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The paper presents and discusses the results of performed calculations for YAlO3 (111)

surfaces using a hybrid B3LYP description of exchange and correlation. Calculation

results for SrTiO3, BaTiO3 and BaZrO3 (111) as well as YAlO3, SrTiO3, BaTiO3 and
BaZrO3 (001) surfaces are listed for comparison purposes in order to point out systematic

trends common for these four ABO3 perovskite (001) and (111) surfaces. According

to performed ab initio calculations, the displacement of (001) and (111) surface metal
atoms of YAlO3, SrTiO3, BaTiO3 and BaZrO3 perovskite, upper three surface layers

for both AO and BO2 (001) as well as AO3 and B (111) surface terminations, in most

cases, are considerably larger than that of oxygen atoms. The YAlO3, SrTiO3, BaTiO3

and BaZrO3 (001) surface energies for both calculated terminations, in most cases, are

almost equal. In contrast, the (111) surface energies for both AO3 and B-terminations are

quite different. Calculated (111) surface energies always are much larger than the (001)
surface energies. As follows from performed ab initio calculations for YAlO3, SrTiO3,

BaTiO3 and BaZrO3 perovskites, the AO- and BO2-terminated (001) as well as AO3-

and B-terminated (111) surface bandgaps are almost always reduced with respect to
their bulk bandgap values.

Keywords: Ab initio calculation; YAlO3; (111) surfaces; surface energies; B3LYP.

PACS numbers: 68.35.−p, 71.15.Mb, 71.20.−b, 73.20.At

1. Introduction

Surface and interface processes, happening in the ABO3 perovskites and their com-

plex nanostructures, as well as the original mechanisms of surface processes are
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hot topics in modern physics nowadays.1–18 BaTiO3, BaZrO3, SrTiO3 and YAlO3

belong to the family of ABO3 perovskite type oxydes, and have a large number

of technological applications besides being of large fundamental importance for

basic research. The most important industrial applications of ABO3 perovskites are

charge storage devices, actuators, capacitors, fuel cells, water splitting applications,

etc.19–22

Thereby, it is self-evident that their neutral and consequently rather simple

(001) surfaces, during the last quarter of the century, were intensively explored

worldwide, both experimentally and theoretically.23–38 It is worth to noting that the

YAlO3 (001) surface is different from most ABO3 perovskite neutral (001) surfaces,

since it consists of alternating charged YO and AlO2 (001) planes.39

From a theoretical point of view, it is considerably more easy to calculate the

ABO3 perovskite neutral (001) surfaces, than their complex, charged and polar

(111) surfaces. This is the main reason why only a relatively small amount of theo-

retical and experimental papers exist dealing with ABO3 perovskite polar, charged

and thereby rather complex (111) surfaces.40–48

The structure of SrTiO3, BaTiO3, BaZrO3 and YAlO3 crystals in their cubic

phases represent an alternating sequence of layers consisting of two kinds of atoms.

Namely, the ABO3 perovskites in the [001] direction contain alternating and neutral

AO and BO2 planes, whereas in the [111] direction, they consist of alternating

charged AO3 and B planes. For example, at high-temperatures, BaTiO3 perovskite

has a cubic structure with the space group Pm3m, No. 221. As temperature lowers,

BaTiO3 undergoes three phase transitions from cubic to tetragonal and later to

orthorhombic and rhombohedral phases. From another side, the BaZrO3 crystal,

as temperature lowers, always stays at its high symmetry cubic phase. At room-

temperature, the SrTiO3 crystal has a high symmetry cubic structure.

The aim of the work reported here was to perform the first ab initio calculations

for complex, polar and charged YAlO3 (111) surfaces and compare them with earlier

calculation results for related ABO3 perovskite (001) and (111) surfaces. After

performing ab initio calculations for YAlO3 (111) surfaces, the results for SrTiO3,

BaTiO3, BaZrO3 and YAlO3 (001) and (111) surfaces were analysed as well as

systematic trends common for all four mentioned ABO3 perovskites were pointed

out in a form easily readable for a broad audience of researchers.

