LATVIJAS UNIVERSITĀTE Matemātiskās analizes katedra

MATEMĀTIKA

Zinātniskie raksti

595. sējums

Acta Universitatis Latviensis

Latvijas Universitāte Rīga 1994

UNIVERSITY
0 F LATVIA Departaent of Mathematical Analysis

Sci@ntitic papexy
Volume 595

5月5. SE

Matemātika: Zinātniskie raksti / Atb. red. A. Sostaks. Rīga: LU, 1994.

Krājumā publicēti zinātniskā darba rezultāti, kas iegūti 1992.- 1994. g. LU matematikas katedru un LU Matemātikas un informātikas institūta docētāju, darbinieku un aspirantu darbos. Krāiumā ir ieklauti arī dažu citu iestāžu un augstskolu speciālistu darbi, kas iegūti ciešā sadarbībā ar LU matemātikiem. Krājumā ietvertie zinātniskie raksti netiek recenzēti.

В сбсрник включены результаты научных исследований, полученные сотрудниками и аспирантами математических кафедр Латвйского университета, института математики и информатики Латвйского университета, а также работы специалистов других вузов и учреждений, сотрудничаюцих с математикамь. Латвйского университета. Большинство из опубиикованных в сборнике результатов потучены за период 1992 - 1994 гт. Включенные в сборник рукописи, как правило, не рецензируются.

The proceedings contain the results of the investigations made in 1992-1994 by lecturers, research workers and postgraduate students of the Department of Mathematics and the Institute of Mathemsatics and Computer Sciences of the University of Latvia. Besides the proceedings reveal the results of the investigations made by some specialists from other universities and institutes collaborating with mathematicians of Latvian University. The works included in the proceedings generally are not reviewed by referees.

REDAKCIJAS KOLEĢIJA:

A. Šostaks (atb. redaktors), S. Asmuss, J. Vucāns, J. Lapiņš

SATURA RĀDĪTĀJS

Loǧika
I. Beilinins, Z. Diskins. Infinitârie lambda rêkini 11
J. Cirulis. Abstraktas finitāru relāciju algebras dažas netradicionālas aksiomatizācijas 23
J. Cirrulis. Labojumi rakstam "An algebraization of THE first order logic with terms" 49
A. Siḷionova. Substitūcijas termu algebrās: divu aksiomatizējumu salīdzinājums 53
Algebra
Z. Diskins. Kad semantiski definēta loǧika ir algebrizējama? 57
Z. Diskins, B. Kadišs. Abstraktie pieprasijumi, shēmu pärveidojumi un algebriskas teorijas: kategoriju algebras pielietojums datubāzu teorija 83
V. Šteinbuks. Par apakškopu sistēmu valējo transformāciju pusgrupām 97
Tupoloǧija
H. Gutierrezs, A. Šostaks. Par gludām fazi-topoloǧijām 109
A. Sondore, A. Šostaks. Par clp-kompaktām un sanumurējami clp-kompaktām telpām 123
A. Sondore. Par clp-lindelofām un clp-parakompaktām telpām 143
S. Agejevs. Labojumi rakstam "On equivariant homotopy type" 157

Funkcionālanalīze

S. Asmuss. Nogludinošas aproksimācijas ar splainiem kḷūdas novērtējumi167

Diferenciālvienādojumi
V. Ponomarjovs. Pakāpenisko tuvinājumu metbde robežproblēmas atrisināšanai trešās k̄ārtas diferenciālvienādojumam ar funkcionāliem robežnosaçijumiem179

Informācija par Latvijas matemātikas sabiedribas zinätnisko aktivitäti
U. Raitums. Daži personiskie iespaidi par ICM'94 185

CONTENTS

Logics
I. Beylin, Z. Diskin. Introducing infinitary lambda calculus 11
J. Cirulis. Abstracts algebras of finitary relations: several non-traditional axiomatizations 23
J. Cirulis. Corrections to my paper "An algebraization of THE first order logic with terms" 49
A. Silionova. Substitutions in term algebras: a comnarison of two axiomatizations i
Algebra
Z. Diskin. When is the semantically defined logic algebraizable? 57
Z. Diskin, B. Cadish. Abstract queries, schema transformations and algebraic theories: an application of categorical algebra to data base theory 83
V. Shteinbuk. On semigroups of open transformations - of systems of subsets 97
Topology
J. Gutierrez, A. Šostak. On even fuzzy topologies 109
A. Sondore, A.Šostak. On clp-compact and countably cip-compact spaces 123
A. Sondore. On clp-lindelöf aid clp-paracompact spaces 143
S. Agheev. Corrections to my paper "On equivariant homotopy type" 157

Functional analysis

S. Asmuss. Error estimates of the approximation by smoothing splines167

Differential equations

V. Ponomarev. The method of successive approximations for solution of a boundary value problem for third order differential equation with functional boundary conditions

Information atout scientific activities of mathematical community of Latvia
U. Raitums. Some personal reflections on ICM'94 185

СОДЕРЖАНИЕ

Логика
И. Бейлин, З. Дискин. Введение в инфинитивное ламбда исчисление 11
Я. Цирулис. Абстракіные алгебры финитарных отношений: некоторые нетрадиционные аксиоматизации 23
Я. Цирулис. Исправления к статъе "An algebaization of THE first order logic with tems" 49
Ф. Силионова. Подстановки в алгебрах термов: сравнение двух аксиоматизаций 53
Aлreбpa
3. Дискин. Когда семантически определённая логика алгебраизуема? 57
З. Дискин, Б. Кадиш. Абстрактные запросы, преобразования схем иоалгебраические теории: применение категорной алгебры в теории баз данных 83
В. Штейнбук. О полутруппах открьттх преобразований систем подмножеств 97
Топология
X. Гутиеррез, А. Шостак. О гладких нечётких топологиях 1.09
А. Сондоре, А. ШІстак. О clp-компактных и счётно clp-компактньх пространствах 123
А. Сондоре. O clp-линделёфовых и clp-паракомпактных пространствах 143
С. Aгеев. Исправленяя к статъе "On equivariant homotopy type" 157

Introducing Infinitary Lambda Calculus

Hya Beylin *

Zinovy Diskin

Abstract

The paper introduces a notion of infinitary lambda calculus. While in the ordinary λ-calculus functions can be applied only to a single argument, our version allows multiple (particularly, infinite) applications and abstractions. So some λ-terms can involve infinitely many (or even all) variables, what makes syntactical machinery rather subtle. An algebraic semantics for the new calculus is constructed and the corresponding completeness and representation theorems are presented. AMS Subject Glassirication 03 н 40

0 Introduction
1 Calculus
1.1 Infinite tuples
1.2 General and regnaber terms
1.3 Operations over temas
1.4 Alpha sod beta theories

2 Algebras
3 Results: connéctions between syntax and algebras

[^0]
0 Introduction

Untyped lambda calculus is a well known model of computability, and all effective procedures can be modeled by λ-terms. Such terms involve a finite number of variables, i.e. a modeled procedure can call a finite number of auxiliary subroutines. Perhaps, millions and millions calls. Once, their exact number (say, 10^{7} or $10^{7}+5$) turns tnto a tedious detail, and as the rich experience of nathematical analysis shows, that is juat the moment to consider procedures with infinite number of subroutine calls and, reapectively, λ-terms of infinitely many variables.

Though this and other interpretations may look intriguing, our reeearch was initially motivated by the purely mathematical curiosity: what a λ-calculue with infinitary λ-terms does present from the algebrate point of view? It is interesting that in the universal-algebrale framework for λ-calrulus metatheory, developed in [D91], [DB98], [P998], infinitary versions of λ-calculus are described quite simply, while the feature of finitarity (each term depends just on a finite number of variables) cannot be expressed by the first order axiomas. So we had a nice algebraic version -- of an unfamiliar theory, and the goals (firat pointed in [D91] as an open problem) of the paper were just:
(1) to describe precieely syntax of some calculus allowing terms to be infinitary:
(2) to define axiomatically a class of algebras, intended to be an algebrate counterpart of the new-introduced calculus;
(8) to state adequatenees of the correeponding algebraic semantics: the main result aseerts that theoriee (1); and algebras (2) are different specifications of the same object.

There are two prineipal ways to introduce infinttary terms into calculus: one can either add infinitary applications and abstractions directly to syntax (thus obtaining term trees of finite depth and infinite breath, or allow infinite iterations of unary applications and abatraction (in that case. we have to axtend the notion of reducibility to deal with such infintte-depth term trees). We choee the former approach, due to its cloeer connections to algebra. On the other hand, the latter showe similarity to graph rewriting technique (cf. [K92] and [KK8dV98], where generalizations of Church-Roseer property for infinitary syatems are
elaborated.) Generally, as soon as our calculus copes with infinitary composition. if appears to be a finite meta-theory for infinitary graph rewriting.

Certainly, an interesting queation is how all this can be related to categorical versions of λ-calculus. Leaving it for future research, we note only that our machinery is expected to be interpreted in something like infinitary CCC, i.e. a category with infinite products and infinitary exponentials.

1 Caleulus.

In the first section we describe our version of lambda calcul. s, where terms can be applied to infinitely many arguments and abstracted from infinitely many variables. Since a natural 'currying' property also has to be postulated for finite concatenations of (possibly infinite) arguments and indices, we found it relevant to define general operations on infinite tuples. Further we will introduce simple substitution-like operations on these terms, and equivalences compatible with these operations. Theee equivalences are infinitary counterparts of α and β converatons in the ordinary lambda calculus.

Our calculus will operate with disjoint sets Const of constants, Fvar of Roman vartables (intended to be free) and Bvar of Greek varlables (intended to be bound).

The number of conatants is not restricted. Bvar and Fvar are countable and somehow enumerated by ω (the first infinite ordinal); normally we will use letters $\xi, 0, \zeta$ and x, y, z to rafer to their elements. (The idea of separation between bound and free variables to avold subatitution collisions is well known; some formal machinery was developed by Keloler[Kei63] for the case of infinitary predicate calculus. Note, however, that algebraie behaviour of term-in-formula substitutions Is quite different from that of term-in-term subatitutions: while the latter constitute a monoid-like structure itself, the former amounts to a monoid homomorphiam into another monoid agising from some closed set of logical operationa).

On the other hand, a variable bound in some torm may turn into free in its subterm. This forces us to introduce, at firat, genera. terme where Gruek variables can to free or bound (Roman varlables are always free) and then to diatinguish among them regular terms having all Greek variables bound. (Note that
subterms of regular terms may not be regular). Just the regular terms considered up to α-equivalence will be our infinitary counterpart of ordinary λ-terms: while the latter make the set Λ (Const), we would like to convert the set of the former into a substitute for Λ_{∞} (Const), that is, to define over it infiritary substitutions with the proper behaviour. It proves to be indeed possible, however, in contrast with the ordinary Λ (Const) where substitutions can be defined almost trivially, the substitutions over Λ_{∞} (Const) are derived operations with hidden internal structure. Actually, converting Λ_{∞} (Const) into a 'good' substitution algebra turned out to be unexpectedly subtle and forced us to develop a monstrous machinery of handling G̈reek and Roman variables, several kinds of substitutions and many other frightening things demonstrated below. However, the result is good: we will see that infinitary substitution, application and abstraction over Λ_{∞} (Const) behave as desired and their monstrous origin ts hidden.

1.1 Infinite tuples

What makes our calculus really infinitary, are infinitary operations of abstraction and application. Any functional can be abstracted from infinite tuple of variables, and be applied to infinite tuple of arguments. The ceiling for their dimensions is $\omega \omega$, that allows to concatenate several infinite tuples to a correct tuple again. Tuples of argaments and of lambda-indices are rather different, however we will use similar notation for them, what provides our considerations with more symmetric view.

1.1.1 Definition

An argument tuple is a function $a:|a| \longrightarrow$ Term, where $|a|<$ aiw is the tuple's length. Concatenation of two tuples a, b is defined in an evident way:

$$
|a+b|=|a|+|b|: \quad(a+b)_{i}= \begin{cases}a_{1} & \text { if } i<|a| \\ b, & \text { if } i<|b|, i=|a|+i\end{cases}
$$

Unfortunately, we would meet difficulties trying to extend this obvious construction to indices. Namely, if we atiowed variablen to repeat in a lambdaIndex, we would not be able to equalize, say, $\lambda \not \eta \eta \cdot \eta$ to $\lambda \zeta \xi . \xi$, or $\lambda \zeta_{1<\omega}-0$ to $\lambda(\eta \eta-)$. * without very complicated α-axioms. To avaid this, we impose a rigid reatriction on variable usage in lambda operator: it must be indexed by irrepetitive string of Greek variables, and a special blank symbol a is introduced for dummy variable. The preciee definition is as follows:

1.1.2 Definition

A lambda-index tuple is a partial injection $a:|a| \stackrel{C}{p} \rightarrow$ Bvar, where $|a|<\omega \omega$.
Concatenation is introduced as follows:

$$
|a+b|=|a|+|b|
$$

$$
(a+b)_{i}=\left\{\begin{array}{l}
a_{i} \text { if } i<|a|, a_{i} \text { defined, } a_{i} \in \mathrm{Rg} b ; \\
b_{j} \text { if } j<|b|, b_{j} \text { defined, } i=|a|+j ; \\
\text { otherwise undefined. }
\end{array}\right.
$$

For example: $\quad\left(\xi_{1} \xi_{2} \xi_{s} \xi_{4}\right)+\left(\xi_{2} \xi_{4} \xi_{5}\right)=\xi_{1} \square \xi_{9} \square \xi_{2} \xi_{4} \xi_{5}$

We use the symbol ε for empty tuples of both kinds (that is $|x|=0 \Leftrightarrow x=\varepsilon$). Assuming Bivar and Term fixed, we designate the set of argument tuples as Args, and index tuples as Index. It is easy to check that not only (Args,, $\boldsymbol{\varepsilon}$), but also (Index,,$+ \varepsilon$) make monoids with left reduction (that is $a+\varepsilon=\varepsilon+a=\varepsilon,(a+b)+c=a+(b+c)$, and $a+b=a+c \Rightarrow b=c$ for any a, b and c, though $a+c=b+c \Rightarrow a=b$ is not necessarily true).

1.2 General and regular terms

1.2.1 Definition

The following rules introduce a set Torm of (general) terms and corresponding functions FV: Term $\longrightarrow 2^{\text {Fvaruivar }}$ and BV: Term $\longrightarrow 2^{\text {Bivar. }}$.

	Context	Term	FV	BV
0	ceConst	c	0	0
i	$x \in$ Fvar	x	$\{x\rangle$	0
ii	$\boldsymbol{\xi \in B v a r}$	ξ	$\|\xi\|$	0

In the following two rules $k<\omega \omega$ is a parameter ordinal.

	Context	Term	FV	BV
iiv	$\boldsymbol{\xi}_{1<x} \in \operatorname{Index}, \boldsymbol{t \in T e r m , ~ R g E S F V (t)}$ $t \in T e r m, s_{k<k} \in A r g s$	$\begin{aligned} & \lambda \xi_{1<k} \cdot t \\ & t^{\prime} s_{k}<k \end{aligned}$	FV(t)-Rg ξ Lev($\left.\mathrm{s}_{\mathrm{k}}\right) \mathrm{UFV}(t)$	BV(t) $\cup \mathrm{Rg} 5$ UBV ($\mathrm{s}_{\mathrm{k}} \mathrm{iUBV}(t)$

Since we have defined lambda terms inductively, we can use induction by general term structure to determine operations and to prove theorems concerning them.
Later we will introduce another kind of induction, by the atphaterm structure.
1.2.2 Definition. A regular term is a term t with $F V(t) \leq F v a r$. The set of regular terms will be denoted by Regtern.

1.2.3 Examples. Regular terms: $x, \lambda\left[\xi_{k<\omega+7} \cdot \xi_{k<\omega+7}\right.$.

General, not regular, terms: $\boldsymbol{\xi}, \lambda \xi \cdot\left(\theta^{\prime} \theta \xi x\right), \lambda \square \xi_{k}<\omega+7 \cdot \xi_{k<\omega+8}$
The following are not correct terms at all:

$$
\lambda x . x y, \quad t^{\prime} \xi_{k<\omega \omega}, \quad \lambda \zeta . \lambda \zeta . \zeta, \quad \lambda \square .0, \quad \lambda \square \xi_{k<\omega+8} \cdot \xi_{k<\omega+7} .
$$

1.3 Operations over terms

We define three operations over terms .- variable renaming: term-in-term substitution, and lambda-quantification (lanisdaing).
1.8.1 Definition. Given a map Ren: BvaruV \longrightarrow Bvar, where VSFvar, we define renaming Ren:Term \longrightarrow Term :
(o) $\quad c e$ Const \rightarrow Ren(c) $=\mathrm{c}$
(i) $\quad x \in$ Fvar \Rightarrow Ren $(x)=$ Ren (x) if $x \in \operatorname{Dom}$ Ren, otherwise x
(ii) $\quad \xi \in$ Bvar $\Rightarrow \operatorname{Ren}(\xi)=\operatorname{Ren}(\xi)$
(iii) $\zeta \in$ Index, $t \in \operatorname{Ter} \Rightarrow \operatorname{Ren}(\lambda \zeta . t)=\lambda \operatorname{Ren}(\zeta) \cdot \operatorname{Ren}(t)$
(iv) $\quad t, s_{k<k} \in \operatorname{Term} * \operatorname{Ren}\left(t^{\prime} s_{k<k}\right)=\operatorname{Ren}(t)^{\prime} \operatorname{Ren}\left(s_{k<k}\right)$

Renaming involves all occurrences of variables, including lambda indices. If $V=\varnothing$, i.e. Ren is a permutation of Bvar, then Ren preserves regularity of terms.
1.8.2 Definition. Let Subst be a map BvaruFvar \longrightarrow Tere. Then the operation of substitution, Subst*: Term \longrightarrow Term, is defined as follows:
(o)
$c \in$ Const $*$ Subst $\boldsymbol{c}=\mathbf{c}$
(H) $\quad x \in$ Fivar \Rightarrow Subst $t x$ - Subst (x)
(ii) $\quad \xi \in$ Bvar \rightarrow Subat $\boldsymbol{\xi}=$ Subst (ξ)

(where Substing $\boldsymbol{\operatorname { l o c }}$ coincides with Id on RgS and with Subst elsewhere.)

Obviously, the rbove-introduced subetitution also preserves regularity of terms.
 the other variables to themselves, we obtain a direct generalization of the ordinary .eubetitution, denoted by [x:-t] . .
1.8.8 Examples. If Ren $-\left(\begin{array}{ll}\eta & \zeta \\ \zeta & \eta\end{array}\right]$, then Ren $\left(x^{\prime} \lambda \zeta-\zeta\right)=x^{\prime} \lambda \eta \cdot \eta$;

If Ren= $\left(\begin{array}{cc}x & \eta_{1} \\ \eta_{0} & \eta_{l+1}\end{array}\right)_{1<\omega}$ then $\operatorname{Ren}\left(x^{\prime}\left(\eta_{2} \eta_{5}\right)\right)=\eta_{0}{ }^{\prime}\left(\eta_{g} \eta_{B}^{\prime}\right.$;
$[\xi, y, z:-\lambda \eta, \eta, \eta, \eta]\left(y^{\prime} \xi^{\prime} \lambda \xi \cdot \xi\right)=\eta^{\prime} \lambda \eta \cdot \eta^{\prime} \lambda \xi \cdot \xi ;$
$[\xi:-\theta] \xi^{\prime} \lambda \xi \cdot \lambda^{\prime} \lambda \xi \cdot \xi=\theta^{\prime} \lambda \xi \cdot \lambda^{\prime} \lambda \xi \cdot \xi$.
1.8.4 Definition. Given a k-tuple $x: k \longrightarrow$ var, we define lambdaing
$\lambda^{\mathbf{x}}$: Regterm \rightarrow Regterm, as

$$
\lambda^{x_{t}}=\lambda \operatorname{Shift}\left(\mathrm{x}_{k}<\kappa\right) \cdot[\operatorname{Sh} 1 \mathrm{ft}] t,
$$

where mapping Shift=Shift ${ }_{\boldsymbol{i}}^{\mathbf{X}}:(\operatorname{Rgx} \cap \mathrm{FV}(t)) \cup B v a r \hookrightarrow$ Bvar renames Roman variables, freely occurring in t, to Greek ones, (and the others, which occur only in x, to व'es.).
A concrete choice actually influences only names of bound variables, so we may take a restriction of an arbitrary mapping FvaruBvar $\longrightarrow \mathrm{Bvar}$, for instance,

$$
\mathrm{Fvar}_{\boldsymbol{i}} \mapsto \mathrm{Bvar}_{\mathbf{2 i}}, \mathrm{Bvar}_{\mathbf{i}} \mapsto \mathrm{Fvar}_{\mathbf{2 i + 1}}
$$

1.4 Alpha and beta-theories

1.4.1 Definition. Alpha-theory is determined by the following axioms and inference rules:
((0) $\quad a=b+b=m ; \quad a=b, b=c+a=c$;
$(a 1)$ for any Ren:Bvar \longrightarrow Bvar, $a=\operatorname{Ren}(a)$;
(a2) for any y: $\omega \longrightarrow$ Pvar, $a=b, v_{k<\omega}-u_{k<\omega}+\left[y:=v_{k<\omega} \mid a-\left[y:=u_{k<\omega}\right]^{l b}\right.$;
Alpha equtvalence is the minimal α-theory.

Informally, two terms are alpha-equivalent iff they differ only in bound variablea' naming. Regular term can be α-equivalent only to regular terms; moreover, α-equivalency is compatible with lambdaing and substitution.

Now we can turn to intended semantic, or logical, aspects of the calculus. In the previous section we did not require that $f(a b)$ is the same as ($f a)^{\prime} b$ or that $\lambda \xi_{j c \omega+z^{-a}}$ can stand for $\lambda \xi_{0} \cdot \lambda\left(\xi_{j}, \cdot \xi_{\omega+r}\right) \cdot a$. We did not try at all to evaluate any terms. All this will be conatdered in the current section.

1.4.2 Concatenation axloms.

For any $\kappa, i<\omega \omega, t \in \operatorname{Term}, u, v: A r g s, \theta, \xi \in \operatorname{Index}$,
(co)
(c1)
(c2)

$$
\begin{aligned}
& \lambda \varepsilon . a=a, \quad a^{\prime} \varepsilon=a, \\
& \lambda \theta_{i<l} \cdot \lambda \xi_{k<K} \cdot t=\lambda\left(\theta_{i<\ell}+\xi_{k<K}\right) \cdot t, \\
& t^{\prime} u_{i<\ell} v_{k<K}=t^{\prime}\left(u_{i<\ell}+v_{k<K}\right) .
\end{aligned}
$$

The reader can notice that our calculus does not support any limit construction, i.e., for example, ' e do not consider $t^{\prime} u_{i<\omega}$ as a limit of $t^{\prime} u_{i<n}$ when $n \rightarrow \omega$. So finite applications are separated from infinite ones, and cannot be converted one to the other. The same relates to lambda-operators. Introduction of infinitary concatenations would definitely break the ww ceiling for tuple lengths.
1.4.3 Beta-axiom. For any $\kappa<\omega, \xi \in \operatorname{Index} k$, $t \in$ Term, u:k \longrightarrow Regterm, (β)

$$
\lambda \xi, t^{\prime} u_{k<k}=[\xi:=u] t
$$

1.4.4 Proposition. Neither β nor concatenation axioms break the regularity of terms.
1.4.5 Definition. A $\lambda \beta$-theory is a $\lambda \alpha$ theory closed under axioms $c 0, c 1, c 2$, and β.

The most important for us are $\lambda \alpha$ and $\lambda \beta$-theories over regular terms, since the syntactical procedures of lambdaing and substitution behave on Regterm/ α very similarly to λ-quantifier and substitution over ordinary λ-terms. All involved techniques become hidden. We refer to elements of Regterm/ α as alpha-terms, and in fact they are the objects over which we will construct our algebra.

2 Algebras

Let A be a non-empty set of elements interpreted as alpha-terms, and the following families of operations be defined over it.

Figure 2.1.
(Symbols $w_{i}, u, 2_{k}$ in the 5 th column mean elements of A, and in the 5 th - intended α-terms, where $x_{i<\omega}$ and $\chi_{i<\omega}$ are some enumerations of Fvar and Bvar.)

To extend the similarity with terms, we will use the abbreviations $\{i:=a\} b$ and [i:-a]b with respect to algebras, ($\left\langle<\omega, i<\kappa^{c} \longrightarrow \omega, a, b \in A, a \in A^{\kappa}\right.$).
2.1 Definition. An infinitary $\lambda \alpha$ substitution algebra (or $i \lambda \alpha S A$) is an algebra of above-introduced signature subjected to the following identities:

Parameterization:	$x_{1<\omega^{*} *}=a$	(is1)
$j<\omega$	$a_{1<\omega *}^{*} x^{\prime} a_{1}$	(is2)
	$a_{l<\omega^{*}}\left(b_{j}<\omega^{*} c\right)=\left(a_{j<\omega^{*}} b_{j}\right)_{j<\omega^{*} c}$	(is3)
K<Lw	$a_{k<\omega}{ }^{*}\left(b^{\prime} c_{k<k}\right)=\left(a_{1<\omega^{*}}\right)^{\prime}\left(a_{1<\omega}{ }^{*} c_{k}\right)_{k<k}$	(i8A)
$t<\omega \omega, j, k: c) \longrightarrow$		(isL)
$\left.\begin{array}{r} \iota<\omega \omega, \mathbf{i}, \mathbf{j}, \mathbf{k}: \iota c_{\infty} \\ \operatorname{Rg}(\mathbf{j}) \cap \operatorname{Rg}(\mathbf{k})=\varnothing \end{array}\right\}$	$\lambda_{1}\left(\mathrm{l}:=x_{k}\right] a=\lambda_{j} \cdot\left[1:=x_{j}\right]\left[j:=x_{k}\right] a$	(is α)

These tdentities have their origin in the substitution algebras [F82], infinitary clones [C90], λ SAs [D91,DB93] and λ-abstraction algebras [PS93]. Moreover, they generalize ASA axioms written out in [DB93]. However they have some specifically infinitary fads: e.g. (isa) can be written out NOT for any tuple f. If it ranges too wide (say, Rgj-w $\{1\}$), it may be impossible to allocate a tuple k of unused variable names.
To obtain $\lambda \beta$-algebras (i入ßSAs), we add three more identities (very similar to their calculus relatives):

	$\begin{gathered} (\lambda j \cdot a)^{\prime} c_{k<L}=\left[j:=c_{k<L} \mid a\right. \\ \left(a^{\prime} b_{i<L}\right)^{\prime} c_{k<k}=a^{\prime}\left(b_{j<l}+c_{k<k}\right) \end{gathered}$	$(i 8 \beta)_{l} \mathrm{j}$ $(\mathrm{isAC}$
$\mathrm{J}: \iota_{0}+\iota, \iota_{\text {c }}$	$\lambda \mathbf{j} . a=\lambda \mathrm{j}_{0}\left(\lambda \mathrm{j}_{1}, a\right)$	$\left(\mathrm{EBLC}_{\mathbf{j}}{ }_{\mathbf{j}}\right.$
$\mathrm{J}_{1}: L, L_{L} \rightarrow \omega, \mathrm{j}=\mathrm{J}_{0}+\mathrm{I}_{1}$		

2.2 Definition. Dimension is a mapping $\Delta: A \rightarrow 2^{\omega}, \Delta a=\left\{1 \mid\left\{i-x_{l+1} \mid a \neq a\right\}\right.$. An element $a \in A$ is closed if $\Delta a=\boldsymbol{a}$.
2.3 Proposition. The following are equivalent reformulations of $i \in \Delta a$:
$\forall j \neq i\left[i:=x_{j}\right] a \neq a ;$
$\left[t:=x_{l+1}\right] a \neq a$;
$3 t[t:=t] a \neq a$.
2.4 Proposition. (why the plain dimensions are sufficient)

If $a \in A^{k}, 1: \kappa^{c}(\underset{\sim}{\omega} \backslash \Delta b$, then $[1:=a] b=b$.
2.5 Proposition. An arbitrary $\lambda \beta$-algebra is gencrated by its closed elements. It is worthwhile to note that this does not hold for $\lambda \alpha$-algebras, where unreachable elements can exist.

3 Results: Conneetions between Syntax and Algebras

If we, given infinitary λ-calculus, will interprat its constants as closed elements of infinitary $\lambda \beta$-algebras and syntactical operations over its Regtera $/ \alpha$ as the corresponding algebrale operators from Fig.2.1, we can show that DASAs make algebraic semantics for α-theories, that is, determine consequence relation $r_{\lambda \alpha S A}$ and $F_{\lambda \alpha \beta S A}$ - over the aet of regular terms, Regterm/ α.

The principal results here arce as follows :
8.1 Theorem (Soundness) Let Γ be an $\alpha(\beta)$-theory, and $a, b \in R e g t e r n / \alpha$.

If $\Gamma_{\alpha}(\beta) a=b$, then $\Gamma_{\lambda \alpha}(\beta) S A{ }^{a=b}$;
3.2 Theorem. (Completeness) If $\Gamma^{1} \boldsymbol{\lambda} \alpha(\beta) S A a=b$, then $\Gamma_{\vdash_{\alpha}(\beta)} a=b$;
3.8 Theorem. (Representation) For each $\lambda \beta$-algebra A (not $\lambda \alpha$ I Cf. proposition
2.6.) there is some set of constants C with a theory Γ over it, such that $A \approx A(C) / \dot{\Gamma}$.
The proofs can be found in (Be98).

References

[B81] H.P.Barendregt. The Lambda Calcuius: its Syntax and "emantics. Studies in Logic and Found ations of Math, 103, N-Holland, 1981.
[Be93] I.Beylin. Infinitary Lambda Calculus. M.Sc. thesis, Uni. of Latvia, 1993
[C88] J.Cirulis. An Algebraization of First-order Logic with Terms. Algebraic logi (Proc. Conf. Budapest 1988), N-Holland, 1991, 125-146.
[C90] J.Cirulis. On Infinitary Clones and Related Structures,I. (Manuscript).
[D91] Z.Diskin. Lambda Tenm Systems. (Manuscript).
[DB93] Z.Diskin, I.Beylin. Lambda Substitution Algebras. (Proc. Conf. MFCS'93). LNCS 711, Springer, 1993, 423-432.
[F82] N.Feldman. Axiomatization of Polynomial Substitution Algebras. J.of Symbolic Logic, 47, 3 (1982), 481-492.
(Kei63] H.Keisler. A Complete First-order Logic with Infinitary Predicates. Fundamenta Mathematicae. t.LII(1963), 177-203.
[K92] J.R.Kennaway. On Transfinite Abstract Reduction Systems. CWI rep.CS-R9205.
[KKSdV93] J.R.Kennaway, J.W.Klop, M.R.Sleep, F.J. de Vries An Infinitary Church-
Rosser property for Non-Collapsing Orthogonal Term Rewriting Systems. in: Term Graph tewriting: Theory and Practice, J.Wiley\&Sons pp.47-59.
7M82] A.Meyer. What is a Model of the Lambda Calculus? Information and Control, 52, (1982). 87-122.
[PS93] D.Pigozzi, A.Salibra. A Representation Theorem for Lambda Abstraction
4lgebras. (Proc. Conf. MFCS'93). LNCS 711, Springer, 1993, 629-639.

I. Beilins, Z. Diskins. Infinitărie lambda rēkini

Anotāclja. Rakstā tiek ieviests atక̧kirigs no vispărpiepemtā infinitāro λ-rēkinu jēdziens. Atşkiriba ir tä, ka funkcijas var tikt pielietotas ne vienam, bet beagaligi daudziem argumentiem. Tädêjādi, λ-termi var būt atkarigi no daudziem, pat visiem, mainigajiem, kas bûtiski sarežgì darbu ar tiem. Bez tam, uzkonstruētajiem rēkiniem tiek piekärtota algebriska semantika ar pilnibas un reprezentăcijas teorēmām, kas tipiskas tādos gadijumos.

> Received 24.02.1994

Ilya Beylin
Institute of Mathematics and Computer Science, Raipa 29, LV-1459 Riga Latvia

E-mail: ilyaecclu.lv

Zinovy Diskin
Department of Computer Science,
University of Latvia,
Raipa 19, LV-1586 Riga
Latvia

E-mail: diskineframe.riga.lv

ABSTRACT ALGEBRAS OF FINITARY RELATIONS: SEVERAL NON-TRADITIONAL AXIOMATIZATIONS*

Jānis Cirulis

Abstract

We show that several non-traditional clasees of algebras related to first-order logic are definitionally equivalent to that of locally finite cylindric-algebras. AMS 1991 Subject Classification: 03G15.

1 Introduction

E.M. Benjaminov has introduced and investigated in [B1], [B2] a class of algebras called by him relational algebras. The term comes from database theory, and it generally refers to algebras of a certain kind suggested by E.F. Codd [Co], [K]. Beniaminov described another version of the relational data model and also proposed a set of axioms to characterize abstractly his class of "concrete" relational algebras. However, he did not present any results concerning strength of the axiom system, neither did he compare his algebras with Codd algebras or other known algebras or relations.

It was shown early that every Codd algebra can be embedded in a cylindric set algebra [IL1], [${ }^{2} 12$]. In 1983, B.I. Plotkin put a question whether the concept of a(n abstract) relational algebra in the sense of Beniaminov is equipollent to that of a locally finite polyadic algebra (with equality). N.D. Volkov has given an affirmative answer to the question in the series of papers [V1], [V2], [V3', [V4] by showing that

[^1]the categories of algebras of both kinds are equivalent. Unfortunately, the considerable total length of these papers (caused partly by unnecessary reproving of many results that could be find in literature on algebraic logic), the style of exposition and a lot of inaccuracies both in formulations and proofs make it difficult to follow them. The present author has made an attempt in [C1] to establish such an equivalence to cylindric algebras rather than polyadic ones. In that paper the axiom system of [B1] was considerably simplified and its incompleteness was noticed (see §3). Still there is an error in the proof of Lemma 3.2 and a gap in the proof of Lemma 6.2 in [C1].

Our aim in this papar is twofold. It is a revised version of [C1], and we present here a proof of the main result of $[\mathrm{C} 1]$-that Beniaminov relational algebras (with a minor modification) are indeed interdefinable with locally finite cylindric algebras of an appropriate dimension. To save space (and patience of the reader), we-just as in [C1]-try to involve several known facts and constructions; we therefore go through a number of non-traditional algebraic structures related to first-order logic. In this respect, the paper supplements the surveys in $\S 5.6$ of [HMT] and in $\S 7$ of [N].

The reader is supposed to be familiar with the notion of a category. Occasionally, some resulte are summed up in terms of isomorphism or equivalence of categories. As to algebraic logic, the paper includes all necessary definitions and formulations of results. However, proofs that are not original are usually omitted.

2 Boolean homomorphisms admitting conjugates

- Let A and B be two Boolean algebras, and let $s: A \rightarrow B, t: B \rightarrow A$ be any mappings. We generalize the notion introduced for the case of one algebra (when $B=A$) in $[\mathrm{JT}]$ and call t a conjugate of s if, for all $a \in A, b \in B$,

$$
\begin{equation*}
s a \wedge b=0 \Leftrightarrow a \wedge t b=0 . \tag{1}
\end{equation*}
$$

Clearly, if t is a conjugate of s, then s is a conjugate of t, and we may speak of that the mappings s and t are conjugate. As shown in [JT], s has at most one conjugate which we usually denote by s^{*} when it exists. So, $s^{* *}=8$. Furthermore, a mapping that admits the conjugate is additive; in fact, it is even completely additive and
preserves 0 . Admitting $B=A$, we conclude that the identity map is self-conjugate. Finally, if C is one more Boolean algebra and mapings $s_{1}: A \rightarrow B, s_{2}: B \rightarrow C$ have conjugates, then the composition $s_{2} s_{1}$ also has the conjugate and

$$
\begin{equation*}
\left(s_{2} s_{1}\right)^{*}=s_{1}^{*} s_{2}^{*} \tag{2}
\end{equation*}
$$

If s has the conjugate and preserves complements, then it is a Boolean homomorphism. Moreover, in this case (1) is equivalent to

$$
\begin{equation*}
s a \geq b \Leftrightarrow a \geq t b \tag{3}
\end{equation*}
$$

-the well-known condition characterizing the so called residual pairs, or (contravariant) Galois connections-see, eg. [GH]. Also, s is completely multiplicative and preserves 1. (3) is equivalent to the following collection of four inequalities:

$$
\begin{gather*}
s a_{1} \leq s\left(a_{1} \vee a_{2}\right), \quad t b_{1} \leq t\left(b_{1} \vee b_{2}\right), \tag{4}\\
b \leq s t b, \quad t s a \leq a, \tag{5}
\end{gather*}
$$

each of which can be rewritten in the form of equality (involving Boolean operations). We obtain as consequences some more relationships between conjugate mappings:

$$
\begin{gather*}
\text { stsa }=a, \quad \text { tst } b=b \tag{6}\\
t(s a \wedge b)=a \wedge t b \tag{7}
\end{gather*}
$$

s is injective $\Leftrightarrow t$ is surjective $\Leftrightarrow t s a=a \Leftrightarrow t 1=1$,

$$
\begin{equation*}
s^{*}=s^{-1} \text { if } s \text { is bijective. } \tag{8}
\end{equation*}
$$

At last, in the case $A=B(3)$ and any of the conditions (8) imply that

$$
\begin{equation*}
\text { if mappings } s \text { and } t \text { are idempotent, then } s=\mathrm{id}_{A}=t . \tag{10}
\end{equation*}
$$

For these and several other properties of Boolean homomorphisms admitting conjugates, see Lemmas 13-18 in [Cr]. (Only the case $A=B$ is considered there; this is of no significance, however.) See also [GH], Theorem 3.6 and Proposition 3.7.

Definition 2.1 Let K be some category, and let $A_{1}(K)$ and $A_{2}(K)$ be classes of (heterogenous) algebras of kind

$$
\left(A_{X}, s_{\alpha}\right)_{X \in O b K, \alpha \in \text { MorK }},
$$

respectively,

$$
\left(A_{X}, s_{\alpha}, t_{\alpha}\right)_{X \in O b K, \alpha \in \operatorname{Mor} K},
$$

where (a) every A_{X} is a Boolean algebra, (b) for every morphism $\alpha: X \rightarrow Y, s_{\alpha}$ and t_{α} are operations of types $A_{X} \rightarrow A_{Y}$ and $A_{Y} \rightarrow A_{X}$, respectively. An a!gebra $\mathbf{A} \in A_{1}(K)$ is a Boolean action algebra of K, in symbols an $\mathrm{BAA}(K)$, or just a Boolean K-act, if each s_{α} is a Boolean homomorphism and the following axioms are satisfied for all $\varepsilon, \alpha, \beta$:
a1: $\mathrm{s}_{\boldsymbol{c}} a=a \quad$ if ε is an identity morphism,
a2: $s_{\beta \alpha}=s_{\beta} s_{\alpha} a \quad$ if α and β are composable.
If, moreover, every s_{α} admits the conjugate, we call the algebra a $\operatorname{BAA}(K)$ with conjugates, or a $\operatorname{BAAC}(K)$, and consider it as an algebra from $A_{2}(K)$.

We sometimes omit the adjective 'Boolean' in the above context and, following the practice of [HMT], use each of the abbreviations $\mathrm{BAA}(K)$ and $\mathrm{BAAC}(K)$ also as a denotation of the respective class of algebras. The following proposition is an easy conseqence of the general properties of conjugates.

Proposition 2.2 (a) An algebra $\mathbf{A} \in A_{2}(K)$ is an $\operatorname{BAAC}(K)$ if and only if the following conditions are fulfilled:
(i) every s_{α} preserves complements,
(ii) all s_{α} and t_{α} are correlated by (3) or, equivalentially, by (4) and (5),
(iii) either axioms a1, a2 or their duals
a'1: $t_{c} a=a \quad$ if ε is an identity morphism,
\mathbf{a}^{\prime} 2: $\mathrm{t}_{\beta \alpha}=\mathrm{t}_{\alpha} \mathrm{t}_{\beta} a \quad$ if α and β are composable,
hold for every $\varepsilon, \alpha, \beta$.
(b) Both a1 and a'1 may be omitted in (a) if instead every pair $\left(s_{f}, t_{f}\right)$ obeys (8).
(c) In any $\operatorname{BAAC}(K)$, if α and β are K-morphisms with a common codomain, and if $\alpha=\beta \gamma, \beta=\alpha \delta$ for appropriate γ and δ, then $\mathrm{s}_{\alpha} \mathrm{t}_{\alpha}=$ $\mathbf{s}_{\beta} \mathrm{t}_{\boldsymbol{\beta}}$.

Let us consider three concrete examples of the above situation.

Example 2.3 K may be a monoid, i.e. a one-object category. A transBoolean algebra in the sense of $[\mathrm{Cr}]$ is nothing else than a K-act with conjugates for such a K (satisfying a few additional axioms reproducing of which here is not necessery). It was proved in [Cr] that in the case K is a monoid of transformations of some set the concept of a trans-Boolean algebra is equipollent to that of an equality polyadic algebra. In [C2], we announced a result according to which the additional axioms of trans-Boolean algebras are superilous if the full transformation monoid and locally finite algebras are considered. We prove in $\S 5$ below a similar result for K a monoid of finite transformations (and relatively to cylindric algebras rather than polyadic ones).

Example 2.4 K may be a partially ordered set treated as a category. If it is directed, then any K-act is a direct family of Boolean algebras. A heterogeneous cylindric algebra in the sense of [Z] is a K-act, where K is the set of all finite subsets of some set. We shall consider algebras of this latter kind in $\S 6$ in more detail.

Example 2.5 Beniaminov algebras are also partially covered by the above scheme. Assume we are given a set of sorts Σ. A sorted set is a set each element of which is correlated with some sort. Where X and Y are two sorted sets, an agreement of X with Y is a sort preserving mapping $\varphi: X \rightarrow Y$ (see [B1]). Beniaminov begins with the category of all finite sorted sets and agreements which we denote by $\Sigma^{\prime \prime}$, and the first four of his axioms describe, in fact, the class BAAC $\left(\Sigma^{\mathbf{l}}\right)$. The category Σ^{\sharp} is, however, too big: as the collection of all finite sets is a proper class, it is difficult to iompare relaiional algebras in the original Beniaminov's sense with algebras of relations traditionally arising in algebraic logic. With this in mind, we shall restrict in the subsequent section the category $\Sigma^{\mathbb{I}}$ to its small subcategory whose objects are subsets of some fixed set.

From the category theoretical viewpoint, a $\mathrm{BAA}(K)$ is determined by an action of a functor s from K to the category of Boolean algcbras and may be identified with the functor. A BAAC (X) is then essentially a pair of functors (s, t), where t acts from K to the category of Boolean lattices (considered as posets). We do not take this position her;; however, we notice that such an approach to Beniaminov algebras has been proposed in Chapter 8 of $[\mathrm{Pl}]$. Moreover, there Σ^{\prime} is replaced by a certain algebraic theory in the sense of Lawere. Of course, the
category of Boolean algebras (lattices) also could be replaced e.g. by that of Heyting algebras (lattices).

3 Relational algebras

Thus, let V be any sorted set which is assumed to de fixed throughout the rest of th 3 paper. Elements of V are usually called variables or attributes, and we assume that V contains infinitely many variables of all sorts.

A relation type is a finite subset of V. Let $R T$ stands for the set of all such types. We shall base the concept of a Feniaminov algebra on the category $\Sigma^{i l} V$ of all relational types and agreements over V rather than on Σ^{l} (see Example 2.5).

Subsets of V will also be used with a view to classify algebras of certain kinds according to their similarity types. We shall term a subset used this way a dimension type of the algebra, or just type of it if misunderstanding is unlikely.
Definition 3.1 We call any $B A A C\left(\Sigma^{\prime} V\right)$ a weak relational algebra of dimension type V, or briefly a wRelA A_{V}. A Beniaminov algebra of type V, or briefly Ben A_{V}, is a wRel A_{V} which satisfies the condition
b: for all $X, Y, Z \in R T$ such that $Z \cap(X \cup Y)=0$, and all agreements $\alpha: X \rightarrow Y$,

$$
t_{\alpha^{\prime}}\left(s_{t_{2}} a \wedge s_{t_{3}} b\right)=s_{t_{1}} t_{\alpha} a \wedge s_{t_{3}} b
$$

where $\iota_{1}, \iota_{2}, \iota_{3}$ are the embeddings $X \rightarrow X \cup Z, Y \rightarrow Y \cup Z$ and $Z \rightarrow$ $Y \cup Z$ respectively, and α^{\prime} is the agreement of $X \cup Z$ with $Y \cup Z$ that is an extension of α and acts as the identity map on Z.

The axiom b was formulated in [B1] (cf. the last axiom there) in terms of direct sums of sets and mappings and was therefore even more involved. We shall see below that a simple particular case of b does the job. As noted in Introduction, we shall add one more axiom (see r10 below). This way we come to a bit narrower class of algebras which we name relational algebras, the term being used by Beniaminov himself.

First we introduce a certain codification of morphisms in $\Sigma^{\prime} V$; this will ease our further analysis. The related notion of a transformation will be in use also in other sections.

By a transjormation we mean any sort-preserving self-map of V. Let $T r_{\omega}$ stand for the set of finite transformations, i.e. transformations α whose effective domain ed $\alpha:=\{x \in V: \alpha x \neq x\}$ is finite. Clearly, $T r_{\omega}$ is a monoid: it contains the identity map ε and is closed under composition. Given two relation types X and Y, we denote by $\operatorname{Tr}(X, Y)$ the set $\left\{\alpha \in T r_{\omega}\right.$: ed $\alpha \subset X$ and $\left.\alpha X \subset Y\right\}$. (Note that $\operatorname{Tr}_{X}:=\operatorname{Tr}(X, X)$ is a submonoid of $\operatorname{Tr}_{\omega}$.) If $\alpha X \subset Y$, let $\left(\begin{array}{c}{ }_{\alpha}^{X X}\end{array}\right)$ stand for the agreement $\varphi: X \rightarrow Y$ such that $\varphi=\alpha \mid X$. In particular, if $X \subset Y$, then $\left({ }_{6}^{Y X}\right)$ is the embedding of X into Y. Obviously, the transfer $\alpha \mapsto \alpha \mid X$ yields a one-to-one correspondence between $\operatorname{Tr}(X, Y)$ and the set of all agreements of X with Y, and it is precisely this set the notation $\left\{\begin{array}{c}\left.\left(\begin{array}{c}\boldsymbol{X} X\end{array}\right): \alpha \in \operatorname{Tr}(X, Y)\right\} \text { refers to. This way we obtain a }\end{array}\right.$ "parametrization" of the set of all $\Sigma^{l} V$-morphisms by finits transformations. Warning: although $\left({ }_{\beta}^{Z V}\right)\left(\begin{array}{c}Y / X\end{array}\right)=\binom{Z, X}{\beta}$, for any $\alpha \in \operatorname{Tr}(X, Y)$ and $\beta \in \operatorname{Tr}(Y, Z)$, the composition $\beta \alpha$ itself belongs to $\operatorname{Tr}(X, Z)$ iff ed $\beta \alpha \subset X$ iff ed $\beta \subset X$.

Now, given an algebra from $A_{2}\left(\Sigma^{\prime} V\right)$, we shall write $s_{\alpha}^{Y X}$ and $\mathrm{t}_{\alpha}^{X Y}$ for s_{φ}, resp. t_{φ}, if $\varphi=\left({ }_{\alpha}^{Y X}\right)$. So the algebra itself can be written as

$$
\left(A_{X}, s_{\alpha}^{Y X}, t_{\alpha}^{X Y}\right)_{X, Y \in R T}, \alpha \in \operatorname{Tr}(X, Y),
$$

where every $s_{\alpha}^{Y X}$ is an operation of kind $A_{X} \rightarrow A_{Y}$ and $t_{\alpha}^{X Y}$ is an operation $A_{Y} \rightarrow A_{X}$. In this notation, the wRelA A_{V} axioms read as follows (see Proposition 2.2(a)):

$$
\begin{aligned}
& \text { r1: } s_{\alpha}^{Y X}(-a)=-s_{\alpha}^{Y X} a, \\
& \text { r2: } s_{\alpha}^{Y X} a \leq s_{\alpha}^{Y X}\left(a \vee a^{\prime}\right), \\
& \text { rs: } t_{\alpha}^{X Y} b \leq t_{\alpha}^{X Y}\left(b \vee b^{\prime}\right), \\
& \text { r4: } b \leq s_{\alpha}^{Y X} t_{\alpha}^{X Y_{b}}, \\
& \text { r5: } t_{\alpha}^{X Y} s_{\alpha}^{Y X} a \leq a, \\
& \text { r6: } s_{a}^{X X} a=a, \\
& \text { r7: } s_{\beta}^{Z Y} s_{\alpha}^{Y X} a=s_{\beta \alpha}^{Z X} a,
\end{aligned}
$$

while b takes the form
$b^{\prime}:$ if $Z \cap(X \cup Y)=0$ and $\alpha \in \operatorname{Tr}(X, Y)$, then

Definition 3.2 A relational algebra of type V, or a $\operatorname{Re}_{i} A_{V}$, is a wRel A_{V} that satisfies the additional axiom
r8: if $Z \cap(X \cup Y)=\emptyset, Y \cup Z \subset U$ and $\alpha \in \operatorname{Tr}(X, Y)$, then

$$
\mathrm{t}_{\alpha}^{(X \cup Z) U_{s_{e}}^{U Y} a=\mathrm{s}_{\varepsilon}^{(X \cup Z) X} \mathrm{t}_{\alpha}^{X Y} a}
$$

We call attention to the following restriction of $\mathbf{r 8}$ obtained by setting $U=Y \cup Z$:
r9: if $Z \cap(X \cup Y)=\emptyset$ and $\alpha \in \operatorname{Tr}(X, Y)$, then

$$
\mathrm{t}_{\alpha}^{(X \cup Z)(Y \cup Z)_{s_{\varepsilon}}(Y \cup Z) Y_{a}} a=s_{\varepsilon}^{(X \cup Z) X} \mathrm{t}_{\alpha}^{X Y} a
$$

Remarkably that $\mathbf{r} 9$ can be obtained also from b ' by substituting 1 for b (recal that both $s_{\varepsilon}^{(Y \cup Z) Z}$ and $s_{\varepsilon}^{(X \cup Z) Z}$ are Foolean homomorphisms and thence preserve 1). The subsequent theorem shows the "distance" between BenAv's and RelAv's.

Theorem 3.3 (a) A wRel A_{V} is a Beniaminov algebra iff it satisfies r 9.
(b) A Ben A_{V} is a relational algebra iff it satisfies the condition
r10: $\mathrm{t}_{\varepsilon}^{X(X \cup Y)} 1=1$, where Y does not contain variables of sorts presented in X.

Proof. (a) It remains to prove that b^{\prime} holds in any wRelA A_{V} satisfying r9. Assume that X, Y, Z and α are such as in b^{\prime}. By $r^{7},(7)$ and $r 9$,

$$
\begin{gathered}
\mathrm{t}_{\alpha}^{(X \cup Z)(Y \cup Z)}\left(s_{\varepsilon}^{(Y \cup Z) Y} a \wedge s_{\varepsilon}^{(Y \cup Z) Z} b\right)= \\
\mathrm{t}_{\alpha}^{(X \cup Z)(Y \cup Z)}\left(s_{\varepsilon}^{(Y \cup Z) Y} a \wedge s_{\alpha}^{(Y \cup Z)(X \cup Z)} s_{\varepsilon}^{(X \cup Z) Z} b\right)= \\
\mathrm{t}_{\alpha}^{(X \cup Z)(Y \cup Z)} s_{\varepsilon}^{(Y \cup Z) Y} a \wedge s_{\varepsilon}^{(X \cup Z) Z} b=s_{\varepsilon}^{(X \cup Z) \mathrm{t}_{\alpha}^{X Y Y} a \wedge s_{\varepsilon}^{(X \cup Z) Z} b .}
\end{gathered}
$$

(b) Assume axioms of BenAv's. An application of r10 yields
r11: every $s_{\varepsilon}^{Y X}$ is injective.
Indeed, let $X^{\prime}=\{x \in Y$: the sort of x is presented in $X\}$. Then $X \subset Y,\left({ }_{\varepsilon}^{Y X}\right)=\left({ }_{\varepsilon}^{Y X^{\prime}}\right)\left({ }_{\varepsilon}^{X^{\prime} X}\right)$ and $s_{\varepsilon}^{Y X}=s_{\varepsilon}^{Y X^{\prime}} s_{\varepsilon}^{X^{\prime} X}$ (by r7). By r10, $\mathrm{t}_{\varepsilon}^{X^{\prime} Y_{1}} 1=1$, and by (8), $\mathrm{s}_{\varepsilon}^{Y} X^{\prime}$ is injective. Choose $\alpha \in \operatorname{Tr}\left(X^{\prime}, X\right)$ which agrees with ε on X; then $\left(\begin{array}{l}X \\ \alpha \\ X^{\prime}\end{array}\right)\left({ }_{\varepsilon}^{X^{\prime} X}\right)=\binom{X X}{\varepsilon}$. Again by $\mathbf{r 7}$, and $\mathbf{r b}$, $s_{\alpha}^{X} X_{s_{\varepsilon}^{\prime}}^{X^{\prime} X}=s_{\varepsilon}^{X X}=\operatorname{id} A_{X}$. So $s_{\varepsilon}^{X^{\prime} X}$ also is injective, and $\mathbf{r} 11$ follows.

By r11 and (8),

$$
\text { r12: } \mathrm{t}_{c}^{X Y Y_{c}^{Y} X_{a}} a=a
$$

Now we can derive r8: by r7 and its dual, r12 and r8,

$$
\begin{aligned}
& \mathrm{t}_{\alpha}^{(X \cup Z)(Y \cup Z)} \mathbf{s}_{\varepsilon}^{(Y \cup Z) Y^{2}} a=s_{\varepsilon}^{(X \cup Z) X} \mathrm{t}_{\alpha} X Y_{a} .
\end{aligned}
$$

Conversely, given a Rel A_{V}, we set $Z=\emptyset, Y=X$ and $\alpha=\varepsilon$ in $\mathbf{r 8}$:

$$
\mathrm{t}_{\varepsilon}^{X U_{\mathbf{s}_{\varepsilon}^{I}} X} a=\mathrm{s}_{\varepsilon}^{X X} X_{\varepsilon} X X_{a} .
$$

By ro and its dual, the right-hand side equals to a. So $t_{\varepsilon}^{X U} 1=1$ by (8), and r10 follows.

