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Introducing Infinitary Lambda Calculus

Tlya Beylin *

Zinovy Diskin :

Abstract. The paper introduces a notion of infinitary lambda
calculus, While in the ordinary A-calculus functions can be
applied only lo a single argument, our version allows
multiple (particularly, infinite) applications and abstractions.
So some A-terms can involve infinitely many (or even all)
variables, what makes syntactical machinery rather subtle.
An algebraic semantics for the new calculis is constructed
and the corresponding compleleness and representation
theorems are presented.
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0 lutroduction

Untyped lambda calculus is a well known model of computability, eand all effective
procedures can be modeled by A-terms. Buch terms involve a finite number of
veriables, i.e. a modeled procedure can call a finite number of auxiliary
subroutines. Perhaps, millions and millions calls. Once, their exact number (say,
107 or 107+6) turns into a tedious detail, and as the rich experience of
mathematical analysis shows, that is just the moment to consider procedures with
infinite number of subroutine calls and, respectively, A-terms of infinitely many
variables.

Though this and other interpretations may look hlh'lu';.llnl, our reeearch was
initially motivated by the purely’ mathematical curiceity: what a A-calculus with
infinitary A-terms- does present from the algebraic point of view? It ia
interesting that in the universal-algebralc framework for A-calulus metathsory,
developed in (DS1], ([DBS3], (P808), infinitary versions of A-caleulus are
described quite simply, while the feature of {finitarity (each term depends just on
2 finite number of variables) cannot be expreesed by the first order axioms. Bo we
had & nice algebraic version -- of an unfamiliar theory, and the goals (firet
pointed in [DO1)] as an open problem) of the paper were just:

(1) to describe precisely syntax of some calculus allowing terma to be
infinitary;

(2) to define axiomatically a class of algebras, intended to be an algebraic
counterpart of the new-introduced calculus; '

(38) to state adequateneass nt.Hu corresponding algebraic semantice: the main
result asserts that theoriee (1% and algebras (2) are different
specifications of the same objmet,

There are two principal ways to introduce infinitary terms into ealculus: one can
sither add infinitary applications and sbstractions directly to syntax (thus
cbtaining term -itrecs of finite depth amnd infinite breath,) or allow infinite
iterations of unary applications and absiraction (in that case we have to extend
the notion of reducibility to deal with such Infinits-depth tarm tress). We chose
the former approach, due to itz closer conmections to algsbra. On the other w.
the latter shows similarity to graph rewriting technique (cf. [K92) and [KEBdV8S],
where generalizations of Church-Rosser property for infinitary cwhl_u are
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slaborated.) Generally, as scon as our calculus copes with infinitary composition,
it appears to be a finite meta-theory for infinitary graph rewriting.

Certainly, an interesting question is how all this can be related to categorical
versions of A-calculus. Leaving it for future research, we mnote only that our
machinery is expected to be interpreted in something like infinitary CCC, ie. a
category with infinite products and infinitary exponentials.

1 Caleglus.

In the first section we describe our vergion of lambda caleul.s, where terms can
be applied to ha:ﬂn:lhly many arguments and sbstracted from infinitely many
variablea. Bince a mnatural ‘currying’ property also has to be  postulated for
finite concatenations of (possibly infinite) arguments and indices, we found it
relevant to - define general operations on infinite tuples. Further we will
introduce simple substitution-like operations on these terms, and equivalences
compatible with thess operations. These eguivalences cre infinitary counterparts
of a gnd B converaions in the ordinary lambda calculus.

Our calculus will operate with disjoint sets Const of constants, Fvar of Roman
variables (intended to be free) and Bvar of Greek variables (intended to be
bound).

The number of constants ia not restricted. Bvar and Fvar are countable and
somehow gnumerated by w (the first infinite ondinel); mormally we will use letters
£,0, and z,y,2 to refer to their elements. (The idea of separation between bound
and free variables to avold substitution collisions s well known; some formal
machinery waa developed by Keisler{KeiB8] for the case of infinitary predicate
ealeulus. Note, however, that algebraic behaviour of tsrm-in-formula substitutions
is quite different from that of term-in-term substitutions: while the latter
vonstitute a monaid-Hke structure itself, the former amounts to a monoid
bomomorphism iuto another moncid sgieing from some closed sot of logical
operations).

On the other hand, a variable bound in some term may turn into free in its
subterm. This !tnll_lu to introduce, at first, genera. terms where Orusk
variables can be fres or bound (Roman variables are alwaye free) and then to
distinguish among them regulor terms having all Greek variables bound. (Note that



14

subterms of regular terms may not be regular). Just the regular terms considered
up to a-equivalence will be our infinitary counterpart of ordinary A-terms: while
the latter make the set A(Const), we would like to convert the set of the former
into a substitute for Ag(Const), that is, to define over it infiritary
substitutions with the proper behaviour. It proves to be indeed possible, however,
in contrast with the ordinary A(Const) where substitutions can be defined almost
trivially, the substitutions over A,(Const) are derived operati with  hidd
internal structure. Actually, converting A,(Const) into a ‘good’ substitution
algebra turned out to be unexpectedly subtle and forced us to develop 2 monstrous
machinery of handling Greek and Roman variables, several kinds of substitutions
and many other frightening things demonstrated below. However, the result is good:
we will see that infinitary substitution, applica’on and abstraction over
Ay(Const) behave as desired and their monstrous origin is hidden.

1.1 Infiniie tuples

What makes our calculns really infinitary, are infinitary operations of
abstraction and application. Any functional can be abstracted from infinite tuple
of variables, and be applied to iInfinite tuple of arguments. The ceiling for
their dimensions is ww, that allows to concatenate several infinite tuples to a
correct tuple again. Tuples of arguments and of lambda-indices are rather
. different, however we will use eimilar notation for them, what provides our
considerations with more symmetric view.

1.1.1 Definition
An argument tuple is a function a: ja|—Term, where [a|<ww is the tuple’s length.
Concatenation of two tuples a,b is defined in an evident way: %

: a; if i<la
] Jash| = |a|+|b]: (as), = { ' la ;
b it ;<'bl, i-la-|+]

Unfortunately, we would mest difficulties trying to extand this obvious
construction to indices. Namsly, if we siowed variables to repeat in s lambda-
index, we would not be able to equalize, say, Amn.n to AGE.L, or Af,@ fto
Aygn.).® without wvery mﬂw u-m. To avaid this, we impose a rigid
restriction on variable wusage in lambda operator: it must be indexed by
irrepetitive string of Gresk varisbles, and a special blank symbol o'ls introduced
for dummy variable. The precise definition is as follows:
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1.1.2 Definition
A lambda-index tuple is & partial injection a: |ainyBvar. where |a|<ww.
Ce tanation is introd d as foll

a; if i<lﬂ|. a; defined, a,#Rgb;
la*b]=|a|+|3}, {a*b)={ by if j<|b], b; defined, i=|a|+];
otherwise undefined.

For example: (£,E,8E)HESE £5) = E,06508,E,E5

We use the symbol € for empty tuples of both kinds (that is |x|=0 e x=¢). Assuming
Bvar and Term fixed, we designate the set of argument tuples as Args, and index
tuples as Index. It is easy to check that not only (Args,+,c), but also
{Index,+,£) make 'monoids with left reduction (that is ate=e+a=c, (a+bltc=a+(bic),
end atb=a+c ¢ b=c for any a,b and ¢, though ate=b+: » a=b is not necessarily
true).

1.2 General and regular terms
1.2.1 Definition

The following rules introduce o set Term of (general) terms and corresponding
functions FV: Term—2Fvarubvar a4 BV: Term—2Bvar,

Context Term Fv BV
o ceConst € e N
i - zeFvar x {=x) ]
il e £eBvar £ £ e

In the following two rules x<ww is a paramster ordinal.
Context Tera FV BV

i} €cx€Index, teTerm, REESFV(t)| AL .t FVit)-RgE BV()uRgE
iv teTerm, s, eArgs T'ogex | UFVa )UFV() |UBV(s,iuBV(?)

Bince we have defined lambda terns inductively, we can use induction by gemeral
term structure to determine operations and to prove theorems concerning them.
Later we will introduce another kind of induction, by the alpha term structyre.
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1.2.2 Definition. A regular term I8 a term t with FV(t)SFvar. The set of regular

terms will be denoted by Regterm.

1.2.3 Examples. Regular terms: x, AC§pcu+7-Epcusy -
General, not regular, terma: £, AE.(0°0Ex), ADEscwi7-Ercwis
The following are mot correct terms at all:
Arxy, TEpcpw ACALL, AD.O, ADEp<yigEr<wi? -

1.3 Operations over terms

We define three operations over terms -- variable renaming. term-in-term
substitution, and lambda-quantification (lam.daing).

1.8.1 Definition. Given a map Ren: BvaruV_—Bvar, where VSFvar, we define
renaming Ren:Term‘—Term :

(o) ceConst = Ren(c) = ¢

(i) zeFvar + Ren(zr) = Ren(x) if xeDom Ren, otherwise x
) EeBvar =» Ren(£) = Ren(£)

(i) LeIndex,tcTerm =» Ren(AZ.t) = ARen(Z).Ren(t)

liv) t,855<c€Term =+ Ren(f'sy..} = Ren(t)'Ren(s,,)

-Renmin' involves all occurrences of variables, including lambda indices. 1f V=g,
f.e. Ren is a permutation of Bvar, then Ren preserves regularily of terms.

1.3.2 Definition. Let Subst be & map BvaruFvar— —Term 'Then the operation of
substitution, Subat*: Term——Term, is defined as follows:

(o0} ceConst + Substtc=c
1) xeFvar » Subst*s = Subst(x)
(i) EeBvar + Subst*f = Subgt(£)

(i) Celndex,teTerm + Subst*AL.t = AC.(SubstiRgCi*t,
(where Subst/Rgt coincides with Id on RgC and with Subst elsewhere.)
(iv) Lapcxe€Torm » Subst*l'syc, = Subst*e'Subst>s,cy

Obviously, the rbove-introduced substitution also preserves regularity of terms.
If Subst mape x; to 8;, for all k<x,where x:xx"—FvaruBvar, t:x"—Term, k<ww, and
the other varisbles to themselves, we obtain a direct generalization of the
ordinary substitution, ‘denoted by [x:=t], .
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1.8.3 Examples. If na.-[g f'] then Ren(zAZ.0) = ¥Ann ;

*. H) * v T
It Ren= N "H'l],q_, then Ren(x'(ngng)) = m,'(ngng' ;

(B2 = An.nmn] (WE'AEL) = nAnwAEE ;
[€:=0] E'AEAAEL = D'AENAEE.

1.8.4 Definition. Given a x-tuple x:x——Fvar, we define lambdaing
AX: Regterm—Regierm, as
AXt = AShift(xec,).[Shift]e,

where mapping smﬂ.-smnf: (RgxnFV(t))JuBvar <> Bvar renames Roman variables,
freely occurring in ¢, to Greek ones, (and the others, which occur only in x. to
0'es.).
A concrete choice actually influences only names of bound variables, so we may
take a restriction of an arbitrary mapping FvaruBvar"—Bvar, for instance,

Fvar | Bvary , Bvarj|— Fvary,,.

L4 Alpha and beta-theories

1.4.1 Definition. Alpha-theory is determined by the following axioms and
inference rules: =

A(m) a=b | b=a; a=b,b=¢ F a=c;

(x1) for eny Ren:Bver“—Bvar, @ = Ren(a);

(@2) for any y:wC —Fvar, a=b, Vi, ™., F [y:=vpla = [y:i=uy  lb;
Alpha equivalence is the minimal a-theory. ;

Informally, two terms are alpha-equivalent iff they differ only in bound
variables’ n.l.inlni. Regular term can be a-equivalent only to regular terms;
moreover, a-equivalency is compatible with lambdaing and substitution.

‘Now we can turn to l.l_:hmiul,almtle.'or logical, aspects of the calculus. In the
previous section we did not require that fiad) is the same as (fal’d or that

ALy ppgea can stand for AE,A(E,.£,, )a. We did not try at all to evaluate any
terms. All this will be congidered in the current section.
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1.4.2 Concatenation axloms.

For any K,t<ww, teTerm, u,uv:Args, 9,£€lndex,

leo) Ae.a = a, a’'e = a,
{el) A Aot = AlBic +Epc )t ,
(c2) Pupe "Upeg = Plup o).

The reader can notice that our calculus does not support any limit construction,
i, for example, ‘¢ do not consider #u;., a8 a limit of 'y, when n+w. Bo
finite applications are separated from infinite ones, and cannot be converted one
to the other. The same relates to lambda-operators. Introduction of Infinitary
coucatenations would definitely break the ww ceiling for tuple lengths.

1.4.3 Beta-axiom, For any k<w, £€Index®, teTerm, u:x“—Regternm,
8) AG M upoye = [Ei=ult

1.4.4 Proposition. Neither B nor concatenation axioms break the regularity of

terms.
1.4.5 Definition. A AS-theory is a Ax theory closed under axioms c¢0,cl,c2, and B.

The moet important for us are Aa and AB-theories over regular terms, since the
syntactical procedures of lambdaing and substitution behave on Regterm/a very
similarly to A-quantifier and substitution over ordinary A-terms. All involved
techniques become hidden. We refer to elements of Regterm/a as alpha-terms, and
in fact they are the objects over which we will construct our algebra.

2 Algebras :

Let A be a non-empty set of elements interpreted as alpha-terms, and the following
tamilies of operations be defined over it.



19

Name of operation| Parameter(s) Symhol_ ot Arity Naation : lntended_
operation example |interpretation
variable few z', 0 x; x;
epplication K< i T | u'zp W2y
substitution . . whl | wiy*u | [x=w;lu
K<, xXj
A-operator T, Al 1 Al Ay
Figure 2.1.

( Symbols w;u,z; in the 6th column mean elements of 4,
and in the Bth -- intended «-terms, where x,., and x,.,
are some enumerations of Fvar and Bvar. )

To extend the similarity with terms, we will use the abbreviations [i:=alb and
[i:~a]d with respect to algebras, (i<w, i<k<—w, a,bed, acA®).

2.1 Definition. An infinitary Aa substitution algebra (or iAxSA) is an algebra of
above-introduced signature subjected to the following identities:

Parameterization: Tpte a (is1)
j<w 8, *T o) lis2)

A Bjcpte)= (a0 *Bicyte (is3)

K<l Qe (B )= (@, ") (8; %y ) (isA)

L<ww kit (l=xglaghio*A)b = AL(j=xglaimg(j)*d (isL)
oo ol } Aulfmagla= M ltmxllimryle (isa0)

These identities have their orlg_in in the substitution algebras |[F82], infinitary
clones (C80), ASAs [D91,DBO3] and A-abstraction algebras [PS83]. Moreover, they
generalize ASA axioms written out in [DBP3). However they have some specifically
infinitary fads: e.g. (isx) can be written out NOT for any tuple |. If it ranges
‘too wide (say, Rgj=w\{1}), it may be impossible to allocate a tuple k of unused
varighle names.

To obtain AB-algebras (iABSAs), we add three more identities (very similar to

their calculus relatives):



20
L<ww, jit—w (A).a)epe, = li=ei la (isB) 4
L, K<ww (2" Vepax = 0'(bjcy tepex) (isAC),
Lget <} it ,Ow
Jitgte, S0 Aj.o= Aj,.(Af,.a) (1sLC);
1,00, w,i=,),

2.2 Definition. Dimension is a mapping A:A—2%, &a = {i | [i=xj,,la # a}. An
element a€d is closed if Aa=o. 2
2.3 Proposition. The following are equivalent reformulations of ieha:

Vi#i liz=x)laza; lt=x,,  laga; 3tfir=t]azta.
2.4 Proposition. (why the plain dimensions are sufficient)

If aed®, :ix&uw\Ab, then [l:-l.l}h = b, )

2.5 Proposition. An arbitrary Ap-algebra is gencrated by ita closed elements. It
is worthwhile to note that this does not hold for Au-algebras, where unreachable
elements can exist. E

3 Results: Connections beiween Syntax and Algebras

If we, given Infinitary A-caleulus, will interpret its constanta as closed
elements of infinitary AS-algebras and syntactical operations over its Regterm/a
as the corresponding algebralc operators from Fig.2.1, we can show that iASAs make
algebraic semantica for o-theories, that is, determine consequence relation k.94

and Exo@SA - over the set of regular terms, Begierm/a.

The principal results here aresas followa :

8.1 Theorem (Soundness) Let I be an afB)-theory,and o,beRegtorn/a.
If Tky(g) a=b, then M'kyy(g)ga o=b;

8.2 Theorem. (Complelenesa) If I'hyg(g)g4 a=b, then Iry(g) a=b;

3.3 Theorem. (Representation) For each AB-algsbra A (not Aa | Cf. proposition
2.5.) there is some set of constanta C with a theory I' over it, such that
ASALC)/T. ‘

The proofs can be found in [Be98).
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1 Beilins. Z. Diskins. Infinitarie lambds rekini
Anotaclja. Rakstd tiek jeviests at¥kirigs no vispirpiegemta infinitiro A-rékinu
jEdziens. At3kiriba ir ti, ka funkcijas var tikt pielietotas ne vienam, bet bezgaligi
daudziem argumentiem. TadEjadi, A-termi var bt atkarigi no daudziem, pat
visiemn, mainigajiem, kas biitiski sare?gi darbu ar tiem. Bez tam, uzkonstrutajiem
ekiniem tiek piekértola algebriska semantika ar pilnibas un reprezentacijas
teorémam, kas tipiskas tidos gadijumos.
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ABSTRACT ALGEBRAS OF FINITARY RELATIONS:
SEVERAL NON-TRADITIONAL AXIOMATIZATIONS®

Janis Cirulis

Abatract. We show that several non-traditional clasees of algebras related to
first-order logic are definitionally equivalent to that of locally finite cylindric-algebras.
AMS 1991 Subject Classification: 03G15. .

1 Introduction

E.M. Benjaminov has introduced and investigated in [B1], [B2] a class
of algebras called by him relational algebras. The term comes from
database theory, and it generally refers to algebras of a certain kind
suggested by E.F. Cadd [Col, [K|. Beniaminov described another ver-
sion of the relational data model and also proposed a set of axioms
to characterize abstractly his class of "concrete” relational algebras.
However, he did not present any results concerning strength of the ax-
jom system, neither did he compare his algebras with Codd algebras
or other known algebras or relations.

It was shown early tha* every Codd algebra can be embedded in
a cylindric set algebra [IL1], [V.2]. In 1983, B.L Plotkin put a question
whether the concept of a(n abstract) relational algebra in the sense of
Beniaminov is equipollent to that of a locally finite polyadic algebra
(with equality). N.D. Volkov has given an affirmative answer to the
question in the series of papers [V1], [V2], [V3], [V4] by showing that

*This work is partially supporied by Latvian Science Council Grant No 83/254
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the categories of algebras of both kinds are equivalent. Unfortunately,
the considerable total length of these papers (caused partly by unnec-
essary reproving of many results that could be find in literature on
algebraic logic), the style of exposition and a lot of inaccuracies both
in formulations and proofs make it difficult to follow them. The present
author has made an attempt in [C1] to establish such an equivalence to
cylindric algebras rather than polyadic ones. In that paper the axiom
system of [B1] was considerably simplified and its incompleteness was
noticed (see §3). Still there is an error in the proof of Lemma 3.2 and
a gap in the proof of Lemma 6.2 in [C1].
Our aim in this pap~r is twofold. It is a revised version of [C1], and
_we present here a proof of the main result of [C1]—that Beniaminov
relational algebras (with a minor modification) are indeed interdefin-
able with locally finite cylindric algebras of an appropriate dimension.
To save space (and patience of the reader), we—just as in [C1]—try to
involve several known facts and constructions; we therefore go through
a number of non-traditional algebraic structures related to first-order
logic. In this respect, the paper supplements the surveys in §5.6 of
[HMT] and in §7 of [N].

The reader is supposed to be familiar with the notion of a category.
Occasionally, some resulte are summed up in terms of isomorphism or
equivalence of categories. As to algebraic logic, the paper includes all
necessary definitions and formulations of results. However, proofs that
are not original are usually omitted.

2 Boolean homomorphisms adnnttmg con-
jugates

. LetAmdeethoclennalgebm,and]eta:A—-rB,S:B—-'A
be any mappings. We generalize the notion introduced for the case of
one algebra (when B = A}m{JT]nndCaJltawujngateu&l'alffaraﬂ
,GEA bEB, j
saAb=0 4 aAtd=0. (1)

Clearly, if ¢ is a conjugate of s, then s is a conjugate of ¢, and we
may speak of that the mappings s and ¢ are conjugate. As shown
in (JT}, & has at most one conjugate which we usually denote by &*
when it exists. So, s** = s Furthermore, a mapping that admits
the conjugate is additive; in fact, it is even completely additive and
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preserves 0. Admitting B = A, we conclude that the identity map is
gelf-conjugate. Finally, if C is one more Boolean algebra and mapings
81: A — B, 8;3: B — C have conjugates, then the composition s;3; also
has the conjugate and

(8281)" = i35, (2)

If 5 has the conjugate and preserves complements, then it is a
Boolean homomorphism. Moreover, in this case (1) is equivalent to

a>b & a>th (3)

—the well-known condition characterizing the so called residual pairs,
or (contravariant) Galois connections—see, eg. [GH|. Also, s is com-
pletely multiplicative and preserves 1. (3) is equivalent to the following
collection of four inequalities:

sa; < s(ayVag), th <ibVby), (4)

b < sib, isa < a, (5)
each of which can be rewritten in the form of equality (involving
Boolean operations). We obtain as consequences some more relation-
ships between conjugate mappings:

stsa = a, tsth = b, (6)

t(sanb)=aAtb (7)

s is injective < i is surjective ¢ tsa=a & t1=1, (8)

, 8* = 871 if & is bijective. (9)

At last, in the case A = B (3) and any of the conditions (8) imply that
if mappings s and ¢ are idempotent, then s = id, = ¢. (10)

For these and several other properties of Boolean homomorphisms
admitting conjugates, see Lemmas 13-18 in [Cr|. (Only thecase A = B

-is considered there; this is of no significance, however.) See also [GH],
Theorem 3.6 and Proposition 3.7.

Definition 2.1 Let K be some calegory, and let 4,(K) and A3(K) be
classes of (heterogenous) algebras of kind

(Ax,s,) xcobK, ceMork

respectively,
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(Ax,54:t,) X ObK, aeMork

where (a) every Ax is a Boolean algebra, (b) for every morphism
a:X —Y,s, andt, are operaticns of types Ax — Ay and Ay — Ay,
respectively. An algebra A € A)(K) is a Boolean action algebra of
K, in symbols an BAA(K), or just a Boolean K-act, if each s, is a
Boolean homomorphism and the following azioms are satisfied for all
g,a,f:

al:s,a=a ife is an identity morphism,

a2: sy, =sgs,a  if a and 3 are composable.
If, wmaoreover, every s, admits the conjugate, we call the elgebra a
BAA(K) with conjugates, or ¢ BAAC(K), and consider it as an al-
gebra from Ay(K).

We sometimes omit the adjective 'Boolean’ in the above context
and, following the practice of [EMT], use each of the abbreviations
BAA(K) and BAAC(K) also as a denotation of the respective class of
algebras. The following proposition is an easy conseqence of the general
properties of conjugates.

Proposition 2.2 (a) An aljebra A € A3(K) ia an BAAC(K) if and
only if the following conditions are fulfilled:
(i) every s, preserves complements,
(ii) ell s, and t, are correlated by (3) or, equivalentially, by (4) and (5),
(iii) either azioms al, a2 or their duals

a’'l:t,a=a ife is an identity morphism,

8'2: ty, =t,t5a if a and f are composable,
hold for every e, o, . -

(b) Both al and a’l may be omilted in (a) if instead every pair
(s.:t,) obeys (8). ;

{c) In any BAAC(K), if @ and § are K -morphisms with a common
codoemain, and if a = v, § = ab for appropriaie -y and &, then s,t, =
spty.

Let us consider three concrete examples of the above situation.
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Example 2.3 K may be a monoid, i.e. a one-object category. A trans-
Boolean algebra in the sense of [Cr] is nothing else than a K-act with
conjugates for such a K (satisfying a few additional axioms reproduc-
ing of which here is not necessery). It was proved in [Cr] that in the
case K is a monoid of transformations of some set the concept of a
trans-Boolean algebra is equipollent to that of an equality polyadic al-
gebra. In [C2], we announced a result according to which the additional
axioms of trans-Boolean algebras are superflous if the full transfcrma-
tion monoid and locally finite algebras are considered. We prove in §5
below a similar result for K a monoid of finite transformations (and
relatively to cylindric algebras rather than polyadic ones).

Example 2.4 K may be a partially ordered set treated as a category.
If it is directed, then any K-act is a direct family of Boolean algebras.
A heterogeneous cylindric algebra in the sense of [7] is a K-act, where
K is the set of all finite subsets of some set. We shall consider algebras
of this latter kind in §6 in more detail.

Example 2.5 Beniaminov algebras are also partially covered by the
above scheme. Assume we are given a sct of sorts L. A sorted set is a
set each element of which is correlated with some sort. Where X and
Y are two sorted sets, an agreement of X with Y is a sort preserving
mapping @: X — Y (see [B1]). Beniaminov begins with the category
of all finite sorted sets and agreements which we denote by !, and
the first four of his axioms describe, in fact, the class BAAC(EY). The
category X! is, however, too big: as the collection of all finite sets is a
proper class, it is difficult to ;ompare relaiional algebras in the original
Beniaminov’s sense with algebras of relations traditionally arising in
algcbraic logic. With this in mind, we shall restrict in the subsequent
section the caiegory I! to its small subcategory whose objects are
subsets of some fixed set.

From the category theoretical viewpoint, a BAA(K) is determined
by an action of a functor s from K to the category of Boolean algcbras
and may be identified with the functor. A BAAC(.X) is then essentially
a pair of functors (s,t), where t acts from K to the category of Buolean
lattices (considered as poseis). We do not take this position herz;
however, we notice that such an approach to Bepiaminov algebras has
been proposed in Chapter 8 of [Pll. Moreover, there £ is replaced
by a certain algebraic theory in the sense of Lawere. Of course, the



28

category of Boolean algebras (lattices) also could be replaced e.g. by
that of Heyting algebras (lattices).

3 Relational algebras

Thus, let ¥ be any sorted set which is assumed to pe fixed throughout
the rest of th> paper. Elements of V are usually called variables or
attributes, and we assume that V' contains infinitely many variables of
all sorts.

A relation type is a finite subset of V. Let RT stands for the set of
all such types. We shall base the concept of a I eniaminov algebra on
the category 'V of all relational types and agreements over V rather
than on X! (see Example 2.5).

Subsets of V will also be used with a view to classify algebras
of certain kinds according to their similarity types. We shall term a
subset used this way a dimension iype of the algebra, or just type of it
if misunderstanding is unlikely.

Definition 3.1 We call any BAAC(E'V) a weak relational algebra of
dimension type V, or briefly ¢ wRelAy. A Beniaminov algebra of type
V, or briefly BenAy, i3 a wRelAy which satisfies the condition

b: for all X,Y,Z € RT such that ZN (X UY) =0, and all agree-
mentsa: X —Y,

ty(s,aAs b)=s taAsb,

where 1y,13,¢5 are theembeddings X - X UZ, Y - YUZ and Z —
Y U Z respectively, and o’ is the agreement of X U Z wth’Y U Z that
i3 an eztension of a and acts as the identily map on Z.

The axiom b was formulated in [B1] (cf. the last axiom there)
in terms of direct sums of sets and mappings and was therefore even
more involved. We shall see below that a simple particular case of b
does the job. As noted in Introduction, we shall add one more axiom
(see r10 below). This way we come to a bit narroweér class of algebras
which we name relational algebras, the term being used by Beniaminov
himself. ;

First we introduce a certain codification of morphisms in Z'V; this
will ease our further analysis. The related notion of a transformation
will be in use also in other sections.
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By a transformation we mean any sort-preserving self-map of V.
Let T'r, stand for the set of finite transformations, i.e. transforma-
tions @ whose effective domain eda := {z € V:az # z} is finite.
Clearly, T'r,, is & monoid: it contains the idertity map € and is closed
under composition. Given two relation types X and ¥V, we denote
by Tr(X,Y) ihe set {a € T'r,: eda C X and aX C Y}. (Note that
Trx := Tr(X, X) is a submonoid of Tr,.) If X C Y, let (¥ ¥) stand
for the agreement ¢: X — Y such that p = o|X. In particular, if
X C Y, then (¥¥) is the embedding of X into Y. Obviously, the trans-
fer @ ++ a|X yields & one-to-one correspondence between T'r(X,Y)
and the set of all agreements of X with Y, and it is precisely this set
the notation {(¥*): @ € Tr(X,Y)} refers to. This way we obtain a
»parametrization” of the set of all B!V-morphisms by fini*s transfor-
mations. Warning: although (7")(}*) = (§¥) for any & € Tr(X,Y)
and f € Tr(Y,Z), the compos1t10n fe ltself belongs to Tr(X, Z) iff
edfaC X iffedf C X.
Now, given an algebra from Aa(E'V), we shall write s'* and tX¥
for s,,, resp. t,, if ¢ = (£*). So the algebra itself can be written as

(Ax, 2% 0 )x yerr, serr(xy):

where every s/¥ is an operation of kind Ax — Ay and tXY is an
operation Ay — Ax. In this notation, the wRelAy axioms read as
follows (see Proposition 2.2(a)):

rl: s£X(—a) = —s¥¥a,

2: ¥%a < SX(av d),

r3: tA¥p < XY (BV V),

rd: b < srxt;"'b,

ré: tX¥sf¥a < a,

ré: s¥*a =a,

r7: 55 st Xa = sjXa,
while b takes the form o

b:ifZN(XUY)=0and a € Tr(X,Y), then

(XUBXYUB)(SYUBIY & (YUBIE ) = ((XUBIKLXY g o ((XUB)E)

Definition 3.2 A relational algebra of type V, ora ReiAy, isa wRelAp
that satisfies the additional aziom



30
B ifZN(XuY)=0,YUZ CUand a€Tr(Y,Y), then

taXUBJUsE'Ya = sﬁXUB)Xt:Ya.

We call attention to the following restriction of r8 obtained by
settingU =Y U Z:

i if ZN(XUY)=0and a € Tr(X,Y), then

tLXUZ)(YUZ)sgruz)r o = sXVOX XY,

Remarkably that r9 can be obtained also from b’ by substituting 1 for
b (reca’l that both Y V%)% and sEX“”’ are Foolean homomorphisms
and thence preserve 1). The subsequent theorem shows the " distance”
between BenAy’s and RelAy’s.

Theorem 3.3 (a) A wRelAy is a Beniaminov algebra iff it satisfies r9.
(b) A BenAy is a relational algebra iff it satisfies the condition

rl0: t.’-‘ (xuy)l =1, whereY does not contain variables of sorts
presented in X.

Proof. (a) It remains to prove that b’ holds in any wRelAy satisfying
r9. Assume that X,Y, Z and a are such as in b’. By r7, (7) and r9,

{RUBYUZ)((YUB)Y g A ((¥UZ)Zp)

{EUZXYUS)((YUZ)Y ¢ & (YUINXUZ)(XUB)Zp) ‘

tg,\'uz)(vumsgvuz)y a A sTRUDZp = XUDXXY g 5 (XU)Zp

{b) Assume axioms of BenAy’s. An application of r10 yields
rl1: every s ¥ is injective.

Indeed, let X' = {z € Y: the sort of z-is presented in X'}. Then
X C Y, (%) = (F)(FF) and ¥ = XX (by £7). By 1o,
tX¥1 = 1, and by (8), s'* is injective. Choose @ € Tr(X’, X') which
agrees with € on X; then (¥X")(X'¥) = (X¥X). Again by r7, and r6,
sXX'sX'X = §XX — jdAy. So sX'X also is injective, and r11 follows.

By r1l and (8),

ri2: tH'd %o =a,
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Now we can derive r8: by r7 and its dual, r12 and r9,
{RUBW Y _ ((XUENYUD(YURWD(YUZ)(YUB)Y ,
HXUZNYUR)YUR)Y § _ (XUBXXY g

Conversely, given a RelAy, we set Z = ﬂ, Y=Xanda=¢inr8:

XU X g = FX(XXg
( 4 £
By r@ and its dual, the right-hand side equals to a. So tXU1 = 1 by
(8), and r10 follows. O

Remark 3.4 Therefore, wRelAy C BenAy C RelAy, and none of the
inclusions is reversible. r1l carnot be proved in full extent without
using r10 or some equivalent of it. The present author turne. atten-
tion of N. Volkov to the fact that this was averlooked in Proposition 1
of his [V3]. (For relevant corrections see Section II of [V4].) E. Beni-
aminov communicated to the author in August, 1987, that he also had
discovered independence of r11 (of his axioms),

An inspection of the proof of r12 shows that the identity is valid in
any wRelAy satisfying r10. This makes further splitting of r8 possible.

Proposition 8.5 The identities r1-+5, r7, r10 and
ris3: t&xuzxvuz)‘.(vun}'a = XV XY,  RithZNY = 0 (and
X Yy,
rld: Y XXXy = YY¥Xp  witha € Try,

make up a complete aziom system for RelAy ‘a.

Proof. Clearly, r13 is contained in r9, while r14 follows from r9 by
setting ¥ = X and subscquent relettering of ¥ U Z, Hence, in view of
Proposition 3.3 we must only show that r8 and r9 are derivable from
the mentioned list of axioms. By r10, tX*1 = 1, and r6 follows by
Proposition 2.2(b). Now assume that X,Y, Z and a are such as in r9,
and let W stand for X UY. Then by r12, the dual of r7, again the
dual of r7, r13, r14, r7 and its dual, again r7 and its dual, r12,

XU XY g o (XURX XY YW WY o _ XUDXXW WY,
S(XUDX XW W

s:!fYa — thuz)(WUH)sSWUZ)Wt:VWs:VI’a =
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tEXU2)(WUZJtLWUz)(WlJZ)SEWUZ)(W)s:'Y (XUZYWUZ)(WUD)Y ;

a=tl
{XUENYUE)(YUZYWUE)(WUZ)YUE)(YUZ)Y o . ((KUBKYUR)((YUZ)Y

and the proposition is proved. OO

Now we leave relation algebras until §7, and turn to some other
classes of algebras. Most of them, in that or other form, have already
appeared in literature. We notice in this connection that, as a rule,
dimension types of algebras usually dealt with in algebraic logic are
unsorted cets. To compare the algebras considered above with these,
we are forced either to extend the traditional definitions and results or
to assume that in the rest the set of sorts, X, wﬂl be a singletone. We
choose the latter alternative.

4 Cylindric a.lgebraé

In this section, we list some basic facts concerning cylindric algebras.
The standard reference on cylindric algebras is [HMT]. For our pur-
poses, it is more convenient to deviate from the tradition and to index
the operations of a cylindric algebra by elements of an arbitrary set
rather than by ordinals.

Definition 4.1 By a cylindric algebra of type X, or briefly a CAx, we
nean an alyebra A := (A, c;,d5)syex, where A := (A,V,A,—,0,1) is
a Boolean algebra, every c; is a unary operation an A, every d,y is an
element of A, and the following azioms are satisfied for all z,y,2 € X:

cl: c;,0=0, :

c2: a < c.a,

c3: c(aAc,a') = c;aAc,d,

cd: c.Cy3 = ¢yCaa,

cb:dz =1,

cB: d, = ¢ (doy Ady) i ¥ # 2,2, :

cT: cz(andy)Ac(—aAdy) =0 if z#y. :

We sball need the following additional properties of operations ¢

in a cylindric algebra:

c8:c:1=1,

¢9: c;a < ex{aVv ),
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cl0: c.c.a = c.a,

cll: c;(—c.a) = —c,a,
cl2: e d, =1,

cl3: cdy, =dy, if z2# 9,2

Mmmm,emyc,maself—ceniugateopaation: €, =¢c,s0itisa
completely additive closure operator.

Now suppose that A is a CAx. For every Z C X, we define
a generalized cylindrification, or quasntifier, cgz on A as follows (cf.
[HMT, §1.7]):

al: cza={" i
* 2271 cuce---csa otherwise,

where 23, 23,...,2, i3 a list of variables from Z in some fixed order. In
fact, the order is irrelevant by c4. Obviously, every cz has properties
analogous to c1-¢3, c8-—¢11; moreover, also

cl4: qga = a,
clb: cg,cza = cguz.a

hold. This motivates the following definition which we shall need later.

Definition 4.2 Let RT(X) stands for RT N X. We call a quantifier
algebra of type X, or a QAyx, any algebra (A,cz)zerr(x), where A is
a Boolean algebra and all cx are operations on A subject to clc4 and
(al) (or equivalentially, c1-.3, c14 and c15).

