
Automated Testing of iOS Apps:

tTap Extension for Apple UIAutomation
Ivans Kulesovs

Faculty of Computing, Enterprise 2.0,
University of Latvia SIA ”C.T.Co”
19 Raina Blvd., 15/25 Jurkalnes St.

Riga, LV-1586, Latvia Riga, LV-1046, Latvia
+371 27150595

ivans.kulesovs@gmail.com

Aigars Susters
Enterprise 2.0,
SIA ”C.T.Co”

15/25 Jurkalnes St.
Riga, LV-1046, Latvia

+371 26118622

aigars.susters@gmail.com

ABSTRACT

Mobile apps tend to extend or even substitute the existing IT

solutions. In the corporate world, according to the statistics, the

preference is given to iOS devices. The complexity of the apps

increases together with the apps quantity. This also increases the

need for automated testing. In a course of the study we compare

the existing test automation solutions for iOS apps and describe

some extensions for Apple UIAutomation tool. We have also

created our own extension called tTap that improves the existing

ones and solves several issues that does not work in the clean

UIAutomation. We describe the implementation details of our

extension and share the practical experience of testing iOS apps

using it. We also describe the part of our test lab solution, while

the description of the full test lab is planned in the consecutive

studies.

Categories and Subject Descriptors

I.2.2 Automatic Programming: Program verification.

D.2.4 Software/Program Verification: Validation, Reliability.

D.2.5 Testing and Debugging: Testing tools.

General Terms

Verification, Reliability.

Keywords

iOS, test automation, mobile, apps.

1. INTRODUCTION
Testing is one of the important parts of the software development

process. In order to reduce the time needed for the regression

testing and to make more time available for the exploratory testing

or just to decrease the costs tests tend to be automated.

Tests could be automated in the various levels. In terms of return

on investments including the maintenance costs the following test

coverage model is thought to be the right one in the ideal world:

the most of the tests are automated on the unit level; the least of

the tests are automated on the UI level; different types of the

integration tests lay somewhere in between. The session based/

exploratory manual testing ensures confidence in automated tests.

[6] The model is depicted in Figure 1.

Figure 1. Automated test coverage model per test level [6].

While according to this model the tests on UI level have the least

coverage, these automated end to end tests are still very important

to give the general confidence that previously developed app

functionality, as well as basic UI interactions are still up and

running. Automated tests from this level are probably even more

important for the mobile apps because there are many gestures

like tap, double tap, swipe, drag, etc. to be checked.

iOS from Apple is one of the most popular mobile operating

systems. According to [1], iOS holds 64%, but according to [4],

iOS holds even 73% market share of the enterprise mobile

devices. According to the same [4], iPads hold 91,4% of

enterprise tablets. The authors also work for the company that

produces the mobile apps, mostly iOS native, both for enterprise

and public ones. The enterprise apps are made for the several

Fortune 500 companies.1 These are the reasons why the UI test

automation for iOS native apps was chosen as the main topic of

the study.

1 - http://money.cnn.com/magazines/fortune/global500/index.html

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

http://money.cnn.com/magazines/fortune/global500/index.html

In a course of the study the extension to Apple UIAutomation2

framework called tTap 3 was created. The study consists from the

3 more sections. The Section II is the background study on the

different UI test automation options available for the iOS apps.

The tTap extension for Apple UIAutomation and its usage

patterns are described in the Section III. The Section IV concludes

the study and sets the goals for the future.

2. BACKGROUND STUDY

2.1 Solutions for Automated UI Testing of

iOS Apps
There are several solutions already created/ adapted for mobile UI

test automation, in particular, for iOS apps. The solutions could

be divided into several groups based on the origin, cross-

platformance, and the way of executing the automated commands.