Remark 3.4 Therefore, wRel $A_{V} \subset B e n A_{V} \subset$ Rel A_{V}, and none of the inclusions is reversible. r11 cannot be proved in full extent without using r10 or some equivalent of it. The present author turnei attention of N. Volkov to the fact that this was averlooked in Proposition 1 of his [V3]. (For relevant corrections see Section II of [V4].) E. Beniaminov communicated to the author in August, 1987, that he also had discovered independence of r11 (of his axioms),

An inspection of the proof of $\mathbf{r 1 2}$ shows that the identity is valid in any wRel A_{V} satisfying r10. This makes further splitting of $\mathbf{r 8}$ possible.

Proposition 3.5 The identities r1-r5, r7, r10 and
r13: $t_{e}^{(X \cup Z)(Y \cup Z)} s_{\varepsilon}(Y \cup Z) Y a=s_{e}^{(X \cup Z) X} t_{e}^{X Y} a \quad$ with $Z \cap Y=\emptyset$ (and $X \subset Y$),
r14: ${ }_{~_{s}}^{Y} X_{\mathrm{t}_{\alpha}^{X}} X_{b}=\mathrm{t}_{\alpha}^{Y Y_{S_{\varepsilon}}^{Y X_{b}}} \quad$ with $\alpha \in \operatorname{Tr}_{X}$,
make up a complete axiom system for RelAV's.
Proof. Clearly, r13 is contained in r9, while r14 follows from r9 by setting $Y=X$ and subscquent relettering of $Y \cup Z$. Hence, in view of Proposition 3.3 we must only show that r 6 and r 9 are derivable from the mentioned list of axioms. By r10, $\mathrm{t}_{\varepsilon}^{X X_{1}}=1$, and $\mathbf{r} 6$ follows by Proposition 2.2(b). Now assume that X, Y, Z and α are such as in $\mathbf{r 9}$, and let W stand for $X \cup Y$. Then by r12, the dual of r7, again the dual of $\mathbf{r 7}, \mathbf{r 1 3}, \mathbf{r 1 4}, \mathbf{r 7}$ and its dual, again $\mathbf{r 7}$ and its dual, $\mathbf{r 1 2}$,

$$
\begin{aligned}
& s_{\varepsilon}^{(X \cup Z) X} \mathrm{t}_{\alpha}^{X Y} a=s_{\varepsilon}^{(X \cup Z) X} \mathrm{t}_{\alpha}^{X Y} \mathrm{t}_{\varepsilon}^{Y W} \mathrm{~s}_{\varepsilon}^{W Y} a=s_{\varepsilon}^{(X \cup Z) X_{\mathrm{t}}}{ }_{\alpha}^{X W} \mathbf{s}^{W}{ }^{W Y} a=
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{t}_{\alpha}^{(X \cup Z)(Y \cup Z)_{t_{e}}(Y \cup Z)(W \cup Z)_{S_{\varepsilon}}(W \cup Z)(Y \cup Z)} s_{\varepsilon}(Y \cup Z) Y_{a}=t_{\alpha}^{(X \cup Z)(Y \cup Z)} s_{\varepsilon}(Y \cup Z) Y_{a}, \\
& \text { and the proposition is proved. }
\end{aligned}
$$

Now we leave relation algebras until §7, and turn to some other classes of algebras. Most of them, in that or other form, have already appeared in literature. We notice in this connection that, as a rule, dimension types of algebras usually dealt with in algebraic logic are unsorted sets. To compare the algebras considered above with these, we are forced either to extend the traditional definitions and results or to assume that in the rest the set of sorts, Σ, will be a singletone. We choose the latter alternative.

4 Cylindric algebras

In this section, we list some basic facts concerning cylindric algebras. The standard reference on cylindric algebras is [HMT]. For our purposes, it is more convenient to deviate from the tradition and to index the operations of a cylindric algebra by elements of an arbitrary set rather than by ordinals.

Deflnition 4.1 By a cylindric algebra of type X, or briefly a C_{x}, we inean an alyebra $A:=\left(A, c_{x}, d_{x y}\right)_{x, y \in X}$, where $A:=(A, V, \Lambda,-, 0,1)$ is a Boolean algebra, every c_{x} is a unary operation on A, every $d_{x y}$ is an element of A, and the following axioms are satisfied for all $x, y, z \in X$:

$$
\begin{aligned}
& \text { c1: } c_{x} 0=0, \\
& \text { c2: } a \leq c_{x} a, \\
& \text { c3: } c_{x}\left(a \wedge c_{x} a^{\prime}\right)=c_{x} a \wedge c_{y} a^{\prime}, \\
& \text { c4: } c_{x} c_{y} a=c_{y} c_{x} a, \\
& \text { c5: } d_{x x}=1, \\
& \text { c6: } d_{x x}=c_{y}\left(d_{x y} \wedge d_{y x}\right) \text { if } y \neq x, z, \\
& \text { c7: } c_{x}\left(a \wedge d_{x y}\right) \wedge c_{x}\left(-a \wedge d_{x y}\right)=0 \text { if } x \neq y .
\end{aligned}
$$

We sball need the following additional properties of operations c_{x} in a cylindric algebra:

$$
\begin{aligned}
& \text { c8: } c_{x} 1=1, \\
& \text { c9: } c_{x} a \leq c_{x}\left(a \vee c^{\prime}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \text { c10: } c_{x} c_{x} a=c_{x} a, \\
& \text { c11: } c_{x}\left(-c_{x} a\right)=-c_{x} a, \\
& \text { c12: } c_{x} d_{x y}=1 \text {, } \\
& \text { c13: } c_{x} d_{y z}=d_{y z} \text { if } x \neq y, z .
\end{aligned}
$$

Moreover, every c_{x} is a self-conjugate operation: $c_{x}^{*}=c_{s}$, so it is a completely additive closure operator.

Now suppose that A is a $C A_{x}$. For every $Z \subset X$, we define a generalized cylindrification, or quantifier, c_{z} on \mathbf{A} as follows (cf. [HMT, §1.7]):
a1: $\quad c_{Z} a= \begin{cases}a & \text { if } Z=\emptyset, \\ c_{z_{1}} c_{x_{2}} \cdots c_{z_{2}} a & \text { otherwise, }\end{cases}$
where $z_{1}, z_{2}, \ldots, z_{n}$ is a list of variables from Z in some fixed order. In fact, the order is irrelevant by c4. Obviously, every c_{z} has properties analogous to c1-c3, c8-c11; moreover, also

$$
\begin{aligned}
& \text { c14: } c_{8} a=a \\
& \text { c15: } c_{g_{1}} c_{g_{2}} a=c_{g_{1} \cup g_{2} a}
\end{aligned}
$$

hold. This motivates the following definition which we shall need later.
Definition 4.2 Let $R T(X)$ stands for ${ }^{\circ} R T \cap X$. We call a quantifier algebra of type X, or a $Q A_{X}$, any algebra $\left(A, c_{Z}\right)_{z \in R T(X)}$, where. A is a Boolean algebra and all c_{x} are operations on A subject to c1-c4 and ($\alpha 1$) (or equivalentially, c1~3, c14 and c15).

An element a of a CAX A is said to be independent of x if $c_{x} a=$ a. A support of a is a subset $Y \subset X$ such that a is independent of every $x \notin Y$. If all elements of A have finite supports, the algebra is called locally finite. In any case, the elements having the same support make up a subalgebra of the Boolean algebra A. Moreover, the subset $A \mid Y:=\{a \in A: Y$ supports $a\}$, the restriction of A to Y, is closed under all operations c_{x} with $x \in Y$. By c12 and c13, $A \mid Y$ contains also the elements $d_{x y}$ for all $x, y \in Y$. So we come to the $C A_{Y} A \mid Y:=$ $\left(A \mid Y, c_{x}, d_{z y}\right)_{x y \in Y}$, called a neat Y-reduct of A (cf. Definition 2.6 .28 in [HMT]).

Two useful families of operations are defined in a cylindric algebra in the following way ([HMT, §1.5], [P, (3.6)]):
$\beta 1: \quad s_{y}^{x} a= \begin{cases}a & \text { if } x=y, \\ c_{x}\left(a \wedge d_{x y}\right) & \text { otherwise, }\end{cases}$
$\beta 2: \quad \mathrm{t}_{y}^{x} a= \begin{cases}a & \text { if } x=y, \\ \mathrm{c}_{x} a \wedge \mathrm{~d}_{x y} & \text { otherwise, }\end{cases}$
for all $a \in A$ and every $x, y \in X$. It was proved in $[\mathrm{P}]$ that the class CA_{X} with $|X|>2$ can be characterized in terms of these operations. We shall consider this question in some detail.
Definition 4.3 A substitution algebra of type X, or a $S A_{X}$, is an algebra $\mathbf{A}:=\left(A, s_{y}^{x}\right)_{x, y \in X}$, where A is a Boolean algebra, every s_{y}^{x} is a unary operation on A, and the following axioms hold:
s1: s_{y}^{x} is a Boolean endomorphism,

$$
\begin{aligned}
& \text { s2: } s_{x}^{x} a=a, \\
& \text { s3: } s_{z}^{y} s_{y}^{x} a=s_{z}^{y} s_{z}^{x} a, \\
& \text { s4: } s_{s}^{x} s_{y}^{s_{y}} a s_{y}^{x} a \quad \text { if } x \neq y, \\
& \text { s5: } s_{v}^{u} s_{y}^{s_{y}^{x}} a=s_{y}^{x} s_{y}^{u} a \quad \text { if } y \neq u \neq x \neq v .
\end{aligned}
$$

If, moreover, every operation s_{y}^{x} has the conjugate t_{y}^{x}, then A is called a SA with conjugates, or SACX. In this case we consider it as an algebra of kind $\left(A, s_{y}^{x}, t_{y}^{x}\right)_{x, y \in X}$. We shall say that such an algebra is commutative if it satisfies one more axiom
s6: $\mathrm{s}_{v}^{v} \mathrm{t}_{y}^{x} a=\mathrm{t}_{y}^{x} \mathrm{~s}_{v}^{u} a \quad$ if $y \neq u \neq x \neq v$.
According to (4) and (5) the class SAC_{X} is equationally definatle. In a $\operatorname{SAC}_{X}\left(A, \mathrm{~s}_{y}^{x}, \mathrm{t}_{y}^{x}\right)_{x_{x}, y \in X}$ we set
$\gamma 1: \quad c_{x} a=\delta_{y}^{x} t_{y}^{z} a$ wish $y \neq x$,
$\gamma 2: \quad d_{x y}=t_{y}^{z} 1$.
The definition $\gamma 1$ is correct: $c_{\infty} a$ does not depend on the chaise of y. Now we can restate the content of Theorem 2.7 of $[\mathrm{P}]$, in connection with the algebras we consider, as follows (see also the proposition (F) and the note after the proposition (G) on p. 176, Theorem 3.3 and the note at the bottom of the page 177 in $[\mathrm{P}])$.
Proposition 4.4 Assume that $|X|>2$. For any two algebras

$$
\left(A, c_{x}, d_{x y}\right)_{x, y \in X} \text { and }\left(A, s_{y}^{x}, t_{y}^{x}\right)_{x, y \in X},
$$

the following statements are equivalent:
a) $\left(A, c_{x}, d_{x y}\right)_{x, y \in X}$ is a $C A_{X}$ and $\beta 1, \beta 2$ hold,
b) $\left(A, s_{y}^{x}, t_{y}^{x}\right)_{x, y \in X}$ is a SAC $_{X}$ and $s 6, \gamma 1, \gamma 2$ hold.

In particular, $\mathrm{t}_{y}^{x}=\left(s_{y}^{x}\right)^{*}$ in $\beta 1, \beta 2$. Via $\gamma 1$, the notion of a support applies also to arbitrary SAC's. The following im: rediate consequence of Theorem 2.12 and Lemma 2.13 of [P] is crucial (here, and below, Lf stands for 'locally finite').

Proposition 4.5 Every LfSAC $_{V}$ is commutative.
Now it follows that the classes LfCA ${ }_{V}$ and LfSAC_{V} are definitionally equivalent and may be considered as indistinguishable; the more so as any cylindric homomorphism is an SAC homomorphism and vice versa. See also Theorem 5.4.

5 Transformation algebras

From the viewpoint of their structure, cylindric and relational algebras are too far from each other to be handily compared immediately. To reduce this difficulty, we now proceed from CA's to transformation algebras. Transformation algebras were introduced by the way by Halmos, and studied by Leblanc in [L]. Roughly, a transformation algebra is a K-act with K the transformation monoid of some set. For our purposes, it is more convenient to deal only with finite transformations. Following the tradition, we should use fhe term 'quasi-transformation algebra' in this case. However, we do not, partiy because the difference vanishes as fai as locally finite algebras (of infinite dimension type) are considered.

We first introduce some additional conventions conccrning transformations. The notation ($y_{1} / x_{1}, \ldots, y_{n} / x_{n}$) stands for a finite transformation α such that ed $\alpha \subset\left\{x_{1}, \ldots, x_{n}\right\}$ and $\alpha x_{i}=y_{i}$ for every i. We call a replacement any transformation of kind (y / x), and a transposition any transformation of kind $(x, y):=(y / x, x / y)$. Every finite transformation can be produced as a composition of a finite number of replacements and transpositions (see [Cr], p.10); we shall refer to this fact as to the decomposition property (DP).
Definition 5.1 Suppose that $X \subset V$. By a transformation algebra of dimension X, or TA_{X}, we shall mean any Tr_{X}-act. $A T A_{X}$ with conjugates, or a TAC_{X}, is defined in accordance with Definition 2.1.

In a TAC $_{X}$, the Proposition 2.2(c) can be concretized as follows:

$$
\begin{equation*}
\mathrm{s}_{\alpha} \mathrm{t}_{\alpha} a=\mathrm{s}_{\beta} \mathrm{t}_{\beta} a \quad \text { whenever } \alpha X=\beta X \tag{11}
\end{equation*}
$$

Indeed, assume that α and β satisfy the condition, and choose $\varphi \in$ $\operatorname{Tr}(X)$ such that $\varphi y \in \beta^{-1} y$ when $y \in \alpha X$. Then $\beta \varphi \alpha=\alpha$. Likewise, $\beta=\alpha \psi \beta$ for some $\phi \in \operatorname{Tr}(X)$. Now the equality follows from Proposition 2.2(c).

Clearly, the reduct of a TAC X_{x} obtained by omitting all operations s_{α} and t_{α} but those with α a replacement is an $S A C_{X}$. In particular, the notion of a support can be transferred to TA's and TAC's. Also, quantifiers can be defined in TAC's according to ($\gamma 1$) and ($\alpha 1$); moreover, Propositions 4.5 and 4.4 imply that a TAC $_{V}$ can be converted into a cylindric algebra (hence, a quantifier one as well).

Now we are going to show that any locally finite $S A C V_{V}$ can be expanded to a $\mathrm{TAC}_{\mathrm{V}}$.

By (9), any operation's ${ }_{\left(y_{x}\right)}$ of a TAV has the conjugate, for the transposition is inverse to itself. Moreover, $\left(s_{(y, x)}\right)^{*}=s_{(y, x)}$. Now the following proposition holds on the strength of the DP, $\mathbf{2} 2$ and (2).
Proposition 5.2 If every operation $s(y / s)$ of a TAV A has the conjurgate, then \mathbf{A} is a TACV.

Let $\alpha:=\left(y_{1} / x_{1}, \ldots y_{n} / x_{n}\right)$ be a finite transformation. For any element a of a locally finite substitution algebra A, we set
$\delta 1: \quad s_{\alpha} a= \begin{cases}a & \text { if } \alpha=\varepsilon, \\ s_{y_{2}}^{\varepsilon_{2}} \cdots s_{y_{n}}^{s_{1}} \frac{z_{2}}{z_{4}} \cdots s_{y_{h}}^{z_{1} a} a & \text { otherwise; }\end{cases}$
here the variables z_{1}, \ldots, z_{n} are supposed to be distinct from each other and from $x_{1}, \ldots, x_{n}, y_{h}, \ldots, y_{n}$, and such that a does not depend on them. In [G, §4], it is shown that $s_{a} a$ does not depend on the choise of z_{1}, \ldots, z_{n}. Therefore, looking over all elements of A, we can define an operation s_{α} on A. Actually the first statement of the following proposition is implicit in [G]; see also [HMT, 1.11.9, 1.11.11, 1.11.12]. The other one follows from Proposition 5.2.
Proposition 5.3 An algebra (A, s_{a}) oerr, is a locally finite TAV iff its reduct $(A, s(y / x))_{x, y \in V}$ is a locally finite S_{A} and 61 holds for all a and appropriate z_{1}, \ldots, z_{n}. Moreover, if one of the algebras .admits conjwgates, then so does the other.

Now we can state in what sense the concept of a TAC is equipollent to those of the preceeding section. We call two categories L and M indistinguishable if there is an isomorphism $F: L \rightarrow M$ such that $F \alpha=$ α for every $\alpha \in$ MorL. A typical example is provided by the categories of Booiean algebras and Boolean rings with unit.

Theorem 5.4 The classes LfCAV, LfSAC ${ }_{V}$ and LfTAC_{V}, considered as categories, are indistinguishable.

Proof. As to the first two of the classes, the result was essentially established at the end of $\S 4$. It is clear from the above discussion that the transfer from-a $\operatorname{TAC}_{V}\left(A, s_{\alpha}, t_{\alpha}\right)_{\alpha \in T_{\mu}}$ to its reduct ($\left.A, s^{5}(y / x), t_{(y / s)}\right)_{x y \in V}$ yields a one-to-one correspondence between classes LfTAC V and LfSAC ${ }_{V}$. Of course, every TAC-homomorphism is an SAChomomorphism between the corresponding SAC's. By $\delta 1$, any SAChomomorphism h between lacally finite algebras preserves all operations s_{α}. By the DP, a2 and (2), every operation t_{a} of an LfTAC V_{V} can. be decomposed into a product of operations of kind $t_{(y / x)}$ and $t_{(x, y)}$; since $t_{(s, y)}=s_{(a, y)}, h_{\text {preserves }} t_{a}$ as well. Thus it is a TAC-homrmorphism, and we have proved that LfSACV and LfTAC C_{V} are indistinguishable.

We still derive some more properties of TAC's which will be used in further sections.

Lemma 5.5 Assume that A is a $T A C_{V}, \alpha \in T_{r_{w}}, Z \in R T$, and that c_{g} is the operation defined on A by al and $\gamma 1$. Then
(a) $c_{g a}=s_{\alpha} t_{d} a$
if $\operatorname{ran} \alpha=\overline{\mathcal{Z}}$,
(b) $s_{c} c_{g} a=c_{g}$
if ed $\alpha \subset Z$,
(c) $\operatorname{cgs}_{\alpha} a=s_{a} a \quad$ if $Z \cap \operatorname{ran} \alpha=\emptyset$,
(d) $\operatorname{cgs}_{\alpha} a=s_{\alpha} c_{s} a \quad$ if $Z \cap$ (eda U era) $=0$.

Proof. (a) Assume that Z and α satisfy the condition. By 11, we may consider α to be idempotent. Then $Z=$ ed α. Now if $Z=$ $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ and $\alpha=\left(y_{n} / z_{1}, y_{2} / z_{2}, \ldots, y_{n} / z_{n}\right)$, then $z_{i} \neq y_{i}$ for all i and j, and $\alpha=\left(y_{n} / z_{n}\right) \cdots\left(y_{1} / z_{1}\right)$. Taking $(\alpha 1),(\gamma 1)$, 85 , Propositon 4.5 and 86,22 and 22 into account, we infor that
(b), (c), (d) are proved similarly, or they can be derived as particular cases from Theorem 1.11.12(vi) of [HMT].

Given a TACV A, it is easy to see that every subset (in fact, a Boolean algebra) $A \mid X:=\{a \in A: X$ supports $a\}$ is closed under those operations s_{a} with $a \in \operatorname{Tr}_{x}$: if $a \in A \mid X$, then $c_{y} a=a$ for $y \notin X$, and we have that $c_{j} s_{\alpha} a=s_{\alpha} c_{j} a=s_{a}$ by (d). Using the dual of (d), we likewise obtain that $A \mid X$ is closed also under all nper tions t_{a} with $a \in \operatorname{Tr} x$. We call the algebra $A_{X}:=\left(A \mid X, s_{\alpha}, t_{\alpha}\right)_{\alpha \in T_{r x}}$ the neat X reduct of \mathbf{A}.

6 Heterogeneous cylindric algebras

This section is "optional" in the sense that heterogeneous cylindric algebras are not concerned to the subsequent section directly. However, several constructions and methods considered here will be used afterwards in a less familiar context.

Definition 6.1 A heterogeneous $C A_{V}$, or $H C A_{V}$, is an algebra

$$
\begin{equation*}
\left(\mathbf{A}_{X}, f^{Y X}, g^{X Y}\right)_{X \subset Y \in R T} \tag{12}
\end{equation*}
$$

where each $\mathbf{A}_{X}:=\left(A_{X}, \mathrm{c}_{x}^{(X)}, \mathrm{d}_{x y}^{(X)}\right)_{x, y \in X}$ is a $C A_{X}$ and, for all X, Y, Z,
h1: $f^{Y X}$ is a homomorphism from \mathbf{A}_{X} to the X-reduct of \mathbf{A}_{Y},
h2: $f^{Z Y} f^{Y X_{a}}=f^{Z X_{a}}$,
h3: $g^{X Y} f^{Y X} a=a$,
h4: $f^{Y X} g^{X Y} b=c_{Y \backslash X}^{(Y)} b$,
$c_{Y \backslash X}^{(Y)}$ being the operation defined in A_{Y} according to $\alpha 1$.
Observe that each algebra $\left(A_{X}, c_{Z}^{(X)}\right)_{z_{C} X}$ in a HCA ${ }_{V}$ is a $Q A_{X}$.
Heterogenous CA's first appeared in [Z]. Zlatos' original axiom system included also
h5: $f^{X X} a=a$,
$\mathrm{h6}: c_{x}^{(Y)} f^{Y X_{a}}=f^{Y X_{a}} \quad$ if $x \in Y \backslash X$.
However, h5 follows from the above axioms by Propositions 6.6 (see below) and $2.2(\mathrm{~b})$, while h6 wis shown superfluous in [C4, item (3.6)]: by h4, h2, h3, h2,

$$
\begin{gathered}
c_{x}^{(Y)} f^{Y X_{a}}=f^{Y(Y \backslash\{x\})} g^{(Y \backslash(x)) Y} f^{Y X} a= \\
f^{Y(Y \backslash\{x\})} g^{(Y \backslash\{x\}) Y} f^{Y(Y \backslash\{x\})} f^{(Y \backslash\{x\}) X_{a}} a=f^{Y(Y \backslash(x\})} f^{(Y \backslash\{x\}) X} a=f^{Y X} a .
\end{gathered}
$$

It was proved in [Z, Theorem 1] that the concepts of a locally fini e
CA and a heterogeneous CA are equipolient in the following strict sense.
Theorem 6.2 The categories LfCA_{V} and HCA_{V} are equivalent.

We sketch a somewhat different proof of this theorem, several details of which will be referred to in the last section.

First, a homomorphism from a HCA A to another HCAV \mathbf{A}^{\prime} is, as usual for heterogeneous algebras, a family $\Phi:=\left(\varphi_{X}: \bar{X} \in R T\right)$ of CA-homomorphisms $\varphi_{X}: \mathbf{A}_{X} \rightarrow \mathbf{A}_{X}^{\prime}$ such that for all X, Y with $X \subset Y$

$$
\varphi_{Y} f^{Y X_{a}}=f^{\prime Y X} \varphi_{X} a, \quad \varphi_{X} g^{X Y} a=g^{\prime X Y} \varphi_{Y} a
$$

Φ is an identity homomorphism if all $\varphi_{X}: \mathbf{A}_{X} \rightarrow \mathbf{A}_{X}^{\prime}$ are identity homomorphisms, and the composition of two HCA $\boldsymbol{V}^{\boldsymbol{V}}$-homomorphisms is also defined componentwise. Φ is said to be an isomorphism if all ψ_{X} are bijective.

We call a $H C A_{V}$ flat if $A_{X} \subset A_{Y}$ whenever $X \subset Y$ and every monomorphism $f^{Y X}$ is the embedding that realizes this inclusion. In this case the axioms h1, h2 become trivial while h3 and h4 reduce to equalities

$$
\begin{equation*}
g^{X Y} a=a \text { if } a \in A_{X} \text { and } g^{X Y} b=c_{Y \eta_{X}}^{(Y)} \text { if } b \in A_{Y} \tag{13}
\end{equation*}
$$

respectively. Moreover, then

$$
\begin{equation*}
d_{z y}^{(X)}=d_{x y}^{(Y)} \text { and } c_{z}^{(X)_{z}} a=c_{z}^{(Y)} a \tag{14}
\end{equation*}
$$

for $x, y \in X \subset Y$ and $a \in A_{X}$. The proof of the following proposition is straightforward; we only note that this is where h5 is needed.

Proposition 6.3 Every algebra from HCAv is isomorphic to a flat algebra. Néoreover, the category HCA_{V} is equivalent to its full subcategory determined by flat algebras.

Now we associate with every flat HCAV A an algebra $\mathbf{A}^{L f}$:= ($\left.A, c_{z}, d_{z y}\right)_{z, y \in V}$ by setting
e0: $\quad A=U\left(A_{X}: X \in R T\right)$,
ع1: $\quad c_{x} a=c_{3}^{(X)} a$ for some $X \in R T$ such that $a \in A_{X}$ and $x \in X$,
ع2: $\quad d_{x y}=d_{x y}^{(X)}$ with $x, y \in X$.
By (14), definitions ($\varepsilon 1$) and ($\varepsilon 2$) are unambigous: any X which satisfies the conditions may be used. Conversely, given a locally finite CAV A, we construct an algebra $A^{F}:=\left(A_{X}, f^{Y X}, g^{X Y}\right)_{X_{\mathcal{C}}} Y_{\in R I}$ as follows:
¢0: $\quad A_{X}:=A \mid X$ is the neat X-reduct of A,

丂1: $\quad f^{Y X}$ is the embedding of A_{X} into A_{Y},
$\zeta 2: \quad g^{X Y}$ is the restriction of $c_{Y \backslash X}$ to A_{Y}.
Proposition 6.4 (a) If \mathbf{A} is a flat HCAV A, then $\mathbf{A}^{L f}$ is a LfCAV and $\left(\mathbf{A}^{L f}\right)^{F}=\mathbf{A}$.
(b) If \mathbf{A} is a $\operatorname{LfCA}_{v} \mathbf{A}$, then \mathbf{A}^{F} is a flat $H C A_{V}$ and $\left(\mathbf{A}^{F}\right)^{L f}=\mathbf{A}$.

Proof. (a) Assume that \mathbf{A} is a flat $H C A_{\boldsymbol{v}}$. Clearly, $\mathbf{A}^{L j} \in C A_{v}$, for any finite number of elements of A belongs to some $A_{\mathbf{x}}$. To verify that $\mathbf{A}^{L f}$ is locally finite, it sufficies to show that X supports a whenever $a \in A_{X}$. Let $a \in A_{X}, x \notin X$ and $X \cup\{x\} \subset Y$. Then in $A, c_{=}^{(Y)} f^{Y X_{a}}=$ $f^{Y X_{a}} a$ by h6, i.e. $c_{z} a=a$ in $A^{L j}$.

We have just seen that $A_{X} \subset A \mid X$. Conversely, if $b \in A \mid X$, then $c_{y} b=b$ whenever $y \notin X$. There is $Y \in R T$ such that $b \in A_{Y}$ and $X \subset Y$; so we have $b=c_{Y \backslash x^{b}}=c_{Y \mid(Y)}{ }^{(Y)}$. By h4, then $b=f^{Y X_{a}}$ for some $a \in A_{X}$; since A is flat, we conclude that $b \in A_{X}$. Therefore, $A \mid X=A_{X}$. Now it is easily seen that A_{X} is the neat X-reduct of $A^{L f}$, indeed, and that ($\zeta 1$), ($\zeta 2$) hold as well.
(b) Straightforward.

This is a routine job to check that if $\left\{\varphi_{X}: X \in R T\right\}$ is a HCA ${ }_{V}$ homomorphism from A to A^{\prime}, then the mapping $\varphi:=\mathrm{U}\left(\varphi_{X}: X \in R T\right)$ is a homomorphism between the respective CA_{v} 's. Conversely, if φ is a CA-homomorphism from A to \mathbf{A}^{\prime}, then the family $(\varphi \mid X: X \in R T)$ is a homomorphism between the respective $H_{C A}{ }_{V}$'s. These transformations are mutually inverse; therefore, we come to

Proposition 6.5 The category LfCA ${ }_{V}$ is isomorphic to that of flat HCAv's.

Now Theorem 6.2 follows from Propositions 6.3 and 6.5.
Returning to the structure of a HCAy, we note that the following result was proved in [C4].

Proposition 6.6 Assume that A is an ulgebra of kind (12) and that each \mathbf{A}_{X} is of the form $\left(A_{X}, c_{Z}^{(X)}\right) \mathbf{z C X}$. Then the following conditions are equivalent:
(a) every A_{x} is a QAx and h1-h4 hold,
(b) $\left(A_{X}, f^{Y X}, g^{X Y}\right)_{X C Y \in R T}$ is a $\operatorname{BAAC}(R T)$, and h3, h4 as well as
h7: $f^{Y(X \cap Y)} g^{(X \cap Y) X_{a}}=g^{Y Z} f_{a}^{Z X_{a}}$
hold.
The conditions listed in (b) correspond to items (2.1), (4.2) and (2.3) in [C4]. h3 can even be omitted: an instance of $\mathrm{h7}$ (with $X=Y$) gives $f^{X X} g^{X X} a=g^{X Z} f^{Z X} a$, and h3 follows by al and a1'. On the other hand, a weakened form

$$
\text { h8: } f^{Y(X \cap Y)} g^{(X \cap Y) X} a=g^{Y(X \cup Y)} f^{(X \cup Y) X_{a}}
$$

of h7 would suffice:

$$
\begin{aligned}
& g^{Y Z} f^{Z X} a=g^{Y(X \cup Y)} g^{(X \cup Y) Z} f^{Z(X \cup Y)} f^{(X \cup Y) X} a= \\
& g^{Y(X \cup Y)} f^{(X \cup Y) X_{a}}{ }_{a} f^{Y(X \cap Y)} g^{(X \cap Y) X_{a}}
\end{aligned}
$$

by a2 and a2', h3, h8.
Remark 6.7 Thus, a BAAC $(R T)$ that satisfies $h 7$ may be treated as a "quantifier-free" heterogeneous quantifier algebra, h4 being merely a definition of quantifiers. If endowed with diagonal elements in all $\mathbf{A}_{\boldsymbol{x}}$'s (subject to appropriate axioms involving only operations f and g), such an RT-act becames essentially a heterogeneous cylindric algebra. For a class of algebras defined along these lines, see [C3].

7 Equivalence of RelA A_{V} 's and LfCA A_{V} 's

Now we are almost ready for proving the following result which shows, in particular, that the concept of a relational algebra is properly defined.

Theorem 7.1 The category RelA A_{V} is equivalent to LfCA_{V}.
We still need only one lacking link-heterogeneous TAC's! We shall imitate Definition 12; however, there is a trouble with quantifiers in the axiom h4. If we define $c_{x}^{(Y)}$ according to $(\gamma 1)$, the case $Y=$ $\{x\}$ makes no sense while quantifiers $c_{Y}^{(Y)}$ prove io be unrelated with operations of the algebras \mathbf{A}_{Y}. For this reason, we use a different definition, restrict h4 and add one more axiom instead.

Definition 7.2 A heterogeneous TAC $_{V}$, or HTAC_{V}, is an algebra

$$
\left(A_{X}, f^{Y X}, g^{X Y}\right)_{X \subset Y \in R T},
$$

where each $\mathrm{A}_{X}:=\left(A_{X}, s_{\alpha}^{(X)}, \mathrm{t}_{\alpha}^{(X)}\right)_{\alpha \in T_{X}}$ is a TAC_{X} and, for all X, Y, Z, the axioms h1-h3,
$\mathrm{ha}_{1}: f^{Y X_{g}}{ }^{X Y_{a}}=c_{Y \backslash X}^{(Y)} \quad$ for $X \neq \emptyset$,
end
h9: $f^{Y \otimes} g^{\otimes X} a=g^{Y(X \cup Y)} f^{(X \cup Y) X} \quad$ if $X \cap Y=0$

$\eta 1: \quad c_{Y \backslash X}^{(Y)}=s_{\alpha}^{(Y)} \mathbf{t}_{\alpha}^{(Y)}, \quad$ where $\alpha Y=X$.
Note that h9 is included in h8. By Lemma 5.5(a), the right-hand side of $(\eta 1)$ does not depend on the choise of α.

Now let A be any HTAC V. We set
$\eta 2$: $\quad c_{Y}^{(Y)} a=g^{Y Z} c_{Y}^{(Z)} f^{Z Y} a, \quad$ where Z is a proper superset of Y.
Then

$$
\begin{gathered}
c_{Y}^{(Y)}=g^{Y Z} c_{Y}^{(Z)} f^{Z Y} a=g^{Y Z} f^{Z(Z \backslash Y)} g^{(Z \backslash Y) Z} f^{Z Y} a= \\
f^{Y G} g^{\theta(Z \backslash Y)} f^{(Z \backslash Y) \theta} g^{\theta Y} a=f^{Y Q} g^{\ell Y} a
\end{gathered}
$$

by ($\eta 2$) $, \mathrm{h}_{1}, \mathrm{~h} 9, \mathrm{hs}$. Therefore, the operations $\mathrm{c}_{Y}^{(Y)}$ are also welldefined. Moreower, we conclude that h4 holds in \mathbf{A} in full extent and that every $f^{Y X}$ is a homomorphism from $\left(A_{X}, c_{Z}^{(X)}\right) z \subset X$ to $\left(A_{Y}, c_{Z}^{(Y)}\right) \mathbf{z c X}$. At last, the proof of $h 6$ remains valid, and $h 5$ again is a consequence of the following lemme.
Lemma 7.3 The Boolean part $\left(A_{X}, f^{Y X}, g^{X Y}\right)_{X \subset Y \in R T}$ of the algebra A is a $\operatorname{BAAC}(R T)$.

Proof. For X nonempty, $h 4_{1}$ implies that every $g^{X Y}$ is isotone together with $C_{Y \backslash X}^{(Y)}($ see (4)):
$b_{1} \leq b_{2} \Rightarrow c_{Y \mid X}^{(Y)} b_{1} \leq c_{Y \mid X}^{(Y)} b_{2} \Rightarrow f^{Y X} g^{X Y} b_{1} \leq f^{Y X} g^{X Y} b_{2} \Rightarrow g^{X Y} b_{1} \leq g^{X Y} b_{2}$.
It immediately follows from ($\eta 2$) that also every $c_{Y}^{(Y)}$ is isotone, and even extensive: by (n 2), (5), h3:

$$
c_{Y}^{(Y)} a=g^{Y Z} c_{Y}^{(Z)} f^{Z Y} a \geq g^{Y Z} f^{Z Y} a=a
$$

Then all mappings $g^{0 Y}$ are isotone as well in a similar way，and we apply Proposition 2．2．

The following theorem is the counterpart of Theorem 6.2 and is proved after the same fashion．

Theorem 7．4 The cutegories LfTAC $_{V}$ and $H T A C_{V}$ are equivaient．
The definition of a homomorphism betveen $H_{T A C}^{V}$＇s can be mod－ elled after that of the previous section．Instead of $\varepsilon 1$ and $\varepsilon 2$ we now use the definitions
$\varepsilon 1^{\prime}: \quad s_{\alpha} a=s_{\alpha}^{(Y)} a$ for some $X \in R T$ such that $a \in A_{X}$ and $\alpha \in T R_{X}$ ．
$\varepsilon 2^{\prime}: \quad t_{\alpha} a=t_{\alpha}^{(Y)} a$ for some $X \in R T$ such that $a \in A_{X}$ and $\alpha \in T R_{X}$ ． Of course，$(\eta 1)$ implies that $(\varepsilon 1)$ follows from（ $\varepsilon 1^{\prime}$ ）and（ $\varepsilon 2^{\prime}$ ）．

Furthermore，when proving the TAC－analogue of Proposition 6．4， we must pay more attention to the inclusion $A \mid X \subset A_{X}$ ．The point is that the equality $b=c_{Y \backslash X} b=c_{Y \backslash X}^{(Y)} b$ presupposes that the operations $c_{Y \backslash X}$ and $c_{Y \backslash X}^{(Y)}$ satisfy $(\alpha 1)$ ．But this is the case：$A^{L} f$ is a $Q A_{V}$（see the note just after the proof of（11）），and therefore every $\left(A_{Y}, c_{Z}^{(Y)}\right)_{Z \subset Y}$ is a $Q A_{Y}$ ．

Now we move to relationships between HTAC ${ }_{V}$＇s and RelA ${ }_{V}$＇s．
Let us correlate an algebra $A^{H}:=\left(A_{X}, f^{Y X}, g^{X Y}\right)_{X C Y \in R T}$ with every $\operatorname{Rel} A_{V} A:=\left(A_{X}, s_{\alpha}^{Y X}, t_{\alpha}^{X Y}\right)_{X, Y \in R T, \alpha \in T Y(X, Y)}$ by setting
日0：$\quad \mathbf{A}_{X}=\left(A_{X}, s_{\alpha}^{(X)}, t_{\alpha}^{(X)}\right)_{\alpha r r_{X}}, \quad$ where
日1：$s_{\alpha}^{(X)}=s_{\alpha}^{X X}$ ，
日2：$t_{\alpha}^{(X)}=t_{\alpha}^{X X}$ ，
as well as
日3：$\quad f^{Y X}=s_{\varepsilon}^{Y X}$ ，
日4：$\quad g^{X Y}=t_{\varepsilon}^{X Y}$ ．
Therefore， $\mathbf{A}^{\boldsymbol{H}}$ is merely a reduct of A．Also，let us corre＇te an al－ gebra $A^{R}:=\left(A_{X}, s_{\alpha}^{Y X}, t_{\alpha}^{X Y}\right)_{X, Y \in R T, ~} \in \operatorname{Tr}(X, Y)$ with every HTAC $V_{V} \mathbf{A}:=$ （ $\left.\mathrm{A}_{X}, f^{Y X}, g^{X Y}\right)_{X \subset Y \in R T}$ by setting
i0：A_{X} is the Boolean algebra underlying A_{X} ，
i1：$\quad s_{\alpha}^{Y X}=g^{Y U_{s_{\alpha}}^{(U)}} f^{U X}$ ，
t2：$\quad t_{\alpha}^{X Y}=g^{X U_{t_{\alpha}}^{(U)} f^{U Y}}$ ，
where U in ($\iota 1$), ($\llcorner 2$) is selected so that $X \cup Y \subset U$. The two definitions are correct: $s_{\alpha}^{Y X}$ and $t_{\alpha}^{X Y}$ do not depend on U. For example, since $\alpha \in \operatorname{Tr}_{(X \cup Y)}$, we have by h2 and its dual, h1, h3:

$$
\begin{aligned}
& g^{Y(X \cup Y)} g^{(X \cup Y) U} f^{U(X \cup Y)_{s_{\alpha}}(X \cup Y)} f^{(X \cup Y) X} a=g^{Y(X \cup /)_{s_{\alpha}}(X \cup Y)} f^{(X \cup Y) X},
\end{aligned}
$$

and likewise for ($七 2$). (Actually, ($ا 2$) is the dual of (11).) In particular, $s_{e}^{Y X}=g^{Y Y} s_{c}^{(Y)} f^{Y X}=f^{Y X}$ by ($\iota 1$), h5 and its dual, and a^{\prime}. Therefore, we have
$\iota 1^{\prime}: \quad s_{s}^{Y X}=f^{Y X}$,
and, similarly,
$\iota 2^{\prime}: \quad t_{s}^{X Y}=g^{X Y}$.
Theorem 7.5 (a) If \mathbf{A} is a RelAv, then \mathbf{A}^{H} is a $H T A C V$ and $\left(\mathbf{A}^{H}\right)^{R}=$ A.
(b) If \mathbf{A} is a HTAC_{V}, then \mathbf{A}^{R} is a RelAV and $\left(\mathbf{A}^{R}\right)^{H}=\mathbf{A}$.

Proof. (a) Assume that A is a RelAv. First of all, then every \mathbf{A}_{X} in \mathbf{A}^{H} is a TAC_{X} (obvious) and every Boolean homomorphism $f^{Y X}$ preserves also the operations $s_{\alpha}^{(X)}$ and $t_{\alpha}^{(X)}$: by $(\theta 1)-(\theta 4)$ and $\mathbf{r 7}$, we have

$$
f^{Y X_{s}(X)_{a}} a=s_{e}^{Y X} s_{\alpha}^{X X} a=s_{\alpha}^{Y X} a=s_{\alpha}^{Y Y} s_{e}^{Y X}=s_{\alpha}^{(X)} f^{Y X_{a}},
$$

and the other identity $f^{Y X_{t}}{ }_{\alpha}^{(X)} b=t_{\alpha}^{(Y)^{Y X}} f_{b}$ is r14. So h1 is valid in \mathbf{A}^{H}. Furthermore; h2 is included in $\mathbf{r 7}$, and h3 is r12. Finally, we obtain $h 4_{1}$ by Proposition 2.2(c): oviously, $\binom{Y Y}{Y^{Y}}=\left({ }_{e}^{Y X}\right)\left({ }_{\alpha}^{Y X}\right)$ and $\binom{Y X}{\alpha}=\binom{Y Y}{\alpha}\binom{Y X}{\beta}$ for some β such that $\beta x \in \alpha^{-1} x$ whenever $x \in X$. By ($\theta 3$) and ($\theta 4$), h9 is included in r13.

So \mathbf{A}^{H} is a $H^{2} A C_{V}$. Furthermore, by ($\theta 1$)-($\theta 4$), r7, r7, r12,
i.e. (11) holds, and likewise ($\iota 2$) can be checked. We have proved (a).

To prove (b), assume that $A \in H T A C_{V}$ and apply Proposition 3.5. It follows immediately from definitions ($c 1$), ($\mathbf{2}$) and (2) that the operations $s_{\alpha}^{Y X}$ and $t_{\alpha}^{X Y}$ of A^{R} are conjugate. Furthermore, r10 follows by (8) from h3 while r13 and r14 are included in h8 and h1, respeciively (by ($\iota 1^{\prime}$) and ($\iota 2^{\prime}$)). Finally, as to $\mathbf{r 1}$ and $\mathbf{r 7}$, it is handily
to assume that the algebra \mathbf{A} is flat and then transfer the problem to the corresponding TAC $_{V}$.

If the initial HTAC ${ }_{V}$ is flat, the equations (41), ($t 2$), when transferred to the corresponding $\operatorname{TAC}_{V}\left(A, s_{\alpha}, t_{\alpha}\right)_{\alpha \in T_{r_{\psi}}}$, read there as follows:

$$
\begin{equation*}
s_{\alpha}^{Y X_{a}}=c_{U \backslash Y} \mathbf{s}_{\alpha} a, \quad t_{\alpha}^{X Y} b=c_{U \backslash X} t_{\alpha} b \tag{15}
\end{equation*}
$$

for $a \in A|X, b \in A| Y$ and $U \supset X \cup Y$ (see (13)). We assume that $U=X \cup Y$. Now, by (15), r1, Lemma 5.5(c), c11, (15)

$$
\begin{aligned}
& s_{\alpha}^{Y X}(-a)=c_{U \backslash Y} s_{\alpha}(-a)=c_{U \backslash Y}\left(-s_{\alpha} a\right)= \\
& c_{U \backslash Y}\left(-c_{U \backslash Y} s_{\alpha} a\right)=-c_{U \backslash Y} s_{\alpha} a=-s_{\alpha}^{Y X_{a}} .
\end{aligned}
$$

By (15), Lemma 5.5(c), a2, 15 , if $X, Y, Z \subset U$,

$$
s_{\beta}^{Z Y_{\alpha}} s_{\alpha}^{Y X_{a}}=c_{U \backslash Z} s_{\beta} c_{U \backslash Z} s_{\alpha} a=c_{U \backslash Z} s_{\beta} s_{\alpha} a=c_{U \backslash Z} s_{\beta \alpha} a=s_{\beta \alpha}^{Z X} a .
$$

So A^{R} is a RelA . Furthermore, $s_{\varepsilon}^{Y X_{a}}=g^{Y Y_{s}(Y)} f^{Y X_{a}}=f^{Y X}$ by (61), the dual of $\mathrm{h5}$, a1, i.e. ($\theta 3$) holds, and likewise ($\theta 4$) can be checked.

Remark 7.6 In Proposition 3.5, r13 could be replaced by its particular case

15: $s_{\varepsilon}^{Y 0_{1} \theta X} a=t_{\varepsilon}^{Y Z_{s}}{ }_{c}^{Z X_{a}} \quad$ if X and Y are disjoint
obtained by setting $X=\emptyset$ and appropriate relettering of types. Indeed, in the proof of (a) only r14, r13 and r12 (i.e. r10) were used along with wRelA A_{V} axioms. Moreover, r13 was only needed to justify $\mathbf{h 9}$. Therefore, axioms of $H^{\prime} A C_{V}$ are derivable from $\mathrm{r} 1-\mathrm{r} 5, \mathrm{r7}, \mathrm{r} 10, \mathrm{r} 14$, $\mathbf{r 1 5}$, and we already have proved in (b) that r13 holds in any HTACV. Note that, in fact, r15 is, essentially, the same h 9 .

Obviously, every homomorphism between two RelA ${ }_{\boldsymbol{Y}}$'s is also a homomorphism between the respective $H^{\prime} T_{V} C_{V}$'s, and vice versa. Therefore, we have

Theorem 7.7 The categories HTAC_{V} and RelA A_{v} are indistinguishable.

Together with Theorems 5.4 and 7.4, this leads to Theorem 7.1.

References

[B1] Beniaminov E.M. The algebraic structure of relational models of databases (in Russian). Nauchno-tekhnicheskaya Informacija (1980), ser. 2, no 9. 23-25.
[B2] Beniaminov E.M. On the role of symmetry in relational models of databases and in logical structures (in Russian). Nauchnotekhnicheskaya Informacija (1984), ser 2, no 5. 17-25.
[C1] Cirulis Ja.P. Cylindric and relational algebras: the equivalence of two notions of an algebra of relations (in Russian). Techn. Rep. RFAP LatvSSR, no IT0009, 21.iJ.86, 20 p.
[C2] Cirulis Ja.P. Two results in algebraic logic (in Russian). Abstracts 8-th All-Union Conf. Math. Logic, Moscow, 1986, 204.
[C3] Cirulis Ja.P. Equational axioms of relational algebras with complements (in Russian). Algebra i Diskretnaya Matematika: Prikladnye Voprosy Informatiki. Latvian State University, Riga, 1989, 129-136.
[C4] Cirulis J. On heterogeneous quantifier algebras. Acta Universitatis Latviensis 552 (1990), 121-126.
[Co] Codd E.F. A relational model for large shared data banks. Communs ACM 13 (1970), no 6, 377-387.
[Cr] Craig W. Unification and abstraction in algebraic logic. Studies in Algebraic Logic. Math. Assoc. Amer., Washington, 1974, 6-57.
[G] Galler B.A. Cylindric and polyadic algebras. Proc. AMS 8 (1957), 176-183.
[GH] Gierz G., K.H. Hofmann e.a. Compendium of Complete Lattices. Springer, Berlin, 1980.
[HMT] Henkin L., J.D. Monk, A. Tarski. Cylindric Algebras Parts I,II. North-Holland, Amsterdam, New-York, Oxford, 1985.
[IL1] Imieliński T., W. Lipski. The relational model of data and cylindric algebras. ICS PAS Reports no 446, 1981.
[IL2] Imieliński T., W. Lipski. The relational model of data and cylindric algebras. J. Comput. Syst. Sci. 28 (1984), no 1, 80-102.
[JT] Jónsson B., A. Tarski. Boolean algebras with operators, Part I. Amer. J. Math. 73 (1951), no 4, 891-939.
[K] Kandelakis P.C. Elements of relational database theory. Handbook of Theoretical Computer Science, vol. 2. Elsevier Sci. Publ. 1990, 1073-1156.
[L] LeBlanc L. Transformation algebras. Canad. J. Math. 13 (1961), no 1, 91-96.
[N] Németi I. Algebraizations of quantifier logics (uverwiew). Studia Logica 50 (1991), no 3/4, 485-569.
[P] Pinter C. Cylindric algebras and algebras of substi+utions. Trans. AMS 175 (1973), 167-179.
[Pl] Plotkin B.I. Universal Algebra, Algebraic Logic, and Databases in Russian. Nauka, Moscow, 1991. English translation: Kluwer Academic Publ., Dodrecht, 1994.
[V1] Volkov N.D. Halmos algebras and relational algebras (in Russian). Latvǐskĩ Mat. Ezhegodnik 30 (1986), 110-123.
[V2] Volkov N.D. Transfer from relational algebras to Halmos algebras (in Russian). Algebra i Diskretnaya Matematika: Theoreticheskie Voprosy Programmirovaniya. Latvian State University, Riga, 1986, 43-53.
[V3] Volkov N.D. Operations of Halmos polyadic algebras in relational algebras (in Russian). Latviriski Mat. Ezhegodnik 31 (1988), 103-114.
[V4] Volkov N.D. On equivalence between categories of Halmos algebras and of relational algebras (in Russian). Latvirskì Mat. Ezhegodnik 34 (1993), 171-180.
[Z] Zlatos P. Two notes on locslly finite cylindric algebras. Comment. Math. Univ. Carol. 25 (1984), no 1, 181-189.
J. Girulis. Abstraktas finitā̃u relāciju algebras: dasjas netradicionălas aksiomatizácijas.

Anotācija. Darbā parādīts, ka vairākas netradicionālas algebru klases, kas saistītas ar pirmās pakāpes logiku, ir definicionāli ekvivalentas lokāli gatigo cilindrisko algebru klasei.
Я. Њмрулис. Абстрактные алгебры фпнитарных отношений: некоторые нетрадиционные аксиоматизадии.

Авнотацвя. Показано, что несколько нетрадипионных классор алгебр, свлзаннвхх с логикой первого порядкв, дефинидиальво өквивалевтны классу локвльно конечных цилиндрически алгебр.
Feceived 22.03.1994

Computer Science Department
University of Latvia
Riga LV 1586
LATVIA

CORRES:TIONS TO MY PAPER "AN ALGEBRAIZATION OF this FIRST ORDER LOGIC WITH TERMS"
 Jānis Cīrulis

Abetract. We present an improved list of axioms for term systems and correct a number of misprints in [1].
AMS 1991 Subject Clessification 03G15.
We assume thit the reader is familiar with [1] and has a copy of that paper before him/her.

1. In $\S 1$ of [1], we proposed a formalization of s..bstitutions in term algebras. It turned out later that a couple of inaccuracies are acinitted in subsequent considerations and that the axiom system ' $\mathrm{Tl}-\mathrm{T} 4$ is, in fact, insufficient for substantia'ing a technical de rice used in §2. Ne owe Z. Diskin for indication that there was something wrong.

The problems are concerned with the notation $\left[w_{1} / x_{1}, \ldots, w_{m} / x_{m} \mid w\right.$ introduced on p. 132 just after the proof of Lemma 22 . First we have overlooked that it requires a special justification in the case $m=1$, for the notation $[v / x] w$ was aheady used on the previous pages on its own rights as a shortening for $s_{s}(v, v)$ (see p. 128). What is needed here is the conditional identity suggested by (2.1)
$T:[v / y][y / x] w=[v / x] w$ if w ind y and $y \neq x$.
T' can be modified and given the form of a pure identity (see selow).
Furthermore, to jusifify the notation $\boldsymbol{\sigma} w$, also introdured on p.132, we must be aware that, for example, $\left[w_{1} / x_{1}\right] w=\left[w_{1} / x_{1}, w_{2} / x_{2}\right] w$ when $w_{2}=x_{2}$. Difficulties of tLis kind are eliminated by mans of th-identity
$[x / y]|y / x| w=w$ if w ind y and $y \neq x$.
By 1", it may be reduced to
$\mathrm{T}^{n}:[x / x \mid w=w$.
The fullowing is the corrected axiom list of term systems in the original notation of [1].

T1: $s_{\kappa}\left(v, x_{\kappa}\right)=v$,
'T2: $s_{\lambda}\left(v, i_{\kappa}\right)=x_{\kappa}$ if $\lambda \neq \kappa$,
T3: $s_{\text {. }}\left(\mathrm{x}_{\kappa}, v\right)=v$,
T4: $s_{\lambda}\left(v, s_{\kappa}\left(x_{\lambda}, s_{\lambda}\left(x_{\mu}, w\right)\right)\right\rangle=s_{\kappa}\left(v, s_{\lambda}\left(x_{\mu}, w\right)\right.$, if $\lambda \neq \kappa, \mu$ and $\kappa \neq \mu$,
T5: $s_{\kappa}\left(v, s_{\kappa}\left({ }^{\prime} \lambda_{\lambda}, w\right)\right)=s_{\kappa}\left(\lambda_{\lambda}, v\right)$ if $\lambda \neq \kappa$,
T6: $s_{\lambda}\left(j_{k}\left(x_{u}, u\right), s_{k}(v, w)\right)=$

$$
s_{\kappa}\left(s_{\lambda}\left(s_{\kappa}\left(x_{\mu}, u\right), v\right), s_{\lambda}\left(s_{\kappa}\left(x_{\mu}, u\right), w\right)\right) \text { if } \lambda \neq \kappa, \mu \text { and } \kappa \neq \mu .
$$

Here, T3 $=\mathrm{T}^{n}$, T 4 is the equational version of T , and $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T}, \mathrm{~T} 6$ are respectively the axioms T1, T2, T3, T4 of [1].