An element a of a CAy A is said to be independent of z if c;a =
a. A suppori of a is a subset Y C X such that ¢ is independent of
every z ¢ Y. If all elements of A have finite supports, the algebra is
called locally finite. In any case, the elements having the same support
make up a subalgebra of the Boolean algebra A. Moreover, the subset
.AlY:= {a € A:Y supports a}, the restriction of A to Y, is closed
wunder all operations c; with z € Y. By c12 and c13, A|Y contains
also the elements d,, for all z,y €Y. So we come to the CAy AjY:=
(A]Y, €z, d2y)=yev, called a neat Y -reduct of A (cf. Definition 2.6.28 in
MT])- R
- [H Two useful families of operations are defined in a cylindric algebra
in the following way ([HMT, §1.5}, [P, (3.6)]):
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{ _Ja ifz=y,
dlt  Ga= { ¢s{a Adsy) otherwise,
a ifz=y,

B2: t‘a— {

for all a € A and every z,y € X. It was proved 'n [P] that the class
CAx with | X| > 2 can be characterized in terms of these operations.
We shall consider this question in some detail.

Definition 4.3 4 substitution algebra of type X, or a SAx, is an
algebra A := (A,s})syex, where A is a Boolean algebra, every s; is a
unary operation on A, and the following aziom: hold:

cza Adzy otherwise,

sl: s is a Boolean endomorphism,

s2: sla = a,

83: sisia = sisja,

sd:sisza=s5a ifz#y,

sbrsysja=s;s,a ifyFufz#ov.
If, moreover, every operation s; has the conjugate t, then A is called
a SA with conjugates, or SA(‘.; In this case we oonsider it as an
algebra of kind (A,s},15)zyex. We shall say that such an algebra is
commutative if it satlisfies one more aziom

88: sitfa =tisya fy#ufz#v.

According to (4) and (5) the class SACy is equationally definable.

In a SACy (A,s],1])s4ex We set
7l:  ca=stia withy # z,
72:  day =gl
The definition 71 is correct: ¢,a does not depend on the chaise of y.
Now we can resiate the content of Theorem 2.7 of [P], in connection
with the algebras we consider, as follows (see also the proposition (F)
and the note after the proposition (G) on p. 176, Theoram 3.3 and the
note at the bottom of the page 177 in [P]).

Proposition 4.4 Assume that | X| > 2. For any two algebras
{As Czy dq)ag&l and (A!.:l t:)a.yex;

the following stater-ents are equivalent:
a) (A,c5,d2y)syex 18 a CAx and f1, B2 hold,
b) (A,s},%])syex 8 a SACx and 86, 71, 72 hold.
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In particular, tj = (s;’)‘ in 81, f2. Via 71, the notion of a support
applies also to arbitrary SAC's. The following im: rediate consequence
of Theorem 2.12 and Lemma 2.13 of [P] is crucial (here, and below, Lf
stands for “locally finite’).

Proposition 4.5 Every LfSACy i3 commutative.

Now it follows that the classes LFCAy and LfSACy are definitionally
equivalent and may be considered as indistinguishable; the more so as

any cylindric homomorphism is an SAC homomeorphism and vice versa.
See also Theorem 5.4.

5 Transformation algebras

From the viewpoint of their structure, cylindric and relational alge-
bras are too far from each other to be handily compared immediately.
To reduce this difficulty, we now proceed from CA’s to Lransformation
algebras. Transformation algebras were introduced by the way by Hal-
mos, and studied by Leblanc in.[L]. Roughly, a transformation algebra
is a K-act with K the transformation monoid of some set. For our pur-
poses, it is more convenient to deal only with finite transformations.
Following the tradition, we should use fhe term ’quasi-transformation
algebra’ in this case. However, we do not, partiy because the difference
vanishes as fa: as locally finite algebras (of mﬁmte dimension type) are
considered.

We first introduce some additional conventions concerning trans-
formations. The notation (y,/z,,... ,y,./::,) stands for a finite trans-
formation a such that eda C {z),...,2,} and az; = y; for every i.
We call a replacement any transformation of kind (y/z), and a irans-
position any transformation of kind (z,y) := (y/z,z/y). Every finite
transformation can be produced as a composition of a finite number of
replacements and transpositions (see [Cr|, p.10); we shall refer to this
fact as to the decomposition property (DP).

Definition 6.1 Suppose that X C V. By a transformation algebra
of dimension X, or TAx, we shall mean any Trx-act. A TAx with
conjugates, or a TACyx, is defined in accordance with Definition 2.1.

In a TACy, the Proposition 2.2(c) can be concretized as follows:

S,t,8 = sgtza  whenever o X = fX. (11)
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Indeed, assume that & and f satisfy the condition, and choase p €
Tr(X) such that py € f~'y when y € aX. Then fipa = a. Like-
wise, f§ = ayf for some ¥ € Tr(X). Now the equality follows from
Proposition 2.2(c).

Clearly, the reduct of a TACx obtained by omitting all open.tmm
s, and t, but those with a a replacement i an SACy. In particular,
the nnuon of a support can be transferred to TA’s and TAC’s. Also,
quantifiers can be defined in TAC’s according to (1) and (al); mare-
over, Propositions 4.5 and 4.4 imply that a TACy can be converted into
a cylindric algebra (hence, a quantifier ane as well).

Now we are going to show that any locally finite SACy can be
expanded to a TACy.

By (9), any opem:.ion's(m) of a TAy has the conjugate, for the
transposition is inverse to itself. Moreover, (so’,))‘ = S(,5)- Now the
following proposition holds an the strength of the DP, .2 and (2).

Pmpoeltmnﬁi.{femmsw’) of a TAy A has the conju-
gate, then A is a TACy.

Let @ := (p/#1,--.9/2) be a finite transformation. For any
element a of a locally finite substitution algebra A, we set

51: s,a= { e
SR s - espse ---s3la otherwise;
here the variables z,,.. ., z, are supposed to be distinct from each other
and from Z1,...,Zs, 1, a, a0d such that ¢ does not. depend on
them. In [G, §4), it is shown that s,a does not depend on the chaise
of z,...,2%,. Thereforg, looking over all elements of A, we can define
an operation s, on A, Actunally the first statement of the following
propasition is implicit in [G]; see also {HMT, 1.11.9, 1.11.11, 1.11.12}.
The other one follows from Propasition 5.2.

Proposition 5.3 An algebra (A,s,)oery, is @ locally finite TAy iff its
reduct (A,8,,,))syev is & locally finite SAy and 61 holds for all a and
appropriate z,...,z:. Moreover, if one of the algebras admits conju-
gales, then so does the other.

Now we can state in what sense the concept of a TAC is equipallent
to those of the preceeding section. We call two categories L and M
indistinguishable if there is an isomorphism F: I — M such that Fa =
a for every a € MorL. A typical eu.mple is provided by the categories
of Booiean algebras and Boolean rings with unit.
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Theorem 5.4 The classes LfCAy, LfSACy and LfTACy, considered as
calegories, are indistinguishable.
Proof. As to the first two of the classes, the result was essen-
ﬁallymnhlhhedat the end of §4. It is clear from the above dis-
cumon that the transfer from:a TACy (A,s,,t,)aery, to its reduct
s ‘}),‘,ev yields a one-to-cne correspondence between classes
l.fT ACy am{ LfSACy. Of course, every TAC-homomorphism is an SAC-
homomorphism between the corresponding SAC’s. By 41, any SAC-
homomorphism b between lccally finite algebras preserves all opera-
tions s,. By the DP, a2 and (2), every operation t, of an LfTACy can.
he decomposed into a product of operations of kind t, and bt since
) = S(ag) h preserves t, as well. Thus it is a TAé il mrmorphism,
R A proved that LISACy and LEFACy are indistinguishable. O
We still derive some more properties of TAC’s which will be used
in further sections. -
Lemma 5.6 Assume that A is a TACy, a € Tr,, Z € RT, and that
cg is the operation defined on A by al nd-yl Then
(a) cga =s,t,a ifrana= 2,
(b) s,cza=cg ifedaC Z,
(c) cxs,a = 5,0 ifznrma=.,
(d) cxs,a =s,c56 if ZN(edaUera)=8.

Proof. (a) Assume that Z and o satisfy the condition. By 11,
we may consider & to be idempotent. Then Z = eda. Now if Z =
{31,m,...,5%)} and a = (1 /21,1/7,...,Us/7), then 2 # y; for all i
and j, dnd @ = (pu/za) - (1 /21). Taking (al), (11), 88, Propasiton
4.5 and =8, a2 and a2’ into account, we infer that

€30 =Cy o8 = Shtn - gtia = & - Pt .- tira = 5,t,0.

' (b), (c), (d) are proved similarly, ar they can be derived as pa.rt:c—
ular cases from Theorem 1.11.12(vi) of [HMT}. O

" Given a TACy A, it is easy tp see that every subset (in fact, a
Boalean algebra) A|X := {a € A: X supports a} is closed under those
operations s, with &« € Trx: if a € A|X, then ¢,a = a for y ¢ X,
and we have that ¢,5,a = s,c,a = s, by (d). Using the dual of (d),
we likewise obtain that A|X is closed also under all nper-tions t, with
a € Try. We call the algebra Ay := (A|X,s,,%,)aeryy the neat X-
reduct of A.
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6 Heterogeneous cylindric algebras

This section is "optional” in the sense that heterogeneous cylindric
algebras are not concerned to the subsequent section directly. How-
ever, several constructions and methods considered here will be used
afterwards in a less familiar context.

Definition 8.1 A heterogeneous CAy, or HCAy, is an algebra
(Ax, S7*, 6" ) xcvenr, (12)

where each Ax := (Ax,c$,d0), ex is a CAx and, for all X,Y, 2,
| h1: f¥X is a homomorphism fmm Ax to the X -reduct of Ay,
h2: J‘ZYfYXa e fZX
h3: gXY f¥X4 = g,
hd: fYXg%Vh = )b,

Y\ 'y being the operation defined in Ay according to al.

Observe that each alzebra (Ax,c{gx))zcx ina HCAy isa QAy.
Heterogenous CA’s first appeared in [Z]. Zlatos’ original axiom
system included also

hb: f¥%Xq = gq,
he: ¥ Xa= f¥Xg ifzeY )\ X.
However, hb follows from the above axioms by Propositions 6.6 (see

below) and 2.2(b), while h8 wus shown superfluous in [C4, item (3.6)]:
by h4, h2, h3, h2,

W) ¥ Xg = fYONENGONEY gV X g

f“'ﬂ’\l*}}g(Y\{s})YfY(Y\{l})f(Y\{l})xa e fY(!’\{H}}f(Y\{S})Xa = IYX a.
It was proved in [Z, Theorem 1] that the concepts of a locally fini e

CA anda heterogensous CA are ‘equipollent in the following
strict sense.

Theorem 6.2 The categories LfCAy and HCAy “are equivalent.
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We sketch a somewhat different proof of this theorem, several
details of which will be referred to in the last section.

First, a homomorphism from a HCAy A to another HCAy A' is,
as usnal for ‘hateroseneous algebras, a family & := (px: X € RT) of
CA-homomorphisms @x: Ax — A'x such that for all X,Y with X C Y

erf ™ a=f"pxa, oxg* a=g""pya.

® is an identity homomorphism if all px: Ax — A'y are identity ho-
momorphisms, and the composition of two HCAy-homomorphisms is
also defined componentwise. @ is said to be an isomorphism if all px
are bijective.

We call a HCAy flat if Ax C Ay whenever X C Y and every
monomorphism f¥¥ is the embedding that realizes this inclusion. In
this case the axioms h1, h2 become trivial while h3 and h4 reduce to
equalities ‘

a=a ifacAx and ¢b=c{b ifbedy, (13)
respectively. Moreover, then '
d(,f) =d¥) and Ma=ca (14)
for 2,y € X C Y and a € Ax. The proof of the following proposition
is straightforward; we only note that this is where h8 is needed.

Proposition 6.3 Every algebra from HCAy i3 isomorphic to a flat al-
gebra. Ioreover, the category HCAy is equivalent to its full subcategory
determined by flat algebras.

Now we associate with every flat HCAy A an algebra AL/ :=
(A, cs,dzy)zyev by setting
e0: A=|J(Ax:X € RT),
el: c,a:cf.x)afaraomeXERTmchthataEAxandzEX.v
e2: dy=dX withz,yeX. °

By (14), definitions (¢1) and (£2) are unambigous: any X which satis-
fies the conditions may be used. Conversely, given a locally finite CAy
A, we construct an algebra AF := (Ax, f¥%X,0*Y )x venr as follows:

¢0: Ax = A|X is the neat X-reduct of A,
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(1:  f¥X is the embedding of Ay into Ay,
(2:  g"Y is the restriction of cy\x to Ay.

Proposition 6.4 (a) If A is a flat HCAy A, then AL/ is a LfCAy and
(ALHF = A,
(b) If A is a LfCAy A, then AT is a flat HCAy and (AF)%/ = A.

Proof. (a) Assume that A is a flat HCAy. Clearly, AY € CAy, for
any finite number of elements of A belongs to some Ax. To verify that
ALl ig locally finite, it sufficies to show that X supports a whenever
a€ Ax. Leta € Ax, = EXa.ndXU{z} CY. Thenin A, ") f"%a =
- f¥Xa by h, i.e. cca=ain AY.

We have just seen that Ax C A|X. Conversely, if b € A|X, then
c,b = b whenever y € X. Thereis ¥ € RT such that b € Ay and
X CY; 50 we have b = cy\xb = cg\')xb. By h4, then b = f¥*a for
some a € Ay; since A is flat, we conclude that b € Ax. Therefore,
A|X = Ax. Now it is easily seen that Ay is the neat X-reduct of A%/,
indeed, and that ({1), ((2) hold as well.

(b) Straightforward. O :

This is a routine job to check that if {¢x: X € RT} is a HCAy-
homomorphism from A to A', then the mapping ¢ := |J(¢x: X € RT)
is a homomorphism between the respective CAy’s. Conversely, if pis a
CA-homomorphism from A to A’, then the family (p|X: X€RT) isa
homomorphism between the respective HCAy’s. These traisformations
are mutually inverse; therefore, we come to

Proposition 6.6 The category LfCAy is isomorphic to that of flat
HCAy 5.

Now Theorem 6.2 follows from Propositions 6.3 and 6.5.
Returning to the structure of a HCAy, we note that the following
result was proved in [C4].

'Proposition 8.6 Assume that A is an ugebra of kind (12) and that
each Ax iz of the form (Ax. ))gcx Then the following conditions
are equivalent: - :

(a) every Ay is a QAx and h1-h4 hold,
(b) (Ax, fY%, 0" )xcyerr is @ BAAC(RT), and h3, h4 as well
& -



41
hT: IY(XnY)g(XnY)Xa - grzfzxa
hold. :

The conditions listed in (b) correspond to items (2.1), (4.2) and (2.3)
in [C4]. h3 can even be omitted; an instance of h7 (with X = Y') gives
fXXgXXq = gX2fZX 4 and h3 follows by al and al’. On the other
hand, a weakened form

h8: fYX)GXAYIX g = G¥(XUY) f(XUV)X,

of h7 would suffice:

G2 3K g = g¥(XUY)((XUY)Z (B(XUY) ((XUY)X g

gv(xw) JEUNX, . gY(XOY) g(xnr)x -
by a2 and a2’, h3, h8.

Remark 6.7 Thus, a BAAC(RT') that satisfies h7 may be treated as
a "quantifier-free” heterogeneous quantifier algebra, h4 being meiely a
definition of quantifiers. If endowed with diagonal elements in all A x’s
(subject to appropriate axioms involving only operations f and g), such
an RT-act becames essentially a heterogeneous cylindric algebra. For
a class of algebras defined along these lines, see [C3].

7 Equivalence of RelAy’s and LICAy’s

Now we are almost ready for proving the following result which shows,
in particular, that the concept of a relational algebra is properly de-
fined.

Theorem 7.1 The category RelAy is equivalent to LfCAy.

We still need only one lacking link—heterogeneous TAC's! We
shall imitate Definition 12; however, there is a trouble with quantifiers
in the axiom h4. If we define ¢t according to (1), the case ¥ =
{2} makes no sense while quantifiers c{’’ prove o be unrelated with
operations of the algebras Ay. For this reason, we use a different
definition, restrict h4 and add one more axiom instead.
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Definition 7.2 A heterogeneous TACy, or HTACy, is an algebra
(Ax, /"%, 6" )xcverr,

where each A y = (Ax t( ))au-,., is a TACx and for all X\Y, 2,
the azioms hl-h3,

hd;: f¥¥g%¥q = c(,.};)x for X # 0,
end .

ho: fY’g'xa = gl’(XUY)f(XUY)X fFXNnyY=20

hold, the operations ciy in h, being defined by
nl: c(Y) (Y)t(y) where aY = X.

Note that h9 is included in h8. By Lemma 5 5(3), the right-hand
side of (n1) does not depend on the choise of a.
Now let A be any HTACy. We set

02 a= g3y,

Then

where Z is a proper superset of Y.

cg’ gvz (2) fzv S Ys fz(a'\v) g(z\r)z fﬂ’ PR
fﬂng\n j(z\r)c ¢ a= !n le

by (n2), h4,, h9, h3. Therefore, the operations c( ) are also well-
defined. Moreower, we conclude that h4 holds m A in full extent and
that every f¥* is a homomorphism from (Ax, cg Ngex ta (Ay, Nacx.
At last, the proof of h6 remains valid, and h§ again is a mnaqnence
of the following lemmz,

Lemma 7.3 The Boolean pdﬂ (Ax fyx,gxy)xcyem- of tke nlgebm
A is a BAAC(RT).

Proof. Fhr X nonempty, h4, implies that every g*Y is motone
together w:th cy\x (see (4)):

by < ba=> by < by = VXG5 by < [T XYy = FVhy < Vb,

It immediately follows fsom (2) that also every cg' ) is isotone, and
even extensive: by (12), {5), h3

a=g"3Ps¥a> g"¥1¥a=a.
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Then all mappings g*" are isotone as well in a similar way, and we
apply Proposition 2.2. O :
The following theorem is the counterpart of Theorem 6.2 and is
proved after the same fashion.
Theorem 7.4 The cutegories LETACy and HTACy are equivaient.

The definition of a homomorphism between HTACy's can be mod-
elled after that of the previous section. Instead of €1 and €2 we now
use the definitions

el s,a= sg, )a for some X € RT such that a € Ay and a € TRy.
e2; ta= Y )g for some X € RT such that a € Ax and « € TRx.

Of course, (n1) implies that (e1) follows from (£1’) and (£2').
Furthermore, when proving the TAC-analogue of Proposition 6.4,
we must pay more attention to the inclusion A|X C Ax. The point is

that the equality b = ey\xh = c(r.y\)xb presupposes that the operations
cy\x and cgfy\)x satisfy (a1). But this is the case: ALf is a QAy (see

the note just after the proof of (11)), and therefore every { Ay, c(z”}gcy
is a QAy.
Now we move to relationships between HTACy’s and RelAy's.
Let us correlate an algehra AP = (Ax, /Y%, 0% ) xcverr with
every RelAy A = (Ax, X XY ) xyert, werr(x,y) by sctting

#0: Ax=(Ax, ned t., )),,r-p,x where
o1: 9= i :
62: 155 = XX,

as well as
63: fYX = er-
f4: ¥ =

Therefore, A¥ is merely a reduct of A. Also, let us corre’ite an al-
gebra AR := (Ax,s¥%,t ) xverr, aerr(x,y) With every HTACy A :=
(Ax, J"%, 9" )xcrenr by setting _

w: A x is the Boolean algebra underlying Ax,

a: Pkl ) fUx,

2 tg,"f = ngtg") o,
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where U in (1), (+2) is selected so that X UY C U. The two definitions
are correct: s¥* and tXY do not depend on U. For example, since
a € Trixuy), we have by h2 and its dual, hl, h3:

g"v séu) fi%g = gY(XuY)g(XUY')U’gU) fUxuY) !(xpy)xa =

¥ (XUY) XUV (UXUR)G(XUY) (XUV)X g = g¥(XL2)GXUY) ((XUTIX

and likewise for (:2). (Actually, (:2) is the dual of (:1).) In particular,
sYX = gVV(¥) g¥X — ¢¥X py (41), b6 and its dual, and a’. Therefore,
we have
W sz'x 2 fvx’
and, similarly,
32 42 = gAY,
Theorem 7.5 (a) If A is a RelAy, then AY is a HTACy and (AF)E =
A.

(b) If A is a HTACy, then AR is a RelAy and (A®)® =

Proof. (a) Assume that A is a RelAy. First of all, then every
Ax in A¥ is a TACx (obvious) and every Boolean hamomorphism
FYX preserves also the operations sc*) and t§*): by (61)-(84) and r7,
we have

frXeXg = ¥XEXq = ¥Xgq — JV¥YX _ [X)¥X o

and the other identity f¥Xt$% = t{)fY%b is r14. So hl is valid
in A¥, Furthermore. h2 is included in 7, and h3 is r12. Finally,
we obtain h4, by Proposition 2.2(c): oviously, (YY) = (¥*)(¥**) and
(¥%) = (¥¥)(3X) for some 3 such that Az € a~'x whenever z € X. By
(63) and (64), h9 is included in r13.
So A¥ is a HTACy. Furthermore, by (81)—(64), r7, r7, r12,
g""sﬁ,”l qu a= tE’”sE"sE"‘ a= tf"sgx a= tr”sfysfx a= sfx a,
i.e. (¢1) holds, and likewise (¢2) can be checked. We have proved (a).
To prove (b), assume that A € HTACy and apply Proposition
3.5. 1t follows immediately from definitions (¢1), (s2) and (2) that
the operations s;* and tX¥ of A® are conjugate. Furthermore, r10
follows by (8) from h3 while r13 and r14 are included in h8 and hi,
respeciively (by (¢11') and (:2')). Finally, as to rl and r7, it is handily
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to assume that the algebra A is flat and then transfer the problem to
the corresponding TACy. "

If the initial HTACy is flat, the equations (:1), (:2), when trans-
ferred to the corresponding TACy (A,s,,t,)aeTr, , read there as follows:

si¥a = ep\ys,a,  tXYb = ep\xt,b 3 (15)
fora € AX,b € AlY and U D X UY (see (13)). We assume that
U=XUY. Now, by (15), r1, Lemma 5.5(c), c11, (15)

527 (-a) = cinysa(—a) = cory(-s5,0) =

cony(—cu\ys,6) = —co\ys,a = —s; Xa.
By (15), Lemma 5.5(c), a2, 15 , i X, Y, Z C U,

S5 S8 @ = C\gSHCU\38,0 = CU\3SgSaB = CU\3Sps0 = Sha G-

So AR is a RelAy. Furthermore, Xg = gV¥eMy¥Xxy = g¥xX
by (s1), the dual of hb, al, ie. (83) holds and likewise (¢4) can be
checked. O

Remark 7.8 In Proposition 3.5, r18 could be replaced by its partic-
ular case

rib: s/ ¥a = tY%s%%g if X and Y are disjoint

obtained by setting X = @ and appropriate relettering of types. Indeed,
in the proof of (a) only r14, r13 and ri2 (i.e. r10) were used along
with wRelAy axioms. Moreover, r13 was only needed to justify h®.
Therefore, axioms of HTACy are derivable from r1-r§, r7, rl0, ri4,
r15, and we already have proved in (b) that r13 holds in any HTACy.
Note that, in fact, r15 is, essentially, the same h®.

Obviously, every homomorphism between two RelAy’s is also a ho-
momorphism between the respectiye HTACy’s, and vice versa. There-
fore, we have

Theorem 7.7 The categories HTACy and RelAy are indistinguishable.
Together with Theorems 5.4 and 7.4, this leads t> Theorem 7.1.
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J. Cirulis. Abstraktas finitiu relaciju algebras: daias netradicionilas aksiomatiskcijas.

Anoticija. Darbs paradits, ka vairSkas netradiciondlas algebru klases, kas
saistitas ar pirmés pakapes logiku, ir definicionali ekvivalentas lokali galigo cilindrisko
algebru klasei.

f. OImpyanc. ABcTpakxrane anrebpu dmamrapax oTHOmerwl: HexoTOpHe He-
TpaAMIMOHNLIE BRCAOMATHIAINN.

Aumoranms. Iloxasaso, YTO HeCKOABEO HETPANRNMOHHLY KIBCCOF BJI-
rebp, ceA3AHHEIIX ¢ Jormkol mepBOro mopamkxs, AePHEANMANLHO PKAWBAJEHTHR
KAacCY JOKBALHO KOHEWHRX IMAWHAPHYECKHY aiare6p.
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CORREC'TIONS TO MY PAPrR
" AN ALGEBRAIZATION OF m= FIRS1 ORDER LOGIC WITti
TERMS”

Janis Cirulis

Abstract. Wemummuwdhldnmmhumqm-mdmnut-
number of misprints in [1].
AMS 1991 Subject Classification 03G15.

We nssume th.t the reader is familiar with [1] and has a copy of that
paper before him/ her.

1. In §1 of [1], we proposed a formahsa.tlon of s_bstitutions in term
algebras. It turned out Jater that a couple of inaccuracies are ac.niticd
in subsequen* considerations and that the axiom system T1-T4 is, in
fact, insufficient for substantia’ ing a technical de sice used in §2. Ne owe
Z. Diskin for indication that there was something wrong.

The problems are concerned with the notation [wy /zy,..., Wy /En|w
introduced on p. 132 just after the proof of Lemma 2 2. First we have
overlooked that it requires a special justification in the case m = 1, for
the notation [v/z]w was aleady used on the previous pages on its own
rights as & shortening for s.(v,w) (see p. 128). What is needed here is
the conditior.al identity suggested by (2.1)

T [v/ylly/z]lw = [v/z]w f windyand y # =z.

T’ can be modified and given the form of a pure identity (see pelow).

Furthermore, to justify the notation #w, also introdu-ed on p.132,
‘we must be aware that, for example, [w;/z)|lw = |[w;/z;,ws/z2]w when
wy = z;. Difficulties of tk's kind are eliminated by m:ans of th- identity
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[z/v)ly/=z]lw =w if windy and y # =.
By 1%, it may be reduced to

T": [z/zjw = w.

The fullowing is the corrected axiom list of term systems in the
ori zinal notation of [1].

T1: s(v,x) = v,

T2 sa(vy4c) = % if ) # k,

T3: s.(xe,v) = v, :

T4: s,(v, s‘(x,\,s,\(x,,, )} = sx(v,5:(%u, w); if A # £, 4 and & # p,

T5: s.(v,5:(2,w)) = 5001, w) if X # &,

T6: s1(dx(xs,u),5x(v,w)) =

S(8a(8x(Xuy 1), ), 52 (8x(%s, ¥), w)) if A # x,p and x 3# p.
liere, T3 = T”, T4 is vhe equational version of T°, and T1, T2, T5, T6
are respectively the axioms T1, T2, T3, 14 of [1].

Meantime we hnve learned fro.n [5] that a similar ax’om system has
been stuclied by M. Feldmar already in (4]. This system (provosed by
C. Pinter in 1972 for essentially the same purpnses: to characterize sub-
stitutions in t2.m algehras) is not properly equational; however the two
non-equational axioms A4 and A6 of [4] can be given a form of au eqma-
tio.i in the same ma:ne: as T* above (then A6 becavies our T6). It is easy
to show that the two axiom sysisms are eqivalent under tie assumption
of local {initer.2ss—see the paper by A. Silionova ir thi. volume.

2. While investigating relationships between two axiomatizatiors
of cylindric algebras with terms [11,[5], A. Silionova noticed that there is
a troub'e with Lerma 3.12(i) in [1]. Really, the :xdom DIZ alwmd read
like the axiom (c) in [3], §2:

D2: dyy = 25(de A dye) if p,wind 2.

This axiom, as well as D!3 and D4, is not a pure identity. However,
ahoft.hemcanbegwen aformoianequatmumthesamewaya.a g
was. E.g , DI2 ir equivalent to

d(pe1aju)(is/atw) = Z5(etyssio) A duiyssiw))s Wher y # 7.

We tak- the onportunitv te note tiat originally the fullowing single
generalization of D2 did the job of D!2 and '4 (see [2]):

¢./dy, Adyy) = d(ll."!“ﬂ"ll]') if wind 2,
It is somewhat weake. than the axiom (e) in [5].
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3. We also correct the most unpleasant misprints in [1].

Proof of Lemme 2.2: in thr displayed formulas, r~ad "[wpm/ym] - '
for [Wm /ym + - ",

Proof of Lemwna 2.3: in the displayed ecuality, omit the last ']" at
the end of the first Jine and the first ’[’ at the begianin~ of the .econd
line.

Rcad TS’ for 'ST' and for 'ST” at the bostom of p. 133.

Read ’suvalgebra’ for 'superalgebra’ in Definition 3.11.

Omniit the first equallty sign in 140,.

" Replace "1981° by *1986’ in ref. [C1).

R :ad ’State’ for *Scientific’ in refs /C4] and [C8].

Read 'Ukrainian’ for "Ukrarian’ and replace '1980' by 1988’ in ref
[M2P].
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J. Cirali  Labojur.i manam rakstam ® An algebraisation of first order ‘ogic with terms™.
Anotsc,a. Tiek korig#éts termu sist?mu aksiomn sarakeis un islalotes dadas
iespiedkjadas darbs [1].

A. Lupyane. Wcrpassemna x moel ciaThe "An slgebraization of first order logic with
terms” .

Ammoranma. HoppErEpyerca cilmcorR axcw-u TepMOBMY cacrem H3 [1] m
HCOPABASIOTCA I'SEOTOPME ONEYATKM.
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SUBSTITUTIQNS IN TERM ALGEBRAS:
EQUIVALENCE OF TWO AXIOMATIZATIONS

A. Silicnova

Absiract. We prove that the axiom system of Lerm systems
[1.2) and that of substitution algebras (3] are equivalent in
the case of locally finiteness. -
AMS 1001 Sub,loct Classification: primary O8A40. secondary
0361 5.

Ve adduce t& definition of Lterm system from [1) <dwith
corrections from [21) and thai of substilution algebra from
{3). We borrow the notation of (1. v

Let a be a fixed ordinal.

.Dafinition 1. A term system of dimension @ is an algebra
T := (W, -"q)uﬂ: such that each . is a binary op-tra-uon on
W, each x_ is an elemsent of V and the following conditions
are fulfilled for all M, 8, { a:

© Tis alth X)) = v,
T2: lltu.x ) = X.» vhere A Mo,
T3 8 Cx',n) - v,
T4: 9, Cv,.8,(%,, ,_r.xp.v)n == “’-'x"‘p"')" where A » x,u
and ® ® u,
™: l.(u,l.(lh,v)) = I.(!A,w). \hare A ™ n,
T™: GCI.CXH.u),S'CU.U)) -
. - l‘(lx(--txy.u.".u).-“_\(ls(lllp.u).u)),
where A # =, u and # # p. 0O
Definition 2. A substitutior algrbra of dimension a |is
an algebra S := (W,s -.K.)'“_u such Lhat each L is a binary
operation on W, each x_ is n element of W and the following
conditions are fulfilled t‘or_ all M, 2 A ¢ a;

Al: l'.(u.x.) = v,
AZ: lA(u,Rl) =X, where A » x,
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A3 ’xc“u'u) = ",

Ad: if !A(u.u) “ w for all u €W, thon
!kl:u.sdcxx.w)) = OLCU.S.(U.U)).

AS: !"(!*(D.u),w) = uacv.JaCu.w)).

AB: if 8 (v, = u for all v € W, *‘hen

s, (u,8_C1,w)) = s“c-l(u.ub.skcu,u)). “hhera A ® 2. D

IL will be convenient to deno'e arbitrary variibles by
letter: x,y,z, and t~ write [v2/x)Jw for la(v.u) where x = .
We refer to Lhe elements of W as to terms and to rthose of thée
set. X := (xﬂ: #(a)} -~ as to var_ables, Lne ter: s (v, w) is

said Lt be Lle result of substitution of v for X in w.

Defin.tion 3. We sav Lhat = term w is independent o thd

variable x in a term system (in a substitulion algebra 5>,
wind x, in short, Iif [v/Xlw = w for any o € W. The e M
system I (the substitution algebra S) itself iz said to bé
locally fi..ite, if every Lerm depeands onl:- on a finite number

of wvairliables. D
Note ikxt, both in T and in S, if & > 1, then
wind x @& [y xlw =w for some y ™ x ¥

(see Theorem 2.1 in "3] and the cobservatioa after (1.2) in
L 5 e T

Now T1--T8 and Al--A8 may be rew itlen as Troll >wd
T4' and TB' are reslly ot jusi other wor ling. of T4 and T&
bul are equivalent to tnem Ly .#D:

Ti* = AL’ [v/xlx = v,

T2' = A2 - [vryl: = x, whera y ™ x,

T = A3': [x/x]lv = v,

T4’ : (v Yllysxlw = [v/x)lw, where y ® x and w ind y
AdT [v-ylly-xlw = [vYyY' [uv/x]lw, where . ind y,

8" : fux'" [y xlw = Twixlw, where x ® -,
AS”; fvsxliw: 1w - [lvrxlwixie,

T&® = AB': Fa- wll»wxlw = [luyivxliuyl 3, where x ® y

and u ind x.
If al'o v and 3 in Lhe lart equality, L.en

[uyllvrxlw = [orxllu'ylw. C we)
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apd, provided that a > 2,
) w,v ind vy = [vxlw iad vy if x # ), Cwoem)
Cagain, both in T and in S).
In the res. we consider _hat o 2 w,

Theocem 4. If T is locally finite, then Al--A8 hold.

Proof. Tre assertions Al' ,A2',A3',AR' rolicida with, cvhe
px.iens T1',T2",T3", 76", respeclively. Now we prove that AS”
polds in T. Let v be a variable dist'net from x anu such that
u,v ind y. Then by T4',15",TS*,T4’,

[vxlluwxlw = [vwx]lluylly xlw = [[Tv xIuwyllox)y xdw =
= [[urxlusylly xlw = [[v/xluxlw.

Also, A4’ heolds in T. it 2 ® x,y, such that v,w ind1 2, If
wind vy, Then Dy T/*,TB" Ti'®,C(s),T6 ,T1',T4"

Luylly xlw = [v/allasyliy/lw = [valllz/yly xllz/yiw =
= [y/allasyllarxlw « ([v/zlzyplluszlla - xlw =
= [vyliv/Ella xlw = [v/ylluv xlw O

Theurem 5. 7f S is laca.lly-rinﬂ.t. then Ti--T8 hold.

Proof. The assertions Ti1',72',73',T8" coincide with the
axiows 41°,22%,A3" ,AB", respectively. Now we prove tLhat T%°
holds in S. By AS' and AR’

[vrxlly xlw = [Lu/alys/xlw = [y x]w.

Also, A4’ holds in T. Let 2z ™ x,y ml.lr.*h that » v ind =2. ir
wind y, then b-r Chsd A4, Ad" , Coent™ed AL | (deaedt) ,

lvyllyxlw = [vsellvylly xlw =

= [v/zlla/Yily / xlw = [v/zlle vy xlw =

= {vwellzs xlw = [v/zllv e = [/ xTw. DO

Theref re, in the case o Z @ and tLhe zlyebrac under
wonsideratio- sre locally 1‘.Ln.t_tt. cvery Lerm system i a sub-

,.;t.i tution algebrz, and vice versa.
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A. Silionova. Substittcijas termu algebris: divu aksiomatizd-
jumu salidzinajums

AnotSci ja. Darba noskaidrots, ka termu sistému [1,20 ak-
siomu kopa un substitOciju algebru [3] aksiomu kopa ir ekvi-
valentas.

A Cunuonora. lMoacTaHOBKH B anreGpax reprnoB: CPABHeHHe ABYY
aKCHOMaTH3IaUHUA.

AnHoTaumsi: B paBoTe YCTaHOBASHO, YTO CHCTeHa axcHON AAS
TeproRux cHcTed [1,2]1 W cHCTeMa axcHon AAA CYBCTUATYUMOHHMX
anl26p [3] >xBHBANSHTHH.
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WHEN IS
A SEMANTICALLY DEFINED LOGIC
ALGEBRAIZABLE?

Zinovy Diskin

Abstract. The basic paradigm of algebraic logic (particularly, categorical
logic) consists in replacing theories by algebras, and models—by
The cbjective of the paper is to suggest a framework for thorough study of
this paradigm in the general setting, in particular, for classification and
comparison of various kinds of algebraiziations in the above sense and, at
last, to clarify whea a logic can be somehow algebraized.