The first big clusters are OEM automation tools vs. the third party

automation tools. OEM automation tools come together with the

OS manufacturer IDE, i.e. UIAutomation by Apple for iOS or

uiautomator4 by Google for Android. All other mobile automation

tools are the 3rd party solutions. These third party solutions can

be divided into two more groups: wrappers above the native

automation tools vs. others that have the prerequisite to

incorporate the custom library into the app source code. The most

of the solutions use API-based approach for recognizing the

object on the screen, while there are some solutions that use

image-based approach for the same purpose. Some of the

solutions offer to run the tests in cloud. While almost each

solution nowadays can run tests both on device and on simulator

on premises, only some solutions support running the tests on the

real devices in cloud. The main market players with characteristics

they posses are shown in Table 1.

The difference between them all lays in the progression described

below:

Apple OEM automation tool is the most robust one between the

API-based tools. It comes with a sufficient set of functions to

build the commonly used test patterns, but the scripting is too

wordy. It is also limited to the one platform.

Wrappers are cross-platform solutions, some of them even come

with cloud testing support. But they add some additional weak

points per platform, per script language, per environment. It

means that if something does not work then the issue could be

related exactly with the code that does wrapping, while the same

command would work in the OEM automation tool.

The solutions that need the 3rd party library integration into the

source code have the same pros and cons as wrappers do. But

there are two additional weak points:

 The code of the app under tests is changed in

comparison to the release version. It increases the

probability of app working differently when it is built

for the automated testing purposes. Of course, the same

applies for all automation solutions, because they all

interfere into the app under test in some way. But there

2 - https://developer.apple.com/library/mac/documentation/

DeveloperTools/Conceptual/InstrumentsUserGuide/Usingthe

AutomationInstrument/UsingtheAutomationInstrument.html

3 - https://github.com/ivans-kulesovs/tTap

4 - http://developer.android.com/tools/testing/testing_ui.html

is more trust that this interference is properly handled

when the OEM solution is used.

 It is not possible to access the system modal windows/

popovers and device functions from these libraries. Test

framework can access them only by calling the methods

of OEM automation API.

We have considered the following when selecting the proper tool

for UI test automation for iOS apps developed within our

company:

 There is no need for cross-platform support in our case,

because the majority of the apps we produce are iOS

native apps (while we already are creating them using

the cross-platform Xamarin5 tool taking into account the

possible future requests). It is so, because this is what

enterprise clients currently need, as shown by the

statistics.

 We want to limit the investigation time of searching

which of the components has failed if something does

not work.

 We want to decrease the probability of something does

not work after the consecutive update of the tool.

The image-comparison based tools are quite powerful solutions,

but due to the very agile nature of mobile apps development, at

least in our company, when UI and UX can change dramatically

in a couple of weeks we have excluded this option due to the

probable maintenance effort.

Before choosing UIAutomation as the tool to automate UI tests

with, we have done the following:

 Investigated each solution from Table 1

 Took into account the weak points set of each solution

described above

 Took into account the particular environmental options

within our company

When choosing the right tool we have acknowledged the limited

debugging capabilities of UIAutomation due to the own, non

standard JavaScript environment where tests are executed.

2.2 Existing Extensions for Apple

UIAutomation
UIAutomation tests are written in JavaScript. The framework

consists of the most basic functions for all UI elements available

in iOS. [8] The access to some device functions like sending app

to background, changing the volume, setting the location, etc. is

also available. If some custom UI View is used inside the app it

can be accessed as UIAElement class – the superclass for all user

interface elements in the context of the UIAutomation. The

problem lies in creating the commonly used test notations from

these basic functions that are also quite wordy. It means that the

goal of each extension is to create an ability to write the tests

using the less repetitive higher level commands in a style more

common for the testers. Each extension follows the notation style

convenient for the creator. Both most popular extensions are

distributed under MIT license.