2. Technical Calculation Details

2.1. YAlO3 (111) surface atomic structure

The main problem in modeling the YAlO3 polar and charged (111) surface is

that, unlike the classical ABO3 perovskite neutral (001) surfaces, it consists from

charged planes YO3 and Al, as shown in Fig. 1, assuming standard ionic charges

of Y3+, Al3+ and O2−, the YAlO3 (111) surfaces have been calculated using two-

dimensional slabs, containing nine planes perpendicular to the [111] YAlO3 crystal

direction (Fig. 1). Namely, in order to calculated the YAlO3 (111) surfaces, we
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(111), YO3

(111), Al

Y atom

Al atom

O atom

Z, [111] Y, [101]

X, [011] 

Fig. 1. (Color online) Sketch of the cubic YAlO3 perovskite structure demonstrating two possible
polar (111) surface terminations YO3 and Al.

used symmetrical with respect to the mirror plane slabs consisting, in our case,

from nine alternating Al and YO3 layers. One of calculated nine layer slabs from

both slab sides are terminated by Al planes and consists of a supercell containing

21 atoms (Al–YO3–Al–YO3–Al–YO3–Al–YO3–Al) [Fig. 2(a)]. The second calcu-

lated YAlO3 (111) slab is terminated by YO3 planes from both sides and consists

of a supercell which contains 24 atoms (YO3–Al–YO3–Al–YO3–Al–YO3–Al–YO3)

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

(a) (b)

Fig. 2. (Color online) Side views of the slab geometries used by us to study the YAlO3 polar

(111) surfaces. (a) Nonstoichiometric Al-terminated nine layer YAlO3 (111) slab and (b) nonsto-

ichiometric YO3-terminated nine layer YAlO3 (111) slab.
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[Fig. 2(b)]. Thereby, both calculated slabs are nonstoichiometric and they have unit

cell formulas Y4Al5O12 and Y5Al4O15, respectively (Fig. 2).

As it is known from early studies dealing with SrTiO3, BaTiO3, CaTiO3 and

BaZrO3 polar and charged (111) surfaces,41,43,45,49,50 the strong electron redistribu-

tion are observed for such (111) terminations with aim to cancel the polarity, but the

Al- and YO3-terminated YAlO3 (111) surface maintain its insulating character, and

such calculations are possible. Of course, it is impossible to carry out calculations

for asymmetric slabs with different terminations, such as, for example, Al–YO3–Al–

YO3–Al–YO3–Al–YO3. Such calculations will be impossible due to a large dipole

moment for an assymetric slab perpendicular to the z crystal direction.41,43,45

2.2. Computational method and YAlO3 (111) surface

energy calculations

Ab initio calculations for YAlO3 (111) surfaces have been performed by means of the

CRYSTAL computer code.51 The most important feature of the CRYSTAL com-

puter code for the study of the perovskite (001) and (111) surfaces is the isolated 2D

slab model, which allows to perform surface calculations without artificial repeti-

tion along the z-axis. In order to perform calculations using the linear combination

of atomic orbitals (LCAO) method and Gaussian-type functions (GTF) localized

at atoms as the basis for an expansion of the crystalline orbitals, it is necessary

to have optimized basis sets. For our YAlO3 (111) surface calculations, we used

exactly the same basis sets for Y, Al and O neutral atoms as in Ref. 39 for the

YAlO3 (001) surface atomic and electronic structure calculations. All YAlO3 (111)

surface calculations have been performed by means of B3LYP hybrid exchange-

correlation functional including the hybrid of nonlocal Fock exact exchange, LDA

exchange and Becke’s gradient corrected exchange functional,52 in combination

with the nonlocal gradient corrected correlation potential by Lee et al.53 The recip-

rocal space integration was performed by sampling the Brillouin zone of the five

atom YAlO3 cubic unit cell with the 8 × 8 × 8 and its (111) surfaces by 8 × 8 × 1

times extended Pack–Monkhorst mesh.54 It is worth to notice that we performed

calculations by means of the B3LYP functional for YAlO3 (111) and (001)39 as

well as for SrTiO3,45 BaTiO41
3 and BaZrO43

3 (111) surfaces. For SrTiO3,29,55,56

BaTiO3
5,55,56 and BaZrO3

34,55,56 (001) surfaces we performed calculations using

the B3PW hybrid exchange-correlation functional.