Meantime we have learned fro.n [5] that a similar axiom system has been studied by N. Feldman already in [4]. This system (provosed by C. Pinter in 1972 for essentialiy the same purposes: to characterize substitutions in t, m algehras) is not properly equational; however the two non-equational axioms A4 and A6 of [4] can be given a form of au equatio. 1 in the same ma: $n \in i$ as T ' above (then A6 becawes our T6). It is easy to show that the two axiom systams are eq'jvalent uider tise assumption of local f.niterisss-see the paper by A. Silionova in thi, volume.
2. White investigating relationships between two axiomatizatiors of cylindric algebras with tarms [1],[5], A. Silionova noticed that there is a troub'e with Lerma 3.12(i) in [1]. Really, the asiom D!2 shouid read like the axiom (c) in [3], §2:
$\mathrm{D}!2: \mathrm{d}_{v w}=-s\left(d_{v v} \wedge d_{v v}\right)$ if v, w ind z.
This axiona, as well as D!3 and D!4, is not a pure identity. However, all of chem can be given a form of an equation in the same way as $\mathrm{T}^{\text {' }}$ was. E.g, D!2 if equivalent to

$$
d_{\left(\left[L^{\prime} / x \mid v\right)([y / x \mid w)\right.}=\varepsilon_{x}\left(d_{\left.x^{\prime}|y / x| v\right)} \wedge d_{x([y / x \mid w)}\right), \text { wher } y \neq z \text {. }
$$

We tak the onportunity to note tiLat originally the fullowing single generalization of D2 did the job of D!2 and L'4 (see [2]):

$$
\left.c_{2}{ }^{\prime} d_{u v} \wedge d_{s w}\right)=d_{([u ; x \mid u)(w \mid z] v)} \text { if } w \text { ind } z .
$$

It is somewhat weake. than the axiom (e) in [5].
3. We also correct the most unpleasant misprints in [1].

Proof of Lemme 2.2: in thr displayed formulas, rrad ' $\left[w_{m} / y_{m}\right] \ldots$ ' for ' $\left\{w_{m} / y_{m} \cdots\right.$ '.

Proof of Lemma 2.3: in the displayed ecuality, omit the last ' $]$ ' at the end of the first line and the first '[' at the begianins of the orcond line.

Rcad 'TS' for 'ST' and for 'ST' at the boctom of p. 133.
Read 'suvalgebra' for 'superalgebra' in Deíinition 3.11.
Onit the first equality sign in 140_{11}.
Replace '1981' by '1986' in ref. [C1].
R ad 'St ste' for 'Scientific' in refs [C4] and [C6].
Fuead 'Ukrainian' for 'Ukrarian' and replace '1980' by '1988' in ref [MP].

References

[1] CTrulis J. An algebraization of first order logic with terms. Aigebraic Lrgic (Proc. Conf. Budapest 1993), Colloq. Math. Soc. J. Bolvai, Vol. 54, North-Holland, Amsterdam, 1991, 125-146.
[2] Cirulis sa P. Relational z'gebıss in databases, and generalized cylindric algebres (Russian). Teoreticheskie voprosy prog'a: amirovaciya, Latvian State University, Riga, 1988, 100-107.
[3] Strulis .I. Superc'iagonals of universal olgebras. Act a Univ. Latviensis, Vol. 576 (1992), 29-is.
[4] Feld nan N. Axiomatization of polynomial substitution algebras. J. Symb. Log., Vol. 47 (1982), 481-492.
[5] Frldman N Cylindric algebras witi terms. .. Symb. Log., Vol. 55 (1990), 854-866.
J. Grrali Labojucij manam rakotam "An algebraisation of first order logic with terms". Anotaci,a. Tiek korigeta termu ciathmu aksiomu sarahats un inlajotas daiao iespiedtlū̃das darbĕ [1].
Я. Цирулис. Исгравдеаия z moell crame "An algebraization of fint order logic with terms".
 исправлявтся гекоторие опечатия.

Received 12.01.1994

Paculty of Physics and Mathematice
Univerity of Latvia
Riga LV-1. 36
Latvia

SUBSTI TUTIONS IN TERM ALGEBRAS: EQUI VALENCE OF TWO AXIOMATI ZATI ONS

A. Silionova

Abstract. We prove that the axd on system of term systems [1,2] and that of substitution algebras [3] are equivalent in the case of locally finiteness. ANS 1901 Subject Classification: primary 0BA4O, secondary 03615.

We adduce the definition of term system from [1] (with corrections from [2]) and that of substitution algebra from [3]. We borrow the notation or [1].

Let a be a fisced ordinal.
Defintition 1. A terie systev of dimension a is an algebra
 W, each x_{m} is an element of W and the rollowing conditions are fulfilied for all $\mu, w, \lambda<a_{\text {: }}$

T1: ${ }_{x}\left(v, x_{z}\right)=v$,
TE: ${ }_{\lambda}\left(v, x_{i z}\right)=x_{x}$, where $\lambda x_{\text {, }}$
T3: $s_{n}\left(x_{z}, v\right)=v_{*}$
T4: $\quad s_{\lambda}\left(v, s_{i}\left(x_{\lambda}, s_{\lambda}\left(x_{\mu}, w\right)\right)=m_{z}\left(v, s_{\lambda}\left(x_{\mu}, w\right)\right)\right.$, where λ m, μ and $* \mu_{\text {, }}$
 TE: $\quad s_{\lambda}\left(s_{x}\left(x_{\mu}, u\right), s_{x}(v, w)=\right.$

$$
=m_{x}\left(s_{\lambda}\left(s_{x}\left(x_{\mu}, w\right), v\right), s_{\lambda}\left(s_{x}\left(x_{j}, u\right), w\right)\right),
$$

where $\lambda \geqslant \mu, \mu$ and $m \neq \square$
Definition 2. A substitutior algrbra or dimension a is an algobra $S:=\left(W, s_{n} x_{m}\right)_{z<a}$ such that each m_{n} is a binary operation on W, each x_{x} is an elament of W and the following conditions are fulfilled for all $\mu, z_{,} \lambda<a$:

A1: $\quad v_{i x}\left(v, x_{k}\right)=v_{1}$
A己: $s_{\lambda}\left(v, x_{2}\right)=x_{x}$, where $\lambda \geqslant x$,

A3: $s_{x}\left(x_{x}, v\right)=0$,
A4: if $s_{\lambda}(u, v)$ - v for all $u \in W$, thon
$s_{\lambda}\left(v, s_{x}\left(x_{\lambda}, w\right)\right)=s_{\lambda}\left(v, s_{x}(v, w)\right)$,
A5: $\left.\quad s_{x}\left(s_{x}(v, w), w\right)=*_{x}\left(v, z_{x} i u, w\right)\right)$.
$A B:$ if $s_{x}(v, u)=u$ for all $v \in W$, then
$s_{\lambda}\left(u, s_{x}(1, w)\right)=s_{x}\left(s_{\lambda}(u, v), s_{\lambda}(u, w)\right)$, ther $\rightarrow \lambda \neq x$. o
It will be convenient to denote arbitrary varizbles by
letter: x, y, z, and tr write $[u / x] w$ for $s_{x}(v, w)$ where $x=x_{x}$. We refer to the elements of W as to terms and to those of the set $x:=\left(x_{x}: x(a)\right.$ - as to variables, the ter $s_{x}(v, w)$ is said t, be the result of subetitution of v for x_{x} in w.

Definition 3. We sav that : tarmuis independent of the varjable \times ina term system - (in a substitution algebra S), w) Ind x, in short, if $[v / x] w=w$ for any $J \in W$. The te.解 system i (the substitution algebra S itself is said to be locally fi.cile, if every term depends onl: on a finite number of variables. o

Note irst, both in T and in S, if $a>1$, then

$$
w \text { ind } x \leftrightarrow[y ; x] w=w \text { for some } y \neq x \quad(r y
$$

(see Theorem 2.1 in '3) and the observatio.1 after (1.2) int '11).

Now T1--TB and A1--AB may be rowiltec as foll wow T4, and T8, are re:lly not just other wor ling of T4 and Te but are equivalent to t.nem ky m):
$T 1^{\prime}=A 1^{\prime}: \quad[v / x] x=v$,
T2' $=A 2^{\prime} \quad[v / y]==x$, where $y \times x$,
$T P^{\prime}=A 3^{\prime}: \quad[x / x] v=v$.
Ts': $\quad\{v / y][y / x] w=\{v / x] w$, where $y \neq x$ and w ind y
R4': $\quad[v, y][y ; x] w=[v, i f v / x] w$, where ind y,
T5':
A5': $\quad[v / x][w \geq] w \cdot[[v / x] w / x ; \omega$,
$T S^{\prime}=A E^{\prime}: \quad[4, y][n / x] w=\{[w y \mathfrak{v} / x][w / y]$, where $x \neq y$ and u ind x.

If al $o v i n d$, in the last equality, tion
$[w / y][v / x] w=[u / x][w / y] w:$
and, provided that $a>2$.

$$
w, v \text { ind } y \Rightarrow[v / x] w \text { ind } y \text { if } x \geqslant \rho \text {, }
$$

Cagain, both in T and in S.
In the rest we consicer that $\alpha \geq \omega$.
Theorer 4. If T is locally finite, then A1--AB hold.
Proof. Tr- assertions A1', A2', A3', AA' roli, $C i d=$ with. Lhe pxioms T1', T2', T3', T6', respectively. Now we prove that 45* polds in T. Let y be a variable distinct from x ancu such that μ, v ind y. Then by T4', 15', T5', T4',
$[v / x][\omega / x] w=[v / x][\omega / y][y / x] w=[\{v / x] \omega / y][v / x][y / x] w=$ $=\left[[v / x]_{2}, 勺 y\right][y / x] w=[[v / x] w / x] w$.

Also, A4' holds in T. Let $a x x, y$, such that v, w int a. If v ind y. Then $j y$. T/', T8' T1', ($w(*), T 8, T 1$, T4'
$[v / y][y / x] w=[v / a][a / y][y / x] w=[v / a][[z / y] y / x][z / y] w=$
$=[v / a][a / y][a / x] w=[[v / a] z / y][v / z][a, x] w=$
$=[v / y][v / z][a / x] w=[v / y][v / x] w$. .
Theuren 5. If S is locally finite, then Ti--Ts hold.
Proot. The assertions T1', T2', "3', T6' colncide with the axdous 41 ', A.'', A3', AB', respectively. Now we prove that 15 ' holds in S. By $A 5$, and $A 2^{\prime}$
$[v / x][y / x] w=[[v / \lambda] y / x] w=[y / x] w$.
Also, A4' holds in T. Let $a x, y$ such that vo ind a. if w ind y, then br ($* * *$), $A 4^{\prime}, A 4^{\prime},\left(* * \circlearrowleft, A 4^{\prime},(\# \# *)\right.$.
$[v / y][y / x] w=[v / z][v / y][y / x] w=$
$=[v / z][z / y][y / x] w=[v / a][\varepsilon / y)[\varepsilon / x] w=$
$=[v / a]\left[a,{ }^{\prime} x\right] v=[u / z][v /, j\}=[v / x] w$.
Therefire, in the case $a \geq \omega$ and the alyebras under fonsideratio are locally ininte. cvery term system i: a substitution algebrz, aidd vice versa.

REFERENCES

[1] Cirulis J. An algebraization of first order logic with terms. Algebraic logic (Proc. Conf. Budapest 1088), Colloq. Math. Soc. J. Bolyai, Vol. 5 . North-Holland, Amsiardam, 1991, 125-146.
[2] Cirulis J. Corrections to my paper "An algebraization of first order logic with terms", this volume.
[3] Feldman N. Axionatization of polynomial substitution algebras. J. Symb. Log., Vol. 55 (1990), r.0 3. 854-866.
A. Silionova. Substitucijas termu algebr5s: divu aksiomatizejumu salidzinajums

Anotacija. Darbs noskaidrots, ka termu sistamu il, 2 : aksiomu kopa un substituciju algebru [3] aksiomu kopa ir okvivalentas.
A. Силионова. Подстановки в алгебрах гернов: сравненме авуи аксионатизаиии.

Аннотация: В работе установлено, что систена аксион для тернових систен [1,2] и система ахсион аля субститучионних алเ ебр [3] эквивалентны.

Received 12.01. 1994

Fizikas un matematikas fakultate
Latvijas Uni versitate
Riga LV 1586
LATVIJA

WHEN IS

A SEMANTICALLY DEFINED LOGIC

ALGEBRAIZABLE?

Zinovy Diskin ${ }^{*}$

Abstract

The basic paradigm of algebraic logic (particularly, categorical logic) consists in replacing theories by algebras, and models-by homomorphisms into similar algebras extracted from semantics. The objective of the paper is to suggest a framework for thorough study of this paradign in the general setting, in particular, for classification and comparison of various kinds of algebraiziations in the above sense and, at last, to clarify when a logic can be somehow algebraized. As a formal substitute for a logic we take institutions by Goguen and Burstall (this notion is well-known in the area of algebraic specification languages). With each institution I there is correlated a specification system, spec(I), so that a certain kind of I-logic's algebraization amounts to a presentation of spec(I) by means of another specification system arising from an algebraic (categorical) doctrine of the corresponding kind. However, while in the algebraic logic standard such a presentation is an a prlort assumption and the starting point of precise considerations, in the framework developed in this paper just the very possibility of the presentation is a fact which must be proved. The principal idea we will claborate is to construct an algebraization of spec(I) out from some algebrataation of the very institution I -the chief notion to be defined in this paper. The main theorem of the paper states that if an instituion is algebraizable then the associated specification system is algebraizable too.

AMS Subject Claseification:
Primary 03 G15
Secondary 03G30, 68655, O8A30

[^2]In order to study logical theories (specifications) and their models, it is often usciul to be free from details of their representation determined by a concrete choice of the signature and the set of axioms. Algebraic logic, in particular categorical logic, supports such an intention by means of replacing theories by algebras, and models - by homomorphisms into similar algebras extracted from semantics, what enables one to use powerful machinery of algebraic manipulations.
The idea goes back to Tarski and Lindenbaum; at the beginning of sixties it got a new sound owing to deep Lawvere's ideas of replacing theories by categories with additional (algebraicl) structure while models . by this-structure-preserving functurs into similar semantic categories.
In practice we often have different algebraizations of the same logic. For example, first order predicate logic (FOL) can be algebraized by means of polyadic or cylindric algebras in a universal algebra feshion (Halmos[Ha62], Henkin, Monk and Tarski[HMT_I,II]), or, alternatively, by hyperdoctrines in a indexe: ?ategory fashion (Lawvere [Law70], see also Seely[See83]), or, else, by means of logical categories (logoses, pretoposes etc., see, eg, Makkai and Reyes (MR77]) which are, in fact, hyperdoctrines constructed internally.
Computer Science brought to life a plenty of logical syatems for writing spec: ications; a majority of them can be (and often really done) algebraized in one or another way. So, algebraization of logic has become a paradigm whose study in a unified general setting looks atriactive and useful.
The objective of the present paper is to suggest a framework for such a study, and to present some results justifying the approach. In particular, we will glve some sufficient condition when a ce-tain algebraization of a logic is possible. In addition, fulfilment of these conditions in a majority of real logics is easily checked, thus, our results esplain, in a sense, why a logic can be algebraized in a certain way.
Briefly, the approach is as follows.
As a formal substitute for a logic we take the familiar notion of institution by Goguen and Burstall ([GB84], see also [GB82]). However, since in the present paper our goal consists only in outlining ideas, to simplify things and to avoid 2 categorical machinery, we will deal with the so called discrete institutions when morphisms between models as well as between sentences (ie, proofs) are not considered. That is, by an institution we will mean a quadruple $\boldsymbol{g}=(\operatorname{Sign}, \mathrm{Sen}, \mathrm{Mod}, \mathrm{k})$ where Sign is a category of sigantures, Sen and Mod are functors Sign ..> Set and Sign $^{\text {op }}$..) SET assigning a sm: ! 1 set $\operatorname{Sen}(\Sigma)$ of sentenses and a class $\operatorname{Mod}(\Sigma)$ of models resp, to each signature $\Sigma \in O b S i g n$, finally, is a function assigning a binary satisfaction relation $\mathrm{H}_{\Sigma} \subset \operatorname{Mod}(\Sigma) \times \operatorname{Sen}(\Sigma)$ for each siganture Σ s.t. for each siganture morphism $\sigma: \Sigma \ldots \Sigma^{\prime}$ in Sign and any $m^{\prime} \in \operatorname{Mod}\left(\Sigma^{\prime}\right), \varphi \in \operatorname{Sen}(\Sigma)$ one has:

$$
m^{\prime} \Sigma_{\Sigma}, \sigma(\varphi) \Leftrightarrow \sigma^{*}\left(m^{\prime}\right) \xi_{\Sigma} \varphi
$$

where $\operatorname{Sen}(\sigma)$ is again denctad by σ while σ^{*} denotes $\operatorname{Mod}(\sigma)$.
Given an institution 9 , a specification (or a theory, or a presentation) is defined to be a pair (Σ, Φ) with Σ a siganture and Φ a subset of $\operatorname{Sen}(\Sigma)$. By defining a notion of a specification morphism in a suitable way, one gets the corresponding category of specifications over 9 , Spec (9), equipped with a model functor $M o d^{\boldsymbol{z}}: \operatorname{spec}(\mathcal{G}) \rightarrow \operatorname{SET}^{\rho p}$. by $\operatorname{Mod}^{*}(\Sigma, 屯):=\{m \in \operatorname{Mod}(\Sigma): m \neq \varphi$ for all $\varphi \in \Phi \mid$.

Further, under a specification system we will mean a pair $\varphi=($ Spee, $M d l)$ with Spec a category and $M d l$ a functor as above.

To be able to speak about algebraization, we need a suitable general notion of algebra. For this end we take the notion of a generalized algebraic theory introduced by Cartmell [Ca86]. It is a direct generalization of the usual notion of a many-sorted equational theory: its extra generality is achieved by introduction of sort structures more general than those usually considered, in that sorts may denote sets as is usual, or they may denote families of sets, families of families of sets or the like. (A basic example is the generalized algebraic theory of categories, in which Ob appears as a sort to be interpreted as a set while Hom appears as a sort to be interpreted as a family of sets indexed by ObxOb). In more detail, a generalized algebraic theory T appears as an adjunction $(F \backslash U):$ FamT \leftrightarrows AlgT where AlgT is the (generalized) varie.y of T-algeinas. FamT is the category of their carrier set structures, U is the underlying functor and F is the freely-generated-algebra functor, (For example, if T is the theory of categories, then an object of FamT is nothing but a family of sets, $\left(H_{i j} \in S e t\right.$: $t, j \in \Pi$, indexed by the Cartesian squire of some set I, while a morphism between two such families, (say, from $H_{i j}$ into $H_{i j}^{\prime}$), is a pair (f, g) consisting of a function f mapping I into r and a family of functions $g=\left(g_{i j}, i, j \in I\right)$ with $g_{i j}$ mapping $H_{i j}$ into $H_{f i, f j}^{\prime}$). In fact, for any T, FamT is a full subcategory of the large category Fam of sets, families of sets, families of families of sets etc. described by Cartmell.
Now, an algebralzation of a specification system φ is defined to be a list of the following data.
A generalized algebraic theory, T, two classes of T algebras, $\operatorname{Th}, \operatorname{MadcAlg} T$, an
 $\alpha_{m}: M d l \rightarrow F ; H o m(-, H \circ d)$ (cf. the definition of categorical logic by Meseguer [Me87]).

* Further in the paper, this category is also denoted by Pres. I
By_{y} adopting the terninology of categorical logic, we will call a triple ($\mathrm{T}, \mathrm{gh}, \mathrm{Mod}$) as above a doctrine. Each doctrine D determines a specification system spec(D) where Spec is $9 h$ and, given a specification T and a specification morphiam T: T-$>T, M d(T)$ is $U\{H o m(T, M): M \in m o d\}$ and $M d l(\tau)$ is defined by composition. Now we can say that an algebraization of a specification system φ is a pair (D, α) with \mathcal{D} a doctrine and α an algebraizing presentation $\varphi \rightarrow D$, that is, a kind of specification morphism from φ into spec(D).
Note, in categorical logic, given a logic (institution) 9 , identifying spec(9) with a certain spec(D) for some doctrine D is the starting point of precise considerations, while in the framework being developed in this paper just such an identification is a fact which must be proved. The principal idea we will ie claborating is to construct an aigebraization of spec(9) out from an algebraization of the very institution 9 . the chief notion to be defined in this paper.

In comparison to algebarization of a specification system, to define an institution algebraization one needs a much more involved construction which we call a predoctrine, intanded to model semantically defined logics in a algebraic manner. Roughly speaking, a predoctrine is again a generalized algebraic theory T coupled with two classes of T-algebras, but now the algebraic theory is assumed to be endowed with two set-valued functors, P : PamT \rightarrow Set and D: AlgT \rightarrow Set, $D A \subset P U A$, intended to present the following.
If a T-algebra A is being thought of as the algebra of expressions (eg, terms) generated by some signature $\Sigma, A=\alpha_{\text {aig }}(\Sigma)$, then $\mathcal{P U A}$ is to be thought of as the set of propositions over Σ (eg, equations between Σ-terms), while if A is being thought as semantically generated by some Σ-model $M, A=\alpha_{\text {mod }}(M)$, then DACPUA is to be thought of as the truth set connected with M (eg, the diagonal of A), ie, MMp for a proposition φ iff $(\mathcal{P} U h) \varphi \in D(A)$ where $h=\alpha_{\text {hom }}(M)$ is the homomorphiam $\alpha_{\alpha / g}(\Sigma) \rightarrow$ $\Rightarrow \alpha_{\text {mud }}(M)$ connected with the model M.
Actually, by forgetting some additional (algebraic) information, each predoctrine 4 determines a (diacrete) institution, inst(d), so that there is a forgetful functor from the category of predoctrines into the category of institutions.
Now, let 9 be an object institution. Briefly speaking, under algebraization of g (in a universal algebra fashion) we mean encoding the components of 9 by facilities offered by some predoctrine A, in other words, to algebraize 9 we design a kind of presentation of 9 in A. In fact, such a presentation proves to be a special kind of instit_tion morphisms a:9 ..> isst(A). Thus, algebratzation of an institution g is defined to be a pair ((\mathbb{A}, α) with a predoctrine and α an algebraizing presentation, in such a case we write $\alpha: 9 \rightarrow>A$ and call the
institucion algebratzable (by means of α).

The main result of the paper can be formulated as follows: every algebraization $\alpha: 9 \rightarrow 4$ of an institution 9 gives rise to an algebraizing presentation of the associated specification system, $\alpha^{*}: \operatorname{spee}(9) \rightarrow \mathcal{D}[\alpha]$, where the latter list is determined by \boldsymbol{A} and α.

Now, some general words on the crucial in the paper notion, the notion of algebraizability of an institution, will be relevant.

Institutions introduced by Gogauen and Burstall provide a general algebraic framework for describing specifications in various logical systems. However, the pure institutions themselves are rather poor algebraically in the sense that their algebraic facilities are exhausted by very general functoriality a sumptions. At the same time, as is well known in software methodology, endowing a complex structure with algebrate machinery provides, as a rule, a much more handy and efficient way of using or operating the structure. Apparently, the most natural and evident way of applying this general principle for institutions is to build Into the inatitution framework the old idea of classical algebraic logic in the style of Halmos, Tarski and Henkin: to relate a class \mathbf{C} of algebras to the logic L in question in such a way that L-models could be considered as homomorphisms from syntactically generated C-algebras into C-algebras arising from L-semantics. This is just the way we adopt in the paper. An attempt to go along this line was also made by Goguen and Burstall who suggested in [GB85] a construction of chartering institution. However, in this construction, treatment of the semantic part of an institution is cioeely connected with Lawvere's idea of functorial semantics while the basic esaradigm of algebraic logic presumes, besides the model-as-homomorphism idea, that the I-satiafaction relation should be determined by assigning a set of deesgnated elements to every semantic C-algebra (that is, by converting semantic C-algebras into so called logical matrices - in the terminology of Polish school of algebraic logic going back to Lukasiewicz and Tarski LT301).

As rich experience of algebralc logic has shown, sach on approach has an immediate consequence that L-theories proye to be in a precise correspondence with kernels of the above-described homomorphisms an? so are connecting with the corresponding quotient algebras (usually called Lindenbaum-Tarski algebras). Thus, theory - congruence - quotient-algebra correspondence is taken in algebraic logic very seriously from the very beginning and, in fact, turns algebraic logic into a special part of universal algebra (see [ANS92],[Ne90], [Di92] for an explicit demonatration of this statement).

This paper is the firat in a series of works wit a general intention ω
incorporate the above-outlined methodology into the institution framework and thus to "inject" rich intuition (based on a large body of results and experience) of algebraizing logics accumulated in classical algebraic logic. (For example, as far as I know, there are no powerful results induced by exploiting the idea of chartering institution, and, on the whole, the introducing work of Goguen and Burstall had taken no development. I can suppose that this is the case just because algebraic logic is not very popular in the Institutional Community and so the latter is denied very useful guidelines. Indeed, algebraic logic methodology immediately gives a bundle of schemes of definitions, constructions and presupposed theorems - some of them will be demonstrated in this paper).

The paper is organized as follows.
In section 1 we present an algebraization of first order logic in a universal algebraic fashion, in fact, very closely to classical algebraization via polyadic Boolean algebras due to Halmos [Ha62]. It is hoped that this section provides a general motivation for the forthcoming abstract considerations.
In section 2 the notion of a predoctrine is introduced and an adjunction between the category of its theories and a certain class of algebras is stated. In proofs of this section there is used standard but often non-evident universal algebraic machinery connected with congruence lattices.
In section 3 we deal immediately with algebraizing institutions and prove the above deacribed theorem.
By the lack of space many intermediate results and proofs are only outlined or described informally.

0 Notation

- Throughout the paper we designate categories by bold letters or abbreviations while subclasses of their objects by script letters, these classes can be also considered as. full subcategories. We shall always assume they are abstract, i.e., closed under isomorphisms. SET is the category of large sets while Set - of small ones.

Let K be a category and $f \in$ MorK. Then we denote the domain of f by of and the codomain by fa. If $\mathrm{f} \square=\square \mathrm{g}$, the composition is denoted by f ;g. If $\mathcal{M} \cup\{A\} \in \mathcal{K}=\mathrm{ObK}$ then the object class of the slice category A / \boldsymbol{H} will be denoted by $\operatorname{Hom}(A, \mathcal{H})$. The corresponding functor $\mathrm{K} \longrightarrow$ SET $^{\text {op }}$ will be denoted by Hom(,$- M$).
If \approx is an equivalence on morphisms of K compatible with composition then the corresponding quotient category will be denoted by K / \approx; note, K / \approx and K have the
same objert set and in the paper we will deal only with such quotients. Given an adjunction $F: K \longrightarrow \mathbf{L}, \boldsymbol{U}: \mathbf{L} \longrightarrow \mathbf{K}$ between categories K and L with F the left adjoint and U the right one, we will also write it as $(F \backslash U): K \longleftrightarrow L$ and call also F and U the lower and the upper adjoints resp.

We regard the power-set construction as a functor $P: S e t \longrightarrow P$ into the category of posets. If $f: X \longrightarrow Y$ is a (many-valued) mapping, the associated image and preimage mappings will be denoted by $f^{+}: p X \longrightarrow p Y$ and by f^{-1} or $f: P Y \longrightarrow P X$ resp. Note, actually they make an adjunction with f the upper (right) adjoini and f^{+} the lower (left) adjoint.

D-Set and -Set denote the concrete categories whose objects are pairs (X, R) and morphisms $(X, R) \longrightarrow\left(X^{\prime}, R^{\prime}\right)$ are the set mapnings $f: X \longrightarrow X^{\prime}$ s.t. $f(R) \subset R^{\prime}$ where X denotes a set and R denotes a designated subset $D \subset X$ for the former category and a consequence relation $\vdash \subset \boldsymbol{P} X \times X$ for the latter.

Forgetful functors from concrete over Set categories will be uniformly denoted by $|-|$, this ambiguity will hopefully not be confusing.
S and P are standard universal algebra operations on classes of algebras closures under subalgebras and products resp.

Following to traditions of universal algebra, as a rule we will designate the carrier set of an algebra and the very algebra by the same letter - a capital italic one.

1 Motivating considerations: an algebraization of first order logic

Though this section contains some technical results, the presentation is rather informal and incomplete, the point is that the true goal of the section is to exhibit only a certain style of algebraizing logics - not details - and, what is very important, to develop a definite intuition. So, technically involved formulations may be simply skipped without serious lack of understanding.

1.1 Under first order logic (f.o.1.) we mean the following institution.

A signature is a pair $\Sigma=(O p$, Pred) consisting of a set $O p$ of one-sorted operation symbols (with their aritiea) and a set Pred of one-sorted predicate symbols (with their arities), all arities are finite.
Given Σ and a countable eet of variables $\operatorname{Var}=\left(x_{i}, t<\omega\right)$, the set of terins over Op, $\operatorname{Term}(\Sigma)$, and the set of ordinary f.o.l. formulas over Σ, Form(Σ, are built in the standard way. Now, our crucial step for algebraization is to identify formulas mutually convertible by renaming hound variables (a kind of α-conversion, it will be denoted by \sim : and then to turn the collection of all syntactical expressions

64
(modulo ~) into a two-sorted algebra $A=F(\Sigma)=\left(T^{A}, \phi^{A}, \mathrm{Si}^{A}\right.$) (so, the sort set is $\{T, \phi\}$ and the signature is denoted by Si$)$ with the carrier sets $T^{\boldsymbol{A}}=\mathrm{Term}(\Sigma)$, $\$^{A}=\operatorname{Form}(\Sigma) / \sim$ and the following operation signature (i runs over ω):

$$
\begin{aligned}
& x_{i}: \varnothing \longrightarrow T, \quad x_{i}=x_{i}, \\
& S b t_{i}: T \times T \longrightarrow T . \quad S b t \neq(u, v)=v\left[x_{i} / u\right\}, \\
& \wedge: \Phi \times \Phi \rightarrow \quad \wedge^{A}(\varphi / \alpha, \psi / \alpha)=\left(\varphi \mathcal{L}_{2} \psi\right) / \alpha \text {, } \\
& \text { not } \varphi \longrightarrow \Phi, \quad n o t^{A}(\varphi / \alpha)=(\text { not } \varphi) / \alpha \text {, } \\
& \exists_{i}: \Phi \longrightarrow \Phi, \quad \exists_{i}(\varphi / \alpha)=\left(3 x_{i} \varphi\right) / \alpha, \\
& S b f_{1}: T \times \Phi \longrightarrow \Phi, \quad S b f_{f}(u, \varphi / \alpha)=\left(\varphi\left[x_{1} / u\right)\right) / \alpha .
\end{aligned}
$$

(Below we shall omit the superscript a near symbols of sorts and operations). It is easy to see that these definitions do not depend on choicts of representatives in the \sim-equivalence classes (and below we shall a, 20 omit the symbol / of factorization).
In addition, these operations meet the following equations for all $i, j, k<\omega, k \neq i \neq j$, and all $u, v, \omega \in T, \varphi, \psi, \chi \in \Phi$ (for better readability of the equations below we will always use italic and Greek letters above for plements of T and resp., instead of $S b t_{i}(v, u)$ and $S b f_{1}(v, \varphi)$ we will write more suggestive $[v / i] u$ and $[v / i] p$, and, finally, use the abbreviations $\omega_{k l}$ and $\phi_{k l}$ for the expressions $\left[x_{k} / i\right] u$ and $\left[x_{k} / i\right] \varphi$ resp.):

(Sb1)	$\left[x_{i} / t\right] u=u ; \quad\left[x_{i} / t\right]_{\varphi}=\varphi ;$
(Sb2) ${ }_{i}$	$\left[u / i \mid x_{i}=u ;\right.$
$(\mathrm{Sb3})_{1}$	$\underline{L u / t]} x_{j}=x_{j} ;$
(8b4)t	
$(8 b 5)_{1 / h}$	
	$\left[\left[u_{k j} / j\right] v / t\right] u_{k j} / \mathrm{ilp} ;$
(SbP)	$[v / i](u 1 \wedge u 2)=[v / i] u 1 \wedge\{v / t] u 2 ;[v / t] n o t p=n o t[v / i) \varphi$
$(\mathrm{SbQ1})_{1}$	$[\nu / t] 3 \mu-3 \mu$;
	$\left[u_{k} / 7\right] 3_{1} p=3_{1}\left(x_{k} / / i p ;\right.$
($)_{\text {L }}^{\text {I }}$	

These equations (being considered as identities with variables $u, v, w \in T, \varphi, \psi, x \in \psi)$ determine a variety of two-sorted algebras which in the terminology tradition of algebraic logic could be called (finttary or quasi)polyadic substitution algebras (abbreviated to PSA in the singuiar and PSAs in the plural). In fact, the list of identities is an amalgamation of identities for the variety SA of substitution algebras of Foldman [Fe82] and a modified version of a part of identities for polyadio Boolean algobray of Halmon [Hia63]. Note, these identities do not concern any logical laws as such, they only explicitly deseribe syntactical rules of
substituting and interacting substitutions with quantifiers.
Note also that, owing to (Sb2) and (Sb3), $i \neq j$ implies $x_{i} \neq x_{j}$ if only $|T|>1$, and we shall always assume this condition is fulfilled. So the mapping $i \nvdash x_{i}$ states an isomorphism of ω onto the set $\operatorname{Var}(A):=\left\{x_{i} ; i<\omega\right\}$ of A-variables and we shall often identify i and x_{i}.
1.2 Definition. Given a PSA A, for any elements $u \in T, \varphi \in \Phi$ we introduce the so called dimension sets:

$$
\begin{aligned}
& \Delta^{t} u:=\{i<\omega:\{v / i] u \neq u \text { for some } v \in T\} \text {. } \\
& \Delta^{\mathcal{}} \varphi:=\{i<\omega:[v / i] \varphi \neq \varphi \text { for some } v \in T\} \text {, }
\end{aligned}
$$

and say that u or φ is independent on i (the i-th variable) if $i \llbracket \Delta^{t} u$, $i \llbracket \Delta^{\prime} v$ (below we will often onit superscripts t, f if they can be reconstructed from the context).

From $(\mathrm{Sb4})_{1}$ and $(\mathrm{Sb} 3)_{i p}, t \neq j$, it follows that. given $w \in T$, $[u / i]\left[x_{j} / i\right] w=\left[x_{j} / t\right] w$ for all $u \in T$, i.e., for any w, $i \notin \Delta\left[x_{j} / i\right] w$ if $i \neq j$. Therefore, in the list of identities above, $\mathbf{u}_{k i}\left(\phi_{k i}\right)$ denotes an arbitrary element of T (of Φ) independent on i. Also, $\llbracket \Delta \exists_{i} \varphi$ by ($\left.\mathrm{SbQ1}\right)_{i}$.
1.3 Definition. Given a PSA A, we call an element $a \in A=T \cup \Phi$ finitary if Δa is finite; a PSA A itself is said to be locally finite (l.f.) if Δa is finite for all $a \in A$.

Given a PSA A, for any $Y \subseteq \omega$ we introduce the set $A[Y]:=\{a \in A: \Delta a \subseteq Y\}$ and call elements of $A[\varnothing]=T[\varnothing] \cup \Phi[\varnothing]$ closed: those of $T[\varnothing]$. closed terms while thase of Φ [ø] - closed formulas.

For a given PSA A, we shall call the set $A_{f i n}:=\{a \in A: \Delta a$ is finite $\}=T_{f i n} n^{1 / 4} f_{i n}$ the locally fintte part of A.

A more detailed examinat: on of the structure of PSAs gives the following results (see [Fe82],[Ci88] for proofs),
1.4 Proposition. If A is a PSA, then for all $i<\omega, a \in A, u \in T, \varphi \in \Phi$:
(o) \quad ($\Delta \Delta a$ iff $[x / i] a=a$ for some $j \neq i$,
(i) $\Delta x_{i}=\{i)$,
(ii) $\Delta([v / i] a) \subseteq(\Delta a-\{i) \cup \Delta v$,
(iii) $\Delta(\varphi 1 \&<p 2) \leqslant \Delta \varphi 1 \cup \Delta \varphi 2, \quad \Delta($ not $\varphi) \leqslant \Delta \varphi$,
(iv) $\quad \Delta\left(\exists_{i} \varphi\right) \leq \Delta \varphi-\langle i\rangle$,
1.5 Proposition. For any homomorphism $h: A \rightarrow B$ of PSAs and any $a \in A$ one has $\Delta h a \leq \Delta a$.
1.6 It is easy to see that in the above-described syntactical algebra $A=F(\Sigma)$, for all elements $u \in T, \varphi \in \Phi$ their dimension sets consist of exactly those variables which syntactically free occur in them, hence, A is a l.f. PSA owing to finite arities of Σ-symbols. Actually, with each $o \in O p$ and each $\pi \in P r e d$ there are correlated certain sets of defining relations (in the sense of universal
algebra), to wit:
$\mathbf{R}_{0}=\left\{\left[x_{j} / i\right] \rho=0: \quad i>\operatorname{arity}(0), j<\omega\right\}, \quad \mathbf{R}_{\pi}=\left\{\left[x_{j} / i\right] \pi=\pi: i>\operatorname{arity}(\pi), j<\omega\right\}$.
In tact, the algebra $F(\Sigma)$ is generated by the two sorted set Σ with defining relations $\mathbf{R}_{\Sigma}=\left\{\mathbf{R}_{\boldsymbol{o}}: o \in O \mathrm{p}\right\} \cup\left\{\mathbf{R}_{\boldsymbol{\pi}}: \pi \in \operatorname{Pred}\right\}$. Thus, in the variety PSA there is a distinguished subclass (of l.f. algebras):

Exp $=\{F(\Sigma): \Sigma$ is a f.o.l.signature $\}$.
Note, this class is a proper subclass of all l.f. PSAs because by taking quotients of Eapr-algebras we obtain a lot of I.f.PSA which are not freely generated by signatures, hence, do not belong to Expr.
Conversely, with each l.f. PSA A there is correlated a f.o.1. signature $\boldsymbol{\Sigma}=\boldsymbol{G}(\mathbf{A})$ with
$O p=\left\{u \in T^{A}: \Delta u=\{1 \ldots n\}\right.$ for some $n\langle\omega\}$, Pred $=\left\{\psi \in \Phi^{A}: \Delta \varphi=\{1 \ldots n\}\right.$ for some $n<\omega\}$.

It is easy to see that actually we have an adjunction

$$
(F \backslash G): \operatorname{Sign} \stackrel{\longleftrightarrow}{\longleftrightarrow} \text { expr }
$$

where Sign is the category of the f.o.l. signatures.
1.7 Note also that if a PSA is freely generated by a two-sorted set X then X can be considered as a f.o.l. signature with countable arities of all its symbols; conversely, for each such a signature Σ_{∞}, the freely generated $P S A, F\left(\Sigma_{\infty}\right)$, is nothing but the algebra of f.o.l. expressions (modulo α-conversion) over $\boldsymbol{\Sigma}_{\infty}$. Moreover, as soon as we admit infinitary signatures there is a forgetful functor $G_{\infty}: \mathrm{PSA} \longrightarrow \mathrm{Sign}_{\infty}$ and an adjunction $F_{\infty} \backslash \boldsymbol{G}_{\infty}$.
1.8 Remark. It is easy to see that the class of one-sorted $\left\{x_{i}, S b t_{i}, i<\omega\right\}$-reducts of l.f.PSA proves an algebraic counterpart of one-8orted equational logic. Moreover, by enriching the latter signature with a countable family of unary operations of λ-quantification and a binary operation of application, one can construct an algebraic version of type-free λ-calculus and algebraize its metatheory (see [DB98] and [PS98] for thesé results).
1.9 Up to now we were concerning on f.o.l. without equality. Note, however, that an equality formula is nothing but a pair of terms, so we can capture equality in our framework by adding into the signature $8 i$ of item 1.1 the set of constants $\left\{\mathrm{d}_{i j}: i, j\right.$ run over $\left.\omega\right\}$ of the sort subjected to the following identities ito be add to the list of identities in 1.1):

Thus, in the selected way of algebraizing f.o.l. we have some variety of algebras, PESA, with the forgetful functor $U: P E S A \longrightarrow$ Set \times Set and a set-valued functor $\mathscr{P}:$ Set \times Set \longrightarrow Set, $\mathscr{P}(X, Y)=Y$, producing propositions; we will call it the proposttion functor. So, given a signature Σ, the collection of expressions over Σ is constituted by the (two-sorted) carrier set (T, Φ) of the expression algebra $F(\Sigma)$, while the collection of all (open) propositions over Σ is constituted by the set $\# F(\Sigma)$ where \# denotes the functor $U ; \mathcal{P}$.
1.10. To algebraize semantics we proceed as follows

Let B be a non-empty (base) set. By OpB and RelB we desigrate respect. the set of all ω-ary operations on B (i.e. maps from B^{ω} into B) and the set of all ω-ary relations on B (i.e. subsets of B^{ω}). In fact, $O p B$ and RelB contain also all finitary operations and relations which (being considered as their elements) depend actually on finite number of arguments only, while other arguments are dummy. Tuples from B^{ω} will be denoted by x, y, z, the very operations - by u, v, w and relation - by R, Q etc. Given $<\langle\omega$ and an operation2 u, there is defined a map $[u]_{!}: B^{\omega} \rightarrow B^{\omega}$ which sends a tuple x into the tuple y coinciding with x for all $j<\omega$ different from $i, y_{j}=x_{j}$, while $y_{i}=u(x)$.
The following standard operations are defined on the two-sorted set $M=M(B)=$ <OpB,RelB>:
projections, $\quad \pi_{l} \in O \mathrm{p} B, \quad \pi_{t} x:=x i, i<\omega ;$
binary compositions, $S b t_{i}(u, w) x:=w[u]_{i} x, i<\omega ;$
Boolean operations on RelB; \circ
cylindrifications, $\quad 3_{l}: \operatorname{Rel} B \longrightarrow \operatorname{ReIB}, \quad \exists_{1} R:=\left\{x \in B^{\omega}:\left.x\right|_{\omega-i}=\left.y\right|_{\omega-i}\right.$ for some $\left.\eta \in R\right\}$;
subatitutions, $S b f_{1}(u, R):=[u\}_{l}^{-1} R, i<\omega$.
It is easily checked that these operations convert M into a PESA. However, in contrast to yntactical PESAs, algebras arising from semantics satisfy additional equations and conditional equations reflecting concrete logical structures of OpB's and RelB's, for example, $R \cup Q=Q \cup R, R \cup n o t R=Q \cup n o t Q, 3 \exists R=3 R, R \subset \exists R, R \subset Q \Rightarrow \exists R \subset 3 Q$ etc. (see, e.g., [HMT_I.II] for a complete list).
Thus, in the variety PESA besides the distinguished class 8ap there is another distinguished subclass, namely, the class
$\operatorname{Mod}=\{M(B): B$ is a non-empty set $\}$.
Now, let $\Sigma=\left(O_{p}\right.$, Pred) be a f.o.l signature and π be a Σ-model, that is, $\pi \pi=$ $\left(B,<o^{3 n}>_{o \in O p},<\pi^{m \pi}>_{\pi \in \operatorname{Pred}}\right.$) with $o^{5 n} \in O p B$ and $\pi^{5 N} \in \operatorname{RelB}$ for some non-empty set B; in addition, if $\operatorname{arity}(o)=n$ then $\Delta\left(\sigma^{f i}\right) \subseteq n$ for all $o \in O p$ and similarly for all $\pi \in$ Rel. It is easy to see that any such a model is nothing but a signature morphism (-$)^{\text {m/ }}$: $\Sigma \longrightarrow G_{\infty} M(B)$. The latter uniquely determines an algebra homomorphism $h^{9 n}: F \Sigma \longrightarrow M$. Conversely, any homomorphism h: $E \rightarrow M$ from a PESA EEEaph into a PESA belonging to Mad could be considered as a model of the signature GE because of proposition 1.5.

In Iact, there is a canonical isomorphism between Mod乏 and Hom(F̌, Mad).
WeII, let fl be a Σ-model and $\phi \in \# F \Sigma$ is a Σ-proposition. What does it mean $\boldsymbol{T} / \boldsymbol{\rho}$ afectraically?

As we have seen, with 97 there is correlated a homomorphism $h: E \longrightarrow M$ and the map $\#$ h. $\# E \rightarrow \rightarrow M$ assigning to each proposition $\varphi \in \# E$ its semantic meaning $\|\psi\|=(\# \mathrm{~h}) \varphi \in \mathrm{Op} B \times O \mathrm{p} B \cup$ RelB. In addition,

$$
\mathbf{5 n} \varphi \varphi(\# h) \varphi \in D_{M}=\operatorname{Diag}_{O \rho B} \cup\left\{\mathbf{1}_{\text {RelB }}\right\}
$$

Thus, with any Σ-model If there are actually correlated a PESA, M, together with a set of designated M-propositions, $D_{M} \subset{ }^{C} M$, in such a way that for any Σ-proposition $\varphi \in \# F \Sigma$. we have $3 / H / \varphi \quad \Leftrightarrow \quad\left(\# h^{I T}\right) \varphi \in D_{M}$. (Just such a machinery is called matrix scinantics in Polish tradition). In fact, a definite set of designated elements may be assi_ned not only for a Mad-algebra but to an arbitrary PESA algebra A as follows:

$$
D_{A}=\left\{\langle u, u\rangle: u \in T^{\mathbf{A}}\right\} \cup\{R \in \Phi: R \vee \operatorname{lnot} R-R\} ;
$$

moceover, this gives rise to a functor D:PESA \longrightarrow D-Set s.t. the following diagram commutes:

11 The above-described definition of satisfaction leads in the ordinary way to a family of consequence relations indexed by the class of expression algebras, (F_{E}, EEExph). In the terminology of the paper [HST89), this is a logic of validity type - all propositions are implicitly universally olosed. To capture logics of truth-type into our framework we can proceed as follows.
The key observation is that propoeitions of a truth-type logic are rather sequences $\Psi * \varphi$ than formulas themselves. So, we define a new propoaition functor
 and then correspondingly define a new functor D^{*} by eetting for all AEPESA, D_{A}^{*} $\mid\langle\Psi, \psi\rangle \in \mathscr{P} \cdot U A:$ if $\Psi \subset D_{A}$ then $\left.\varphi \in D_{A}\right\rangle$, where D_{A} is the "old" set of designated elements. One can see that with such definitions of P° and D° wo have

$$
\Psi k_{\frac{1}{2}} \varphi \quad \Leftrightarrow(\# \nmid h)(\Psi, \varphi) \in D_{M^{*}}^{*}, \#^{+\rightarrow} ; \rho^{+} \text {for all } h: F \Sigma \longrightarrow M \in M a d,
$$

where on the left we have che ordinary f.o.l. consequence of truth-type. Thus, we see that the matrix semantics frameverk provides eufficient flexibility to describe various logica in a unifying way.
1.12 Up to now, we were dealing with one-sorted f.o.l. Our framework can be immediately generalized for the case of n-sorted f.o.l with arbitrary but fixed number of sorts, n, through the evident construction of n-sorted PESA over the underlying category Set ${ }^{n} \times$ Set instead of Set $\times 8$ et. However, the situation becomes much more difficult when one has to deal with many-sorted logic with different sort sets, and hence algebras of the kind $F(\Sigma)$ may have different number of carrier sets for different $\Sigma^{\prime} s$.
A natural algebraic framework for working in such situations is the notion of generalized algebraic theory introduced by Cartmell [Ca86]. It is a direct generalization of the usual notion of a many-sorted equational theory: its extra generality is achieved by introduction of sort structures more general than those usually considered, in that sorts may denote sets as is usual, or they may denote families of sets, families of families of sets or the Hike. (A bruic example is the generalized algebraic theory of categories, in which Ob appears as a sort to be interpreted as a set while Hom appears as a sort to be interpreted as a family of sets indexed by $\mathrm{Ob} \times \mathrm{Ob}$). In more detail, a generalized algebraic theory T appears as an adjunction (FAU): FamT \longleftrightarrow AlgT whare AlgT is the (generalized) variety of T-algebras, FamT ts the category of thetr carrier set structures, U is the underiying functor and F is the freely-generated-algebra functor. (For example, if T is the theory of categories, then an object of FamT is nothing but a family of sets, ($H_{\eta} \in S$ et: $i, j \in \Pi$), indexed by the Cartesian squire of some set I, while a morphiam between two such families, (say, from $H_{i j}$ into $H_{i j}$), is a pair (f, g) consisting of a function 1 mapping I into r and a family of functions $g-\left(g_{i j} i, j \in \Pi\right.$ with $g_{i j}$ mapping $H_{l j}$ into $\left.H_{f,-f j}^{\prime}\right)$. In fact, for any T, FamT is a full subcätegory of the very large category $F a m$ of sets, families of sets, familles of families of sets etc. described by Cartmell.
As an example of algebraizing logic in a Cartmeil's style, let us consider the following algebraization of the many-sorted equational logic.

$s, t \in$ Sorts $^{2}, u \in \operatorname{Tr}_{g}+\left[x_{1}: s / i: s\right] u=u$
$s, t \in$ Sorts $^{2}, u \in \operatorname{Trm}_{s} \vdash|u / t: s| x_{1}: s=u$
$s, t \in$ Sorts $^{\prime}, u \in \operatorname{Trm}_{g} \vdash(u / j: s) x_{i}: s=x_{i}: s$
and the others counterparts of equations (Sb1)...(Sb5)
(By the way, similarly we can algebraize also typed λ-calculus what gives its algebraic version alternative to the categorical one via Cartesian closed categories).
So, meta-theory of a logic containing a n-sorted term system with arbitrary but fixed number of sorts, n, can be algebraized by means of a certain many-sorted algebraic theory while algebraization of logics with many-sorted term systems requires to use generalized algebraic theories of Cartmell.
Thus, generally speaking, a proper unified algebraic universe for algebraizing meta-theories of different logics must be not a variety but a generalized variety of algebras.

2 Metatheory of a logic via universal algebra4

In this section, under an algebraic theory we mean a generalized algebraic theory in the sense of Cartmell. With each such a theory T there is correlated an adjunction $(F \backslash U):$ FamT \leftrightarrows AlgT where FamT is a full subcategory of Fam, AlgT is the variety of T-algebras, U is the underlying functor and F is the freely-generated-algebra functor.
2.1 Definition. A logic metatheory in algebratc form consists of the following constructs.
(i) A language is defined to be a triple $I=(T, P, D)$ with T an algebraic theory, $\mathcal{P}:$ FamT \longrightarrow Set and $D:$ AlgT \longrightarrow D-Set functors e.t. the following diagram commutes:

Given a language I, we will designate AlgT and FamT as AlgI and Faml and of ten omit the subindex. The functor $U ; \mathcal{P}$ will be denoted by $\#$. If for an algebra A $D(A)=(X, D)$ then the set D will be denoted by D_{A}.
(ii) A logic is defined to be a triple $\mathcal{L}=\left(1, \varepsilon_{0 x p}, 1\right)$ with Exprcalgi a class of expression algebras and $1: 8 \times p h \longrightarrow$ Set a functor s.t. the following diagram commutes:

We shall also write a logic over a given language I as $\mathscr{L}=\left(\vdash_{E}, E \in \mathscr{E} \times p r\right)$ and call it an I-logic.
(iii) An algebrate semantics is defined to be a pair $\mathcal{A}_{0}=(\mathbf{I}, M \circ d)$ with ModcAlg| a class of model algebras.
2.2 Construetion. Given an algebraic semantics $A 0$, each homomorphism $h: E \longrightarrow M \in M o d$ can be considered as a model of the expression algebra E for some signature generating E). With this intuition in mind, elements of the set $\# E$ will be referred to as propositions and elements of \#M - as predicates (or relations); the elements of the set D_{M} can be thought of as universally true predicates in the sense that for any proposition $\varphi \in \# E$ we put

$$
h k_{E} \varphi: \Leftrightarrow(\# \mathrm{~h}) \varphi \in D_{N} .
$$

This construction determines in the ordinary way a consequence relation $p_{E}^{(M a d)} C p(\# E) \times(\# E)$ and, hence, the theory lattice $T h^{(\operatorname{Mad})} E \subset \rho \# E$ and the consequence operator $\mathrm{Cn}_{\mathrm{E}}^{(\text {Mad })}: p \# E \longrightarrow p \# E$.
2.8 Definition. An institution in algebratc form or a predoctrine is defined to
 with membera called expression algebras and model algebras reap.
By construction 2.2, with each predoctrine there is correlated an I-logic $\boldsymbol{S}(\alpha)=\left(r_{E}(\right.$ Mod $\left.), E \in \mathcal{E a c p r}^{2}\right)$, correspondingly, there are defined the family of theory
 As a rule, below we will often write the superscript (d) instead of (Mad).
24 Beaie Assumption Our next goal is to state some resulte about the introduced constructa necessary for proving our main thearem described in the introduction. Proafs of these results require rathe. involved universal algebraic machinery, moreover, at the present moment they are stated completely only for the special case of ordinary one-sorted algobraic theoriea when FamT is Set. Generalizacion for the case of many-sorted algebraic theories, FamT=Set ${ }^{\text {a }}$ for some fixed number n, Is immediate and tedious while the general situation of Cartmell's theories is much more difficult. The point is that our machinery is based on exploiting a cartain univeral ugebraic technique of relating con, ruence lattices and quasi-
varieties (see [Di92], some aspects were demonstrated also in the book [BP89]), however, for generalized universal algebra, the problem of stating such a relation is much more involved. (Indeed, as Cartmell explained in [Ca86], generalized algebraic theories are equal in descriptive power to the essentially algebraic theories of P.Freyd; but it is well known that constructions of a congruence and a quotient are rather capricious in the case of Freyd's algebras, at any rate, cannot be generalized in a straightforward way from ordinary algebras - this was clearly demonstrated, e.g., in the book of Reichel (Re87]).
Therefore, for the sake of transparency of the main ideas, on the one hand, and by the lack of a general proof, on the other, below we shall deal with the special situation of ordinary one-sorted algebraic theories when FamT $=$ Set. It is hoped, however, that transition to the general situation will require modifying proofs but not results.