5 - http://xamarin.com/

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/UsingtheAutomationInstrument/UsingtheAutomationInstrument.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/UsingtheAutomationInstrument/UsingtheAutomationInstrument.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/UsingtheAutomationInstrument/UsingtheAutomationInstrument.html
https://github.com/ivans-kulesovs/tTap
http://developer.android.com/tools/testing/testing_ui.html
http://xamarin.com/

Table 1. The main market players for iOS UI test automation

Solution Name\

Characteristic

UIAutomation Appium6 Xamarin

TestCloud7

Tosca Mobile8 Cloud

Monkey9

Sikuli10 eggPlant11

OEM X

Wrapper X

3rd party library

in use

 Implements

Selenium

WebDriver

Calabash Modified

MonkeyTalk,

Sikuli

MonkeyTalk

Cross-platform X X X X X X

API-based X X X X X

Image-based X X X

Needs 3rd party

library in source

code

 X X X

Costs Comes together

with Xcode

Free/ pay for

cloud

Paid Paid Free/ pay for

cloud

Free Paid

Device support X X X X X X

Simulator

support

X X X X X X X

Cloud support X

(Simulator

only)

X X

(private cloud with

deviceConnect12

by MobileLabs)

X X

Script languages JavaScript Java, Ruby,

Python, PHP,

JavaScript,

C#

C#,

Ruby

Through IDE, VB,

C#, VBScript

Java,

JavaScript,

MonkeyTalk

commands

Python,

Ruby,

Java

SenseTalk,

Java, C#,

Ruby

Record/ Play

support

X X X X X

CI Support X X X X X X X

Native/ Hybrid X X X X X X X

Web +/-

(need to wrap the

website into

native app)

X

(comes with

wrapper)

+/-

(need to wrap

the website

into native

app)

X

(comes with

wrapper)

X

(comes with

wrapper)

X X

6 - http://appium.io/

7 - http://xamarin.com/test-cloud

8 - http://www.tricentis.com/tricentis-tosca-testsuite/tosca-mobile-plus/

9 - https://www.cloudmonkeymobile.com/

10 - http://www.sikuli.org/

11 - http://www.testplant.com/eggplant/

12 - http://mobilelabsinc.com/products/deviceconnect/

http://appium.io/
http://xamarin.com/test-cloud
http://www.tricentis.com/tricentis-tosca-testsuite/tosca-mobile-plus/
https://www.cloudmonkeymobile.com/
http://www.sikuli.org/
http://www.testplant.com/eggplant/
http://mobilelabsinc.com/products/deviceconnect/

2.2.1 Tuneup JS
The main achievement of TuneupJS13 is the creation of the unit

test like test runner and providing the extensive set of assertions.

The extension has the image comparator inside that is based on

ImageMagic14 tool. It also consists from the set of the commands

that combine several UIAutomation basic commands into one

higher level command making the notation shorter.

2.2.2 mechanic.js
mechanic.js15 is a CSS-style selector engine for UIAutomation. It

also allows accessing UIAElements and executing the commands

with a shorter notation.

3. tTAP EXTENSION FOR APPLE

UIAUTOMATION
When doing the first proofs of concepts in UIAutomation we of

course took a look at both of the previously mentioned extensions.

We decided to take Tuneup JS as a core extension, because CSS-

style of mechanic.js did not seem convenient for us with Java

background. During the extensive test automation process it

appeared that we need the different sets of commands to make our

live easier. That is why we started to cut, rewrite, and extend

Tuneup JS extension that resulted into new extension creation that

we call tTap – target tap. The main reason for this title is that

almost all actions within the extension are executed in absolute

coordinates of the device while still operating on the

UIAElements (UIView and UIViewController) level. The device

(or simulator) is called target in UIAutomation context. The

decision to work in absolute coordinates was made to overcome

several issues that we will describe in a course of this Section.

tTap extension uses the JavaScript test runner and assertion

functions from Tuneup JS extension, as well as borrows some

UIAutomation class extensions and the image comparison idea. It

is worth mentioning that tTap extension is distributed under MIT

license16.

3.1 Solution Details
tTap is not only the notation extension for UIAutomation. It is the

whole test framework model that comes with the template to make

the test domain-specific language (DSL) for the new app more

quickly and in a more convenient way.

The test framework consists from the DSL and tests themselves.

DSL consists from UI libraries and actions sets. Each UI library

and action set in most cases are the separate files.