Next, we calculated the YAlO3 (111) surface and cleavage energies. It is clear

that Al- and YO3-terminated YAlO3 (111) surfaces are mutually complementary.

Thereby, it is obvious that the cleavage energy is exactly the same for both YO3-

and Al-terminated YAlO3 (111) surfaces. Therefore, the cleavage energy for the

complementary surface Ecl(YO3 + Al) can be derived from the total energies cal-

culated for the unrelaxed slabs from the following equation:

Ecl(YO3 + Al) =
1

4

[
Eslab

unrel(Al) + Eslab
unrel(YO3) − 9Ebulk

]
, (1)
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where Eslab
unrel (Al) is our calculated total energy of unrelaxed 21-atoms containing

Al-terminated YAlO3 (111) slab. Eslab
unrel (YO3) is the total energy for 24-atom

YO3-terminated YAlO3 (111) slab. Ebulk is the YAlO3 total bulk energy per formula

unit containing 5-atoms in the cubic structure. In Eq. (1) factor 9 before the Ebulk

is due to the fact that 21-atom Al-terminated as well as 24-atom YO3-terminated

YAlO3 (111) slabs both together contain nine 5-atom YAlO3 bulk unit cells. Factor
1
4 in the right side of Eq. (1) means that totally four surfaces are created due the

crystal cleavage. The relevant relaxation energies for each of the surfaces can be

obtained by means of the following equation:

Erel(Ψ) =
1

2

[
Eslab

rel(Ψ) − Eslab
unrel(Ψ)

]
, (2)

where Ψ = Al or YO3 describes the YAlO3 (111) surface termination. Eslab
rel(Ψ)

is the Al- or YO3-terminated YAlO3 (111) slab total energy after the atomic relax-

ation. The Eslab
unrel(Ψ) is the Al- or YO3-terminated YAlO3 (111) slab total energy

before the atomic relaxation. The factor of 1
2 comes from the fact that two surfaces

are created due to the crystal cleavage. Finally, when we know the cleavage and

relaxation energies, the surface energy is calculated as the sum of them

Esurf(Ψ) = Ecl(YO3 + Al) + Erel(Ψ). (3)

3. Ab Initio Calculation Results for YAlO3 (111) Surfaces.

Comparison with YAlO3 (001) as well as SrTiO3, BaTiO3

and BaZrO3 (001) and (111) Surfaces

As a starting point of ab initio B3LYP calculations, we calculated the YAlO3 bulk

lattice constant (3.712 Å). We used calculated theoretical YAlO3 bulk lattice con-

stant in the following YAlO3 polar (111) surface structure calculations. In order

to describe the chemical bonding and covalency effects, we used the classical Mul-

liken bond population analysis for the atomic charges Q and bond populations P

as described in Refs. 57 and 58 Calculated effective charges for the YAlO3 bulk

atoms are equal to (+2.523 e) for the Y atom, (+2.216 e) for the Al atom, and

finally (−1.580 e) for the O atom. Calculated YAlO3 bulk chemical bond popula-

tion between Al and O atoms is equal to (+0.170 e), and it is considerably smaller,

only (+0.010 e) between the Y and O atoms. Calculated YAlO3 bulk optical band

by means of the B3LYP method at Γ point is equal to 6.21 eV.