Thus, our goal is a theorem on connection between theories and algebras in a given predoctrine, concretely, theorem 2.12
First of all, we need a refinement of the notion of a language.
2.5 Definition. A language $[=(T, P, D)$ is said to be regular iff it meets the following two conditions:
(i) the functor \mathcal{P}, hence $\#=U ; \mathcal{P}$, preserves inclusions, surjections and products,
(ii) the functor D preserves subobjects and products where (X, D) is a subobject of (Y, E) if $X \subseteq Y$ and $D=E \cap X$.
= Remark. On one hand, these are quite natural algebraic conditions, on the other hand, it can be checked that a majority of algebraization languages appearing in practice are regular, thus, this constraint is not restrictive for practical using.
Now we need a portion of universal algebra.
2.6 Construction. Let \boldsymbol{V} be a variety of algebras - the universe of our considerations. Given an algebra A, the lattice of its congruences will be denoted by $\operatorname{Con} A$ and if $\theta \in \operatorname{Con} A$ then the corresponding canonical epimorphism will be denoted by $\varepsilon_{0}: A \longrightarrow A / \theta$. For any relation $\rho C A \times A$, the least congruence containing ρ will be denoted by $\mathrm{Cg}_{A} \rho$. Further, if $\mathrm{h}: A \longrightarrow B$ is a homomorphism and $\theta \in \operatorname{Con} B$ then $h^{-\boldsymbol{\gamma}} \boldsymbol{\theta}$ a (h $\times \mathrm{h})^{-1} \theta$ is also a congruence on A. Hence, Con turns out to be a functor $V \longrightarrow P^{2 p}{ }^{a p}$, and since $P o$ can be regarded as a category, Con is an indexed category.
Now, for any class \mathcal{K} of algebras, let $\operatorname{Con}^{(X)} A$ denotes the collection $\{\theta \in \operatorname{Con} A$:
 closed under intersections for all $A \in V$ (this is $w-l l$ known) and, moreover, for any homomorphism $h: A \longrightarrow B$, if $\theta \in \operatorname{Con}^{(K)} B$ then $h^{f} \vartheta \in \operatorname{Con}^{(K)} A$ (it seems that this simple
fact as well as the converse statement that the above features of the family $\left(C_{0 n}{ }^{(\mathcal{K})} A, A \in V\right.$) imply that \mathcal{K} is a quasi-variety (see [Di1] for proofs) are not known even for the universal algebra community - so, relations between logic and algebra are fruitful in both directionsl). Thus, if \mathcal{K} is a quasivariety then the family $\left(\operatorname{Con}^{(\mathcal{K})} A, A \in V\right)$ can be also regarded as an indexed category $\operatorname{Con}^{(\mathcal{K})}: V \longrightarrow \mathrm{Pos}^{o p}$. As we will see immediately below this simple machinery turns out extremely useful in algebraic logic (see also [Di2]) and in algebraizing institutions.
2.7 Construction. Let $A \rho=(I, M o d)$ be an algebraic semantics over a regular language and Q denotea the quasi-variety generated by Mad, i.e., $Q=S P M a d$. We note that owing to preservation properties of D and \mathcal{P}, for any homomorphism $h: A \longrightarrow B \in Q$ and any $\varphi \in \# A,(\# \mathrm{H}) \varphi \in D_{B}$ iff $\varphi \equiv\left(\# \varepsilon_{\theta}\right)^{-1} D_{A / \theta}$ where θ denotes kerh, in addition, $A / \vartheta \in \mathcal{Q}$ since it is isomorphic to a subalgebra of B. So, if for each $A \in \mathrm{Alg}_{\mathrm{I}}$ we introduce an operator $H_{A}: \operatorname{Con}(Q)_{A} \longrightarrow \# A$ by setting $H_{A} \theta:=\left(\# \varepsilon_{\vartheta}\right)^{-1} D_{A} / \theta$, then $h=\varphi$ iff $\varphi \in H_{A}$ (kerh). Now one can see that for any $\theta \in \operatorname{Con}{ }^{(Q)} A, H_{A} \theta$ is a theory with respect to $F_{A}^{(M a d)}$, and, moreover, each such a theory can be obtained in this way. Actually, it can be shown by using standard universal algebraic machinery that owing to preservation properties of \mathcal{P} and \mathcal{D}, each H_{A} preserves meets (Intersections), hence, its image is closed under intersections and this closure system is just $\mathrm{Th}^{(M \circ d)} A$. Since H_{A} preserves meets (and $p \# A$ is a complete lattice), \mathbf{H}_{A} has the left (lower) adjoint $\Omega_{A}: p \# A \rightarrow C_{o n}\left({ }^{(M a d)} A\right.$, in particular, there is a Galois insertion (see [MSS86] for a theory of afjoint situation for posets):

here and below, in diagrams M denotes the class Mod.
Finally, again owing to preservation properties of \mathcal{P} and \mathcal{D} (namely, their compatibility with inclusions and subobjects), the family ($\mathrm{H}_{\mathrm{A}}, \mathrm{A} \in \mathrm{Alg}$) is compatible with homomorphisms in the sense that for any homomorphiam $h: A \longrightarrow B$ one has $H_{A} h^{-\epsilon} \theta=(\# \mathrm{~h})^{-1} \mathrm{H}_{B} \theta$ for all $\theta \in \operatorname{Con} B$.

74
In particular, this implies that if $T \in T_{B}^{\left(M o d^{\prime}\right)}$ then $(\# \mathrm{~h})^{-1} T \in \mathrm{Th}_{A}(\operatorname{Mod})$ and all the diagrams on the figure above are commutative.
In algebraic logic the latter condition is called structurality condition and a logic meeting it is called structural. Actually, structurality of a logic $\underline{L}=\left(\vdash_{\Sigma}, E \in E \times p r\right)$ is equivalent to the implication $\Psi-\varphi \quad \Rightarrow \quad h \Psi-h \varphi \quad$ for any homomorphism h of Exph-algebras (see [Di92] for detaila and more precise formulations).

These considerations immediately provide the following result (from now on we begin to use the terminology adopted in the paper [TBG91]).

Let $d o=(I, M o d)$ be an algebraic semantics over a regular language I, Q denotes SPMad and E be a subclass of Algi.
2.8 Proposition. The families $\left(\operatorname{Con}^{(Q)} E, E \in \mathcal{E}\right)$, (Th $\left.{ }^{(M o d)} E, E \in \mathcal{S}\right)$ prove to be indexed
 can be regarded as an indexed functor (natural transformation) $C_{o n}(\mathcal{L}) \longrightarrow \mathbf{T h}^{(\mathrm{Mad})}$. Moreover, this indexed functor is locally reversible.

Now, let Theor $\left(\mathrm{Mad}_{\mathrm{O}} \mathrm{g}\right.$ denotes the category whose objects are pairs (E, T) with $E \in \mathcal{E}$, $\left.T \in T^{(M O d}\right)_{E}$ and morphisme $(E, T) \longrightarrow\left(E^{\prime}, T^{\prime}\right)$ are the homomorphiams h: $B \longrightarrow E^{\prime}$. s.t. $(\# \mathrm{H}) \mathrm{T} \subset T^{\prime}$; and let Congr $(Q)_{g}$ be the similar category whose objects are pairs ($\left.E, d\right)$
 very definition of flattening, theorem 3 of [TBG91] gives immediately an adjunction (which is, in fact, an embedding due to fact that the local adjunctions are Galois insertions):

To get our goal in eearching an adjunction between theories and algabras we need an adjunction between Coagr $(Q)_{g}$ and Q. however, there are some delicate universal algebraic points here. A natural functor from $C_{\text {ongr }}(Q)_{8}$ to Q is evident while to construct a reverse functor we reed two refinements.
2.9 Definition. Let $\mathrm{h} 1, \mathrm{~h} 2:(E, \theta) \longrightarrow\left(E^{\prime}, \theta^{\prime}\right)$ be two morphiems in Congr $(Q) g$. They are said to be equivalent, h1sh2, if <h1(e),h2(e)>e 0^{\prime} for all $e \in \mathbb{R}$. The category of wequival nce ciasses is a quotient category and will be denoted by Congr $(Q) 8 / a$.
2.10 Definition. Let V be a variety of algebras. A class 8 CV is aaid to possess the projectivity property (PP) (or PP holds for 8) iff for any diagram $A \xrightarrow{f} C H E$ with $A, B \in E$ and g epi there is some $h \in H o m(A, B)$ s.t. $h ; g=f$; in other words, each algebra A of E is projective with respect to epis from \mathcal{E}-algebras (see
e.g. Mac Lane [CWM71] for the standard definition of a projective object in a category).
Natural universal algebraic considerations state the following
2.11 Lemme. Let V be a variety, QCV a quasi-variety and $8 \subset V$ a class with PP. Then the categories Congr $(Q) 8 / a$ and $(Q \cap H \&)$ are equivalent.

Thus, we see, to get our goal we must modify the notion of a theory morphism and deal with the quotient category Theor $(\operatorname{Mod})_{\mathcal{E}} / \approx$ where two Theor $\left.{ }^{(M a d}\right)_{\mathcal{E}}$-morphisms $\mathrm{h} 1, \mathrm{~h} 2:(E, T) \longrightarrow\left(E^{\prime}, T^{\prime}\right)$ are equivalent, $\mathrm{h} 1 \approx \mathrm{~h} 2$, if $<(\# \mathrm{~h} 1) \varphi,(\# \mathrm{~h} 2) \varphi>\in \# \mid \Omega_{E^{\prime}}, T^{\prime} 1$ for all pe\#E; we will write a more suggestive Theor $\left(^{(M a d)}\right)_{g / \Omega}$ instead of Theor $(\operatorname{Mod})_{g} / \approx$. Finally, given a predoctrine $\boldsymbol{A}=(\mathrm{I}, 8 \times \mathrm{g} \boldsymbol{\mathrm { c }}, \mathrm{Mod})$, we will write Theor A and Congr A for Theor ${ }^{(H a d)}$ 8appr and Congr ${ }^{(0)}$ (eapr resp.
Now, our chief result in this section is almost immediate
2.12 Th sorem. Let $\boldsymbol{d}=(1, E \times p \Omega, M a d)$ be a predoctrine over a regular language and s.t. Eaph has projectivity property. Then, for some class of l-algebras $7 h$, there is an adjunctive embedding

Algebras from that class may be called Lindenbaum-Tarski algebras.
2.13 Remark. The PP-requirement for Expr may seem to be rather unnatural. However, there is well-known in algebraic legic that definite algebraic properties of classes of algebras correlated with logies are closely connected with properties of that logics. For example, amalgamation property (AP) for Q is a universal algebraic counterpart of Craig's interpolation property, all-epis-aresurjective property (ESP) is a counterpart of Beth's definability property and the like (see,e.g., [HMT85). Thus, PP as well os its "colleagues" can be considered as rather respectable from the theoretical view point of algebraic logic. On the other hand, the expression algebra classes of a majority of logics in use has PP . this point provides a justification from the practical view point.
2.14 Definition. Theorem 2.12 makes it reasonable to introduce a special name for predoctrines over regular languages with PP classes of expression algebras. We will call such predoctrines regular.

3 Algebraizing institutions

Let $9=(S i g n, S e n, M o d, k)$ be an institution.
3.1 Definition. An algebraization of an institution g is defined to be a pair (α, A) with $s=(1,8 x p h, M a d)$ a regular predoctrine and a a representation of g in A
consisting of the following data:
(A1) $\alpha_{\text {sign }}=\left(F_{\text {sig }} \backslash U_{\text {sig }}\right): \operatorname{Sign}$ Eapr an adjunction ,
(A2) $\alpha_{\text {sen }}:$ Sen $\longrightarrow F_{\text {sig }} ; \# ; \eta$ a natural transformation,
(A3) $\alpha_{\text {mod }}$ Mod $\longrightarrow F_{\text {sig }} ;$ Hom(-, Mod) an isomorphic natural transformation,
such that the following condition is fulfilled:
(A4) $\Sigma \quad$ Tn $\xi_{\Sigma}^{(9)} \varphi \Leftrightarrow(\# \mathrm{~h})\left(\alpha_{\text {sen }} \sum^{\varphi)} \subset D_{\text {ho }}\right.$ where h denotes $\alpha_{\text {mod }} 5 \pi$,
for all $\Sigma \in|\operatorname{Sign}|, \varphi \in \operatorname{Sen} \Sigma$ and $3 \pi \in \operatorname{Mod}(\Sigma)$.
In such a case we will say that the institution can be algebraized via $\alpha: g \longrightarrow d$.
3.2 Remark. With construction 2.2 condition (A4) means that for any signature Σ we have:
(A4) $\sum_{\Sigma} \quad 3 k_{\Sigma}^{(9)} \varphi \Leftrightarrow \alpha_{\bmod \Sigma} \sum_{k} k_{V \Sigma}^{(A)} \alpha_{\operatorname{sen} \Sigma} \varphi$.

Naturalness of the definition is justified by the following

3.3 Fact. Institutions describing logics from the following list

- many-sorted equational logic, untyped and typed λ-calculi, polymorphic λ calculi and their conditional versions;
- Horn f.o.l., universal f.o.l., full f.o.l with and without terma...
are algebraizable.
(It is hoped that considerations of section 1 give a notion of proving this fact).
Recalling the definition of specification system algebraizability described in the introduction we can observe that specification syatem associated with the institutions listed above are also algebraizable. This is not a matter of chance: the main result of the paper, theorem 3.9, states that if an institution is algebraizable then the assciated specification syatem is algebraizble too.
We turn to proving this result.
3.8 Proposition. If an institution g is algebraizable via $\alpha: 9 \longrightarrow \mathbb{A}$ then for all signature morphisms $\sigma: \Sigma \xrightarrow{\bullet} \Sigma$ there is the following commutative diagram of adjunctions, in addition, the horizontal adjunctions are Galols insertions:

Proof (sketch). The left square commutes by virtue of the institution satisfaction axiom, the right one commutes due to (A2) and structurality of the logic $\varphi(A)$). Adjunctions on the left square are checked straightforward, those on the right one are due to (A3) and (A4).
8.4 Corollary. If an institution 9 is algebraizble via $\alpha: 9 \longrightarrow A$ then
there is the following commutative diagram of adjunctions where all functors F 's are lower (left) adjoints and all the functors U 's are upper (right) adjoints:

Proof (ehetch). Owing to commutativity of the proposition 3.3 squares above, the families of upper arrows can be considered as indexed functors and we can apply theorem 8 from [TBG91] and the lemma below.
Lamma (a modification of theorem 3 of [TBG日1]). Let C:I ${ }^{a p} \longrightarrow$ Cat, D:K ${ }^{a p} \longrightarrow$ Cat be indexed categories, $\mathrm{f}: \mathrm{I} \longrightarrow \mathbf{K}$ a functor and $\mathbf{F}: \mathbf{C} \longrightarrow \mathbf{f} ; \mathbf{D}$ an indexed functor. Then Flat(f,F): Flat(C) \longrightarrow Plat(D) has a right adjoint as soon as f has a right adjoint and F has a right adjoint locally. Here Flat (f, F) denotes the following functor Φ : $\Phi(i, a)-\left(f i, \mathrm{~F}_{1} a\right)$ and $\Phi(\sigma, f)=\left(f \sigma, \mathrm{~F}_{i}\right):\left(f i, \mathrm{~F}_{i} a\right) \rightarrow\left(f j, \mathrm{~F}_{\mathrm{i}} a\right)$
for all $(i, a) \in \mid$ Flat $(C) \mid,(\sigma, f):(i, a) \longrightarrow(j, b)$ in Flati(C).
We would like to atate an adjunction between Prest $_{5} 9$ and some class of ald ${ }_{j}$ algebras. Jorollary 3.4 and theorem 2.12 would be sufficient for this purpose if In theorem 2.12 we would have the category Theord on the right. However, we have there the quotient category Theor A / Ω, hence, we must modify corollary 3.4 in order to capture Ω-factorization of TheorA-morphisms. It is obvious that to this end we must introduce something similar Ω-equivalence on the set of Theor \mathcal{Y}-morphisms.
3.5 Deflinition. Let g be an institution and $01, \sigma 2:(\Sigma, \psi) \longrightarrow\left(\Sigma^{\prime}, \psi^{\prime}\right)$ be two Pres, 9 . morphisms. They are said to, be semantically equivalent, σ 1*- 2 , if, for any
 immediately that * is compatible with composition and the correaponding quotient category will be denoted by Theorg/4.
With corollary 8.4, this gives
3.6 Proposition. If an institution g is aigebraizble via $\alpha: S \longrightarrow A$, then $\sigma 1 * \sigma 2$ iff $F_{p r e s}^{(\alpha)} \sigma 1 \approx F_{p r e s}^{(\alpha)} \sigma$ for any presentation morphisms $\sigma 1, \sigma 2$

With corollary 3.4 this immediately gives

3.7 Theorem. If an institution g is algebraizable via $\alpha: g \longrightarrow d$ then there is the following commutative diagram of adjunctions where all functors F^{\prime} 's are lower (left) adjoints and all the functors U_{s} s are upper (right) adjoints:

3.8 Theorem. There is an isomorphic natural transformation $\alpha_{\text {mod }}^{\chi}:$ Mod $^{*} \longrightarrow F_{\text {pres }}^{(\alpha)} ;$ Hom(,$\left.- M o d\right)$.
Proof (sketch). Firstly, for each presentation $\pi=(\Sigma, \Downarrow) \in \mid$ Pres $_{k} g \mid$ we define a map $\beta_{\Sigma}: \operatorname{Hom}\left(P_{p r e s}^{(\alpha)} \pi, M a d\right) \longrightarrow \operatorname{Mod}^{*} \pi$ as follows.
Let $(E, T)=F_{p r e s}^{(\alpha)} \pi$, that is, $E-F_{\Delta s} \Sigma, T=C_{n}(\alpha) \alpha_{\text {seno }} \Psi \psi$ and let θ denotes $\Omega_{E} T$. For each $h: E / \vartheta \longrightarrow M \in$ Mod we have
($\left.H_{1}\right) D_{E / 0} \subset D_{M} \quad$ since Th is a D-Set (matrix) morphism,
$\Rightarrow\left(\# \varepsilon_{\theta}\right)^{-1} D_{E \prime} \alpha\left(\# \varepsilon_{\theta}\right)^{-1}(\# \mathrm{~h})^{-1} D_{M} \quad$ by $f^{+} \mid f^{-1}$ for any mapping f
$\Rightarrow(\# \mathrm{~h})\left(\# \varepsilon_{\theta}\right) \mathrm{H}_{E} \Omega_{E} T \subset D_{M} \quad$ by definition of H_{E}
$\Rightarrow(\# \bar{h}) H_{E} \Omega_{E} T \subset D_{M}$ (where $\left.\bar{h}=\varepsilon_{\theta} ; h\right) \quad$ by functoriality of ρ
$\Rightarrow \quad\left(\#\right.$ П) $T \subset D_{N} \quad$ since $T_{C H} \Omega_{E} T$ by $\Omega_{E} \backslash H_{E}$

$\Rightarrow \alpha_{m o d \Sigma}^{1} \Sigma^{\bar{h}} v_{\Sigma}^{(9)} \Psi \quad$ owing to isomorphity of $\alpha_{m o d \Sigma}$ and the direction (\Leftrightarrow) of (A4) $\mathbf{\Sigma}$.
 and this defines a mapping
$\beta_{\Sigma}: \operatorname{Hom}\left(F_{\text {pres }} \pi, M a d\right) \rightarrow M o d^{*} \pi$.
Moreover, β_{Σ} is injective since
$\mathrm{h} 1 \not \mathrm{~h} 2 \Rightarrow \overline{\mathrm{~h}} 1 \neq \overline{\mathrm{h}} 2 \Rightarrow \mathrm{~m} 1 \neq 9 \pi 2$ as ε_{θ} is epic and $\alpha_{m o d}$ is injective by (A3).
Surjectivity of β_{Σ} is proved by the following arguments.
For each $\mathbb{M}_{\in} \in \operatorname{Mod}^{*} \pi$ we have
$3 \pi v_{\Sigma}^{(g)} \Psi \quad$ by the definition of $M o d^{*}$
$\Rightarrow \quad$ \＃h $\alpha_{\operatorname{sen}} \Sigma^{\Psi} \subset D_{h 口}$（where h denotes $\alpha_{\bmod } \Sigma^{M \pi}$ ）by $(A 4)(\phi)$
＊（\＃h） $\operatorname{Cn}_{E}\left(\mathcal{A}^{(1)} \alpha_{\operatorname{sen} \Sigma} \Psi \subset D_{h 口} \quad\right.$ by definition of $\mathrm{Cn}^{(\alpha)}$
i．e．$(\# \mathrm{~h}) T \leq D_{h 口} \quad$ by our notation
－$T C(\# \mathrm{H})^{-1} D_{E^{\prime} \eta}$（where $\left.\eta=k e r h\right)$ by the first statement of constr． 2.7
i．e． $\mathrm{TcH}_{\Sigma} \boldsymbol{n} \quad$ by definition of H_{Σ}
$\Rightarrow \quad \sigma_{E} T \subset \Omega_{E} H_{E} \subseteq n=k e r h \quad$ by $\Omega_{E} \backslash H_{E}$ ．
Hence，there is a homomorphism $\mathfrak{h}: E / \theta \longrightarrow\left(\alpha_{m o d \Sigma} \sum^{I n}\right)$ a s．t．$\varepsilon_{\theta} ; \tilde{h}=\alpha_{m o d} \Sigma^{g n}$ ．
 $\boldsymbol{\beta}_{\Sigma}$ is surjective and has the inverse mapping denoted by $\alpha_{\bmod \Sigma}^{\mathrm{x}}$ ．
It remains to check compatibility of mappinge $\alpha_{\text {mod }}^{*}$ with morphisms，in other words， ta state commutativity of the following diagram：

Where（\＃Folo $\subset \theta^{\prime}$ hence $(\# F \sigma) / \approx: E / \theta \longrightarrow E^{\prime} / \theta^{\prime}$ is followed from the very definition pf the functor $F_{p r e z}$ by flattening．Now，commutativity can be checked directly from definitions by uaing（A3）．
Together with the definition of specification system algebraizability described in the introduction，theorems $2.12,3.7$ and 8.8 immediately imply
8． 0 Thec：em．Any algebraization

$$
S=\left(\text { Sign,Sen,Mod,k)} \xrightarrow{\left.\alpha-\left(F_{\text {stg }}\right) U_{\text {otg }}, \alpha_{\text {sen }}, \alpha_{\text {mod }}\right)} d=(\mathrm{t}, 8 \mathrm{copr}, M o d)\right.
$$

of an ingtitution 9 gives rise to the following algebraization

4 Concluston：towards generalizations

It seems that the principal contribution of the paper consists in definition 2.1 on the ground of which it is suggested to develor ulgebraic logic in a very
general setting. Actually, the framework is a generalization of the familiar approach to algebraizing logics developed by Polish school (see, eg, [Wo88]). According to the latter, a logic is a consequence relation on a (countably generated) free algebra of some signature. Definition 2.1(ii) generalizes this construction in the following directions:

- there is considered a family (not a single one) of consequence relations (via functor $卜$ - Expr \rightarrow-.> \vdash Set);
- there are considered algebras over arbitrary carrier structures, not only over sets (via machinery of monade);
- given a logic, there are distinguished its algebras of expressions from its sets of propositions (via functor \mathcal{P}).

The functor \mathcal{D} provides capturing in our framework a crucial for the Polish approach notion of matrix semantics.

Thus, while the Polish approach is suitable for algebraizing only propositional logics, the theory developed in the paper hopefully provides a unified framework for studying algebraizations of a whole diversity of logics both semantically and axiomatically defined.
Indeed, as for the former, one nontrivial result, theorem 3.9, is presented in the paper, while others concerning, eg, investigations of compactness, can be hopefully got along the same lines (for example, for the case of logical languages with $\mathcal{P}=I d$ and T being an ordinary algebraic theory, ie, FamT=Set, a bunch of results on compactness of semantically defined logics was obtained in [Di92]).
As for axiomatically defined logics, the following can be said.
A thorough classification of these logics was developed in a series of works by Avron (see, eg, [Av91],[Av92]). His framework can be easily captured in our setting as follows. The main feature of Avron's considerations is to deal with consequence relations (CR) over various kinds of sequent-carrier set structures: single as well as multiply-conclusioned CRs, CRs over sets, over multisets, over sequences etc. In our setting this is provided by the functor \mathcal{P}. For example, if T is an algebraic theory over Set, then the ordinary single-conclusioned sequents corresponds to the case when $P=P_{\text {Horn }}:-P_{\omega} \times I d$, sequents over multisets . $\mathcal{P}=P_{\text {Auron }}:-P_{\omega}^{*} \times P_{\omega}^{*}$, sequents over sequences $-P=P_{G e n t z}=P_{\omega}^{*} \times P_{\omega}^{*}$ where $P_{\omega}^{*} X$ and $P_{\omega}{ }^{*} X$ are the sets of all finite multisets and all finite sequeaces over a set X, other cases are now obvious. At the same time, our framework makes it possible to handle substitutions in a very natural and easy way via composition of morphisms in the Kleisly category of the theory T .
Moreover, we conjecture that $P_{\text {Horn }} P_{\text {Auran }}, P_{\text {Gentz }}$ and similar functors give rise

81

to monads over FamT, thus providing one more direction of algebraizing logics (eg, transition from equational logic to Horn equational logic can be described as free generation of a $\Phi_{\text {Horn }}$-algebra, or, more generally, transition, say, from the Hilbert-style version of a logic to its Gentzen-style version can be described by a suitable monad $P_{\text {Gentz }}$).
As for formal inferential systems for generating CRs, in our iramework they are naturally modeled by corresponding formal sequents (inference rules) over free algebras in the variety AlgT. In more detail, given a language $\mathrm{I}=(\mathrm{T}, \mathcal{P})$, an inference rule is a pair (Γ, φ) with $\Gamma \cup\{\varphi\} \subset \mathcal{P}_{\omega}[\mathcal{P} T(\mathrm{Var})\}$ where Var is a set of metavariables, T (Var) is the carrier set structure of the T-algebra freely generated by Var. A Kleisly morphism from Var into a T-algebra A is nothing but a substitution of formulas from A for meta-variables from Var - this enables us to generate CR via inference rules.

Some results about the construction for the case of ordinary T and $\mathcal{P}=\mathrm{Id}$ were obtained in [Di92]. Proofs of their counterparts as well as counterparts of the above-mentioned compactness results in the general setting developed in the paper are open problems.

References

[Av91] Avron,A., Simple consequence relations. Information and Comp.,92(1)(1991)105-139
[Av92] Avron, A, Axiomatic systems, dechuction and implication. J.Logic Comp., 2(1)(1992)51-98
[ANS92] Andréka,H.,Némety,I. and Sain, I., Abstract model theory approach to algebraic logic, Preprint, 1992.
[BP89] Blok, W.J. and Pigozzi,D., Algebraizable logics, Memoirs AMS, 77, No.396, 1989.
[Ca86] Cartmell,J., Generalized algebraic theories and contextual categorles, Anmals Pure Applied Logic, 32(1986) 209-243
[Ci88] Cirulis, J . An algebraization of first order logic with terms, in "Algebraic logic'88" Andreka,H. et al. (eds), Elsevier Publ.Co., 1991,pp.125-146
[Di91] Diskin, Z.B., Quasi-equational logic and model theory of algebras via congruences. Submitted to Algebra Universalis.
[Di92] Diskin, Z.B., Abstract universal algebraic logic. Mamuscript ,1992,40pp.
[DB93] Diskin, Z. and Beylin,I., Lambda substitution algebras. in LNCS,No.711(1993)423-432
[Fe82] Feldman, N., Axiomatization of Polynomial Substitution Algebras. J. Symbolic Logic, 47, 3 (1982), 481-492.
[GB84] Goguen, J.A. and Burstall,R.M., Introducing institutions, LNCS,No. 164,pp. 221-256, 1984
[GB85] Goguen, J.A. and Burstall, R.M, A stucy in the foundations of programming methodology: Specifications, institutions, charters and parchments. LNCS,No.240(1986)క13-333.
[GB92] Goguen, J.A. and Burstall, RM.; Institutions: Abstract model theory for specification and programming. J.ACM, 39(1) (1992)95-146
[Ha62] Halmos, P.R., Algebraic logic, Chelsea Publ.Co.,N.Y., 1962
[HMT I,II] Henkin,L., Monk, J.D., and Tarski,A., Cylindric algebnas, part I, 1971; part II, 1985
[HST89] Harper,R.,Sannella,D., and Tarlecki,A., Logic representation in LF. LNCS,No389 (1989) 250-272
[Law70] Lawvere,F.W. Equality in hyperdoctrines and comprehension schema as an adjoint functor, Applications of Categorical Algebra (Proc. AMS, Providence RI, 1970)1-14
[LT30] kukasjewicz,J. and Tarski,A. Untersuchungen aber den Aussagenkalkal. English tranglation in: Tarski,A., Logic, Semantics, Metamathematics, Oxford, Claredon Press, 1956.
[Ma88] Makkai,M., Strong conceptual completeness for first onder logic. Annals of Pure and Applied Logic 40(1988)167-215
[MR77]Maldai,M. and Reyes, G., First order categortcal logic. LNM,No. 611 (1971).
[Mes7] Meseguer, J., General Logic, in "Logic Colloquium'87", H.-D.Ebbinhause at al.(Eda) (1989)
[MSS] Melton,A.Schmide D.A. and Strecker,G.E., Galols connections and computer sclencs applications. LNCS, No. 240 (1986)299-312
[PS93] Pigozzi,D. and Salibra,A., Representation theorem for lavibda abstraction algebras. LNCS, No. 711 (1993)
[Re87] Reichel,H. buitial Conrputability, Algebralc Specifications and Partial Algebras. Academic Vertag Bertin, 1987
[ST88] Sannella,D. and TarieckiA. Spectfications in an arbttrary instinution Information and Computation, 76(1988)165-210
[Sees3] Seely, R.A.G., Hyperdoctrines, natural dedrotton and the Beak comdition. Z.meth.Logit und Grundlagea Math., 29(1983)505-542
[Ta86] Tariecki,A. Quast-vartetles in abstract algebrale insititurions. J.Computer and Symem Sciences, 33(1986)333-360
[TBG91] Tarlecki,A.Burstall R., and Goguen]. Some findamental woole for the semontics of computation. Part 3: Indexed categortes. Theoretical Comp.Sci, 91(1991) 239-264
[Wo88] Wojcicki,R, Theory of logical calcull. Syothese Libraiy, Khawer Acndenic Publ., 1988

Zinovis Diskins. Kad sementiski deforta latitu ir sienehinetem?

 nocimê vispïr ir iespějange.

Zinvyy Diskin
Departmicit of Computer Sciepce, University of Lativis,
Raipa 19, LV-1586 Riga Lavia
E-mail: diekinefrazo. 2 ge. 1v

Latvijas Universitātes Zing̈tniskie Raksti, 595 (1994). Matemētika

Abstract queries, schema transformations and algebraic theories: an application of categorical algebra to database theory

Zinovy Diskin* ${ }^{*}$ and Boris Cadish ${ }^{*}$

Report on work in progress

Abstract

Summary. The general intention of the paper is to demonstrate the naturality of using category theory language and machinery for building specifications in database theory. Concretely speaking. notion of a query over a given database schema S is discussed from the viewpoint of transformations of both the schema S and the query schema. For the sake of independence on data model, a formal definition of an abstract data model (a.d.m.) is introduced and all considerations are put into the abstract framework provided by this notion. There is shown naturality and handiness of formalizing intuitive notion of derived, data through setting a closure operator (monad) on the category of all schemas pertaining to the data model in question. In particular, query schemas over a schema S turn out to be nothing but subschemas of the closure Der(S) of the schema S while S-instances can be treated as homomorphisms from $\operatorname{Der}(\bar{S})$ into schemas arising from semantics, which are closed 'from the very beginning', i.e. appear as algebras; then extensions of queries are nothing but images of the corresponding subschemas under these homomorhisms. All this constitutes the essence of algebraizabiity of an a.dm. and it is shown that relational data models are algebraizable. AMS Subject Clessificetion: Primary I8C10 ; sec ondary 68P15 , 03G30

[^3][^4]The general intention of the paper is to demonstrate naturality of using category theory language for the specification part of database theory. Given this purpose, the paper is oriented more on definitions than theorems. Concretely speaking, the notion of a query over a given database schema S is discussed from the viewpoint of transformations of both the schema S and the query schema. For the sake of independence on data model, a formal definition of an abstract data model (a.d.m.) is introduced and all considerations are put into the abstract framework provided by this notion. This constitutes a more wide (than just discussing queries) context of the paper -- to suggest a certain mathematical framework for abstraci data modeling under which ve mean a unified way of reasoning on data modeling constructs (schemk, instance, query etc.) being independent on (but applicable for) any (reasonable) concrete data model: relational, higher-order relational, extended ER etc. In fact, our notion of an a.d.m. explicates it as an institutionlike structure -- a kind of categorical constructs introduced in computer science by Goguen and Burstall in order to support specification formalisms completely independent on underlying logics (see [GB92] for a survey and further references).

The intended audience of the paper is assumed to be an amalgamation of the specification-oriented part of the database theory community and the institution theory community.
From the viewponit of database theory, the main technical novelty of the paper consists in introducing transformations of database schemas into the notion of a data model. Such an action enables us to organize the collection of all schemas accepted by a given data model into a category, and then use the language, methodology and machinery of category theory -- it is hoped this provides far-reaching conceptual consequences for database theory. We believe that similarly to that institutions provide a powerful unifying framework for handling algebraic specifications and specification languages, the categorical framework will be extremely useful in specification aspects of data modeling.

From the viewpoint of institution theory, the paper introduces two developments over the basic institution standard. The first one is not very essential and consists in defining and justifying a special kind of generalized institutions.
The second development over the basic standard is principal. It is commonly accepted to think that the institution framework is an immediate formal categorical refinement of the framework of abstract model theory. We assert, however, that this is not the case by virtue of the lack in the former of any concreteness facilities, i.e., facilities enabling us to speak about elements of models and relations. Indeed, ordinary models considered in model theory or database instances considered in database theory are not abstract algebraic structures but structures over domains or lists of domains, u.aich enables us to speak about model's (instance's) elements (values). So, each such a model (instance) structure must be considered together with its list of underlying domains, in fact, there is a forgetful functor into the category of many-sorted sets, SSet, and, thus, in categorical terms, categories of models are actually concrete over SSet categories. Moreover, in database theory there is well recognized the necessity of involving domain independence into discussing queries, so, categories of models must be endowed with another underlying functor which assigns to a model its active domain, i.e., the set of elements (values) actually appearing in structural components of this model (for example, in relations the model consists of). So, just a notion of an institution endowed with such facilities can pretend to be a formal refinemert: of the intuition behind abstract model theory while ordinary institutions provide a framework rather for abstract algebraic semantics considerations.
At last but not least, the paper presents a notion of algebraizability of an a.d.m. Which seems to be new for both data ase and institution theories (this notion is related to, but sericasly differs from, the notion of chartering institutions introduced by Goguen and Burstall in [GB86]). The essence of algebraizabilizy of a.d.m. amounts to the following.
An a.d.m., say, M, is algebraizable if, given any M-database schema S, database Instances over a set of domains $d=\left(d_{1}, i=1, \ldots, n\right)$ can be treated as morphisms from S into another schema, S_{d}, built from d by definite semantic tools determined by M. In addition, all such schemas
arising from semantics are, in fact, algebras (e.g., of relations) and Instances can be extended to homomorphisms of algebras freely generated by schemas into these semantic algebras.

Thus, algebraizability supposes, first of all, availability of a closure operator over the collection of schemas which (freely) closes a schema up to an algebra and, secondly, a class of algebras, that is, closed schemas, arising from semantics and therefore endowed with some domain structure. (All this can be formulated in precise categorical terms of setting an algebraic theory (monad, triple) over the category of schemas). A formal definition capturing the idea of algebralizability is presented in section 4 under the name of (algebraic) base. Further, It is proved that any base B gives rise 00 an a.d.m., $M(B)$, and an a.d.m. M is called algebratzable if M is isomorphic to $M(B)$ for some base 8 . We will show that relational data model is algebraizable and, hopefully, it will be easy to see how to oxtend this result and its proof for various higher-order relational data models. Moreover, we assert that various extended ER data models are also algebralzable (this point will be addressed in a forthcoming paper).

We do not use any advanced category theory tools, a very modest basis, for example, presented in the preliminary section 0 of [LS87] will be sufficient. Relevant to our purposes versions of some known, though not quite standard, notions are described in Appendix 2.

1 Motivating considerations

1.1 It is well known that for proper formulating one or another notion of a query (operation) a kind of genericity condition is required (see, e.g., [ABGG87]). This condition states that queries treat data values as uninterpreted objects and hence commute with permutations of values. However, it is natural to consider also "genericity with respect to schemas", that is, to require commutativity of queries with schema transformations. Indeed, given, for example, a relational schema S, query expressions over S in some query language are actually parameterized by relation-schemas so that transition from S to another schema \mathbf{S}^{\prime} forces the corresponding transformation of queries over \mathbf{S} Into queries over \mathbf{S}^{\prime}. Thus, query expressions are rather patterns for querying parameterized by schemas and respectively their semantic
extensions are rather families of queries over different schemas than isolated query operations; certalnly, these families are correlated between themselves via schema transformations in a definite way.
A bit more formally, let us fix a certain data model M. This means, first of all, that there are defined notions of a schema (for representing data) and an instance (of a data structure or a database) over a schema. So, given M, we have a collection of schemas, Schema, and, for each schema SeSchema, a set of instances over S, inst(S). Furthermore, we assert that $\%$ must necessarily suppose the notion of a mapping between schemas called a transformation or an interpretation of schemas. In addition, if $t: S \rightarrow S^{\prime}$ is such a schema transformation then instances over \mathbf{S}^{\prime} can be also considered as instances over \mathbf{S}, that is, there is a mapping t^{*}; inst($\left.S^{\prime}\right) \longrightarrow$ inst(S). In particular, if t : $S \rightarrow S^{\prime}$ is an inclusion, ie, S is a subechema of S^{\prime}, then, given i^{\prime} einst(S^{\prime}), $t^{I}\left(L^{\prime}\right)$, can be thought of as the restriction of i^{\prime} to S and the designation of $t^{x}\left(L^{\prime}\right)$ as ' $^{\prime \prime} \mathbf{S}$ will be relevant in such a case. Now, if $q: \operatorname{lnst}(S) \rightarrow \operatorname{lnst}\left(S_{4}\right)$ is a query with the schema S_{q}, and t : $S \rightarrow S^{\prime}$ is a schems transformation, then t translates q into a query $q^{\prime}=\mathrm{tq}: \operatorname{inst}\left(\mathrm{S}^{\prime}\right) \longrightarrow$ inst $\left(\mathrm{S}_{9}\right.$,). In addition, S_{q} and S_{q}. are related by means of a transformation $\sigma_{4}: S_{q} \rightarrow S_{q}$. and, finally, commutativity of the following diagram expresses Invariance of querying under change of notation:

1.2 Now we eddress to the problem of capturing the Idea that quaries only, extract a part of derined Information already lmplicitly contained in a databses without any side effects. Leaving a full discussion till section 4, hare we note ooly that If 4,qi are queries over the same
 ($q 4)_{H_{8}}=q_{2}$. For the apecial case when $S_{4}=S$ and q is the Identity mapping over inst(S), we obtain juat the similtar condition of IAK899).

Thus, we see, transformations of schemas indeed form a necessary facility of abstract data models, hence, any such a model should be based on not just a collection of (database) schemas but rather on a category of schemas, that is, a collection of schemas organized into a single whole by means of scherna transformations. (Definition A. 1 of Appendix 1 will help to clarify our intention).

2 Notation and terminology

Throughout the paper categories and functors are denoted by bold letters or abbreviations. Given a category it, we write $A \in K$, or, else, $A:: K$, and $h: A \rightarrow B:: K$ to denote that A is an object of K and h is an arrow of K with the source A and the target B. We will also designate the source and the target of h as oh and ho resp. If ho=ag, their composition is denoted by h;g.

SSet denotes the category of sorted sets: its objects are pairs (I, X) with I a set of sorts or indexes and X a family ($X, i \in I$) of sets, its arrows are pairs (f, h) with $\mathrm{f}: \mathrm{I} \longrightarrow \mathrm{P}$ an ordinary function and $h=\left(h_{1}: X_{1} \longrightarrow X_{f(1)} \mid i \in I\right)$ a family of functions. We write $X=(I, X) \leq 1$ $=(J, Y)$ iff ISJ and $X_{1}=Y_{1}$ for all $i \in I$; and $X \leq Y$ iff ISJ and $X_{1} \leq Y_{1}$ for all $i \in 1$. If X ::SSet then $U X$ denotes $U_{\in I \in} X_{1}::$ Set, where Set is the category of ordinary sets and functions.

Given sets $X, Y, X c_{r} Y$ means that X is a finite subset of Y.
Cat $_{\text {iso }}$ is the category of categories with no arrows but isomorphisms.

All categories we consider in the paper are categories with inclusions and the corresponding image-factorization system, itcategories, in short (the precise definition appears in Appendix 2 , however, an intuitive notion of inclusion of one object into another and the image of a subobject under a mapping will be sufficient for understanding the text). The fact that $A \longrightarrow B$ is an inclusion will be denoted by $A \subset B$ since there is no more than one (if any) inclusion between objects; the very arrow will be also denoted by A. If \mathbf{K} has an image-factorization systern and $h: A \longrightarrow B$ is an arrow, then the image of h will be denoted by $\operatorname{Img}(h) \hookrightarrow B$.

SubA denotes the set of all possible inclusions $X \hookrightarrow A:$: K.

EpiK, IsoK, IncK denotes resp. classes of all epimorphisms, all isomorphisms and all inclusions of \mathbf{K}.

FIG: $\mathbf{K}^{\langle-\boldsymbol{E}} \boldsymbol{-} \mathbf{L}$ denotes an adjunction $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{L}, \mathbf{G}: \mathbf{L} \rightarrow \mathbf{K}$ between categories K and L with F the left (lower) adjoint and G the right (upper) one.

3 Definition of an abstract data model

3.1 Definition. A frame for data structuring or simply a frame is defined to be a collection of the following components:

- An ii-category Schema of (database) schemas and schema transformattons.
- A functor inst: Schema \longrightarrow Cat $_{1_{* 0}}^{{ }^{\text {p }}}$ assigning to each schema S a category of (database) instances over S and their isomorphisms (to be thought of as those ones which are generated by permutations of underlying domains). Pairs ($\mathrm{S}, \mathrm{\iota}$) with $\mathrm{S} \in$ Schema and $\ell \in$ inst(S) will be also called instances and the set of all instances in the latter sense will be denoted by Inst.
- domatn structure over inst, dmn=(dom,val), where dom=(dom, SeSchema) and val=(val,$S \in S c h e m a)$, are families of functors, doms: $_{5}$ Inst(S) \rightarrow SSet and vals: inst(S) \rightarrow Set resp., s.t. $\mathrm{val}_{s}(\imath) \subseteq$ Udom $_{5}(\ell)$ for any $\iota \in \operatorname{lnst}(S)$. Here, given an instance (S, ℓ), doms (ι) must be thought of as the list of domains underlying ℓ, whereas vals (e) - as the set of values actually involved by i. We will often omit the subindex s if it is clear from the context.
Moreover, if $\mathbf{t}: \mathbf{S} \rightarrow \mathbf{S}^{\prime}$::Schema then the following condition holds for all ε^{\prime} elnst(S^{\prime}):
(ext) $\operatorname{dom}\left(t^{x^{*}} \iota^{\prime}\right) \leq \operatorname{dom}\left(\iota^{\prime}\right), \operatorname{val}\left(t^{*} \iota^{\prime}\right)=\operatorname{val}\left(L^{\prime}\right) \cap U \operatorname{dom}\left(t^{*} \iota^{\prime}\right)$.
This condition explicates the intuitive idea that t^{*} produces only another structural view on that part of data contained in ' c which is captured by t without affecting data themselves, in other words, t^{*} changes the structure of that part but not the very values.

Now we turn to presentation of the notion of a query through our formalism.
Let $\bar{F}=$ (Schema, Inst, dmn) be a frame. By adapting and generalizing to our
context the definition of a deterministic query from [AK89] we come to the items (i) and (ii) of the definition following below. Item (iii) is intended to formalize the intuitive idea that queries are rather patterns for quering than isolated operations.
3.3 Definition. Let S be a schema, SeSchema.
(i) A (deterministic) query operation or simply a query over S is defined to be a pair $q=\left(S_{q}, f_{q}\right)$ with S_{q} a schema of the query and f_{q} a functor $\operatorname{Inst}(S) \longrightarrow \operatorname{Inst}\left(S_{q}\right)$ s.t. the following condition holds for all ceinst(S):
(qri) $\quad \operatorname{dom}(q u) \leq \operatorname{dom}(\iota), \operatorname{val}(q L) \leq \operatorname{val}(\iota) \cap$ Udom(qu).
here and furtheron q also denotes the very function $f_{\mathbf{q}}$.
(ii) A query system over S is defined to be a set $\operatorname{qr}(\mathrm{S})$ of queries over S satisfying the following two conditions for any q1,q2eqr:
(qr2) $\quad i d_{i n s t(S) \in \operatorname{qr}(S), ~}^{\text {(}}$,
if $\mathrm{S}_{\mathrm{q} 1} \varphi \mathrm{~S}_{\mathrm{q} 2}$ then $\mathrm{q} 2(L) \|_{\mathrm{s}_{\mathrm{q} 1}}=\mathrm{qI}(L)$ for all Leinst(S).
(We recall that if $t: S \rightarrow S^{\prime}$: Schema is an Inclusion and leinst (S^{\prime}) then t_{z} is denoted by_{S} \& $)$.
(iii) A query hypersystem (over a frame 5) is defined to be a functor $\boldsymbol{q}:$ Schoma \longrightarrow Set assigning to each schema S a query system over S, in addition, with any schema transformation $t: S 1 \rightarrow \mathbf{S} 2$ and $q \in q r(S 1)$ there is correlated a schema transformation $\sigma_{t q}: S_{q} \longrightarrow S_{4 q}$ (here and furtheron tq denotes (qri)q) s.t. the following diagram commutes for any $\mathbf{q}, \mathbf{q}^{\circ} \propto \mathrm{qr}(\mathrm{S} 1$):

Moreover, the following diagram also commutes for any tranaformation $\mathbf{t}: \mathbf{S} 1 \longrightarrow \mathbf{S} 2$ and query 9 ar(S1):

3.4 Remarks.

(i). Functoriality in the Item (i) above means commutativity with isomorphisms of instances, that is, the well-known genericity condition.
(ii). Note, condition (qr5) together with condition (ext) of definition 3.1 imply that val $q\left(t^{*} \ell\right)=$ val (tq) t for all ceinst(S2), that is, the extension of a given query does not depend on notation.
3.5 Definition. An abstract (static) data model is defined to be a couple of a frame 5 and a query hypersystem (qr, σ) over 3.

4 Algebralzing data modela

In the definition of an a.d.m. instances were treated quite abstractly as some entities functorially connected with schemas but without specifying their nature. However, in all data models using in practice, instances (for example, of a relational schema S) are mappings which assign semantic meanings (relations) to the structural components of the schema (names of relations) in correspondence with their structural characteristics (relation-schemes). This suggests the idea of treating an instance L of a schema S as a schema transformation of S into the corresponding schema arising from semantics, $\mathrm{e}: \mathrm{S} \longrightarrow \mathrm{S}_{\mathbf{d}}$, where \mathbf{d} refers to the list of domains underlying the schema $\mathrm{S}_{\mathbf{d}}$. (Construction A-1.2(i) from Appendix 1 will help to clarify this idea). The image of S under the transformation can be considered as data being kept in the database.

Furthermore, from these data new derived data can be extracted, in addition, derived data appear as instances of other (query) schemas
somehow related to S . Reflecting on this point suggests the idea to supply the category Schema with an operator Der which assigns to each schema S a very large schema DerS being thought of as the schema specifying the total combination of all possible derlved data which can be extracted from L , in fact, from $\mathrm{Img}_{\ell}(\mathrm{S})$. That is, t is assumed to be naturally extendible to $\bar{\tau}:$ DerS $\rightarrow S_{d}$ so that just the image $\operatorname{Img} g_{\boldsymbol{q}}$ (DerS) presents the totality of derived data. (Again, construction A-1.2(ii) will clarify these considerations). Now, a query 0 appears as a subschema S_{0} of DerS, $S_{0} \rightarrow$ DerS, and the answer is nothing else than $\operatorname{Img}_{\bar{\iota}}\left(\mathrm{S}_{\mathrm{Q}}\right)$.
In precise categorical terms, these considerat ins mean that Der is a regular algebraic theory over Schema and S_{d} is a Der-algebra, $S_{d} \in A l g$ Der. In the following definition we treat algebraic the :lies over a category in a equivalent way through adjoint functors.
4.1 Definition. An algebraic base of a data model or simply a base is defined to be a collection of the following data.

- A regular algebraic theory T, that is, an adjunction, NG: Schema ${ }_{\infty}--$ AlgT), where elements of the H-category Schema are to be thought of as possible schemas and their transformations and those of AlgT - as (accepted) algebras and their homomorphisms. The composition Der $=$ F;G will be thought of as a derived data operator on Schema ${ }_{\infty}$.
- A full subcategory of Schema consisting of cocepted schemas, Schema, which is closed under subobjects.
- A subcategory Sem of AIgT consisting of semantic algebras. The objects of Sem are to be thought of as algebras arising from eementics and arrows - as algebra, isomorphisms generated by permutation of underlying domains. (Warning: as it wras demonstrated by Shelah (Shees), there are relational algebra isomorphisms between non-ieomorphic data structures, that is, generally speaking, categories Sem can be nonfulli).
- A domain structure over Sem, dan=(deme,val), where dom: Sen \rightarrow SSet and val: Sem \longrightarrow Set are functors s.t. val(A) \leq Udom(A) for any AeSem, In addition, for any two A.Eessen s.t. GAcGB :iSchema, we have domAcdomB and valAcvalB. Here, given an algobra A, doma(A) muat be thought of as the list of domalns carrying A whereas val(A) - as the set of values
actually involved by A.
Considerations before the definition suggest an evident construction which provides the following
4.2 Theorem. Each base 8 gives rise to an abstract data model (F(B), $\mathbf{4 r}(8)$).
Finally, considerations of Appendix 1 shows that any relational data model is generated by the corresponding algebraic base, that is, is algebraizable. Hopefully, it is easy to see that this is the case also for various higher-order relational schemas, thus,
4.3 Theorem. All kinds of relational data models are algebraizable, i.e. can be presented as ($\mathbf{F}[8] . q[(8)$) for some algebraic base \mathbf{B}.

Appendix 1. Category of relational schemas. Relational algebras

A-1.2 Definition Let u be an arbitrary but fixed countable set of attrlbute names.
(i). A (finitary) relational schema (over \boldsymbol{u}) is defined to be a triple S=(DOM, dom,nel) with DOM a finite set of domain names, dam a function $u \rightarrow$ DOM s.t. domr ${ }^{1}(\mathrm{D})$ is countable for any DeDOM and rel a function taking each finite subset X of u to a finite set (possibly, emptyt) of relation names in scheme X, rel(X). (Well, in the standard definition of a relation scheme nel(X) is either empty or a singleton). In addition, the set $\left(X_{C}, \mathcal{U}:\right.$ nel($\left.\left.X\right) \neq a\right)$ Is finite too.
(ii). A trensformation of relational schemas, $S \longrightarrow \mathbf{S}$, is defined to be a triple $t=\left(t_{d}, t_{a}, t_{c}\right)$ consisting of a mapping $t_{d}:$ DOM \longrightarrow DON, a bljection $t_{2}: u \rightarrow u$ s.t. domt $(A)=t_{d}(\operatorname{domA})$ for all $A \in U$, and a family of mappings $t_{r} x:$ nelX \rightarrow nef $_{\mathbf{L}}(X)$ indexed by finite subsets X of \boldsymbol{U}. (ifi). Compoeltion of transformations and Identity transformation are defined th a evident way, this constitutes the category of (finitary) flat relational schemas and transformations, Rel.
A-1.2 Construction. (1). Given a finite set of domatres, $t=(d h, \ldots, d a)$,
 countable for all $l=1 . . . n$ and then buitd the following (infinftaryt)

schema satisfies the definition above except for requirements of finiteness of $\operatorname{rel}(X)$ and f initeness of the set $\left\{X c_{f} U: \operatorname{rel}(X) \neq \varnothing\right\}$. If we remove these two requirements from the definition of Rel ${ }_{f}$, we get the definition of the category of infinitary relational schemas and transformations, Rel $\boldsymbol{\infty}_{\infty}$, s.t. Rel \mathbf{l}_{f} is a full subcategory of Rel ${ }_{\infty}$. Now it is easy to see that a relational database instance i over a schema $S=(D O M, d o m, r e l)$ is nothing but the schema transformation $t=\left(t_{d}, t_{a}, t_{r}\right)$: $S \longrightarrow S[d, \#]$ with $\# A=\ell(A)$, the $\quad L$-domain of A, for all $A \in U$, $t_{d}(D)=L(A)$ for any, hence all, $A \in U$ s.t. $\operatorname{dom} A=D$, the identity mapping of u, and $t_{\mathbf{T}}(R)=\ell(R)$ for all Rerel(X), XGu. Conversely, any such a transformation is an instance and, thus, we have an isomorphism inst(S) $\cong U\left(\right.$ Rel $\left._{\infty}\left(\mathbf{S}, \mathbf{S}^{\prime}\right): S^{\prime} \in \operatorname{Sem}\right\}$ where Sem denotes the class of schemas of the form $S[d, \#]$ for various d and $\#$.
(ii). Actually there are several relational data models depending on what a collection of operations over relations is accepted. On the other hand, fixing such a collection I determines the corresponding class of many-sortcd algebras, we will say T-algebras, and any schema from the class Sem can be considered as a T-algebra. In addition, accepted in the data model in question instances of a schema S can be considered as homomorphisms of T-algebras of the kind $\bar{S} \longrightarrow$ S[d, ${ }^{\text {bl }}$ for various d and $\#$, where $\overline{\mathbf{S}}$ denotes the \mathbf{T}-algebra freely generated by \mathbf{S}. (The latter means that $\overline{\mathbf{S}}$ is the labeled tree (whose nodes are relation names together with their schemes) generated from relation names occuring in S by means of symbols of T-operations; e.g. from leaves Rlerel (X) and Rzerel(Y) by means of the symbol or joln-operation we come to the node RI@R2 with the scheme XUY). Note, \bar{S} is always an infinitary schema even though S is finitary.
(iii). It can be shown that a similar machinery is valid for complex relational data models and various kinds of graph-oriented, in particular, ER end extended ER data models. Thus, as it was already said, the maior ity of ex citing data models suppose availability of a closure operator over the category or schemas. To capture this construct in a formal way the notion of an algebraic theory (triple, monad) is just suitable.

