energies of formation suggest 

an existence a range of chemical potential of O atoms where FeO is stable and can co-exist 

with LFO. This contradict to the diagram based on experimental data, where FeO 

precipitation line is located always above precipitation lines for the most stable iron oxide 

at each possible environmental conditions and, correspondingly, above the region of LFO 

stability. Anyway, the final decomposition of LFO at sufficiently low chemical potential of O 

atoms  ∆𝜇𝑂 produces La2O3, pure iron and O2 gas. Complete reduction of iron occurs at 

higher values of O atoms’ chemical   potential then LFO decompose. 

The experimental phase diagram indicates that stoichiometric BFO decomposes to Fe3O4, 

metallic Bi, and O2 gas when the oxygen chemical potential is decreased (either by 

increasing the temperature and/or decreasing the oxygen partial pressure). The same 

result is obtained for Fe atom treatment with all-electron basis set (and thus, without 

assistance of the pseudopotentials, ECP.) In both cases, upon excess of Fe atoms, Fe2O3 

reduces to Fe3O4 before the oxygen chemical potential reaches the critical value of BFO 

decomposition. In turn, in the phase diagram for the ECP on Fe the point, where such an 

iron reduction occurs, lies outside the BFO stability region. This result indicates that the 

decomposition of BFO in the presence of excess Fe should produce Fe2O3 instead of Fe3O4. If 

the system contains an excess of Bi atoms, the reduction of excess Bi from Bi2O3 to a pure 

metallic Bi state occurs, also prior to the point when BFO starts to decompose. 

The ranges of oxygen chemical potentials in which LFO and BFO are stable were 

determined from the phase diagrams and drawn as a contour maps. This allowed us to 

employ the state-of-the-art methodology for the analysis of advanced materials stability 

and to compare theoretical prediction of the regions, where LFO and BFO are stable in 

terms of temperature and oxygen partial pressure, with the experimental data.  

Our refined hybrid B3PW calculations with carefully optimized basis sets still 

significantly underestimate the BFO energy of formation in comparison with the 

experimental value, similarly to the much simpler LDA+U results. This underestimate leads 



to a very narrow range of BFO stability that is determined here by the energy of formation 

of BFO from Bi2O3 and Fe2O3. This could be explained by the shortcomings of the employed 

B3PW hybrid functional further testing of available hybrid functionals would be needed. It 

should be noted also that the available experimental data on BFO decomposition into 

binary oxides are very limited additional studies on both BFO and other perovskites 

decomposition are necessary, along with theoretical calculations at different levels, in 

order to draw more reliable conclusions. Hopefully this testing will also allow improving 

results for LFO, where some underestimate of the energies of formation is present, while 

on much smaller scale. 
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