According to the results of performed calculations for Al-terminated YAlO3

(111) surface (Table 1), the upper layer Al atom is strongly (by 4.85% of bulk lattice

constant a0) displaced inwards toward the bulk. The second layer metal Y atom is

displaced inwards even more strongly (by 6.47% of a0). The second layer O atom

is displaced very slightly outwards (by 0.06% of a0). The third layer Al atom, in

contrast to the first layer Al atom, rather strongly (by 2.42% of a0) is displaced

outwards. As we can see from Table 1, according to performed calculations for all

four materials, first and second layer metal atoms are strongly displaced inwards,
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Table 1. Calculated displacement of Al-, Ti- and Zr-terminated YAlO3, SrTiO3, BaTiO3 and
BaZrO3 (111) surface upper three layer atoms (as a percentage of the bulk crystal lattice con-

stant a0 = 3.712, 3.914, 4.021, 4.234 Å, respectively). Positive (negative) values describe atomic

displacements in the direction outwards (inwards) of the surface.

Material YAlO3 SrTiO3 BaTiO3 BaZrO3

Layer Ion Displacement (∆z) Displacement (∆z) Displacement (∆z) Displacement (∆z)

1 B −4.85 −3.58 −11.19 −8.03
2 A −6.47 −11.24 −6.22 −9.73

O +0.06 +1.53 +2.74 +0.78

3 B +2.42 +0.26 −0.25 −0.02

Table 2. Calculated displacement of YO3-, SrO3- and BaO3-terminated YAlO3, SrTiO3, BaTiO3

and BaZrO3 (111) surface upper three layer atoms (as a percentage of the bulk crystal lattice
constant a0 = 3.712, 3.914, 4.021, 4.234 Å, respectively). Positive (negative) values describe atomic

displacements in the direction outwards (inwards) of the surface.

Material YAlO3 SrTiO3 BaTiO3 BaZrO3

Layer Ion Displacement (∆z) Displacement (∆z) Displacement (∆z) Displacement (∆z)

1 A −1.51 +1.33 −1.24 +1.70
O −0.16 −0.03 −3.98 −0.57

2 B +0.19 +1.81 +2.49 +0.21

3 A +0.78 −0.03 +1.49 +0.71
O +0.11 −0.26 −0.25 −0.01

while all second layer O atoms are displaced outwards by much smaller displacement

magnitude than the metal atoms inwards.

For YO3-terminated YAlO3 (111) surface, both upper layer atoms are displaced

inwards, whereas all second and third layer atoms are displaced outwards (Table 2).

Namely, the upper layer metal atom Y is displaced inwards by 1.51% of a0 and also

the oxygen atom slightly, only by 0.16% of a0, is displaced inwards. All second and

third layer atoms are displaced outwards, but by rather small displacement magni-

tudes less than 1% of a0 (Table 2). It is worth noting that for all four calculated

perovskites (Table 2), the first layer oxygen atoms are displaced inwards, while all

second layer atoms are displaced outwards.

With the aim to compare the calculated and experimental SrTiO3 (001) surface

structures, the surface rumpling s (the relative displacement of the metal atom with

respect to oxygen in the upper surface layer) as well as the changes in the interlayer

distances ∆dij (where i and j are numbers of layers) are collected in Table 3.

Calculated interlayer distances are based on the positions of displaced metal atoms,

which as we know are much better electron scatterers than oxygen atoms.59 As we

can see from Table 3, the agreement is fairly good for all theoretical calculation

methods, which give the same sign for the surface rumpling as well as the changes of

the interlayer distances. For example, the surface rumpling s for the SrO-terminated

surface is calculated to be much larger than for the TiO2-terminated SrTiO3 (001)

surface by all theoretical methods.60–63 As we can see from Table 3, both calculated
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Table 3. Calculated and experimental surface rumpling s and relative displacements ∆dij
(in percent of the bulk lattice constant) for the upper three surface planes of SrO- and

TiO2-terminated SrTiO3 (001) slabs.