Appendix 2. Image factorization aystems for categories with inclusions

A-2.1 Definition. A category with inclusions is defined to be a pair (K,Inc) with K a category and Inc a class of \mathbf{K}-monomorphisms called inclustons s.t. the following holds (incl A, B) denotes the set ($i \in K(A, B): i \in \operatorname{lnc})$):
(inc1) Inc(A, B) is either empty or a singleton, in the latter case we write $\mathrm{i}: A C B$::K or simply $A C B$;
(inc2) $A=B$ as soon as $A C B$ and $B C A$;
(Inc3) Inc is closed under identity arrows, arrow composition and pullbacks along arbitrary maps (in other words, Inc is a dominion (see, eg, Moggl [Mo89]) over K).
(Inc4) for any object A, the class $\operatorname{Sub} A=(X \subset A: X \in K)$ is a set (consisting of the subobjects of A).

We will often ambiguously designate the source of an Inclusion morphism and the very morphism by one and the same letter, namely, the letter denoting the source.
A. category with taclusions is said to possess canonical image factorizations If the closure of Inc under lsomorphisms, Inc", is the mono-component of a factorization systom ($\operatorname{COV}_{\mathrm{I}}^{\mathrm{Inc}}{ }^{\boldsymbol{\theta}}$) over K (about the latter see, eg, Barr (Ba91); arrowe from Cov will be called covers. In particular, this means that each $h: A \rightarrow B:: K$ has a unique factorization h=c;i with ceCovksEpIK, IelncKSMIonoK, thusly, with each morphlsmi h: \rightarrow B there are correlated its image, the inclusion Img(h) C_{0}, and its kernel, the cover c=kerh: $\boldsymbol{A} \longrightarrow$ Img(h). An il-category. Is a category with inclusions and corresponding canonical image factorizations. In any such a category there is a mapping $\operatorname{Img} g_{\mathrm{t}}:$ SubA \rightarrow SubB defined by setting $\operatorname{Img} X=\operatorname{Img}(X ; h)$.

A regular algebraic theory consists of an underiying II-category K and a monad $T=\{T, \mu, \eta)$ over K (see, e.g., [iss7] or [BWes]) which preserves tmage factorizations, that is, If ceCovk, lelnck then TceCovk, TisincK too.

References

[ABGG87] S.Abiteboul, C.Beery, M.Gyssens and D.Van Gucht, An introduction to the completeness of languages for complex objects and nested relations, LNCS, No. 361 (1987)117-138
[AK89] S.Abiteboul and P.Kanellakis, Object identity as a query language primittve, SIGMOD Records, 18(2):159-173,1989
[Ba91] M. Barr, HSP type theorems in the category of posets, 1991. Available by anonymous ftp (file /imported/BarrM/hsppos.dvi. 2 at theory.doc.ic.ac.uk)
[BW85] M.Barr, C. Wells, Toposes, Triples, and Theories. Springer-Verlag, 1985
[GB84] J.A.Goguen and R.M.Burstall, Introducing institutions, LNCS, No. 164(1984) 221-256
[GB85] J.A.Goguen and R.M.Burstall, A study in the foundations of programming methodology: Specifications, institutions, charters and parchments. LNCS, No.240(1986) 313-333
[GB92] J.A.Goguen and R.M.Burstall, Institutions: Abstract model theory for specification and programming. J.ACM,39(1)(1992)95-146
[LS87] J.Lambek and P.Scott, Introchuction of higher-order categorical logic, Cambridge University Press, 1987
[Ma87] B.Mayoh, Galleries and institutions, Tech.rep.DAIMI PB-191, Aarhus Univ., 1985
[Mo89] E.Moggi, An abstract view of programming languages, Lect. notes of the course at Stanford Univ., 1989
[She88] A.Shelah, Isomorphic but not base-isomorphic base-minimal cylindric algebras, Algebraic Logic, Colloq.Math.Soc.J.Bolyai, 1988;N-Holland, 1991

Zinovijs Diskins, Boriss Kadiss. Abstraktie pieprasijumi, shēmu parveidojumi un algebriskas teorijas: Kategoriju algebras pielietojums datubarau teorijaz
Anot̂̄cija Rakstā parž̆dits kategoriju teorijas valodas lietơ̌anas dabiskums datubảzzu teorijas specifikāciju dalai. Pieprasijumi par doto datubǎau shëmn S tiek aplakoti no shëmas S un pieprasijumu shẽmas viedolja. Lai nodroł̌inātu datu modela neatkaribu, tiek ievesta abstrakta datu modela (a.d.m.) definicija un turpmâkie spriechumi balstās uz zo jedzienu. Tiek parảdits intuitivā atvasināto datu jedriena formalizěłanas dabiskums un Ětums, ievedot slegguma operatoru (monādi) to shĚmu kategorijž, kuras attiecas uz aplakojarno datu modeli.
 S-instances var aplakot kă homomorfismus no Der(S) uz shËmăm, ke3 rodas semantiki. Tad pieprasijumu paplazinZ̄jumi nav nekas cits kã atbilstołie apaǩ̌shẻmu attêli. Tas veido adm. algebrizżjamibas bütibu un tiek paridits, ka reläciju datu modeji ir algebrizżjami.

Zinovy Diskin
Department of Computer Science, University of Latvia, Raipa 19, LV-1586,

Boris Cadish Laboratory of Database Design, Frame Inform Systems,
Elizabetes 23, LV-1234,

Rga, Latvia (diskin,bacleframe.riga.Iv

ON SEMIGROUPS OF OPEN TRANSFORMATIONS OF SYSTEMS OF SUBSETS.

> v.Shteinbuk.

Abstract. The problem of determinability (up to homeomorphism) of a system of subsets by means of its semigroup of open transformations within different classes Γ is discussed. In the capacity of Γ are considered classes of chains, partitions, uniform quasiretract systems and generalized T_{1} - spaces.
AMS Subject Classification 20 M 20.
Many specialists investigated the relations between certain mathematical structures and algebraic objects associated with these structures. One of the main problems in this direction is the problem of determinability of an initial object by means of its derivative algebraic object. We mention the well-known result of the type - the fundamental theorem of GelfandKolmogorov, according to which two compact topological spaces x and Y are homemorphic iff the rings of continuous functions of these spaces are isomorphic.

During the last decades transformation semigroups have been considered actively as derivative objects of different mathematical objects. In particular, the problem of determinability of a topological spaces X by semigroups of its continuous (and of other types) transformations was repeteadely studied (see e.g. [3, 5, 8], e.a.). The problem studied in this paper is to reveal the possibilities of a similar algebraic determinability of some systems of subsets by means of the semigroups of their open transformations. From this point of view ve consider some classes of systems of subsets (such as chains, partitions, uniform quasiretract as well as generalizations of topological spaces). If our proof is a straightforward modification of the known proof of the similar
result for topological spaces, then we state the result only. Such a situation is for the considered generalizations of the topological spaces. However, as a rule, the considered semigroups don't contain constant transformations in other cases and therefore a technique of proofs essentially differs from that successfully used far the topological spaces in the related investigations.

By a system of subsets we call a pair (x, τ), where X is a set, and τ is a subset of the \mathscr{C}_{x}, where ${ }_{x}$ is the power set of X. (In the survey [8] Vechtomov calls such pairs by generalized topological spaces).

It is known that various mathematical structures on a set x are given by specifying of a subset τ of e_{x}^{\prime}, where τ satisfies some axioms. Such is top logies. Other exam. iss are filters, matroids, subset algebras, closure systems, e.c.).

Let $S O$ be the category the objects of which are systems of subsets and the morphisms are the mapping $\varphi: X_{1} \rightarrow X_{2}$ such that $\varphi(H) \in \tau_{2}$ for each $M \in \tau_{1}$. Morphisms (isomorphisms) in SO we call by open mappings (homeomorphisms) of systems of subsets. Two systems of subsets are called homeomorphic if they are isomorphic objects of the category SO. In the literature other terminology is used as well: homeomorphic systems call by equivalent or isomorphic (e.g. $[6,9]$).

Suppose that $T_{c}\left(T_{0}\right)$ is the complete subcategory of SO, elements of which are pairs (X, τ) where τ is a closed (resp. open) topology on X_{0}. It is evident, that the category $T_{e}\left(T_{0}\right)$ is in fact the category of topological spaces with closed (open) mappings.

For a system of subsets (X, τ) let $O(X, \tau)$ denote the semigroup of all its open transformations under the operation of multiplication of mappings.

Let r be a class of systems of subsets. We say that a system $(X, \tau) \in \Gamma$ is determined (up to homeomorphism) by the semigroup $O(X, \tau)$ within the class r if any isomorphism of semigroups $O(X, \tau)$ and $O\left(X_{1}, \tau_{1}\right)$ implies a homeomorphism of the systems (X, τ) and $\left(X_{1}, \tau_{1}\right)$ for every $\left(X_{1}, \tau_{1}\right) \in \Gamma$.

For any subset τ of \mathcal{S}_{x}, let $\tau^{0}=\tau u\{s\}$, if τ does not
contain empty subset, and let $\tau^{\circ}=\tau$, if aet. It is clear, that semigroups $O(X, \tau)$ and $O\left(X, \tau^{\circ}\right)$ are equal. Therefore the following definition will turn out to be quite convenient.

Let Γ be a class of systems of subsets. We say that a system $(X, \tau) \in \Gamma$ is O-determined by the semigroup $O(X, \tau)$ within the class Γ, if for every $\left(x_{1}, \tau_{1}\right) \in \Gamma$ any isomorphism of the semigroups $O(X, \tau)$ and $O\left(X_{1}, \tau_{1}\right)$ implies a homeomorphism of the systems $\left(X, \tau^{0}\right)$ and $\left(X, \tau,{ }_{1}\right)$.

The difference between the determinability and the 0 determinability is not very essential, as it is seen from the definitions. In particular, if Γ is a class of systems with $\sigma \in \tau$ for all $(x, \tau) \in \Gamma$, then the notions of O-determinability and determinability are equivalent within the class Γ.

Throughout the remainder of the paper, the only considered systeis of subsets are (x, τ) with $X \in \tau$. We use this remark without explicit mention.

By analogy with the topological terminology, a subset $M c X$ is called a quasiretract (resp. retract) of a system (X, τ), if $M=\varphi(X)$ for some $\varphi \in O(X, \tau)$ (resp. $\varphi \in O(X, \tau)$ and $\varphi^{2}=\varphi$). A system of subsets (X, τ) we call by quasiretract (resp. retract) if every nonempty subset $H \in \tau$ is a quasiretract (resp. retract) of the system (x, τ). For example, if ${ }^{0} \tau$ is a closed T_{1} - topology on a set X, then the topological space (X, τ) is a retract system of subsets.

We say that a system of subsets (X, τ) is uniform if ($M-\{\alpha\}$) $\cup \beta \in \tau$ for any $\varnothing \nexists M \in \tau, \alpha \in M, \beta \in X$. One may easily verify, that if τ is a free filter (i.e. a filter with empty kernel) on a set x then the system of subsets (X, τ) is a uniform quasiretract system.

Theorem 1. Let Γ be a class of the uniform quasiretract systems of subsets. Every system $(x, \tau) \in \Gamma$ is O-determined by the semigroup $O(X, \tau)$ within the class Γ.

Proof. Let (X, τ) be an uniform, quasiretract system of subsets.

For distinct elements $\alpha, \beta \in X$ we define the transformation $\varphi_{\beta \alpha}$ as follows :

$$
\varphi_{\beta \alpha}(\alpha)=\beta, \varphi_{\beta \alpha}(\gamma)=\gamma \text { for } \gamma \in X, \gamma \neq \alpha \text {. }
$$

Let F_{X} denotes the set of all transformations $\varphi_{\beta \alpha}$, where $\alpha, \beta \in X$. Each $\varphi_{\beta \alpha} \epsilon F_{X}$ is an open transformation of the system of subsets (X, τ). Really, for every $M \in \tau$ we have

$$
\varphi_{\beta \alpha}(H)=\left\{\begin{array}{l}
(M-\{\alpha\}) \cup\{\beta\} \text { if } \alpha \in M \\
M \text { otherwise }
\end{array}\right.
$$

Since (X, τ) is a uniform system, it follows that $\varphi_{\beta \alpha}(M) \in \tau$ and hence $\varphi_{\beta \alpha} \in O(X, \tau)$. Besides,$\varphi_{\beta \alpha}$ is an idempotent of the semigroup $O(X, \tau)$.

The following remark follows from lemma 2.8 [4]. Two elements $\varphi_{\beta_{1} \alpha_{1}}, \varphi_{\beta_{2} \alpha_{2}} \in F_{x}$ are \mathscr{R}-equivalent elements of the semigroup $O(X, \tau)$ if and only if $\alpha_{1}=\alpha_{2}$. ($\mathscr{R}_{\text {, is }}$ the Green's equivalence). For every element $\alpha \in X$ we denote

$$
K_{\alpha}=\left\{\varphi_{\beta \alpha} \mid \beta \in X\right\}
$$

The preceding observation yields that \boldsymbol{K}_{α} is a claç \because of \mathscr{R} - equivalent elements belonging to the set F_{x}. Mcreover,

$$
F_{x} / P=\left\{K_{\alpha} \mid \alpha \in X\right\}
$$

where F_{x} / ρ denote the quotient of the set F_{X} by the equivalence relation induced in F_{x} by the relation \mathscr{R}.

The subset F_{x} of the semigroup $O(X, \tau)$ may be characterized by means of a first order formula in the language of semigroups.

Namely, a transformation $f \in O(X, \tau)$ belongs to the set F_{X} if and only if f satisfies the following two conditions:
(1) f is an idempotent and f is not the identity element of the semigroup $O(X, \tau)$
(2) f has no two-sided identities in $O(X, \tau)$ besides f and the identity of $O(X, \tau)$.

Necessity follows from 2.5 []. Conversely, assume that $f \in O(X, \tau)$ has the properties (1), (2). Then $f(\alpha)=\beta \neq \alpha$ for some $\alpha \in X$. Since f is an idempotent it follows that $f(\beta)=\beta, \alpha \in f$. Then it is easy to show that $f \varphi_{\beta \alpha}=\varphi_{\beta \alpha} f=f$, i.e. $\varphi_{\beta \alpha}$ is an identity of f. Besides; $\varphi_{\beta \alpha} \in O(X, \tau)$. Hence, by the condition (2), $f=\varphi_{\beta \alpha} \in F_{x}$.

Assume now that $\left(X_{1}, \tau_{1}\right)$ and $\left(X_{2}, \tau_{2}\right)$ are unificm. quasiretract systems of subsets with the isomorphic semigroups $O\left(x_{1}, \tau_{1}\right)$ and $O\left(x_{2}, \tau_{2}\right)$ and let $x: O\left(x_{1}, \tau_{1}\right) \rightarrow O\left(x_{2}, \tau_{2}\right)$ be the corresponding isomorphism. Since the subset F_{x} may be defined
within the semigroup $O(X, \tau)$ by the formula of first order predicate calculus, it follows that $\chi\left(F_{x_{1}}\right)=F_{x_{2}}$.

It is evident, that $f_{1} \mathscr{R}_{2}$ in the semigroup $O\left(X_{1}, \tau_{1}\right)$ if and only if $x\left(f_{1}\right) \mathscr{R} x\left(f_{2}\right)$ in the $O\left(X_{2}, \tau_{2}\right)$. The foregoing allows us to define a mapping \bar{x} of $F_{x_{1}} / \mathscr{R}$ in $F_{x_{2}} / \mathscr{R}$ by letting $\bar{x}\left(K_{\alpha_{1}}\right)=$ $=K_{\alpha_{2}}\left(\alpha_{1} \in X_{1}, \alpha_{2} \in X_{2}\right)$ if and only if the image $x\left(K_{\alpha_{1}}\right)$ coincides with $K_{\alpha_{2}}$. It is easy to notice that \bar{x} is a bijection of $F_{x_{1}} / \mathscr{R}$ upon $F_{x_{2}} / \mathscr{R}$

Let $f_{1}: X_{1}^{2} \rightarrow F_{x_{1}} / \mathscr{R}_{1}, 1=1,2$ be the natural bijection defined by the equality $f_{1}\left(x_{1}\right)=K_{x_{1}} \quad\left(x_{1} \in X_{1}, i=1,2\right)$.

Then the mapping $\psi=f_{2}^{-1} \bar{x} f_{1}$ is a bijection of X_{1} upon X_{2}.
In the sequel we write $\psi(x)=\bar{x}$ for $x \in X_{1}$ and $\psi(M)=\bar{M}$ for M_{1}. We remark that $x\left(K_{x}\right)=K_{\bar{x}}$ for every $K_{x} c_{x_{1}}$. Really, for any $K_{x} \in F_{x_{1}} / \mathscr{R}$

$$
\bar{x}\left(K_{x}\right)=f_{2} \psi f_{1}^{-1}\left(K_{\underline{x}}\right)=f_{2} \psi(x)=f_{2}(\bar{x})=K_{\bar{x}}
$$

and then, by the definition of \bar{x}, it follows that $x\left(K_{x}\right)=K_{\bar{x}}$ for $K_{x} \subset F_{X_{1}}$.

Let M be a nonempty element of τ_{1}. Since $\left(X_{1}, \tau_{1}\right)$ is a quasiretract system there exists $\varphi \in O\left(X_{1}, \tau_{1}\right)$ with $\varphi\left(X_{1}\right)=M$. It is easy to verify that $x \in X_{1}$ belongs to $\varphi\left(X_{1}\right)$ if and only if $K_{x} \varphi \neq \varphi$.

Assume now that x belongs to the set M. Then $K_{x} \varphi \neq \varphi$ and hence

$$
\chi(\varphi) \neq \chi\left(K_{x} \varphi\right)=\chi\left(K_{\underline{x}}\right) \chi(\varphi)=K_{x}-\chi(\varphi) .
$$

This implies $\bar{X} \in X(\varphi)\left(X_{2}\right)$, i.e. $\bar{H} \subset \chi(\varphi)\left(X_{2}\right)$. Similarly we may verify the converse inclusion. Thus,

$$
\psi(H)=\chi(\varphi)\left(X_{2}\right) \in \tau_{2}
$$

Analogously can be proved that $\psi^{-1}(N) \in \tau_{1}$ for every nonempty $N \in \tau_{2}$.
We conclude that ψ is the homeomorphism of the systems of subsets $\left(X_{1}, \tau_{1}^{0}\right)$ and $\left(X_{2}, \tau_{2}^{0}\right)$, as peeded.

Corollary. Let Γ be a clase of the uniform quasiretract systems of subsets (X, τ) with eer. Every system $(X, \tau) \in \Gamma$ is deternined by the semigroup $O(X, \tau)$ within Γ.

In order to prove thaorems 2,3 below, we need some additional notations and some properties of retract systems.

A subset τ of power set \mathscr{J}_{x} one may conaider as a partially ordered set with respect to inclusion. Let (τ, c) denote the corresponding partially ordered set.

Lerma 1. [7] Let. $\left(X_{1}, \tau\right)$ and $\left(X_{2}, \tau_{2}\right)$ be retract systems of subsets. If the semigroups $O\left(X_{1}, \tau_{1}\right)$ and $O\left(X_{2}, \tau_{2}\right)$ are isomorphic then the partially ordered sets $\left(\tau_{1}, c\right)$ and $\left(\tau_{2}, c\right)$ are isomorphic.

For any semigroup s, let I be some set of idempotents of s together with the binary relation σ defined by

$$
(\forall a, b \in I)(a \sigma b \Leftrightarrow b a=a) \text {. }
$$

We put $\rho=\sigma \sigma^{-1}$. It is easy to see that the relation σ is a quasiorder and ρ is an equivalence relation in I. The quasiorder σ naturally induces a partial crder relation in the set of all ρ-classes I / ρ. This partial order relation we denote by $\bar{\sigma}$. The set I / ρ endowed with the relation $\bar{\sigma}$ we denote by ($I / \rho, \bar{\sigma}$).

Let (x, τ) be a system of subsets and $\operatorname{Id}(x, \tau)$ be the set of all idempotents of the semigroup $O(x, \tau)$. For every $H \in \tau$ we set

$$
\begin{equation*}
I_{M}=\{\varphi \in I d(X, \tau) \mid \varphi(X)=M\} \tag{1}
\end{equation*}
$$

It is easy to prove that a nonempty I_{n} is a class of ρ - equivalent elements of the set Id (X, τ). Besides, we have

Lemma 2. Let (X, τ) be a retract system of subsets. Then $\operatorname{Id}(X, \tau) / \rho=\left\{I_{M} \mid \mathrm{Mex}, \mathrm{H}=\infty\right\}$.
The following statement was proved essentially in [7], but was not stated explicitely.

Lemma 3.Let (X, τ) be a retract system of subsets. Then the mapping $\pi: \tau \longrightarrow I d(x, \tau) / \rho$ defined by $\pi(M)=I_{M}$ for each $H \in \tau$ is an isomorphism of the ordered sets (τ, c) and $(\operatorname{Id}(x, \tau) / \rho, \bar{\sigma})$.

Theorem 2. Let r be a class of systems of subsets (x, τ) where $\tau \backslash(x)$ is a partition of the set X. Every system $(x, \tau) \in \Gamma$ such that all components of the partition $\tau \backslash\{x\}$ are of equal cardinality is determined by the semigroup $O(X, \tau)$ within the class r .

Proof. Assume that (x, τ) is a system of subsets where $\tau \backslash\{x\}$ is a partition of x. Let A be an element of the set τ of minimal cardinality. For the subset A, construct a transformation $\varphi: X \rightarrow X$ as follovs: $\varphi(M)=A$ for all $M \in \tau$, and the restriction to A is the identity. obviously, such
transformation φ exists and $\varphi \in I d(X, \tau)$. Hence A is a retract of the system (X, τ). Besides, if $M \in \tau$ and $|A|<|M|$ then M is not even a quasiretract of (X, τ).

Let us denote by g_{x} the set of all transformations $f \in O(X, \tau)$ such that $f g=g$ for all non-identity idempotents $\operatorname{geId}(X, r)$. It is evident that \mathbb{A}_{x} is just the set of all open transformations of (X, τ), whose restrictions to all retracts $H \neq X$ of (X, τ) are the identities.

Note that $18_{x} \mid=1$ if and only if the system (x, τ) is such that all elements of $\tau \backslash\{x\}$ are of equal cardinality. Really, sufficiency follows immediately from the descriptions of the retracts of (X, τ) and the set g_{x}. Conversely, assume that there exist $B, C \in \tau \backslash\{X\}$ with $|B|<|C|$. Then C is not retract. It is clear that a transformation $f: X \rightarrow X$, for which $f(\alpha)=\alpha(\alpha \in X \backslash C)$ and the restriction f to C is a bijection, belongs to g_{x}. Hence $\left|A_{x}\right|>1$.

Assume now that systems of subsets $\left(x_{1}, \tau_{1}\right)$ and $\left(X_{2}, \tau_{2}\right)$ belong to the class Γ mentioned in theorem 2. Let the semigroups $O\left(X_{1}, \tau_{1}\right)$ and $O\left(X_{2}, \tau_{2}\right)$ be isomorphic and let $x: O\left(X_{1}, \tau_{1}\right) \rightarrow O\left(X_{2}, \tau_{2}\right)$ be the corresponding isomorphism.

Besides, assume that all elements of $\tau_{1} \backslash\left\{X_{1}\right\}$ are of equal cardinality. Then $1 \mathbb{R}_{x_{2}} \mid=1$. On the other hand, the subset g_{x} of $O(X, \tau)$ is defined (essentially) by a first order formula in the language of semigroups. It follows that $x\left(g_{x_{1}}\right)=g_{x_{2}}$ Hence $\left|g_{x_{2}}\right|=1$. This implies, from what has been shown, that all elements of $\tau_{2} \backslash\left\{X_{2}\right\}$ are of equal cardinality. For such a system of subsets every element is a retract.

Since the systems $\left(X_{1}, \tau_{1}\right)$ and $\left(X_{2}, \tau_{2}\right)$ are retract systems, it follows from lemma 1 that $\left|\tau_{1}\right|=\left|\tau_{2}\right|$.

Using lemma 2 and by the definztion of ρ, since x is an isomorphism, we obtain that for any $M_{1} \in \tau_{1} \backslash\left\{X_{1}\right\}$ there exists $H_{2} \in \tau_{2} \backslash\left\{X_{2}\right\}$ such that

$$
\begin{equation*}
x\left(\operatorname{Id}\left(x_{1}, \tau_{1}\right) \backslash I_{n_{1}}\right)=\operatorname{Id}\left(X_{2}, \tau\right) \backslash I_{n_{2}} . \tag{2}
\end{equation*}
$$

For each $H \in \tau \backslash\{X\}$ with $I_{n}{ }^{*}$, let G_{m} be the set of all invertibe elements g of the semigroup $O(X, \tau)$ such that $g f=I$ for all $f \in I d(X, \tau) \backslash I_{n}$. It is easy to notice that a

104
transformation $g: X \rightarrow X$ belongs to G_{n} if and only if g is the identical mapping when restricted to $X \backslash M$ and it is a bijection when restricted to M. Hence G_{H} is of equal cardinality with the symmetric group on H.

Assume that $H_{1} \in \tau_{1}$ and $H_{2} \in \tau_{2}$ are selected as in (2). According to (2) and the definition of G_{M} we obtain $\chi\left(G_{M_{1}}\right)=G_{M_{2}}$. Hence $\left|H_{1}\right|=\left|H_{2}\right|$.

Taking into account the proved above, we may conclude now that the systems of subsets $\left(x_{1}, \tau_{1}\right)$ and $\left(X_{2}, \tau_{2}\right)$ are homemorphic.

Theorem 3. Let Γ be a class of systems of subsets (X, τ) where the partially ordered set (τ, C) is a chain. Every system of subsets $(X, \tau) \in \Gamma$, with τ finite, is 0 -determined by the semigroup $O(X, \tau)$ within the class Γ.

Proof. Let (X, τ) be a system of subsets where (τ, c) is a chain. For any nonempty subset $M \in \tau$ define a transformation $f: X \rightarrow X$ by setting $f(x)=x(x \in M), f(x) \in M(x \in X \backslash M)$. Since τ is a chain, it follows that f is an open transformation of (x, τ). Besides, f is an idempotent, and hence M is a retract. Thus, (X, τ) is a retract system.

Let us take ints addition that τ is finite, and $\tau=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ where $\sigma \neq A_{1} \subset A_{1} c \ldots c A_{n}=X$. For any $A_{1} \in \tau$ let $\mathbb{M}_{1}=\mathbb{Z}_{A_{1}}(i=1, \ldots, n)$ denote the set of all invertible elements g of the semigroup $O(X, \tau)$ such that $g f=f$ for all $f \in I_{A_{1}}(c f,(1))$. For the sake of uniformity we set $A_{0}=0$ and let $a_{0}=A_{A_{0}}$ be the group of all invertible elements of $O(x, \tau)$. Obviously, g_{1} is a subgroup of the semigroup $O(X, \tau)$. Taking into account lemma 2 , one may conclude that the subset A_{1} is first-order definable in $O(X, \tau)$.

On the other hand, it is easy to notice that g_{1} is just the set of all homeomorphisms of (x, τ) upon itself, for which the restriction to A_{1} is the identical mapping. We remark that, given any invertible element g of $O(X, \tau)$, we have $g\left(A_{1}\right)=A_{1}$ for each $A_{1} \in \tau$. Conversely, every bijection $g: X \rightarrow X$ such that $g\left(A_{1}\right)=A_{1}(i=1, \ldots, n)$ is the invertible element of $O(x, \tau)$. In particular, any bijection on a set $A_{1} \backslash A_{1-1}$ coincides with the
restriction of some invertible element of $O(x, \tau)$ to the set $1_{1} \|_{i-1}(i=1, \ldots, n)$.

Let us denote by $S_{1}=S_{A_{1+1} M_{1}}(1=0,1, \ldots, n-1)$ the symmetric group on the set $\lambda_{1+1} \mid \lambda_{1}$ (specifically, $S_{0}=S_{A_{1}}$). We define a mapping $\nu_{1}: I_{1} \rightarrow S_{1}$ by letting

$$
v_{1}(g)=\left.g\right|_{A_{1+1} \Lambda_{1}} \quad \text { for each } g \in g_{1}
$$

From the foregoing, it follows that the mapping v_{1} is a homomorphism of the group g_{1} upon S_{1}. Obviously, the kernel of the homomorphism v_{1} is g_{1+1}. Hence the factor group g_{1} / \mathbb{Z}_{1+1} and the group S_{1} are isomorphic. In particular,
$\left|\mathbb{I}_{1} / A_{i+1}\right|=\left|S_{1}\right| \quad(i=0,1, \ldots, n-1)$.
Let us assume now that systems of subsets $\left(X_{1}, \tau_{1}\right)$ and (x_{2}, τ_{2}) belong to the class $\Gamma_{1} \tau_{1}$ is finite, the semigroups $O\left(x_{1}, \tau_{1}\right)$ and $O\left(x_{2}, \tau_{2}\right)$ are isomorphic and $x: O\left(X_{1}, \tau_{1}\right) \rightarrow O\left(X_{2}, \tau_{2}\right)$ is the corresponding isomorphism. Since the considered systems are retract systems, it follows by lemma 1 that $\left|\tau_{1}\right|=\left|\tau_{2}\right|$. Without loss of generality, one may assume that $\in \tau_{1}$ and e $\leqslant \tau_{2}$.

From the definition of ρ and from lemma 2, it follows that, by letting $\bar{x}\left(I_{n}\right)=I_{N} \quad\left(M \in \tau_{0}, N \in \tau_{2}\right)$ if and only if $x\left(I_{m}\right)=I_{n}$, a bijection

$$
\bar{x}: I d\left(X_{1}, \tau_{1}\right) / \rho \rightarrow I d\left(X_{2}, \tau_{2}\right) / \rho
$$

is defined. It is not difficult to verify that \bar{x} is an isomorphism of the partially ordered sets $\left(I d\left(X_{1}, \tau_{1}\right) / \rho, \bar{\sigma}\right)$ and $\left(\operatorname{Id}\left(X_{2}, \tau_{2}\right) / p, \bar{\sigma}\right)$.

Let $\pi_{1}: \tau_{1} \rightarrow I d\left(X_{1}, \tau_{1}\right) / \rho, 1=1,2$ be a bijection defined by analogy with the mapping π from lemma 3. Then π_{1} is an isomorphism of the corresponding partially ordered sets. Hence the bijection $v=\pi_{2}^{-1} \bar{\chi} \pi_{1}: \tau_{1} \rightarrow \tau_{2}$ is an isomorphism of the partially ordered sets $\left(\tau_{1}, c\right)$ and $\left(\tau_{2}, c\right)$. In the sequel for $M \in \tau_{1}$, we write $v(M)=\bar{M}$. It is easy to see that

$$
\begin{equation*}
\chi\left(I_{M}\right)=I_{\bar{M}}\left(M \in \tau_{1}\right) \tag{4}
\end{equation*}
$$

Elements of τ_{1} we denote by $M_{1}, M_{2}, \ldots, M_{k}$ where $H_{2} \subset H_{2} c \ldots c M_{k}=X$. The foregoing shows that $\tau_{2}=\left\{\bar{H}_{1}, \bar{H}_{2}, \ldots, \bar{H}_{k}\right\}$ where $\bar{H}_{1} \subset \bar{H}_{2} \subset \ldots \subset \bar{H}_{i}=X_{2}$. Since χ is an isomorphism, it follows from (\leqslant) and the definition of g_{M} that $x\left(a_{M}\right)=q_{B}\left(M \in \tau_{1}\right)$.

Hence the factor groups $g_{M_{1}} / g_{M_{1+1}}$ and g_{1} / g_{-1+1} are isomorphic. By (3) this implies

$$
\left|H_{1}\right|=\left|\bar{H}_{1}\right|, \quad\left|M_{i+1}\right| M_{1}\left|=\left|\bar{H}_{i+1}\right| \bar{H}_{1}\right| \quad|i=1, \ldots, n-1|
$$

It is evident now that the systems $\left(x_{1}, \tau_{1}\right)$ and $\left(X_{2}, \tau_{2}\right)$ are homeomorphic. The proof is completed.

Next we shall state a few results concerning the determinability by means of $O(X, \tau)$ within some classes Γ, containing topological T_{1}-spaces (with closed topology). For these classes semigroups $O(X, \tau)$ contain all constant transformations of X. Constant transformations of x are just left zeroes in $O(X, \tau)$. The folloving statements can be easy proved in the same way as the similar results for T_{1}-spaces: any isomorphism x of the semigroups $O\left(X_{2}, \tau_{1}\right)$ and $O\left(X_{2}\right)$ induces a bijection \bar{x} between the sets of left zeroes of these semigroups, and in turn, \bar{x} naturally gives rise a bijection of the corresponding sets X_{1} and X_{2} etc. Therefore the proofs are omitted.

In the descriptive set theory [1] a set $\tau \subset \mathcal{O}_{x}$ is called by T_{1}-separating if for any distinct $x, y \in X$ there exiat subsets $H, L \in \tau$ such that $\operatorname{Hn}\{x, y\}=\{x\}$ and $L \cap\{x, y\}=\{y\}$. Following it we call a system of subsets (x, τ) by strong T_{1}-seperable if $\{x\} \in \tau$ for each $x \in X$.

Theorem 4. Let r be a class of strong T_{1}-separable quasiretract systems of subsets. Bvery system $(X, \tau) \in \Gamma$ is O-determined by the semigroup $O(x, \tau)$ within the class Γ.

This result strenghten the determinability theorem [2] by means of the semigroup of closed transformations for T_{1}-spaces.

Corollary. Let Γ be a class of strong T_{1}-separable systems of subsets (x, τ) such that τ is closed under finite intersections and unions of the type: $H \cup\{\alpha\} \in \tau$ for all $M \in \tau, \alpha \in \mathbb{X}$. Bvery system $(x, \tau) \in \Gamma$ is determined by $O(x, \tau)$ within Γ.

To verify this statement it suffices to prove that (x, τ) is a quasiretact system under the hypotheses of the corollary. Really, for any $M \in \tau$ define a transformation $f: X \rightarrow X$ as follows: $f(x)=X(X \in M), f(X) \in M \quad(X \in X \backslash M)$. Then $f \in D(X, \tau)$ and $f(X)=H$. Hence H is a retract.

Theorem 4'. Let Γ be a class of strong T_{1}-separiable
closure systans (x, τ) such that r have a quasiretract multiplicative beais τ ' $\subset \tau$. Every $(X, \tau) \in \Gamma$ is determined by the seaigroup $O(X, \tau)$ within Γ.

References

1. Choban M.M. Desoriptive set theory and topology// Itogi Nauki i Techn., Ser. Modern Problems of Mathematics.- 1989.-v.51.- p. 173-237.(in Russian).
2. Gavrilov M. Semigroups of transformations of topological spaces// Godishn. Sofijsk. Univ. Mat. fak.- 1964. -v.57.p. 377-380.
3. Gluskin L.M., Shein B.M., Shneperman L.B., Yaroker I.S. Addendum to a survey of semigroups of continuous selfmaps// Serigroup Forum.- 1977.- v.14.- N2.- p. 95-123.
4. Lyapin B.S. Semigroups of directed transformations of partially ordered sets// Matem. Sbornik.- 1967.- v.74.-11.- p.39-46. (in Russian).
5. Hagill K.D. A survey of semigroups of continuous selfmaps// Semigroup Forum.- 1975/76.- v.11.- N3.-p.189-282.
6. Sirota S.M. On the problem of classification of filters// Doklady AN USSR.- 1970.- v. 191.aN3.-p.533-536. (in Russian).
7. Shteinbuk V.B. Endomorphism semigroups of some systems of subsets// Modern Algebra.- Leningrad Gos. Ped. Inst., Leningrad.- 1981.- p. 144-153. (in Russian).
8. Vechtomov B.M. Problems of determinability of topological spaces by algebraic systems of continuous functions// Itogi Hauki 1 Techn., Ser. Algebra, Topology, Geometry.- 1990.-v.28.- p.3-46. (in Russian).
9. Welsh D.J.A. Matroid theory.-London- N.Y.- Academic Press.1976.
V.S゙teinbuks. Par apakถ̆kopu sistēmu val̄̄̄jo transformāciju pusgrupăm.

Anotācija. Tiek pētIts b̄ads jactājums: cik pilnigi

108

apaǩkopu sistēmas atklātu transformăciju pusgrupa nosaka atbilstošo apakškopu sistēmu dažăās klasēs Γ. klases F lonă tiek aplukotas kédes, sadalijumi, homogẹ̆nas kvaziretraktu sistēmas un vispārinătas T_{1} - telpas.
В. Мтейнбук. 0 полугруппах открытых преобразораний систеи подмножеств

Аннотация, Иаучается вопрос об определнемости (с точность до гомеоморфизма) систем подмножеств полугруппаки их открытых преобразований в различных классах Γ., в качестве Γ рассматривалтся классы цепеи, разбиении, однородньх квазиретрактных систем и обобщеннвх T_{1} - пространств. удк 512.534
V.Shteinbuk

Department of Applied Mathematica
Riga Technical University
1 Kalku Str.
Riga LV - 1658,
Latvia

Latvijas Universitātes Zinātniskie Raksti, 595 (1994). Matemätika

ON EVEN FUZZY TOPOLOGIES

J. GUTIERREZ GARCIA and ALEXANDER P. ŠOSTAK

Abstract

A special hind of fuzay topologies in the sense of the recond author, the so called even furay topologies is introduced. Some propertien of even fusey topologien and their role in the theory of (gonerad) fusay topologies are conaidered. Benides the proaimity counterpart of even fusay topologien - the to called even fuszy prosimities - in introduced and briefly discussed.

Clasification A.M.S.(1880): 54A40, 03E72
KEYWORDS: Fuzzy topologies, fuzzy praximities.

Introduction

Soon after the inception of the concept of a fuzzy set by L.A. Zadeh [Za], C.L. Chang [Ch] in 1968 made the first atternpt to extend fundamental notions of general topology for the case of fuzzy sets. Namely, according to Chang, a fuzzy topology on a set X is just a usual (i.e. crisp) subset τ of the fuzzy powerset $I^{\boldsymbol{X}}$ of X satisfying axioms which are natural analogs of the standard axioms of topology (see Definition 1.3 for the precise formulation). Chang's pioneering paper was followed by many others the authors of which either investigated different aspects of Chang fuzzy topological spaces or proposed alternative viewpoints on the subject of fuzzy topology and were developing corresponding theories. Among the last ones was [$\mathrm{S}_{\mathrm{g}}^{\mathrm{g}} \mathrm{]}$] in which fuzzy topology on a set \boldsymbol{X} was realized as a mapping $T: I^{\boldsymbol{x}} \longrightarrow I$ satisfying certain axioms, i.e. a fuzzy topology in accordance with this viewpoint is essentially a fuzzy subset of the, fuzzy powerset of the given set (see Definition 1.1 for the precise formulation as well as the subsequent Comments 1.2.) In what follows the term "a fuzzy topology" without specification will be always understood in this sense.

It is well known that any fussy topology has a property which can be viewed upon as its "lower semicontinuity"; this property is described in 1.6. On the other hand fussy topologies "often" do not have the dual property of "upper semicontinuity" described in 1.7.

It is the principal aim of this paper to investigate fuzsy topologies which are uppersemicontinuous as well. They could naturally be called "continuous"; however we prefer to use the term "even fuszy topologies" since the term "continuous" when discussing topological concepts is quite ambiguous and may lead to wrong associations. The class of even fuzzy topologies is broed enough; in particular it contains all Chang fuzzy topologies.

We study bisic properties of even fussy topologies and their relations with general fuzzy topologies. In the last Section we discuss a proximal counterpart of even fuzzy topologies: the so called even fuzzy proximities.

In what follows, I will denote the unit interval $[0,1]$. The two point pet $\{0,1\}$ will be denoted by 2. If X is a set, then, as usually, I^{π} denotes the family of all fuszy subsets of X and 2^{x} denotes the ordinary powerset of X, i.e. the family of all crisp subsets of X. Given a fuasy set $M \in I^{\boldsymbol{x}}, M^{e}:=1-M$ denotes $\}$ its complement. We do not distinguish in notation between crisp subsets of \boldsymbol{X}. and corresponding characteristic functions.

1. Even fuszy topologies

Definition 1.1. $\left[\mathrm{SH}_{1}\right]$ Let X be a set. By a fuzzy topology on X we call a function $T: I^{\boldsymbol{\pi}} \longrightarrow I$ such that
(FT1) $T(0)=T(1)=1$;
(FT2) if $M, N \in I^{x}$, then $T(M \wedge N) \geq T(M) \wedge T(i v)$;
(FT3) if $M_{\lambda} \in I^{X}$ for all $\lambda \in \Lambda$, then $T\left(Y M_{\lambda}\right) \geq \wedge T\left(M_{\lambda}\right)$.
A pair (X, T) is called a fuazy topological apace.
In case a fuzay topology $T: I^{\mathbb{X}} \rightarrow I$ eatiafies the following stronger version of the first axiom:
(FT1') $T(c)=1$ for each constant $c \in I$
it is called laminated.

Comaments 1.2. The idea of such an aprosch to the subject of fussy topology first appeared in Höhle's paper [Hö]. However, there a fuszy topology was real ized as a fuszy subset of the usual powerset of X, i.e. as a mapping $T: 2^{\boldsymbol{X}} \longrightarrow I$. In the present form the concept of a fuzzy topology was introduced in 1985 in [SO_{1}]. In the middle eighties similar idess were discussed by some other authors, see [Ha], [Ku], [Di], [Lo] and [Ge].

Definition 1.3. [Ch] Let X be a set. By a Chang fuzzy topology on X we mean a subset $T \subseteq I^{\bar{X}}$ such that
(CFT1) $0,1 \in T$;
(CFT2) if $M, N \in T$ then $M \wedge N \in T$;
(CFT3) if $M_{\lambda} \in T$ for all $\lambda \in \Lambda$, then $\chi^{M_{\lambda}} \in T$.

Remark 1.4. Chang fuzzy topologies can be interpreted as a special case of fuszy topologies in the sense of 1.1. Namely, a fuzzy topology $T: I^{\boldsymbol{X}} \longrightarrow I$ is Chang iff it satisfies the following additional axiom:
(FTC) $T\left(I^{x}\right) \subseteq 2$.
Definition 1.5. [Sol $]$ A mapping $f: X \rightarrow Y$ where $\left(X, T_{X}\right)$ and $\left(Y, T_{Y}\right)$ are fussy topological apsces is called fuzsy continnous if $\tau_{X}\left(f^{-1}(N)\right) \geq \tau_{Y}(N)$ for each $N \in I^{r}$.

Fussy topological spaces and continuous mappings of such spaces form a category which will be denoted FT.

Discussion 1.6. $\left[\mathrm{SO}_{3_{3}}, \mathrm{So}_{4}\right]$ Given a fuzzy topological space (X, T) and $\alpha \in$ $(0,1]$ let $T_{4}=\left\{M \in I^{X}: T(M) \geq \alpha\right\}$. Obviously T_{a} is a Chang fuzzy topology on X and the family $\left\{T_{\alpha}: \alpha \in(0,1]\right\}$ is non increasing. T_{α} will be referred to as the α-level Chang fuzzy topology of the given fuszy topology T and the construction $T \rightarrow\left\{T_{a}: \alpha \in I\right\}$ will be referred to as the descomposition of T into the system of its α-level Chang fuasy topologies.
It is easy to see that for any fuszy topology T and any $\alpha \in(0,1]$ it holds $T_{\alpha}=\bigcap_{\alpha<a} T_{a}$. Thus the system $\left\{T_{a}: a \in I\right\}$ is in a certain sense "lower semicontinuous", or, as we prefer to say, lower semieven.
On the other hand given a non increasing family of Chang fuzzy topologies $\left\{T_{a}: \alpha \in I\right.$ \} on a set X one can define a fuzay topology $T: I^{\boldsymbol{X}} \longrightarrow I$ by setting $T(M)=V\left\{\tau_{a}(M) \wedge \alpha: \alpha \in I\right\}, M \in I^{X}$. Besides τ_{a} is exactly the α-level Chang fuzzy topology T_{α} of T iff the family $\left\{r_{a}: \alpha \in I\right\}$ is lower semieven in α, i.e., if $\tau_{\alpha}=\bigcap_{a^{\prime}<\alpha} \tau_{a^{\prime}}$.

112

Discussion 1.7. Given a fussy topological space (X, T) and $\alpha \in(0,1]$ let $\left(\bigcup_{\alpha^{\prime}>\alpha} T_{\alpha^{\prime}}\right)$ denote the Chang fuszy topology generated by $\bigcup_{\alpha^{\prime}>\alpha} T_{a^{\prime}}$ as a base. Obviously, $T_{\alpha} \supseteq\left(\bigcup_{\alpha^{\prime}>\alpha} T_{a^{\prime}}\right)$ but in general the equality does not hold. It seems reasonable to consider a special kind of fuzzy topologies for which the equality is true for all $\alpha \in(0,1)$. We call such fuzsy topologies even.

Definition 1.8. Given a fuszy topology T on a set X we say that it is eves if $T_{\alpha}=\left\{\bigcup_{\alpha^{\prime}>\alpha} T_{\alpha^{\prime}}\right)$ for each $\alpha \in(0,1)$.
If besides $T_{\alpha}=\left\langle\bigcup_{\alpha^{\prime}>\alpha} T_{\alpha^{\prime}}\right\rangle$ also for $\alpha=0$ then T is called strictly even.
It is easy to see that T is even (strictly even) if and only if for all $M \in I^{\boldsymbol{X}}$ with $0<T(M)<1$, (respectively $0 \leq T(M)<1$) there exists a collection $\left\{M_{\varepsilon}\right\}_{<>0}$ such that $M_{\epsilon} \leq M_{\epsilon^{\prime}}$ for $\epsilon \geq \epsilon^{\prime}, \sup _{\epsilon>0} M_{\varepsilon}=M$ and $T\left(M_{\epsilon}\right) \geq T(M)+\epsilon$ for all $\epsilon>0$.

Even fuzzy topological spaces and continuous mappings of such spaces form a full subcategory of FT which will be denoted EFT.

Remark 1.9. Each Chang fuzzy topology is obviously even. On the other hand a Chang fuzzy topology is strictly even only in case it is discrete.

Given a fuzzy topolog T on a set X we can define a collection of fuzzy closure operators $\left\{\mathrm{Cl}_{\alpha}\right\}_{a \in(0,1\}}$ where $\mathrm{Cl}_{a}: I^{X} \rightarrow I^{X}$, in the following way: $\mathrm{Cl}_{\alpha}(M)=\wedge\left\{N \in I^{X}: N \geq M\right.$ and $\left.N^{c} \in T_{\alpha}\right\}$.
It is easy to see that $\mathrm{Cl}_{\alpha}(M) \leq \wedge_{\alpha^{\prime}>\alpha} \mathrm{Cl}_{\alpha^{\prime}}(M)$.
Now we can give a characterization of even fuzzy topologies in terms of such families of closure operators.

Theorem 1.10. A fuzzy topology T on a set X is even if and only if for any $\alpha \in(0,1)$ and $M \in I^{X}$ we have that $\mathrm{Cl}_{\alpha}(M)=\wedge_{\alpha^{\prime}>\alpha} \mathrm{Cl}_{\alpha^{\prime}}(M)$.
Proof: Sufficiency. We have only to prove that $T_{\alpha} \subseteq\left(\bigcup_{\alpha^{\prime}>\alpha} \tau_{\alpha^{\prime}}\right)$ for each $\alpha \in(0,1)$.
Take some $M \in \tau_{\alpha}$, then $\mathrm{Cl}_{\alpha}\left(M^{c}\right)=M^{c}$ and therefore $M^{c}=\wedge_{\alpha^{\prime}>\alpha} \mathrm{Cl}_{\alpha^{\prime}}\left(M^{c}\right)$. So $M=\underset{a^{\prime}>a}{V} C_{\alpha^{\prime}}\left(M^{c}\right)^{c}$ and $\mathrm{Cl}_{\alpha^{\prime}}\left(M^{c}\right)^{c} \in T_{a^{\prime}}$ for every $\alpha^{\prime}>\alpha$. From here we can conclude that $M \in\left\{\bigcup_{\alpha^{\prime}>\alpha} T_{\alpha^{\prime}}\right\rangle$.

Necessity. Let $M \in I^{X}$, then $\mathrm{Cl}_{\alpha}(M)^{c} \in \mathcal{T}_{\alpha}=\left(\bigcup_{\alpha^{\prime}>\alpha} \tau_{\alpha^{\prime}}\right)$ and hence there exists a collection $\left\{N_{\alpha^{\prime}}\right\}_{\alpha^{\prime}>a}$ such that $N_{\alpha^{\prime}} \in T_{\alpha^{\prime}}$ for every $\alpha^{\prime}>a$ and
$\mathrm{Cl}_{a}(M)^{c}=\underset{a^{\prime}>{ }^{\prime}}{V} N_{a^{\prime}}$.
Thus, $\mathrm{Cl}_{a}(M)=\underset{a^{\prime}>\alpha}{ } N_{a^{\prime}}{ }^{c}$.
Since, obviously, $M \leq \mathrm{Cl}_{a}(M) \leq \mathrm{CH}_{\alpha^{\prime}}(M) \leq N_{\alpha^{\prime}}{ }^{e}$ for every $\alpha^{\prime}>\alpha$, it follo vs that $\mathrm{Cl}_{\sigma}(M) \leq{ }_{\alpha^{\prime}>\alpha} \mathrm{Cl}_{\alpha^{\prime}}(M) \leq{ }_{\alpha^{\prime}>\alpha} \hat{a}^{(}\left(N_{\alpha^{\prime}}\right)^{c}=\mathrm{Cl}_{\alpha}(M)$, that is, $\mathrm{Cl}_{\sigma}(M)=$ ${ }_{\alpha^{\prime}>\boldsymbol{A}} \mathrm{Cl}_{a^{\prime}}(M)$.

In a similar way one can prove:
'Sheoreri 1.10'. A fuzzy topology T on a set X is strictly even if and only if for any $\alpha \in[0,1)$ and $N \in I^{\mathbb{X}}$ we have that $\mathrm{Cl}_{\alpha}(M)={ }_{\alpha^{\prime}>\alpha} \mathrm{Cl}_{\alpha^{\prime}}(M)$.

As shown by the next two theorems, the family of even iuzzy topolc; ies on a given set X is in a certain sense "dense" in the family of all fuzzy tupologies on this set.

Theorem 1.11. Any laminated fuzzy topology T on a set X is a supremum of some family of even fuzzy topologies.

Froo: Giver a fuzzy topology T let $\left\{T_{a}\right\}_{a \in I}$ be thr family of its α-level topologies. Define the family of fuszy topologies $\left\{T^{a, c}\right\}_{a \in(0,1), \kappa \in(0, a)}$ in the following way:
For oach $M \in I^{x}$ let $\Gamma^{\alpha, c}(M)= \begin{cases}1, & \text { if } M \subset\{0,1\} ; \\ \alpha-\epsilon \sup M, & \text { if } M \in \mathcal{T}_{a}-\{0,1\} ; \\ 0, & \text { if } M \notin \mathcal{T}_{\alpha} .\end{cases}$
This fuszy topology is ev $\boldsymbol{i n}$ for each $\alpha \in(0,1]$ and $\epsilon \in(0, \alpha)$. To show thi, notice that its livel Chang fuzzy toporogies:

as hence $\mathcal{T}_{\beta}^{a, k}=\left({ }_{\mu \nu>\beta} \mathcal{T}_{\beta}^{\alpha, e}\right)$ for asch $\beta \in(0,1]$
Indeed in case $\beta \geq \alpha$ and $\mu \in(b, a-\epsilon)$ it is obvious; if $\beta \in[\alpha-\epsilon, \alpha)$ then $M \in \mathcal{T}_{\beta}^{\alpha, 2}(M \neq 1)$ if and only is $M \in \mathcal{T}_{a}$ and $M \leq \frac{a-\beta}{\rho}$ and hence, noticing that $M=\sup _{\beta^{\prime} \in(\beta, \alpha)} M \wedge \frac{\alpha-\beta^{\prime}}{\epsilon}$ we conclude that $M \in\left\{\mathcal{\beta}_{\beta^{\prime}>\beta} T_{\beta^{\alpha, \alpha}}^{\alpha, \gamma}\right.$.
To c.mplete the proof we have in show only that $T=\sup _{a \in(0,1]} \sup _{\in(0, a)} T^{\sigma, r}$.
The inequality " \geq " is obvious because $T \geq T^{0, k}$ for each $\alpha \in\{0,1]$ and $\epsilon \equiv(0, \alpha)$.
To prive the con arse, suppose that there exist $M \in I^{\boldsymbol{T}}-\{0,1\}$ and $\gamma \in I$ such

114

that $T(M) \geq \gamma>\sup _{a \in(0,1] \in \in(0, a)} \sup ^{\alpha, \epsilon}(M)$.
Since $M \in \tau_{\gamma}$ it is clear that $T^{\gamma, \epsilon}(M)=\gamma-\epsilon \sup M$ for all $\epsilon \in(0, \gamma)$ and therefore $\gamma=\sup _{\bullet \in(0, \gamma)} T^{\gamma, \epsilon}(M) \leq \sup _{\alpha \in(0,1]} \sup _{\varepsilon \in(0, \alpha)} T^{\alpha, \epsilon}(M)$. The obtained contradiction completes the proof.

Theorem 1.12. Any fuzzy topology T on a set X is an infimum of some family of strict.y even fuzzy topologis.