As a formal substitute for a logic we take institutions by Goguen and
Burstall (this notion is well-known in the area of algebraic specification
languages). With each institution I there iy, correlated a specification
system, spec(l), so that a certain kind of I-logic’s algebraization amounts
to a prescotation of spec(l) by means of another specification system
arising from an algebraic (categorical) doctrine of the corresponding kind.
However, while in the algebraic logic standard such a presentation is en a
priori assumption and the starting point of precise considerations, in the
framework developed in this paper just the very possibility of the
presentation is a fact which must be proved. The principal idea we will
elaborate is t0 construct an algebraization of spec(l) out from some
algebratzation of the very institution I —the chief notion to be defined in
this paper. The main theorem of the paper states that if an instituion is
algeheaizable then the associated specification system is algebraizable too.
AM3 Subject Classification:

Primary 03G15
s:ou:aary 03G30, 6BG5, 08A30

* Supponied in pact by grant 94/ 684 from Latvian Comncil of Science. The author is also indebted 0 the
administration of the Rigs Camiage-Bailding Warks for providing conditions for the research.
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ln order to study logical theories (specifications) and their models, it is often
usciul to be free from details of their representation determined by a concrete
choice of the sgignature and the w-t of axioms. Algebraic logic, in particular
categorical logie, supports such an intention by means of replacing theoriesa by
algebras, and models - by homomorphisms into similar algebras extracted from
semantics, what enables one to use powerful machinery of algebraic manipulationa.

The idea gues back to Turski and Lindenbaum; at the beginning of sixties it got a
new sound owing to deep Lawvere's ideas of replacing theories by categories with
addinonal  (algebraiel) structure while models - by this-structure-preserving
functors into similar semantic categoriea.

In practice we often have different algebraizations ¢ the same logic. For
example, first order predicate logic (FOL) can be algebraized by means of polyadic
or cylindric algebras in a universal algebra fishion (Halmos[Ha62], Henkin, Monk
and TarskilHMT I,I1]), or, alternatively, by hyperdoctrines in a indexe: category
fashion (Lawvere [Law70], see also Seely(See83]), or, else, by weans of logical
categories (logoses, pretoposes etc., see, eg, Makkai and Reyes [MRT77)) which are,
in fact, hyperdoctrines constructed internally.

Computer Science brought tn life a plenty of logical systems for writing
specTications; & majority of ithem can be (and often really done) algebraized in
one or another way. So, algebraization of logic has become a paradigm whose study
in a unified general setting looks atrractive and useful.

The objective of the present paper ls to suggest a framework for such a study, and
to present some results justifying the approach. In particular, we will give some
suificient condition when a ce-tain algebraization of a logic is poasible. In
addition, fulfilment of these conditions in a majority of real logica ia easily
checked, thus, our resulta coplain, in a sense, why a logic can be algebraized in
a certain way. ? -

Biiefly, the approach i as follows. "

As a formal gubstitute for a logic we take the familiar notion of institution by
Goguen and Burastall (IGB84), see also [GB82]). However, since in the present paper
our goal congists only in outlining ideas, to simplify things and to avoid 2.
categorical machinery, we will deal with the so called discrete institutions when
morphisms between models as well 88 between sentences (ie, proofs) are not
considered. That is, by aa institution we will mean a quadruple 3={(Sign,Sen,Mod.k)
where Slgn is a category of sigantures, Sen and Mod are functors Sign --> Set and

Sign"’ --> SET assigning a am:'l set Sen(X) of sentenses and & clasa Mod(I) of
models resp. to each signature I€ObSigm, finelly, ¢ la a funciion assigning a

Linary #atisfaction relation b: ¢ Mod(E)x8en(E) for each aiganture I g.t. for each

siganture morphism o: £ --> I’ in Sign and any m'eMod(E'), geSen(L) one has:
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m'l-z.o'(go] e of(m') Es®
where Sen(e) I8 again dencled by o while ¢* denotes Mod(o ).
Given an institution ¥, a specification (or a theory, or a presentation) s
defined to be a pair (£,8) with £ a siganture and ® a subset of SenlE). i
defining a notlon of a specification morphism in u suitable way, one gets the
corresponding category of specifications over ¥, Spec{?), equipped with a model
functor Mod*: spee(?) --> SET™. by Mod*(L,8) := {meMod(L): mkyp for all ged)

l_?urther. under a specification system we will mean a pair ¥=(Spee,Mdl} with Spec a
category and Mdl a functor as above.

To be able to speak about algebraization, we need a suitable general notion of
algebra. For thia end we take the notion of a generalized algebraic {heory
introduced by Cartmell [Ca86). It is a direct generalization of the usual notion
of a rn'any-aortad equational theory: iis extr; generality is achieved by
introduction of sort structures more general than those usually considered, in
that sorts may denote cets as is usual, or they may denote families of sels,
familles of families of sets or the like. (A basic example is the geueralized
algebraic theory of categories, in which Ob appears as a sort to be inferpreted as
a set while Hom appears as & sort to be interpreted as a family of sets indexed by
ObxOb). In more detail, a generalized algebrgic theory T appears as an adjunction

(F\U): FamT —_ _* _, AlgT where Alg] is the (generalized) varie.y of T.algeiwas.

FamT is the category of their carrier set structures, U is the underlying functor
and F iu l—he freely-generated-algebra functor. (For example, if T is the theory of
categories, then an object of Fam] is nothing but a family of sets, “‘I“ESEI:
t,jel), indexed by the Cartesian squire of some set I, while a morphism between
two such families, (say, from H, into H}), s a pair (f,g) consisting of a
function f mapping I into I' and a family of functions g=(g;f.jel) with g
mapplng- Hy into H:'l.ﬁ)' In fact, for any T, Fam] is a full subcategory of the
large category Fam of sets, families of sets, families of families of sets etc.
described by Cartmell.

Now, an algebralzation of a specification system ¥ is defined to be & list of the
following data.

A pgeneralized algebraic theory, T, two classes of T algebras, ThMadcAlg]. an

G
adjunction, «,=(F\G): Spec = Fi_._, Jh, and an isomorphic natural transformution

O, Mdl -> F;Hom(-,Mac) (cf. the definition of categorical logic by DMeseguer

[Me8T)).
* Further in the paper, this category is also denoled by Pres./
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By adopting the terminology of categorical logic, we will call a triple (T,Jh,#Had)
as above a doctrine. Each doctrine D determines a specification system spec(D)
where Spee is Jh and, given a specification T and a specification morphlem T: T--
>717, MdUT) is U{Hom(7T,M): Memad) and Mdl(t) is defined by composition. Now we can
say that an algebraization of a specification system ¥ is a pair (Da) with D a
doetrine and a an algebraizing presentation ¥ ->D, that ‘ls, a kind of
specification morphism from ¥ into spee(D). ; -

Nuote, In categorical logic, given & logic (institution) ¥, identifying spec(¥)
with a certain spee(D)) for some doctrine D is the starting point of precise
considerations, while in the framework being developed in this paper just such an
identification is a fact which must be proved. The principal idea we will be
elaborating is  to construet an  aigebraization of u.pec(.’) out from an
algebraization of the wvery institution § - the chief notion to be defined in this
paper.

in comparison to algebarization of =& specification system, to define an
institution algebraization one needs a much more involved construction which we
call a predoctrine, intended to model semantically defined logica in a algebraic
manner. Houghly speaking, a predoctrine is again a generalized algebraic theory T
coupled with two classes of T-algebras, but now the algebraic theory is assumed to
be endowed with two set-valued functors, P: FPam] --> S8et and D: AlgT --> Set,
DAZPUA, intended to present the following. Z

i a T-algebra A is being thought of as the algebra of expressions (eg, terms)
generated by esome signature E, A=o,(T), then PUA is to be thought of as the sei
of propositions over I (eg, equations between ZI-terms), while if 4 is being
thought as semantically generated by some I-model M, A=a_ (M), then DAcPUA is to
be thought of as the truth set connected with M (eg, the diagonal of. A), is, My
for a proposition ¢ iff (PUhlpeD(A) where h=a,,,(M) is the homomorphism a,(E) —»
* w,,,(M) connected with the model M.’ -
Actually, by forgetting some additional (algebraic} information, each predoctrine
4 determineas a (discrete) imstitution, imsi(d), eo that there iz a forgetful
functor from the category uf predoctrines into the category of institutions.

Now, lét 9 be an object institution. Briefly speaking, under algebraization of ¢
(in a universal algebra fashion) we mean encoding the components of # by
tacilities offered by some predocirine o, in other words, to algebraize 3 we
design 8 kind of presentation of § in 4. In fact, such a presentation proves to be
a2 special kind of instil.tion norphisms a:3 --> imst(d). Thus, algebraization of
an Instituti-n § ia defined to be a pair (d,0) with 4 a predoctrine and « an
nlgebraizing presentation, in such & case we write o:f --> 4 and call the
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institudon algebraizable (by means of o).

The main result of the paper can be formulated as follows: every algebraization
a:f > 4 of an institution # gives rise to an algebraizing presentation of the
associated -pnniﬂr::ation gystem, oF: spee(¥) --> Dla), where the latter list is
determined by 4 and a. ’

Now, some general wordes on the crucial in the paper notion, the netion of
algebraizability of an institution, will be relevant.

Institutions introduced by Goguen and Buratall provide a general algebraic
framework for describing specifications in .various logical systems. However, the
pure institutions themselves are rather poor algebraically in the sense that their
algebraic facilities are exhausted by very general functoriality a sumptions. At
the same time, as i8 well known in software methodology, endowing a complex
structure with algebraic machinery provides, as a rule, a much more handy and
efficlent way of using or operating the structure. Apparently, the most natural
sud evident way of applying this genmeral principle for Institutions s to build
into the institution framework the old idea of classical algebraic logic in the
style of Halmos, Tarski and Henkin: to relate a class C of algebras to the logic L
in question in such a way that L-models could be considered as homomorphisms from
syntactically generated C-algebras into C-algebras arising from L-semantics. This
is just the way we adopt in the paper. An attempt to go along this line was also
made by Goguen and Burstall who suggested in |[GB85] a construction of chartering
institution. However, in this construction, treatment of the semantic part of an
institution is cloeely connested with Lawvere’s idea of functorial semantics while
the basic saradigm of algebraic logie presumes, besides the model-as-homomorphism
idea, that the L-satisfaction relation should be determined by assigning a set of
designated elements to every semantic C-algebra (that is, by converting semantic
C-algebras into so called logical matrices - in the terminology of Polish school
of algebraic logic going back to Lukasiewicz and Tarski _LT30)).
As rich experience of algebraic logic has shown, such an approach has an immediate
consequence that L-theories proye to be in a precise correspondence with kernels
of the above-described homomorphisms an® so are connecting with the corresponding
quotient algebras (usually called Lindenbaum-Tarski algebras). Thus,
theory - congruence - guotient-algebra correspondence ia taken in algebraic logic
very seriously fmm' the very beginning and, in fact, turns algebraic logic into a
special part of universal algebra (see [ANS92],[Ne90), [Dif2] for an explicit
demonstration of thia statement).
Thia paper is the first in a series of works wil & general intention



62

incorporate the above-outlined methodology into the institution framework and thua
to "inject” rich intuition (based on a large body of results and experience) of
algebraizing logice accumulated in classical algebraic logic. (For example, as far
a8 I know, there are no powerful results induced by exploiting the idea of
chartering institution, and, on the whole, the introducing work of Goguen and
Burstall had taken no development. I can suppose that this is the case just
because algebraic logic is not very popular in the Institutional Communily and so
the latter is denied very useful guidelines. Indeed, algebraic logic methodology
immediately gives a bundle of sachemes of definitions, constructions and
presupposed theorems - scme of them will be demonstrated in this paper).

The paper is organized as follows. o
In section 1 we present an algebraization of first order logic in a universal
algebraic fashion, in fact, very closely to classical algebraization via polyadic
Boolean algebras due to Halmos [Ha62]. It is hoped that ‘this section provides a
general motivation for the forthcoming abstract considerations.

In section 2 the notion of a predoctrine is introduced and an adjunction between
the category of its theories and a certain class of algebras is stated. In proofs
of this section there is used standard but often non-evident universal algebraic
machinery connected with congruence lattices.

In section 3 we deal immediately with algebraizing institutions and prove the
above described theorem.

.By the lack of space many intermediate results and proofs are only outlined or
described informally.

0 Notation

Throughout the paper we designate categories by bold letters or abbreviations
while subclasses of their objects by script letters, these classes can be also
onm;idered as_full subcategories. We shall always assume they are abstract, i.e.,
closed under isomorphisms. SET is the category of large sets while Set - of small
ones.

Let K be a category and feMorK. Then we denote the domain of f by of and the
codomain by fo. If fog=og, the composition is denoted by f;g. If Mu{A}eK=0bK then
the object class of the slice category A/H will be denoted by Hom(4,M). The
corresponding functor K—SET will be denoted by Hom(-,H).

If » is an equivalence on morphisms of K compatible with composition then the
corresponding quotient category will be denoted by K/=; note, K/* and K have the
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®

same objert set and in the paper we will deal only with such quotients. Given an
adjunction F:K—L, U:L—K between categories K and L with F the left adjoint and

U the right one, we will alse write it as (UMK ~— % | L and call also F end U

the lower and the upper adjoints reap.

We regard the power-set construction as a functor P: Set——o-Pos into the
category of posets. If f:X——Y is a (many-valued) mapping, the associated image
and preimage mappings will be denoted by f:PX—PY and by 'or £: PY—PX resp.
Note, actually they make an adjunction with f the upper (right) adjoini and t*
the lower (left) adjoint.

D-Set and |-Set denote the concrete categories whose objects are paira (X,R)
and morphisms (X,R}—=(X",R’) are the set mapnings f:X— X' sa.t. f(RJcR' where X
denotes a set and R denotes a designated sub DcX for the former category and a
consequence relation + ¢ PXxX for the latter.

Forgetful functors from concrete over Set categories will be uniformly denoted
by |_|. this ambiguity will hopefully not be confusing.
.S and P are standard universal algebra operations on classes of algebras
closures under subalgebras and products resp.
Following to traditions of universal algebra, as a rule we will designate the
carrier set of an algebra and the very algebra by the same letter - a capital
italic one.

1 Motivating considerations: an algebraization of first order logic

Though this section contains some technical results, the presentation is rather
informal and incomplete, the point is that the true goal of the section is to
exhibit only a certain style of algebraizing logica - not details - and, what is
very important, to develop a definite intuition. So, techuically involved
formulations may be simply skipped without serious lack of understanding.

1.1 Under first order logic (f.0.l.} we mean the following institution.

A signature is a pair E=(Op,Pred) consisting of a set Op of onesorted operation
symbols (with their arities) m& a set Pred of one-sorted predicate symbols (with
their arities), all arities are finite.

QGiven £ and a countable set of variables Var=(x;i<w), the set of terius over Op,
Term(L), and the set of ordinary f.o.l. forinulas over I, FormiI), are built in the
standard way. Now, our erucial step for algebraization ia to ideniify formulas
mutually convertible by renaming hound variables (a kind of a.conversion, it will
be denoted by ~ . and then to turn the collection of all syntactical expressions
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(modulo ~ ) into a two-sorted algebra A=F(E)=(T"8"8i") (s0, the sort set Is

(T\#} and the signature ie denoted by 8i) with the carrier sets T#A=Term(X),
$4=Form(Z)/~ and the following operation signature (i runs over w):

y:8—7T, x{=z

8bt;: TxT—T, Sbtdlu,v) = vix,/ul,

At Bxd—, Ap/ap/a) = (pbp)/a,

not: 38—, notip/e) = (notg)/a,

3;: 9, 3lg/a) = (Gxp)/e,

8bf;: Tx®—, Sbfflu.p/a) = (plx;/u))/a.
(Below we shall omit the superscript 4 near symbols of sorts and operations). It
is easy to see that these definitions do not depend on choices of representatives
in the ~-equivalence classes (and below we shall a0 omit the symbol /~ of
factorization).
In addition, these operations meet the following equations for all Ljk<w, k#id],
and all wo,weT, pp,xed (for belter readability of the eguations below we will
alwaye use italic and Greek letters above for e'ements of T and & resp., instead
of Sbifv,u) and Sbf,(ve) we will write more suggestive [v/ilu and [v/ilp, and,
finally, use the abbreviations w, and ¢, for the expressions [x,/ilu and [x,/ilp

resp.):

(Bb1), Iz/filu = w;  (x/filp = 9;

(Sb2), Iufilx, = u;

{8ba), lu/tlxy = x

(Sbd)i (u/tho/ihe = [lu/ilo/fko; lu/tilo/tlp = [lu/tlo/idp;

(BbS)y  [wy/illv/the = [luy/jlo/iNuy,/iko; 1-.,./;11::/111- -
[[oy/ilo/iHuy/jle;

{8bP) [v/il(utru2) = [v/tluirfvfilu2; {u/lluolp aotlv/ilp

(5bQ1), [v/t] 3 = 3

B6Q2y  uy/il 3p = 3fuy/ile:
" la)y gy = Iv/in

These equations (being considered as identities with varisbles u,v,weT, ¢.p.xed)
determine a variety of two-sorted algebras which in the terminology tradition of
algebraic logic could be called (finitary or quasijpolyadic substitution algebras
(abbrevisted o PSA in the singular and PSAs in the plural). In fact, the Hat of
identities is an amelgamation of identities for the varisty SA of substitution
algebras of Feldman ([Fe82) and a modified version of a part of identities for
polyadic Boolean algebras of Halmos [Ha63). Note, these identities do not concern
-?ywm-lnﬁ.ﬁﬂdyuﬂnﬂydmﬂhmwmd
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subsetituting and interacting substitutions with gquantifiers.
Note also that, owing to (8b2) and (8b3), i#j implies x2x; if only |7'| 1, and we
shall always essume this condition is fulfilled. So the mapping i 3 x
an isomorphism of w onto the set Var(A) := (x; i<w} of A-variables and we shall
often identify i and x,.
1.2 Definitlon. Given a PSA A, for any elements ueT,pe® we Introduce the so
called dimension sets:

i aiates

Aty = (i<w: [vfilu # u for some veT},

My = li<w: [vfilp # ¢ for some veT}),
and say that u or ¢ is Independent on i (the i-th variable) if ied'u, 1€d'y
(below we will often onit superscripts ¢,/ if they ecan be reconstructed from the
context).

From (Sh4), and (Sbsl,,, %], it follows that. given weT',
[ufﬂ[z'/ﬁw - [:’-.f.llw for all weT, i.e., for any w, t’lAIrjf’ilw if it
Therefcre, in the list of identities above, uy; (¢y) denotes an arbitrary
element of T (of &) independent on i. Also, 1€A3;p by (8bQ1),.

1.8 Definftion. Given a PSA A, we call an element aeA—=Tud finitary if Ba is
finite; a PSA A itself is said to be locally finite (1.f.) if Aa is finite for
all aeA. ;

Given a PSA A, for sny YSw we introduce the set A[Y] := {acA: AeSY} and call
elements of A[o]=T[elud[e] closed: those of Tle]l - closed terms while those of
#[@] - closed formulas. *

For a given PSA A, we shall call the set Ap,:={aeA: Aa is finite}=Tp, 1,
the locally finite part of A

A more detailed examinatin of the structure of PSAs gives the following
results (see [FeB21,[Ci88] for proots). '

1.4 Proposition. If A is a PSA, then for all i<w, a€d,ueT ged:

(o) ieha iff !x/l]a = a for -some j#i,
i) M‘ b “}'
(i) Allv/ila) S (Aa — {i}) v Av,

(1ii) Afpl&p2) S Apl u Ap2, Alnoty) S Ap,

(iv) Af3p) S BAp ~ (i},

1.5 Proposition. For any homomorphism h: A—B of PSAs and any a<d one has
Aha £ Aa.

18 It is easy to mee that in the above-described syntactical algebra A=F(Z),
for all elements ueT,ped their dimension sets consist of exactly those variables
which syntactically free occur im them, hence, A is a l.f. PSA owing to finite
arities of Z-symbols. Actually, with each 0e0Op and each nePred Lhere are

correlated certain sets of defining relations (in the sense of universal
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algebra), to wit:
R, = {!xf/ﬂu=u: i>arity(o),j<w), Ry = {lzplilx—x: >arity(n), j<w).
In tact, the algebra F(Z) is generated by the two sorted set £ with defining
relations Ry = (R,:0€0p)u{Ry:mePred}. Thus, in the variety PSA there is a
distinguished subclass (of 1.f. algebras):

Eapn = (F(Z): £ is a f.o.l.signature}.
Note, this cless is a proper subclass of all Lf. PSAs because by taking
yuotients of Eapn-algebras we obtain a lot of L.f.PSA which are not freely
generated by signatures, hence, do not belong to Eapn.
Conversely, with each l.f. PSA A there is correlated a f.0.l. signature EI=G(A)
with 4
Op = (ueTd: Au=(l..n) for some n<w}, Pred = {pedd: Ap={I..n} for some
n<w). ¢

It is easy Lo see that actually we have an adjunction

(A\G):8ign ¥, Eaxpn

where Sign is the category of the f.0.l. signatures.
1.7 Note also that if a PSA is freely generated by a two-sorted set X then X can
be considered as a f.o.l. signature with countable arities of all ita symbole;
conversely, for each such a signature E_,, the freely generated PSA, F(Z_ ), is
nothing but the algebra of f.0.l. expressions (modulo a-conversion) over I
Moreover, as soon as we admit infinitary signatures there is a forgetful functor
G:PSA—8ign, and an adjunction F \Gq.
1.8 Remark. It is easy to cee that the class of one-sorted {x,Sbt,i<w}-reducts
of LI.PSA proves an algebraic counterpart of one-sorted aqua;ticnnl logic.
Moreover, by enriching the latter signature with a countsble family of unary
operations of .\~qunnﬁﬁuu|;n and a binary operation of application, one can
construct an algebraic version of type-free A-caloulus and algebraize its meta-
theory (see (DB93] and [PS83] for thesé rosuits). '
1.9 Up to now we were concerning on f.0.l. without equality. Note, however, that
an equality formula is nothing but a pair of terms, so we can capturs equality in
our framework by adding into the signature 81 of item 1.1 the set of constants
{d,}: i,j run over w} of the sort & subjected to the following identitles (to be
add to the list of identities in 1.1): "
(Bl lxy/ildy = dy
(Eq2), d; = 1;
(Eq8)y, [x/ilp A dy 5 [x/il¢

where ¢sy abbreviates pay=gp and 1 abbreviates -(pa-p).
The resulting variety will be denoted by PESA.
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Thus, in the selected way of algebraizing f.o.l. we have some variety of algebras,
PESA, with the forgetful functor U:PESA——SetxSet and a set-velued functor
P:SetxGet—8et, P(X,Y) = ¥, producing propositions; we will call it the
proposition functor. So, given a signature I, the collection of expressions over I
is constituted by the (two-sorted) carrier set (T,8) of the expression algsbra
F(E), while the collection of all (open) propositions over I is constituted by the
set #F(L) where # denotea the functor U;P.
1.10. To algebraize semantica we proceed as follows
Let B be a non-empty (base) set. By OpB and RelB we desigrate respect. the set of
all w-ary operations on B (i.e. maps from BY into B) and the set of all w-ary
relations on B (i.e. subsets of BY), In faoct, OpB and RelB contain also all
finitary operations and relations which (being considered as their elements)
depend actually on finite number of arguments only, while other arguments are
dummy. Tuples from B“ will be denoted by x.y,z, the very operations — by u,v.w and
relations - by R.,Q etc. Given I<w and an operation2 u, there is defined a map
[u]:B? —=> BY which sende a tuple x into the tuple y coinciding with x for all
j<w different from i, y~x; while y=u(x).
The following standard operations are defined on the two-sorted set M = M(B) =
<0pB,RelB>:
projections, w,€0pB, nx := xi, i<w;
binary compositions, Sbt;(u,w)x = wlulx, i<w;
Boolean operations on RelB; o
cylindrifications, 3:RelB—RelB, 3R := {xeBY: o, =yl ; for some veR);
subetitutions, Sbf,(u,R) = lu]i‘ﬂ. I<w.
It ia easily checked that these operations convert M into a PESA. However, in
contrast to yntactical PESAs, algebrss arising from semantics satisfy additional
equations and conditional equations reflecting concrete logical structures of
OpB's and RelB's, for example, Ru@Q=QuR, RunotR=QunotQ, 33R=3R, Rc3AR, Rc@ » 3Rc3Q
etc. (see, e.g., [HMT 1,II] for a complete list).
Thus, in the variety PESA besides the distinguished class Eazpn there is another
distinguished subclass, namely, the class

Mod = {M(B): B is a non-empty set}.
Now, let I=(Op,Pred) be a f.ol signature and T be a I-model, that is, M =
w-‘“’“’o@p-"‘m}lel’rﬁl’ with oMeOpB and xMeRelB for some non-empty set B; in
addition, if arity(o)=n then A(o®) € n for all 0eOp and similarly for all meRel.
It is easy to see that any such a model is nothing but a signature morphism (-,
M.MB]. The latter uniquely determines an algebra homomorphism hM: Fz—M.
Conversely, any homomorphism h: E—M from a PESA Ee€apn into a PESA belonging to
Mod could be considered as a model of the signature GE because of proposition 1.5.



68
lu Lact, there 18 a canonical isomorphism between ModEZ and Hom(FZ,Mad).
Well, let M be a E-model and ¢e#FE is a Z-proposition. What does it mean Tk ¢
algcbracally? .
As we have seen, with M there is correlated a homomorphism h: E—M and the map
Al #E—— >#M acsigning to each propogition @e#E its semantic meaning
¢l = (#hlpeOpB<OpB u RelB. In addition, -
e ¢ & (#hlpeD, ~Diago,p\ (Lpual
where Dingg,g={<u,u>: ueOpB), 1p,5=B%. i
Thus, with any Z-model M there are actually correlated a PESA , M, together with a
el of designated M-propositions, Dyc#M, in such a way that for any E-proposition
¢e#FE we have Wr ¢ +» (#hW)peDy,. (Just such a machinery is called matrix
scitantics 1 Polish tradition). In fact, a definite set of designated elements may
bé assi_ned not only for a Mad-algebra but to anm arbitrary PESA algebra A as
followa:
D, = [<u,u>: ueT4 v (Red*: RvnotR = R});
woreover, this gives rise to a functor D:PESA——D-Set s.t. the following diagram
commutes: :

PSA ____.‘D—, D-Set

u |-

SetxSet -——'L"—"—* Set

111 7The above-described definition of satisfaction leads in the ordinary way to
a family of con seq relati indexed by the class of expression algebras,
kg, Ee€zpa). In the terminology of the paper [HST88), this is a logic of validity
type - all propositions are implicitly universally closed. To capture logics of
truth-type into our framework we can proceed as follows. 1
The key observation is that propositions of a truth-type logic are rather
stquences ¥+p than formulas themselves. Bo, n,d-:lhu.. new propogition functor
P*:8etxSel—>8el by setting PUT.8) = P,P(TH x PITH), in fact, P*=P;<P,Jd>,
and then correspondingly define a nmew functor D* by setting for all A€PESA, B: -
l<¥.¢>eP*VA: it ¥cD, then ypeD,), where D, is the "old” set of designated elements.
One can see that with such definitions of #* and D* we have
VEgp & {#“hlﬂ.phﬂ;. #*=1;P* for all h: FE—Mellod,

where on the left we have the ordinary f.o.l. consequence of truth-type. Thus, we
ere that the matrix semantics framework provides sufficient flexibility to
describe various logics in a unifying way.
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1.12 Up to now, we were dealing with one-gorted f.o.l. Our framework can be
immediately generalized for the case of n-sorted f.0.l with arbitrary but fixed
number of sorts, n, through the evident constructlon of n-sorted PESA over the
underlying category Set"xSet instead of SetxBet. However, the situation becomes
much more difficult when one has to deal with many-sorted logic with different
sort sets, and hence algebras of the kind F() may have different number of
carrier seta for different I's.

A natural algebraic framework for working in such situations is the notion of
generalized algebraic theory introduced by Cartmell ([CaB6]l. It is a direct
generalization of the wusual notlon of a many-sorted equational theory: its extra
generality is achieved by introduction of sort structures more general than those
usually considered, in that sorts may denote sets as is usual, or they may denate
families of sets, families of families of sete or the like. (A basic example is
the generalized algebraic theory of categories, in which Ob appears as a sort to
be interpreted as a set while Hom appears as a sort to be interpreted as a family
of seta indexed by ObxOb). In more detsil, a generalized algebraic theory T

" appears as an adjunction (PA\U): Fam] __,E3 AlgT whwe Algl is the (generalized)

variety of T-algebras, Fam] is the category of their carrier set structures, U is
the underlying funcior and F is the freely-generated-algebra functor. (For
example, if T is the theory of categories, them an object of FamT is nothing but a
family of seta, I'R.JGSd: i,jel), indexed by the Cartesian squire of some set I,
while 2 morphism between iwe such families, (say, from H; into Hj), is a pair
(f,g) consisting of a function f mapping I into I’ and a family of functions
g=(g;pl.jel) with g; mapping H, into H}! g)- In fect, for eny T. FamT is a
full subcitegory of the very large category Fam of sets, families of sets,
families of families of sets etc. described by Cartmell.

As an example of algebraizing logic in a Cartmell’s style, let us consider the
following algebrajzation of the many-sorted equational logic.

Symbol Introductory rule Notation
...i8 denoted by....
Sorts I Sorts is & set
Trm " seSorts  Trmls) ia 8 set Trm(s) Trm,
x ! s€Sorts | x|(a)eTrm, x,(s) x;:a
8b,. ateSorts,ueTrmy,veTrmy - Sby,(u,v)eTrm; Sb . lu.v)  [ufizsly
Axiomas

s,teSorts,ueTrmy  [xge/izalu = o
s,teSorts,ueTrmy  lu/l:8lxis = u
s,teSorts,ueTrm, ¥ |u/j:a)xizs = z;:8
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and the others counterparts of equations (Shl)...(Sb5)
(By the way, similarly we can algebraize also typed A-calculus what gives its
algebralc version alternative to the categorical one wvia Cartesian closed
categories).
Bo, meta-theory of a logic containing a n-sorted term system with arbitrary but
fixed number of sorts, n, can be algebraized by means of a certain many-sorted
algebraic theory while algebraization of logics with many-sorted term systems
requires to use generalized algebraic theories of Cartmell.
Thus, generally speaking, a proper unified algebraic universe for algebraizing
meta-theories of different logice must be not a variety but a generalized variety

of algebras.

2 Metatheory of a logic via universal algebrad

In this section, under an algebraic theory we mean a generalized algebraic theory
in the sense of Cartmell. With each such a theory T there is correlated an

adjunction (F\U):FamT __¥ » AlgT where FamT is a full subcategory of Fam, AlgT is

the variety of T-algebras, U is the underlying functor and F is the
freely-generated-algebra functor.

2.1 Definition. A logic metatheory iIn algebraic form consista of the following
constructs.

(i) A language is defined to be a triple I=(T.2.D) with T an algebraic theory,

P: FamT ——— Set 8nd D: AlgT —— D-Set functors e.t. the {following diagram
commutes:

AlgT —-—D—-—’ D-Set

U |1

4

FamT ——?——b Set
Given a language [, we will designate Alg] and FamT as Alg; and Fam| and often
omit the subindex. The functor U;?P will be denoted by #. If for an algebra A
D(A)=(X,D) then the set D will be denoted by D,.
(1) A logic is defined to be a triple #=(1€zpa,-) with EzprcAlg a class of
expression algebras and :Bapr———Set a functor s.t. the following diagram

commutes:
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Bapn ———— 5 --Set

u I

bl
Fam[ ———————— gq¢

We ghall also write a logic over a given language 1 as ¥#=(i;EcBapn) and call it
an [-logic.

(lii) An algebraic semantics is defined to be a pair do=(I,Mad) with Had<Alg; a
class of model algebras.

2.2 Construction. Given an algebraic semantics Ja, each homomorphism h:E—MeMad
can be considered as a model of the expression algebra E (or jome signature
generating E). With this intuition in mind, elements of the set #E will be
referred to as propositi and el ts of #M - as predicates (or relations); the
elementa of the set Dy can be thought of as universally true predicates in the

sense that for any proposition ge#E we put

h kg 9 1= (#hlp € Dy,
This construction determines in the ordinary "way a consequence relation
W MOICDWEIX#E) and, hence, the theory lattice TR"°YE c PEE and the

consequence operator c-i.‘“": PHE—PHE.

2.8 Definition. An institution in algebraic form or @& predocirine is defined to
be a triple #={l,8zpn,Mod) with | a language and Bzpar,Mod two subclassee of Algy
‘with membera called expression algebras and miodel algebras reap.

By onnnt.rl.lnﬂm 2.2, with each predoctrine there is correlated an [-logic
Lat)=(x\#0d), EcBupn), correspondingly, there ars defined the family of theory
lattices, ﬂ‘h:m,.IGSWt). and the family of closure operators (Cn;nad)
As a ruls, below we will oflen write the superscript (4) instead of (Madi.

24 Basie Assumption Our next goal is to statc somé results about the introduced
constructa necessary for proving our main theorem described im the introduction.
Proafs of these results require rathe: involved unmiversal algebraic machinery,
moreover, at the present moment they are stated completely only for the special
case of ordinary one-sorted algebraic theoriea when Fam] is Set. Generalizaion
for the case of many-sorted algebraic theories, FamT=Set* for some fixed number n,
ila immediate and tedious while the general situation of Cartmell's theories is
much more difficult. The point is that our machinery is based on exploiting a
certain universal 1lgebraic techpique . of relating con, ruence lattices and quasi-

,E€€azpn).
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varieties (see [Di92], some aspects were demonstrated also in the book [BPB9]),
however, for generalized universal algebra, the problem nof stating such a relation
is much more involved. (Indeed, a8 Cartmell explained in [Ca86), generalized
algebraic theories are eqgual in descriptive power to the essentially algebraic
theories of P.Freyd; but it is well known that constructions of a congruence and a
quotient are rather capricious in the case of Freyd's algebras, at any  rate,
cannot be generalized in a straightforward way from ordinary algebrss - this was
clearly demonstrated, e.g., in the book of Reichel [Re87]).

Therefore, for the sake of transparency of the main idess, on the one hand, and by
the lack of a general proof, on the other, below we shall deal with the special
gituation of ordinary one-sorted algebraic theories when FamT=Set. It is hoped,
however, that transition to the general sltuation will require modifying proofs

but not results.

Thus, our goal is a theorem on connection between theories and algebras in a given
predoctrine, concretely, theorem 2.12

First of all, we need a refinement of the notion of a language.

2.5 Definitlon. A language I=(1,?,D) is sald to be reguler iff it meets the
following two conditions:

(i) the functor ?, hence #=U;P, preserves inclusions, surjections and produects,

(ii) the functor D preserves subobjects and products where (X,D) is a subobject
of (Y,E) if XCY and D=EnX.

Remark. On one hand, these are quite natural algebraic conditions, on the othér
hand, it can be checked that a maj.oruy of algebraization languages appearing in
practice are regular, thus, this constraint ia not restrictive for practical
ueing. ' :

Now we need a portion of universal algebra.

2.6 Construction. Let V be a wvariety of algebras - the universe of our

considerations. Given an algebra A, the lattice of its congruences will be denoted

by ConA and if #eConA then the corresponding canonical epimorphism will be denoted

by E\,:A—-Hd/ﬂ. For any relation pcAxdA, the least congruence containing p will be
denoted by Cgyp. Further, if h:A—B is a homomorphism end #€ConB then h'o =
(hxh)'8 is also A congruence on A. Hence, Con turns out to be a functor

V——Pos?”, and since Pos can be regarded as a category, Con is an indexed
category.