SrO-terminated SrTiO3 (001) TiO2-terminated SrTiO3 (001)

SrTiO3 s ∆d12 ∆d23 s ∆d12 ∆d23

This work 5.66 −6.58 1.75 2.12 −5.79 3.55

Shell model60 8.2 −8.6 3.0 1.2 −6.4 4.0
HF-LYP61 3.8 −4.3 1.3 1.2 −4.9 2.2

Ab initio62 5.8 −6.9 2.4 1.8 −5.9 3.2

Ab initio63 7.7 −8.6 3.3 1.5 −6.4 4.9
LEED exp59 4.1 ± 2 −5 ± 1 2 ± 1 2.1 ± 2 1 ± 1 −1 ± 1

RHEED exp64 4.1 2.6 1.3 2.6 1.8 1.3

MEIS exp65 1.5 ± 0.2 0.5 ± 0.2
SXRD exp66 1.3 ± 12.1 −0.3 ± 3.6 −6.7 ± 2.8 12.8 ± 8.5 0.3 ± 1

TiO2- and SrO-terminated (001) SrTiO3 surfaces exhibit a reduction of interlayer

distance ∆d12 and an expansion of ∆d23.

The calculated surface rumpling amplitudes s for both SrTiO3 (001) surface ter-

minations are in fair agreement with the LEED, RHEED, MEIS and SXRD experi-

ments59,64–66 (Table 3). Nevertheless, the calculated changes in interlayer distances

are in disagreement with the LEED experiments59 for the TiO2-terminated SrTiO3

(001) surface, which show an expansion of the ∆d12 and a reduction of ∆d23. In

contrast, all ab initio as well as classical shell model calculations show a reduction

of interlayer distance ∆d12 and an expansion of ∆d23 (Table 3). Nevertheless, as

we can see from Table 3, unfortunately, the different experiments contradict each

other with respect the sign of ∆d12 and ∆d23 for the SrO-terminated SrTiO3 (001)

surface, and for sign of ∆d23 of the TiO2-terminated SrTiO3 (001) surface.

Calculated surface relaxation energy for Al-terminated YAlO3 (111) surface

(−1.24 eV) is more than seventeen times larger than the surface relaxation energy

for YO3-terminated YAlO3 (111) surface (−0.07 eV) (Table 4). Calculated surface

energy for the YO3-terminated YAlO3 (111) surface is equal to 9.26 eV/cell and

thereby it by 1.17 eV/cell exceeds the surface energy for Al-terminated YAlO3 (111)

surface 8.09 eV/cell (Table 4).

Calculated YO3- and Al-terminated YAlO3 (111) surface energies (9.26 and

8.09 eV/cell) (Table 4) are considerably larger than the YO- and AlO2-terminated

YAlO3 (001) surface energies (2.33 and 3.31 eV/cell) (Table 5 and Fig. 3). Also for

another calculated SrTiO3, BaTiO3 and BaZrO3 perovskites, their (111) surface

energies for both AO3 and B-terminations (Table 4) are always larger than their rel-

evant surface energies for both AO- and BO2-terminated (001) surfaces (Table 5).

From Table 4 we can see that the AO3-terminated perovskite (111) surface ener-

gies are always larger than the B-terminated surface energies for YAlO3, SrTiO3,

BaTiO3 and BaZrO3 perovskites (Table 4). It is worth noting that the ABO3 per-

ovskite (001) surface energies are also always smaller than the ABO3 perovskite

(011) surface energies.16 The only exception is calculations by Zhang et al.,67 where
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Table 4. Calculated cleavage, relaxation, and surface energies for YAlO3,
SrTiO3, BaTiO3 as well as BaZrO3 (111) surfaces (in electron volt per

surface cell).

Surface (111) Ecl (AO3+B) Termination Erel Esurf (111)

YAlO3 9.33 Al-terminated −1.24 8.09

YO3-terminated −0.07 9.26
SrTiO3 6.65 Ti-terminated −1.66 4.99

SrO3-terminated −0.35 6.30

BaTiO3 9.22 Ti-terminated −1.94 7.28
BaO3-terminated −0.82 8.40

BaZrO3 9.43 Zr-terminated −1.49 7.94

BaO3-terminated −0.10 9.33

Table 5. Calculated surface energies for YAlO3,

SrTiO3, BaTiO3 as well as BaZrO3 (001) sur-
faces (in electron volt per surface cell).