Proof: Given a fuzzy tcpnlogy T let $\left\{T_{c}\right\}_{a \in I}$ be de family of its a-level topologies. Define the laminy of fuzzy topologies $\left\{T^{\alpha, e}\right\}_{\alpha \in[0,1), \varepsilon \in(0,1-\alpha)}$ in the following way: $T^{\alpha, \varepsilon}=\sup _{\beta \in(0,1]} T_{\beta}^{\alpha, \varepsilon} \wedge \beta$:here
$T_{\beta}^{\alpha, v}= \begin{cases}\{0,1\}, & \text { if } \beta \geq 1-\epsilon ; \\ \left(T_{\alpha} \cup\left\{M: M \leq \frac{1-\epsilon-\beta}{1-\epsilon-\alpha}\right\}\right\rangle, & \text { if } \beta \in[\alpha, 1-\epsilon) ; \\ T^{X}, & \text { if } \beta \in[0, \alpha) .\end{cases}$
$\left(T_{\beta}^{\alpha, \epsilon}=\left\{M_{1} \vee M_{2} \cdot M_{1} \in \mathcal{T}_{\alpha}, M_{2} \leq \frac{1-\epsilon-\beta}{1-\epsilon-\alpha}\right\}\right.$ when $\left.\beta \in[\alpha, 1-\epsilon)\right)$.
It is easy to see that th. 3 topology is both lower semieven ant strictly upper jemi ven, that is strictly even.
To complete the proof we have to show only that $T=\inf _{\alpha \in[0,1) \in \in(0,1-\alpha)} \inf ^{\alpha, \varepsilon}$.
The inequality " \leq " is obvious because $T \leq \mathcal{T}^{a, e}$ for each $\alpha \in[0,1)$ and $\epsilon \in(0,1-\alpha)$.
To show. the converse inequality suppose chat there exist $M \in I^{X}-\{0,1\}$ and $\gamma \in I$ such tiat $T(M)<\gamma<\inf _{u \in[0,1)} \inf _{\in \in(0,1-\alpha)} \tau^{a, e}(M)$.
In this case $M \notin \tau_{\gamma}$ and therefore $M \notin \tau_{1-\epsilon}^{\gamma, e}=\tau_{\gamma}$ for all $\in \in(0,1-\gamma)$, hence $\gamma=\inf _{e \in(0 \imath-\gamma)} T^{\gamma, e}(M) \geqslant \inf _{\alpha \in[0,1)} \inf _{\in(0,1-\alpha)} T^{\alpha, e}(M)$. The obtained contrajiction completes the proci.

The pruperty of eveness (surict eveness) is easily destroyed by different operations. In particular, as shown by the next example, these properties art not preserved by subspaces and helıce moreover by preimages. Thus in the category EFT initial structures and subspaces generally do not exist.

Recall that if Y is a set, (X, T) is a fuzzy tofological space and $f: Y \longrightarrow X$ is a may.ping, then t'ie pr imag T_{Y} of τ is defined by the formule $\tau_{Y}(M)=$ $\sup \left\{T(N): M=f^{-1}(N)\right\}$ (see є.g. [Šos]).
Notice that T_{Y} is obviously the initial fuzzy topology for f in the category $\mathbf{F} \mathbf{T}$. If (X, T) is a fuzzy topological space and $Y \subseteq X$, then tise cori ssponding subspace is naturally derined as t.e pair $\left(Y, J_{Y}\right)$ where \mathcal{T}_{Y} is the initia! fuzzy top logy for the inclusion mapping $t: Y \longrightarrow(X, T)$. Explacitely: $T_{Y}\left(I^{f}\right)=$ $\sup \{T(N): M=Y \wedge N\}$ (see eg. [Šos]).

Example 1.13. Let (X, τ) be a Chang fuzzy topological space cortaining at least twn pints. Let Y be a prof :: crisp subset of X and let. $P \in I^{Y}$ be such that $U_{\text {IY }} \neq P$ for ail $U \in \tau$. (In particular if τ is a crisp opolegy then as P ne can take any non cricp fuzzy set).
Define Chang fuzzy tupologies $\tau_{\alpha} \alpha \in I$, as follows:
For $a \in\left[\frac{1}{2}, 1\right\}$ let r_{a} be r;
For $x \in\left[\frac{1}{4}, \frac{1}{2}\right)$ let $\tau_{\alpha}=\left\langle r \cup\left\{P_{a}:: \in(0,1-2 \alpha]\right\}\right)$ where the fuzzy set $P_{s} \in I^{X}$ s defined by $P_{0}^{\prime}(x)=\left\{\begin{array}{ll}P(x), & \quad{ }^{\prime} x \in Y ; \\ s, & \text { otherwise. }\end{array} ;\right.$
For $\alpha \in\left[0, \frac{1}{2}\right)$ let $\tau_{\alpha}=\left\langle\tau_{\frac{1}{2}} \cup\{M: M \leq 1-4 \alpha] ;\right\rangle$.
For each $\alpha \in[0,1)$ it hold: $r_{a}={ }_{\alpha} \hat{\mu}{ }_{a} \boldsymbol{\tau}_{a^{\prime}}$. Indeed, this is obvious for $\alpha \neq \frac{1}{2}$. In case $\alpha=\frac{1}{2} r_{\frac{1}{5}}=r$, but on the other hand it is clear that no fuzzy set P_{s} can belon $_{k}$ to all $\tau_{\alpha^{\prime}}$ simultaneously, and Leer e $r=\hat{\alpha}_{\alpha^{\prime}<\frac{1}{2}}^{\tau_{\alpha^{\prime}}}$.

Define a fuzzy topology $T: I^{X} \longrightarrow I$ by secting $T(M)=V\left\{\tau_{\alpha} \wedge \alpha: \alpha \in I\right\}$ for each $M \in I^{X}$. From (1.6) it follows that τ_{α} are just the $\alpha-l_{\text {eve' }}$ Chang fuzzy topologies τ_{a} of T.
Since, obviously, $\left.\tau_{\alpha}=\left\langle a^{\prime}\right\rangle,{ }^{,}{ }^{\prime}\right\rangle$ for each $\alpha^{\prime}>\alpha$, the fuzzy topology τ is even.
Consider now the subspace $\left(Y, T^{Y}\right)$ of (X, T). It is easy to notice that $P \in T_{\frac{1}{2}}^{\boldsymbol{Y}}$. On the ther hand, ior all $\alpha^{\prime}>\alpha \mathcal{T}_{g^{\prime}}^{\boldsymbol{Y}}$, is just the restriction of $\mathcal{T}_{\alpha^{\prime}}=\tau$ to Y and hence $P \notin T_{a}^{\gamma}$ for $\alpha^{\prime}>\alpha$. Thus $T^{q^{g}}$ is not even.

A special case when the preimage of an (strictly) even fuzzy topology is (strictly) even is described by the next

Proposition 114. The preimage ot an even (strictly even) fuzzy topoloby under a surjection is even (resp. strictly even).

Proof: Let $f: \ddot{X} \longrightarrow\left(Y, T^{\boldsymbol{Y}}\right)$ be a surjection and for each $\alpha \in I$ let $\tau_{\alpha}=$ $f^{-1}\left(\tau_{\alpha}^{Y}\right)$, i.e. τ_{α} is $t^{\prime} e$ collection of all preimages of fuzzy sets bel nging to $\tau_{a}^{\boldsymbol{r}}$. It is easy to see thit τ_{a} is.a Chang fuzzy topology and the mapping $T: I^{\boldsymbol{x}} \longrightarrow, I$ defined by the formula $T(M)=\wedge\left\{\tau_{a}(M) \wedge \alpha: \alpha \in I\right\}$ is the fuszy topology which is exactly the preimage of T^{γ} under f. Since f is a surjection, for each $N \in I^{\boldsymbol{X}}, f^{-1}(N) \in \tau_{a}$ iff $N \in T_{\alpha}^{\boldsymbol{Y}}$. It easily follows now that ${ }_{\alpha^{\prime}<\alpha} \tau_{a^{\prime}}=\tau_{a}$ for each $\alpha \in I$ and hence τ_{a} are exaccly the α-level Chang fuzzy topologies of T (see 1.6). Thus to complete the proof one has to notice only t'iat $\left.T_{a}=f^{-1}\left(T_{a}^{Y}\right)=f^{-1}\left(\int_{a^{\prime}>a}^{V} T_{a^{\prime}}^{Y}\right)\right)=\left(\alpha_{\alpha^{\prime}>a^{\prime}}^{V} f^{-1}\left(T_{a^{\prime}}^{Y}\right)\right\rangle=\left({ }_{a^{\prime}>a^{\prime}} T_{a^{\prime}}\right)$.
1.- The fuzzy discrete topology $T_{1}(M)=1 \quad \forall M \in I^{X}$ is strictly sven.
2.- The fuzzy indiscretc topology $T_{2}(M)=\left\{\begin{array}{ll}1, & \text { if } M=0 \text {)r } M=1 ; \\ 0, & \text { otherwise. }\end{array}\right.$ is even but fiJt strictly even.
3. For each $\epsilon \in(0,1]$ we consider for each $\alpha \in[0, \epsilon)$ the Chang fuszy topology $T_{\alpha}^{\ell}=\{0,1\} \cup\left\{M: M \leq\left(\frac{\alpha}{e}\right)^{c}\right\}$ and for each $\alpha \in[\epsilon, 1] T_{\alpha}^{e}=\{0,1\}$.
The fuzzy topology generated by this syste.n of Chang fuzsy topologies is $T^{\prime}(M)= \begin{cases}1, & \text { if } M=0,1 ; \\ \epsilon\left(1-\sup \lambda_{*}^{*}\right), & \text { if } M \neq 0,1 .\end{cases}$
It is eqsy to ses that it is strictly even.
4.- If (X, r) is a Chang fuzzy topological space and $x_{0} \in X$, for each $\alpha \in I$ we defin $\Pi_{\alpha}=\tau \cup\left\{x_{0}^{t}: t \leq \alpha^{e}\right\}$ and $\tau_{\alpha}=\left\langle\Pi_{\alpha}\right\rangle=\left\{M \vee x_{0}^{t}: M \in r, t \leq \alpha^{e}\right\}$. One can easilv prove that the fuzzy topology generated by this system of Chang fuzzy topologies is even but not strictly even.
5. If (X, r) is a Chang fuzzy topological space, for each $\alpha \in I$ we define $\mathrm{I}_{\alpha}=\tau \cup\left\{M: M \leq \alpha^{e}\right\}$ and $\tau_{\alpha}=\left\langle\Pi_{\alpha}\right\rangle=\left\{M_{1} \vee M_{2}: M_{1} \in \tau, M_{2} \leq \alpha^{e}\right\}$. In this case, it is easy to sue that $T_{0}=\tau_{i}$ and, on the other hand, for each $\alpha \in I$, if $A^{\prime} \in r_{a}$, there exist $M_{1} \in T$ and $M_{2} \leq \alpha^{e}$ guch that $M=M_{1} \vee M_{2}$. Therefore, $M_{a^{\prime}}=M_{1} \vee\left(M_{2} \wedge \alpha^{\prime \epsilon}\right) \in \tau_{\alpha^{\prime}}$ for all $\alpha^{\prime}>\alpha$ and $M=\sup _{\alpha^{\prime}>,} M_{\alpha^{\prime}}$ so $M \in\left\langle\bigcup_{\alpha^{\prime}>\alpha^{\prime}} \tau_{\alpha^{\prime}}\right\rangle$.
Thus the Cazzy topology generated by this systern of Chanb fuasy topologies is strictly even.
6.- Let $\left\{\left(X, r_{n}\right)\right\}_{n \in N}$ be a countable cö̈ection of Chang fussy topulogicad sp ces such that $\tau_{n} \subseteq \tau_{n+1}$ for all $n \in N$ and $\left\langle\bigcup_{n \in N} \tau_{n}\right\rangle=\tau_{d}$, we can define the following:
For all $n \in N$ and all $\alpha \in\left\{\frac{1}{n+1}, \frac{1}{n}\right]$,
$\Pi_{\alpha}=\tau_{n} \cup\left\{M \in \tau_{n+1}: M \leq(n+1)(1-n \alpha)\right\}$ and
$\tau_{a}=\left\langle\Pi_{a}\right\rangle=\left\{M_{1} \vee M_{3}: M_{1} \in \tau_{n}, M_{2} \in \tau_{n+1}, M_{2} \leq(n+1)(1-n a)\right\}$.
(It is clear that for $\alpha=\frac{1}{n}, \tau_{a}=\tau_{n}$ and for $c=\frac{1}{n+1}, \tau_{a}=\tau_{n+1}$).
We define $\tau_{0}=\tau_{d}$ and it is eay to set luat $\left(\bigcup_{a>0}^{n+1} \tau_{a}\right) \supseteq\left\{\bigcup_{n \in N} T_{n}\right\rangle=r_{d}{ }^{*}$; therefore, $\left(\bigcup_{a>0} \tau_{a}\right) \doteq r_{d}$. Now, if $a>6$, there exists $n \in N$ such that $\frac{1}{n+1}<\alpha<\frac{1}{n}$. Given $M \in \tau_{a}$, there exist $M_{1} \in \tau_{n+1}$ and $M_{2} \in \tau_{n}$ auch that $M_{2} \leq(n+1)(1-n a)$ and $M=M_{1} \vee M_{2}$.
Therefore, $M_{a^{\prime}}=M_{1} \vee\left(M_{2} \wedge(n+1)\left(1-n \alpha^{\prime}\right)\right) \in \tau_{a^{\prime}}$ for all $a^{\prime} \in\left(a, \frac{1}{n}\right)$ a.ld $M=\sup _{a^{\prime} \in\left(a, \frac{1}{2}\right)} M_{1}^{\prime} v^{\prime} g^{\prime} M \in\left\{\bigcup_{a^{\prime} \in\left(a, \frac{1}{1}\right)} T_{a^{\prime}}\right\rangle \subseteq\left\{\bigcup_{a^{\prime}>a^{\prime}} T_{a^{\prime}}\right\rangle$.

Hence the fuzzy topology generated by this system of Slisang fussy te pologies is stu.ctly even.

2. Even fassy proxim:ties

In [MSo] a concept of a fuzz; proximity which is in accordance witt. our fizzy topologies was considered. in this Section we consider a special kind of fuzzy proximities which we call even and show that in a aatural way even fuzzy proximities correspond to even fuasy topologies. Fo- reado-s convenience we reproduce here the mai: definitions and some cons'ructions fron [MS̉o].

Definition 2.1. [SO_{2}] By a fuzzy proximity on a set X we call a , napping $\delta: I^{X} \times I^{X} \longrightarrow I$ satirfying the following axioms ($M, N, N_{1}, N_{2}, P \in I^{X}$):
(FP1) $\delta(0,1)=0$;
(FP2) $\delta(M, N)=\delta(N, M)$;
(FP3) $\delta\left(M, N_{1}\right) \vee \delta\left(M, N_{2}\right)=\delta\left(M, N_{1} \vee N_{2}\right)$;
(FP4) $\delta(M, N) \geq \sup _{x \in \mathbb{X}}(M+N-1)(x)$;
(FP5) $\delta(M, N) \geq \inf \left\{\delta(M, P) \vee \delta\left(N, P^{c}\right): P \in I^{x}\right\} ;$
A pair (X, δ) where \boldsymbol{X} is a set and δ is a fuzzy proximity on it is called a fuzzy proximity space.
D. finition 2.2. [MŠod A nappping $f: X \longrightarrow Y$ where $\left(X, \delta_{X}\right)$ and $(Y, \delta v)$ are tuazy proximity spaces is called proximally continuous if $\delta_{\mathbf{Y}}\left(\delta^{\prime}(M), f(N)\right) \geq$ $\delta_{X}(M, N)$ for any $M, N \in I^{X}$.

Let FP denote the category the objecis of which are fuzzy proximity spaces and the morphisms are proximally continuous mappings of such spares.

A fuzsy proximity generates a fuzsv topology in the following way.
Iet (X, δ) be a fuazy proximity space, $M \in I^{\pi}$ and $\leadsto \in(0,1]$. The *closune of $D^{\prime \prime}$ (or the closure of M at the level α) is dsfined by the equality $C_{\gamma}(M)=\left(1-\vee\left\{N: \delta\left(M, N \leq \alpha^{e}\right\}\right) \vee A^{*}=\left(A\left\{N^{e}: \sigma(\mathcal{M}, N) \leq \alpha^{e}\right\}: \vee M\right.\right.$.
 M. (z^{λ} denotes the fuszy point with support $x \in, \quad$ and value $\lambda \in I$ - for technical reasonis we do not exclude the case $\lambda=3$ wuich consesponde to \mathbf{v}. degenerate fuzsy point $x^{0}=0$. We write a ${ }^{\wedge} \in M$ i. $\left.M(x) \geq \lambda\right)$.

Proposition 2.s. [$M \underset{S ̌}{C}$] For each $\alpha \in\left(0,1\right.$] the mapping $M \longrightarrow \mathrm{Cl}_{\alpha}(M)$ is an operator of furzy closure
 $\left.M^{e} \in \sigma_{\alpha}\right\}$. It is known (and easy to verify) that T_{a} is \& Chang fuzzy topology on X.

Proposition 2.6. $\left[\mathrm{M}^{\mathcal{S}_{0}}\right]$ The fuzsy closure rperator $\mathrm{C}^{\prime}{ }_{a}$ is continuous along $I_{\text {; }}$ in tie following sense:

$$
\forall x \in(0,1] \text { if } \epsilon_{1}-\rightarrow 0 \text { and } \epsilon_{n}>0 \text {, then } V_{n} \mathrm{Cl}_{\alpha} e_{n}(M)=\mathrm{Cl}_{a}(M)
$$

Proposition 2.7. [MŠo] Fr each $\alpha \in(0,1], \sigma_{\alpha}=\bigcap_{a^{\prime}<a} \sigma_{a^{\prime}}$ and hence $\tau_{\alpha}=$ $\bigcap_{<\alpha}{ }^{T_{a}}$.

Definition 2.8. [MŠo] The fuzzy topology $T_{s}: i^{\boldsymbol{x}} \rightarrow I$ defined by the equality $\left.T_{b}(i f)=\sup \left\{\tau_{a}, M\right) \wedge \alpha: \alpha \in I\right\}$ (see 1.6) is called the fuz:y topology generated by δ.

T'ieo.em 2.9. [MŠ] If a mapping $f:\left(X, \delta_{X}\right) \longrightarrow\left(Y, \delta_{Y}\right)$ is proximally cont tinuous, then the mapping $f:\left(X, \widetilde{C}_{X}\right) \longrightarrow\left(Y, T_{\delta_{Y}}\right)$ is continuous.

Thus by letting $\phi(X, \delta)=\left(X, T_{s}\right)$ for every iuzsy pr-ximity space ($X, 6$ and $\phi(f)=f:\left(X, T_{\delta_{X}}\right) \longrightarrow\left(Y, T_{\delta_{y}}\right)$ for every proximally continuous mappi $f:\left(X, \delta_{X}\right) \longrightarrow\left(Y, \delta_{Y}\right)$, s functor ϕ from the categury FP into the category F_{i} of fuzzy topological space, is obtained.

Definition 2.10. Given a fuzsy proxicity δ on a set $\boldsymbol{\lambda}$ we say that it is eve if it satisfies the follwing axic.n:
(EFP) $\forall M \in I^{x} \quad \psi \in[\cap, 1)$ such that $M(x)<t^{c}$ ind $0<f\left(M, x^{t}\right)<$ we have that $\forall \eta>0 \quad \delta\left(M, x^{t}\right)-\delta\left(M, x^{i-\eta}\right)>0$.
We say that δ is e'rictly eien if it satisfes:
(SEFF) $\forall M \in I^{x} \quad \forall t \in[0,1)$ such that $M(x)=t^{e}$ and $0<\delta\left(M, x^{t}\right)$ w. have that $\left.\forall \eta>0 \quad \delta: M, x^{t}\right)-\delta\left(M, x^{t-\eta}\right)>0$.

The sext theo: 3 m at ablishing relz tion jel veen even fuszy pioximitits and even fuazy topoiogies is the m in resul in this secuion:

Theorem 2.11. The fuzzy tupology I_{b} generated by a furzy proximity δ is even iff δ is even.

Proof: Asssume that δ is even. Accordiag to Theorem 1.10 we have to prove that for every $M \in I^{X}$ and every $\alpha \in(0,1)$ it holds $\lambda_{i>0} \mathrm{Zl}_{\alpha+c_{-}}(M)=\mathrm{Cl}_{0}(M)$. The inequality $\hat{s p} \mathrm{Cl}_{\alpha+e}\left(N^{\prime}\right) \geq \mathrm{Cl}_{\alpha}(M)$ is obvioud.
To show the conversu inequelity assume that $\hat{e}>0 \mathrm{Cl}_{\alpha+c}(M)(2)>\mathrm{Cl}_{\alpha}(M)(x)$ for some $\boldsymbol{x} \in \boldsymbol{X}$.
Then there exists $C \in I$ such that $x^{\zeta} \in \oint_{\phi>0}^{1} \mathrm{Cl}_{a+c_{-}}(M)$ but $x^{\dagger} \nexists \mathrm{Cl}_{a}(M)$ and hence $x^{\lambda} \notin \mathrm{Cl}_{a}(M)$ also fe- some $\lambda<\zeta$. However thic means that $x^{\lambda} \notin M$, i.e., $M(x)<\lambda$ and $o\left(x^{c^{e}}, M\right) \leq \delta\left(x^{\lambda^{e}}, M\right) \leq \alpha^{e}$,
Consider now the two posibilities:

* If $\delta\left(x^{\lambda^{e}}, M\right)>0$, taking into accourt that $\delta\left(x^{\lambda^{e}}, M\right) \leq x^{c}, M(c)<\lambda$ and (EFP) holds we conclude that $\delta\left(x^{\eta^{e}}, M\right)<\alpha^{e}$ for every $\eta>\lambda$.
In particular for $\eta=\frac{\lambda \cdot \zeta}{2}<\zeta$, there exists $\epsilon>0$ such that $\delta\left(x^{\eta^{0}}, M\right)<$ $\alpha^{2}-$ f.
However this means that x " $\not \mathrm{Cl}_{a+c}(M)$ and so $2^{\varsigma} \notin \wedge_{\gg 0} \mathrm{Cl}_{\alpha+c}(M)$ what contradicts orr assumption.
** If $\delta\left(x^{\lambda^{e}}, M\right)=0$ moreover $\delta\left(x^{s^{e}}, M\right)=0$.
Take some $\epsilon_{0} \in\left(0, \alpha^{c}\right)$, thei. $\delta\left(x^{c}, M\right)<\alpha^{e}-\epsilon_{C}$ and heace in virtue oi $x^{\delta} \in \hat{c}_{0} \mathrm{Cl}_{a+\varepsilon}(M)$ it follows that $x^{\eta} \in M \leq \mathrm{Cl}_{a}(M ;$. However this again contre ticts our assumption.
Thus a fuzz; topolog, gentrated by an even fuzzy proximity is evea.
To prove the convers , assume that (EFP) is not velid Then there exist $M \in$ $x, t \in[0,1)$ and $x \in X$ such that $M(x)<t^{c}$ and $s<t$ uch that $\delta\left(M, x^{t}\right)=$ $\left(M, x^{2}\right) \neq 1$.
Cet $\delta\left(M, x^{*}\right)=\alpha^{e}$. Then, obviously. a \neq C ind for each $\beta>4 \quad \delta\left(M, x^{*}\right)>\beta^{e}$. How, if $\zeta=\varepsilon^{e}$, then $x^{\zeta} \in \mathrm{C}_{\cdot} \cdot(M)$ fur any $\beta>\alpha$ ar. 1 hence $x^{b} \in \hat{\wedge_{\alpha}} \mathrm{Cl}_{\beta}(M)$. On the other hand, $x^{s} \notin M$ (otherwise $M(\xi) \geqslant!=s^{e}>t^{c}$). It is easy to see pow that $x^{6} \notin \mathrm{Cl}_{\alpha}(M)$. Indeed if $x^{6} \in \mathrm{Cl}_{a}(M)$ then $\delta\left(M, x^{\prime}\right)>\alpha^{c}$ would hold Por all $\lambda<\zeta$. However this is imposible because obviously ${ }^{\wedge}\left(M, x^{\lambda^{c}}\right)=\alpha^{c}$ for all $\lambda^{c} \in[s, j]$.
Thus ${ }_{i>0} \mathrm{Cl}_{a+e}(M) \neq \mathrm{Cl}_{a}(M)$ and hence - is not even.

In a similar wiy one can prov; the following:

Theorem 2.11'. The fuzzy topology $\boldsymbol{\tau}_{\boldsymbol{\sigma}}$ n nereated by a luzzy proxinity $\boldsymbol{\delta}$ is strictlv even iff δ is stictly even.

Examples

1.- Define a fuzzy proximity δ_{1} on a set X by setting $\left.\delta_{1}^{\prime} M, N\right)=\operatorname{sinp}_{x \in X}(M+N-1)(x)$ for all $M, I V \in I^{X}$.
It is easy to verify that δ_{1} is strictly even.
The corresponding fuzzy topology T_{δ}. is discrete. i.e. $T_{\delta_{1}}(M)=1$ for all $M \in I^{X}$.
2.- Let $\delta_{2}\left(M, N^{r}\right)= \begin{cases}1, & \text { if } M \leq N^{c} ;, M, N \in I^{X} \text {.. } \\ 0, & \text { if } M \leq N^{c} .\end{cases}$

It is easy tc see that the fuzsy proximity δ_{2} is strictly even.
Notice also that $\delta_{2} \geq \delta_{1}$ and $\tau_{\delta_{1}}(M)=T_{\delta_{2}}$.
3.- Define a fuzzy proximity $T_{j_{3}}(M)$ on X ly setting
$\delta_{3}(: I, N)= \begin{cases}1, & \text { if } M \neq 0 \text { and } N \neq 0 ; \\ 0, & \text { otherwis. }\end{cases}$
Or ? can easily not.ce that this fu"zy proximity is even but fails to be strictly even.
The generated fuzzy topology $T_{\delta_{3}}$ is intidisc.ete, i.e. $\boldsymbol{T}_{b_{3}}(1)=\boldsymbol{T}_{\delta_{3}}(0)=1$ and $\tau_{\delta_{3}}(M)=0$ if $M \neq 0,1$.
4.- Let $\delta_{4}(M, N)=\operatorname{sun}\left(\boldsymbol{n}_{a} \wedge N\right)$ for all $M, N \in I^{\boldsymbol{x}}$.

One can easily notice that the fuzzy proximity δ_{4} is not even.
The fuzzy topology generated by it can be defined by the formula
$T_{\delta_{a}}(M)=\sup \left\{T_{a}(M) \wedge \alpha: \alpha \in I\right\}$ where $T_{a}=I^{\boldsymbol{X}} \quad \boldsymbol{i f} \leq \frac{1}{2}$ and $a=$ $([0, a] \cup[\alpha, 1])^{x}$ if $\alpha>\frac{1}{2}$.
Ouserve that $T_{u_{4}}$ is not even; if $\alpha>\frac{1}{2}$ then $T_{G_{d}}\left(c_{\alpha}\right)=\alpha$ but
$c_{a} \notin\left\langle\bigcup_{a^{\prime}>a} T_{a^{\prime}}\right\rangle$. Moreover ir case X is infinite $T_{\sigma_{4}}$ is not even aleo pt the level $\frac{1}{2}$; if $M(x)>\frac{1}{2}$ for all $\tau \in X$ and $\inf M=\frac{1}{2}$, then $T(M)=\frac{1}{2}$, but, obviousl: $\because M \subset\left(\underset{a^{\prime}>\frac{1}{2}}{U_{\infty}} \tau^{\prime}\right)$.
8.- The tizzy proximity $\delta_{B}(M ; N)$ defined by $\delta_{5}(M, N)=\sup M \wedge \sup N$ for all $\boldsymbol{A}_{4}, N \in I^{X}$ is also not even.
One can get convinced in this by noticiag that the a-levels of the generated fuzzy topology $T_{\delta_{3}}$ for $\alpha>\frac{1}{3}$ are given by the formula $\tau_{a}=\left[0, \alpha^{c}\right]^{x} \cup[\alpha, 1]^{x}$ and aence $\tau_{\alpha} \neq\left(\bigcup_{\alpha^{\prime}>\alpha_{a}} \tau_{a^{\prime}}\right)$.

Acknowledgenent: This work was completed during the second author's stay at Universidad del Pais Vasco, Spain, on leave from the University of Latvia. The autho highly arpreciates the financial suppnrt of this stay by the government of the Basque Jountry.

References

[Cu] C.L. Chang, Fuzay topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
[Di] Z. Diskir, Fuzzy predicates on fuzzy spaces: the case of a topological space reconsidered. In: Topological Spaces and Mappings, Latvian University Publ., Riga (1985), 59-70.
[Ya] P. Hamburg, Problems actuelcs de la theorio des espaces topologiques flous, Conf. Nationale de Geometrie si Topologie, Iasi (1984), 215-224.
[Hö] U. Höhle, Upper semicontinuous fus y sets and applications, J. Math. Anal. Appl, 78, N2 (1980), 659-673.
[Ku] T. Kubiak, Or Fuzsy Topologies, Doctor Thesis. Adam Mickiew icz University, Poznan, Poland, (1985).
[Loj R.Lowen, M-thematics of fuzzyr. sss: some pei sonal reflcetions, Inf. Sci., 36, (1985), 17-27.
[MŠo] S.A. Markin and A.P. Šostal, Another aproach to the curcapt of a fuszy proximity, Srppl. Rend. C'rc. Mat. Palermo Ser. II, 29 (1992;, 530-551.
[Šo ${ }_{1}$] A.P. Sostak, On a fussy topologiral strücture, Suppl. Rend Circ. Mat. Palermo Ser. II, 11 (1985), 89103.
[S_{2}] A.P. Šostak, On a fussy proximity structure, Proc. F 3 et European Category Seminar 89, Predela (Bulgaria) (1989), 42-43.
[S응] A.P. Sostak, Two decades of fuzzy topology: basi. ideas, notions and results, Rx sia Math. Surveys 44, (1989), 125-185.
[SO_{4}] A.P. Sostat, On some modifications of fuzzy topologies, Matematicki Vesnik 41, (1909), 20-37.
[Za] L.A. Zadeh, Fussy sets, Inf. and Control 8 (1965), 338-365.
 quotäcila. Darbā ir ieviestas spaciālas fäzi-topoloǵtjas (oträ autora nosiab) - t.s. gludss fāsi-topoloǧijas. Tiek patitas
 topologisko telpu teorijâ. Hiek apskatits arígludo făzi-topologiju proksimâlais analoge.

В залытко рассиатривадтся нечеткие топологии (в смнсле второго явтсоя) сиєшияльного вида - т.н. гладкиө ночеткдє топологин. Исследушгая накоторие своіства тладких ночетких тонологии оосуждаетоЯ их роль в ооыен теории веччетких тонолоииеских дүотранств. Расонотрон также близоствнй агалог гладких нсчетких т нологиі.

J GUTIERREZ GARCIA
Dep. of Mathematics (Universidad del País Vasco)
Aptdo. 644. 48080. Bilbao. SPAIN.
alexander P ŚOSTAK
Dep. of Mathematics (University of Latvia)
LV-1586. Riga latvia.

ON CLP-COMPACT AND COUNTABLY CLP-COMPACT SPACES

A. Sondore , A. Šostak

f.UMMARY. By a (countably) clp-compact space we call a topological space each clopen cover (resp. each countable clopen cover) of which contains a finite subcover. Obviously, all compact spaces and all connected spaces are clp-compact. The aim of this paper is to develop foundations of the theory of clp-compact and countably clp-compact spaces. Some relations of these spaces to other classes of topological spaces will be also discussed.

KEY WORDS: compactness, countable compactness, connectedness, zero-dimensionality, totally disconnectedness, clp-compactness, countable clp-compactness.

AMS subject classification: 54D30, 54D20, 54D05, 54G05.

This is the first one in a series of papers where we discuss such properties of topological spaces in which clopen (=closed and open) sets play the principal role.To be more precise we are interested in those topological properties which can be characterized in terms of clopen sets. Important examples of properties of such kind are connectedness and zero-dimensionality. Besides, developing this idea one can introduce also a series of new topological properties, depending only on clopen sets; some of these properties are, in our opinion, quite interesting and useful. This concerns, in particular, the properties of clp-compactness and countable clp-compactness, discussed in the present paper.

By a (countably) clp-compact space we call a topological space each clopen cover (resp. each countable clopen cover) of which contains a finite subcover. The aim of this paper is to develop foundations of the
theory of 1 lp-compact and countably clp-womp.ct spaces. Some relations of these spaces to other classes of topological spaces will be also discussed.

Notice, that clp-compait spaces first appeared (under the name of cb-spaces) in the paper [6] written by the second althor. That paper contained also some statement, about these ${ }^{\circ}$ laces. However mcst of the strtemrnts i.1 [6] were given without proofs. The present work includes buth results from [6] with proofs and, n.1ostly, new results.

The structure of the prper is as follows. In Section 1 we study elementary properties of clp-compact spaces and discuss their reiations in some othur cl-sses of topological spaces. The problem of products of clp-compact spares is siudied in Scetion 2. Countably slp-compact spaces are stucied in Section 3. In Section 4 spaces of quasicompone.nts of clp-compait and countably clp-compact spaces are considered.

1. CLP-COMPACT SPACEF: ELEMENTARY PROPERTIES

Replacing in the definition of th.e compact topological space open sets witi clopen (=closed and open) sets we come to the concent of a clpcompaci space.
(1.1) Defin ition. A topological space is called clp-compact if every its clupen cover (i.e. a cover with clopen sets) contains a frite subco rer.

Tie concept of a clp-space obviously generalizes both compactness and connectedness
(1.2) Assertion. Every corr pact space is clp-compact.

(1.2) Assertion. Every connected space is c'p-compact.

On the other hand, i: is easy to construct examples showing that clpcompactress do-s not reduce to the properties of compactness and connectedness. One general methoi of constructing such examples is given in (1.10).

From the resemblance of the definitions of compactness and clpcompactness one can expect a cetain analugy in the behaviour of these two properties.

How do matters stand in fact one can see from the statements (1.4)(1.9) below.
(1.4) Proposition. If a topological space X is clp-compact and M is its clopen subspace then M is elp-compact, too.

Proof is obvious and therefore omitted.
(1.5) Remark. It is nature? to call a subset M of a space X clpcompact if each cover of M wiul clopen sets in X has a finite subcover. Obviously if M is clp-compact subspace of X, , then it is also a clpcomnact set of X. However, as different from the propety of compactness, the converse does not hold, In particular, each subset of a connected space is, obviously, clp-compact.

One can easily prove also the following two statements:
(1.6) Proposition. If a topological space X is clp - ompact and there existu a continuous mapping from X onto a space Y, then Y is also clpcompact.
(1.7) Proposition. A space X is clp-compact iff every system of its clopen subsets with the finite intersection property has non empty intersectio..
(1.8) Theorem. If a space Y is clp-compact and f is a mapping from a space X into Y with the following properties:

1) f is clopen, i.e. for evcry clopen subset U of i the image . (U) is a clopen subset of Y;
2) for every point y irom Y the pisimage $f^{-1}(y)$ is a clp-compact subset of X;
then the space X is clp-compact, too.

Proof, Let $\boldsymbol{u}=\left\{U_{i}: i \in I\right\}$ be a clopen cover of the space X. Since for each $y \in Y$ the set $A_{y}=f^{-1}(y)$ is clp-compact in X, there exists a finite subfamily u_{y} of $q^{\text {, covering }} A_{y}$. Then, obviously $\cup u_{\boldsymbol{y}}=: B_{y}$ is a clopen set in X, containing the set A_{y}. We shall prove that for every $y \in Y$ there exists a clopen neighbourhood V_{y} such that $f^{-1}\left(V_{y}\right) \subset B_{y}$.

Really, the set $F_{y}:=X \backslash B_{y}$ is clopen in X and therefore $f\left(F_{y}\right)$ is clopen in Y. Then the set $V_{y}=Y \backslash f\left(F_{y}\right)$ is also clopen and obviously it contains the point y.Besides,
$F_{y} \cap f^{-1}\left(V_{y}\right) \subset f^{-1}\left(f\left(F_{y}\right)\right) \cap f^{-1}\left(V_{y}\right)=f^{-1}\left(f\left(F_{y}\right)\right) \cap V_{y}=$ $=f^{-1}(\varnothing)=\varnothing$, i. e. $f^{-1}\left(V_{y}\right) \subset B_{y}$.

Since $\nu=\left\{V_{y}: y \in Y\right\}$ is obviously a clopen cover of the clpcompact space Y, there exists a finite subcover $V^{\prime}=\left\{\boldsymbol{V}_{\boldsymbol{y}_{1}}, \ldots, \boldsymbol{V}_{\boldsymbol{y}_{n}}\right\}$. Hence, taking into account that $f^{-1}\left(v_{y_{k}}\right) \subset B_{y_{k}}$ and $B_{\boldsymbol{y}_{\boldsymbol{k}}}=U\left\{U: U \in \boldsymbol{u}_{\boldsymbol{y}_{\boldsymbol{k}}}\right\}$ for all $k=1, \ldots, n$ and each $u_{\boldsymbol{y}_{\boldsymbol{k}}}$ is finite, we conclude that ${ }_{k=1}^{n} \boldsymbol{u}_{\boldsymbol{y}_{\boldsymbol{k}}}$ is a finite subcover of the given clopen cover \boldsymbol{q} of the space X, i. e. X is clp-compact.
(1.9) Proposition. A direct sum $\oplus X_{i}$ of a family $\left\{X_{i}: i \in I\right\}$ of topological spaces is clp-compact iff $|I|<X_{0}$ and each X_{i} is clpcompact. (Here $|A|$ denotes the cardinality of the set A.)

Proof is obvious and therefore omitted.

Basing on this fact it is easy to establish the following result which is useful for constructing new clp-compact spaces from old ones:
(1.10) Proposition. Let (X, T) be a topological space and let τ_{A} be the topology on X determined by the family $T \cup(A) \cup(X \backslash A)$ as a subbase. Then $\left(X, \tau_{A}\right)$ is clp-compact iff the subspaces $\left(A,\left.\tau\right|_{A}\right)$ and $\left(X \backslash A,\left.T\right|_{X \backslash A}\right)$ of the space (X, T) are clp-compact.
(Notice that clp-compactness of $\left(X, \tau_{A}\right)$ obviously implies clpcompactness of (X, T).)

We end this section with considering clp-compactness in connection with the properties of total disconnectedness and zero-dimensionality. (A space is called totally disconectedness if each point in it is an intersection of clopen sets. A space is called zero-dimensional if it has a base of clopen sets; no separation axioms are assumed unless additionally stated.) The significance of total disconnectedness in the theory of clpcompactness is in a certain sense analogous to the significance of the Hausdorff axiom in the theory of compactness. Moreover, for zerodimensional spaces the properties of clp-compactness and compactness become equivalent.
(1.11) Proposition. A clp-compact subspace of a totally disconnected space is closed.

Proof. Let A be a clp-compact subspace in a totally disconnected space X and let $X \notin A$. By total disconnecterness of X for each point $\boldsymbol{y} \in A$ there exists a clopen set $\boldsymbol{U}_{\boldsymbol{y}}$ which contains \boldsymbol{y} but does not contain x. By clp-compactness of A one can choose a finite number of points y_{1}, \ldots, y_{n} such that $A \subset U_{y_{1}} \cup \ldots \cup U_{y_{n}}=: U_{A}$. Then obviously U_{A} is a clopen neighbourhood of A which does not contain x.
(1.12) Proposition. A zero-diruensional space is cln-compact iff it is compact.

Ploof. The "if" part is obvious, (see also (1.2)). Conversel'", assume that X is a zero-dimensional clp-compact space ard let U be its open ccver. Since X is zero-dimensional, each $\boldsymbol{U} \in \boldsymbol{U}$ is a union of clopen scts, i. e. $U=U\left\{V_{i}: i \in I_{U}\right\}$ and hence $\nu=U\left\{V_{i}: i \in \underset{U \in U}{U} I_{U}\right\}$ is a clupen reinnement of the cover \boldsymbol{u}. Since X is clo-compact, there exists a finite subcover v ' of v and hence, alsn a finite subcover \boldsymbol{q}^{\prime} of \mathcal{U}. Thus X is compact.
(1.13) Corollary. A Hausdorff zero-dimensional clp-compact space is normal.
(1.14) Corollary. If X is a clp-compact zero-dimensional space and A is its closed subset, then A is clp-cumpact as a subspace (and hence also as a subset) of X.
$(1,15)$ Corollary. A continuocs mapping from a clp-compact ierodimensionaı space X into a zero-dimensional space Y is closed.

In the statement (1.12) the condition of zero-dimensionality can not be replaced ly the condition of .otal disconnertedness. One ran iee this fiom the following example:
(1.16) Example. (A totally disconiected clp-compact non-compact space.)

Let \mathbb{C} be the Cantor set and let $\mathbb{C}=\left\{\mathbb{C}_{\varsigma}: \varsigma<c\right\}$ be a decomposition of \mathbb{C} into ecntinuum of its dense subsets \mathbb{C}_{5} with cardinality c. Let $\left.[0,1]=\int_{t_{S}} ; s<c\right\}$ and define a subset X of the product $C \times[0,1]$ as $X=U\left\{\mathbb{T}_{s} \times\left\{t_{s}\right\} ; c<c\right\}$. It is easy to notice that this space has the desired properties.

2. PRODUCTS OF CLP-COMPACT SPACES

The fundamental feature of the property of compactness is its muitiplicativity. Unfortunately, as it wiil be shown by Example $2.7 \mathrm{clp}-$ compactness is not multiplicative: alr-ady the product of two clpcompact spaces may fail to be clp-compact. (Notice that in [6] it was erroneously claimed that rlp-compactuess is preserved by products.) However as it is estaulished below, there are some positive results about products of clp -comp ct spaces in some special caser.
(2.1) Theorem. The product of a connected space and a clp-compact space is clp-compact.

Proof. Let X be a connected space and Y be clp-compact. Notice first of all that in this case each clopen subset W of the product $X \times Y$ looks like $X \times V$ where $V=p_{y}(W)$, i. e. V is the image of W under the projection $p_{\boldsymbol{y}}: X \times Y \rightarrow Y$. Indeed, if $W \neq X \times V$, ther there exists $y_{0} \in Y$ such that $\left(X \times\left\{y_{0}\right\}\right) \cap W \not \varnothing$ and $\left(X \times\left\{y_{0}\right\}\right) \cap(X \times Y \backslash W) \not \varnothing$. However, this obviously contradicts the fact that X is connected.

Moreover, it is easy to notice that if $W=X \times V$ and W clopen, than V is a clopen subset of Y. Hence a clopen cover $U=\left\{X_{i} \times V_{i}: i \in I\right\}$ of the oroduct $X \times Y$ determines the clopen cover $\left.{ }^{a}\right)=\left\{V_{i}: i \in I\right\} \sim f Y$. The statenent of the the rem follows now easily from the fact of clpcompacthiss of the spise Y.
(2.2) Corullary. The product of a connected space and a compact space is clp-coupact.
(2.3) Theorem The product of a compact space and a clp-compact space is clp-compact.

Proof. Assume that X is a compact space and Y is a clp-compact space. Then the projection $p_{\boldsymbol{y}}: X \times \boldsymbol{Y} \rightarrow \boldsymbol{Y}$ being a projection along a compact space transfers every clopen subset W of $X \times Y$ into a clopen set $V=p_{\boldsymbol{y}}(W)$ in Y. Besides, all preimages of points under it are homeomorphic to the compact space X . Now the conclusion of the theorem follows directly from Theorem 1.8.
(2.4) Remark. Analysing the proofs of Theorem 2.1 and 2.3 one can easily notice that both of them were based on the fact that the projection $p_{y}: X \times Y \rightarrow Y$ along X is a clopen mapping, i. e. transfers a clopen set into clopen. (In case of Theorem 2.3 i it was guaranteed by compa tness of X and in case of Theorem 2.1 it was guranteed by connectedrios of X.) Let us call a space X clp-projective if for every clp-compact space Y the projection $p_{\boldsymbol{y}}: X \times Y \rightarrow Y$ is clopen. Now the following generalization and specification of Theorems 2.1 and 2.3 can be formulated and easily proved.
(2.5) Theorem. If X is a clp-projective clp-compact space then the product $X \times Y$ is clp-compact iff Y is clp-compact.
(2.6) Problem. Is the converse of (2.5) true? To be precise, is it true, that if the product $X \times Y$ is clp-compact for every clp-compact space Y, then X is clp-projective?
(2.7) Example. A clp-compact space X such that the product $X \times X$ is not clp-compact.

In [7] R. M. Stephenson has constructed a completely Hausdorff countably compact $U(i)$ space X such that the product space $X \times X$ is not pseudocompact. We shall show that the same space X can be used also for our purposes. To make the paper self-contained, we shall reproduce here Stephenson's construction.

Let G be a subspace of the Stone-Cech compactification βN of the countable discrete space N which has the following properties: $N \subset G$; every infinite subset of βN has a limit point in G and there is an infinite
closed subset D of the product $G \times G$ such that $D \subset N \times N$.(The existence of such a set G was established by Teresaka, see e. g. Theorem 9.15 in [5].)

Let B be the space whose points are those of βN and whose topology is the collection of all sets of the form $V \cup(W \cap(\beta N \backslash(G \backslash N))$ where V, W are open subsets of βN. Let $A=\{0,1\}$ be the discrete space and let $X^{\prime}=G \times\{0\} \cup B \times\{1\}$ be the subspace of the product space $P=B \times \mathcal{A}$. Consider the equivalence relation ρ on X^{\prime} defined by the rule $(t, \alpha) \rho\left(s, \alpha^{\prime}\right)$ if either $t=s$ and $\alpha=\alpha^{\prime}$ or $t=s \in G \backslash N$. Now the space X is defined as the quotient space X^{\prime} / ρ. We continue to use the symbols (t, α) for the points of X; thus $(t, 0)=(t, 1)$ for $t \in G \backslash N$.

To show that X is clp-compact consider a system \boldsymbol{u} of clopen sets with finite intersection property. We need to show that there exists a point $(p, \alpha) \in \cap\{U: U \in u\}$.

Since $N \times \mathcal{A}$ is a dense subset of X and $N \times\{0\} \cap N \times\{1\}=\varnothing$, for some $\alpha \in \mathscr{R}$ the system $u^{\prime}=\{U \cap N \times\{\alpha\}: U \in u\}$ has the finite intersection property. It is easy to conclude from here that there exists an ultrafilter \mathcal{M} on N such that u^{\prime} is contained in the family $\{M \times\{\alpha\}: M \in \mathcal{M}\}$, and hence each member $U \in U$ contains some set of the form $M \times\{\alpha\}$ where $M \in \mathcal{M}$.

Let p be the point of βN which has $\left\{C \bar{\beta}_{\beta N} M: M \in \mathcal{M}\right\}$ as a fundamental system of neighbourhoods. We shall show that $(p, \alpha) \in \cap u$. To do this consider the following four possibilities:
(1) $p \in N$;
(2) $p \in G \backslash N$;
(3) $p \in \beta N \backslash G, \alpha=1$
and
(4) $p \in \beta N \backslash G, \alpha=0$.
(1) In this case $p \in \cap \mathcal{M}$ and hence $(p, \alpha) \in \cap u$.
(2) In this case $(p, 0)=(p, I)$. Let V be an open neighbourhood of (p, α) in X. Besides, without loss of generality in this case we may
assume that V is open also in βN, and hence there exists $M_{p} \in \mathcal{M}$ such that $C_{\beta N^{\prime}} M_{p} \times\{x\} \subset V$. However this means that V intersects each $U \in U$ and therefore, taking into account that all U are clope.1, $(p, \alpha)=\cap\{U: U \in u\}$.
(3) Le. V be an open neighbou hood of $(p, 1)$ in X. Without loss of generality we maj assume in this case that $V \cap(B \times\{1\})-\left(W \cap\left(\beta \Gamma^{r} \backslash G\right) \cup N\right) \curvearrowright\{1\}$ for some open neighbourhood W of μ in βN and hence there exists $M \in \mathcal{M}$ such that $M \times\{1\} \subset V$. However this means tiat V intersects each $U \in \mathcal{U}$ and hence again $(x, 1) \in \cap\{\boldsymbol{U}: U \in \boldsymbol{U}\}$.
(4) Let V be an open neighbourhood of $(p, 1)$ in X. (Notice that the point $\left.{ }_{1}^{\prime} p, 0\right)$ exs not exists in this casel) As in (3) it is clear that there exists $M \in \mathcal{M}$ such that $M \times\{1\} \subset V$.
rak; an arbitrary set $U \in U$. Then, from the maximiality of \mathcal{M} it easily follows that the ser $Y=\{n \in M:(r, 0) \in U\}$ belongs to \mathcal{M}. Since \mathcal{M} is, sbviously, a free ultrafilter, he set Y is infinite, and therefore Y has a l.nit point $g \in G$ Thus $(\delta, 1)=(g, 0) \in \bar{Y} \times\{1\} \subset \bar{V}=V$. On the other hand, it is obvious tha. $(g, i) \in \bar{U}=U$. Thus $\bar{V} \cap U \neq \varnothing$. It follows from here that $(p, 1) \in U$. Inciesd, otherwis $(p, 1) \in X \backslash U=V$ is a clopen nc:ghbourhood of (p, i) such that $V \cap U=\varnothing$.) Thus again $(p, I) \in \cap\{U: U \in u\}$.

To complete the proof, we have to show that $X \times X$ is not clpcompact.

By setting $f(s, t)=((s, 0),(t, j))$ we defice a mapping f fror the space $\boldsymbol{G} \times \boldsymbol{G}$ onto he closed subspece $(G \times\{0\}) \times(G \times\{0\})$ of the product $\boldsymbol{Y} \times X$. Besides, it is easy to notice, that f is a homeom rphism. Therefore, the image $f(D)$ of the seı $D=N^{N} \times N=G \times G$ is a countable
closed subs 3 of $X \times X$. On the other hand, since, $f(D) \subset(N \times\{0\}) \times(N \times\{0\}), f(D)$ is also an open discrete subset of $\boldsymbol{X}: \boldsymbol{X}$. From here it is clear that $\boldsymbol{X} \times \boldsymbol{X}$ is not clp-compact.
(2.8) Remark. Since in the aivove example the set $f(D)$ is countab'e, it is easy to notice that the product $X \times X$ is not countably clp-compact (see Section 3), too. Thus the product of two clp-compact spaces need not be even countably clp-compact.

3. COUNTABLY CLP-COMPACT SPACES

(3.1) Definition. A *,pological space X is called countably clpcompact if every its countable clopen cover (i. e. a countable cover with clopen sets) has a finite subcover.

The following two statements are obvious:
(3.2) Assertion Every countably compact space is countably clpcompact.
(3.3) Assertion. Every clp-compact space is countably clp-compact.

For spaces of countable weight, the converse is also true:
(3.4) Proposition. A space of the countable weight is corrpact iff it is countably clp-compnct.

The following theorem presents different characterizations for the property of countable clp-compactness.
(3.5) Theorem. The following conditions are equivalent for a wpological space X :
(1) X is countably clp-compact;
(2) every countable system of clopen subsets of X with finite intersection property has a non-empty intersection;
(3) every clopen disjoint cover of X is finite ;
(4) every discrete family of clopen sets is finite;
(5) for every continuous mapping $f: X \rightarrow N$ the image $f(X)$ is finite. (Here N is the countable discrete set.)

Proof. The equivalence $(1) \Leftrightarrow(2)$ is obvious.
To show the implication $(1) \Rightarrow(3)$ assume that $u=\left\{U_{\alpha}: \alpha \in \mathcal{A}\right\}$ is a clopen disjoint infinite cover of X, where all U_{α} are non-empty, and let \mathcal{A}_{0} be a countable subset of A and $V=U\left\{U_{\alpha}: \alpha \notin A_{0}\right\}$ Then obviously $\left\{U_{\alpha}: \alpha \in \mathscr{A}_{0}\right\} \cup\{V\}$ is a countable clopen cover of X and hence there exists a finite subcover $\left\{U_{\alpha_{1}}, \ldots, U_{\alpha_{n}}, V\right\}$. However, this contradicts the assumption that all U_{α} are non-empty and $U_{\alpha} \cap U_{\alpha^{\prime}}=\varnothing$ for $\alpha=\alpha^{\prime}$.
$(3) \Rightarrow(4)$ Assume that $\left\{U_{\alpha}: \alpha \in \mathcal{A}\right\}$ is a discrete system of clopen sets in X, and let $V=X \backslash \cup U_{\alpha}: \alpha \in\{ \}$. Then obviously, $\left\{U_{\alpha}: \alpha \in g_{0}\right\} \cup\{V\}$ is a clopen disjoint cover of X. According to (3) it is finite, and hence the system $\left\{U_{\alpha}: \alpha \in \mathcal{A}\right\}$ is also firite.
$(4) \Rightarrow(3)$ is obvious, because a clopen disjoint cover of X is at the same time also a discrete family of clopen sets.

To show the implication $(3) \Rightarrow(1)$ consider a countable clopen cover $\boldsymbol{U}=\left\{U_{n}: n \in N\right\}$. By induction we obtain a disjoint countable cover $\nu=\left\{V_{1}, \ldots, V_{n}, \ldots\right\}$ of X as follows:
$V_{1}=U_{1}, V_{2}=U_{2} \backslash U_{1}, \ldots, V_{n}=U_{n} \backslash U_{1} U \ldots \cup U_{n-1}$ for all $n \in N$. From (3) it follows that there exists $n_{0} \in N$ such that $V_{n}=\varnothing$ for all
$n \geq n_{0}$, and hence $\left\{U_{1}, \ldots, U_{n_{0}}\right\}$ is a finite subcover of u.
Finally, to complete the proof notice that the existence of a countable disjoint clopen cover of X is equivalent to the existence of a continuous mapping $f: X \rightarrow N$ with an infinite range, and hence $(3) \Leftrightarrow(5)$.

The class of countably clp-compact spaces is obviously hereditary with respect to clopen subspaces and is invariant under taking continuous images:
(3.6) Proposition. If X is a countably clp-compact space and \boldsymbol{Y} is its clopen subspace, then Y is countably clp-compact, too.
(3.7) Proposition. If X is a countably clp-compact space and $f: X \rightarrow Y$ is a continuous surjection, then the space Y is countably clpcompact, too.

As shown in Section 1, in the realm of zero-dimensional spaces the properties of compactness and clp-compactness become equivalent (see Proposition 1.12). It is interesting to compare with this fact the following result:
(3.8) Proposition. If X is a zero-dimensional space, then X is countably clp-compact iff X is pseudocompact.

Proof. If X is not countably clp-compact, then according to Theorem 3.5 there exists a continuous unbounded mapping $f: X \rightarrow N$ and hence, moreover, a continuous unbounded mapping $f: X \rightarrow R$, i. e. X is not pseudocompact.