Now, for any class K of algebras, let Con™JA denotes the collection {6eConA:

A/0eKj. 1t can be shown that if K is a quasi-variety, K=SPK, then ConX)a is

closed under intersections for all Ae¥ (this is w~ll known) and,.moreover, for any

homomorphisin h:A——B, if 9eConY)B then h'9eCon®)a (it seems that this simple
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fact as well as the converse statement that the above features of the family
'lCnnm)A. AeV) imply that X is a quasi-variety (see [Dil] for proofs) are not
known even for the universal algebra community - so, relations between logic and
algebra are fruitful in both directionsl). Thus, if X is a quasivariety then the
tamily -(Con'®)A,AeV) can be also regarded as an indexed category Con(*):v— spos.
As we will see immediaiely below this simple machinery turns out extremely useful
in algebraic logic (see also [Di2]) and in algebraizing institutions.
2.7 Consiruction. Let da=([,Mad) be an algebraic semantics over a regular language
end Q denotea the quasi-variety generated by Mad, i.e., Q=SPMHad. We note that
owing to preservation properties of D and P, for any homomorphism h:A--5BeQ and
any @e#A, (#h)yEDB iff vs(#eo)"DA/o where ® denotes kerh, in addition, A/9eQ
since it is isomorphic to a subalgebra of B. So, if for each AeAlg; we introduce
an operator HA:Con(Q)A——--—ap#A by setting H,0 := [#Bﬁ,"DA/g. then heg iff
pe}l‘(lcrh). Now one can see that for any 0eCon(Q4, H,0 is a theory with respect
to kﬁ"“‘ﬂ. and, moreover, each such a theory can be obtained in this way.
Actually, it can be shown by using standard universal alglbraic machinery that
owing . to preservation properties of P and D, each H, preserves meets
(intersections), hence, its image is closed under intersections and this closure
system s just Th(#od)4 Since H, preserves meets (and PHA is a complete lattice),
H, bas the left (lower) adjoint 0,: W&A—rﬂonmad)d. in particular, there is a
Galols insertion (see [MSS86] for a theory of afjoint situation for posets):

H, 3 :
'Yy —=—Hn',

4] 4 i (% 4
here and below, in diagrame M denotes the class Mod. .
Finally, again owing to preservation properties of P and D (namely, their
compatibility with inclugions and subobjects), the family (H,; AeAlg) is
compatible with homdornhilmu in the sense that for any homomorphism h:A—B one
has H,h'® = (#h)/Hgo for all #eConB.

H,
A Con{Ql4 ~ ¥ > T4
] 5
b b ' fe| n*icel® @nroni® o (em
B Hp .
con(@)B : —¥ 7 Mg

Qg
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In particular, this implies that if Te'.x?'thl then (#h)'TeTh{#od) and all the
diagrams on the figure above are commutative.
In algebraic logic the latter condition is. called structurality condition end a
logic meeting it is called structural. Actually, structurality of a logic
¥=(rg,Ec€apn) is equivalent to the implication Y 3 h¥r-he for any
homomorphism h of Eapn-algebras (see [Di92] for details and more precise

formulations).

These considerations immediately provide the following result (from now on we
begin to use the terminology adopted in the paper (TBGS1)).

Let ddo=(I,Mad) be an elgebraic semantica over a regular language [, Q
denotes SPHod and £ be a subclass of Algy. »

28 Proposition. The families (Con(QE,Eeg), (Ta'#od

E,EcE) prove to be indexed

categories ConQ:8— Pos™, Th(Hod):g  ;pwcCat™ while the fap:i) (H,Eet
car be regarded as an indexed functor (natural transformation) Con{W)—yn(Mad),
Moreover, this indexed functor is locally reversible.

o

Now, let Theor(od)g denotes the category whose objects are pairs (E,T) with Eef,
TeTh#od)g and morphisma (E,T}—(E'.T") ere the homomorphisms h:E——E' s.t.
(#h)T<T; and let Congrl@E be the similar category whose objects are pairs (E,8)
with 0eCon(@E. Bince Flat(Con'?)=CongrlVg and Flat(Th(#0od))rheor(#odlg by the
very definition of flattening, theorem 8 of |[TBGO1] gives Immediately an
adjunction (which is, in fact, an embedding due to fact that the locel adjunctions

are Galois insertions):

H
Congr' Ve =57 Thear' 4% o
Q

To get our goal in searching an adjunction between theories and algebras we need -
an adjunction between CoogrlQ)€ and Q, however, thers are some delicate universal
algebraic points here. A natural functor from Congrl®€ to Q is evident while to
construet a reverss functor we reed two refinemants. i

2.9 Definition. Let h1,h2:(E.0)—>(E',0') be two morphisms in Congr(®§. They are -
said to be eguivalent, hl=h2, if <hll(e),h2(s)>ed" for all ecE The category of w-
equiva’ nce clasees fs a quotient category and will be denoted by Congr(Q)g/=.

2.10 Definitlon. Let ¥V be a variety of algebras. A class &cV is sald to possess
the projectivity property (PP) (or PP holds for &) iff for any diagram
A—t 308 B with A,Be6 and g epi there is some heHom(4,B) s.t. hig=f; in other
words, each algebra A of & is projective with respect to epis from E-slgebras (see
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e.g. Mac Lane [CWM?71] for the standard definition of a projective object in a
category). =}
Natural universal algebraic considerations state the following
211 Lemma Let V be a variety, QcV a quasi-variety and EcV a class with PP. Then
the categories C-ongr[QIE/’nnd (QNHE) are equivalent. o

Thus, we see, to get our goal we must modify the notion of a theory morphism and
deal with the gquotient category Theor(#0d)g/x  where two Theor““ﬂd’g-morphisma
h1,h2: (E,T)—(E",T") are equivalent, hl=h2, if <(#hl)p,(#h2)w>e#lﬂ£.1"l for all
pe#E; wa will write a more suggestive Theor®0d)g/q  instead of Theor(#adlg/=,
Finally, given a predoctrine 4=(I,Bzpn,Mad), we will write Theord and Congrd for
Theor{#0d)grpn and Congr!®Expn resp.

Now, our chief result in this section is almost immediate

212 Throrem. Let J=(l,Expr,Mad) be a predoctrine over regular language and

8.t. 8zpr has projectivity property. Then, for some class of I-algebras Th, there

is an adjunctive embeddlng

b S

Th .:n"._:ﬂ Theorsd/Q.
Algebras from that class may be called Lindenboum-Tarski algebras.
213 Remsrk. The PP-requirement for &zpan may seem to be rsther unnatural.
However, there is well-known in algebraic légic that definite algebraic properties
of classes . of = algebras correlated with logies are closely connected with
properties of that logics. For example, amalgamation property (AP) for Q is a
universal llnbrdl: counterpart of Craig’s Interpolation property, all-epis-are-
lurjuﬁv' property (ESP) is a counterpart of Beth's definabilily property and the
like  (see,o.g.;|HMTS85). Thus, PP as well as its "colleagues” can be considered as
rather m'pu:tnbh- from the theoretical view point of algebraic logic. On the
other hand, - the expression algebra classea of a majority of logics in use Las PP -
this point provides a justification from the practical view point.
2.14 Definition. Th 2.12 kes it r able to introduce a special name for
predoctrines over regular languages with PP classes of expression algebras. We
will call such predoctrines regular.

3 Algebraizing institutions

Let 3=(Sign,Sen,Mod k) be an institution.
8.1 Definltion. An algebraization of an institution J is defined tw be a pair
(et,d) with o=(I,Exzpn,Maod) a regular predoctrine and a a representation of 3 in :l
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consisting of the following data:
(A1) o0 =(F,i\U,;,): Sign €—¥_— Eapr  an adjunction ,
(A2) oy, Sen—:'y,;#:P @ natural transformation,

(AB) w0 Mod—sF, ;Hom(-,Mod) an isomorphic natural transformation,

g
such that the fullowin; condition is fulfilled:
Ay M EP ¢ s (#h)e) ¢ Dpg where h denotes &M,

for all Ze|Sign|, peSenL and MeMod(L).
In such a case we will say that the institution can be algebraized via a:.?—ul..
8.2 Remark. With construction 2.2 condition (A4) means that for any signature I
we have:

Ay MED ¢ e M ) a0 .

Naturalness of the definition is justified by the following
3.3 Fact. Institutions deacribing logics from the following list

» many-sorted equational logic, untyped and typed A-calculi, nolymorphln A-
caleuli and their conditional versions;

e Horn f.0.l.,, universal f.0.l.,, full f.0.l w.ith and without terma...
ure algebraizable.
(It is hoped that considerations of section 1 give a notion of proving this fact).
Recalling the definition of specification system algebraizability described in the
introduction * we can observe that specification system associated = with the
institutions listed nl;ove are also algebraizable. This 18 not a matter of chance:
the main result of the paper, theorem 3.8, states that if an institution is
ulgebraizable then the assciated specification system is algebraizble too.
We turn to proving this result.
88 Proposition. If sn institution § ls algebraizable via wf——d then for all
signature morphisma o: E-—;!:' there is the following commutative diagram of
adjunctions, in addition, the horizontal adjunctions are Galois insertions:

“;ll:

PSenz ’“’ Thi%)z L______ﬂ ThdFE
c.m @},.3;Cnfd)
at||o- o*iCnl) l#a-*)-(h“} ¢ | (o)
| ] “o enl’
PSens I Thif)y —F ., mor

cn}'i-_, ) “o.nzimpg?



77
Proof (sketch). The left square commutes by virtue of the institution satisfaction
axiom, the right one commutes due to (A2) and structurality of the logic ¥£(a).
Adjunctions on the left square are checked straightforward, those on the right ome
are due to (A3) and (Ad).
8.4 Corollary. If an institution ¥ is algebraizble via a:}—s then
there is the following commutative disgram of adjunctions where all functors F's
are lower (left) adjoints and all the functors U’s are upper (right) adjoints:

(o)

Upl‘ll
Presj ¢ , Theora

(@

Fpri-

(3

Cn o a)
|| #s

Id
Theor? ==sasssezzsozszzazsn=n== = Theor?

Proof (sheteh). Owing 'to commutativity of the proposition 3.3 squares above, the
families of upper arrows can be considered as indexed functors and we can apply
theorem 8 from [TBGS1] and the lemma below.

Lemma (a modification of theorem 8 of {TBGS1)). Let C:I%——Cat, D:K*—Cat be
indexed categories, fiI——K a functor and F:C——f;D an indexed functor. Then
Flat(f,F): Flat(C)—Flat(D) has a right adjoint as scon as f has a right adjoint
end F has a right adjoint locally. Here Flat(f,F) denotes the following functor :
8(t,a)=(fi,Fja) and &(c,/)=to,F;f): (ti,Fja) > (fj,Fa)

for all (i,a)e|Flat(C)], (o.M:(1,a}—j,b) in Flat(C).

We would like to state an adjunction between Pres,# and some class of Jfd|-
algebras. Corollary 8.4 and theorem 2.12 would be sufficient for this purpose if
in theorem 2.12 we would have the category Theord on the right. However, we have
there the quotient category Theord/Q, hence, we must modify corollary 3.4 in order
to capture Q-factorization of Theord-morphisms. It is obvious that to this end we
must introduce something similar 0-equivalence on the set of Theor?-morphisms.

3.5 Definition. Let ¥ be an institution and 01,02:(Z¥)——(X"¢¥') be two Presd-
morphisms. They are said to, bo semesntically eguivalest, clac2, i, for any
sentence g, ﬂl-:.krllp it ‘r(rlb Ar all models M of (E',¥'). It is checked
immediately that # is compatible with composition and the corresponding quotieat
category will bs denoted by Theor?/4.

With corollary 8.4, this gives

3.6 Pnpu‘llhu. If an institution 3 is algebraizble via a:3——d, then clac2 iff

F( re®1 = «#2 for any presentation morphisme o1,02
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With corollary 3.4 this immediately gives
8.7 Th If an institution # fis algebraizable via a:9——d then there is the
following commutative diagram of adjunctions where all functors F's are lower
(ieft) adjoints and all the functors U's are upper (right) adjoints:

Ul'ﬂ)
pres
Presd,/dr ¢ —, Theord/2
£(%)
pres
(%)
Cn a)
vy’ || P
Id
Theor?/dm=ssssmnssnnnnnnuxsznszcs Theor?/4s o

8.8 Theorem. There is an isomorphic natural transformation
aXog Mod‘—-—)Ff,ff,:Hom(-.Jtad) ¥

Proof (shetch). Firstly, for each presentation n-(:,@]é|?res,,5] we define a map
Bz:Homng{ T Mod)—Mod*n as follows.
Let (ET) - Fitlm, that is, E=F,%, T=Cofa,,,c¥ and let © denotes QgT. For

each h:E/0—sMeMad we have
(# )Dgg € Dy since Dh is a D-Set (matrix) morphism,

* (#t:e)"Dyoc(#zﬂ)"[*h)"Du by f*\f’ for any mapping f
=+ (#hi#e JHQETCD)y by definition of Hy '

» (#hHQgTcDy (where h=c ;h) by functoriality of ?

» (#R)TcD,, since TcH QT by Qp\Hg
+ (#Blay,p¥cDy;,  sines T := Cnfdla, s¥

» apigh W ¥ owing to isomorphity of a,.s and the direction (&) of
: (Ad)g.

Thus, with each heHom(F,, x,Mad) there js correlated a E-model M = a,l5h € Mod*x
and this definee a mapping : 2

By: Hom[F"mt,lad) --> Mod*n.
Moreover, By is injective since

hizh2 » hizh2 = M1M2  as €, is epic and a, ! is injective by (A3).

Surjectivity of By is proved by the following arguments.

For each MeMod*n we have
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m 1-{5” v by the definition of Mod*

»  #he,,5¥cD, (where h denotes a,, M ) by (Ad)(»)
#h)Cnf¥e,, ¥ c D,y by definition of Cnf)

ie. (#h)T = Dy by our notation
#»  Tc(#hY!Dg,, (where n=kerh) by the first statement of constr. 2.7
i.e. TcHgn by definition of Hg

» 0=0;T c QzHyn S p=kerh by Qz\Hj,

Hence, there is a homomorphism B: E/6—s(a, Mo a.t. € 6‘5-‘:"‘“':5"'

In addition, it is easy to see that Sph = u,'m',‘:{aﬂ;ﬁ) = alr G s M = M, that is,
pz is surjective and has the inverse mapping denoted by af ;5.

It remains to check compatibility of mappings aX,, with morphisms, in other words,
ta state commutativity of the following diagram:

. x
(=,9 Mod*(Z,9)——™29% . Hom(E/s.Mad)
. Mod"c/ 4p (Feo/n;-)
rodE’ -

&, Mod*(E£',¥") Hom'(E' /0", Mad)
where (#Fo)}0 c 9" hence (#Fcr)/w: Ef6——E'/8' is followed from the very definition
of the functor FP'“ by flattening. Now, commutativity can be checked directly
from definitions by uaing (A3). o
Together with the definition of specification system algebraizability described in
the introduction, theorems 2.12,3.7 and 8.8 immediately imply
8.0 Theclem. Any algebraization

@~(Fy\U g% nens Emoa)

F=(8ign,Sen,Mod,») » d=(l,8zpn,Mad)

of an institution ¥ gives rise to the following algebraization

a*= ( Fpri\ Uprew ®hod)
spec(#)=(Spee($),Mad*) > D=(Algp,Thidl.Had)

of 5's specification system, where a* la as shove and Jhld}= SPMéod n HSzpn

4 Conclusion: towards gensralizations

It seems that the principal contribution of the paper consists In definition 2.1
on the ground of which it is suggested to develor algebraic logic in a very
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general setting. Actually, the framework is a generalization of the " tamiliar
approach to algebraizing logica developed by Polish school (see, eg, [Wo88]).
According to the latter, a logic is a consequence relation on a (countably
generated) free algebra of some signature. Definition 2.1(ii) generalizes this
construclion in the following directions:

there is considered a family (mot a single one) of consequence relations (via
functor +: Expn --> Set);
« there are considered algebras over arbitrary carrier structures, not only over
sets {via machinery of monade);
» given a logic, there are distinguished its algebras of expressions from its sets
of propositions (via functor P).
The functor D provides capturing in our framework a crucial for the Polish

approach notion of matrix semantics.

Thus, while the Polish approach is suitable for algebraizing only propositional
logics, the theory developed in the paper hopefully provides a unified framework
for studying algebraizations of a whole diversity of logice both semantically and
axiomatically defined.

Indeed, as for the former, one nontrivial result, theorem 8.9, is presented in the
paper, while others concerning, eg, investigations of compactness, can be
hopefully got along the same lines {for example, for the case of logical languages
with P=Id and T being an ordinary algebraic theory, ie, FamT=8et, a bunch of
" results on compactness of semantically defined logics was obtained in [Dig2]).

As for axiomatically defined logics, the following can be said.

A thorough elassification of these logica was developed in a series of works by
Avron (see, eg, [Av91),[Av02]). His framework can be easily captured in our
setting as follows. The main feature of Avron's considerations is to deal with
consequence relations (CR) over various kinds of seguent-carrier set structures;
single a8 well a8 multiply-conclusioned CRs, CRs over sets, over multisets, over
sequencesz etc. In our setting this is provided by the functor P. For example, if T
is an algebraic theory over Set, then the ordinary single-conclusioned sequents
corresponds to the case when P=PHorn=P,x1d, sequents over multisets -

P—Sum:-ﬂ;xp;, quents over seq - p—pa,,,,:-ﬁzxp; where ‘);X and 9:X are
the sets of all finite multisets and all finite segueiices over a set X, other
cases are now obvious. At the same time, our framework makes it possible to handle
substitutions in a very natural and easy way via composition of morphisms in the
Kleisly category of the theory T.

Moreover, we conjecture that Pron Pavronr Poentz @nd similar functors give rige
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to monads over FamT, thus providing one more direction of algebraizing logics (eg,
transition from equational logic to Horn equational logic can be described as free
generation of a 9Py,.,-algebra, or, more generally, transition. say, from the
Hilbert-style version of a logic to its Gentzen-style version can be deseribed hy
a suitable monad Pg,...)-
As for formal inferential systems for generating CRs, in nur framework they are
naturally modeled by corresponding formal sequents (inference rules) over free
algebras in the wvariety AlgT. In more detail, given a language I=(T,P), an
inference rule is a pair ([,p) with T'u{plcP [PT(Var)] where Var is a set of meta-
variables, T(Var) is the carrier set structure of the T-algebra freely generated
by Var. A Kleisly morphism from Var into a T-algebra A is nothing hut a
substitution of formulas from A4 for meta-variables from Var - this enables us to
generate CR via inference rules.
Some results about the construction for the case of ordinary T and P=Id were
obtaine! in [Di92]. Proofs of their counterparts as well as counterparts of the
above-mentioned compactness results in the general setting developed in the paper
are open problems.
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The general intention of the paper is to demonstrate naturality of
using category theory language for the specification part of database
theory. Given this purpose, the paper is oriented more on definitions
than theorems. Concretely speaking, the notion of a query over a given
database schema S is discussed from the viewpoint of transformations of
both the schema S and the query schema. For the sake of independence on
data model, a formal definition of an abstract data model (a.d.m.) is
introduced and all considerations are put into the abstract framework
provided by this notion. This constitutes s ‘more wide (than just
discussing queries) context of the paper -- to suggest a certain
mathematical framework for abstraci data modeling under which ' mean a
unified way of reasoning on data modeling constructs (schemw, instance,
query etc.) being independent on (but applicable for) any (reasonable)
concrete data model: relational, higher-order relatioral, extended ER
etc. In fact, our notion of an a.d.m. explicates it as an institution-
like structure -- a kind of categorical constructs introduced in
computer science by Goguen and Burstall in order to support
specification formalisms completely independent on underlying logics
(see |GB92] for a survey and further references). -

The intended audience of the paper is assumed to be an amalgamation of
the specification-oriented part of the database theory community and
the institution theory community.

Fromn the viewpoiit of database theory, the main technica} novelty of
the paper consists In -lnl:roducing transformations of databaser schemas
inte the notion of a data -model. Such an action enables us to organize
the collection of all schemas accepted by a given data model into a
category, and then use the language, methodology and machinery of
category theory -- it is hoped this provides far-reaching conceptual
consequences for database theory. We believe that similarly to that
institutions provide a powerful wnifying framework for handling
algebraic specifications and specification languages, the categorical
framework will be extremely useful in specificatlon aspects of data
modeling.
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From the viewpoint of institution theory, the paper introduces two
developments over the basic institution standard. The first one is not
very essential and consists in defining and justifying a special kind
of generalized institutions. %

The second development over the basic standard is principal. It is
commonly accepted to think that the institution framework is an
fmmediate formal categorical refinement of the framework of abstract
model theory. We assert, however, that this is not the case by virtue
of the lack in the former of any concreteness facilities, I.e.,
facilities enabling us to speak about elements of models and relations.
Indeed, ordinary models considered in model theory or database
instances considered in database theory are not abstract algebraic
structures but structures over domains or lists of doinains, waich
enables us to speak about model’s (instance’s) elements (values), So,

each such a model (instance) structure must be considered together with
its list of underlylng’ domains, in fact, there is a forgetful functor
into the category of many-sorted sets, SSet, and, thus, in categorical
terms, categories of models are actually concrete over SSet categories.
Moreover, in database theory there is well recogniZed the necessity of
involving domain independence into discussing queries, so, categories
of models must be endowed with another underlying functor which assigns
to a model its active domain, i.e., the set of eclements (values)
actually appearing in structural components of this model (for example,
in relations the model consists of). So, just a notion of an
institution endowed with such facilities can pretend to be a formal
refinemer. of the intuition behind abstract model theory while ordinary
institutions provide a framework rather for abstract algebraic
semantics considerations.

At last but not least, the paper presents a notion of algebraizability
of an a.d.m. which seems to be new for both data.ase and institution
theories (this notion is related to, but sericusly differs from, the
notion of chartering Institutions introduced by Goguen and Burstall in
[GBB6]). The essence of algebraizability of a.d.m. amounts to the
following.

An a.ct'.m., say, M, Is algebraizable If, given any M-database schema S,
database Instances over a set of domains d=(d;, i=l,....,n) can be
treated as morphisms from S into another schema, S4, built from d by

definite semantic tools determined by M. In addition, all such schemas
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arising from semantics are, in fact, algebras (e.g., of relations) and
Instances can be extended to homomorphisms of algebras freely generated
by schemas into these semantic algebras.

Thus, algebraizability supposes, first of all, availability of a
closure operator over the collection of schemas which (freely) closes a
schema up to an algebra and, secondly, a class of algebras, that Is,
closed schemas, arising from semantics and therefore endowed with some
domain structure. (All this can be formulated Iin precise categorical
terms of setting an algebraic theory (monad, triple) over the category
of schemas). A formél definition capturing the idea of algebralzability
is presented In section 4 under the name of (algebraic) base. Further,
it is proved that any base B gives rise *0 an a.d.m., '‘M(B), and an
a.d.m. M Is called algebraizable if M Is Isomorphic to M(B) for some
base B. We will show that relational data model is algebraizable and,
hopefully, it will be easy to see how to extend this result and its
proof for various higher-order relational data models: Moreover, we
assert that various extended ER data models are also algebralzable
(this point will be addressed In a forthcoming paper).

We do not use any advanced category theory tools, a very modest basis,
for example, presented in the preliminary section 0 of [LSS7] will be
sufficient. Relevant to our purposes versions of some known, though not
quite standard, notions are described In Appendix 2.

1 Motivating considerations

1.1 It is well known that for proper formulating one or another notiof
of a query (operation) a kind of genericity condition is required (see,
e.g., [ABGGB7]). This condition states that queries treat data values
as uninterpreted objects and hence commute with permutations of values.
However, it is natural to mn.slaer also “genericity with respect to
schemas”, that Is, to. require commutativity of queries with schema
transformations. Indeed, given, for evample, a relational schema S,
query expressions over S§ In some query language are actually
parameterized by relation-schemas so that transition from S to another
schema S’ forces the corresponding Il'llﬂmﬁm-ﬂf queries over S
Into queries over S'. Thus, query expressions are rather patterns for
querying parameterized by schemas and respectively their semantic
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extensions are rather families of queries over different schemas than
isolated query operations; certainly, these families are correlated
between themselves via schema transformations In a definite way.

A bit more formally, let us fix a certain data model M. This means,
first of all, that there are defined notions of a schema (for
representing data) and an instance (of a dl‘l.l structure or a database)
over a schema. So, given M, we have a collection of schemas, Schema,
and, for each schema SeSchema, a set of Instances over S, Inst(S).
Furthermore, we assert that M must necessarily suppose the notlon of a
mapping between schemas called a transformation or an interpretation of
schemas. In addition, if t: S — § Is such a schema transformation
then Instances over S§' can be also considered as instances over S, that
Is, there is a mapping t*: (nsi(S’) — insi(S). In particular, if t:
S§— S is an Inclusion, le, S Is & subschema of §', then, given
v'€lnst(S"), t*(v") ,can be thought of as the restriction of ¢” to S
and the designation of t*(i") as ¢'lg will be relevant in such a case.
Now, If q: inst(S) — insi(S;) Is a query with the schema S,,. and t:
S — §' is a schema transformation, then t translates q into a query
Q'=tq: inst(S') — tnstlSy). In addition, S, and S, are related by
means of a transformation oy: § — S, and, finally, commutativity of
the following diagram expresses lnvariance of querying under change of
notation:

q

s tnsi(S) —————» WNS')
R e Wi = s s g
s’ s q

Inst(S’) ————— lnst(Sy.)

L2 Now we address to the problem of capturing the idea that queries
oaly extract a part of gerived information already implicitly contained
ina a database without any side effects. Leaving a full discussion till
section 4, here we note only that f $,qu are gqueries over the same
msmsﬂnmms‘.s'm.._.m—m,uwﬂsh
lq:)l.‘-qc.. For the special case when §=5 and q is the Identity
mapping over insi({S), we obtain just the similar condition of [AKS9).
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Thus, we see, transformations of schemas indeed form a necessary
facility of abstract data models, hence, any such a mode! should be
based on not just a collection of (database) schemas but rather on a
category of schemas, that is, a collection of schemas organized into a
single whole by means of schema transformations. (Definition A.1 of

Appendix | will help to clarify our intention).

2 Notation and terminology

Throughout the paper categories and functors are denoted by bold
letters or abbreviations. Given a category ii, we write AeK, or, else,
A =K, and h: A-— B ::K to denote that A is an object of K and h is an
arrow of K with the source A and the target B. We will also designate
the source and the target of h as ch and ha resp. If ho=og, their
composition is denoted by h;g.

SSet denotes the category of sorted sets: its objects are pairs
(LX) with T a set of sorts or indexes and X a family (X,iel) of sets,
its arrows are pairs (f,h) with f: I — I" an ordinary functlon and
h=(h;:X; — X7, | i€l) a family of functions. We write X=(LX) =%
=(J,Y) iff 1) and X,=Y, for all i€l; and XY iff I€J and X,S¥, for all
tel. M X ::SSet then UX denotes Ug(X; ::Set, where Set Is the
category of ordinary sets and functions.

Given sets X,Y, Xc<;Y means that X is a finite subset of Y.

Cat,,, is the category of categories with no arrows but
isomorphisms.

All categories we consider in the paper are categorieé with
inclusions and the corresponding image-factorization system, ii-
categories, in short (the precise definition appears in Appendix 2,
however, an Intuitive notion of inclusion of one object into another
and the image of a subobject under a mapping will be sufficient for
understanding the text). The fact that A —— B is an inclusion will be
denoted by A & B since there is no more than one (if any) inclusion
between objects; the very arrow will be also denoted by A. If K has an
image-factorization system and h: A — B is an arrow, then the image
of h will be denoted by Img(h)%B.

Subd denotes the set of all possible inclusions XGa4::K.
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EpiK, IsoK, IncK denotes resp. classes of all epimorphisms, all
isomorphisms and all inclusions of K.

F\G: K°_®.,L denotes an adjunction F: K-->L, G: L-->K hetween

categories K and L with F the left (lower) adjoint and G the right
(upper) one.

3 Definition of an abstract data model

3.1 Definitlon. A frame for data structurlng or simply a frame is
defined to be a collectlon of the following components:
» An  ii-category Schema of (database) schemas and schema

transformations.

<= A functor inst: Schema— Cat{h, assigning to each schema S a
category of (database) instances over S and their isomorphisms (to be
thought of as those ones which are generated by perrautations of
underlying domains). Palrs (S,.) with SeSchema and teinst(S) will be
also called instances and the set of all instances in the latter sense
will be denoted by Inst.

+ A domain structure  over Inst, dmn=(dom,val), where
WMS,WJ and m:{nls.Se.Schem:), are families of functors,
domg: Inst(S) --> SSet and val : Inst(S) --> Set resp., s.t.
valg(t) & Udomg(e) for any ceinst(S). Here, given an instance (S,),
domg{t) must be thought of as the list of domains underlying v, whereas
valg{e) - as the set of values actually inv;alved by L. We will often
omit the subindex s if it Is clear from the context.

Moreover, If t: S — S’ ::Schema then the following condition holds for
all v'elnst(S"):

(ext}) domi(t®i") = dom(L"), val(t*.") = val(e’) n Udom(t*i").

This condition explicates the intuitive Idea that t* produces only
snother structural view on that part of data contained in ' which is
captured by t without affecting data themselves, in other words, t*
changes the structure of that part but not the very values.

Now we turn to presentation of the notion of a query through our
formallsm.
Let ¥=(Schema,inst dmn) be a frame. By adapting and generalizing to our
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context the cieﬂnition of a deterministic query from [AKS9] we come to

the ftems (i) and (li) of the definition following below. Item (i} is

intended to formalize the iInmtujtive Idea that queries are rather
patterns for quering than isolated operations.

3.3 Definition. Let S be a schema, SeSchema.

(1) A (deterministic) query operation or simply a query over S
Is defined to be a pair q=(Sy,f,} with S, a schema of the
query and f, a functor Inst(S) — Inst(S) s.t. the
following condition holds for all teinst(S):

(grl) domiqe) = doml(c), valiqe) € val(t) n Udomiqe).
here and furtheron q also denotes the very function f.

(it) A query system over S Is defined to be a set qriS) of
queries over S satisfying the following two conditions for
any qi,qzeqr: e

(qr2) idinctis)e qris), -

(qr3) if S;,%S,, then q2[|.]13 = gl{t) for all ceinst(S).

{We recall that If t: S — S i:Schema is an Inclusion and
teinst(S') then t¥. is denoted byge} ).

(iil) A query hypersystem (over a frame ¥) |s defined to be a
Tunctor qr: Schema — Set assigning to each scheoa S a
query aystem over S, In addition, with . any schema
transformation 1t: Sl --> S2 and qeqr(Sl) there s
correlated a schema transformation O § — § (here
and furtheron tq denotes (qrtlg ) s.t. the following
diagram commutes for any q.q" @ gr{Sl)k

$i. . St Sg uqr(s)

(gr4) t Oy Tygr

S2
Siq—— S 1:qr(Sz)

Moreover, the following diagram also commuytes for any -transfarmation
1:51—S2 and query q & griSi):
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q
s1 inst(S1) ———— > inst(S,)

(m‘sl t tl’ Vﬁq

tq
Inst(S2) ———————— inst (S, )

3.4 Remarks.

- (i). Functoriality in the Item (i) above means commutativity with
isomorphisms of instances, that . Is, the well-known genericity
condition. 5

(ii). Note, condition (gqrS) together with condition (ext) of definition
3.1 imply that val q(t*t) = val (tg)e for all ceinst(S2), that Is, the
extension of a given query does not depend on notation. _

3.5 Definition. An abstract (static) data model is defined to be a
couple of a frame ¥ and a query hypersystem (qr,c) over ¥.

4 Algebraizing it wipdes

In the definition of an a.d.m. instances were treated quite abstractly
as some enmtitles functorially - connected with schemas but without
speéify!ng their nature. However, in all data models using in practice,
instances (for cxample, of a relational schema S) are mappings which
- assign semantic meanings (relations) to the structural components of
the schema (names of relations) in correspondence with their structural
characteristics (relation-schemes). This suggests the idea of treating
an instance v of a schema S as a schema transformation of S into the
corresponding schema arising from semantics, (:S——Sy, where d refers
.to the list of domains underlying the schema S4. (Construction A-1.2(i)
from Appendix 1 will help to clarify this idea). The image of S under
the transformation can be. considered as data beng kept in the
database. i

Furthermore, from these data new derived data can be extracted, in
addition, derived data appear as instances of other (query) schemas
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somehow related to S. Reflecting on this point suggests the idea to
supply the category Schema with an operator Der which assigns to each
schema S a very large schema DerS being thought of as the schema
specifying the total combination of all possible derived data which can
be extracted from t, in fact, from Img,(S). That fs, L is essumed to be’
naturally extendible to T: DerS — Sy so that just the image InuEM)

_ presents the totality of derived data. (Again, construction A-1.2(1i)
will clarify these considerations). Now, a query Q appears as a
subschema S, of DerS, S;,GDerS, and the answer is nothing else than
ngt_(sq).

In precise categorical terms, these considerat ns that Der is a
regular algebraic theory over Schema and S3 Is a Der-algebra,
SdEAIgD“. In the following definion we treat algebraic the ries over
a category in a equivalent way through adjoint functors. T "
4.1 Definitlon. An algebraic base of a data model or simply a base Is
defined to be a collection of the following data.

. A regular algebraic theory T.- that is, an adjunction, F\G:

Schema, *-2*7; AlgT), where clements of the li-category Schema, are to

be thought of as possible schemas and their transformations and those
of AlgT - as (accepled) algebras and their homomorphisms. The
composition Der = F;G will be thought of as a derived data operator on
Schema .

* A full subcategory of Schema, consisting of accepted schemas,
Schema, which is closed under subobjects.

+ A subcategore Sem of AlgT consisting of semantic algebras. The
objects of Sem are to be thought of as migebras arising from semsntics
and arrows - as algebra, Isomorphisms generated by permutations of
underlying domains. (Warning: as it was demonstrated by Shelah [She8S],
there are relational algebra isomorphisms between non-isomorphic data
structures, that Is, generally m. categories Sem can be non-
fulll). cs ol /

+  Adomain structure over Sem, dmn={dom,val), where dom: Sem— SSet
and val; Sem —» Set arc functors s.t. val(4) s Udom(4) for any AsSem,
In addition, for any two A,BeSem s.t. GACGD ::Schems, we have dom.AcdomB
and valAcvalB. Here, given an algebra A, dom{A) must be thought of as
the list of domalns carrying A whereas val(d) - as the set of walues
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actually involved by A. Fl
Considerations before the definition suggest an evident construction
which provides the following
4.2 m.mhseﬂgimﬂsemmabstractdaumndel
(¥(B), qr(B)). »
Finally, considerations of Appendix 1 shows that any relational data
model is generated by the corresponding algebraic base, that is, is
algebraizable. Hopefully, it is easy to see that this is the case also
for various higher-order relational schemas, thus,
4.3 Theorem. All kinds of relational data models are algebraizable,
i.e. can be presented as (¥28],qriZ]) for some algebraic base B.

MLM&&MMM“MW

A-L1 Definition Let U be an arbitrary but fixed countable set of
attribute names. ‘ :
{i). A (finitary) relational schema (over U) Is defined to be a triple
S=(DOM,dom,net) with DOA a finite set of domain names, dam a function
U —» DOM s.t. dont!(D) is countable for any DeDOM and nef a function
taking each finite subset X of U to a finite st (possibly, empty!) of
relation names in scheme X, nel(X). (Well, in the standard definition
of a relation scheme nel(X) is either empty or a singleton). In
addition, the set (Xc,U: nef(X)#a) Is finite too.
(l). A4 trensformation of reistional schemas, S — S, is defined to
be a triple t=(t,t,t) consisting of a mapping t; DOM — DOK', e
bijection t; U—U st domt,(A) = tldamA) for all Ael, and a family
of mappings t,y: nefX —» nel't,(X) indexed by finite subsets X of U
(ii). Composition of transformations and Idemtity trensformstion sre
defined fn a evident way, this constitutes the category of (finitary)
flat relational schemas and transformations, Rel.
A-12 Construction. (I). Given a finits set of domaine, d=id,...da),
we fix arbitrary partition of U by a mapping #:U — d s.t. ¥i(di) is
countable for all (=l...n and then build the following (infinftary!)
relational schema Sid,#i=(DOMS, dont nels): DOME=d, dame=8, nefd(X) =
relyd := Poweg, {f: X—— Ud | fMA)eBA for all AeX), XL Such' a
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schema satisfies the definition above except for requirements of
finiteness of nef(X) and finiteness of the set {Xc U neliX)#e). H we
remove these two requirements from the definition of Rel;, we get the
definition of the category of infinitary - relational schemas and
transformations, Rely, s.t. Rel, is a full subcategory of Rely. Now it
is easy to see that a relational database instance ¢ over a schema
S=(DOM,dom,net) is nothing but the schema transformation t=(t,t,t.):
S — > Sld,#] with #A = u(A),  the t-domain of A, for all Ael,
ty(D) = o(A) for any, hence all, Aell s.t. domA=D, t, the identity
mapping of U, and t4(R) = ¢(R) for all Renel(X), XqU. Conversely, any
such a transformation is an instance and, thus, we have an isomorphism
inst(S)al{Rel,(S,S’): S'eSem} where Sem denotis the class of schemas of
the form S[d,#] for various d and #. :

(ii). Actually there are several relational ‘data models depending on
what a collection of operatlons over relatlons -l:' accepted. . On the
other hand, fixing such a collection T determines the corresponding
class of many-sortcd algebras, we will say T-algebras, and any schema
from the class Sem can be considered as a T-algebra. In addition,
accepted in the data model in question instances of a schema S can be
considered as homomorphisms of T-algebras of the kind § — S[d,#] for
various d and #, wherc § denotes the T-algebra freely generated by .
(The latter means that § is the labeled tree (whose modes are relation
names together with. their schemes) generated .from relation names
occuring in S by means of symbols of T-operations, e.g. from. leaves
Rienef(X) and R2enel(Y) by means of the symbol ® o joln-operation we
come to the node RIeRZ with theé scheme XuY). Note, S is always an-
infinitary schema even though S Iis ﬂnlury

(ifi). It can be shown that a similar machinery is valid for complex
relational data models and various kinds of graph-oriented, in
partjcular, mnndamndadmdnumi- Thus, as it was already
said the majority of ex. c.\.tzm dal'a ll!:l:hli suppose avnilab:.l.{.tv “of
a closure operator uver meca,tegory of schemas. To capture this’
construct In a formal .way the notion of an algebraic theory (triple,
monad) is just suitable. -
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Appendix 2. Image factorization systems for categories with Inclusions

A-2.1 Definition. A category with inclusions Is defined to be a pair
[(K,Inc} with K a category and Inc a class of K-monomorphisms called
inclusions s.t. the following holds (incl4,B) denotes the set
{ieK(4,B): ieInch): : !
(incl1) Inc(A,B) is either empty or a singleton, in the latter case we
 write :ASE K or simply AGB;
({inc2) A=B as soon as AGB and BG4,
(inc3)  Inc Is closed under identity arrows, arrow composition and
pulibacks along arbitrary maps
(in other words, Inc is a dominion (see, eg, Moggl [Mo89])
over K).
(inc4) for any object A, the class SubA=(XCA: XeK) is a set
{consisting of the subob jects of A).
We will often lmbigtizmly designate the source of an Inclusion morphism
and the very morphism by one and the same letter, namely, the letter
denoting the source,
A. category with inclusions is eald to possess canonical image
factorizations' i the closure of Inc under isomorphisms, Inc®, is the
mono-component of a factorization system (Cov,Inc®) over K {about the
latter see, eg, Barr [Ba9l]l); arrows from Cov will be called covers. In
particular, this means that each h A —> B 5K has a unique
factorization h=c;i with ceCovK£EpIK, ieincK<MonoK, thusly, with each
morphistA h: 4 --> B there are corvelated its (mage, the inclusion
Img(h)%B, and its kernel, the cover cwkerh: A --->> Imgih).
An  li-category. I8 a category with Inclusions and corresponding
canonical image factorizations. In any such a category there Is a
mapping Img,: SubA — SubB defined by setting Img, X=Img(X;h).