Surface (001) Termination Esurf (001)

YAlO3 YO-terminated 2.33

AlO2-terminated 3.31

SrTiO3 SrO-terminated 1.15
TiO2-terminated 1.23

BaTiO3 BaO-terminated 1.19

TiO2-terminated 1.07
BaZrO3 BaO-terminated 1.30

ZrO2-terminated 1.31
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Fig. 3. (Color online) Our calculated surface energies (in eV/cell) for AO- (1) and BO2-

terminated (2) (001) as well as B- (3) and AO3-terminated (4) (111) surfaces of YAlO3, SrTiO3,

BaTiO3 and BaZrO3 perovskites by means of the hybrid B3LYP or B3PW exchange-correlation
functionals.
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Table 6. Calculated B–O chemical bond population of YAlO3, SrTiO3,
BaTiO3 and BaZrO3 perovskite bulk, BO2-terminated (001) as well as

AO3-terminated (111) surfaces (in e).

B–O bond population YAlO3 SrTiO3 BaTiO3 BaZrO3

Bulk +0.170 +0.088 +0.098 0.108

BO2-terminated (001) +0.232 +0.118 +0.126 0.132
AO3-terminated (111) +0.252 +0.098 +0.118 0.118
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0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

B
-O

 c
he

m
ic

al
 b

on
d 

po
pu

la
tio

n 
(in

 e
)

YAO        STO        BTO        BZO

 Bulk
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1
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3

Fig. 4. (Color online) Calculated bulk (1) as well as BO2-terminated (001) (2) and AO3-

terminated (111) surface B–O chemical bond populations (in e) for YAlO3, SrTiO3, BaTiO3 and

BaZrO3 perovskites.

they found that the A-type O-terminated CaTiO3 (011) surface energy is smaller

than the TiO2-terminated CaTiO3 (001) surface energy.

The covalent nature of the chemical bonding between Al and O atoms in the

YAlO3 bulk is confirmed by the large bond population values between Al and O

atoms (+0.170 e) (Table 6 and Fig. 4). This Al–O bond population valued for the

YAlO3 bulk is considerably larger than the relevant B–O chemical bond popula-

tion for another our calculated SrTiO3, BaTiO3 and BaZrO3 perovskites (0.088,

0.098 and 0.108 e, respectively). The Al–O chemical bond population near the

AlO2-terminated YAlO3 (001) surface is 1.36 times larger than in the YAlO3 bulk

(Table 6). Nevertheless, the Al–O chemical bond population reach its maximal

value near the YO3-terminated YAlO3 (111) surface and is equal to (0.252 e), or

in another words, it is 1.48 times larger than in the YAlO3 bulk. It is interesting

to notice, that also for another our calculated SrTiO3, BaTiO3 and BaZrO3 per-

ovskites the B–O chemical bond population near the (001) and (111) surfaces is

considerably larger than in the bulk. Nevertheless, for SrTiO3, BaTiO3 and BaZrO3

perovskites, in contrast to YAlO3, the B–O chemical bond population near the

(001) surfaces is larger than near the (111) surfaces.

By means of the B3LYP functional calculated SrTiO3 bulk bandgap (3.99 eV)

is only by 0.24 eV or approximately 6.4% overestimated regarding the experimental
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Table 7. Calculated optical bandgaps at the Γ-point for YAlO3, SrTiO3,
BaTiO3 and BaZrO3 bulk as well as AO3- and B-terminated (111) and

BO2- and AO-terminated (001) surfaces (in eV).