Single UI library describes all main UI elements of the screen or

of the screen part (e.g. toolbar, menu, etc.). For this purpose the

accessibility identifier is set per each element. The accessibility

labels should not be used for this purpose, because they should be

different per each app language. Accessibility API of iOS uses

labels to navigate within the system and apps using the voice

control, while they still can be accessed by UIAutomation.

Accessibility identifiers should be unique in the most cases, but

sometimes they can be the same for some UI elements groups that

behave in the similar way. UI library is a JavaScript file

containing the constants with accessibility identifiers.

13 - http://www.tuneupjs.org/

14 - http://www.imagemagick.org/

15 - http://www.cozykozy.com/mechanicjs/

16 - http://opensource.org/licenses/MIT

Action set is a JavaScript object that extends the specific Screen

object of the extension. Screen object gives the shorter notation to

access target, app, window, navigation bar, toolbar, or keyboard

elements. Action set consists from functions that search and return

UIAElements by the accessibility identifiers and do the definite

action with these UIAElements.

The modified test runner from Tuneup JS is used to run the test.

Tests follow the unit tests style. The test suite is wrapped into

JavaScript function. There is a separate file where these “test

suite” functions are called in the definite order. We have

introduced the possibility to ignore some tests in general or not to

run some tests if some another test has failed.

UIAutomation allows searching for the element only within one

node of the UI elements tree. tTap implements the recursive

search by accessibility identifier from the root node or from the

definite parent. The idea is taken from [5].

As already mentioned, almost all actions are made on device

(target) level. This is the closest way how touches occur in reality.

Gestures are executed on the target using the calculated center

point of UIAElement in absolute coordinates. iOS recognizes the

object at these coordinates and go through the responder chain

searching the element that executes the actions responding to the

definite gesture, as shown in Figure 2. This solves the following:

 Sometimes, UIAutomation does gesture on the wrong

coordinates if the command is called exactly from the

UIAElement. It sometimes occurs with system windows

like email controller or some context menu, especially if

app is created using some cross-platform solutions like

Xamarin. We have not searched for the reason, but this

workaround works perfectly.

 By default UIAutomation does tap at (0,0) point of

UIAElement, while the real user tends to tap to the

center of the object in the most cases.

 This led to the idea of creation such convenient and

often used function as

UIAElement1.tDragAndDrop(UIAElement2) where the

object on top of which to drop the current object is set

as a parameter.

UIAutomation has quite limited logging capabilities that,

taking into account the JavaScript object nature of UI

elements, is not sufficient for proper debugging. We refer to

debugging here, because there is no other way to debug than

doing extensive logging in UIAutomation environment.

There is more extensive logging mechanism available in tTap

extension.

The authors have improved the image comparison solution

that comes with Tuneup JS. It used to fail when there were

some tens of files on the desktop, because the screenshots

temporary are stored there. We also have rewritten it to do

the comparison of images with some delta. Now its

robustness does not rely on the number of files on the

desktop. It is worth mentioning that UIAutomation itself

allows only capturing the screenshot.

The extension allows switching on/ off the internet. The Link

Conditioner that is the part of Xcode developer tools is used

for that purpose. It is called using the commands written in

Apple Script. The internet from the machine where

http://www.tuneupjs.org/
http://www.imagemagick.org/
http://www.cozykozy.com/mechanicjs/
http://opensource.org/licenses/MIT

automated tests are run should be wirelessly shared with the device under test to use this feature.

Figure 2. The examples of responder chain in iOS [3].

3.2 Practical Usage Experience

3.2.1 Device vs. Simulator
During the test framework adaption for the real enterprise needs

we faced some issues that resulted into decision to run daily or

nightly tests only on the real device. The simulator should be used

only for test design. First of all, there are a couple of things that

just does not work on simulator, e.g. pinch to zoom inside the

scroll view. This was broken starting from iOS7. We have

reported this to Apple, but they said that our bug is a duplicate.