A regular algebraic theory consists of an underlying li-category K and
a monad T=(T,u,n) over K (sse, e.g., I1L.S87] or [BWSS]) which preserves
tmage factorizstions, that is, if ceCovK, lelncK them TceCovK, TlelncK
too.
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' ON SEMIGROUPS OF OPEN TRANSFORMATIONS OF SYSTEMS OF SUBSETS.

V.Shteinbuk.

Abstract. The  problem of determinability (up to

homeomorphism) of a system of subsets by means of its semigroup

of open transformations within different classes I is

discussed. In the capacity of I' are considered classes of

chains, partitions, uniform quasiretract systems and generalized
T - epaces. ;

AMS Subject Classification 20M20.

Many specialists investigated the relations between certain
mathematical structures and algebraic objects associated with
. these structures. One of the main problems in this direction is
the problem of determinability of an initial object by means of
its derivative algebraic object. We mention the well-known
result of the type - the fundamental theorem of Gelfand-
Kolmogorov, according to which two compact topological spaces X
.and Y are homemorphic iff the rings of continuous Ffunctions of
these -paces.are isomorphic.

- During the last decades transformation semigroups have
'been considered actively as derivative objects of different
nathém#tical ocbjects. In particular, the problem of
‘determinability of a topological spaces X by semiyroups of its
continuous (and of other types) transformations was repeteadely
studied (sez <.g. [3, 5, 8], e.a.). The problem studied in
this paper is to reveal the possibilities of a similar
‘algebraic determinability of some systems of subsets by mzans
of .the semigroups of their open transformaticins. From this
point of view we consider some classes of systems of subsets
(such as chzins, partitions, uniform quasiretract as well as
generalizations of topological spaces}. If our proof is a
straightforward modification of the known proof of the similar
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result for topological spaces, then we state the result only.
Such a situation is for the considered generalizations of the
topological spaces. However, as a rule, the considered
semigroups don’t contain constant transformations in other
cases and therefore a technique of proofs a!aentiallf differl
from that successfully used for the topological s.par;aﬂ in the
related investigatioms.

By a system of subsets we call a pair (X,t), where X is
a set, and T is a subset of the eg: . where 99: is the power set
of X. (In the survey [8] Vechtomov calls such pairs by
generalized topological spaces). >

It is known that various mathematical utmcturea on-a set
X are given by specifying of a subset <t of 89:, whare T
satisfies some axioms. Such is topJlogies. Other exan}_";-'f‘s are
filters, matroids, subset algebras, closure systems, e.c.).

Let SO be the category the objects of which are systems of
subsets and the morphisms are the mapping P1xX+ X, such that
:p(mata for each Hetl. Morphisms (isomorphisms) in S0 we call
by open mappings (homeomorphisms) of systems of subsets. Two
systems of subsets are called homeomorphic if they are
isomorphic objects of the category SO. In the literature other
terminology is  used as well: homeomorphic systems call by
equivalent or isomorphic {e.g. [6,9]). :

Suppose that T (T,) is the complete subcategory of SO,
elements of which are pairs (X,tT) where t is a closed (resp.
open) topology on X. It is evident, that the category T (T,)
is in fact the category of topological spaces with closad
(open) mappings. -

For a system of sul:;uatl (X,t) let O(X,r) denote the
semigroup of all its open transformations under the operation
of multiplication of mappings.

Let ' be a class of systems of subsets. We say that a
system (X,T) € ' is determined (up to homeomorphism) by the
semigroup O(X,t) within the class I if any laumrph.lnn of
semigroups O(X,t) and O(X ,t ) implies a homeomorphism of the
.systems (X,T) and (X ,T) for every (xl,‘z‘)e!'.

For any subset <t of yr let T°= Tu{e}, if T does not
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contain empty subset, and let t°=r, if set. It is clear, that
semigroups O(X,T) and O(X,r°) are equal. Therefore the
following definition will turn out to be quite convenient.

Let T be a class of systems of subsets. We say that a
-y-fel (X,c)el' is O-determined by the semigroup O(X,t) within
the class I', if for evéry (xr,f,yﬁr any isomorphism of the
leniggonpa 0(X,t) and O(ii,t‘) implies a homeomorphism of the
systems (X,T°) and (X ,T.°).

The difference between the determinability and the O~
determinability is not very essential, as it is seen from the
definitions. In particular, if I' is a class of systems with eet
for all  (X,T)el’;, then the notions of O—determinaﬁility and
determinability are equivalent within the class TI.

Throughout the remainder of the paper, the only considered
systeus of subsets are (X,T) with Xet. We use this remark
without explicit mention.

By analogy with the topological terminology, a subset M cX
is called a quasiretract (resp. retract ) of a system (X,t), if
M = p(X) for some peO(X,T) (resp. peO(X,T) and p°= p). A system
of subsets (X,T) we call by quasiretract (resp. retract) if
every nonempty subset Met is 4a. quasiretract (resp. retract) of
the system (X,T). For example, if °c is & closed il topology on
-a set X, then the topological space (X,r) is a retract system
of subsets.

We say that a system of subsets (X,t) is uniform if
(M-{a})ug € T for any @&.=Met, o«eM, feX. One may easily verify,
that if T is a free filter (i.e. a filter with empty kernel) on
a set X then the system of subsets (X,r) is a uniform
quasiretract system.

Theorem 1. Let I' be a class of the uniform quasiretract
systems of subsets. Every system (X,7)el is o-determined‘by the
usmiéroup'o(x,t) within the class T.

Proof. Let (X,T) be an uniform, quasiretract system of
subsets.

For distinct elements a,feX we define the transformation

wﬂu as follows:
pBu(uj- B, @thrjnr for yeX,r=a.
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Let Fx denotes the set of all transformations ¢ ot where a,feX.
Each pﬂud‘x ia an open transformation of the system of subaets
(X,T). Really, for every Met we have

- (M—{a})v {B) if aeM
"Ba“” { M otherwise.

Since (X,T) is a uniform system, 1t follows that ‘Qpatn)et and
hence vﬂu € O(X,t). Besides , pﬁa an idempotent o;f. the
gemigroup O(X,T). .
The following remark follows from lemma 2.8 [4}. Two
elements pﬁlul, pﬂan:;'r: are .Q—equivalant elements of the

semigroup O(X,t) if and only if a =, . (.9 is the Green's
equivalence). For every element aeX we denote

Lo {pg, BeX}. .
The preceding observation yields that K, is a cla:i. " of
- equivalent elements belonging to the set F Mcreover,

F'x/p- {Kalu:x}
where Fx/p denote the quotient of the set F, by the equivalence
relation induced in Fx by the relation Z,

The subset Fx of the semigroup O(X,tT) may be characterized
by means of a first order formula in the language of
semigroups.

Namely, a transformation feO(X,T) belongs to the set F,
if and only if f satisfies the following two conditions:

(1) f is an idempotent and f is not the identity element

of the semigroup O(X,T)

(2) £ bas no tworsided identities in O(X,T) besides f and
the identity of O(X,t).

Necessity follows from.2.5 [ 1. Conversely, assume that
feO(X,t) has the properties (1), (2). Then f(«)=p#a for some
aeX. Since f is an idempotent it follows that f(8)=8, a#f.Then
it is easy to show that fwﬁuwauf‘f' i.e. Pga is an identity
of f. Besides, wﬂaao(x,t). Hence, by the condition (2),
f= wﬂad"x.

Rhssume now that (xl,til and (xa,ra) ara uniform x

quasiretract systems of subsets with the isomorphic semigroups
o(x,,t) and O(X,T,) and let x:0(X,%) * D{xn,tn) be the
corresponding isomorphism. Since the subset Fx may be defined
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within the semigroup O(X ,T ) by the formula of first order
predicate calculus, it follows that z(F )-F
1

It is evident, that f‘ﬂf in the aem.grnup o(x ,T, ) if and
only if x(f, )ﬂ z(L,) in the ocx (T, The foregoing allows us to
define a mapp:l.ng % of F, I-Q in F, I-ﬁ by letting x(K )=

o

aa(alcxl a;.:) if and only if the :Lnage x(K ) coincides
with K, . It is easy to notice that ¥ is a bijection of
F, /ﬂ upon F‘ lﬂ
Let f : x - Fy /-9} i=1,2 be the natural bijection defined:
by the equality fl(!‘]- . (xex ,i=1,2).

Then the mapping Y= f: % £ is a bijection of X upon X,.
In the sequel we write y(x)= X for xeX and y(H) = " for McX, .
We remark that x(Kx)- K; for every Kec F, . Really, for any

1
Ker, /2.
x xl
R(K )= £08,7 (K )= £0(x)=F,(F)= K
and then, by the definition of ¥, it follows that x(K')- x;

for K< Fx!'
TLet M be a nonempty element of T,. Since (X,.7,) is a

gquasiretract system there exists weo(xt,‘rl) with P(X )=M. It is
easy to verify that nxl belongs to p(xl) if and only if Klga*p.

Assume now that x belongs toc the set M. Then thp # ¢ and
hence ¥

xlp)ex(K p)=x(K Jx(p)= Kx(p).
This implies _S’E € x(«p](xa}', i.e. Fex(e)(X,). Similarly we may
verify the converse inclusion. Thus,
N"I'I(I'Hx Jet, -
Analogously can be proved that ¥~ (H’]tn: for every nonempty Net,.

We conclude that ¢ is the homeaomorphism of the systems nf
subsets (X ,7}) and (xa,r:), as peeded.

Corollary. Let I' be a clase of the uniform guasiretract
systems of subsets (X,T) with eser. Every system (X,T)el’ is
determined by the semigroup O(X,T) within T.

In order to prove thsorems 2,3 below, we need some
additional notations and some properties of retract systems.
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A subset T of a power Bset 13' one may conaider as a
partially ordered set with respect to inclusion: Let (T,.c)
denote the corresponding partially ordered set. :

Lemma 1. [7] Let.(X,T) and (X,,7,) be retract ﬁyuteﬁn'of
subsets. If the semigroups O(Xl,tl} and D(Xé,tz) are iﬂuporphic‘
then the partially ordered sets (t’,:),and (té,t) n;é inapo;phia.

For any semigroup S, let I be some set of .idempotents of §
together with the binary relation o defined by : :

(Va,beI)(ach « ba=a).

i It i aaéy to see that  the relation ¢ is -

We put p= onc
a guasiorder and p is an  equivalence relaticn in I. The
gquasiorder o naturally induces a partial erder relation in the
set of all p-classes I/p. This partial order rélation we denote
by @. The set I/p endowed with the relation o wo denote by
(I/p,o). -
Let (X,T) be a system of lublets and Id(x,t) be the set of
all idempotents of ths semigroup O(X, ). For every MeT we set
I,= {peId(X,T)Ip(X)=H} : (1)
It is easy to prove that a  nonempty I is a class of
p- equivalent elements of the set Id(X,T). Beuidea, we have
Lemma 2. Let (X,T) be a fétrncﬁ system of subsets. Then
Id(X,T)/p= {I |Mer, Meo}. :

The following statement was proved euaantially in [71.
but was not stated explicitely. : :

Lemma 3.Let (X,T) be a retract system of subsets. Then the
mapping m:T—Id(X,t)/p defined by mn(M) -I“'for each Met is an
isomorphism of the ordered sets (t,c) and (Id(X,t)/p,7).

Theorem 2. Let I' be a class of ﬁfbtems of subsets (X,1)
where t\{X) is a partition of the set X. Every system (X,t) € T
such that all components of the partitioh T\{X} are of equal
cardinality is determined by the semigroup O(X,T) within ;he
class T. ;

Proof. Assume that (X,T) is a system of subsets where
t\{X} is a partition of X. Let A be an element of the set Tt of
minimal cardinality. For the subset a, construct a
transformation @p:X » X as follovs: ¢(M)=a4 for all Metr, and the
restriction ¢ to A is the identity. Obviously, such
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transformation ¢ exists and peId(X,t). Hence A is a retract of
the system (X,T). Besides, if N € T and |4l < |H| then ¥ is not
even a quasiretract of (X,T).

Let us denote by Hx the set of all transformations
f € O(X,t) such that fg=g for all non-identity idempotents
gs_‘td(x,‘;). It is evident that !!x is just the set of all open
transformations of (X,T), whose restrictions to all retracts
M#X of (X,T) are the identities.

Note that lﬂxlul if and only if the system (X,tT) is such
that all elements of t\{X} are of equal cardinality. Really,
'sufficiencf( follows immediately. from the descriptions of the
retracts of (X,T) anc_l the set !!. Conversely, assume that there
exist B,C & tT\{X} with |BI<iC]. Then C is not retract. It is
clear that a transformation fiX » X, for which f{a)=a(neX\C)
and the restriction f to € is a bijection, belongs to !lx. Hence
18, 1>1.

Assume now that systems of subsets (X,.7,) and (X,.7,)
belong to the class I' mentioned in theorem 2. Let the
semigroups O(X,T ) and d(xz,ra) be isomorphic and let
x10(X,T,) » O(X,,T,) be the corresponding isomorphism.

Besides, assume that all elements of ti\(xl} are of egqual
cardinality. Then 1=, I=1. On the other hand, the subset sx of

1
O(X,t) is defined (essentially) by a first order formula in the
lanquage of semigroups. It follows that ;'p:(ﬁ,t y= ﬂ‘ Hence
1 2
|, I=1.e This implies, from what has been shown, that all
2
elements of ta\{xz} are of equal cardinality. For such a system
of subsets every element is a retract. 4

Since the systems (Xi,t') and (Xz,tej are retract systems,
it follows from lemma 1 that I'rll-ltzl.

Using lemma 2 and by the definmition of p, since x is an
isomorphiem, we obtain that for any LA tl\{xl) there exists
uae-:z\{xz) such that : s

z(Id(X,.t,i\I,il- Id(xz.r)\r,z- (2)

For each M e T\{X} with I e, let G, be the set of all
invertibe elements g of the semigroup O(X,t) such that ‘gf= r
for all f e Id(x,t)\In. It is easy to notice that a
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transformation g:X » X belongs to G! if and only if g is the
identical mapping when restricted to X\M and it is a bijection
when restricted to M. Hence G, is of equal cardinality with the
symmetric group on M.

Assume that M ez and Hz € T, are selected as in (2).
According to (2) and the definition of G, we obtain x(a“:J-G':-

Hence IHll-IHzl.

Taking into account the proved above, we may conclude now
that the systems of subsets (x‘,rl) and (xz,-:g) ;are
homemorphic. Al

Theorem 3. Let I' be a class of systems of subsets (X,T)
where the partially ordered set (T,c) is ‘a chain. Every system
of subsets (X,tr) € I'y, with T finite, is o—detefmined by the
semigroup O(X,t) within the class I. ;

Proof. Let (X,T) be a system of subaet,u where (t,c) is a
chain. For any nonempty subset M € t define a transformation
f:X » X by setting f(x)=x (x € M), f(X) € ¥ (x € X\N). Since T
is a chain, it follows that f is an open transformation of
(x,T)- 'Besidea, f is an idempotent, and hence M is. a retract.
Thus, (X,T) is a retract system. ; ; i

Let us take into addition that <t is finite; and’
't-{jl,lz,...,jn} where as.!‘ullc...: a_-x. For any ‘: € T let
El -ﬂ (i=1,...,n) denote the set of all invertible elements g

of the semigroup O(X,T) such that gf=f for all st‘ {ct‘ (1))«
For the sake of uniformity we set A= e and let. H-ﬂ be the

group of all invertible elements of O(X,t). Obviously, H| is a
subgroup of the semigroup O(X,t)..Taking into account lemma 2,
.one may conclude that the subset sl is first-order definable in
o(X,T). ‘

On the other hand, it is easy to notice that L is just
the set of all homeomorphisms of (X,T) upon itself, for which
the restriction to A is the identical mapping. We remark that,
given any invertible element g of 0(X,T), we have g(A‘)-ﬁ.l for
each 4.e T. Conversely, every bijection g:X ~ X such that
g(ﬂijr A, (i=1,...,n) is the invertible element of 0O(X,t). In
particular, any bijection on a set Al\Ai_: coincides with the
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restriction of some invertible element of O(X,t) to the set
_‘I\‘|_’(1-1,.-..n]-

Let. us denote by S= S, ., (i=0,1,...,n-1) the
141§

symmetric group on the set Ahl\ll (specifically, S5.=S, ). We
dn!:l.nc_ a mapping v, 8-+ S by letting 3
; v"m-ql'm\‘:
From the foregoing, it follows that the mapping v, is a
homomorphism of the group ll upon S, . Obviously, the kernel of
the homomorphism v, is _!l“. Hence the factor group E.IE‘“ and
the group S, are isomorphic. In particular,
I /8 1=iS | (1=0,1,...,n-1). (3)

Let us assume now.  that systems of subsets (Xl,‘tl) and
lxa,t_z) belong to‘tha class T, T, is finite, the semigroups
O(Xl,tll- and O(xz,tzi are isomorphic and x:O{xi,tll -+ 0(32,':2)
is the corresponding isomorphism. Since the considered systems
are retract systems, it follows by lemma 1 that Iz, I=Iz,1.
Without loss of generality, one may assume that o ¢ T, and
2 ¢ ta' :

From the definition of p and from lemma 2, it follows
that, by letting ¥ (I)=I, (M « Dtl,h' € 7)) if and only if
z(Ill-I., a bijection

x:1Id (X,.T,)/p = Id(xz,ta)/p
is defined. It is not difficult to verify that ¥ is an
isomorphism of the partially ordered sets (Id [J{l,tl)/p,ﬁ) and
(Id(X,,7,)/p.7). :
Let m:t = Id(x‘,tl)/p, 1=1,2 be a bijection defined by

for each g € ﬂl.

analogy with the mapping n from lemma 3. Then n is an

isomorphism of the corresponding partially ordered sets. Hence
the bijection v= rrz")-z miT, * T, is an isomorphism of the
partially ordered sets (T <) and (t,,c). " In the sequel for

Het‘, we write v(M)=N. It is easy to see that

x(I,) =TI, (Het) (4)

Elemsnts of T, we denote by Ml, L where
Mc Mc..c M= X The foregoing shows that t= (H‘, AP I
where LS Mac...i: H=X. Since x 1is an isomorphism, it follcws

from (4) and the dsfinition of HH that :x:(ﬂq)= H}—! (M ¢ T ).
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Hence the factor groups !. I!. and Ei /Hi are isomorphic.
1 s 1 s
By (3) this implies

M =101, 1M \Mi= |B _\HI| li=1,...,n-1).
It ie ev:.dent now that the systems (x ,t} and lla,t.} are
homeomorphic. The proof is completed. ;

Next we shall statea a few results concerning the
determinability by means of O(X,t) within scme classes T,
containing topological T -spaces {(with ciosed topoloq'y).. For
these classes semigroups O(X,T) contain all constant
transformations of X. Constant transformations of X are Jjus:
left zeroces in O(X,t). The folloving ltnL:unnntl can be esasy
proved in the same way as -the similar results for T‘-Ipnc“l
any isomorphism x of the semigroups O[Il,t“) and O(.ﬁl___ ,._1.‘.)
induces a bijection X between the sets of left zeroes of these
semigroups, and in turn, ¥ naturally gives rise a bijection of
the corresponding sets X, and X, etc. Therefore the proofs are
omitted.

In the descriptive set theory [1] a set T c 3; is called
by T‘-saparating if for any distinct x,y <X there exist
subsets H,L € T such that Hn{x,y}= {x} and In{x,y}={¥}.
Following it we call a system of subsets (X,T) by strong
Tl*sepexabl.e if {x)etr for each x ¢ X.

Theorem 4. Let I' be a class of strong T -eeparable
quasiretract systems of subsets. Every aystem (X,T)el' is
U-determined by the semigroup O(X,t) within the class TI'.

This result strehghten the determinability theorem [2] by
means of the semigroup of closed transformations for T, -spaces.

Corollary. Let I' be a class of satrong !“--apnrab].'c
systems of subsets (X,t) such that T is closed under finite
intersectione and unions of the type: M v{a)}er for all Met,aeX.
Every system (X,T)el’ is determined by O(X,T) within T.

To verify this statement it suffices to prove that (X,T)
is a quasiretact system under the hypotheses of the corollary.
Really, for any Met define a tranasformation f:X » X as followh:
f(x)=x(xeN), f(x)eM (xeX\N). Then feD(X,T) and f(X)=H. Hence
M is a retract.

Theorem 4’. Let I' be a class of strong I‘l-sepnr'nhlu
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. closurs systems (X,T) such that T have a quasiretract

mltilill.cntiﬂ basis T'’c T. Every (X,t)el’ is determined by the
" semigroup O(X,t) within I'.
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V.3teinbuks. Par apakikopu sistému valfio transformiciju

Anotdcija. Tiek pé&tits 8Sads JactZjums: cik pilnigi
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apakfkopu sistémas atklatu transformiciju pusgrupa nosaka
atbilstofo apakSkopu sist@mu daZEdis klas@s I'. Klases I' lomk
tiek apliikotas k&des, sadalljumi, homogZnas kvaziretraktu
sist&mas un vispdrinitas T.= telpas.

B.Mrefiufyk. O nonyrpynnax OTKPLTHX npcoﬁpaso-'lmll CHCTOM
NOAMHOKECTB .

AnHorauud.Haywaerca ponpoc of onpemesifeNocTH (¢ TOYHOCTED
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npeobpazopaHuit B PasnHEHAX Krnaccax r., B KadYecTse r
paccMaTpPHBaARTCH KaaccH weneft, paabuenut, : OOHOPONEMX
KBa3HpeTPAKTHHX CHCTeN M obobmenHbx T,~ BPOCTPaMCTB.
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ON EVEN FUZZY TOPOLOGIES

J. GUTIERREZ GARCIA and ALEXANDER P. 50STAK

ABSTRACT

A special kind of fusxy topologies in the sease of the necond suthor, the so called even fumy
topologies is introduced. Scme properties of even fusy topologies and their role in the theory of
(gemeral) fussy topologies are considersd. Besides the jroximity part of even fusay topologies
- the 90 called even fussy proximities - is introduced and briefly di d

Clasification A.M.S.(1980): §4A40, 03E72 ;
KEYWORDS: Fussy topologies, fugay praximities.

Introduction

" Soon after the inception of the concept of a fuzzy set by L.A. Zadeh [Za],
C.L. Chang [Ch] in 1968 made the first attempt to extend fundamental notions
of general topology for the case of fuszy sets. Namely, according to Chang,
a fuzzy topology on a set X is just a usual (i.e. crisp) subset r of the fuzzy
powerset X of X satisfying axioms which are natural analogs of the standard
axioms of topology (see Definition 1.3 for the precise formulation). Chang’s pi-
oneering paper was followed by many others the authors of which either investi-
gated different aspects of Chang fuzzy topological spaces or proposed alternative
viewpoints on the subject of fuzay topology and were developing corresponding
theories. Among the last ones was [Sq:] in which fuzzy topology on a set X
was realized as a mapping T:J* — [ satisfying certain axioms, i.e. a fuazy
topology in accordance with this viewpoint is essentially a fuzzy subset of the.
fuzzy powerset of the given set (see Definition 1.1 for the precise formulation
as well as the subsequent Comments 1.2.) In what follows the term “a fuzzy
topology” without specification will be always understood in this sense.



o

lthmﬂkno-nthnwfmnytopoloyhusbmwtyvhkhmbc
viewed upon as its “lower aemicnntmmty", this property is described in 1.6.
Onthnothuhmdfuslywpdoyu donothmthedualpmpeﬂ‘yd
“upper semicontinuity” described in 1.7.

"It is the pnncnpalumoﬂhupaputomvuugatafunylopolopuwm
sre uppersemicontinuous as well. They could naturally be called “continuous”:
however we prefer to use the term “even fussy topologu since the term “con-
tinuous” when discussing topological concepts is quite ambiguous and may lead
to wrong associations, The class of even fuzsy topologies is broad enough; in
particular it contains all Chang fuzsy topologies. :

We study busic properties of even fussy topologies aud their relahona vnth
general fuzzy topologies: In the last Section we discuss a proximal counterpart
_of even fuszy topologies: the o called even ﬁnly ‘praximities. :

In what follows, I will denote the unit interval [0,1]). The two- poml'. et
{0, 1} will be denoted by 2. H X is a set, then, as usually, = denotes the family
of all fuszy subsets of X andﬂxdenotﬂlhnbrdmary powerset of X, i.e. the’
family of all crisp subsets of X. Gimaful]mMEI‘r M?® = 1— M denotea}
its complement. We do not distinguish in notation bohrem cnlp mblel.n of X,
and corrupondmg characteristic functions. i

1. Even fusay topologhl

Definition 1.1. [Sm]LetXbeaut Bynfuzytopolmoul’naﬂn
function T: IX—’Imchthal 2 ?

(FT1) TO)=T()) = 1; :
(FT2) if M, N € I, then T(MAN) 3 T(M) A *r(;\r), 5

(FT3) if M) € I¥ for all he A, thes T (v m) 2 AT (M)'-'_"-

A pair (X, T)ncﬂlednhmyiﬂpolupcdlpm

hcaulfu:ytopomflx—sfnﬂuthﬁﬂhmuﬁwmof
the first axiom:

(FTY') T{c)_lbret:hanndanlcef
it is called laminated. !
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Comments 1.2. The idea of such an aproach to the subject of fussy topology
first appeared in Hohle's paper [H3]. However, there a fussy topology was real-
" ized as a fusay subset of the usual powerset of X, i.e. a8 a mapping 7:2¥ — 1.
In the present form the concept of a fuszy topalogy was introduced in 1985 in
{S04]. In the middle eighties similar ideas were discussed by some other authors,
see [Ha}, [Ku}, [Di], [Lo] and [Ge].

Definition 1.3. ECh;Let X be a set.. By a Chang fuzzy topology on X we
mean a subset T C I* such that

(CFT1) 0,1€T;
(CFT2) if M,\N €T then MANET;
(CFT3) if My €T forall AEA, Ihuyu,\ €T.

Remark 1.4. Chang fuszy topologies can be interpreted ns a special case of
fuszy topologies in the sense of 1.1. Namely, & fursy topology T: * —Jis
Chang iff it satisfies the following additional axiom:

(FTC) T(I*)C 2.

Definition 1.5. [So1] A mapping f: X — Y where (X, Tx) and (Y, y).are
fussy l.opol?rgmal spaces is called fussy continnous if T (f~1(N)) > Ty (N) for

Fusay topological spaces and continuous mappings of such spaces form a
category which will be denoted FT.

Discussion 1.8. [Sos, S04] Given a fuzzy topological space (X,7) and a €
(0,1] let W, = {M € I* : T(M) > a}. Obviously T, is a Chang fuzzy topology
on X and the family {7, : a € (0,1]} is non increasing. 7, will be referred
to as the a-level Chang fuzzy topology of the given fusay topology T and the
construction T —= {7, : a € I'} will be referred to as the descomposition of T
into the system of its a-level Chang fuazy topologies.

It is eéasy to see that for any fuzay topology T and any a € (0,1] it holds
T. = n 1',; Thus the system {7, : a EI]iainnl:eﬂ:lilmue"lowu
selmconhnumu , OF, a8 we p:el'et to say, lower semicven.
OnthmMgmammmg&mlydckmgfmy topologies
{7a: @ € I} on a set X one can define a fuzsy topology T:I* — I by setting
T(M) = V{ra({M)Aa: 0 € I}, M € I*. Besides 7, is exactly the o-level
Chang fuzzy topology T, of 7 iff the family {r, : @ € I} is lower semievea in
o, e, ifres = ..ﬂ:a Tt



112
Discussion 1.7. Given a fussy topological space (X,T) and a € (0,1] let”
{ L>J T,) denote the Chang fuszy topology generated by U Taruabne
Obviously, T, D( U T,.a) but in general the equality doea not led ltleumn

reasonable to c.onmdﬂ a special kind of fuzzy topologies for which the equlht.y
is true for all & € (0,1). We call such Tuzsy topologies even. 2

Definition 1.8. Given a fuszy topology T on a set X we say that it is even if
T = ’L;.‘J:.-) for each a € (0,1). 3

If besides T, = (ﬂ‘tga‘]'na) also for & = 0 then 7T is called sirictly even.

It is easy to see that 7 is even (strictly even) if and only if for all M € I with

0 < T(M) < 1, (respectively 0 < T(M) < 1) there exists a collection {M,}.50

such that M, < My for ¢ > ¢, sup M, = M and T(M,) > T(M) + € for all
0 . -

e> 0.

Even fuzzy topological spaces and continuous mappmgs of such spaces
form a full subcategory of FT wlnc.h will be denoted EFT.

Remark 1.9. Each Chang fuzzy topology is ob\y;iausly even. On the other
hand a Chang fuzzy topology is strictly even only in case it is discrete.

Given a fuzzy topology T on a set X we can define a collection of fuzzy
closure operators {CI,]-,,e(g 1} where Cl,: :1X — I in the following way:
Cla(M)=A{N €IX¥: N> M and N° € T.}.

It is easy to see that Cl, (M) < A, Cla(M).

Now we can give a characterization of even fuzzy topologies in terms of such
families of closure operators.

Theorcm 1.10. A fuzzy topelogy T on a set X is even if and only il for any

o € (0,1) and M € I* we have that Cla(M) = ':; Clas(M).

Proof: Sufficiency. We have only to prove that 7, C { 'LS) Tor) for each
4 a a

o€ (0,1).
Take some M € T, then Cl, (M) = M* and thersfore M* = J; Cla: (M*).

So M = '\; Cla(M*)* and Cl,/(A%)¢ € T, for every o' > &. From here we
o a
can conclude that M € ( H Tar).
o o

Necessity. Let M € I%, then Clo(M)° € 7o = { U 7o) and hence there
o’ a

exists a collection {Ngr}arsa such that N, € T, for every &' > a and
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GL(M) = u'\:lm Nor.
Thus, Ci.(M) = ,:; No©.

Since, obviously, M < Cl,(M) < Cla:(M) £ No° for every o' > o, it fol-
lo va that Clo(M) < a‘!;a Clo (M) < a'f;a(N.,r)‘ = Cla(M), that is, Cl,(M) =

A Clor(M). =

In a similar way one can prove:

‘theorer: 1.10". A fuzsy topology 7 on a set X is strictly even if and only if
for any a € [0,1) and AT € I* we have that Cl,(M) = A Cla: (M).
* a o

As shown by the next two tl eorems, the family of even iuzzy topolc sies on
a given set X is in a certain sense “dense” in l.hr family of all fuzzy tupologies
on this set.

Thaorelﬁ 1.11. Any laminated fuzzy topology T on a set .Y is a supremum
of some family of even Lazzy I.opolopu

FrooZ: Giver a fuzsy topology T let {Ta }aer be the family of its a-level topolo-
gies. Define the ‘amily of fussy topologies {T°"}ag(,1),ce(0,a) in the following

way: J
s MY 1, < Mc {01}
For each M < I* let T**(M)={ a—esup M, if M €T, - {0,1}
0, fMgT,.

,Thsfunytopohgyuev.nhmha € (0,1] and € € (0,a). To show thi.
notice that i's l.vel Chang fuzzy topoiogies:

0,1}, ifA>a;
o = (UM eT, : M <=2}, pefa—ea);
5 = \T. ; if 8 €(0,a—¢).
” it f=0.

nhpim*r,-'..( J, T5) for each B € (0,1

Indeedmcmﬂgamdpe(b,a—c) it is obvious; if A € [a — ¢,a) then
T3 (M #1)ifand only is M € T, and M < 2=2 and hence, noticing

that M = sup M‘Aa:ﬂ,wecopdndethnM\_( u T3 ).

i-2
P'E(P,a) 9
To c.mplete the proof we have to show only that T = sup sup 7°.
a€(0,1] :€(0,a)

The inequality “)"isob\mubmf) T2 for each a € (0,1] and
l-(onﬂ)‘ :
'Ibprnveihecnn zm,mppou&nthmantllel‘—{ﬂ l}nn-yelmcln
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that T(M) > y> sun  sup T™(M).
a€(0,1) c€(0,a)
S'nce M €T, it is clear that T"*/M) = y—esup M for all € € (0,7) and there-
fore y = sup T"Y(M) < sup sup T™*(M). The obtained contradiction
«€(0,7) a€(D,1] ¢€(0,a)
completes the proof. =

Theorem 1.12. Any fuzzy topology T on a set X is an infimum ofsomefumly
ol strict.y even fuzzy topologi<s.

Proofi Given a fuzzy tcpology T let {T.. }aer be de family of its a-leve! topolo-
gies. Define the famiiy of fuzzy topologies {7} a¢[o, 1),¢€(0,1~a) in the following
way: T™* = sup T;" A B .ihere

PE(D,1]
{0,1}, fa>21-¢
Tyl {mu{u o < EE8Y), iffe(o,l-¢)
if 8 € [0, ).
(T3 = {MyV My . M, € T, My < 1{2} when 8 € [a,1 - €)).

It is easy to see that this topology is both lower semieven ani strictly upper

semi ven, that is strictly even.

To complete the proof we have to show only that T = inf inf T™
a€[0,1) c€(0,1-a)

The inequality “<” i obvious hecause T < T%* for each a € [0,1) and

e€(0,1-a)

To sho. the conveise inequality suppose Jhat there exist M € IX — {0,1} and

a,c
7€ I suchtiat T(M) <y < ulﬂjf‘) ee(‘l]nlf-m]’l' (M).

In this zase M @ T, and therefore M ¢ T, = 7, for all € € (0,1 — 7), hence

¥= _inf TT(M)> inf inf T%*(M). The obtained contraliction
¢€(0 1~7) a€f0,1) ¢€(0,1~a)
completes the proci.

The property of eveness (sirict eveness) is easily destroyed by different
operations. In particular, as shown by the next example, these properties are
not preserved by subspaces and hewnce moreover by preimages.” Thus in the
category EFT initial structures and subspaces generally do not exist.

Recall that if Y is a set, (X, T) is a fuzzy topological space and f:Y — X

is a may ping, then the pr.imag Ty of T :a defined by the formule Ty (M) =
sup{T(N): M = f~1(N)} (see e g. [Sos)).
Natice vhat Ty 18 obvi~usly the initial fuzzy topology for f in the category FT.
If (X, T) is a fuzzy topological space and ¥ € X, then tue cor :sponding
subspace is naturally derined 28 Lue pair (Y, Ty) where Ty is the initia’ fuzay
top slogy for the inclusion mapping 1:Y — (X,T). Exphcitely: Ty(?7) =
sup{T(N): M =Y AN} (seeeg. [Soa)).
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LCxampl 1.13. Let (X, 7) be a Chang fuszy topological space cortaining at
least tw~ points, Let Y be a prof =+ crisp subset of X and let. P € IV be such
that U)y # P for ail U € r. (In particular if 7 is a crisp .opolcgy then as P
~ne can take any non cri.p fuszy set).

Define Chang fuazy tupologies 7, a € 1, as follows:

For a € [},1} let 7, be r;

For x € [;,i)hl Ta = (TU{P, : 8 € (0,1 — 2a]}) where the fuzzy set P, € 1*
. v JP(z), "zEY; |

.3 defined by P,’z) = { & ke

Foca€[0,1) let 7o = (ry U{M : M < 1-4a];).

Tor each & € [0,1) it hold: 7, = u":of.r. Indeed, this is obvious for o # 1. In

case @ = * =T, but on the other hand it is clear that no fuzzy set P, can
belony to all 7+ simultaneously, and Let e r = A* Tat.
a'<

Define a fussy topology T: X — I by secting T(M) = V{ro Aa : a € I} for

. each M € I’*. From (1.6) it follows that 7, are just the a-levc' Chang fuzzy
_topologies 7, of T.

Since, obviously, r, = (.'\;' 'f.-} for cach o’ > a, the fuzzy topology 7T is even.

Consider now the subspace (¥,TY) of (X, T). It is easy to notice that P € T{.

On the sther hand, ror all & > & TX is just the restriction of T, = 7 to Y and
hence P ¢ TY for o' > . Thus T is not even. m

A special case when t'e >reimage of an (strictly) even fuzsy topology is
(strictly) even is described by the next

Proposition 1 14. The preimage o1 an even (strictly even) fuzzy topolopy
under a surjection is even (resp. strictly even).

Proof: Let f:20 — (Y,TY) be a surjection and for each a € [ let 7, =
FHTY), ie. 7 is t'e collection ~f all preimages f fuzzy sets bel nging to
TX. It is essy to see thut 7, is.a Chang fuzsy topology and the mapping
T:4%X — ., I defined by the formnla T(M) = A{ra(M)Aa : « € I} is the
fuzsy topology wtich is exactly- the preimage of 7Y under f. Since f is a
surjection, for each N € IX, f~(N) e r, ifi N € T:. It easily follows now
that -’2- T = T, for sadl_ a € I and hence 7, are exaccly the a-level Chang

fuzzy topologies of T (see 1.6). Thus to compl:te the prool one has to notice
only Cat 7o = fHTV) = (Y TEN = (¥ S TE) = (Y rw)-m
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Examples

‘T'he fuzzy discrete topology Ti(M) =1 YM € IX is strictly 2ven.

1, fM=0xM=1;

0, otherwise. i

-- The fuzzy indiscrete t0polo§y Ti(M) = {
but not strictly even.

For each ¢ € (0, 1] we consider for exch & € [0, €) the Chang fuzay topology
To={0,1}U{M : M <(2)°} and for each a € [¢,1] T; = {0,1}.
The fuzzy topology renerated by this syste.n of Chang fuzsy topologies is
T,(M)_{l if M =0,1;

e(1 —uuph) if M #0,1.
It is easy to se= Jhat il is strictly even.

- If (X.r) is a Chang fuzay topological space and zo € X, for each o € 1 we
defin. I, = rU{zh:t <o’} and 1o = (I} = {MVzh: M € 1.t < af].
One can easilv yrove that the fuzzy topology generated by this system uf
Chang fuzzy topologies is even but not strictly even.

If (X,7) is a Chang fuzzy topological epace, for each o € 1 we define
Ha=71U{M: M < a}and 7o = (o) = {M1V My : M) € 7 M, € af).
In uhis vase, it is easy to sce that m = 74 and, on the other hand, for
each a € I, if A’ € r,, there exist M, € r and M; < o° such that
" M = M, v M3. Therefore, My = M;V(le\a")ﬁfgﬁ!ﬂ"d’)ﬂ
and M = lupM..rloME( U r,a}

Thus the © .my topology ganeuted by this system of Chany, fuzsy tnpolo-
gies is strictly even.

Let {(X,7a)}nen be a countable colection of Chaug fussy ‘opologicsl
sp .ces such that 7, C 7,41 for all n € N and (nléluf.) = 13, we can define
the following: ¢
For al' u € N and all a € {511, 1],

Mo=rmJ{MEny: M<(n+1)(1- rm)}and

Ta = {na) = {Ml VM,: M, €Er, M3 € f..", h < (ll+ l)(l —m)}.

(It is clear that for @ = &, 15 =7, and for & = :h"f.—f....l)

We define 7o = 74 and i ulel..ytonutunl(u r_)D{U r..)—rg,'

there{m,(u Ta) = 14. Now, nfn)&,.huamneﬂmchﬂm

+*’a<1 Given M & Ta, there exist M, € 7,41 and M; € 7, such
that Ms < (n +1)(1 — na) and M = M, V M,.
Therefore, Mo = My V (M3 A (n + 1)1 —ne’)) € 1 for all o’ € (a, 3)
sdM= sup Muor ME({ U 71a)C(U 7).

a'€(a, ) ao'€(a,d) a'>a
Hence the fuzzy topology generated by this system of Chang fuszy tc yolo-
gies is stu.ctly even.
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%. Even faszy proxim:ties

in [M30] a concept of a fuzz; proximity which is in accordance witl. our
fi.zzy topologies was considered. in this Section we consider a special kind of
fuzzy proximities which we call even and show that in a aatural way even fuzzy
proximities corresprnd to even fuuay topologies. Fo- read=-s convenience we
reproduce here the mai: dsfinitions and some cons ructions fro.n [M3a}.

Definition 2.1. [Soj] By a fuzzy proximiiy on a set X we call a .napping
SIX xIX — ] saticfying the following axioms (M, N, Ny, Ny, P € IX):

(Fe1) 6(0,1)=0;

(FP2) 6(M, N) = §(N, M);

(FP3) 6(M, Ny) v 5(M, Na) = 5(M, N, V N2);
(FP4) (M, N) 2 sup(M + N — 1)(z)

(FP5) 8(M,N) > inf{6(M, P}V 6(N,P*): P € I"};

A pair (X, 5) where X in & set and 4 is a fuzay proximity on it is called a fuzay
proximity space.

* Dofinition 3.2, [MSo] A wapving f: X — Y where (X, 5x) and (Y, bv) are
fuzzy proximity epaces is called ﬂmm‘nally continuous if §¢(J(M), f(N)) >
Sx(M, N)forlnyM NeiXx,

Let FP denf}te the category the objecis of which are fuszy proximity
spaces and the morphisme are proximally continuous mappinge of such spaces.

A fussy praximity generates a fuszv topology in the fol'owing way.

Yt (X, 6) be a fussy proximity apace, M € I¥ and a € (0,1]). The o
closw.e of 1Y {or the closure of M at the level a) is dsfined by the equality
ClM) = (1 -V{N : §(M, N\ < a*}}VA" = (A{N°: 6{ A, N) <a*}' VM.

i.amm 2.3. Mo} Clo(M) = M°, where M® = (V{z* : §(z*", M) > uy) ¥

(:‘dmmthel’ulypmntmlhsuppmtze X and vaiwe A € - for
leduul:d reason3 we do not exclude the cau A = 9 waich con:sponds to v
degenerate fuszy pmnt z0=0. Wewricca® € M if M(z) > A). -
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Proposition 2.4. [M5c] For each a € 10, 1] the mapping M — Cl,(¥) is an
operator of fu~sy closure

Notation 2.5. S0 Let g, = {M € IX : M = Cl.,(M;] andr, ={Mel*:
M* € 6,]. It is known (and easy to verify) that 7, is A Chang fussy topology
on X.

Proposition 2.6. [M%0] The fussy closure rperator C', is contlnuom along T «
in tue following sense:

Va€(0,1] if ¢,-+0 and ¢ >0, then \:Cl,,.,_(M’):(",(M).

Proposiction 2.7. [Mgo] For each @ € (0,1), 05 = Q oy and hence 1, =
o a

N 7o
<o

Definition 2.8. [MSo] The fuzay topology T3:i ¥ — I defined by the equality
Te(1) = sup{ra M)A« : a € I} (see 1.6) is called the fuz:y topology generated
by é. ;

‘ i
T':e0.em 2.9. [MSc] If a mapping f:(X,fx) — (V,8y) is proximally con*
tinuous, then the mapping f: (X, T, ) — (¥. 7, ) is continuous.

Thus by letting $(X,5) = (X, ;) for svery fuzsy pr-ximity space (X,
and ¢(f) = f:(X,Ts,) — (Y, 5. ) for every proximally continuous mappi
f:(X,8x) — (Y, 6y), a functor ¢ from the category FP into the category
of fuzzy topological space . is obtained.

Definition 3.10. Given a fuzsy proxircty § on a set X lu say that it is eve?
if it satisfies the follwing axic.n:
(EFP) VM € 1X “ € [0,1) such that M(z) < 1° ind 0 < f(M,2") <
we have that Vp > 0 6(M,z') — §(M,z*~") > 0.
“We say that & is 'rictly ecen if it satisfes:’
(SEFF) YM € IX ¥i € [0,1) such that M(z) < t° and 0 < §(M,z')'wr .
have that Vg > 0 8! M,z") — &(M,z'-7) > 0.

T'ie .1ext theo, 2m st ablishii.g rel: tion belveen even fuzay piaximities and
even fuzzy topoiogies is the m.in resul* in tlis secion:
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Theorem 2.11. The fuzzy topology 7; generatcd by a fu~zy proximity & is
even iff 5 is even.

Proof: Asssume that § is even. Accordiag to Theorem 1.1¢ we have to prove

“hat for every M € I* and every o € (0, 1) it holds 2 Claten (M) = Clo(M).
£

The inequality A Clay (M) > Cla( M) is-obvioua.

To show the convers. inequzlity assume that ‘;\c'l Clay o M)(2) > Clo(M)(z) for

some z € X.
Then there exists ¢ € I such that z£ € ;\HCL:#.(M) but z¢ Z Cl (M) and

hence z* ¢ Cl,(M) also fc- some A < (. However thic means that z* ¢ M i.e.,
M(z) < X and o(z°, o) < 6(z*°, M) < a®. ;
Consider now the two posibilities:
* I 6(z>", M) > C, taking into accourt that §(x2", M) < a°, M(2) < A and
(EFP) holds we conclude that §(z", M) < a® for every 7> A.
In particular for g = 24£ < (, there exists > 0 snuch that 8(z"", M) <
at—¢,
However this means that z» ¢ Cl,,. (M) and so 2t ¢ D, Claso(af) wha
contradicts orr asrumption.

»+ If §(z*°, M) = 0 moreover §(z¢", M) = 0.
Take some ¢g € (0,a°), thew 5(z¢", M) < of — ep and heace in virtue o!
== € L Clase( M) it follows that 27 € M < Cla(M,. However this again
contre dict3 our assumg.tion.

‘Fhue a fuzz; topolog, gencrated by an even fuszy proximity is evea.

Fo provr the couvers-, assume that (EFP, is not velid Then there exist M €
F*,1€[0,1) and z € X such that M(z) < #° and & < t such ihat §(M,z'} =
M) #1.
8(M,z*) = o°. Then, obviously. « # Cand for each >« 5(M,z°) > g°. .
tw, if ¢ = &°, then z¢ ¢ Cl(M) fo- any B > o ard hence z* € A Cla(M).

n the other hand, z¢ € M (otherwise M(z) > 7 = s > !‘). It 18 easy to see

pow that z¢ ¢ Cl,(M). Iudeed if ¢ € Cl, (M) then §/M, z°") > a* would hold
all A < {. However *his iz imposible because obviously (M, z*") = a° for

all Ac € [s, ]

Thus '90(}1.,+.(M) # Cla(M) and hence - is not even. &

’

In a similar w.y one can prov. t] e following:

Theorem 2.11'. The fu>ay topology T; ncnerated by a fuzzy proximity 8 s
atrictlv even iff § is stiictly even.
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Examples

1.-

Define a fuzay proximity §, on a set X by setting
&M, N) = -ng_(u + N —1)(z) for all M, ¥ € I*.

It is easy to verify that 6, is strictly even.
The corresponding fuzsy topology 7;. is discrete. ie. Tj, (M) = 1 for all

Mel*,
1, f M LN &

Let&,(M,P’).—-{u: :IM(N‘ yTM,Nel

It is easy tc see tha! the fuzsy proximity &;-is strictly even.

Notice also that & > 6, and T3, (M) = T;,.

Define a [“"f' praximity T;, (M) on X by e=tting

1, fM#0and N #£0;
SN - 10, otherwis..
Or » can easily nol.ce that this fu~sy proximity is even but fails to he
strictly eveu.
The generated fus+y topology i, is ntidisc.ete, ie. T, (1) = Ty, (V) = 1
and T, (M) =0if M #0,1.

Let 64(M, N) = sun(ha A N) for all M,N € IX.

One can ensily notice thay the fuzsy proximity &4 i= not even.

The fuzzy topology generated by it can be defined by the formula

T; (M) = sup{ra(M) Aa : a € T} where 7o = I¥ e < § and , =
(0,a ][, )" if e > 1.

Dbserve that 7, is not even; if a > 1 ‘hen Tj,(ca) = a bu'

Ca g!( Y r,-} Moruwen"cuaXumﬁmteT;, unotemakoruhe

Ie.rell,ll'M(:)>3-fnrnllrEX and inf M = §, thenT(M) i but,-_
abvmnal' Mﬂ'( U fv)

L]

The tnzsy pmnnuty &(H N) defined by 65(M, N) sup M Asup N for
all A, N € I* is also not even.

One can get convinc=d in this by noticiag that the a-levels of the generated
fuz:ytopologyﬁ.lota>§nepmbythlormh ‘

*a = [0,0]% U [a, 1} and aence 7, #{Y f.,a)
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i, Gatierrazs U:.rsle, A, Boatak# Par glud8m fBai-topolofi jam.

snotdcija. Darbd ir ieviestas specidlas fAzi-topologijas
(otrd autora nuzicd) - t.s. pludas f3zi-topologijas. Tiek pétitas
Aslas jrludo FB:i-topslofiju inedibas un to loma vispArigh fhsi-
topologisko telpu teoriji. Tiek apsketits arl gludo fEzi-topolo-
#1Ju prokesindlsis analogs.

K. lytneppes Lapopa, A, locrak, O ThspgKEY HeUSTKUY TOUONOTMAXY.
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tmua ABTC0DA) OuBLUMAENONO BHIA — 7-v- PHANKAS HEUATKAS TONONOLHA.
lconelyniCA HeKOTOpH® CBOUCTBA TXARKUY ReueTRmMX Tonoxorud * of-
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This is the first one in a series of papers where we discuss such
properties of topological spaces in which clopen ( =closed and open ) sets
play the principal role.To be more precise we are interested in those
topological properties which can be characterized in terms of clopen sets.
Important examples of properties of such kind are connectedness and
_zero—dimensionality. Besides, developing this idea one can introduce also
a series of new topological properties, depending only on clopen sets;
some of these properties are, in our opinion, quite interesting and useful.
This concems, in particular, the properties of clp-compactness and
countable clp-compactness, discussed in the present paper.

By a (countably) clp—compact space we call a topological space each
clopen cover (resp. each countable clopen cover) of which contains a
finite subcover. The aim of this paper is to develop foundations of the
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theory of ~lp—compact and countablv clp—-omp_ct spaces. Some relations
of ‘hese spaces to other ciasses of topologlcal spaces wﬂl be also
discussed.

Notice, that rlp—compac: spaces first appeared (unde: lhe name of
cb—spaces) in the paper [6] wiitten by toe second avthor. That paper
contained also some statement.,. about these -paces. However mcat of the
statem-nts i1 [6] were given without proofs. The present wark includes
buth results from [6] with proofs and, r.iostly, new results.

The structure of the p~per is as follows. In Section 1 we study
elementary properties .f clp-compact spaces and discuss their reiations
t1 some oth.r cl~sses of topological spaces. The problem of products of
clp—compact spares is siudied in Scction 2. Countably clp—compact
spaces are stuuied in Secdon 3. In Section 4 spaces of quasicomponeats
of clp-compa-t and countably clp—c ompact spaces are considered.

1. CLP-COMPACT SPACES: ELEMENTARY PROPERTIES

Peplacing in the definition of th. compact topological space open
sets witl clopen (=closed and open) sets we come to the concent of a clp—
compac. space.

(1.1) Defir_'tion, A topological space is called cip—compact if every
its clupen cover (i.e. a cover with clopen scts) contrins a Fnitf. subco ver.

Tae concept of a clp-space obviously generalizes both compaciness
and connectedncss

{1.2} Assertion. Every corr pact spacs is clp-compact.

(1.2) Assertion. Every connected space is c'p-compact.

On the other hand, il is easy to construct examples showing tha. clp-
compactrass do_s not reduce to the properties of compactness and

connectedness. One general metho. of constructing such examples is
given in (1.10).



125

From the resemblance of the definitions of compactness and clp-
compactness one can expect a cetain analogy in the behaviour of these

two properties.
Howdomattﬂssmndmfactonecmseefrommesmtemems (1.4

(1.9; below.

(1.4) Proposition. If a topological space X is clp—compact and M is
its clopen subspace then M is clp-compact, too.

Proof is obvious, and therefore omitted.

(1.5) Pemark. It is naturz® to call a subset M of a space X clp-
compact if each cover of M wi.a clopen sets in X has a finite subcover.
Obviously if M is clp—compact subspace of X, tten it is also a clp-
comnact set of X. However, as different from the propeiy of
compactness, the converse does not hold. In particular, each suhset of a
connected space is , obviously, clp-compact.

One can easily prove also the following two statements:

(1.6) Proposition. If = topological space X is clp— ompact and there
exist. a continuous mapping from X onto a space Y, then Y is also clp-
compact, .

(1.7) Proposition.‘ A space X is clp—compact iff every system of its

clopen subsets with the finite intersection property has non -empty
intersectio...

(1.8) Theorem. If a space Y is clp-compact anc f is a map,ing from
a space X into Y with the following properties: .
1) f is clopen, i.e. for eviry clopen subset U of .. the image 4 (U)

is a clopensubsetof Y;

2) for every point y ,rom Y the pi :image f"'(y)iaach—mmpu:t
subset of X';
ihen the space X'is clp—compact, too.
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Proof. Let U = {Ui:i EI} be a clopen cover of the space X. Since for

each y EY the set Ay -f‘I(y) is clp-compact in X there exists a
finite subfamily ﬂy of U, covering Ay. Then, obviously U‘uy -:By is
a clopen set in X, containing the set Ay. We shall prove that for every

YEY there exists a clopen neiglibnurhood Vy such that
s (V ) cB,.
y y
Really, the set Fy:- X \By is clopen in X and therefore f( Fy) is

clopen in Y. Then the set Vy =Y \f ( Fy) is also clopen and obviously
it contains the point y .Besides, 3
ryri(vy) eri(d(ry ) nei(vy) - i (e(ny ) ov, -

-r(@)=2.i.e. f"(vy) CB,.

Since ¥ = {Vy: y EY} is obviously a clopén cover of the clp-

compact space Y, there exists a finite subcover 7' = [V y '“"Vy }
‘ L ¥

Hence, taking into account that f—’ Vv CB and
Yk Yk

B =UU:UEu for all k=1,....n and each _ is finite, we
Yi Yi Yk

n
conclude that uy U i is a finite subcover of the given clopen cover U
of the space X, i. e. X'is clp—compact.

(1.9) Proposition. A direct sum @X‘- of a family .[Xi:iEI} of
topological spaces is clp—compact iff |I1 <N, and each X‘_. is clp—
compact. (Here |4| denotes the cardinality of the set A.)



127

Proof is obvious and therefore omiited.

Basing on this fact it is easy to establish the following result which is
useful for constructing new clp—compact spaces from old ones:

(1.10) Proposition, Let(X,T) be a topological space and let T , be
the topology on X determined by the family TU{A}U{X\ A} as a
subbase. 'l"lwn(X 'TA) is clp—compact iff the subspaces (A 'TIA) and

(X\A TlX\A) of!hespaoe(x'r)areclp-compwt.
(Notice that clp—compactness of (X B A) obviously implies clp—
compactness of (X,‘I) J

We end this section with considering clp-compactness in connection
with the properties of total disconnectedness and zero—dimensionality. (A
space is called totally disconectedness if each point in it is an intersection
of clopen sets . A space is called zero—dimensional if it has a base of
clopen sets; no separation axioms are assumed unless additionally stated.)
The significance of total disconnectedness in the theory of clp—
compactness is in a certain sense analogous to the significance of the
Hausdorff axiom in the theory of compactness. Moreover, for zero—
dimensional spaces the properties of clp-compactness and compactness
become equivalent.

(1.11) Proposition. A clp—compact subspace of a totally
disconnected space is closed.

Proof. Let A be a clp-compact subspace in a totally disconnected
space X and let x €A. By total disconnectedness of X for each point

Y €A there exists a clopen set U y which contains y but does not contain

x. By clp-compactness of A one can ‘thoose a finite number of points

YpoaXy such that A (.“.Uy’U...UUyn ':UA' Then obviously UA is
a clopen neighbourhood of A which does not contain x.
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(1.12) Proposition. A zero -dir..ensional space is cln—compact iff it is
compact.

Ploof. The "if" part is obvious, (see also (1.2)). Conversel:’, assume
that X is a zero—dimensional clp—compact space ard let U be its open
ccver. since X is zero—dimensional, each U € 4 is a union of clopen

scis,i.e. Um UlV 11 EL }nndhence'V U{V dE 0 IU } s a
Ued

clupen resinement of the cover ¢. Cince X'is clo—compact, there exists a

finite subcover ¥’ of 7 and heace alsn 2 finite subcover U’ of 4. Thus

X is compact.

(1.13) Corollary. A Hausdorff zero—dimensional clp-compact space
i~ normal.

(1.14) Corollary. If X is a cip-compact 7ero—dimensional space and
A is its closed subset, then A is clp—cumpact as a subspace (and hence
also as a subset) of X,

(1,15) Corollary. A continuovs mappin~ from a clp-compact zero—
dimensiona: space X into a zero—dimensional space Y is closed.

In the statement (1.12) the condition of zero—dimensionality can not

bereplacedl.y'ﬁemndmouof.ouldmnmdnm One ran see this
fiom the following example:

(1.16) Example. (A totally disconi.ected clp—compact non—compact
space.)

Let € be the Cantor set and let €={ € :c<c | be a
decomposition of € into ccntinuum of its dense subsets G.'s with

catﬁim!ityc.lﬂ[ﬂ.l]-[t .-;«:} and define a subset X of the product

¢'x[01]ux U{d,‘ x{ }gcc Itueuyhnmoelhnﬂ:inpnre
has the desired properties.
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2. PRODUCTS OF CLP-COMPACT SPACES

The fundamental feature of the property of compactness is its
muitiplicativity. Unfortunately, as it wiil be shown by Example 2.7 clp—
compactness is not .nultiplicative: alr.ady the product of two clp—
compact spaces may fail to be clp—compact. (Notice tha: in [6] it was
erroneously claimed that clp-compactuess is preserved by products.)
However as it is estavlished below, there dre some positive results about
products of clp -comp-ct spaces in som~ special casec.

(2.1) Theorem.The product of a connected space and a clp—compact
space is clp—compact.

Proof. Let X be a connected space and Y be clp-compact. Notice first
of all that in this case each clopen subset W of the product ¥ x Y looks

like XxV where V = py(W) , i. &. V is the image of W under the
projection py:Xx Y—7 .Indeed, if WwXxV , ther there
exists ¢ €Y such that (Xxiyo})an and

(X x.! -Vo}) N (X xY\ W) » . However, this obviously contradicts the

fact that X is connected. !
Moreover, it is easy to notice that if W = X'x V an1 W clopen, than

V is a clopen subset of Y. Hence a clopencover U= {X'.x V‘-:r' EI} of
the ‘oroduct X x Y determines the clopen cover /= {Vi:i er} f Y. The

statenuent of the the srem follows now easily from the fact of clp—
compactnuss of the sprce Y.

(2.2) Corullary. The product of a connected space and a compact
space is clp—cowpact.

(2.3) Theorem The product of a compact space and a clp—compact
space is clp—compact.
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Proof. Assume that X is a compact space and Y is a clp—compact
space. Then the projection py:X xY — Y being a projection alonga

compact space transfers every clopcli subset Wof X xY into a clopen
set V= Py(W) in Y. Besides, all preimages of points under it are

homeomorphic to the compact space X. Now the conclusion of the
theorem follows directly from Theorem 1.8.

(2.4) Remark. Analysing the proofs of Theorem 2.1 and 2.3 one can
easily notice that both of them were based on the fact that the projection

py:X x Y — Y along X is a clopen mapping, i. e. transfers a clopen set

into clopen. (In case of Theorem 2.3 i: was guaranteed by comps stness of
X and in case of Theorem 2.1 it was guranteed by connectedr Los of X.)
Let us call a space X clp-projective if for every clp-compact space Y the
projection py:x x Y — Y is clopen. Now the following generalization

and specification of Theorems 2.1 and 2.3 can be formulated and easily
proved.

(2.5) Theorem. If X is a clp—projective clp—compact space then the
product X x Y is clp-compact iff Y is clp-compact.

(2.6) Problem. Is the converse of (2.5) true? To be precise, is it true,
that if the product X x Y is clp-compact for every clp-compact space Y,
then X is clp—projective?

(2.7) Example. A clp~compact space X such that the product X x X
is not clp-compact. ; :

In [7] R. M. Stephenson has constructed a completely Hausdorff
countably compact U(i) space X such that the product space X x X is
not pseudocompact. We shall show that the same space X can be used
also for our purposes. To make the paper self-contained, we shall
reproduce here Stephenson's construction. 3

Let G be a subspace of the Stone—-Cech compactification BN of the
countable discrete space N which has the following properties: N C G;
every infinite subset of BN has a limit point in G and there is an infinite
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closed subset D of the product GxG such that DC N x N.(The
existence of such a set G was established by Teresaka, see e. g. Theorem
9.15in [5].)

Let B be the space whose points are those of PN and whose topology

is the collection of all sets of the form V' U(W N(BN\(G\N)) where
V., W are open subsets of BN . Let A= {0, I} be the discrete space and let

X'= Gx{O}UBx{I} be the subspace of the product space P = Bx 4.
Consider the equivalence relation p on X' defined by the rule
(t,a)p(s,a') ifeithert=sand a=a’ or t = sEG\ N . Now the space
X is defined as the quotient space X'/p. We continue to use the
symbols (t, ) for the points of X; thus (£,0) = (1,1) for t€G\ N.

To show that X is clp-compact consider a system U of clopen sets
with finite intersection property. We need to show that there exists a

point (p,a)Ef‘l{U:U E'u}.
Since N x 4 is a dense subset of Xand N x {0}V N'x {1} = @ , for
some o €4 the system U = {UF\N x{a}:U E‘u} has the finite

intersection property. It is easy to concludé from here that there exists an
ultrafilter 4 on N such that U’ is contained in the family

{M X {u}:M GM}, and hence each member 7 €U contains some set of
the form M x {a} where M €51

Let p be the point of BN which has {dﬁNM;.M en) as a

fundamental system of neighbourhoods. We shall show that ( p.c:) ena.

To do this consider the following four possibilities:
(1) - peN; (@) peG\N; @) pepN\G, a=1 and
(4) pEBN\G, a=0.

(1) In this case p EN and hence (p,a) EN.
(2) In this case (p, O) = ( P I). Let V be an open neighbourhood of

(p, a) in X Besides, without loss of generality in this case we may
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assume that V is open also in BN, and hence there exists Mp €M such

that aﬁNMp x {:!} C V. However this means that V intersects each
[T€U and therefore, taking into account that all U are clope.,
(p,a) =N {U’:U eu}.

(3) Le. V be an open neighbou-hood of |p,1) in X. Without loss
of generility we ma, ascume in this case that
Vﬂ(Bx{]})-(Wﬂ(ﬁ?'\G)UN):\{I} for some open
neighbourhood Wof pinf N and hence there exists M €M such that
M > {1} CV, However this means t.at V intersects each I/ €1 and
hence again ‘jn 1) €en {L U Eﬂ}. :

(4) Let V be 2n open neighbourhood of ( P I) in X. (Notice that the
poirt l\ P, 0) €ae3 not exists 2 this casel ) As in (3) it is clear that there
exists M €M such that M x {1} cvVv.

‘Tak> an arbitrary set U €. Then, from the maximiality of # it
easily follows that the set Y = {n EM.’([,D) &U} belongs to M . Since
M is, obviously, a free ultrafilter, .he set Y is infinite, and therefore Y
bas a Lonit point 2 €G Thus (g,1) = (8,0) €Y x {1} CV = V. On the

other hand, it is obvious tha. (g, 1) € = U. Thus V NU » . It follows

from here that (p,I)&U uUnde=d, oth:rwis~ (p..l)EX\U Visa
clopen nc:ghbourhood of (p,1) such that VU =@.) Thus again
(p1)eniu: Ueu} ’

To complete the proof, ve have to show that X' x X is not clp—
compact.

By setting f ‘ s, :) - ((s, 0),(:, 3)) we defice a mapp.iug f fromr the
space Fx G onto .he closed subsprce (Gx [")})x(Cx {0}) cf the
product .¥ x X . Besidex, it is eas¥ o notice, that fis a homeom rphism,
Therefore, the image I(D) oftheses D” NxN “GxGisa coqm-nble
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closed subsat ot XxX. IOn the other hand , since,
f(p)ciNx {D})x(Nx{O}). £(D) i also an open discrete subset of
b g : X . From here it is ciear that X x X is not clp-compact.

(2.8) Remark. Since in the avove éxamplc the set f (D) is countab’e,

it is easy to notice thot the product X x X is not countably clp—compact
(see Section 3), too. Thus the product of two clp—compact spaces need
not be even countably clp—compact.

3. COUNTABLY CLP-COMPACT SPACES

(3.1) Definition. A *.pological space X is called countably clp-
compact if every its countable clooen cover (i. e. a countable cover with
clopen sets) has a finite subcover.

The following two statements are obvious:

(3.2) Assertion Every countably compact spuce is countably clp-
compact,

(3.3) Assertion. Every clp-compact space is countably clp—compact.
For spaces of countable weiyzht, the converse is also true:

(3.4) Proposition. A space of the countable weight is
, comrpact iif it is countably clp-compact.

The following theorem presents different charucterizations for the
property of countable cip—compactness.

. (3.5) Theorem. The following conditions are equivalent for a
wpological space X:

(1) X'is countably clp—compact;
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(2) every countable system of clopen subsets of X with finite
intersection property has a non-empty intersection;

(3) every clopen disjoint cover of X is finite ;

(4) every discrete family of clopen sets is finite;

(5) for every continuous mapping f: X — N the image f| (X ) is
finite. (Here N is the countable discrete set.)

Proof. The equivalence (1) < (2) is obvious.
To show the implication (l) = (3) assume that U = {Ua:u e,q} isa
clopen disjoint infinite cover of X, where all Ua are non-empty, and let

A be a countable subset of 4 and V = U{Uu:a $ﬂo} Then obviously
{Ua:a exo} U {V} is a countable clopen cover of X and hence there

exists a finite subcover [Ua ’”"Uu ,V}. However, this contradicts
1 n

the assumption that all Ua. are non—empty and U NU_, =@ for

a=a'.

(3)==»(4) Assume that {Uu:a E.}!} is a discrete system of clopen
sets in X, and Iet Va X\U{Ua':u Ex}. Then obviously,
{U 0@ Eﬂo} U {V} is a clopen disjoint cover of X. According to (3) it
is finite, and hence the system {U L@ e,q} is also finite.

(4) = (3) is obvious, because a clopen disjoint covér of X is at the
same time also a discrete family of clopen sets. :
To show the implication (3) = (1) consider a countable clopen cover

U= U 2 EN} By induction we obtain a disjoint countable cover

Ve VI,...,Vn....}ofXas follows:

Vj = UI'V2 = U2\UI""'V11 -Un \UIU“'UUJJ-I for all nEN.,
From (3) it follows that there exists n, €N suchthat V e & for all
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LE S and hence {UI""'UDQ} is a finite subcover of 1.

Finally, to complete the proof notice that the existence of a countable
disjoint clopen cover of X is equivalent to the existence of a continuous

mapping f: X —» N with an infinite range, and hence (3) <= (5).

The class of countably clp—compact spaces is obviously hereditary
with respect to clopen subspaces and is invariant under taking continuous
images:

(3.6) Proposition. If X is a countably clp—compact space and Y is its
clopen subspace, then Y is countably clp—compact, too.

(3.7) Propasition, If X is a countably clp—compact space and
f: X — Y is a continuous surjection, then the space Y is countably clp—
compact, too.

As shown in Section 1, in the realm of zero—dimensional spaces the
properties of compactness and clp—compactness become equivalent (see
Proposition 1.12). It is interesting to compare with this fact the following
result:

(3.8) Proposition. If X is a zero—dimensional space, then X is
countably clp—compact iff X is pseudocompact.

Proof. If X is not countably clp—compact, then according to Theorem
3.5 there exists a continnous unbounded mapping f: X' — N and hence,
moreover, a continuous unbounded mapping f: X — R, i. e. X is not
pseudocompact.

Conversely, let X be a non—pseudocompact space and let f: X — R
be an continuous unbounded function. Then it is easy to construct a
countable discrete family of open sets in X. Moreover, since X is zero-
dimensional, these sets can be choozen clopen. Hence according to
Theorem 3.5 the space X is not countably clp—compact.

(3.9) Proposition. If X is a paracompact countably clp—compact
strongly zero—dimensional T space, then X is compact.
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Proof. Let I be an open cover of X; since X is paracompact and
regular (as a zero—dimensional space), there exist an open locally finite

refinement 'I/-{Va:u <‘t} and a closed locally fini‘s refinement

T-{Fa.‘u-:'l:} of U sach that F, CV,_ for every @ <. (The sets

constituting these refinements are indexed by all ordinals, less than some
osdinal +.) Now, since X is strongly zero—aimensional, for eacha <<t
there exists a clopen set Wu ‘such that F, “W_CYV . Then,

chviously, W = {Wu:a. < 1:} is also a clopen locally finite refinement of
U. By transfinite induction we 'mnstmct a new cover {W:::u <1:},
where W =W \ u W,. Since {W ra <-:} is locally finite and
B<a B’ i
the sets Wa are clopen, che sets Wt'x are clopen, too. Thus -{W&:a < 1:}
is a disjoint clopen cover of X refining #, and hence also refining the
original cover U. According to Theorer 3.5, W_ is in fact finite (i. e. all
but a finite number of sets W/ are empty). Hence there exists a finite
subcover i U, i. e. the space X is compact.

Witli respect to products the behaviour rf countable clp-compactr.ess
has analogies with the behaviour of clp—compactness. In particular,
patterned after the proof of Theorem 2.5 one can easily establish the
following resu’i:

(3.10) 'I‘Iieoreln. I X is clp—proje:tive and countably clp-compact,
then the product X xY is countably clp—compact, if Y is countably
clp—compact.

(3.11) Corollary. The product of a compact spacc and a countably
clp—compact space is countably clp- compact.

(3.12) Coroliary. The product of a corinected space and 2 countably
clp—compact space is countably clp—compact.
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4.THE S?ACES OF QUASICOMPONENTS OF CLP-
COMFACT AND COUNTABLY CLP-COMPACT SPACES

In this section we shall establish correspondence between the
properties of ( countable ) ~lp—compactness of a space X and certain

‘compaciness—type properties of the quasicompone~t space Q(X ) (see
Theorems 4.1, 4.4, «.5). '

Recall first that the quasicomponent Ax of a point x in-& space X is
cefined as the intersection of all clonen sets containing x |2]. So y €A,

iff there are no clopen sets containing x but not y. Obviously, for
different points x,y €X either A = Ay or A N Ay = J. Therefore

one can d-fine an equivalen e relatlon q on X by setting xqy iff
A - Ay Following [2] we enc'ow the set Q( X ) of all quasicomponents
of X wit) the topology 7, determined by the base consisting of all sets

lA (A EQ(X) AC U} where U is a clopen subse* of X, It is clear
that the quotient mapping ¢q: X — Q(X ) is continuous. Notice, however,
that the topology 7 thus defined general]y differs from lhe quotient
top dlogy on the set Q(X)

(4.1) 'l'heorem. The following statements are equivalent fc. a
topological space: :

(1) Xis clp—compact;
2) Q(X ) is clp—compact;
3) Q(X , is compact.
Proof. (1) = (2) If X is clp-corpact, then Q(X ) is a150 clp—compact
a” a continuous image of X (see Propositivn 1.6).
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\2) =13) Since GyX) is zero—dimensional (see e. g. [2]) and clp-
corpact, it is also compact by Proposition 1.12.

The i~ licatiou (3) = (2 is sbvious.

To show *he implication (2) = (1) assume that X is not clp-compact,
and let & be a clopen cover of X having nn finite subcover.-Since the
grotiert mapping q: X — Q(X ) is , obviously, clopen,the system

{q(U). U C'u} 's a clcoen cover of Q( X}. Besides, it can be ea.ily seen
that Lo finite subcove ' can exists in i*, and hence Q(X ) is not clp—
compact.

(a.2) C_‘ornllary. If f: X — Y is a surjective continuors mapping and
the srace O{A)iswmm‘menlheapnm.’)(Y)iaoomplct.wo

In vi. tue of Proposition 1.8, Thet rem 4.1 implies alsce the following:

(4.3) Corollary. If f: X — Y is a clopen continuous mapping, Q(Y\
is compact and for ~ll points y €Y the spuces Q{I"I(y)) are compact,
then the space Q(X)iscmnplcl,m

In case when X is Hausdurff, the characterization of clp-éompacm
established in (4.1} admi.s a fisther specifi-ation:

(4.4) Theorem. A Fausdorff space X is clp—compact iff the space
Q(X) of its quasicomponents is homeomorphic to a Cantor .et D* (for
the eppropria.e cardinal :umber <),

Prooi. The "if" part is an immediate consequ snce of Theorem 3.1.
Conversely, assus & that X is. . Ty—space, then according to [2, Theaem
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5, p. 160] there cxists a one—to—one mapping .‘.'Q(X)—-DT. On the
other hond, according to Theorem 3.1, the space Q(X ) is cumpact and
hen-e f is a hon.comorphism.

Theorem 4.1 characterizing clp—compact spac s as those one., whnse
spaces of quasicomponents are compact, allows also to estimate ‘he
cardinality of the fam’ly Clp (X) of all clopen subsets of a :lp—compact

(4.5) Theorem. If |Clp(X )I =R, then X is clp-compac’. Conversely,
if X is a clp—compact space ana w(Q(X )) = - (in particular,
W(X ) =< RO) then |Clp(X )l < No. (Here w{X) denotes the weight of the
space X, and l*&' stands for the cardinality of the set A.)

Proof. Assume that X is not clp-compact, then in virtue of (4.1) the
space Q(X ) is not compact. We shall show that: Q(X ) contains
ur countably many clopen sets in this case, Irteed, consider tne two

possibilities: _

(HI W(Q(X)) < No . then the soace Q(X) i3 metrizable .rd hence
there exists a countable discrete subset {xl,.... xﬂ,...} in Q(X). Since
the space Q(X ) is zero-dimensional. one ‘¢an easily construct a discrete
family of clopen neighbourhoods U sernsU e e
respeciively. Now, taking unions of the sets U ,. «»Ups... in different
combinationr, we get exactly continuum different clopm s~ts in the space
Q(X) ie. F’J'!(Q(X)Hzc

@ 1f w[Q(X))> R, then, in virtue of zero—dimensionality of

Q(x). it follows that |p{Q( X) )| = w(Q( X)) > X,

. of points Xpe wX
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To complete the prcof of the first part of the .heorem, notice that,
obviously kﬂp(X )| = |CJp‘:Q(1'.' ))
ChHnversely assume that X is clp—compact and W(Q(X )} = Ro. (The
unequality w(Q(X)) =R, is guarunteed also in case W(X )sRo

because Q(X ) is a continuous inage of X and Q(X ) is compact.)

As Q(X ) ic zero—dimensional, there exists a countable base in Q(X )
consiscing of clopen sets: B = llUI"“' U n""}' Applying Proposition 1.4
we conclude that each clopen set Vin Q(X ) can be expre.sed as a urion
of a finite number of sets from B, and hence the family of all clopen sets

in Q(X J is countable. Hence the number of clopen sets in X is corntable,
too.

(4.6) Theorem. A space X¥ is countably clp-compact iff the space
QX ) of its quasicomponents is pseudocompact.

Proo®. Assume that X is not cour.iably clp-compact, then there exists a
countable clopen disjointr rover {UI""’Un""} cf X, where all U n
non—empty. Let V = q(Uﬂ) where ¢q: ¥ — Q(X ] is the quotient
mapping. Then, obviously {V,, ..,,Vﬂ,...} is a countable clopen disjoint
cover of Q(X ) and all Vn are ndn-—empty. It i easy to construct now i
continuous unbounded mapping f :Q(X ) - R.

Conversely, it the space' Q{X ) ‘s not pseudocompact and is zero—
dimensional, itiseasy to construct init a discrete countable family of
chopen sets V, ""Vn' ... . To complete the proof ‘t is sufficient to notice
tnat q_I(VI),... g I(Vn),... is a ciscrete family of clorén seis in X ana
to apply Theorem 3.5.

Since a ~ero—dimensional sprce X is homeomorphic to the space of its
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quasicomponents Q(X). from the previous theorzm. we get th=
following:

(4.7) Corollary. A zero-dimensional space is pseudocompact iff it is
countably clp—compact.

(4.8) Remark. As shown by +.. Shapiro (private communicatiot), there
_exists a zero-dimensional psendocompact space X which fzils to be
countably compact. Obvious in this casec Q(X )zx 1.¢ hence X is an
example of a countably clp-compuct space such ihat the space of
quasicomponents Q(X ) is not countably compact.

(4.9) Remark. Note that separ:ble meric spaces with compact spaces
of quasicomponents were conridered by H. Freudeutal [4] *o construct a
special kind of compactification (the so called \-compactifications).
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O clr-KOMINaKTHBIY ¥ CYETHO clp-KOMIIAKTESDx IPOCTPAHCTBAX. .

Annorang?, TononorHIecKoe 1.pOCTPAHCTEO 1L,a30PEM (cuPtHO) clp-KommakTHEM,
| ecimm KAX0E €ro (cy€THOE) NOKPLITHE OTKPLITO-3AMKHYTLIME MHOMECTBAMH HMEET
KOHETHOC NONNOKPHITHE, OYEBHNHO, KOMIAKTHHIE IPOCTPARCTEA H CBN3HLIE
NpPOCTPaHCTa SRINIOTCA pAMepamu clp-npocTparcTs. B newHO# 3aMeTxe passEBamTCE
0"HOBHI TEOPHH clp-KOoMmaKkTHIX B ¢9émmo clp-koMnakTABIX npocTpancts. CeolictBo
(cuémHoil) clp-xomuakTHOCTH BarE ro npocTpanc.sa X XapaKTepHIYETCH HOCPEACTEOM
COOTBETCTHYI JIIHX cBOfCTE mpocTparcTea Q(X ero Ke~3HKOMIIOHE.IT.

Par cln—komp aktdm un ranumuréjami ¢ aktam telpam.

Annticija. Par clp-¥ompaktu (sanumuréjami clp—komp.ktu) telpu tiek saukta tic1
topologiska telpa, kuras katrs parklajums ar reizé slégtim un valéjaim kopam satur
galigu apakSparklajumu Acimredzami, kompaktas, ki ari sakarigas telpcs ir clp—
kompaktas telpas. Sis raksts ir veltits clp-kompaktu (sanumuréj 1ai cip-kompaktn)
t~lpu pamatteorijas izveidei, ki ari iztirzi o telpu saistibu ar citir topolugisku telpu
klasém. Tiek dots clp—kompal bas (sanumuré*ami clp-kompaktibas) raksturojuns ar
atbilstodo kv zikumponensu tefpu.
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ON CLP-LINDELOF AND CLP-
PARACOMPACT 3PACES
A. Sondore

SUMMARY, By a clp-Lindelsf sp:.ce we call a topological space each clopen
cover of which contains a coun.able subcover, and by a clp-paracompact space we
call a topological spa : each clopen rover of which contains a locally finite clopen
rcfinement. The aim of this paper is to study basic properties of clp-Lindelsf and
clp—paracompact spaces Some relatic 1s of these spaces to other classes of
topological spaces will be als~ discussed.

KEY WORDS. Li.delifness, paracompactness, compactness,
connectedness, Souslin property, zero—dimensionality, clp—
compactness, clp-Lindeldfness, clp-paracompactness, ' Ip—-Souslin

AMS subject classification: 54D20, 54D18, 5405,

This paper continues a senes of works where we study
topological properties defined b clopen covers, i e. all elements of
v7hich are clopen (=closed and open) se.s.

The present article consiaers clp—Lindeldf and clp—paracompact
spuces which generalize the clp—comp:ct spaces studied in our first
paper [4).

By a clp-LindelSf space we caul a topological sp.ce each cloren
cover of which contains a countable subcover. and by a .lp—
paracompact space w2 call a topological sp.ce each clopen cover of
which contains a locnlly finite clope.. refinement. The aim of this
paper_is to r‘udy basic properties of clp—Linlel6f and clp-
paracompact spaces and to point out some relations of these spaces to
other ciasses of topological spaces.

In Section 1 we study propert’ss of cin—Lindelsf spaces. Clp—
paracompact spaces ar. the subjec. of Section 2. In the last, Section 3,
spaces of quasicomponents of clp-Lindelof and clp—paracompact
spaces are consid.red.
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1. TLP-LINDELOF SPACES |

Replacirg in *he definition of & Lindelsf spa.e open sets with
clopen sets we come to the concept ~f a clp-Lindelof space.

(1.1) Definition. A topologica® space is called clp—I ‘ndefo* if
eery its clopen cover (i. e. a cuver all elements of wiuch p.re clopen
sets) contains a countable subcover. iy | ! i

Tt e concept of a clp—Lmdeltif gpace is geuemhzauoq of a clp—
compact sgace on the one hand anc of ¢ Lindeldf space on the other:

(:.2) Assertion. Every clp—compact space is clp—Lindelﬁf.
{1.3) Assertion. Every Lindeldf space is clp—Lin(blﬂf

The Sorgenfrey line gives an example of a clp—Lmdele space,
which fails to be cln—compact. And the Nlemytzh plane it o clp-
Linc=l5f, but no. a Linc216f space. ;

it is easy to see that the folle ving statement lml‘ds'-

(1.4) Proposition. A zcro-dlmens:ons. space is c]p—[.undelof iff
it is Linueldf. ;

From the resemblance of the definitions of Lindelof and clp-
Lindciéf spaces one can expect a certain analogy in the properties of .
these spaces. The next statements establish how du the ms.ters stand
in fact

(1.5) Propocition. If 2 space X is clp- Lindel’ -and M is its
clopen sivbsnace then M. is clp-Lindeléf, too.

(1.G) Propositien. If a space X is clp-Lindelo® and there exists a
rontinzous mapping from X onto a rpace Y then Yis clp-Liadeldf,
too. i |
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(1.7) Proposition. The direct sum X = ®X 1.,1' €1 of non—empty
spaces Xi is clp-Lindelof iff all X'.,iEI , are clp—LindelEf and the
set I is countable.

Proofs of these statements are obvious and therefore omitted.

Recall that a system of sets is said to have the countable
intersection property if the intersection of every its countable
subsystem is not empty.

(1.8) Proposition. A space X is clp—Lindel6f iff every system of
its clopen subsets with the countable intersection property has the
non—ei.pty intersection.

Proof. Let X be a clp-Lindelof space and let 7 = {Vl. i€l }

be a system of its clopen subsets with the countable intersection

property. Suppose that nv, =92 Then
_ i€l

u -{U!-:Ul- -X\Vl- 91 EI} is. a clope_:n cover of the space X.

Since X is clp-Lindelof there exists a countable subcover
{U,- ,...,U‘- ,} and X = y U, = u (X\Vl. ) =
1 o n€EN ' n€N n
=X\ N VI. Hence it follows that n V. = but this

nEN n nEN I
contradicts the definition of 7/."
Conversely, assume that every system of clopen subsets of a
space X with the countable intersection property has the non—empty
intersection and let ZZ = {U o1 €l } be a clopen cover of the space

X. Then the collegtion % = {Vi: v, X\UI.,I'EI} is the .system of
clopen sets in X and besides  V, =@. Then there exists a
i€l

countable subfamily {Vi sV .} with the empty intersection. It
1 n
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is clear that the corresponding sets U, ,...,U, ,... imaha al countable
1 &l
subcover of #.

(1.9) Propesition. If a space Y is clp—hndnlﬁf ;.nd fisa
mappiny from a space X into Y with following properties: ’

1) fis clopen, i. e. for every clopen subset of X its’ urage is a
clopen subset of Y, '

2) for every point y from Y the preunage t' J(y) is a clp-
compact subset of X,
then the space X is clp-Lindolsf, too.

Proof of this fact is similar to proof of 'Iheorem 1.8 in {4} a.ul
therefore omitted.

As shown by the next ~xample the property of clp—hhdeldfneu
is not multiplicative. |

(i.10) Example. The Sorgenfrey line R, is
R, x R, is not clp-Lindelsf.

clp—'..mdel&f but

i
(1.11) Proposition. The product of 1 clp—Lindelsf spac- and a
compa.t spaie is c.p-Lindelsf. ,

(1.12) Proposition. The product of a clp—umdelﬁf space and a
connected space is clo-Lindeldf.

Proofs ‘of the last two propositions are similar w0 the
corresponding proofs of the propositions about c!p—compact spaces
(see [4], Sertion 2),

Specifying the standard terminology we say t!la?:a system
B = B‘:t €T} of subsets of X is a refin>ment of another systera
A= {As:s ES} of subsets of X if U4 =UZ# and for every tET

there exists s, €S suc* that BI CAS
t



In the sequel we shall need the following:

- (1.13) Lemma. If # is a locally finite system of clopen scis of X
~ then there exists a disjoint clopen (and hence also loca.l‘y fnite)
reﬁnuncnt o' of €.

: Proof LetZl = {U }be a Ically ﬁmte systens of clopen
-setsm.r( LetU'.-U\ u U.. Foreach:EI the|sclU' i
Jj =i
closed, becaus..U isclosedand y U, is anfopen set. On the
F<i ¢

-

other hand in virtue of local finitness of the system ¢ it holds

U U, UUJ UUJ.andhence U U. is closed.
J =i 'j<1" Jj <i j<i

Therefore for each i €I the set U ; is open, too. It is easy to notice
now “hat the family &/ ' = {U}': i€l } is a disjoint clopen refinement
of the system €.

(1.14) Proposition. Every locally finite system of non—=mpty
clopen sets in a clp-Lindel5f spa-e is - ountable. |

Proof, Assume that 7/ = {U}l:i €l }“is an uncountable locally
finite system of non-empty clonen sets in ¢ clp'—f.indewf space X.
From. Lemma 1.13 it follows dm there exists a disjoint clopen locally
finite reiinement Z ' = {U_,- 2 ¥ 'EI] of ¢/. Besides, since # is locally
finite and uncountable, it is easy 1o notice that the system 2’ is also
uncountable and the set U’ is clopen. Therefor:
Y=y {X \uu’} is an uncountable disjoint clopcn cover of X but

this contradicts the fact that X is a vlp-Lin-el6f space.

(1.15 Corallafy. Every discrete system of clopen sets of a clp—
Lindelof space is countable.
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(1.16) Proposition. A space Xis clp—-LmdelB}[ iff every clopen
cover of X contains a countable disjoint clopen mﬁthmmt.

Proof. Let &7 be a clopen cover of a clp-Lindeldf spacr. X . Then
one can choose a countable clopen subcover {U ‘n EN } Cu. Let

-1
V:-Uj.....V:-U\UUJ . It is easy to see that the
-]

family % = {V nEN}thusobtmned:sacounmbledm’om:clopen

cover of the space X - refining #/.
The proof of the converse pari is obvious. l

E
(1.17) Corollary. A space X is clp-Lindelsf 1{!‘ every
cover contains a countable locally finite clopen nt.

|
its clapen

L ‘
Replacing in the definition of a Souslin spa#;omq sets with
clopen sets we come to the concept of a clp—Souslinspace: |

(1.18) Definition. A topological space is calléd clp—Souslin if
the cardinality of each disjoint system of clopen dis;omt non—empty
subsets is countable.

As the next two examples show, the properties of clp-Souslinness
and c]p-l..mdelbf -es8 are incomparable (cf Corollu'y L.15).

(1.19) Example. Let. X be infinite, p €X be some fixed point
and let 7 = {x }u{u: p ev }u {v X\A,ACX, |A| Ro}
One can easily see that 7 is a topology on X and ﬂle spaqc (X T )
is compact (and hence also clp-Lindeldf) but fails be clp—Soushn.

(1.20) Example. 'Ihe space R, x R, (see Example 1. 10) is clp~
Souslin, but is not clp—Lindelof.
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2. CLP-PARACOMPACT SPACES

(2.1) Definition. A topological space is callodj clp-paracompact
if every its clopen cover contains a locally finite cloren rcﬁhamcnt.

(2 2) Assertion. Every clp-Lindelsf space is clp—paracbmpact.

|

Proof follows from Om'olla.ry 1.17.

|

(2.3) Assertion. Every paracompact space is cl'p—paracbmpact.

Clp-paracompact spaces can be cha:actenzed by the help of
dujomheﬁnemen:s

(2.4) Propositlon. A space X is clrpmo@pmt iff every its
clopen cover contains a disjoint clopen refinement. - :

Proof of the “if” part follows from Lemma 1,13,

The proof of the converse part is obvious smoe every disjoint
clopen refinement is locally finite. , ‘

From Propositions 1.16 and 2.4 follows:

(2.5).Corollary. Every clp-Lindeldf space is clp—paracompact.

(2.6) Example. Let X - for every o <c be a connected non—
paracompact space. It is easy to see that the space @{Xa. a <c} is
' clp—paracompact, but is neither clp-Lindeldf nor paracompact.

One can easily prove also the followving two statements;

(2.7) Propesition. Bvery clp-paracompact clp-Souslin space is &
clp—Lindeltf space.

(2.8) Proposition. If a topological space X is clp—paracompact
and M is its clopen subspace then M is clp—paracompact, too.
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(2.9) Proposition. If a space Y is clo—pmcompact and fisa
continuous mapping from a space X int>» Y with foﬂomg properties:

1‘ fis clopen,

2) for every point y from Y the preimage f ‘(y) is a clp-
compact .ubrst of X,

then the spac. X is clp—parac~mpact, too.

Proof. Noice first that since fis c‘ai:cn in viﬁ‘ue of 'Iimposition

2 8 we can assume .hat the lmngeomeﬂlewholespdce Y. Let

-!U i EI}bee clopencoverﬂfﬁmnpaoeX Smcf,formh

y €Y .he set Ay -f "(y) is clp—compat_:t m.:X l:hete exists a

: P bR

finite subfamily Zly - {Ui:i EIy] Df. /4 cov?nng Ay . Then,
obviously, Uiz P B ¥ is a clopen set in X. i

Then recall the fact from Theorem 1.8 in [] that for every

Y=Y there e-ists a clopen neighbourhood' Vy such that

t~lyv )cE; . L

Since 'V-{V '-yEY} " - a clopen cover of the clp-

paracoLipact space Y there exists a locally finite clopen refinement

{Wj.JEI} Then {f 1( J).JEI}lsnclopencqverorthe
|

space X. For each j€J there exist y . €Y and ij j‘sm:h t[gt
{ ;

11 O : ‘
FAIW. ) Cf \'4 CB = U It is. easy to
o7 B 9 e .w
sy
unde.stand that the famil:

y.,-ey}isalomnyzmaupm

refinement of 7. The.efore X is clp—paracompa.t. |

r = | : - 2
if (Wj)nui.;er. €l
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(2.10) Proposition. A direct sam @X of a fam:]y l{X | EI}
of mpologlcal spaces is clp—par..compact iff each X . is clp-
paracompact. : F

The “only if” part follows by the help of Propusitior. 2.8,

Conversely, let &l = {Ua: a EA} be a clopen qovcr of the space
X. Then the Smily 7 = {UG NX,:a€A,i € }' is obviously also

a clopen cover - of X . Thus for each . €I

Y, -{Uanxl. :uEA}isaclopmcoverofd:lp—-ﬁamcompact
o o -

space X ; and hence there exists a locally finite Elapen refinement
e ‘ i

v of ¥, . i |
]o .'0 | }
Lets = y V Obvmusly.fuaclopmwﬁncmcntofﬂ.o
i€l

complete the proof notice that .5 is obviously loca]ly ﬁm -

(2.11) Proposition. A 2zero—dimensional spacd is clp-
paracompact iff i* is pacacompac*.

Proof is obvious.

(2.12) Ezample. Cince, as one can easily noticc R, x R, (see

Example 1.10) is not clp-paracompact, it follows tha: the product of
two clp-paracompact spaces need not be clp-paracompact.

Pattemea afier the proofs of the corre.poncing statements about
clp—compact spices [4], one can easily establish the following two
special cases when the product of two spaces is clp-paracuripact.

(2.13) Proposition. The product of a c.p—paracompact space and
a ccmpact space is clp—paracompac’

(<.14) Proposition. The prrduct of a clp—paracompact sp-ce and
a co.u.ected space 1s clp—puaracompact.
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3. THE SPACES OF QUASICOMPONENTS OF CLP-
LINDELOF AND CLP-PARACOMPACT SPACES.

In this section we establish relations between the properties of
clp-Lindeléfness and clp—paracompactness of a space X #nd certain
properties of the space Q(X ) of its quasicomponem;s, see [*], see also

[4], Section 4. i :

| |
(3.1) Proposition. The following statements are equivalent for a
topological space: ] |
(1) X is clp-Lindeldf,
@ Q[X) is clp-Lindelof,

(3) Q(X) is Lindelof.

Proof. ( ) (2) If X is clp—Lindelsf then Q(X ) is also clp—

Lindeldf as a continuous image of X (see Proposition 1.6).
( ) (3) Since Q(X ) is zero—dimensional a.nd clp-Lindelof it

is also Lindelof by Proposition 1.4. |
(3) ( ) Letl = { £ EI} beaclopeneovcrofX Then

Y o= {q (U ), i EI} where g: X — Q(X) is the quotient mapping,
is an open cover of the Lindelof space Q( X ), thevefore there exists a

countable subcover 7/ ' = {q (U i ): n €N } Hence the family
n ¥ . B
U'm= {U‘. 'm eN}isawumbleclopen subcover of /.
o

From Propositions 1.6 and 3.1 it follows:

(3.3) Corollary. If f:X — Y is a surjective continuous mapping
and Q(X) is a Lindelf space then Q(Y) is Lindelf, too
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" From Propositions 1.9 and 3.1 it follows: .
(3.4) Cerollary. If f:7 —Y is a clopen ml}tmuouq‘ map,.amg
Q(‘l ) is Lindeldf and for all points y €Y the spalpes Q {.f' =k (y )
|

are compact then th~ spacé Q( X ) is Lindelsf, *oo. |

(3.5) Propositicn. The following statemunts are equwalel.t for a
topologics space:
(1) X i3 clp—paracompact,
2) Q(X \ is clp—paracompact,

3) Q( Y) is paracomp.ct. \

Proof. (1)-»(2) Let X bc clp_-paraco‘lmpact cand let
v -{Vi'i EI} be a clopen cover of the space Q(W) Then

-I I |} i
{9 -I(V,-)-'i €I i, is a clopen cover of the snrace X and hence
there evists a disjoint clopen refinement Z/ d!'{vj:-‘! ej} of
{q 5 (V,. )’ i€l } (Proposition 2.4). It  follows that

{q ([vj ); jer } is a disjoint open cover oflt;he space Q(X )
Besides, clear that this cover also clopen and refines %/ and therefore
Q(X ) is also a clp—paracompact space.
( ) (3) fince Q(X) is zcm—dxmens:onal and clp-
act, by Proposition Z.11 it is als, p..racompact. ‘
(3) (1) Lz ={v;: i € | e a clopen cover of X. Then

{q(U i er}tsanopenoovm- ofthepmcompact sPﬁ“ Q(X)
and hence there exists a locally finite open refinement
Y - iv JEJ}of{(U).tEI}Foreach point x EX there
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e |
exists an open neighbourhood M of g (x ) in Q ( ) whu:q intersects
only a finite number of elements of %, 'Ihen alsq the open

neighbourhood g -4 (M ) of x intersects a ﬁnjte numbe.r of sets

from q"(‘V):{q_I(Vj):j e!} To complete the pmf it is
|
sufficient to notice that q"(‘V) is a clopen refinement of #.

From Propositions 2.9 and 3.5 it follows:

(3.6) Corollary. If f: X — Y is a clopen continuous mapping,
Q(Y) is paracompact and for all points y €Y the. oaces

Q{f"’(y)\ are compact then the space Q{X) is im'acompact, too.
| | |

By the help of Propositions 3.1 and 3.5 we can easy prove some
other properties of clp-Lindelsf and clp—paracom?act spaces (3.11-
3.14). However, first we have to develop an nppmppate neqmnoIogy

Extending the notions of openness and closedness to the clp—
situation we can introduce the following: |

(3.7) Definition. A set U C X is called clp—open if for every
point x EU there :xists a clopen set Vsuch that x €V CU.

(3.8) Definition. A set U C X is called clp—closed if for every
point x@&U there exists a clopen set V such that x €V and
VNU =g,

Obviously, clp—open sets are open and clp—closed sets a.rc closed.
Clopen sets are both clp-open and clp—closed.

(3.9) Definition. A topological space is called cip-;normal if
every disjoint clp—closed sets A and B have disjoint. clp-open
neighbourhoods U 4 and UB' "
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(3.10) Remark. A zero—dimensional space is normal iff it is a
clp-normal space. However, in general, the properties of normality
and clp—normality are incomparable.

(3.11) Proposition. Every clp—paracompact space is clp-normal.

Proof. Let X be a clp-paracempact space then the space O(X) is
paracompact. As, besides, Q{ X is Hausdorff it follows that Q( X ) is

a normal space, too (see [3]). Let A and B be disjoint clp—losed sets
of X. It is easy to see that q(A) and q(B) are disjoint closed subsets

in Q(X ) Then there exist disjoint open sets V A and VB such that
: <1

V,Dg(A) and V;Dg(B). Then U, =gV )24 and

Ug= q_I{VB) OB, UyNUp =@ and U ,,Up are clopen subsets

of X. Hence X is clp—normal.

From here and Corollary 2.5 it follows:

(<]

(3.12) Corollary. Every clp-Lindeldf space is clp-normal.

(3.13) Proposition, If a space X is clp—paracompact and contains
a dense clp—Lindelof subspace A then X is a clp-Lindelof space.

Proof. Since the quotient mapping q: X — Q(X ) is continuous it
follows that g( X) = (&) C g[A) and therefore g{A) = Q(X ). If the
space X is clp-paracompact then Q(X ) is paracompact, q(A) is a
dense Lindeldf subspace of Q(X) and therefore (see [3]) Q(X) is a
Lindel6f space. Hence by Proposition 3.1 X is a clp-Lindelsf space.

(3.14) Corollary. Every separable clp—paracompact space is clp—
Lindelof. -
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PAR C...P-LINDEJ,QFA UNCLP

Anotécija, Par clp-Lindejofa telpu tiek u-lhl tida telpa. kuras
katrs pirkldjums -+ reiz€ slégtim un vajéjam kopam sator sagurwurdjamu
apaki} irkldjumu. Un par clp-parakompaktu tick saukta tida’ nolpa.:hn'u katrd
nérklajuma ar reizé slégtim un val&jim kopim var jerakstic Iokaui galigu slEgtn un
val&ju parklijumu. Sis raksws veltits clp-Lindcjofa un clp+parakompaktu telp.
psmatipasibu izpétei, ki arl iztirza §o telpu saisiibu s~ citim lopologisku telpu
klasém. |
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COBRECTIONS TO MY PAPER "ON EQUIVARIANT HONOTOPT TYFE"

B.V. Agheev

Abstract. The pronf of the genmeralization of James-Segal's
Lheorem presented ir ou: paper (1] (The-rem i) goes off only under
the additional aseumption that the acting group is zern-dimensio-
nal., Nevertheless the statement itself is walid for an arbitrary
(compact) group: th. correct proof will be published in a forth-
coming paper. ‘

AM8 subject classification: 57815

As mentioned by 8. Antonian, ths G-map f: X-» Y defined
on page 44 of our pasper [1] is continucus only for a :ero-di-
mensional compact gronp G. Therefore, we have established the
generalization of James-Segal s theorem in the following form:

Theorem, Let G be an arditrezy compact group with
dim(G) = 0, I and Y be metric G-ANE-spaces, tnd g: X — Y be
a G-map. Then th~ following statements .re equivalent:

(a) gt X — Y is a G-homotopy equiralence;

(b) for every closed subgroup H in G the map
gn: IH —_— !H is a gomotopy equivalence.

A complite generalisation of this theorem ( i.e. for an
arbitrary compact group @ ) is proved oy the author and will be
published in th. shor% run.
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SOME GENERALIZATIONS OF
W.A.KIRK’S FIXED POINT THEOREMS

Inese Bula

ABBTRACT. Some fixed point theorems for a family of nonexpansive
mappings of a metric space are obtained. AMS SC 47H10

1.INTRODUCTION.

In a fixed point theory a great interest was roused by work
of W.A.Kirk [1], where nonexpansive mappings on a subset with
normal structure of a reflexive Banach space were examined. Later
many mathematicians generalized this result for a commutative
family of nonexpansive mappings. Also W.A.Kirk himself (together
with L.P.Belluce}) have generalized this result [2,3,4,5].
Completely this theorem for commutative family was generalized
by T.C.Lim [6]. However the possibility to generalize the
corollasy of theorem remained an open question. In this work we
generalize the corollary also.

Convexity is one of the most important set properties used
in W.A.Kirk‘s theorems. Therefore only subsets of vector spaces
are examined in these theorems, But on the other hand, see for
example [7]), it is also possible to define convexity of subsets
of metric spaces by making use of closure coperators. Convexity
structure of a metric space is earlier defined by W.Takahashi
[8]. But approach of closure operators is more general. Using
systems of subsets which are staille under arbitrary intersections
the convexity problem in a metric space is also examined by
J.?.Penot [9] and W.A.Kirk ([10]. It seems that these two
approaches are eqguivalent. However, it will be shown later by
example regarding ¢,, approach of closure operators provides the
results which are again more general than these results of
J.P.Penot and W.A.Kirk. Besides we prove the existence of common
fixed points for families of mappings. Previously it was not
done.
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2.BASIC DEFINITIONS 2D FIXED POINT
THEOREMS IN » BANLCH SPACE.

DEFINITION 1. A comvex set K of a Bamach space X has norml
structure if for each bounded and convex subset H of K with
diami#0 there exists a point y such that

sup { dix,y) | x=H )} < diamH.

This concept was .ntroduced by M.S.Brodskii and D.P.Mil.an
[11], furthe: this concept is analyzed in [12,13].

THEOREM 1 (W.A.Kirk,[1l]). Suppose K is a nonempty, convex,
bounded and closed subset of a reflexive Banach space X. and
suppcse K has normal structure. Then every nonexpansive mapp’ng
f:¥¥ has a fixed point.

COROLLAPY. If in the Theorem the condition that K is bounded is
replaced by the condition that the sequence (f2(p)) gy i& bounded
for souwe peK, then f has a fixed point.

DEFINITION 2. A family F of mappings £:% is called commutative
if:Yf, geF: (fog) (x) =(gef) (x),VxeX.

As mentioned in Introduction it was the Theorem 1 that was
gen.ralized by T.C.Lim [6] for a ml:ntive family of
nonexpansise mapping3.

But generalization for the corollnry is not g:.vun :u- [6l.

THEORESA 2 (|14]). Suprise K is a nonempty, convex and closed
subset of a reflexive Banach space X, and suppose K has normal
structure. If for a coomutative family F of nonexpansive mappings
f:K% there exists a point peK -such that the set.
 g=l(fofy0...of) (P)|£;, 200, £ €. & DEN} i bounded, then P hrs a

common fixed point: W F'xf|fer}+3.

DEFINITION 3. A Banach space X is said to be strictly convex if.
all the puints of the unit sphere of X are not inner points of
straight lines in the unit ball.

W.A.Kirk and L.P.Belluce generalized Theorem 1 in [2] as
following:
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THEORE 3 (72]). Suppose X is a strictly convex reflexive Banach
space ar.d K is nonempty, convex, closed, bcunded subset of X,
and suppose K has aormal structure. Suppose F is a commutative
family of nonexmansive mappings f£:%. Then F has i1 common fixed
point.

Combining the ideas of the Corollary and the pre rious
Theorem 3 we chall prove:

TLEOREM A. Suppose X is a2 strict'y -onvex reflexive Banach space
and K is a nonem)ty, convex and closed subset of X, and suppose
K has normal rtructure. Suppose F=(f,,f;,...,f,) is a commutative
family of nonexpansive selfmaps of X. If there exists a poin" peK
such lhat tlie seguenceas (£2(p)),n for every feF are bounded,
then F has a common fixed point.

v Proof. ,

By Corollary of Theorem 1 it is kno mn chat
Pixf,+e,1=1,2,...,n. Since X is strictly convex, Fixf is convex
for nonexpansive mapping {:F. Sirce f,,4=1,2,...,n are
continuous, the sets Fixf,, i=1,2,...,n are closed.

Let rs inductively prove that

FixFsN{ Fixf,|1-1,2,...,nl*e.
lor n=1 the statement is true by the Corollary of Theorem 1.
Assuming that MM{Fixf,|i=",2,...,kl*e, let us prove that
NiPixf,|i=1,2,...,k+1}re. We denote (£, f,,...,£;)} by F’ andf,,,
by f£. Since by assumption £(x)=£(Ff, (x))=£,;(f(x)), it follows “hat
f{x)erixF’ and hence f:FixF’'—¥ixF’'. Let us prove that Lhe mappinc~
f has a fixed point in rhe set FixF'. The setsFixf,, 1=1,2,....,k
are nonemnty, closed and co:vex, therefore Fix '’ is closed an”
covex being an intersection of closed and convex se.s. We choose
zeFixf freely. Tha functional Jz-y], yeK is weakly lower
semicontinuors and therefore attains its minimal value in each
nonempty, closed and convax subset of the reflexive Banach space,
consequently, also in FixF . Since X is strictly convex for z
there exists a unique nearest point z,:FixF/:
: 1z-z I=inf{)z-y]|yeFixF'}s
slz-f(z,) I=2£(2) -£(z,) Islz-2,] .
Ve ~onc1ude that f(z,)=x,. Then zeFixFee. a

We remark that the previous result is not true for an
_infinite fa.m.ly of mappings.
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3.GENENPALIZATIONE TN A METRIC SPACE
WITH o CLOSURE OPERATOR.

Further we act in a metric space X with a distauace d. Let
PX be “he Bset of ¢11 subsevs ~f X.

DPFINITION 3. A closure operator on X is a mapping. f:PX¥¥PX
satisfying for each A,BePX the following conditions :

1) AcB=~S({A)-S(B) ;

2) AcS(A) ,

3)s(s(a))=5(a) .

NEFINTTION 4. » clused operator S on X is said to be algebraic
if for each A=PX and x=S(A. there exists a finite set Pc A such
that xeS(F!. ‘

Let S be a rlosure operator on X. A subset A of X is said
to be S-closed if A=S(A). A space X is said to be S-commact if
each centered system of S-closed s.bsets of X has a nonempty
intersection. Note that intersection of S-closed subsets of X is
S-closed. For more detailed applications of closur: operators in
fixed point theory sec [7].

Let us cenote

A(x, £, .=N{2cPX|xeA & A=5(A) & £(A) c4),VIeF,VxeX (xaf(x)) .

2 x):=N{ AePX|xe” & A=5 (A} &VIeF: £(2)cAl.

In a metri~ space with a closur. operator for commutative family
we rrove the f~llowing common fi..ed point

THEOREM 5 ([15]). Suppose (X,d) is a metric space, £ is a closure
operator on X én” X is S-compact. Tet each clused ball B(x,r)
(x=x, reR,,) be S5-closel. et F be a commutative family cf£
ncnexpansive selfmaps of X, such that the set of fixed points
Fixf for every mappings feF is S-closed. If there exists a po:.nt
yeA(x,f) such that .
sup { d(y,z)/ z€A(x,f) } < diamA(x,£f)

for every feF ar 1 x8X (x»#f(x)) (condition of ®"normal structure®),
then F has a common fixed poirt.

Condition of mormal structure is of a great importance in
the _esults of W.A.Kirk and L.P.Belluce. Note that if a Baaach
space X has normal structure then the ccidition of Theorem 5
follows, but She converse is not true.