Optical bandgap YAlO3 SrTiO3 BaTiO3 BaZrO3

Bulk 6.21 3.99 3.55 4.79

AO3-terminated (111) 4.57 3.72 3.60 4.51
B-terminated (111) 5.95 3.98 4.14 4.47

AO-terminated (001) 6.02 3.72 3.49 4.71

BO2-terminated (001) 6.41 3.95 2.96 4.37
Experiment 8.5a 3.75b 2.84c 5.3d

Notes: aRef. 71, bRef. 68, cRef. 70, dRef. 69.

Fig. 5. (Color online) Calculated (1) and experimental (2) bulk as well as calculated AO (3) and

BO2-terminated (4) (001), AO3 (5) and B-terminated (6) (111) surface Γ–Γ bandgaps (in eV) for

YAlO3, SrTiO3, BaTiO3 and BaZrO3 perovskites.

bulk bandgap value of 3.75 eV68 (Table 7 and Fig. 5). Also for BaZrO3 bulk, by

means of the B3LYP method calculated bandgap (4.79 eV) is only by 0.51 eV or

9.6% underestimated regarding the experimental bulk bandgap value of 5.3 eV69

(Table 7). According to the recent experimental data, the BaTiO3 bulk bandgap

in its cubic phase is equal to approximately 2.84 eV.70 We compared the B3LYP

calculation result for YAlO3 bulk bandgap in the cubic phase with the experimental

result obtained for its orthorhombic phase 8.5 eV.71

Calculated ABO3 optical bandgaps near the (001) surfaces as a rule are smaller

than the ABO3 perovskite bulk bandgaps. The single exception is the YAlO3

perovskite AlO2-terminated (001) surface bandgap (6.41 eV), which by 0.2 eV

exceeds the YAlO3 bulk bandgap value (6.21 eV). Also for YAlO3, SrTiO3 and

BaZrO3 perovskite (111) surfaces, our calculated bandgap near the (111) sur-

faces is reduced with respect to the bulk bandgap value. The only exception

from this tendency is increase of our calculated bandgaps near the BaTiO3 (111)

surfaces.
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4. Summary and Conclusions

We performed a large amount of B3LYP and B3PW calculations for YAlO3, SrTiO3,

BaTiO3 and BaZrO3 (001) and (111) surfaces, and as a result detected following

systematic trends:

(1) The relaxation of (001) and (111) surface metal atoms for YAlO3, SrTiO3,

BaTiO3 and BaZrO3 perovskite, in the upper three surface layers for both AO

and BO2 (001) as well as AO3 and B (111) surface terminations, in most cases,

are considerably larger than that of oxygen atoms.

(2) For the AO- and BO2-terminated (001) as well as AO3- and B-terminated (111)

surfaces of YAlO3, SrTiO3, BaTiO3 and BaZrO3 perovskites, the systematic

trend, with a few exceptions, according to performed B3LYP and B3PW cal-

culations, is that all atoms of the upper surface layer relax inward, whereas all

atoms of the second surface layer relax outward.

(3) The YAlO3, SrTiO3, BaTiO3 and BaZrO3 (001) surface energies for both cal-

culated AO and BO2-terminations, in most cases, are almost equal. In contrast,

the (111) surface energies for both AO3 and B-terminations are quite differ-

ent, also the AO3-terminated (111) surface energies are always considerably

larger than the B-terminated (111) surface energies. Calculated AO3- and B-

terminated (111) surface energies always are much larger than the AO- and

BO2-terminated (001) surface energies.

(4) The B–O chemical bond population in YAlO3, SrTiO3, BaTiO3 and BaZrO3

perovskite bulk are always smaller than near the (111) and especially the (001)

surfaces. In most cases the B–O chemical bond population near the (001) sur-

faces are slightly larger than near the (111) surfaces.

(5) As follows from the performed B3LYP and B3PW calculations for YAlO3,

SrTiO3, BaTiO3 and BaZrO3 perovskites, the AO- and BO2-terminated (001)

as well as AO3- and B-terminated (111) surface bandgaps are always reduced

with respect to their bulk bandgap values. The only exceptions are the

BaTiO3 (111) surface bandgaps as well as BO2-terminated YAlO3 (001) surface

bandgaps.
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