Now it is iOS 8, but pinch to zoom inside the scroll view still does

not work on a simulator. There were also some cases when

buttons on the system modal windows, e.g. mail controller

responded to the automation only after they were tapped manually

for the first time. Of course, this is not acceptable. It could be that

this issue with buttons appeared again due to the usage of

Xamarin cross-platform solution, but the same works properly on

a device.

We have tried to run the tests on simulator for nightly/ daily

builds from the continuous integration (CI) server. Of course, it is

possible that some other builds are executed on the build machine

where these tests were executed. That ended into random test

failures, or into the failures that we could not repeat when running

the same tests on the simulator locally. It appears that simulator

speed can differ significantly during the test execution on the

build machine under an additional load. Even special hooks that

we create for being sure that element is present on the screen did

not help. Another issue is related to keyboard. We have adjusted

the default inter key delay of the keyboard till 0.2 seconds that

makes typing more robust, because it constantly failed on the

simulator of the build machine when switching between the

keyboard types (e.g. numeric, capital letters). But in the cases of

higher load or when build machine was not restarted for a long

time this still did not help. But this trick is still applicable for the

device, because the test typing can fail there as well with the

default delay of 0.03 seconds.

Another thing is that device has ARM processor, while simulator

runs on machine with x86 processor. For example, displaying the

formatted HTML text and using of OpenGL on simulator occurs

in the freezing manner, while the same works OK on the device.

Another example could be the difference in precision of epsilon

value on different architectures. Epsilon is the smallest positive

float value.[2, 7] There are much more differences when running

app in the environments with different architecture. That is why

the results of the tests can just be different in some particular case,

but we focus, of course, on the apps to work properly on the real

device.

The last, but not least thing to be mentioned for the device vs.

simulator battle is that app can crash on the device easier than on

the simulator due to the memory management things.

Finally, we have configured the Jenkins17 server on the separate

build machine with extended test reporting, connected multiple

devices to it and run tests from it using UIAutomation command

line directives. It is worth mentioning, that UIAutomation speed

decreases during the long test runs and it can fail unexpectedly at

the end when they are executed through the UI of the tool, while

we have not expected such unexpected failures when running the

tests from the command line.

3.2.2 Image comparison
There are some situations when there is no other chance to test the

functionality without using the image comparison, while this

solution is thought to be less robust and should not be used

without the real need. In our practice we used image comparison

in such straight-forward cases:

 When drawing the annotations, i.e. most of the OpenGL

activities could be checked like that. The example is

depicted in Figure 3.

 When testing the functionality of the special area

bookmarks on the large space, i.e. the exact viewport of

the definite position and zoom level should be shown

when user taps on the bookmark. The examples are

depicted in Figures 4 and 5.

17 - http://jenkins-ci.org/

http://jenkins-ci.org/

Figure 3. Image comparison example of OpenGL activities.

Figure 4. Image comparison passed test example of viewport bookmark functionality.

Figure 5. Image comparison failed test example of viewport bookmark functionality.

4a. Original bookmarked viewport. 4b. Zoomed out view. 4c. View after navigating via

bookmark.

4d. Comparison result of 1 and 2. The difference is shown in bright red. Small delta is allowed.

5a. Original bookmarked viewport. 5b. Zoomed out view. 5c. View after navigating via

bookmark.

5d. Comparison result of 1 and 2. The difference is shown in bright red.

3a. Start drawing annotations 3b. Drawn annotations 3c. Comparison result

Figure 6. Image comparison testing: the example of comparison with background technique.

The image comparison can be used to check that there is

something else on the screen than just the background. For

example, we have created the app that draws some financial

charts per some clients and other filters using the HighCharts18

JavaScript library. The app is integrated with the server through

REST JSON services that convert the data from database to the

proper format, while the same data is used for same purpose in

some legacy desktop systems. There are already many historical

data inside the database. The main goal of the automated testing

was to verify that some meaningful charts or the table

representation of the same data is shown on the screen. The

more we check – the more confidence is in our solution. We did

this using two hooks:

 displaying and checking the status that is made visible

by the system if app itself or HighCharts library has

determined some exception when trying to parse or to

display the incoming data;

 comparing the chart or table area with background and

logging the warning when the area screenshot is close

to background for more than 95% percents; it allowed

18 - http://www.highcharts.com/

to catch more than 10 bug categories when chart or

table was not displayed on the screen while the app

logic or chart library did not catch the error.