BEXAMPLE, Consider the space
o= (X%, .0 00X, .. ) |X,EP, n=1,2, .. &lri.._mx_-ul.

The space ¢, has aci normal structure
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(Vxec,: Ix]: =sup!x, neN}) .
For every xeB,(0;1):=lyec,|lyl&VneN:y, 20} define £(x): 0. ‘then

Zdx, £) ={tx|te[0;1] H{z#0) and for ' the point -y:-% it holds

sup {}+-2]|zea (x, £) l=J§1<m=dim(x,n )

Ingpired by theorems in [4,Th.3,7] we nrove

THEOREM 6. Suppose (X,d) is a metric space and S is a closure
operator. Let X is S-compact. Let ea<h closed ball B(x,r) (xeX,
reR,,) be S-closed. Let F be a family of continucus selfmens of
X satisfying:

1)3gel0;1[ Vx, yex V1, geF:

d(£(x),g(y)) smaxid(x,y) qdiam(A(x)UA(y))}:

2) VxeX (IveF: v(x) vx) T yeA(x) : supldly, z) |zeA(x) !:diamA(x) .

Then F has a common fixed puint. .

¥ FROOF,

Using Zorn‘s Axiom and S-compactness of X we conzlude that
there exists a minimal nonempty S-closed and invariant uvider F
subset M of X. )

Let aeM, and there exists feF such that f(a)#a. Since
Ala)cM, minimality of M implies that M=A(a). By 2) thire exists
a point yea(a)=M such that:

supld(y, z) |z€Z (a)}=: r<diamA(a) .

Consider the set A:=(N{B(x,r)|xeM}) I M. It is nonempty

because yeA and it 18 S-closed as an intersection of S-closed
sets. We prove that A is invariant under F. Let us assume tha*
there exist zeA and geF such t'.at g(z)eA. Then there exists weM
such that weB(g(z),r). Hence A1:=B’(g(x) ,;m M is a proper subset
“of M. A, is invariant undcr F because for each xeA, and feF it
holds: -
dif(x) ,g(2)) smaxla(x, z) jgdiam(A{x)Ua(z))}<
smaxlr; gdiamM:r (z€A and xeA cii) .
The set A&, is nonempty (g(z)ed,) and S-closed. By minimality of
M it is clear that M=4,. Hence f£/i)cA Viek. By minimality of M
obviously M=A. However diamAsr<diamA(a)=diamM. The obtained
contradiction completes the proof a

We prove in a metric space with a closure operator a theorem
similar to the theorems from [4,7].
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THECREM 7 ([16]). Suppose ‘X,d) is a metric space and S is an
algebraic closure operator on X. Suppose S(2)=L(STA)) ~:2'(A) for
each AePX and X is S§’-compact. Let each closed ball L(x,r) (xeX,
reR,,) be S-closed. If F is a family of continuous selfmaps of
X satisfying:

1)3,€10;1[ Vx, yex VI, geF:

d(£(x) ,gly)) smaxid(x, y) ; gdiam(A(x)Ua(y)) };

<) Vxe(SVvEF: v(x) ox) J yeA (x) :

sup { inf { tap { dly, £#(x)) |mzn } neZ* } feF) <diama(x) ,
then F has a comm.n fixed point.

In Theorem 6 ian [.] W.A.Kirk examines a more general
sitnation: when there exists an integer N such that f£¥ has
diminishiig orbital d.ameters on X. A similar theorem is true in
a metric spere with a closre operator for one nonextansive
mapping and also for a family of mappings.

THEOREM B8, Suppose (X,d) is a metric sp.ce and S is an algebraic
closure operator on X. Suppose Z(A) =8(J(X))=:8/(A) for
mach As:X aci X is §'-compact. Let each closed ball B{x,r) (==X,
reR,,) ve B-closed. If F is family of se)fmaps of X satisfying-
1)3tel0;1( Vx, yexXVr, geF
d(f{x),gty) ) smaxld(x, y) ) tdiam(A(x)UA(y) ) };
2) ANeN VxeX!IveFR: v(x) #x) " yeA(x) 1

sup | inf { sup { d{y, £2(x) ) |men } n2N'} feF) <diara(x) ,
then F has A common fixed point.

v Pvoof.
Using Zurn’s Axiom and S’'-compactness of X we conclude that
there exists & minimal subset M of X such ttat:
1) M+e;
2) M=3'(.1);
3) {(M)aM,VEeF.
By Throrem 7 tne family F%{ f¥|feF] has a common fixed point
x*€M. We shall prove that x* is common fixed point for family F,
We note that M=A(x*' by winimality of M.
Let there exist feF such that £(x*)=(.:*). ; By 2)
there exists # point yeA(x*) such that: 5
g=supl 1nf { sup { diy, £7(x) ) |men) n=r}feF ) < diama’x") .
Let Ayi={x*, F(x*),...,E% (x") |VFfsF}.
Then g=gupid(y, 2) |z€a,}« diama (x*)
Let re]maxlg; tdiamA(x*)};diamA(x*) [, then S(&,)cB(y,r).
We consider the set A:=(N!3(z,r)|zemM)NM. Then:
1) Ave because yei;
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2) A is S-cloced as an intersection of S-closed sets;

3) A is invariant under F. Really, if ther~ exiat ueA and
geF such that g(u)e& A, then B’g(u),r) is a pruper subset of M.
Set B(g(u),r)IM is S-closed, nonempty ’‘g{u)eB(g’u),riiM; and
invariant under F. Indeed, chcasing arbitrary zeB(g{v),r)IM and
heF we have:
d{g(u),nlz))Smax{d(u,z);tdiamiAa(u)UA(z))}s
Saax(r;cdiamM}=r.
The minimality of M implies: M=R(g(u),r)Ni<. The obtained
contradiction proves 3).
: Therefrre by minimality of M it follows that M=A. But
diamA<r<di~mM. The obtained contrudiction shows that initial
assumption is not true.a

Our article doesn’t answer to nany open questions formulated
in [17], where situation in details is examined in Banach spaces.
We hope that our article will be wuseful Zor furtlier
g2neralizations in a metric space using closure operato~s of many
otker theorems valid in a Banach space.
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ERRUR EST'™MATES OF THF APPROXIMATION
BY SMOOTHING SPLINES

S. ASNUSS

Summary. In thic paper we study the problem of fitting
the given measurments of an unknown function by means of
smoothing plecewise linear splines, which minimize a certain
combination of smoothness and goodness of the fit. We anal yse
the influence of 2 smoothing parameter on tLue convergence
a{ the fitting algc-~ithm. The exact error estimates on
W foar »=1,2,0 2re obtained. AMS SC 41A1S5, GE.D:I.O

0. INTRODUCTION

Let A=(O-L1<Ll<. Lt -1) for soma inttgor n>0 be a glwn
partition of the 1nt.orva1 [0.1] w.lt.h equidistant knots.
Suppose that ZaE e »Z_ are the measurments on the values or
an unknown function f at the knots of A.

By s we denote a plecewise liear cortinucus function
over the grid A-Cthat. i: the first degree splined, which
interpoclates f in the sense scti)-zi. The classic result of
Hollada'r show that the interpolating spline s appears as the
uniqu. esxution of the problem

_f[ 'ct.:>] dt.sm.tn{_flx (L)J dt]xd'l' o=z, i=1,2,... .n} €1
o

on Sobolev lpm:o H' of the absolutely continuous functions.

In many appli:ations the stroig interpolation condltions
are not adequate, since the gi‘'sn data are affected by errors.
Therefore. tha notion of a smoothing splins sp was defined in

[11. :a) as Lhe sclution of the probl*m
4

I[:' !'t.)j dt+p z [: Ct. )-:] =min _f[x Ct.,] dt+p r [x(l. )-z] Ced

imyg L=
H.ro g0 is a given s.aoothing f ramet.-l . which bai.ances gcadness
of Lhe fit agains. smooLhiess. “he solution of this
optimization proLlem Lurns out to be the first awgree spline
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ana tni @ ca. be found as the solution of the system of

linear ecuations Csee. =.g. (3],

The mzin purpose of this paper is tu estime'e the error

of smoothing by Lhe first -“egree splines and to analise on

this basis tne influence of the parameter p on the conve.gence

of the fitting algorithm.

1. MAIN RESULT

By i,p. i1 £ p = w, we denote the usual _ekasgue space

of p-int 2grable functions on (0,11, equipped with the norm
P

i/p
f(l.)‘dt.‘ » when p ¢ m,
i

et + { o
P sup vral |[fCLd |, wien p = .
te [0,1]

1
Let wp be the space of absolutely =-nitinucus functions f

vith derivative f'd.p sucn, that fr* lp =< 1. We danote
Rﬂ.n ” = sup’ Ir - sA.!‘D Im'
fe'ﬂ'P
where sp(f) is the unlqu_t spline associated vith f. t.at
is the solution of t'e smoothing problem (2 for
z !‘CL_‘J. '
We may now state our main result as follow~

Theorem. For an ever n we bhave

R - 1rph C1-p Cph,ndd,

- XY -
14rh 24+7ohCL + shrad

R,z = Rl e o SRR c:-.r’c,oh.n:n"’.
1, - -
g 27ohC4+phd

h ~4+ph
s /_ph
where h=1-(n-13,

Rp,n.m’ N 1-ﬂmeh. e IR

¢ = 1+ -h/2+¥phlClrph 3 ,

(4]

4>

<S>

6d



169

c’-:l. 2
APl <o R e el
c =1 (-3 +1

€C® 415 C2n+10phCa+phd  _ CC 1) YphCd+ph)
ca+phdcc*"-15% cc®™-13
Proof of the theorem is based on the fallewing

Blph,m =

results.

2. INTEGRAL REPRESENTATION OF THE ERROR

Our approach follows (4], where one smoothing
problem was investigated by introduction of a special basis.

Let us denote by s the unique first degree smoobthing

(=23
spline associated with the vecter e=(§ .65 .....¢ 0,
wher e 61‘.\: is the Kronecker symbol. Then sp,s'sp,z" o .sp.n
form a basis in the space of piecewise linear continuous
functions over the grid A, and the solution sp of the
smoot.l'ging problem (2) has ari expansion

n

s (Lt = §F =z
2 i=4

S CLd.
i pi

The object of this section is°to obtain the integral
representation of the error f—sp(x‘) for !‘ew:. Taking into
account that 'the smoothing operator s’ is linear and exact
for constant functions, we may assume that fC0D>=0. Thus

. 3
fcLd) = _ff'cr:pct,.-r)a-r. tel0,1),
o
where gCiL,Td)=elt-T), © is Lhe unit Heaviside function.
Therefore, we can write
1

n
SPCI‘.LJ =i§‘sp._lc1‘..)_r f CT)pCLl.‘rJdT L

o
1 4
n
= _[ f'(f)iE’sp'ict)ﬂtL.r)df = f'('r)sp(p(. , T, tydr,
o o

from which we have
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i
f(!‘)—sp(f,t).- 'l £rCTIK (L, Tdar, (dre]

o
where

KPCL.T) = pCt..'r)—sprC..'r).t.).
For further investigation of the error it is useful to

transform the expression of t.e kernel KP
n
|’1 - );sp_kct). whio T @ It .t Inla,t),

k=m

K tt,t2 = 1
=} n
L ‘p.k“')' when 7 & Jtm_l.tmln]t..bl.

k=m

n
Since Esph“’) =1, we conclude that

k=41

u Ctd), when 7 & 1t L Infa,t),

P.m=-4 m=4 m
Kp(t.r) = 8D

-V L), when 1 € 1t L InNlt.b),

P.m m—-4 m
wher e
m n

up‘ml.t) =h§lnP‘kCLJ. _ vp'mCt.) =‘§msp'kCt). <8

From (7) we can arrive at the error bound
|rct.3-spcr.ulspcpct..ﬂq. 1/p + 1/ = 1.
One can e.sily see tLhat this esiimate is exact on w;. This
completes Le p-oof «f the following lemma.
Lemma 1. Let -p(l‘) be the first degree smoothing spline
associated ~ith f e W', 17pSm, then for any tel0,1] .we have
Il.llp |f€t.)—-seCf.t)| - !Kp(t..)lq .
fewp

where 1/p + 1/q = 1 and Kp is defined by (8.
3. B_ASIS SFLINES

For further analysis of the err>r it is necessary Lo
investigate funciions sp,l:' up'm. vp_" We begin with

Lemma 2, con erning the value: of the basis spl_nes sp'k *
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Lemma 2. For k=1,2,...,n and i=1,2,...,n we have
=
.p.kc Li.) 'nr- phd' '.nti..lr)dnﬂ—mci,k) ¥

wher e Cdjjde is the recurrent sequence defined by

d‘q. d’-1+ph. djr-'..2+ph:!t:lj_’l—t:|j_z » ,J 23, 10>
D=d =—d.
n n+d n

Proof .Tf sp is a plecewise linear function over the
grid £, then there exist coefficients a, A‘ i 1...... ln
such that
s (Li=a + E kct—t Jp(l. t.) 11>
P jua

By ustng the expansion (113 the smoothirg problem (2> can
" be reduced to solving the sy=tem of linear equations

L] : ; :
O EA= b) 8 CtO-A p"-z v d=.2,. . 0. ; ciad
i=a ;
From €113 and €12a> fdllows that

p(t 3--9(‘.)-!1 :A v i=1,2,....n1.

j.i

Hence

[ =h” ics CLo-m Ct 2, i

)\‘-h"t:s L, =2 Ct e Ct 3, 1-;.3.....n—1. (S%-5)
xnf-h” ‘c-ﬁrt.n_ 28t 0.

Subst’tutirg (13 into C12b) we get

' L Ove CLOm CLomhez, L : e
hes CLO-s Ct, D+2s Ct -8 (L Owhez . 1%2,3....,n-1, (1S
MPCtn)_.pc"n—l>“pc"n)Mn % : ! (&§.5]

‘Now we can consider the basis spline Sk * 1-k<n. It
means that now ’I.-éi.l . i=1,2,...,n If k22, ther for i<k-1
" from Ci4) anc C1% we obtain :

B St =Civads  Ct ), t : :
CLI=CEB+phds_Ct. D-s Ce,_ 2. 1=8,2,....k.

o i ( ok Cia” T ok :
Therefore ki :
'_-mct, Qim0 im,2.. . k. T . e : «Qan

_Stnuar nrgu:-nts show that if kSn-1. then. for i2k+l from
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C15) ard (182 it follows

s C(td=d s _.CL DO, f=k,k+l,...,n, cisd
2.k ni-L 2k n

Let now 25k=n-i. Comparing C1i7) with (18> for i=k, we
get spy(tljdx=sp,kc"n>d

. Taking inte account Lhis
ned=k

equality, by substituting the values | €'t 2
Pk k-1

sp,k“’k’ and sp.k(tk“), received from C17) and Ci8), into

C15) we get
= X ~1
A Sp.kc Lx) _phdnﬂ-k nk

—1
» | B0 sp,kc"n) phdk.ﬂmk . ciad

where 'Dn =d d Finally from (17>, C18) and

e O SRR SIS
€193 wa can write

- 1 :
sp.k("L)-phnn,ltdmi.n(i..bdn-u—m(i.b » i70,2,...,0 . caom

For k=1 Crespectively for k=n) the equality (201 follows
from C18) and C18b) Crespectively, from C17) and (10ad),
Lhis latter can be obtained by substituting (18) for i=n
into (16> Crespectively, €17 for i=1 into C14D).

To complete the proof, we show that .ﬂn does not depend

ok
on k because

d d dn_h=CC2+ph)dk—dh_ d

= - -
zn,ht dkﬂ ks 1 k 4" n-k+4

-

—t:lkEl.'¢'=’+p!'13c:ll_‘_]l -d J=d d » k.

+ 4 2= k mz—k-dh-- lc_!n—lu-  § nan,k

Hence for k21 *
1)“.k=1>n_n=dnc 1+phd —dh_’=dm‘—dn i

Remark. It is useful for the future teo know the
expressions for d - For the roots <, and e of the
characteristic equation of the recurrent relation €10} we

have c’.=c_', e, =c, where c is defined by (6). Therefore,
dl=r':i-l+ ylc=j-‘. where values r, and M can be received

by using conditions dl=1. d’-ph-t-:l. We note that c,l-c4+ph3r: N
i=1,2 Thus



173

—tra  -jrir2
c c
de —

i 4’_+ph

Lemma 3. For the splines upm and vp y =1, 3,. .0 0,
defined in €90, we have

v I Bl v s c21>

u_ CtO=D D *d ., i=<m,
em i m n  ned-i

‘v_ Cta=D 2%, izm. c22>
2m i nti-m n i

Proof. From the previcus lemma follows that

~ 4
u, Ct>=phd *d

[-X

m
. Ed , 1i=m,
-t Ly k

g n ok ned-m
vp,mc.t'i)%”n d.‘ k;‘:md““'ksph-ﬂ“ di k§1 d" » L2m,

"By using (213, direct calculations of the sum

1 cl:-i\/z

v
£4d.-=

+e 2 2d  —d 3/ph=D, /ph
ki & L+d L 1

give the final result.

4. PROOF OF THEOREM

From Lemma 1 follows that

-
max f[K Ct,.D » + 1/ = 1 23
Lclo,ul P Iq o i

R =
Pnp
S0, to prove the theorem we need the norms |Kpﬂ...)|q for
q=1,2,m

¥We turn now to the problem of investigation of Kp(t.. o T
Let us suppose that L is a fixed peint in I:t.j‘_l.t.i]. 2%i <n.
According Lo C8) the function KPCQ...D is piecewise ccnstant

over the grid AKL). So, it is :zasy to see that
i-2
|Kpct, I =h Eu

CLI+Ct-t DO CLd+
m i-

u
[ 4 P

"
+ CL -tdv_Ctd+ hE v _ Ct),
i Pt m

meL+d
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i-2
z S | i} 2 "y 2
K St 2] = [h o i b UG S SOVE CLd s

n 2 -3
+h L v ct.)] .

] m
maie P

[K ct,.0f =mascCu Ctd,...,u_. Ctd,v_.Ctd ...,v CtI>
(=) ® PA Pi-1 P Pn
k
Cthere }:a_-O if 1>k, independently of "",,3'
m=L
Taking into account that functicns u and v are
Fm 2.m .

linear oa [t.i_‘.t._‘] and using the equalities

)

Lax DD . LD =d_ -1, \_-.n -[a —(8k+1)ph]/l.-l+p.n)
m=4,....k m=g m=4a

by Lemma 3 we obtain that
|Kpct..>|q-h"“.an 9yl 97,23, : ; Ry O
where mCt.—t.i_‘)/h.

U,,t“")"d;“"’t_.“""’_'.“Qdm.a”-"' iCl.-ﬁD)+

~ Cd wvd, tl-u)JCd Levd "c!.;w-n. :

; : 2
5 cu\-[.n' w D —cai-aaph:wuw][ e _CI."ﬂ'D] +
oo o -cam-e:amaaw][dm Ci-u)]

gﬁhtmm@,‘_‘Cdm_‘M Ic;-..o:.a (d,'MdHCI—@D-)}‘_ : E:
_Acéording to €230 and €26, Lo get, CIDE we need the
maximal  values’ of - 91 (b\). 3 qﬂl.ﬂ--. for 'u-to.il ‘and
12,2 ema ‘ : % e 5

=99 max ATt cw, 1i'p+1n|-: e
Foune’ " te2,...;n wefd,1) ""

Let us start with ‘q=s, By .i.nv-btpt.lan of the first mc..
+ Lhe second derivatives' M‘_g‘-i we Arrive at the conélusions .

gy Cw=- u‘_‘n €08 i, R i

i @ = et
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bl g \.1. =0 » u-u =1/2 + Cl/.um._‘ - 1/141)/4.
whorq '"fcdk 'dk-.”'ca’f”'“ - czdk_‘-u/:za;uwa.

The estimate O(uk<1/2 gar antees that @ {1.10.1]. Tharefore

2
max g‘.tcm -g‘.t(u‘.L) '(ti-‘) 72, 28
WEl0, 1)

where we deroted

z,= =2'%9p"* "% cd -1/.—‘->+n"‘"1:"' cq,_-1-2. a7
=1 wu-i. Tiea=i ned-i
In order t.o ost'mate E‘ foi. 1i=P,3,...:n we transform (27 to
7. e e e A T S
. ZCe -4 —L+131/lccn¢!-t_c-n-loijtlz

By diffrrentiating {_l Cas a funct.on of x=1i, xel2.nld

-4 it =B/2, ned-i =nedei

g;:(:‘ e e T >

-8/2

ntl ne/2,

whnere nintcm-"-c'"v"“)i-(c'-' —\.bs) -2Cc n+d -ll._c-h-loll.

we obtain tha. q' 70 for i_=1+n/2.
E J

J.

Since n;(O. we conclwude that E,‘ is the maxdimal vuilue cf z‘.
k]

Taking Jm..a account (25 and C(23) we get the final result
-1
R -h!) g .(u__.“)-hﬂn .D“’ “'Jn/: 2D/ 2=

o 2
Sy Lol 21 [

1-2/¢c™ "0 :] :
foh

In a similar way we .‘invost.i.gat.- g 24" Analywing tne first,
the second and the third dorivat.ivw of g on {Q,1%;
ad Cg )"'cw-o ’

.y o, ¥
B Cga‘i!! Cu)ﬂl:gzllj C1/20= -Cvi-rvma__‘:l. vhfr-

2 2 o —
v, =2 [anms_ 5D L BCD —phCent1-213) hph:]:.o.

2 »
c? Cg"i) Cw=0 » w = u:,.._'
: 2 z
s .I..D‘M'_z Cn+2-id D ) -¢4*P|‘\)(-D‘__‘—-ﬁn_l_i3fam
A 2ph

2 - 4+ph N i ’

we conclude tLhat

max g Cwd=g_ .C(w .
wel € '1 ] 2. MY k99
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It is easy to see that g . €Cw. . D, when i _=l+n-2, is the
I.I.“ z.n* 3
maximal value of g .Cw 3 for i{=2,3,....n. By (2% this

proves that

R =YY h JJ g =7 h 3 g <121,

o 2,4+n¢2

Direct calculations of the value g Ci12) give the final

2,4+n2
result C4).
Let now g=mw. Taking into account the ocbvious equality

max g Cwd= max {D ’dmz_‘ » D d.>
wel 0,11 mi i 3 n+i-i 1

from (25) we get

=0 max <D d _,D  d>=D» " max Dd
po.nA ", i1 ne2-i n+di-i L n i ned-it
i=2,...,n izd,...,n-1

By mathematical induction we prove that the sequence
cod J ' increases. The inequality Di.d >d» d

i net=i” aSiSn ned-i” T ied nea-i”
is equivalent to

B,
%

d "
n+2=i

‘28
D

: d.. . .
i-1 ned-i

which for i=1 is obvious. Under assumption that (28 is true for

* 1=k, we obtain that it holds also for i=k+1i

D d D ; d
k+t = nei-k C2+phd - k-4 - lcarpnd - n-1-k o
'”l:

'Dl: dh—l\: dn—k
- [dn-b—l: i, dnol—k ] ¥ [ dnﬂ—k = 'nk—i ] a
dn—k i dmz-ll _dml-k 'Dk
. dr £}
X oh 3 oh - -k k- ] s 0.
dn-kdn-l—.k dnd-l.-l: dma—h dlhlﬂ-k nlr
Therefore

R
i

-2
=2'p 4 AN gy Lo :
i 2 < cl 1

Thus. the thecrem is proved.
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5. CONCLUSION

Analysing the results of this paper we want to point out
the following.

1) 3Since ﬁp(ph.n) > 0, p=1,2,w, from C(ID—(5) we get 'he
inequalities

1 + ph
Rp.n.l S
1+phs2 + YeaCi+phs4d
Ppn,as'/h ﬁ__ gprmsh_m-""':_
_ 2%encarphd : a-d:—h

2) 1t can be shown that as p » ®, the values ppCph.n).

p=1,2,w, monolone increase to 1. It means that as p + ®, Lhe

errors an monotone decrease tc the errors th of the
interpolation
R =4 R «n?2 R =na

3) For a fixed p when n 4+ ®, tne smoothing aigorithm
convergens on Wf as. h"". and on w; s h'/".

4) If p=0Ci/n>, than the order of the convergence of the
suoothing algorithm or ':. p=1,2,m, ejuals to Lhe one of the
interpclating algorithm. .

It is usetul to tale into account Lthese remai ks when
croosing the smooth'ng parameter p.
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C. Acvycc. florpemMocTb N HEAHXSHUSA QyHKUMR CriaxuBaviMHH
CnJAa’HaMH. )

AHHOTauuA. B nmaHHOlli cTaTtbe paccHaTpuBaeTcs 3agmava
CrjaxMBaHHU#A HCXOAHMX JAaHHHX KyCOYHO—JHHelHbmd cnnaliHamu,
KOTOpPLE HHHHMH3HPYFT B3IBEWEHHYW CYMHY QYHKLUHOHANOB IrJalxoCcTH M
HHTEPrOAAUHK. AHAAMIHPYETCA BAHSHHE NapaMeTpa CrjaxXMBaHHA Ha
CXOAHMOCTL a.roputHa. [onyveHs ToO4YHME Ha KJlaccax , p=1.2,0m,
oueHku norpemwocTtH. YIK 517.5. ® ;

S. Asmuss. Nogludinosas aprokiimicijas ar splainiem klOdas
nOVEr Le jumi .

Anotsci ju. Cotaji r-ksta aplokota “Tunkeciju aproksimici ja
ar nogludinosiem splainiem, kuri minimiz& k8du nogludincséa un
irterpol@josa funkciondla kombinidciju. AnalizAta nogludincsa
parametra jetekme u:z algoritma konvergenci. JTeglti precizi
k] 0das novertsjumi w: klasa pie p=i,2.m.
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THE METHOD OF SUCCESSIVE APPROXIMATIONS
FOR SOLUTION OF A BOUNDARY VALUE PROBLEM
FOR TRIRD ORDER DIFFERENTIAL ECUATION
WITH FUNCTIONAL BOUNDARY CONDITIONS

V.Ponomarev

Abs~ract. Sufficient conditions are gjive, for the
convergence of the method of successive approxima-ions.
1991 MSC 34B9%

LY

Consider the boundary value pzohiem:
z‘“-f(t,z,x‘,:r'), (1)
112(-}=r1, i=1,2,3, (2)
: ﬁhufl fﬂ_lr(.fxﬂn,l!), .l!aju"(r,lt]*ﬂ, .l‘ = linear continuous
fonctionais, r <R, i=1,2,3, I=[a,b], -w<a<b<tws, Car(IxR’,R)
denota the =act of functions FiIxR°-R, satisfying the
Caratheodory conditions (1], AC°(I,R) - the set of
differentiable functions wiith ghiolqtaly continuous second
‘order derivatives, (."'(I,ln - twice continuously diffrrenciable
functions. : "
. In the wo.k sufficient conditions -re given for the metaod
of -successive approximatiors to be convergent when solving the
probem (1), (2). Similar results are siated also in the work
f<] for three-poiint BVP. : '
We assume that f satisfies the Lipschitz condition. For any
(x . .,xa), (jrl,y’,ysld? #nd almost everywhere in I hoids:

[E(E, X X, X )L (r ¥, 0] 0 ¥,) |5
k() |x,-7, |+1(t) [x,-y, |#m(t) |x,-y, ],

where functions t-+k(t), t+1(t), t-m(t) are positive, boundeu
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a.e, in I. wenote
K-vrai sup k(t), Imyrai sup 1(t),
tel el
Suppose that the '.anogen:ous BVP
x'''=0, L,x()=0, i=1,2,3
trivial solution and denote by G(t,x) a

M=vrai sup m(t).
tel

has orly the
correspunding Green’s function. Then the matrix

L)L) 11[—;]
A= | 1(1) 1(t) 12[-'.;]
L (Y 1[—53]

has an inverse 4.
Dencte by LK (t) the scalar product of three-dimensional

2 e 1
vectors [1,!‘.,—:—], A r, |-
J

Set for any tel
QUe)=|f(t, k(") K (t) ky(t)|
and suppose that gwvrai sup Qit)eR.
Denote EI-
b
I ]!t,s‘|r.'s = g.t),

|6 (t,8)|ds = g (t),

bl’l'——hb'“

[ 16ett,m)1ds = g (t).
a
Theorem. Let the candition

max !Kg (t)+Lle (L)+Hg 't))=g<l.
tel o i 2z
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Then the BVP (%), (2) has a unique solutionm.
Proof. Let Lq(I,n) be a linear normnad space equipped with

the norm
Iz} = max (K|x(%) |+L]x" (£) | +¥]x* (L) ]) - (3)
€ 5 L

Define ~uccessive appccximations
: !ott)-ﬁu(t!:
b
Xpalt) = J. G(t.,s')f(.s.rn{s),x;_‘(s),x;(s)]ds + k(L)
- \
for n=0,1,2,.., .
Let estimate [x -x |. Ve have
b

Ix,it)-x,(t)| = q [|6(e,8)|ds = qg,(¢),
T a

: b
|x;(e)-x;(2)] = q [|6,(c,5)|ds = qg (t),
_ g : :
b
Ixp(er-xg()| = q [16,,(t,9){ds = ag,(t).
.a

Hence -
lx-x | = ::: {le‘(t)-zo(izlli-.l.lr;(ti-x;(tll-&

sH|xsce)-x5(e) 1) = max (kag,(t1+2ag, () 4maz,(e)) = ag.
4.

Estimate |x'-x‘| making use of tle Lipschitz conditioun. We have

b
Ixe)-x,(t)| = [loce, o) | 12 s.x,(5), 7 () x708) )~
a

-£(5,X,(8),x,(%),x5(8)|ds =

b j
= [1ece i [xio) ix, (m)-x, o)+ 1) g ) - o | ¢
a
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b
-rm{s)]x;(s|-x;(a”]d& s I|s(z,s)[[x|:1(s|-x°|s)|+
a

+L|x (=) -x;(5) |+H|x‘1'(s)-x;(a)l|]ds_ =

s |x-x |-3,(t) = ggg (t).
Analogously
Ix;(t)-x;(t)]| < qggg (T},

|xzit)-x7(c)| = ggg,(t),
Ix,-x | = :l:; [K|gaft)-xl(t)|+J|x;i§)-x;(;)|+
i : \
Hlxg(e)-x;\0)]] € max [mg,ttn_x-qgg,u;fuq?g,(n, s

< g9 max [xa (t)+1Lg, t:)ﬂtg(n] - oo

By induction we hav. for m 0 l,...
Iz,,,~%1 = ad”.

Let us show that the séquence ox is fundamental. We have

I n«p ‘ﬂ’ " l p n,p_ll +*

+Inop-: n-p-al'"'"'"l :'ul’

@™ P v = m’;:ﬂi".'_l _«F"

HBence fundamentality of the sequence n--x1 “ollovs and, in view
of the completness of C*(I,R) ~ith respect to the norm u), it
con\m:qu to an clmt ysc'(.t,m svrh that
b - .
¥(T) = [O(E.o)f(s,70e) x (21,57 (8))dn + K (t).
o 2 X :
This wears that yedC'(I,R) tnd theref.re solves the BVP (1),
(2). ; . Roins
Show the uniqueness oi y. Lat Y, be ancther solution of the
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problea (1), (2). Then

b
Iy-y,| = max(k[|n(e,2) |- |£(s.x08).5" (5),7"()) -
terl %

-f(s.yl(s].:‘;(s},y;'(s})|da + E
b
« Lf16 (t,5V | |£(s,7(8) ¥ (3),/"(5))-
a

~f(8,y,(8),7;(7),y;(8))|ds +

b
s "]‘tﬂu(t.sl‘!-Iftsma)rr'(si,y'(sn-
a

-f(s8,y,(8),y,(9) y{(s}))|ds = |y-y lg < ly-y,|-

The contradiction obtained proved the tl.eorem.
Remark. An analogous assertion is valid for n-th oxder
‘equatiuns. § ;
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Some personal reflections on ICM94

The ICM (the Internationil Congress of Mathematici .ns) was
held in Zurich (Switzerland) from August 2 till Auvgust Li. This
was the 22 Congress and it had some important features.

first of all there was a very large number of participan’'s
from East European countries and Rusaia ( if compared with the
situation at the previous Congresses). This can be explained by
two reasons. First, now there are no artificial, administ.oative
cr political obstacles in these countries and people are free to
move abroad. Second, the Organizing Committee of the Congress
had carried out an enormous work in order to ohtain f_nancial
help for participants from these countries.

Especially 1 would like to emphasize the understanding of
the immortance of science, mathematics 1in particula:, and
necessity to support it financially,which was manifested by the
Switzerland Govern.entsby the authoritles of the Zurich Canton

- and by the Ibusiness : (especially, by bant:). :

: And, on the second hand, with this a‘*titude towards
mathematics quite good relates the opinion expressed at thre
Congress that the scientific (and, in particular mathematical
among them) community muat take care to explain to the wide
sections ol the population about the rolc of thi sclence and
the possible benefits which the society can get out from it.

One of the real steps in this direction was the fact t.at
at the ICM94 there was organiz:d a special section: applications
of mathematics in the science (in fact this meant applications

- of mathematics of the needs of the society).

: The financial help, offered by the Organizinpg Committee of
the Congress, by the 8Saros Foundation of Latvia and by local
sponsors, enabled 8 Latvian mathematicians to participate at the
Congresa These uathematiciana represented all the main centers
of mathematics in Latvia: the Universi:y cf Latvia, the

" Institute of Mathematice and Computer Science, the Institute of
Mathematics and the Riga Technical University - and from the
Latvia University of Agriculture.

Unfortunately, because of some lack of information and a
certain passivity from some colleagres the investigations of
Latvian-mathematicians in the field of applications of mathema-
tics were not enough represented at the Congress.

The wor:ing structure of the Congress: Pl:anary Addresses
(they were 16), Section Lectures (about 170) and Short Communi-
cations in the form of posters (about 1000) seems .o be adequate
to achieve pgoals of the Congress. The plenary addresses were
aimed to give an insight into the most important problems and
current trends in mathematics, the section lectures - mainly io
present surveys of the recent development of actual] problems in
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a given lfield of mathematics walle the purpose of the short
communi-at ‘ons was to give an idea about the latest vesults.

u. fortun .tely a part of lecturers (mainly In sectinns) did
not st :ceeded :hese purposes, Some lectures were full of techni-
cal details lacking clear exposition of the place of the
discussed subject anong other investigations.

From my professional point of view 1 would like to sa)
that | have got a feeling that now the theory of nonlinear
purtial differential equations 18 being developcd at the
bou.daries of the present knowladge. And, by making small stepas
in various directions the search of new ideas, new statements of
problems is going on. In partic:lar, to meet the demands of non-
linearities one can notice the tendency to work in more ganeral
spaces of functional argume-~ts. It seems that the traditional
fand handy or convenient to use) spaces, for instance stariard
sobolev spaces, are not adequate enough to deal with new nonlij-
nrar problems. Quite often and fruitful is used the approach:
by considering non-trivial refined examples to describe how far
the existing ideas. methods, etc.could be applied.

Particularly one could come to these conclusions from tue
lectures given by Fields medalis*s, As it is well known the
Fields Medals is & cuertain analogiue of ti.e Nobel prize prasented
to mathematicians. These medals are being awarded to young,
i.e., below 40 years mathemariclians for their outstanding
ach.evements in mathematics.

This time the following mathematicians were awarded by the
Fields Medal: P.-L.Lions (Unriversite Paris-Dauphine) for his
invastigations in the theory of nonlinear prrtial differential
equations; J.Bourgain (University of Illinois, Institut des
Huute; Etudes Scientifiques, Princeton) for the investigations
in the theory of finite dimensional Banach spaces; J.-C.Yoccoz
(Universite Paris-Sud) for the Investigations in dynamic systems;
E.Zelmanov (U'niversity of Madison) for the investigationa in the
group theory.

The special Rolf Nevanlinna Prize in the field of applica-
tions of mathewatics in informatics was awarded to A.Widgercston
(Hebr~w University) for his investigations in the field of the
complexity theory.

For me it was very interesting that one of the Flelds
Medals was awarded for investigatious which were close to my
proresional field of work.

At the closing ceremon - of the Congress the new Preaident
of "he Int rnational Union of Mathematicians as well as the
place anl] time o. the nert International Congress of Mathem~ti-
cians were anounced.

Now the President o1 the IUM is professor David Mumford
from tl: Harvard University and the next Congress will be held
in the Auguat of 1798 in Berlin.

In the conclusion I wouid like to say that the Congress
was very valuable for m2 from the point of view of the general

a.hematical education and particulariy it extended my outlook
on. mathematics on tl 2 whole.

U.Raitums