Conversely, let X be a non-pseudocompact space and let $f: X \rightarrow R$ be an continuous unbounded function. Then it is easy to construct a countable discrete family of open sets in X. Moreover, since X is zerodimensional, these sets can be choozen clopen. Hence according to Theorem 3.5 the space X is not countably clp-compact.
(3.9) Proposition. If \boldsymbol{X} is a paracompact countably clp-compact strongly zero-dimensional T_{1} space, then X is compact.

Proof. Let \mathcal{U} be an open zover of X; since X is paracompact and regular (as a zero-dimensional space), there exist an open locally finite refinement $\nu=\left\{v_{\alpha}: \alpha<\tau\right\}$ and a closed locally finite refinement $\mathcal{F}=\left\{F_{\alpha}: \alpha<\tau\right\}$ of u sach that $F_{\alpha} \subset V_{\alpha}$ for evcry $\alpha<\tau$. (The sets constituting these refinements are indened by all ordinals, less than some oidinal थ.) Now, since X is strongly zero-dimensional, for each $\alpha<\tau$ there exists a clopen set W_{α} such that $F_{\alpha}=W_{\alpha} \subset V_{\alpha}$. Then, cbviously, $w=\left\{W_{\alpha}: \alpha<\tau\right\}$ is also a clopen locally finite refinement or \boldsymbol{u}. By transfinite induction we construct a new cover $\left\{W_{\alpha}^{\prime}: \alpha<\tau\right\}$, where $W_{\alpha}^{\prime}=\left.W_{\alpha}\right|_{\beta<\alpha} ^{\mathrm{u}} W_{\beta}$. Since $\left\{W_{\alpha}: \alpha<\tau\right\}$ is locally finite and the sets W_{α} are clopen, he sets W_{α}^{\prime} are clopen, too. Thus $\left\{W_{\alpha}^{\prime}: \alpha<\tau\right\}$ is a disjoint clopen cover of X refining \mathcal{W}, and hence also refining the original cover \mathcal{U}. According to Theorern 3.5, W_{α}^{\prime} is in fact finite (i. e. all but a finite number of sets W_{α}^{\prime} are empty). Hence there exists a finite subcover ir \boldsymbol{U}, i. e. the space X is compact.

With respect to products the behaviour of countable clp-compactress has analogies with the behaviour of clp-compactness. In particular, patterned after the proof of Theorem 2.5 one can easily establish the following resu't:
(3.10) Theorem. $I^{e} X$ is clp-proje etive and cuuntably clp-compact, then the product $X \times Y$ is cuuntably clr-compact, iff Y is count \boldsymbol{X} bly clp-compact.
(3.11) Corollary. The product of a compact space and a countably clp-compact space is countably clp-compact.
(3.12) Coroliary. The product of a connected space and a countably clp-compact space is countably clp-compact.

4.THE S?ACES OF QUASICOMPONENTS OF CLPCOMFACT AND COUNTABLY CLP-COMPACT SPACES

In this section we shall establish correspondence between the properties of (countable) :lp-compactness of a space X and certain compaciness-type properties of the quasicomponent space $Q(X)$ (see Theorems 4.1, 4.4, 4.5).

Recall first that the quasicomponent A_{X} of a point x in \& space X is Cefined as the intersection of all clopen sets containing $x[2]$. So $y \in A_{x}$ iff there are no clopen sets containing x but not y. Obviously, for different points $x, y \in X$ either $A_{x}=A_{y}$ or $A_{x} \cap A_{y}=\not \varnothing$. Therefore one can dafine an equivalen e relation q on X by setting xqy iff $\boldsymbol{A}_{\boldsymbol{x}}=\boldsymbol{A}_{\boldsymbol{y}}$. Following [2] we end'ow the set $Q(\boldsymbol{X})$ of all quasicomponents of X witi the topology τ, determined by the base consisting of all sets $U^{\prime}=\{A: A \in Q(X), A \subset U\}$, where U is a clopen subset of X. It is clear that the quotient mapping $q: X \rightarrow Q(X)$ is continuous. Notice, however, that the top slogy T thus defined generally differs from the quotient tof llogy on the set $Q(\boldsymbol{x})$.
(4.1) Theorem. The following statements are equivalent fc: a topological space:
(1) X is clp-compact;
(2) $Q(X)$ is clp-compact;
(3) $Q(X$, is compact.

Proof. (1) $\Rightarrow(2)$ if X is clp-contpact, then $Q(X)$ is aisc clp-compact a^{-}a continuous image of X (see Propositiun 1.6).
$\left.\mathbf{1}^{2}\right) \Rightarrow(3)$ Since $C_{(}(X)$ is zero-dimensional (see e. g. [2]) and clpcompact, it is also compact by Proposition 1.12.

The $\mathrm{i} m_{1}$ lication $(3)^{\prime} \Rightarrow(2)$ is Jbvious.
To show 'he implication $(2) \Rightarrow(1)$ assume that X is not clp-compact, and let \boldsymbol{U} be a slopen cover of X having no finite subcover. Since the qיotiert mapping $q: X \rightarrow Q(X)$ is , obviously, clopen, the system $\{q(U): U \in u\}$ is a clezen cover of $Q(X)$. Besides, it can be eavily seer. that $\mathrm{L} . \mathrm{J}$ finite subcove can exists in i , and hence $Q(X)$ is not clp compact.
(4.2) Cornllary. If $f: X \rightarrow Y$ is a surjective continuors mapping and the srace $O(\lambda)$ is compact, then the space. $2(Y)$ is compact, too

In vi.tue of Proposition 1.8, The rern 4.1 implies alse the following:
(4.3) Corollary. If $f: X \rightarrow Y$ is a clopen continuous mapping, $Q(Y)$ is compact and for all points $y \in Y$ the spices $Q\left(f^{-1}(y)\right)$ are compact, then the space $Q(\boldsymbol{X})$ is compact, two.

In case when \boldsymbol{X} is Hausdurff, the characterization of clp-compaciness established in (4.1) admi.s a further specif ration:
(4.4) Theorem. A Hausdorff space \boldsymbol{X} is clp-compact iff the space $Q(X)$ of its quasicomponents is homeomorphic to a Cantor set $D^{\boldsymbol{T}}$ (for the appropria.e cardinal sumber τ).

Prooi, The "if" part is an immediate conseqrance of Theorem 3.1. Conversely, assur e that X is i T_{2}-space, thrn according to [2, Theosem

5, p. 160] there cxists a one-to-one mapping $:: Q(X) \rightarrow D^{\tau}$. On the other hand, according to Theorem 3.1, the space $Q(X)$ is cump act and hence f is a hon,eomorphism.

Theorem 4.1 characterizing clp-compact spac s as those one, whese spaces of quasicomponents are compact, allows also to estimate the cardinality of the family $\mathrm{Clp}_{\mathrm{p}}(\mathrm{X})$ of all clopen subsets of a lp -compact space X :
(4.5) Theorem. If $|C l p(X)| \leq \kappa_{0}$, then X is clp-compač. Conversely, if X is a clp-compact space and $w(Q(X)) \leq \zeta_{o}$ (in particular, $\left.w(X) \leq \kappa_{o}\right)$ then $\left|C l_{F}(X)\right| \leq \kappa_{0}$. (Here $w(X)$ denotes the weight of the space X, and $|A|$ stands for the cardinality of the set A.)

Proof. Assume that X is not clp-compact, then in virtue of (4.1) the space $Q(X)$ is not compact. We shall show that $Q(X)$ contains ur zountably many clopen sets in this case, Ir ieed, consider the two possibilities:
(1) If $w(Q(x)) \leq K_{0}$. then the soace $Q(X)$ is metrizable and hence there exists a countable discrete subset $\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$ in $Q(X)$. Since the space $Q(\boldsymbol{X})$ is zero-dimensional. one can easily construct a discrete family of clopen neighbourhoods $U_{1}, \ldots, U_{n}, \ldots$ of points $x_{1}, \ldots, x_{n}, \ldots$ respecively. Now, taking unions of the sets $U_{1}, \ldots, U_{n}, \ldots$ in different combination:, we get exactly continuum different clof $\sim n$ sets in the space $Q(x)$, i. e. $|\operatorname{Cln}(Q(x))| \geq c$.
(2) If $w(Q(x))>K_{o}$, then, in virtue of zero-dimensionality of $Q(x)$, it follows that $|C l p(Q(x))| \geq w(Q(x))>X_{o}$.

To complete the proof of the first part of the sheorem, notice that, obviously $|\operatorname{Clp}(X)|=\left|\operatorname{Clp}\left(Q\left(x_{1}^{\prime}\right)\right)\right|$.

Conversely assume that X is clp-compact and $w(Q(X))_{1} \leq \kappa_{0}$. (The unequality $w(Q(x)) \leq \kappa_{o}$ is guaranteed also in case $w(X) \leq x_{o}$ because $Q(X)$ is a continuous inage of X and $Q(X)$ is compact.)

As $Q(X)$ is zero-dimensional, there exists a countable base in $Q(X)$ consiscing of ciopen sets: $\mathcal{B}=\left\{U_{1}, \ldots U_{n}, \cdots\right\}$. Applying Proposition 1.4 we conclude that each clopen set V in $Q(X)$ can be expressed as a urion of a finite number of sets from \mathcal{B}, and hence the family of all clozen sets in $Q(X)$ is countable. Hence the number of clopen sets in X is corntable, too.
(4.6) Theorem. A space \boldsymbol{Y} is countably clp-compact iff the space $Q(X)$ of its quasicomponents is pseudocompact.

Proof. Assumc that X is not crur.iably clp-compact, then there exists a countable clopen disjointr cover $\left\{U_{1}, \ldots, U_{n}, \ldots\right\}$ cf X, where al, U_{n} are non-empty. Let $V_{n}=q\left(U_{n}\right)$ where $q ; \quad \ddot{z} \rightarrow Q(X)$ is the quotient mapping. The η, obviously $\left\{V_{p}, \ldots, V_{n}, \ldots\right\}$ is a countable clopen disjoint cover of $Q(X)$ and all V_{n} are non-empty. It is easy to construct now : continuous unbounded mapping $f: Q(X) \rightarrow R$.

Conversely, is the space $Q(X)$ is not pseudocompact and is zerodimensional, it is easy to construct in it a discrete countable family of c' 'pen set: $V_{1}, \ldots, V_{n}, \ldots$. To complete the proof t is sufficient to notice tnat $q^{-1}\left(V_{1}\right), \ldots, q^{-1}\left(V_{n}\right), \ldots$ is a ciscrete family of clopen se's in X anu to apply Theorem 3.5.

Since a eero-dimerisional spece X is homeomorphic to the space of its
quasicomponents $Q(X)$, from the previous theor 3 r. we get ths following:
(4.7) Corollary. A zero-dimensional space is iseudocompact iff it is countably clp-compact.
(4.8) Remark. As shown by i. Shapiro (private communication), there exists a zero-dimensional pseudocompact space X which frils to be countably compact. Obvious in this case $Q(X)=X$ aid hence X is an example of a countably clp-compact space such that the space of quasicomponents $Q(X)$ is not countably compact.
(4.9) Kemark. Note that separable meric spaces with compact spaces of quasicomponeats were considered by H. Freudental [4] to construct a special kind of compactification (the so called λ-comprctifications).

REFERENCES

1. K. Куратовскнй, Топология Том I, Мсгкжа, 1966.
2. К. Куратовский, Топология, То ч II, Москва, 1969.
3. R. Enge'king, Ceneral topology, Warszawa, PWN 1977.
4. H. Freudental, Ėnder. und primenden, Fund. Nath., 21(1953).
5. L. Gillman, M. Jeris.jn, Rings of continuous fuctions, Van Nostrand, Princeton, New York, 1960.
6. A. Eastak, On a class of spaces containing all bicompact and all connected spaces. In: Generel Topolegy and its Relat to Modern Anelys's and Algebra IV, Proceedings of Fourth Prague T: 1976, Part B, $\leftarrow 45-451$.
7. 2. M. Stephenson, Product space, and the Stone-w'eierstrass theorem, Generd Sopologv and Appl., 3(1973). 77-79.

Department of Mathems ics
Latvian University
Rainis boul. 19
LV-1586 Riga
Latvia

О clг-компактньу и счётно сlp-компактньх пространствах.
Аннотациㄱ․ Топологическое ц.ространство ьазорём (счётно) срр-компактным, если каждое его (счётное) покрьтие открыто-замкнутыми множествами имеет конечное подпокрытие. Очевидно, компактные пространства и связные пространста являотся примерами $\mathbf{c l}$ р-пространств. В дгнной заметке развиваносяя огновы теории clp-компактных в счётно clp-компактных пространств. Свойство (счётной) сlр-комцактности данутго пространс,ва X характеризуется посредством соответствулииих свойств пространства $\mathrm{Q}(X)$ его кв'знкомпонелт.

Par cln-komıaktām un sanumurējami clp-kompaktām telpām.

An tâcija. Par clp-fompaktu (samumuréjami clp-komp_ktu) telpu tiek saukta tậ̣ 1 topoloğiska telpa, kuras katrs pärklajums ar reizē slêgläm un vaḷèjàm kopàm satur galīgu apakšparkläjumu Acimreuzami, kompaktas, kē ari sakarigas telpıs ir clpkompaktas telpas. §̌is raksts ir veltits clp-kompaktu (sanumureéj nil clp-kompaktu) tolpt pamatteorijas izveidei, kà ari iztirză so telpu saistibu ar citàrr topolvgisku telpu klasēm. Tiek dots clp-kompal Thas (sanumuré'imi clp-kompakeribas) raksturojumus ar atbilstos̀o kvazikumponenšu te'pu.

ON CLP-LINDELÖF AND CLPPAKACOMPACT SPACES

A. Sondore

SUMMARY. By a clp-Lindelof spice we call a topological space each clopen cover of which contains a coumable subcover, and by a clp-paracompact space we call a topological spa a each clopen rover of which contains a locally finite clopen refinement. The aim of this paper is to study basic properties of clp-Lindelof and clp-paracompact spaces. Some relatic is of these spaces to other classes of topological spaces will be als discussed.

KEY WORDS. Li.delofness, paracompactness, compactness, connectedness, Souslin property, zero-dimensionality, clpcompactness, clp-Lindelofness, clp-paracompactness, $\{$ p-Souslin property.

AMS subject classification: 54D20, 54D18, 54C05.

This paper continues a series of works where we study topological properties defined by clopen covers, i. e. all elements of :hirh are clopen (=closed and open) ses.

The present article consioers clp-Lindelof and clp-paracompact spaces which generalize the clp-compect spaces studied in our first paper [4].

By a clp-Lindelof space we call a topological sp-ce each cloren cover of which contains a countable subcover. and by a -lpparacompact space ue call a topological spuce each clopen cover of which contains a locnlly finite clope. refinement. The aim of this paper. is to rtudy basic properties of clp-Linjelöf and clpparacompact spaces and to point out some relations of these spaces to other classes of topological spaces.

In Section 1 we study pronert's of cın-Lindelöf spaces. Clpparacompact spaces are the subjeci of Section 2. In the last, Section 3, spaces of quasicomponents of clp-Lindelöf and clp-paracompact spaces are consid.red.

1. CLP-LINDELÖF SPACES

Replacirg in the definition of a Lindelöf space open sets with clopen sets we come to the concept of a clp-Lindelof space.
(1.1) Definition. A topologica' space is called $c l p-1$ indelöf if $e \cdot$ ery its clopen cover (i. e. a a ver all elements of which are clopen sets) contains a countable subcover.

The concept of a clp-Lindelof space is generalization of a clpcompact spice on the one hand and of f Lindelöf space on the other:
(..2) Assertion. Every clp-compact space is clp-Lindelöf.
(1.3) Assertion. Every Lindelöf space is clp-Lindelöf.

The Sorgenfrey line gives an exampli of a clp-Lindelof space, which fails to be clo-conpact. And the Niemytzki plane is a $\mathbf{c l p}$ Lindelöf, but no. a Lin' 3 löf space.
it is easy to see that the follo wing statement holds:
(1.4) Proposition. A zero-dimensiona: space is clp-Lindelof iff it is Linuelöf.

From the resemblance of the definitions of Lindelof and clpLindciöf spaces sue can expect a certain analogy in the properties of these spaces. The next statements establish how du the ma.ters stand in fact:
(1.5) Prorocition. If a srace X is clp-Lindel β_{i} and M is its clopen sibbsnace then $\boldsymbol{\mu}$ is clp-Lindelof, too.
(1.6) Proposition. If a space X is clp-Lindelö f and there exists a continuous mapping from X onto a space Y then Y is clp-Lindelöf, too.
(1.7) Proposition. The direct sum $X=\oplus X_{i}, i \in I$ of non-empty spaces X_{i} is clp-Lindelöf iff all $X_{i}, i \in I$, are clp-Lindelöf and the set I is countable.

Proofs of these statements are obvious and therefore omitted.

Recall that a system of sets is said to have the countable intersection property if the intersection of every its countable subsystem is not empty.
(1.8) Proposition. A space X is clp-Lindelöf iff every system of its clopen subsets with the countable intersection property has the non-er.ipty intersection.

Proof. Let X be a clp-Lindelöf space and let $\nu=\left\{V_{i}: i \in I\right\}$ be a system of its clopen subsets with the countable intersection property. Suppose that $\cap_{i \in I} V_{i}=\varnothing$. Then $u=\left\{U_{i}: U_{i}=X \backslash V_{i}, i \in I\right\}$ is a clopen cover of the space X. Since X is clp-Lindelöf there exists a countable subcover $\left\{U_{i_{1}}, \ldots, U_{i_{n}}, \cdots\right\}$ and $X=\bigcup_{n \in N} U_{i_{n}}=\bigcup_{n \in N}\left(X \backslash V_{i_{n}}\right)=$ $-X \backslash \cap_{n \in N} V_{i_{n}}$ Hence it follows that $\cap_{n \in N} V_{i_{n}}=\varnothing$ but this contradicts the definition of \mathcal{V}.

Conversely, assume that every system of clopen subsets of a space X with the countable intersection property has the non-empty intersection and let $Z=\left\{U_{i}: i \in I\right\}$ be a clopen cover of the space X. Then the collection $\boldsymbol{\nu}=\left\{V_{i}: V_{i}=X \backslash U_{i}, i \in I\right\}$ is the system of clopen sets in X and besides $\cap V_{i}=\varnothing$. Then there exists a $i \in I$ countable subfamily $\left\{\boldsymbol{V}_{\boldsymbol{i}_{1}}, \ldots, \boldsymbol{V}_{\boldsymbol{i}_{\boldsymbol{n}}}, \ldots\right\}$ with the empty intersection. It
is clear that the corresponding sets $\boldsymbol{U}_{\boldsymbol{i}_{\boldsymbol{1}}}, \ldots, \boldsymbol{U}_{\boldsymbol{i}_{\boldsymbol{n}}}, \ldots$ make a countable subcover of \boldsymbol{q}.
(1.9) Propesition. If a space Y is clp-Lindelof and f is a mapping from a space \boldsymbol{X} into \mathbf{Y} with following properties:

1) f is clopen, i. e. for every clopen subset of X its irsage is a clopen subset of \mathbf{Y},
2) for every point y from Y the preimage $f^{-1}(y)$ is a clpcompact subset of \boldsymbol{X},
then the space X is clp-Lindelöf, too.
Proof of this fact is similar to proof of Theorem 1.8 in [4] and therefore omitted.

As shown by the next example the property of clp-Lindelofness is not multiplicative.
(i.10) Ex:mple. The Sorgenfrey line R_{b} is clp-rindeiof but $R_{b} \times R_{b}$ is not clp-Lindelöf.
(1.11) Proposition. The product of a clp-Lindelöf space and a compait spaie is cıp-Lindelöf.
(1.12) Proposition. The froduct of a clp-Lindelöf space and a connected space is clo-Lindelof.

Proofs of the last two propositions are similar to the correspending proofs of the propositions about clp-compact spaces (see [4], Sertiol، 2).

Specifying the standard terminology we say that a system $\mathcal{B}=\left\{B_{t}: t \in T\right\}$ of subsets of X is a refin $>m$ ment of another systei. $A=\left\{A_{s}: s \in S\right\}$ of subsets of X if $\cup A=U B$ and for every $t \in T$ there exists $s_{t} \in S$ such that $B_{t} \subset A_{s_{t}}$.

In the sequel we shall need the following:
(1.13) Lemma. If \boldsymbol{Z} is a locally finite system of clopen scts of X then there exists a disjoint clopen (and hence also local'y finite) refinement \boldsymbol{q}^{\prime} of \boldsymbol{u}.

Proof. Let $\boldsymbol{u}=\left\{U_{i}: i \in I\right\}$ be a locally finite systent of clopen sets in X. Let $U_{i}^{\prime}:=U_{i} \bigcup_{j<i} U_{j}$. For each $i \in I$ the set U_{i}^{\prime} is closed, becaus U_{i} is closed and $\bigcup_{<i} U_{j}$ is an open set. On the other hand in virtue of local finitness of the system $\tau^{\prime \prime}$ it holds

Therefore for each $i \in I$ the set U_{i}^{\prime} is open, too. It is easy to notice now that the family $Z^{\prime}=\left\{U_{i}^{\prime}: i \in I\right\}$ is a disjoint clopen refinement of the system \boldsymbol{q}.
(1.14) Proposition. Every locally finite system of non-empty clopen sets in a clp-Lindelöf spere is ountable.

Proof. Assume that $u=\left\{U_{i}: i \in I\right\}$ is an uncountable locally finite system of non-empty clonen sets in ε clp-Lindelöf space \boldsymbol{X}. From Lemma 1.13 it follows that there exists a disjoint clopen locally finite reinement $\boldsymbol{u}^{\prime}=\left\{U_{j}^{\prime}: j \subseteq J\right\}$ of \boldsymbol{U}. Besides, since \boldsymbol{Z} is loc ally finite and uncountable, it is easy to notice that the system \boldsymbol{q}^{\prime} is also uncountable and the set $U z^{\prime}$ is clopen. Therefor $\tau=\boldsymbol{q}^{\prime} \cup\left\{X \backslash \cup \boldsymbol{q}^{\prime}\right\}$ is an uncountable disjoint clopen cover of X but this contradicts the fact that X is a clp-Lindelof space.
(1.15) Corollary. Every discrete system of clopen sets of a clpLindelöf space is countable.
(1.16) Proposition. A space X is clp-Lindelof iff every clopen cover of X contains a countable disjoint clopen refiriement.

Proof. Let Z be a clopen cover of a clp-Lindelöf space X. Then one can choose a countable clopen subcover $\left\{U_{n}: n \in N\right\} \subset \mathcal{Z}$. Let $V_{1}:=U_{1}, \ldots, V_{n}:=U_{n} \backslash_{j=1}^{n-1} U_{j}, \ldots$. It is easy to see that the family $\nu=\left\{V_{n}: n \in N\right\}$ thus obtained is a cnuntable disjoint clopen cover of the space X. refining \boldsymbol{q}.

The proof of the converse pari is obvious.
(1.17) Corollary. A space X is clp-Lindelof iff every its clopen cover contains a countable locally finite clopen refinement.

Replacing in the definition of a Souslin space open sets with clopen sets we come to the concept of a clp-Souslin space:
(1.18) Definition. A topological space is called clp-Souslin if the cardinality of each disjoint system of clopen disjoint non-empty subsets is countable.

As the next two examples show, the properties of clp-Souslinness and clp-Lindelöfsess are incomparable (cf Corollary 1.15).
(1.19) Example. Let. X be infinite, $p \in X$ be some fixed point and let $T=\{X\} \cup\{U: p \notin U\} \cup\left\{V=X \backslash A, A \subset X,|A|<\mathcal{K}_{0}\right\}$. One can easily see that τ is a topology on X and the space (X, T) is compact (and hence also clp-Lindelöf) but fails be clp-Spuslin.
(1.20) Example. The space $R_{b} \times R_{b}$ (see Example 1.10) is clp-Souslin, but is not clp-Lindelöf.

2. CLP-PARACOMPACT SPACES

(2.1) Definition. A topological space is called clp-paracompact if every its clopen cover contains a locally finite clopen refinement.
(2.2) Assertion. Every clp-Lindelöf space is clp-paracompact.

Proof follows from Corollary 1.17.
(2.3) Assertion. Every paracompact space is clp-paracompact.

Clp-paracompact spaces can be characterized by the help of disjoint refinements:
(2.4) Proposition. A space X is clp-paracompact iff every its clopen cover contains a disjoint clopen refinement.

Proof of the "if" part follows from Lemma 1.13.
The proof of the converse part is obvious since every disjoint clopen refinement is locally finite.

From Propositions 1.16 and 2.4 follows:
(2.5),Corollary. Every clp-Lindelöf space is clp-paracompact.
(2.6) Example. Let X_{α} for every $\alpha<c$ be a connected nonparacompact space. It is easy to see that the space $\oplus\left\{X_{\alpha}, \alpha<c\right\}$ is clp-paracompact, but is neither clp-Lindelöf nor paracompact.

One can easily prove also the follogying two statements:
(2.7) Proposition. Every clp-paracompact clp-Souslin space is a clp-Lindelöf space.
(2.8) Proposition. If a topological space X is clp-paracompact and M is its clopen subspace then M is clp-paracompact, too.
(2.9) Proposition. If a space Y is clo-paracompact and f is a continuous mapping from a space X int \boldsymbol{Y} with folloving properties:

1) f is clopen,
2) for every point y from Y the preimage $f^{-1}(y)$ is a clpcompact ubset of \boldsymbol{X},
then the spacu X is clp-paracrmpact, too.
Proof. Ncice first that since f is c'? ${ }^{\prime}$? ${ }^{\prime}$, in virme of Proposition 2.8 we can assume that the image of X is the whole space Y. Let $u=\left\{U_{i}: i \in I\right\}$ be 2 clopen cover of the space X. Since for each $y \in Y$ he set $A_{y}=f^{-1}(y)$ is clp-compact in X there exists a finite subfamily $u_{y}=\left\{U_{i}: i \in I_{y}\right\}$ of u covering A_{y}. Then, obviously, $v_{y}=B_{y}$ is a clopen set in X.

Then recall the fact from Theorem 1.8 in [4$]$ that for every $y \subsetneq Y$ there e-ists a clopen neighbourhood V_{y} such that $f^{-1}\left(V_{y}\right) \subset B_{y}$.

Since $\nu=\left\{V_{y}: y \in Y\right\} \quad$ a clopen cover of the clpparacoupact space Y there exists a locally finite clopen refinement $\left\{W_{j}: j \in J\right\}$. Then $\left\{f^{-1}\left(W_{j}\right): j \in J\right\}$ is a clopen cquer of the spac, X. For each $j \in J$ there exist $\boldsymbol{y}_{\boldsymbol{j}} \in Y$ and $I_{y_{j}}$ such that $f^{-1}\left(W_{j}\right) \subset f^{-1}\left(V_{y_{j}}\right) \subset B_{v_{j}} \quad U_{i \in I_{j}} U_{i} \cdot I$ is easy to
unde.scand that the famil: $\left\{f^{-1}\left(W_{j}\right) \cap U_{i}: j \in I,: \in I_{y} \cdot, \in Y\right\}$ is a locally Inite clupen refinement of \boldsymbol{u}. Thesefore X is $c!p-p a r a c o m p a s t$.
(2.10) Proposition. A direct sum $\oplus X_{i}$ of a family $\left\{X_{\boldsymbol{i}}: i \in I\right\}$ of topological spaces is clp-paracompact iff each X_{i} is clpparacompact.

The "only if" part follows by the help of Propusition 2.8.
Conversely, let $\boldsymbol{u}=\left\{U_{\alpha}: \alpha \in A\right\}$ be a clopen cover of the space X. Then the s.mily $\nu=\left\{U_{\alpha} \cap X_{i} ; \alpha \in A, i \in I\right\}$ is obviously also a clopen cover of X. Thus for each $i_{0} \in I$ $\nu_{i_{0}}=\left\{U_{\alpha} \cap X_{i_{0}}: \alpha \in A\right\}$ is a clopen cover of a slp-paracompact space $\boldsymbol{X}_{\boldsymbol{i}_{0}}$ and hence there exists a locally finite clopen refinement $\nu_{i_{0}}$ of $\nu_{i_{0}}$.

Let $S=\underset{i \in I}{\bigcup_{i}} \nu_{i}^{\prime}$. Obviously S is a clopen ref iement of $\boldsymbol{q} . \mathrm{To}$ complete the proof notice that S is obviously locally finite.
(2.11) Proposition. A zero-dimensional space is clpparacompact iff it is paracompact.

Proof is obvious.
(2.12) Example. Since, as one can easily notice $R_{b} \times R_{h}$ (see Example 1.10) is not clp-paracompact, it follows tha: the product of two clp-paracompact spaces need not be clp-paracompact.

Patterneo after the proofs of the corre.poncing starements ajout clp-compact spices [4], one can easily establish the following two special ceses when the product of two spaces is clp-paracurnpact.
(2.13) Proposition. The product of a c.p-paracompact space and a cc mpact space is clp-paracompac'
(c.14) Proposition. The product of a clp-paracompact sp-ce and a cc.s.ected space is clp-paracompact.

3. THE SPACES OF QUASICOMPONENTS OF CLPLINDELÖF AND CLP-PARACOMPACT SPACES.

In this section we establish relations between the properties of clp-Lindelöfness and clp-paracompactness of a space X and certain properties of the space $Q(X)$ of its quasicomponents, see [2], see also [4], Section 4.
(3.1) Proposition. The following statements are equivalent for a topological space:
(1) X is clp-Lindelöf,
(2) $Q(X)$ is clp-Lindelöf,
(3) $Q(X)$ is Lindelöf.

Proof. $(1) \Rightarrow(2)$ If X is clp-Lindelöf then $Q(X)$ is also clpLindeloff as a continuous image of X (see Proposition 1.6).
$(2) \Rightarrow(3)$ Since $Q(X)$ is zero-dimensional and clp-Lindelöf it is also Lindelöf by Proposition 1.4.
$(3) \Rightarrow(1)$ Let $u=\left\{U_{i}: i \in I\right\}$ be a clopen cover of X. Then $\nu=\left\{q\left(U_{i}\right) ; i \in I\right\}$, where $q: X \rightarrow Q(X)$ is the quotient mapping, is an open cover of the Lindelöf space $Q(X)$, therefore there exists a countable subcover $\nu^{\prime}=\left\{q\left(U_{i_{n}}\right): n \in N\right\}$. Hence the family $u^{\prime}=\left\{U_{i_{n}}: n \in N\right\}$ is a countable clopen subcover of \boldsymbol{q}.

From Propositions 1.6 and 3.1 it follows:
(3.3) Corollary. If $\boldsymbol{f}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ is a surjective continuous mapping and $Q(X)$ is a Lindelöf space then $Q(Y)$ is Lindelöf, too.

From Propositions 1.9 and 3.1 it follows:

(3.4) Corollary. If $f: X \rightarrow Y$ is a clopen continuous mapping $Q(Y)$ is Lindelöf and for all points $y \in Y$ the spaces $Q\left(f^{-1}(y)\right)$ are compact then th- space $Q(X)$ is Lindelöf, too.
(3.5) Proposition. The following statemunts are equivalent for a topological space:
(1) $X: 3$ clp-paracompacc,
(2) $Q(X)$ is clp-paracompact,
(3) $Q(X)$ is paracomp.ct.

Proof. $(1) \Rightarrow$ (2) Let X bc clp-paracompact and let $\nu=\left\{V_{i} \cdot i \in I\right\}$ be a clopen cover of the space $Q(X)$. Then $\left\{q^{-1}\left(V_{j}\right) ; i \in I\right\}$ is a ciopen cover of the snare X and hence there exists a disjoint cloven refinement $u=\left\{U_{j}: j \in J\right\}$ of $\left\{q^{-1}\left(v_{i}\right): i \in I\right\}$ (Proposition 2.4). It follows that $\left\{q\left(r_{j}\right): j \in J\right\}$ is a disjoint open cover of the space $Q(X)$. Besides, clear that this cover also clopen and refines ν and therefore $Q(X)$ is also a clp-paracompact space.
$(2) \Rightarrow(3)$ Since $Q(X)$ is zero-dimensional and $c^{l} p$ paracompact, by Proposition 2.11 it is als \cup puracompact.
$(3) \Rightarrow(1)$ Let $u=\left\{U_{i}: i \in I\right\}$ be a clopen cover of X. Then $\left\{q\left(U_{i}\right): i \in I\right\}$ is an open cover of the paracompact space $Q(X)$, and hence there exists a locally finite open refinement $\nu=\left\{V_{j}: j \in J\right\}$ of $\left\{q\left(U_{i}\right) ; i \in I\right\}$. For each point $x \in X$ there
exists an open neighbourhood M of $q(x)$ in $Q(X)$ which intersects only a finite number of elements of $\boldsymbol{\nu}$. Then also the open neighbourhood $q^{-1}(M)$ of x intersects a finite number of sets from $q^{-1}(\nu)=\left\{q^{-1}\left(v_{j}\right): j \in J\right\}$. To complete the proof it is sufficient to notice that $q^{-1}(\nu)$ is a clopen refinement of \boldsymbol{u}.

From Propositions 2.9 and 3.5 it follows:
(3.6) Corollary. If $f: X \rightarrow Y$ is a clopen continuous mapping, $Q(Y)$ is paracompact and for all points $y \in Y$ the paces $Q\left(f^{-1}(y)\right)$ are compact then the space $Q(X)$ is paracompact, too.

By the help of Propositions 3.1 and 3.5 we can easy prove some other properties of clp-Lindelöf and clp-paracompact spaces (3.113.14). However, first we have to develop an appropriate terminology.

Extending the notions of openness and closedness to the clpsituation we can introduce the following:
(3.7) Definition. A set $U \subset X$ is called clp-open if for every point $x \in U$ there xists a clopen set V such that $x \in V \subset U$.
(3.8) Definition. A sett $U \subset X$ is called clp-closed if for every point $x \notin U$ there exists a clopen set V such that $x \in V$ and $V \cap U=\varnothing$.

Obviously, clp-open sets are open and clp-closed sets are closed. Clopen sets are both clp-open and clp-closed.
(3.9) Definition. A topological space is called clp-normal if every disjoint clp-closed sets A and B have disjoint clp-open neighbourhoods U_{A} and U_{B}.
(3.10) Remark. A zero-dimensional space is normal iff it is a clp-normal space. However, in general, the properties of normality and clp-normality are incomparable.
(3.11) Proposition. Every clp-paracompact space is clp-normal.

Proof, Let X be a clp-paracompact space then the space $Q(X)$ is paracompact. As, besides, $Q(X)$ is Hausdorff it follows that $Q(X)$ is a normal space, too (see [3]). Let A and B be disjoint clp-closed sets of X. It is easy to see that $q(A)$ and $q(B)$ are disjoint closed subsets in $Q(X)$. Then there exist disjoint open sets V_{A} and V_{B} such that $V_{A} \supset q(A)$ and $V_{B} \supset q(B)$. Then $U_{A}=q^{-1}\left(V_{A}\right) \supset A$ and $U_{B}=q^{-1}\left(V_{B}\right) \supset B, U_{A} \cap U_{B}=\varnothing$ and U_{A}, U_{B} are ciopen subsets of X. Hence X is clp-normal.

From here and Corollary 2.5 it follows:
(3.12) Corollary. Every clp-Lindelöf space is clp-normal.
(3.13) Proposition. If a space X is clp-paracompact and contains a dense clp-Lindelöf subspace A then X is a clp-Lindelöf space.

Proof. Since the quotient mapping $q: X \rightarrow Q(X)$ is continuous it follows that $q(X)=q(\bar{A}) \subset \overline{q(A)}$ and therefore $\overline{q(A)}=Q(X)$. If the space X is clp-paracompact then $Q(X)$ is paracompact, $q(A)$ is a dense Lindelöf subspace of $Q(X)$. and therefore (see [3]) $Q(X)$ is a Lindelöf space. Hence by Proposition $3.1 X$ is a clp-Lindelöf space.
(3.14) Corollary. Every separable clp-paracompact space is clpLindelöf.

REFERENCES

1. К. Куратовсзий, Тополопчя, Том I, Мисква, $196 \lessdot$.
2. К. Кураторский, Топшіогия, Том II, Москве, 1969.
3. R. Engelking, Gen rral topology, Warszawa, PWIN, 1977.
4. A. Sondore, A. Sostak, On clp-compact and countably clpcc.npaci spaces, this issue, p. $1: 3-143$.

Department of Mathematics
Latvian University
[ainis boul. 17
LV-1586 riga
Lalvia

О СLР-ЛИНДЕЛЁФОВЫХ И СLР-ПА ${ }^{\circ}$ АКОМПАКТНЫХ

IPOCT ${ }^{\text {D }}$ AHCTBAX.

 кахдое его покрытие открыто-за, кнутыми мпожествами имеет счетвое
 в кахдо: его пскрьпие открыто-замквутіха мвожествами мохно винсать локально конечное измепьчевие. В данной реболе из јч"ются свойства clp-

PAR CLP-LINDELOFA UN CLP-PARAKOMPAKTAM TELPAM.

 Anotācija, Par clp-Linde|ofa telpu tiek se:kcta tāda topologiska telpa, kuras apaksłłärklảjumu. Un par clp-parakompaktu tiek saukta tāda telpa, kuras katrä
 va|ēju pärkläjumu. Sis raksw velüts clp-Linociofa un clp+parakompaktu telp」 p: matịpaísbu izpêtei, kả arí iztirzả šo telpu saisiibu gr citảm topoloğisku telpu klasém.

$$
\text { Re-eived June 7. } 1994
$$

CORRECTIONS TO MI PAPER "ON EQUIVARLANT HONOTOP" TYPE"

S.V. Agheev

Abstract. The pronf of the generalization of James-Segal's theorem presented ir ou, paper r1] (Therrem A) goes off only under the additional ascumption that the acting group is zern-dimensional. Nevertheless the statement itself is valid for an arbitrary (compact) group: thi correct proof will be published in a forthcomiag paper.
AMS subject classification: 57815

As gentioned by S. Antonian, the G-map f: X -- Y defined on page 41 of our paper [1] is continuous only for a :oro-dimensional compact group G. Therefore, we have established the generalization of James-Segal s theorem in the following form:

Theorems Let G be an ar jitrezy compact group with $\operatorname{dim}(G)=0, X$ and Y be motric $G-A N E-s p a c e s$, Lnd $g: X \rightarrow Y$ be a G-map. Then the following statements ure equivelent:
(a) g: X Y is a G-homotopy equitralence;
(b) for every closed subgroup H in G the map $B^{H}: X^{H} \rightarrow I^{H}$ is a homotopy equivalence.

A compl ite generalisation of this theorem (i.e. for an arbitrary compact group G) is proved oy the author and will be published in the short run.

Reforences

1. S.V. igheev. On equivariant homotopy type. Acta Univ. Latv., v. 576 (1992) p. 37-44.

S.V. Agejevs. Labojumi manam rakstam "On equivariant homotopy type".

Džeimsa-Segala teorêmas vispārínājuma pierädĩjums mīsu reksta [1] ir pareizs tikai pie papildnosacijuma, ka darbojosamies grupa G ir nuldimensionāla. Toms̄r pats rezultāts ir spēkā jebkurai (kompaktai) grupai G: tãs pierādījums tiks publicēts mūsu nākamajā rakstā.
C.B. Aresв, Иоправление F moed статье "On equivariant homotopy type".

Приведенное в напей работе доказательство обобщениой теоремн Длеймса-Сегала в деฝ̈отвитөльности справедливо лишь при домолнительном условии нульмерности деӥствуюцеи трупня G. Tem не менее сам ревультат справедлив для произвольпой (компактой) группн: соответствуидее доказятельетво педавно получено автором а вскоре будет опубликовано.
УДК 5 I5.I2

Dopartmont of Mathematics
Brest Pedagogical Institute
224665 Brest
Byelorussia
Reoeived August 10, 1994

SOME GENERALIZATIONS OF W.A.KIRK'S FIXED POINT THEOREMS

Inese Bula

Abstract

Some fixed point theorems for a family of nonexpansive mappings of a metric space are obtained. AMS SC 47H10

1. INTRODUCTION.

In a fixed point theory a great interest was roused by work of W.A.Kirk [1], where nonexpansive mappings on a subset with normal structure of a reflexive Banach space were examined. Later many mathematicians generalized this result for a commutative family of nonexpansive mappings. Also W.A.Kirk himself (together with L.P.Belluce) have generalized this result $[2,3,4,5]$. Completely this theorem for commutative family was generalized by T.C.Lim [6]. However the possibility to generalize the corollasy of theorem remained an open question. In this work we generalize the corollary also.

Convexity is one of the most important set properties used in W.A.Kirk's theorems. Therefore only subsets of vector spaces are examined in these theorems. But on the other hand, see for example [7], it is also possible to define convexity of subsets of metric spaces by making use of closure operators. Convexity structure of a metric space is earlier defined by W.Takahashi [8]. But approach of closure operators is more general. Using systems of subsets which are staille under arbitrary intersections the convexity problem in a metric space is also examined by J.P.Penot [9] and W.A.Kirk [10]. It seems that these two approaches are equivalent. However, it will be shown later by example regarding c_{o}, approach of closure operators provides the results which are again more general than these results of J.P. Penot and W.A.Kirk. Besides we prove the existence of common fixed points for families of mappings. Previously it was not done.

2.RASIC DEFINITIONS RID PIXED POINT THEOREMS IN $?$ BANHCH SPACE.

> DEFINEETO:T 1. A convex set k of a manaoh space I has nown: structure if for each bounded and convex subset H of K with diamh $\# 0$ there exists a point y such that
> $\sup \{d(x, y) \mid x \in H\}<d i a m H$.

This concept was antroduced by M.S.Brodskii and D.P.Mil.aan [11], furthe: this concept is analyzed in $[12,13]$.
theorem 1 (W.A.Kirk,[1]). Suppose K is a nonempiy, convex, bounded and closed subset. of a reflexive Banach space x. and suppese K has normal structure. Then every nonexpansive mapping $\mathrm{f}: \mathrm{K} \neq$ has a fixed point.

COROLLAPY. If in the Theorem the condition that K is bounded is replaced by the condition that the sequence $\left(f^{n}(p)\right)_{\text {nenv }}$ is bounded for some $p \in K$, then f has a fixed point.

DEFINITION 2. A family F of mappings $f: X-X$ is called commutative if: $\forall f, g \in F:(f \circ g)(x)=(g \circ f)(x), \forall x \in X$.

As mentioned in Introduction it was the Theorem 1 that was gen ralized by T.C.Lim [6] for a commutative family of nonexpansi re mappins 3.

But generalization for the corollayy is not given in [6].
THEOREM 2 ([14]). Supy jse K is a nonempty, convex and closed subset of a reflexive Banach space X, and suppose K has normal structure. If for a conmutative family F of nonexpansive mappings f:K $S=\left\{\left(f_{1} \circ f_{2} \circ \ldots \circ f_{n}\right)(p)\left|f_{1}, \ldots, f_{n} \epsilon_{2}, \& n \in N\right|\right.$ is bounded, then F hrs a conmon fixed point: $1 \boldsymbol{H} F^{\prime} x f|f \in F| \geqslant 3$.

DEFISITIION 3. A Banach space X is said to be strictly convex if. all the puints of the unit sphere of X are not inner points of straight lines in the unit ball.

[^5]THEORE: 3 ($\left.{ }^{\prime} 21\right)$. Suppose X is a strictly convex reflexive Banach space ard K is nonempty, convex, closed, bcinded subset of X , and suppose K has normal structure. Suppose F is a commutative family of nonexnansive mappings $f: X-X$. Then F has i common fixed point.

Combining the ideas of the Corollary and the pre ious Theorem 3 we shall prove:

MHEORRM 1. Suppose X is a strict'y sonvex reflexive Banach space and K is a noner, ty, convex and closed subset of X, and suppose K has normal rtructure. Suppose $F=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is a commutative family of nonexpansive selfmaps of X. If there exists a poin: $p \in K$ such that tie sequencts $\left(f^{n}(p)\right)_{\text {peN }}$ for every $f \in F$ are bounded, then F has a common fixed point.

- proof.

By Corollary of Theorem 1 it is knom chat $F_{i x f_{1}} \neq 1=1,2, \ldots, n$. Since X is strictly convex, Fixf is convex for nonexpansive mapping $f \equiv F$. Since $f_{1}, i=1,2, \ldots, n$ are continuous, the sets Fixf $_{1}, \mathbf{i = 1}, 2, \ldots, n$ are closed.

Let ing inductively prove that $F i x F=\cap\left\{F i x f_{i} \mid i=1,2, \ldots, n\right\} \infty$.
lor $n=1$ the statement is true by the Corollary of Theorem 1. Assuming that $\cap\left|F i x f_{i}\right| i=\sim, 2, \ldots, k \mid * \theta$. let us prove that ก $\left\{F i x f_{1} \mid i=1,2, \ldots, k+1\right\}+0$. We denote $\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ by F^{\prime} and f_{k+1} by f. Since by ascumption $f(x)=f\left(f_{1}(x)\right)=f_{1}(f(x))$, it follows that $f(x) \in r^{\prime} i F^{\prime}$ and hence $f: F i x F '-F i x F^{\prime}$. Let us prove that the mappinn f has a fixed point in the set FixF'. The sets $F i x f_{1}, 1=1,2, \ldots, k$ are nonemnty, closed and coivex, therefore Fix.' is closed an convex being an intersection of closed and convex se.s. We choose zeFixf freely. Tha functional $|z-y|, y \in K$ is weakly lower semicontinuor's and therefore attains its minimal value in each nonempty, closed and convgx subset of the reflexive Banach space, consequently, also in FixF. Since X is strictly convex for z there exists a unique nearest point $z_{0} \mathcal{F i x} F^{\prime}$:

$$
\begin{gathered}
\left|z-z_{\mathrm{r}}\right|=\operatorname{lnf}\left(|z-y| \mid y \in F i x F^{\prime}\right)_{s} \\
s\left|z-f\left(z_{0}\right)\right|=: f(z)-f\left(z_{0}\right)\left|\leq\left|z-z_{0}\right| .\right.
\end{gathered}
$$

We sonclude that $f\left(z_{0}\right)=z_{0}$. Then $z_{0} \in F i x F * \varnothing$. A
We remark that the previous result is not true for an infinite family of mappings.

3.GNNERAZIZATIONS TN A METRIC SPACE WITH A CLOSURE OPERATOR.

Further we act in metric sface x with a distance d. Let $P X$ be the set of $\overline{l l}$ subsecs of X.

DRFINITIOM 3. A closure operator on X is a mapping $F: P X \rightarrow X$ satisfying for each $A, B \in P X$ the following conditions :

1) $A \subset B \rightarrow S(A)=S(B)$;
2) $A \subset S(A)$,
3) $S(S(A))=S(A)$.

IEPINTTION 4. A clused operator S on X is said to be algebraic if for each $A \div P X$ and $X \in S(A)$ there exists a finite set $F \subset A$ such that $x \in S(F)$.

Let S be a slosure operator on X. A subset A of X is said to be S-closer if $A=S(A)$. A space X is said to be S-comnact if each centered system of s-closed subsets of X has a nonempty intersection. Note that intersection of S-closed subsets of X is S-closed. For more detailed applications of closure operators in fixte point theory sec [7].

Let us cenote
$A(x, f ;,=\bigcap(A \in P X \mid x \in A \& A=S(A) \& f(A) \subset A\}, \forall f \in F, \forall x \in X(x+f(x))$.
$A(x):=\bigcap\left(A \in P X \mid x \in^{\wedge} \& A=S(A) \& \forall f \in F: f(A) \subset A\right\}$.
In a metri? space with a closur operitor for commutative family we rove the following common fi..ed point

THROREM 5 ([15]). Suppose (X, d) is a metric space, s is a closure operator on X cad X is S-compact. Yet each clused ball $B(x, r)$ ($x \in \lambda, r \in R_{*+}$) be $S-c l o s \in \mathcal{J}$. Let F be a commutative family (f ncnexpansive selfmaps of x, such that the set of fixed points Fixf for every mappings $f \in F$ is S-closed. If there exists a point $y \in A(x, f)$ such that

$$
\text { sup }\{d(y, z) / z \in A(x, f)\}<\operatorname{diamA}(x, f)
$$

for every feF ar $\mathcal{I} \mathrm{xEX}(\mathrm{x} \neq \mathrm{f}(\mathrm{x})$) (condition of "normal structure"), then F has a common fixer poirt.

Condition of normal structure is of a great importance in the esults of W.A.Kirk and L.P.Belluce. Note that if a Banach space X has normal structure then the ccidition of Theorem 5 follows, but the converse is not true.

EXNMPLY. Consider the space

$$
c_{0}=\left(x=\left(x_{1}, x_{2}, \ldots, x_{2}, \ldots\right) \mid x_{n} \in P, n=1,2, \ldots \& \operatorname{limx}_{\Delta=1}=0\right)
$$

The space c_{0} has ac: normal structure
($\left.\forall x \in c_{0} ;|x|:=\sup ^{(x} ; x_{n} ; n \in N\right\}$).
For every $x \in B_{+}(0 ; 1):=\left\{y \in c_{0}|l y| \& \forall n \in N: y_{n} \geq 0\right\}$ define $f(x):=0$. then $\therefore(x, f)=\{t x \mid t \in[0,1]\}(x \neq 0)$ and for the point $y:=\frac{x}{2}$ it holds $\sup \{|r-z| \mid z \in A(x, f)\}=\frac{|x|}{2}<|x|=\operatorname{diam} A(x, f)$.

Inspired by theorems in $[4, T h .3,7]$ we nrove
THROREM 6. Suppose (X, d) is a metric space and S is a closure operator. Let X is S-compact. Let eazh closed ball $B(x, r)(x \in X$, $r \in \mathbf{R}_{++}$) be s-closed. Let F be a family of continuous selfmeps of X satisfying:

1) $\exists g \in] 0 ; 1$ [$\forall x, y \in X \forall f, g \in F$:
$d(f(x), g(y)) \leq \max \left\{\dot{Q}(x, y) \quad \operatorname{gdiam}\left(A(x) U_{A}(y)\right)\right\}$;
2) $\forall x \in X(\exists v \in F: v(x) \neq x) \exists y \in A(x): \sup \{d(y, z) \mid z \in A(x)): \operatorname{diam} A(x)$.

Then F has a common fixed puint.

- EROOF.

Using Zorn's Axiom and S-compactness of X we conslude that there exists a minimal nonempty S-closed and invariant under F subset M of X .

Let $a \in M$, and there exists $f \in F$ such that $f(a) \neq a$. Since A (a)CM, minimality of M implies that $M-A(a)$. By 2) there exists a point $y \in A(a)=M$ such that:
$\sup \{d(y, z) \mid z \in I(a)\}=i r<d i a m A(a)$.
Consider the set $A:=(\cap(B(x, r) \mid x \in M\})$. M. It is nonempty because $y \in A$ and it is S-closed as an inter section of S-closed sets. We prove that A is invariant under F. Let us assume tha' there exist $z \in A$ and $g \in F$ such t^{\prime} at $g(z) \notin A$. Then there exists $w \in M$ such that we $B(g(z), r)$. Hence $A_{1}:=B(g(z), r) \cap M$ is a proper subset of M. A_{1} is invariant under F because for each $x \in A_{1}$ and $f \in F$ it holds:
$d(f(x), g(z)) \leq \operatorname{maxia}(x, z) ;$ gdiam $\left(A(x) U_{A}(z)\right) \mid \leq$
$\leq m a x\left(r ; q d i a m M=r\right.$ ($z \in A$ and $\left.x \in A_{2} c_{i l}\right)$.
The set A_{1} is nonempty $\left(g(z) \in A_{1}\right)$ and s-closed. By minimality of M it is clear that $M=A_{1}$. Hence $f^{\prime}(1) \subset A \quad \forall x \in E$. By minimality of M obvious? $\mathrm{M}=\mathrm{A}$. However $\operatorname{diamA} \leq \mathrm{r}<\operatorname{diamA}(\mathrm{a})=\operatorname{diamM}$. The obtained contradiction completes the proof A

We prove in a metriv space with a closure operator a theorem similar to the theorems from $[4,7]$.

THECREM 7 ([16]). Suppose (X, d) is a metric space and S is an algebraic closure operator on X. Suppose $\overline{S(N)=S}(S(A))=: \mathcal{N}^{\prime}(A)$ for each $A \in P X$ and X is S^{\prime}-compact. Let each closed ball $E(X, r) \quad(x \in X$, $r \in \mathbf{R}_{*+}$) he S-closed. If F is a family of continuous selfmaps of X satisfying:

1) $\exists \in \in] 0,1$ [$\forall x, y \in X \forall f, g \in F$:
$\left.d(f(x), g(y)) \leq \operatorname{maxid}(x, y) ; q j_{i a m}\left(A(x) U_{A}(y)\right)\right\} ;$
2) $\forall x \in \because:(\exists v \in F: v(x) \nsim x) \exists y \in A(x)$:
sup $\left\{\inf \left\{\varepsilon \operatorname{sp}\left\{d\left(y, f^{m}(x)\right) \mid m \geq n\right\} n \in Z^{\bullet}\right\} f \in F\right\}$ <diamA (x).
then F has a commn fixed point.
In Theorem 6 in [-] W.A.Kir's examines a more general situation: when there exists an integer N such that $f^{\prime \prime}$ has diminishing ol bital d_ameters on X. A similar theorem is true in a metric spave with a closire operator for one nonexy ansive mapping and also for a family of mappings.

THEOREM 8. Suppose (X, d) is a metric space and S is an algebraic closure operator on X. Suppose $S(A)=S(S(Z))=: S^{\prime}(A)$ for
Aach $A \in \mathcal{Z}$ and X is S^{\prime}-comwact. Let each closed ball $B(X, r)$ ($x \in X$, $r \in \mathbf{R}_{++}$) we S-closed. If F is family of sel fmaps of X satisfying

1) $\exists t \in] 0 ; 1$ [$\forall x, y \in X \forall f, g \in F$:
$\left.d(f(x), g(y)) \leq \operatorname{maxid}(x, y), \operatorname{tdiam}\left(A(x) U_{A}(y)\right)\right\}$;
2) $\left.\exists N \in \mathrm{~N} \forall x \in X^{\prime} \exists v \in F: v(x)+x\right) ? y \in A(x)$:
$\sup \left\{\inf \left\{\sup \left\{d\left(y, f^{\prime \prime}(x)\right) \mid m e n\right\} n \geq N\right\} f \in F\right\}\langle d i a m A(x)$,
Lhen F has a common fixed point.