The example is depicted in Figure 5. The test script was iterating

through the different clients, options, filters, etc.

4. CONSLUSIONS AND IMPLICATIONS

FOR FUTURE WORK
In a course of the study the authors have divided the mobile

automation tools that can automate iOS apps into the following

categories: OEM vs. 3rd party, cross-platform vs. single-

platform, wrappers vs. library integration in the app source code;

API-based vs. image-based, etc. The weak points of each

category have been described as well. They all are related to the

additional layers that can break in comparison to OEM solution

from Apple called UIAutomation. Taking into account that most

of the apps in our company are created for iOS, and there is no

need for the cross-platform support currently, we have decided

to stick to UIAutomation solution because of the less number of

weak points in comparison to the other solutions. When

choosing the right tool we have acknowledged the limited

debugging capabilities of this tool due to the own, non standard

JavaScript environment where tests are executed.

6a. App overview with properly drawn chart. 6b. Example when chart is not drawn, but app’s logic or

HighCharts library has caught the error.

6c. Example when chart is not drawn, but neither app’s logic, nor HighCharts library

has not caught the error. Only comparison of chart area with background does.

http://www.highcharts.com/

While automating the UI tests for iOS apps we have created our

own tTap extension for Apple UIAutomation that initially is

based on Tuneup JS extension. tTap is distributed under MIT

license. It comes with the model template for DSL creation

when starting your own test automation project. We have

described the importance of the accessibility identifiers that

should be used to describe the objects in UI libraries. Our

extension also includes the function for recursive search of

UIAElement within the UI tree (while UIAutomation itself

searches only within the single node of the tree) and several

other convenient notations to shorten the test scripts.

 It also overcomes several issues that the authors have faced

during the extensive test automation process like some button on

the system window cannot be tapped or some keyboard key

cannot be pressed. This is done by doing the actions on a target

level in translated absolute coordinates of UIAElement and by

setting the proper inter key delay to allow automation to switch

between the different keyboards types like numbers, capital

letters, etc. The keyboard automation improvements work in all

circumstances on the device when running the tests from the

command line, and in most cases on the simulator of not

overloaded build machine.

We have shared our practical experience convincing why real

tests should run on the real device while simulator in most cases

could be used only as a test design tool. The arguments are the

following: pinch to zoom inside the scroll view does not work

on simulator starting from iOS 7; tests in simulator randomly

fail when are executed on the loaded machine; device uses ARM

processor, while simulator uses x86 processor that just makes

them to behave differently in some situations; it is easier to

crash the app on the device if there are memory leaks than on

simulator.

The authors have improved the image comparison functionality

taken from Tuneup JS that is based on ImageMagic tool. The

situations when image comparison is almost the only option

available are described. They are: tests for elements created by

OpenGl, e.g. drawing the annotations; tests for bookmarks of

viewport of definite zoom and position; tests that compare the

chart or table area with the background indicating when there

are too little or no elements on the screen. Another improvement

is a possibility to switch on/ off the internet or limit its speed

through Network Link Conditioner directly from the test.

It is worth recalling that UI end to end tests in most cases should

be limited to the happy path flows, basic create, read, update,

delete (CRUD) functionality, navigation, and, probably, some

corner cases of the special interest, because the maintenance

effort is still much higher than for the tests from the lower

levels. While we have achieved quite robust solution by using

tTap extension functions and proper DSL model the

maintenance effort is still quite high in comparison to unit or

integration tests.

The authors have configured Jenkins CI server on a separate

build machine for the only purpose of the scheduled and

manually triggered automated UI tests execution on the real

devices. Tests from other levels are executed during each build

on another CI server. This test lab including the tests from the

lower levels should be described in detail in some next

publication, so that the reader could understand and apply the

full test automation solution. The authors also plan to describe

how UIAutomation with tTap extension is used for testing the

stability of the apps.

5. ACKNOWLEDGMENTS
The authors thank “C.T.Co” SIA19 for providing the ability to

create and improve tTap extension while participating in

complex real mobile projects.

6. REFERENCES
[1] Citrix Data Reveal New Global Trends in Consumer and

Enterprise Mobility, 2015. Retrieved March 02, 2015, from

Citrix:

http://www.citrix.com/news/announcements/feb-

2015/citrix-data-reveal-new-global-trends-in-consumer-

and-enterprise-.html.

[2] Double.Epsilon Field, 2015. Retrieved March 02, 2015,

from Microsoft Developer Network:

https://msdn.microsoft.com/en-

us/library/system.double.epsilon(v=vs.110).aspx.

[3] Event Handling Guide for iOS, 2013. Retrieved March 02,

2015, from Apple Developer:

https://developer.apple.com/library/ios/documentation/Eve

ntHandling/Conceptual/EventHandlingiPhoneOS/EventHa

ndlingiPhoneOS.pdf

[4] Good Technology™ Mobility Index Report Q4 2013,

2013. Retrieved March 02, 2015, from Good Technology:

https://media.good.com/documents/rpt-mobility-index-

q413.pdf.

[5] Penn, J. Test iOS Apps with UI Automation: Bug Hunting

Made Easy, The Pragmatic Bookshelf, Dallas, Texas, 2013.

[6] Scott, A. Introducing the software testing ice-cream cone

(anti-pattern). Retrieved March 02, 2015, from

WatirMelon:

http://watirmelon.com/2012/01/31/introducing-the-

software-testing-ice-cream-cone/.

[7] Single.Epsilon Field, 2015. Retrieved March 02, 2015,

from Microsoft Developer Network:

https://msdn.microsoft.com/en-

us/library/system.single.epsilon(v=vs.110).aspx..

[8] UI Automation JavaScript Reference for iOS, 2012.

Retrieved March 02, 2015, from Apple Developer:

https://developer.apple.com/library/ios/documentation/Dev

eloperTools/Reference/UIAutomationRef/_index.htm

19 - http://ctco.lv/

http://www.citrix.com/news/announcements/feb-2015/citrix-data-reveal-new-global-trends-in-consumer-and-enterprise-.html
http://www.citrix.com/news/announcements/feb-2015/citrix-data-reveal-new-global-trends-in-consumer-and-enterprise-.html
http://www.citrix.com/news/announcements/feb-2015/citrix-data-reveal-new-global-trends-in-consumer-and-enterprise-.html
https://msdn.microsoft.com/en-us/library/system.double.epsilon(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.double.epsilon(v=vs.110).aspx
https://developer.apple.com/library/ios/documentation/EventHandling/Conceptual/EventHandlingiPhoneOS/EventHandlingiPhoneOS.pdf
https://developer.apple.com/library/ios/documentation/EventHandling/Conceptual/EventHandlingiPhoneOS/EventHandlingiPhoneOS.pdf
https://developer.apple.com/library/ios/documentation/EventHandling/Conceptual/EventHandlingiPhoneOS/EventHandlingiPhoneOS.pdf
https://media.good.com/documents/rpt-mobility-index-q413.pdf
https://media.good.com/documents/rpt-mobility-index-q413.pdf
http://watirmelon.com/2012/01/31/introducing-the-software-testing-ice-cream-cone/
http://watirmelon.com/2012/01/31/introducing-the-software-testing-ice-cream-cone/
https://msdn.microsoft.com/en-us/library/system.single.epsilon(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.single.epsilon(v=vs.110).aspx
https://developer.apple.com/library/ios/documentation/DeveloperTools/Reference/UIAutomationRef/_index.htm
https://developer.apple.com/library/ios/documentation/DeveloperTools/Reference/UIAutomationRef/_index.htm
http://ctco.lv/