- Proof.

Using Zurn's Axiom and S^{\prime}-compactness of X we conclude that there exists a minimal subset M of X such tr at:

1) $M \neq \bullet$;
2) $\mathrm{M}=\mathrm{S}^{\prime}(.1)$;
3) $\mathcal{L}(\mathrm{M}) \subset \mathrm{M}, \forall \mathrm{f} \in \mathrm{F}$. .

By Theorem 7 the family $F^{H}\left\{f^{\prime \prime} \mid f \in F\right\}$ has a common fixed point $x^{*} \in M$. We shall prove that x^{*} is common fixed point for family F.

We note that $\mathrm{M}=\mathrm{A}\left(x^{*}\right.$: by ainimality of M .
Let there exist $f \in F$ such that $f\left(x^{*}\right) \neq(. \overbrace{}^{*})$.
there exists e point $y \in A\left(x^{*}\right)$ such that:
$q=\sup \left\{\right.$ inf $\left\{\operatorname{aup}\left\{d\left(y, f^{n}(x)\right) \mid m \geq n\right\} n \geq{ }^{r} \mid f \in F\right\}\left\langle d i a m A x^{\prime} x^{\circ}\right)$.
Let $A_{0} ;=\left\{x^{*}, f\left(x^{*}\right), \ldots, f^{R-1}\left(x^{*}\right) \mid \forall f \subseteq F\right\}$.
Then $\left.q=\sup \operatorname{sid}^{(}(5, z) \mid z \in A_{0}\right\}$, diama $\left(x^{*}\right)$
Let $r \in]$ maxig, tdiamA $\left.\left(x^{*}\right)\right\}$, $\operatorname{diamA}\left(x^{*}\right)\left[\right.$, then $S\left(A_{0}\right) \subset B(y, r)$.
We zonsider the set $A:=(\cap(3(z, z) \mid z \in M) \cap M$. Then:

1) A*o because $y \in A$;
2) A is S-closed as an intersection of S-closed sets;
3) A is invariant under F. Really, if there exint $u \in A$ and $g \in F$ such that $g(u) \in A$, then $\left.B^{\prime} \cdot g(u), r\right)$ is a pruper subset of M. Set $B(g(u), r) \cap M$ is S-closed, nonempty $: g(u) \in B(G i u), r) \cap M$; and invariant under F. Indeed, rhc ssing arbitrary $z \in B(g(v), r) \cap M$ and hef we huve:
$d(g(u), i)(z)) \leq \max \{d(u, z) ; \operatorname{tiam}(A(u) \cup A(z))\} \leq$
Sulax $(r ;$ tdiamM $)=r$.
The minimality of M implies: $M=R(g(u), r) \|_{x}$. The obtained contradiction proves 3).

Therefnre by minimality of M it follows that $\mathrm{M}=\mathrm{A}$. But diamA<r<ui-mM. The obtained cont-rudiction shows that initial assumption is not true. 4

Our article doesn't answer to nany open questions formulated in [17], where situation in details is examined in Banach spaces. We hope that our article will be useful Sor furtier generalizations in a metric space using closure operaco:s of many otter theorems valid in a Banach space.

PEFERENCES

1. Kirk W.A., A fixed point theoren for mappings which do not. increase distancns // Ame:. Math. Monthly, 72 (1965). 1004-1006.
2. Belluce T.P.. Kirk W.A., Fixed point theorems fur families of contraction mappings il pacific J.Math., 18 (1966), 213-217.
3. Bnllune L.P., Kirl W.m., Nonexpansive mappings and rixed-points in Banach spaces // Illinois J.Nath., 11 (1957), 474-479.
4. Belluce L.P., Kirk W.A., Fixed point theorens for certain classes $0 i$ nonexpansive mappings // Proc. Amer."tath.unc., $20(+969), 141-146$.
5. Kirk W.A.. Fixed-point theorems fur nonexpansive mappings // rroc. Ermpos. Pure Nath., 18 imer.Math.Soc.R.I., 1970, 162-168
6. Lim T.C., A fixed-point theorens for families of nouexpansive mappings // Pacific J.Math, 53 (1974), 487-493.
7. Liepin's' A., A cradle-3org for a little t 'ger on fixed points // Topologica? spaces and their mappings, Kiga, 1983, 61-69 (Russian).
8. Takahashi W., A convexity in metric sJace and nonexpansive mapings // Kodai Math.Semin.Reyts, 22 (1970). 142-149.
9. Penot J.P., Fixer point theorems without conve: ity // Analyse won Convex (Pau, 1977), Bull.Scc.Math.Franc: Mem. , 60 (1979), 129-152.
10. Kirk W.A., Ai abst:act fixec point theorem for nonexpansive mappings // Proc.Amer.Math.Soc., 82 (1981), 64~-642.
11. Brodskii M.S., Milman D.P., On the center of a convex set // Dokl. Akad. Nauk SSSR, 59 (1348), 837-840 (Russian).
12. Pelluce L.r., Kirk W.A., Steiner E.r., Normal structure in Banach spaces // Pacific J.Math., 26 (1968), 433-440.
13. jim T.C., A characterization of Normal Structure // Proc.Amer.Math. Soc., 43 (1974), 313-319.
14. Galin'a I., The existence of a cormon fixed point for a commutative family of nonexpansive mappings // Latvijas universitates zinatniskie raksti, Matematika 552, Riga, 1990, 41-44 (Latvian).
15. Galin'a I., Existence of a common fixed poant Lor commutative family of nonexpansive appings in metric syace // Latvijas universitates zinatniskie raksti, Matematika 5b2, Riga, 1991, 163-166 (Latvian).
16. Galin'a I., Existence of a common fixed point for a family of nonexpansive mappings on a metric snane // Application of topology in algevra and differential geometry, 3-rd autumn school, Tartu, 1992, 37-40.
17. Kjrk W.A., Fixed point theory for nonexpansive mappings // I.ecture Notes in Math., V.886, SpringerVerlag, Berlin and New York, 1981, 484-505.
I. Bula naži V.A. Tirka nekustre pinktu teurēmu vispgringjum i.
anotãcija. Pārskata raksts par V.A.Kirka nekustigo punktu teorērmu v_spārinājumiem neizstiepjošu attēlojumu saimēm netriskās telpăs.

Mat hematical Analysis Department.
University of Latvia
19 Raina Boulevard
LV-15C 6 Riga
LATVIA

ERRUR EST"MATTS OF THF APPROXIMATION BY SMOOTHING SPLINES

S. ASMUSS

Summary. In this paper we study the problim of fitting the given measurments of an unknown function by means of smoothiny plecewise linear splines, which minimize a certain combination of smoothness and goodness of the fit. We analyse the influence of a smoothing parameter on tie convergence of the fitting alge-ithm. The exact error estimates on W_{p}^{1} for $n=1,2, \infty$ are obtalined. ANS SC 41A15,65, D10.

0. INTRODUCTI ON

Let $\Delta=<0=t_{1}\left\langle t_{2}\left\langle\ldots\left\langle t_{n}=1\right\rangle\right.\right.$ for some integer $n>0$ be a given partition of the interval $[0.1]$ with equidistant knots. Suppose that $z_{1}, z_{2}, \ldots, z_{n}$ are the measurments on the values of an unknown function f at the rnots of Δ.

By s we denote a piecewise $1 i$ iear continuous runction over the grid \triangle Cthat 1 : the first degree spline), which interpolates f in the sense $s\left(t_{i}\right)=z_{i}$. The classic result of Hollada" show that the interpolating spline s appears as the unique sslution of the problem

$$
\begin{equation*}
\int_{0}^{1}\left[x^{\prime}(t)\right\}^{2} d t=m i n\left\{\int_{0}^{1} \int\left(x^{\prime}(t)\right\}^{2} d t \mid x \in H^{2}, x\left(t_{i}\right)=z_{i}, i=1,2, \ldots, n\right\} \tag{1}
\end{equation*}
$$

on Sobalev space H^{1} of the absolutely cantinuous functions.
In many applizations the stroisg interpolation conditions are not adequate, since, the given data are affected by errors. Therefore. the notion of a smoothing spline s_{p} was defined in [1]. [2] as the solution of the probl $\rightarrow m$
$\int_{0}^{1}\left[s^{\prime} p^{(t)}\right)^{2} d t+p \sum_{i=1}^{n}\left[s_{p}\left(t_{i}\right)-z_{i}\right]^{2}=\min _{x \in H^{1}} \int\left(x_{0}(t)\right]^{2} d t+\rho \sum_{i=1}^{n}\left(x\left(t_{i}\right)-z_{i}\right)^{2}(i)$ Here $\rho>0$ is a given saoothing F rameten, which baiances gondness of the fit agains-smoothiess. The solution of this optimization prollom turns out to be the first augree spline
and bini, cai. be found as the solution of the system of linear equations (see. 3.g. (3)).

The main purpose of this paper is tu estime se the error of smoothing by the first legree splines and to analise on tills basis the influence of the parameter p on the convex; gence of the fitting algorithm.

1. MAIN RESULT

By ' p ' $1 \leq p \leq \infty$, we denote the usual -et argue space of p-int $3 g r a b l e$ functions on $[0,1]$, equipped with the norm $\|r\|_{p}=\left\{\begin{array}{l}{\left[\int|f(t)| d t\right)^{1 / p}, \text { when } p<\infty,} \\ 0 \\ \sup \operatorname{vrat}|f(t)|, \text { wien } p=\infty .\end{array}\right.$

Let W_{p}^{1} be the space of absolutely =continuous functions f isth derivative $f^{\prime} \in L_{p}$ such, that $\left\|f^{\prime}\right\|_{p} \leq 1$. We denote $R_{r, n y}=\sup _{r \in W_{p}^{1}}\left\|r-\sin _{p}(r)\right\|_{\infty}$,
where $s_{\rho}(f)$ is the unique spline associated with f, tint is the solution of tee smoothing problem (a) for $z_{i}=f\left(t_{i}\right)$.

We may now state our main result as follow-
Theorem. For an ever n we have
$R_{\rho, n, 1}=\frac{1+\rho h}{1+\rho h / 2+\sqrt{\rho h(1+, h h / 4)}}\left(1-\beta_{1}(\rho h, n)\right)$.
$R_{\rho, n, 2}=\sqrt{h} \frac{\sqrt{i+\rho h}}{2 \sqrt{\rho h(4+p h)}}-\left(1-, 3_{2}(p h, n)\right)^{1 / 2}$.
$\left.R_{\rho, n, \infty}=h \frac{\sqrt{4+\rho h}}{2 \sqrt{\rho h}} \because-\beta_{\infty}(\rho h, \rightarrow)\right)$.
where $h=1 /(n-1)$.
$c=1+i h / 2+\sqrt{p h\left(1+p^{h} /+\right)}$.
(B)

$$
\begin{aligned}
& \beta_{1}(\rho h, n)=\frac{c^{2}-1}{c^{2 n}-1}, \quad \beta_{\infty}(\rho h, n)=\frac{2}{c^{n / 2}+1}, \\
& \beta_{2}(\rho h, n)=\frac{\left(c^{2 n}+1\right) c^{n}(2 n+1) \rho h(4+\rho h)}{(2+\rho h)\left(c^{2 n}-1\right)^{2}}-\frac{\left(c^{n}+1\right) \sqrt{\rho h(4+\rho h)}}{\left(c^{2 n}-1\right)}
\end{aligned}
$$

Proof of the theorem is based on the following results.

2. INTEGRAL REPRESENTATI ON OF THE ERROR

Our approach follows [4]. where one smoothing problem was investigated by introduction of a special basis. Let us denote by $s_{\rho, i}$ the unique first degree smoothing spline associated with the vector $e_{i}=c \delta_{i 1}, \delta_{i 2}, \ldots, \varepsilon_{i n}{ }^{2}$, where $\delta_{i k}$ is the Kronecker symbol. Then $s_{p, 1}, s_{p, 2}, \ldots, s_{p, n}$ form a basis in the space of piecewise linear continuous functions over the grid Δ, and the solution s_{p} of the smoothing problem (2) has an expansion

$$
s_{\rho}(t)=\sum_{i=1}^{n} z_{i} s_{\rho, i}(t)
$$

The object of this section 15° to obtain the integral representation of the error $f-s_{p}(f)$ for $f \in W_{p}$. Taking into account that the smoothing operator s_{p} is 1 inear and exact for constant functions, we may assume that $f(O)=0$. Thus

$$
f(t)=\int_{0}^{1} f^{\prime}(\tau) p(t, \tau) d \tau, t \in[0,1]
$$

where $\rho(t, \tau)=\theta(t-\tau)$, Θ is the unit Heaviside function. Therefore, we can write

$$
\begin{aligned}
& s_{\rho}(f, t)=\sum_{i=1}^{n} s_{\rho, i}(t) \int_{0}^{1} f^{\prime}(\tau) p\left(t_{i}, \tau\right) d \tau= \\
& =\int_{0}^{1} f^{\prime}(\tau) \sum_{i=1}^{n} s_{p, i}(t) \phi\left(t_{i}, \tau\right) d \tau=\int_{0}^{1} f^{\prime}(\tau) s_{\rho}(\phi(\ldots, \tau), t) d \tau,
\end{aligned}
$$

from which we have

$$
f(t)-s_{\rho}(f, t)=\int_{0}^{1} f^{\prime}(\tau) K_{\rho}(t, \tau) d \tau
$$

where

$$
K_{p}(t, \tau)=\varphi(t, \tau)-s_{p}(\varphi(, . \tau), t)
$$

For further investigation of the error it is useful to transform the expression of tie kernel K_{p}
$K(L, T)=\left\{\begin{array}{l}\left.\left.1-\sum_{k=m}^{n} s_{p, k}(t) \text {, whit } T \in\right] t_{m-1}, t_{m}\right] \cap[a, t] \text {, }, ~, ~\end{array}\right.$

Since $\sum_{k=1}^{n} \rho_{p, k}(t)=1$, we conclude that
$K_{\rho}(t, t)= \begin{cases}\left.\left.u_{\rho, m-1}(t), \text { when } \tau \in\right] t_{m-1}, t_{m}\right] \cap[a, t], \\ \left.\left.\left.\left.-v_{\rho, m}(t), \text { when } t \in\right] t_{m,-1}, t_{m}\right] n\right] t, b\right],\end{cases}$
(8)
where
$u_{\rho, m}(t)=\sum_{k=1}^{m} s_{\rho, k}(t), \quad v_{\rho, m}(t)=\sum_{k=m}^{n} s_{\rho, k}(t)$.
From (7) we can arrive at the error bound
$\left|f(t)-s_{p}(f, t)\right| \leq\left\|K_{f}(t, .)\right\|_{q} \quad 1 / p+1 / q=1$.
One can easily see that this esilmate is exact on W_{p}^{1}. This completes tire proof cf the following lemma.

Lemma 1. Let $s_{p}(r)$ be the first degree smoothing spline associated with $f \in W_{p}, 1 \% p \leqslant \infty$, then for any tell 0,11 . We have

$$
\sup _{f \in W_{p}^{2}}\left|f(t)-s_{\rho}(f, t)\right|=\left\|K_{\rho}(t, .)\right\|_{q} \mid
$$

where $1 / p+1 / q=1$ and K_{p} is defined by (B).

3. BASIS SFIINE?

For further analysis of the error it is necessary to investigate functions $s_{\rho, k}$, $u_{\rho, m}$, $V_{\rho, m}$ We begin with Lemma 2, con erning the values of the basis splines $s_{\rho, k}$.

Lemma 2. For $k=1,2, \ldots, n$ and $i=1,2, \ldots, n$ we have $s_{p, k}\left(t_{i}\right)=D_{n}^{-x}$ phd ${ }_{n}: n(i, k) d_{n+1-\max (i, k)}$.
where $\left.C_{d}\right)_{j \in N}$ is the recurrent. sequence defined by
$d_{1}=1, d_{2}=1+p h, d_{j}=[z+p h) d_{j-1}-d_{j-2}, J \geq 3$,
$D_{n}=d_{n+1}-d_{n}$.
Proof. If s_{p} is a plecewise linear function over the grid L, then there exist coefficients $a_{1} \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ such that
$s_{p}(t)=\alpha+\sum_{j=1}^{n} \lambda_{j}\left(t-t_{j}\right) p\left(t, t_{j}\right)$.
By using the expansion (11) the smoothing problem (2) can be reduced to solving the system of linear equations

From (11) and (12a) follows that
$s_{p}\left(t_{i+1}\right)-s_{p}\left(t_{i}\right)=h \sum_{j=1}^{i} \lambda_{j}, 1=1,2, \ldots, n-1$.

Hence

$\left\{\begin{array}{l}\lambda_{1}-h^{-1}\left(s_{p}\left(t_{2}\right)-p_{p}\left(t_{1}\right)\right), \\ \lambda_{i}=h^{-1}\left(s_{p}\left(t_{i-1}\right)-2 s_{p}\left(t_{i}\right)+s_{p}\left(t_{i+1}\right)\right), i=2,3, \ldots, n-1 . \\ \left.\lambda_{n}=h^{-1}\left(s_{p} t_{n-1}\right)-s_{p}\left(t_{n}\right)\right) .\end{array}\right.$
Subst'tutirg (13) into (1ab) wo get

Now wo can consider the basis spiline $s_{p, k}, 1 / k \leq n$. It means that now $z_{i}=\delta_{i k}$. $1=1,2, \ldots, n$. If $k \geq 2$, ther for $1 \leq k-1$ from (14) anc (150 wo obtain
$p_{\rho_{i}}\left(t_{2}\right)=(1+\rho h) m_{\rho_{i}}\left(t_{1}\right)$.
$s_{\rho, k}\left(i_{i}\right)(2+\rho h) s_{p, k}\left(t_{i-1}\right)-s_{\rho_{1}}\left(t_{i-2}\right), 1=3,2, \ldots . k$.
Therefore
$=p_{, k}\left(t_{i}\right)=1_{i} s_{p k}\left(t_{i}\right), i=1,2, \ldots, k$.
Similar arguments show that if $k \leq n-1$. then. for $1 \geq k+1$ irobu
(15) ard (10) it follows
$s_{\rho, k}(t)=,d{ }_{n+1-i} s_{\rho, k}\left(t_{n}\right), i=k, k+1, \ldots, n$.
Let now $2 \leq k \leq n-1$. Comparing (17) with (18) for $1=k$, we get $s_{\rho, k}\left(t_{i}\right) d_{k}=s_{\rho, k}\left(t_{n}\right) d_{n+1-k}$. Taking into account this equality, by substituting the values $s_{p, k}\left(t_{j-1}\right)$ $s_{\rho, k}\left(t_{k}\right)$ and $s_{\rho, k}\left(t_{k+1}\right)$, received from (17) and (18), into
(15) we get
a) $s_{\rho, k}\left(t_{2}\right)=\rho h d_{n+1-k} D_{n, k}^{-1}$, b) $s_{\rho, k}\left(t_{n}\right)=\rho h d_{k} D_{n, k}^{-1}$,
(19)
where $D_{n, k}=d_{k} d_{n+2-k}-d_{k-1} d_{n-k+1}$. Finally from (17), (18) and
(19) we can write
$s_{\rho, k}\left(t_{i}\right)=p h D_{n, k}^{-1} d_{\text {minci,k) }} d_{n+1-\max (i, k)}, i=1,2, \ldots, n$.
(20)

For $k=1$ (respectively for $k=n$) the equality (20) follows from (18) and (19b) Crespectively, from (17) and (19a)). this latter can be obtained by substituting (18) for $i=n$ into (16) (respectively. (17) for $i=1$ into (14)).

To complete the proof, we show that $D_{n, k}$ does not depend on k because

$$
\begin{aligned}
& D_{n, k+1}=d_{k+1} d_{n-k+1}-d_{k} d_{n-k}=\left((2+\rho h) d_{k}-d_{k-1}\right) d_{n-k+1}- \\
& -d_{k}\left((2+\rho h) d_{n-k+1}-d_{n+2-k}\right) \approx d_{k} d_{n+2-k}-d_{k-1} d_{n-k+1}^{d}=D_{n, k} . k \geqq 1 .
\end{aligned}
$$

Hence for $k \geq 1$
$D_{n, k}=D_{n, n}=d_{n}(1+\rho h)-d_{n-1}=d_{n+1}-d_{n}$.
Remark. It is useful for the future to know the expressions for d_{j}. For the roots c_{1} and c_{2} of the characteristic equation of the recurrent relation (10) we have $c_{1}=c^{-1}, c_{2}=c$, where c is defined by (B). Therefore, $d_{1}=\gamma_{1} c_{1}^{j-1}+\gamma_{2} c_{2}^{j-1}$, where values γ_{1} and γ_{2} can be received by using conditions $d_{1}=1, d_{2}=p h+1$. We note that $c_{i}=(4+\rho h) \gamma_{i}^{2}$, $1=1, \hat{c}$. Thus
$d_{j}=\frac{c^{j-1 / 2}+c^{-j+1 / 2}}{\sqrt{4+p h}}, j=1,2 \ldots$.
Lemma 3. For the splines $u_{\rho, m}$ and $v_{\rho, m}, m=1,2, \ldots, n$, defined in (θ), we have
$u_{\rho, m}\left(t_{i}\right)=D_{m} D_{n}^{-1} d_{n+1-i}, 1 \leq m$,
$v_{p, m}\left(t_{i}\right)=D_{n+1-m} D_{n}^{-1} d_{i}, 1 \geqq m$.
(22)

Proof. From the previous lemma follows that
$u_{\rho, m}\left(t_{i}\right)=\rho h D_{n}^{-1} d_{n+1-i} \sum_{k=1}^{m} d_{k}, i \leq m$.
$v_{\rho, m}\left(t_{i}\right)=\rho h D_{n}^{-1} d_{i} \sum_{k=m}^{n} d_{n+1-k}=\rho h D_{n}^{-1} d_{i} \sum_{k=1}^{n+1-m} d_{k}, i \geq m$.

By using (21). direct calculations of the sum
$\sum_{k=1}^{l} d_{k}=\frac{1}{\sqrt{4+\rho h}} \sum_{k=1}^{L}\left(e^{k-1 / 2}+c^{-k+1 / 2}\right)=\left(d_{i+1}-d_{l}\right) / \rho h=D_{i} / \rho h$
give the final result.

4. PROOF OF THEOREM

From Lemma 1 follows that
$R_{p, n, p}=\max _{t \in(0,1)}\left\|K_{p}(t, .)\right\|_{q}, 1 / p+1 / q=1$
(23)

So, to prove the theorem we need the norms $\left\|X_{p}(t, .)\right\|_{q}$ for $q=1,2, \infty$.

We turn now to the problem of investigation of $k_{p}(t$.$) .$ Let us suppose that t is a fixed point in $\left[t_{i-i}, t_{i}\right], 2 \leq i \leq n$. According to (8) the function $K_{\rho}(t,$.$) is piecewise constant$ over the grid $\Delta u(t)$. So. it is sassy to see that $\left\|K_{\rho}(t, .)\right\|_{s}=h \sum_{m=1}^{i-2} u_{\rho, m}(t)+\left(t-t_{i-1}\right) u_{\rho, i-1}(t)+$

$$
+\left(t_{i}-t\right) v_{\rho, i}(t)+\sum_{m=i+1}^{n} v_{p, m}(t) .
$$

$$
\begin{aligned}
& \left\|K_{p}(t, \ldots)\right\|_{2}=\left[h \sum_{m=1}^{i-2} u_{p, m}^{2}(t)+\left(t-t_{i-1}\right) u_{p, i-1}^{2}(t)+\left(t_{i}-t\right) v_{p, i}^{2}(t)+\right. \\
& \left.+h \sum_{m=i+1}^{n} v_{p, m}^{2}(t)\right]^{1 / 2}, \\
& \left\|K_{\rho}(t, \ldots)\right\|_{\infty}=\max \left(u_{\rho, 1}(t), \ldots, u_{\rho, i-1}(t), v_{p, i}(t) \ldots \ldots v_{p, n}(t)\right) \\
& \text { (there } \left.\sum_{m=1}^{k} a_{m}=0 \text { if } 1>k, \text { independently of } a_{m}\right) .
\end{aligned}
$$

Taking into account that runcticns $u_{f, m}$ and $v_{\rho, m}$ are linear on $\left[t_{i-1}, t_{i}\right]$ and using the equalities

$$
\left.\operatorname{Liax}_{m=1, \ldots k} D_{m}=D_{k}, \sum_{m=1}^{p} D_{m}=d_{m+1}^{-1}, \quad \sum_{m=1}^{k} D_{m}^{2}=\left[D_{2 k}-(2 k+1)_{p h}\right) \sim 4+p_{i 1}\right)
$$

by Lemma 3 we obtain that

$$
\begin{equation*}
\left\|K_{p}(t, .)\right\|_{q}=h^{1 / q} D_{n}^{-1} g_{q, i}(\omega), q=1,2, \infty_{n} \tag{24}
\end{equation*}
$$

where $\omega=\left(t-t_{i-1}>M\right.$.

$$
\begin{aligned}
& g_{1, i}(\omega)=\left(d_{i} \omega+d_{i-1}(1-\omega)-1\right)\left(d_{n+1-i} \omega+d_{n+2-i}(1-\omega)\right)+ \\
& r\left(d_{i} \omega+d_{i-1}(1-\omega)\right)\left(d_{n+1-i} \omega+d_{n+2-i}(1-\omega \omega-1)\right. \text {. } \\
& =s_{z, i}^{2}\left(\omega^{\prime}=\left[D_{i-1}^{2} \omega+()_{z i-4}-(2 i-30 p h)<(4+p h)\right]\left[d_{n+1-i} \omega+d_{m+2-i}(1-\omega)\right]^{2}+\right. \\
& \left.+\left(D_{n+1-i}^{2}(1-\omega)+\left(D_{2 n+1-8 i}-(2 n+1-21) p h\right)<1+p h\right)\right]\left(d_{i} \omega+d_{i-i}(1-\omega)\right)^{2}
\end{aligned}
$$

$$
a_{c, i}(\omega)=\max \left\{D_{i-1}\left(d_{n+1-j} \omega+d_{n+1-i}(i-\omega)\right){ }_{n} n_{n+1-i}\left(d_{i} \omega+d_{i-1}(1-\omega)\right)\right\}
$$

According to (23) and (24), 10 get, $(30-C 3)$ wed the

Let us start with aw, By investigation of ti- first enc , The second derivatives or $g_{1, i}$ w arrive at the conclusions e) $9 n, i(\omega)=-40_{i-1} D_{m+1}<0$.
b) $g_{1, i}^{\prime}()=0 \Rightarrow \omega=\omega_{1, i}=1 / 2+\left(1 / \mu_{n+2-i}-1 / \mu_{i}\right) / 4$.
where $\mu_{k}=\left(d_{k}-d_{k-1}\right),\left(2 d_{k}-1\right)=\left(1-\left(2 d_{k-2}-1\right) \sim\left(2 d_{k}-1\right)\right) / 2$.
The estimate $0<\mu_{k}<1 / 2$ gar antes that $\omega_{1, i} \in[0,1]$. Therefore $\max \quad g_{1, i}(\omega)=g_{1, i}\left(\omega_{1, i}\right)=\left(\xi_{i}^{2}-1\right) / 2$,
(26)
wet 0,13
where we der-oted

$$
\begin{equation*}
\xi_{i}=D_{i-1}^{1 / 2} D_{n+1-i}^{-1 / 2}\left(d_{n+1-i}-1 / 2\right)+D_{i-1}^{-1 / 2} D_{n+1-i}^{1 / 2}\left(d_{i-1}-1 / 2\right) \tag{27}
\end{equation*}
$$

In order to est' mate F fol $i=?, 3, \ldots$ in we transform (27) to

$$
F_{i}=\frac{2\left(c^{n}-c^{-3}\right)-\left(c^{i-1}-c^{-i+1}\right)-\left(c^{n+1-i}-c^{-n-1+i}\right)}{2\left(c^{i-1}-c^{-i+1}\right)^{1 / 2}\left(c^{n+1-i}-c^{-n-1+i}\right)^{1 / 2}}
$$

By differentiating ξ_{i} (as a function of $x=1, x \in[2, n]$)

$$
\xi_{i}=\left(c^{i-1}-e^{-i+2}\right)^{-2 / 2}\left(e^{n+1-i}-e^{-n-1+i}\right)^{-3 / 2} n_{i} 1 n c / z
$$

where $n_{i}=\left(c^{n+1-i}-c^{-n-1+i}\right)+\left(c^{i-2}-c^{-i+1}\right)-2\left(c^{n+2 \cdot 2 i}-c^{-n-2+2 i}\right)$, we obtain than ξ_{i} O for $i_{*}=1+n / 2$.
Since $\eta_{i}<0$. we conclude that $\xi_{i_{*}}$ is the maximal value of ξ_{i}.
Taking into account (25) and (2J) we get the final result

$$
\begin{aligned}
R_{\rho, n, \infty} & \left.=h D_{n}^{-1} g_{1, i}\left(\omega_{n, i}\right)=h D_{n}^{-1} D_{n / 2}(D)_{n / 2}-2\right) / 2= \\
& =h \frac{\sqrt{4+\rho h}}{2 \sqrt{\rho h}}\left(1-2 /\left(e^{n / 2}+1\right)\right]
\end{aligned}
$$

In a similar way wo investigate $g_{2, i}$. Analysing the first, the second and the third derivatives of $g_{2, i}^{2}$ on $[0.11$:
a) $\left(g_{2, i}^{2}\right) \cdots(\omega)=0$
b) $\left(g_{2, i}^{2}\right) "(\omega)=\left(g_{2, i}^{2}\right){ }^{\prime \prime}(1 / 2)=-\left(v_{i}+v_{n+2-i}\right)$, where

$$
v_{k}=D_{k-1}^{2}\left[2 D_{n+3-2 k}-D_{n+1-k}^{2}-2\left(D_{2 n+2 k}-\rho h(2 n+1-2 l \cdot)\right)<(4+\rho h)\right)>0
$$

c) $\mathrm{Cg}_{2, i}^{2}{ }^{2} \cdot(\omega)=0 \Rightarrow \omega=\omega_{2, i}$.

$$
=\frac{1}{2}+\frac{2 \rho h}{4+\rho h} \frac{1 D_{2 n+2-2 i}(n+2-i) D_{2 i-i}-(4+\rho h)\left(D_{i-1}^{2}-D_{n \cdot i-i}^{2}\right) / 2 \rho h}{v_{i}+v_{n \cdot 2-i}},
$$

we conclude that

$$
\max _{\omega \in[(, 1]} g_{2, i}(\omega)=g_{2, i}\left(\omega_{2, i}\right)
$$

It is easy to see that $g_{2, i_{*}}\left(\omega_{2, i}\right)$, when $i_{*}=1+n / 2$, is the maximal value of $g_{2, i}\left(\omega_{2, i}\right)$ for $i=2,3, \ldots, n$. By (25) this proves that
$R_{\rho, n, 2}=\sqrt{h} D_{n}^{-1} g_{2, i_{*}}\left(\omega_{2, i}\right)=\sqrt{h} D_{n}^{-1} g_{2,1+n / 2}$ (1/2).
Direct calculations of the value $g_{2,1+N_{2}}(1 / 2)$ give the final result (4).

Let now $q=\infty$. Taking into account the obvious equality

$$
\max _{\omega \in[0,1]} g_{\infty, i}(\omega)=\max \left(D_{i-1} d_{n+2-i}, D_{n+1-i} d_{i}\right)
$$

from (25) we get
$R_{\rho, n, 1}=D_{n}^{-1} \max _{i=2, \ldots, n}\left\langle D_{i-1} d_{n+2-i}, D_{n+1-i} d_{i}\right\rangle=D_{n}^{-i} \max _{i=1, \ldots, n-1} D_{i} d_{n+1-i}$.
By mathematical induction we prove that the sequence $\left(D_{i} d_{n+1-i}\right)_{2 \leq i \leq n}$ increases. The inequality $D_{i} d_{n+1-i}>D_{i-1} d_{n+2-i}$. is equivalent to
$\frac{D_{i}}{D_{i-1}}>\frac{d_{n+2-i}}{d_{n+1-i}}$
(28)
which for $i=1$ is obvious. Under assumption that (Z8) is true for $1=k$, we obtain that $1 t$ holds also for $i=k+1$

$$
\begin{aligned}
& \frac{D_{k+1}}{D_{k}}-\frac{d_{n+1-k}}{d_{n-k}}=\left[(2+p h)-\frac{D_{k-1}}{D_{k}}\right]-\left((2+\rho h)-\frac{d_{n-1-k}}{d_{n-k}}\right]= \\
& =\left[\frac{d_{n-1-k}}{d_{n-k}}-\frac{d_{n+1-k}}{d_{n+2-k}}\right]+\left(\frac{d_{n+1-k}}{d_{n+2-k}}-\frac{D_{k-1}}{D_{k}}\right]= \\
& =\frac{p h}{d_{n-k} d_{n+1-k}}+\frac{\rho h}{d_{n+1-k} d_{n+2-k}}+\left(\frac{d_{n+1-k}}{d_{n+2-k}}-\frac{D_{k-1}}{D_{k}}\right]>0 .
\end{aligned}
$$

Therefore
$R_{\rho, n, 1}=D_{n}^{-1} D_{n-1} d_{2}=\frac{1+p h}{c}\left[1-\frac{c^{2}-1}{c^{2 n}-1}\right]$.
Thus, the theorem is, proved.

5. CONCLUSI ON

Analysing the results of this paper we want to point out the fo:lowing.

1) Since $\beta_{p}(p h, n)>0, p=1,2, \infty$, from $(\Sigma)-(5)$ we get the inequalities
$R_{p, n, 1} \leq \frac{1}{1+p h / 2+\frac{p h}{\sqrt{h}(1+p h / 4)}}$.
$P_{\rho, n, 2} \leq \sqrt{h} \frac{\sqrt{3+\rho h}}{2^{4} \sqrt{\rho h(4+\rho h)}}, \quad R_{\rho, r \infty} \leq h \frac{\sqrt{4+\rho h}}{2 \sqrt{\rho h}}$
2) It can be shown that as $\rho \rightarrow \infty$, the values $H_{p}(p h, n)$, $p=1,2, \infty$, monot one increase to 1. It means that as $p \rightarrow \infty$, the orrors $R_{p, n, p}$ monotone decrease to the errors $R_{n, p}$ of the interpolation
$R_{n, 4}=1, R_{n, 2}=h^{1 / 2} / 2, R_{n, \infty}=h / c$.
3) For a fisoed p when $n \rightarrow \infty$, the smoothing aigorithm convergens on W_{-}^{4} as $h^{2 / 4}$, and on W_{∞}^{2} as $h^{2 /}$.
4) If $p=0(1 / n)$, than the order of the convergence of the su-pothing al gorithm or $W_{p}^{2}, p=1,2, \infty$, equals to the one of the interpelating al gorithm.

It is userul to tal into account those remaiks when croosing the smoothing parameter p.

REFERENCEES

1. Reinech C.H. Smoothing by spline functions // Numer. Math. 1007. - V. 10, N 3.-P. 177-1 133.
2. Reinsch C.H. Swoothing by spline functions II // Numer. Math. - 1 M71, - V. 10. N 5. - P. AEi-454.
3. Верияиин В.В. Запьядов Ф.С., Павлов Н. Н. З.лстренальиве свойстеа сплайвов и задача сглаямания. - Новосибирск: Hayxa, 1988.-102 c.
4. Аспусс С. В. 06 интерполяции и сгламивании интегральньгх средних параболическини сплайнани // Топо оогчїескіе пространства и ил отобрағенкя. - Рига. 1989.- С. 13-35.
С. Асмусс. Логрешность пғиближения Функций сглахиваюшини сплайнани.

Аннотация. В данной статье рассматривается задача сглаживания исходньх данньх кусочно-линейныии сплайнами, которые :инимизирукт взвешенную сумну Функционалов гладкости и интергэляции. Анализируется влияние параметра сглахивания на сходнность а. горитма. Получены точные на классах $W_{p}^{1}, p=1,2, \infty$, оценки погрешности. УдК 517.5.
S. Asmuss. Nogludinosas aprokimacijas ar splainiem kładas novertejumi.

Anotácila. 「otaja riksta aplokota funkciju aproksimacija ar nogludi nosiem splainiem, kuri minimize kadu nogludinosa un interpolejosa funkcionala kombinaciju. Analizata nogludinosa parametra ietekme $4<$ algoritma konvergenci. Iegati precizi $\mathrm{k} \downarrow$ adas novertejumi $\mathrm{w}_{\mathrm{p}}^{2} \mathrm{kl}$ ase ple $\mathrm{p}=1,2, \infty$.

Department of Mathematics
University of Latvia
Rainis boul., 10
LV-1586 Riga
LATVIA

THE METHOD OF SUCCESSIVE APPROXIMATIONS for solution of a boundary value problem FOR TEIRD ORDER DIFFERENTIAL ECUATION WITH FUNCTIONAL BOUNDARY CONDITIONS

V. Ponomarev

Abstract

Abs'ract. Sufficient conditions are jiven for the convergence of the method of successive approxima :ions. 1991 MSC 34899

Consider the boundary value problem:

$$
\begin{gather*}
x^{\prime \prime \prime}=f\left(t, x, x^{\prime}, x^{\prime \prime}\right) \tag{1}\\
1_{i} x(\cdot)=r_{i}, \quad i=1,2,3, \tag{2}
\end{gather*}
$$

where $\operatorname{feCar}\left(I \times R^{3}, R\right), 1_{i}: L^{2}(I, k)+R, 1_{i}-$ linear continuous functionais, $\quad r_{1} \in R, \quad i=1,2,3, \quad I=[a, b],-\infty<a<b<+\infty, \quad \operatorname{Car}\left(I \times R^{3}, R\right)$ denote the sct of functions $f: I \times R^{3} \rightarrow R_{\text {, satisfying the }}$ Caratheodory conditions [1], $A C^{2}(I, R)$ - the set of differentiable functions with absolutely continuous second order derivatives, $C^{2}(I, R)$ - twice continuously diffrrentiable functions.

In the woik sufficient conditions re given for the metaod of successive approximations to be convergent when solving the probien (1), (2). Sinilar resulta are slated also in the work [<] for three-poiint BVP.

We assume that f satisfies the Lipschitz condition. For any $\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}$ end almost everywhere in I hoids:

$$
\begin{gathered}
\left|f\left(t, x_{1}, x_{2}, x_{3}\right)-f\left(t, y_{1}, 3_{2}, y_{3}\right)\right|= \\
\operatorname{sk}(t)\left|x_{1}-y_{1}\right|+1(t)\left|x_{2}-y_{2}\right|+m(t)\left|x_{3}^{\prime}-y_{3}\right|,
\end{gathered}
$$

where functions $t \rightarrow k(t), t \rightarrow i(t), t \rightarrow m(t)$ are positive, boundei
a.e. in I , senote
$K=$ vrai $\sup _{t \in I} k(t), \quad$ - verai $\sup _{\in \in I}(t), \quad H=v r a i \sup _{t \in I} m(t)$.
Suppose that the 'anogen sous BVP

$$
x^{\prime \prime \prime}=0, \quad 1_{j} x(\cdot)=0, \quad 1=1,2,3
$$

has or $l y$ the trivial solution and denote by $G(t, x)$ a corresponding Green's function. Tben the matrix

$$
A=\left(\begin{array}{lll}
1_{1}(1) & 1_{1}(t) & 1_{1}\left(\frac{t^{2}}{2}\right) \\
1_{2}(1) & 1_{2}(t) & 1_{2}\left(\frac{t^{2}}{2}\right) \\
1_{3}(1) & 1_{3}(t) & 1_{3}\left(\frac{t^{2}}{2}\right)
\end{array}\right)
$$

has an inverse \boldsymbol{A}^{-1}.
Denote by $t+K_{0}(t)$ the scalar product of three-dimensional vectors $\left(1, t, \frac{t^{2}}{2}\right), \lambda^{-1}\left(\begin{array}{l}r_{1} \\ r_{2} \\ r_{3}\end{array}\right)$.

Set for any teI

$$
Q(t)=\mid f\left(t, k_{0}(+), k_{0}(t), k_{0}^{\mu}(t) \mid\right.
$$

and suppose that $q=v r a i \sup _{-\in I} Q(t) \in R$.

Denote

$$
\begin{aligned}
& \int_{a}^{b}|\sigma(t, s)| c ; s=g_{0}(t), \\
& \int_{a}^{b}\left|\sigma_{t}(t, s)\right| d s=g_{1}(t), \\
& \int_{a}^{b}\left|G_{t t}(t, s)\right| d s=g_{2}(t) .
\end{aligned}
$$

Theorem. Let the condition

$$
\max _{t \in I}\left(K g_{0}(t)+L r_{1}(t)+H g_{2}(t)\right)=g<1 .
$$

Then the BVP (?), (2) has a unique solution.
Proof. Let $C^{?}(I, R)$ be a linear normal apace equipped with the norm

$$
\begin{equation*}
|x|=\max _{t \in I}\left(K|x(t)|+L\left|x^{\prime}(t)\right|+M\left|x^{\prime \prime}(t)\right|\right) \tag{3}
\end{equation*}
$$

Define nuccessive approximations

$$
\left.x_{0}(t)=k_{0} ; t\right),
$$

$$
x_{n+1}(t)=\int_{a}^{b} G(t, s) f\left(s, x_{n}(s), x_{n}^{\prime}(s), x_{n}^{\prime \prime}(s)\right) d s+k_{0}(t)
$$

for $n=0,1,2, \ldots$.
Let estimate $\left\|x_{1}-x_{0}\right\|$. We have

$$
\begin{aligned}
& \left|x_{1}^{\prime}(t)-x_{0}(t)\right| \leq q \int_{a}^{b}|G(t, s)| d s=q g_{0}(t), \\
& \left|x_{1}^{\prime}(t)-x_{0}^{\prime}(t)\right| \leq q \int_{a}^{b}\left|G_{t}(t, s)\right| d s=q g(t), \\
& \left|x_{1}^{*}(t)-x_{0}^{a}(t)\right| \leq q \int_{a}^{b}\left|G_{t t}(t, s)\right| d s=q g_{2}(t) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\| x_{1}-x_{0} \mid=\max _{t \in I}\left(K\left|x_{1}(t)-x_{0}(t)\right|+L\left|x_{1}^{\prime}(t)-x_{0}^{\prime}(t)\right|+\right. \\
\left.+H\left|x_{1}^{\prime \prime}(t)-x_{0}^{\prime \prime}(t)\right|\right) \leqslant \max _{t 3 I}\left(\operatorname{Kqg}_{0}(t)+L q g_{1}(t)+M \mathcal{I}_{2}(t)\right)=q g .
\end{aligned}
$$

Estimate $\left|x_{2}-x_{2}\right|$ making use of the Lipschitz condition. We have

$$
\begin{aligned}
& \left|x_{2}(t)-x_{1}(t)\right|=\int_{a}^{b}|\sigma(t, s)| \cdot \mid f\left(s, x_{1}(s), r_{1}^{\prime}(s), x_{1}^{*}(s) \mid-\right. \\
& -f\left(s, x_{0}(s), x_{0}(s), x_{0}^{\prime \prime}(s) \mid d s,\right. \\
& \leqslant \int_{a}^{b}|G(t, s)|\left(h(s)\left|x_{1}(s)-x_{0}(s)\right|+l(s)\left|x_{1}^{\prime}(s)-x_{0}^{\prime}(s)\right|+\right.
\end{aligned}
$$

$$
\begin{aligned}
&\left.+m(s)\left|x_{1}^{\prime \prime}(s)-x_{0}^{\prime \prime}(s)\right|\right) \dot{\alpha} s \leq \int_{a}^{b}|G(t, s)|\left(K\left|x_{1}(s)-x_{0}(s)\right|+\right. \\
&\left.+L\left|x_{1}^{\prime}(s)-x_{0}^{\prime}(s)\right|+M\left|x_{1}^{\prime \prime}(s)-x_{0}^{\prime \prime}(s)\right|\right) d s \leq \\
& \leq\left|x_{1}-x_{0}\right| \cdot g_{0}(t) \leqslant q g g_{0}(t)
\end{aligned}
$$

Analogously

$$
\begin{aligned}
& \left|x_{2}^{\prime}(t)-x_{1}^{\prime}(t)\right| \leqslant q g g_{1}(t) \\
& \left.\mid x_{2}^{\prime \prime} ; t\right)-x_{1}^{\prime \prime}(t) \mid \leqslant q g g_{2}(t)
\end{aligned}
$$

i.e.

$$
\begin{gathered}
\left|x_{2}-x_{1}\right|=\max _{t \in I}\left(K\left|x_{2}(t)-x_{1}(t)\right|+-\left|x_{2}^{\prime}(t)-x_{1}^{\prime}(t)\right|+\right. \\
\left.\left.+H \mid x_{2}^{\prime \prime}(t)-x_{1}^{\prime \prime}, t\right) \mid\right) \leq \max _{t \in I}\left(K g g_{0}(t)+L q g g_{1}(t)+M g g g_{2}(t)^{\prime} \leq\right. \\
\leq q g \max _{t \in I}\left(K_{0}(t)+L g,(t)+M g_{2}(t)\right)=q g^{2} .
\end{gathered}
$$

By induction we have for $n: 0,1, \ldots$

$$
\left|x_{n+1}-x_{n}\right|=q g^{n}
$$

Let us show that the sequence $n \rightarrow x_{n}$ is fundamental. We have

$$
\begin{gathered}
\left|x_{n+p^{-x} n}\right|=\left|x_{n+p^{-x_{n+p-1}} \mid+}+\left|x_{n+p-1}-x_{n+p-2}\right|+\ldots+\left|x_{n+1}-x_{n}\right|=\right. \\
=q g^{n+p-1}+q g^{n+p-2}+\ldots+q g^{n}=\frac{g\left(g^{n}-q^{n+1}\right)}{1-g}=\frac{q q^{n}}{1-g} .
\end{gathered}
$$

Hence fundamentality of the sequence $n \rightarrow x_{2}$ follow and, in view of the completness of $C^{\prime}(I, R)$ with respect to the norm (3), it converges to an element $y \in C^{2}(I, R)$ Bloch that

$$
Y(t)=\int_{a}^{b} g(t, s) f\left(s, Y(z), Y(s), Y^{(}(s)\right) d s+k_{0}(t)
$$

This maris that $\operatorname{yanc}^{2}(I, B)$ nd therefure solves the BVP (1), (2).

Show the uniqueness of Y. Let Y_{1} be another solution of the
problea (1), (2). Then

$$
\begin{aligned}
& \left|Y-Y_{1}\right| \leq \max _{t \in I}\left(K \int_{a}^{b}|\cap(t, s)| \cdot \mid f\left(s, Y(s), Y^{\prime}(s), Y^{\prime \prime}(s)\right)-\right. \\
& -f\left(s, Y_{1}(s), Y_{1}^{\prime \prime}(s), Y_{1}^{\prime \prime}(s)\right) \mid d s+ \\
& \text { b } \\
& =L \int_{a}\left|G_{t}(t, s)\right| \cdot \mid f\left(s, Y(s), Y^{\prime}(s), V^{\prime \prime}(s)\right)- \\
& -f\left(s, Y_{1}(s), Y_{1}^{\prime}(s), Y_{1}^{\prime \prime}(s)\right) \mid d s+ \\
& +M \int_{a}^{b}\left|G_{t t}(t, s)!\right| \cdot \mid f\left(s, y(s), y^{\prime}(s), y^{\prime \prime}(s) \mid-\right. \\
& -f\left(s, Y_{1}(s), Y_{1}^{\prime}(s) \quad Y_{1}^{\prime \prime}(s)\right) \mid d s=\left\|Y-Y_{1}\right\| g<\left\|Y-Y_{1}\right\| \text {. }
\end{aligned}
$$

The contraciction obtained proved the tleorem.
Remark. An analogous assertion is valid for n-th order equatiuns.

Refarences

1. Coddington E., Levinson N. Theory of ordinary differential equations. Moscow, IL, 1958.
2. Bespalova S.P. Uniqueness of solutions in a three-point boundary value problem for chird order ordirary dirferential equation // Latvian Math.Annual, 21. - Rigat \&inatne, 1977. - P.3-17.
В. Пономарев. Метод плследовагельных приблитения для решения краерой заддчк для дифференциального уравненкя третвего порядіка с функииональныпи граничньеми условиями.

Аннотация. Приволятся достаточяне условля для сходимости метода последовательных приближений к решерио краевой г здачи. удК 517.927
V.Poriomarjovs. Pakăpenisko tuvinājumu netode robežproblčmas atrisinăsanai treşās kărtas diferencialvienăcojumam ar funkcionaliem robežnosačjuriew.

Anctācija. Doti pietiekamie nosacrjumi pakrpenisko tuvinãjumu melodes konverğencei az robežproblämas atrisinājuru.

University of Latvia, I.istitute of Mathematica and Computer Science,
Rainis Loulevard 29,
Riga, LATVIA, TV-145!

Latvijes Universitātes Zinētnis'ie Raksti, 595 (1004). latemātike

Some personal reflections on ICM94
The ICM (the International Congress of Mathematicins) was held in Zurich (Switzerland) from August? till August 11. This was the 22 Congress and it had some important features.
first of all there was a very large number of participan's from East European countries and Russia (if compared with the situation at the previous Concresses). This can be explained by two reasons. First, now there are no artificial, administiative cr political obstacles in these countries and people are free to move abroad. Second, the Organizing Committee of the Congress had carried out an enormous work in order to obtain f-nancial help for participants from these countries.

Especially 1 would like to emphasize the understanding of the imnortance of science, mathematics in particulaz, and necessity to support it financially, which was manifested by the Switzerland Gqvern.ant,by the authorities of the Zurich canton and by the lbusiness : (especially, by bant:).

And, on the second hand, with this a'titude towards mathematics quite good relates the opinion expressed at tre Congress that the scientific (and, in particular mathematical among them) community must take care to explain to the wide sections of the population about the rolc of the sclence and the possible benefits which the society can get out from it.

One of the real steps in this direction was the fact tiat at the ICM94 there was organiz id a special section: applications of mathematics in the science (in fact this meant applications of mathematics of the needs of the society).

The financial help, offered by the Organizinp Committee of the Congress, by the saros Foundation of Latvia and by local sponsors, enabled 8 Latvian mathematicians to participate at the Congress These wathematiciana represented all the main centers of mathematics in Latvia: the Universicy cf Latvia, the Institute of Mathematicp and Computer Science, the Institute of Mathematics and the Riga Technical University - and from the Latvia University of Agriculture.

Unfortunately, because of some lack of information and a certain passivity from some colleagres the investigations of Latvian mathematicians in the field of applications of mathematics were not enough represented at the Congress.

The wor'ing structure of the Congress: Planary Addresses (they were 16), Section Lectures (about 170) and Short Communications in the form of posters (about 1000) seems to be adequate to achieve goals of the Congress. The plenary addresses were aimed to give an insight into the most important problems and current trends in mathematics, the section lectures - mainly io present surveys of the recent development of actual problems in
a given field of mathematics mille the purpose of the short communications bas to give an idea about the latest -esults. U. fortun tely a part of lecturers (mainly In sections) did not st sceeded hese purposes. Some lectures were full of technical details lacking clear exposition of the place of the discussed subject angong other investigations.

From my professional point of view I would like to sas that 1 havegot a feeling that now the theory of nonlinear partial differential equations is being developid at the bouadaries of the present knowladge. And, by making small steps in vaiious directions the search of new ideas, new statements of problems is going on. In partic:lar, to meet the demands of nonlinearities one can notice the tendency to work in more ganeral spaces of functional arguments. It seems that the traditional (and handy or convenient to use) spaces, for instance starfard sobolev spaces, are not adequate enough to deal with new nonlineqr problems. Quite of ten and fruitful is used the approach: by considering non-trivial refined examples to describe how far the existing ideas. methods, etc. could be applied.

Particularly one could come to these conclusions from tie lectures given by Fields medalis's. As it is well known the Fields Medals is b certain analogre of ti.e Nobel prize prosented to mathematicians. These medals are being awarded to young, i.e., below 40 years mathematicians for their outstanding achievements in mathemetics.

This time the following mathematicians were awarded by the Fields Medal: P.L.Lions (Uqiversite Paris-Dauphine) for his investigations in the theory of nonlinear pritial differential equations; J.Bourgain (University oi Illinois, Institut des Haute; Etudes Scientifiques, Princeton) for the investigations in the theory of finite dimensional Banach spaces; J.-C.Yoccoz (Universite Paris-Sud) for the investigations in dynamic systems; E. Zelnanov (I'niversity of Madison) for the investigations in the group theory.

The special Rolf Nevanlinna Prize in the field of applications of matheluatics in informatics was awarded to A.widgereton (Hebrew University) for his investigations in the field of the complexity theory.

For me it was very interesting that one of the plelds Medals was awarded for investigatious which were close to my proiesional field of work.

At the closing ceremon of the Congress the new President of 'he Ift rnational Union of Mathematicians as well as the place anj time 0 . the nert International Congress of Mathernticians were anounced.

Now the President ol the IUM is professor David Mumford from th. Harvard University and the next Congress will be held in the August of 1098 in Berlin.

In the conclusion 1 would like to say that the Congress was very valuable for ma from the point of view of the general ma, hematical education and particulariy it extended my outlook o. mathematics on t! 3 whole.

[^0]: © Supported in part by scholarship $\mathbf{~ 4}-016$ from the 'Latvijas Izglitibas Fonds'.

 - Supported in part by grant $94 / 684$ from Latvian Council of Science. The author is also indebted to the administration of the Riga Carriage-Building Works for providing conditions for the research.

[^1]: *This work is partially supported by Latvian Science Council Grant No 93/254

[^2]: Suppoted io part by grant 94/684 from Lavien Council of Science. The author is also indebted to the adninistratica of the Riga Cariage-Brilting Warka for providing conditions for the research.

[^3]: - Supported by grant $93 / 315$ from the Latvian Council of Science

[^4]: 4 The author is indebted to the administration of Riga Carriage-Building Works for providing conditions for the research

[^5]: W.A.Kir'k and L.P.Belluce generalized Theorem 1 in [2] as following:

