International Journal of Modern Physics B
Vol. 33, No. 32 (2019) 1950390 (13 pages)
© World Scientific Publishing Company
DOI: 10.1142/S0217979219503909

Systematic trends in YAlO₃, SrTiO₃, BaTiO₃, BaZrO₃ (001) and (111) surface *ab initio* calculations

Roberts Eglitis^{*}, J. Purans and A. I. Popov

Institute of Solid State Physics, University of Latvia, 8 Kengaraga street, Riga LV1063, Latvia *rieglitis@gmail.com

Ran Jia

Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China jiaran@jlu.edu.cn

> Received 5 September 2019 Revised 30 October 2019 Accepted 3 November 2019 Published 31 January 2020

The paper presents and discusses the results of performed calculations for $YAIO_3$ (111) surfaces using a hybrid B3LYP description of exchange and correlation. Calculation results for $SrTiO_3$, $BaTiO_3$ and $BaZrO_3$ (111) as well as $YAIO_3$, $SrTiO_3$, $BaTiO_3$ and BaZrO₃ (001) surfaces are listed for comparison purposes in order to point out systematic trends common for these four ABO3 perovskite (001) and (111) surfaces. According to performed ab initio calculations, the displacement of (001) and (111) surface metal atoms of YAlO₃, SrTiO₃, BaTiO₃ and BaZrO₃ perovskite, upper three surface layers for both AO and BO_2 (001) as well as AO₃ and B (111) surface terminations, in most cases, are considerably larger than that of oxygen atoms. The YAlO₃, SrTiO₃, BaTiO₃ and $BaZrO_3$ (001) surface energies for both calculated terminations, in most cases, are almost equal. In contrast, the (111) surface energies for both AO₃ and B-terminations are quite different. Calculated (111) surface energies always are much larger than the (001) surface energies. As follows from performed *ab initio* calculations for YAlO₃, SrTiO₃, $BaTiO_3$ and $BaZrO_3$ perovskites, the AO- and BO_2 -terminated (001) as well as AO_3 and B-terminated (111) surface bandgaps are almost always reduced with respect to their bulk bandgap values.

Keywords: Ab initio calculation; YAlO₃; (111) surfaces; surface energies; B3LYP.

PACS numbers: 68.35.-p, 71.15.Mb, 71.20.-b, 73.20.At

1. Introduction

Surface and interface processes, happening in the ABO_3 perovskites and their complex nanostructures, as well as the original mechanisms of surface processes are hot topics in modern physics nowadays.^{1–18} BaTiO₃, BaZrO₃, SrTiO₃ and YAlO₃ belong to the family of ABO₃ perovskite type oxydes, and have a large number of technological applications besides being of large fundamental importance for basic research. The most important industrial applications of ABO₃ perovskites are charge storage devices, actuators, capacitors, fuel cells, water splitting applications, etc.^{19–22}

Thereby, it is self-evident that their neutral and consequently rather simple (001) surfaces, during the last quarter of the century, were intensively explored worldwide, both experimentally and theoretically.^{23–38} It is worth to noting that the YAlO₃ (001) surface is different from most ABO₃ perovskite neutral (001) surfaces, since it consists of alternating charged YO and AlO₂ (001) planes.³⁹

From a theoretical point of view, it is considerably more easy to calculate the ABO₃ perovskite neutral (001) surfaces, than their complex, charged and polar (111) surfaces. This is the main reason why only a relatively small amount of theoretical and experimental papers exist dealing with ABO₃ perovskite polar, charged and thereby rather complex (111) surfaces.^{40–48}

The structure of $SrTiO_3$, $BaTiO_3$, $BaZrO_3$ and $YAIO_3$ crystals in their cubic phases represent an alternating sequence of layers consisting of two kinds of atoms. Namely, the ABO₃ perovskites in the [001] direction contain alternating and neutral AO and BO₂ planes, whereas in the [111] direction, they consist of alternating charged AO₃ and B planes. For example, at high-temperatures, $BaTiO_3$ perovskite has a cubic structure with the space group Pm3m, No. 221. As temperature lowers, $BaTiO_3$ undergoes three phase transitions from cubic to tetragonal and later to orthorhombic and rhombohedral phases. From another side, the $BaZrO_3$ crystal, as temperature lowers, always stays at its high symmetry cubic phase. At roomtemperature, the $SrTiO_3$ crystal has a high symmetry cubic structure.

The aim of the work reported here was to perform the first *ab initio* calculations for complex, polar and charged YAlO₃ (111) surfaces and compare them with earlier calculation results for related ABO₃ perovskite (001) and (111) surfaces. After performing *ab initio* calculations for YAlO₃ (111) surfaces, the results for SrTiO₃, BaTiO₃, BaZrO₃ and YAlO₃ (001) and (111) surfaces were analysed as well as systematic trends common for all four mentioned ABO₃ perovskites were pointed out in a form easily readable for a broad audience of researchers.

2. Technical Calculation Details

2.1. $YAlO_3$ (111) surface atomic structure

The main problem in modeling the YAlO₃ polar and charged (111) surface is that, unlike the classical ABO₃ perovskite neutral (001) surfaces, it consists from charged planes YO₃ and Al, as shown in Fig. 1, assuming standard ionic charges of Y³⁺, Al³⁺ and O²⁻, the YAlO₃ (111) surfaces have been calculated using twodimensional slabs, containing nine planes perpendicular to the [111] YAlO₃ crystal direction (Fig. 1). Namely, in order to calculated the YAlO₃ (111) surfaces, we

Fig. 1. (Color online) Sketch of the cubic YAlO₃ perovskite structure demonstrating two possible polar (111) surface terminations YO₃ and Al.

used symmetrical with respect to the mirror plane slabs consisting, in our case, from nine alternating Al and YO₃ layers. One of calculated nine layer slabs from both slab sides are terminated by Al planes and consists of a supercell containing 21 atoms (Al-YO₃-Al-YO₃-Al-YO₃-Al-YO₃-Al) [Fig. 2(a)]. The second calculated YAlO₃ (111) slab is terminated by YO₃ planes from both sides and consists of a supercell which contains 24 atoms (YO₃-Al-YO

Fig. 2. (Color online) Side views of the slab geometries used by us to study the YAlO₃ polar (111) surfaces. (a) Nonstoichiometric Al-terminated nine layer YAlO₃ (111) slab and (b) nonstoichiometric YO₃-terminated nine layer YAlO₃ (111) slab.

[Fig. 2(b)]. Thereby, both calculated slabs are nonstoichiometric and they have unit cell formulas $Y_4Al_5O_{12}$ and $Y_5Al_4O_{15}$, respectively (Fig. 2).

As it is known from early studies dealing with $SrTiO_3$, $BaTiO_3$, $CaTiO_3$ and $BaZrO_3$ polar and charged (111) surfaces, 41,43,45,49,50 the strong electron redistribution are observed for such (111) terminations with aim to cancel the polarity, but the Al- and YO₃-terminated YAIO₃ (111) surface maintain its insulating character, and such calculations are possible. Of course, it is impossible to carry out calculations for asymmetric slabs with different terminations, such as, for example, Al–YO₃–Al–YO₃–Al–YO₃–Al–YO₃. Such calculations will be impossible due to a large dipole moment for an asymmetric slab perpendicular to the *z* crystal direction.^{41,43,45}

2.2. Computational method and $YAlO_3$ (111) surface energy calculations

Ab initio calculations for $YAlO_3$ (111) surfaces have been performed by means of the CRYSTAL computer code.⁵¹ The most important feature of the CRYSTAL computer code for the study of the perovskite (001) and (111) surfaces is the isolated 2D slab model, which allows to perform surface calculations without artificial repetition along the z-axis. In order to perform calculations using the linear combination of atomic orbitals (LCAO) method and Gaussian-type functions (GTF) localized at atoms as the basis for an expansion of the crystalline orbitals, it is necessary to have optimized basis sets. For our $YAIO_3$ (111) surface calculations, we used exactly the same basis sets for Y, Al and O neutral atoms as in Ref. 39 for the YAlO₃ (001) surface atomic and electronic structure calculations. All YAlO₃ (111) surface calculations have been performed by means of B3LYP hybrid exchangecorrelation functional including the hybrid of nonlocal Fock exact exchange, LDA exchange and Becke's gradient corrected exchange functional,⁵² in combination with the nonlocal gradient corrected correlation potential by Lee $et \ al.^{53}$ The reciprocal space integration was performed by sampling the Brillouin zone of the five atom YAlO₃ cubic unit cell with the $8 \times 8 \times 8$ and its (111) surfaces by $8 \times 8 \times 1$ times extended Pack–Monkhorst mesh.⁵⁴ It is worth to notice that we performed calculations by means of the B3LYP functional for $YAIO_3$ (111) and $(001)^{39}$ as well as for $SrTiO_3$,⁴⁵ $BaTiO_3^{41}$ and $BaZrO_3^{43}$ (111) surfaces. For $SrTiO_3$,^{29,55,56} $BaTiO_3^{5,55,56}$ and $BaZrO_3^{34,55,56}$ (001) surfaces we performed calculations using the B3PW hybrid exchange-correlation functional.

Next, we calculated the YAlO₃ (111) surface and cleavage energies. It is clear that Al- and YO₃-terminated YAlO₃ (111) surfaces are mutually complementary. Thereby, it is obvious that the cleavage energy is exactly the same for both YO₃and Al-terminated YAlO₃ (111) surfaces. Therefore, the cleavage energy for the complementary surface $E_{\rm cl}({\rm YO}_3 + {\rm Al})$ can be derived from the total energies calculated for the unrelaxed slabs from the following equation:

$$E_{\rm cl}(\rm YO_3 + Al) = \frac{1}{4} \left[E_{\rm slab}^{\rm unrel}(\rm Al) + E_{\rm slab}^{\rm unrel}(\rm YO_3) - 9E_{\rm bulk} \right], \tag{1}$$

where $E_{\text{slab}}^{\text{unrel}}$ (Al) is our calculated total energy of unrelaxed 21-atoms containing Al-terminated YAlO₃ (111) slab. $E_{\text{slab}}^{\text{unrel}}$ (YO₃) is the total energy for 24-atom YO₃-terminated YAlO₃ (111) slab. E_{bulk} is the YAlO₃ total bulk energy per formula unit containing 5-atoms in the cubic structure. In Eq. (1) factor 9 before the E_{bulk} is due to the fact that 21-atom Al-terminated as well as 24-atom YO₃-terminated YAlO₃ (111) slabs both together contain nine 5-atom YAlO₃ bulk unit cells. Factor $\frac{1}{4}$ in the right side of Eq. (1) means that totally four surfaces are created due the crystal cleavage. The relevant relaxation energies for each of the surfaces can be obtained by means of the following equation:

$$E_{\rm rel}(\Psi) = \frac{1}{2} \left[E_{\rm slab}^{\rm rel}(\Psi) - E_{\rm slab}^{\rm unrel}(\Psi) \right],\tag{2}$$

where $\Psi = \text{Al or YO}_3$ describes the YAlO₃ (111) surface termination. $E_{\text{slab}}^{\text{rel}}(\Psi)$ is the Al- or YO₃-terminated YAlO₃ (111) slab total energy after the atomic relaxation. The $E_{\text{slab}}^{\text{unrel}}(\Psi)$ is the Al- or YO₃-terminated YAlO₃ (111) slab total energy before the atomic relaxation. The factor of $\frac{1}{2}$ comes from the fact that two surfaces are created due to the crystal cleavage. Finally, when we know the cleavage and relaxation energies, the surface energy is calculated as the sum of them

$$E_{\rm surf}(\Psi) = E_{\rm cl}(\rm YO_3 + Al) + E_{\rm rel}(\Psi). \tag{3}$$

3. Ab Initio Calculation Results for YAlO₃ (111) Surfaces. Comparison with YAlO₃ (001) as well as SrTiO₃, BaTiO₃ and BaZrO₃ (001) and (111) Surfaces

As a starting point of *ab initio* B3LYP calculations, we calculated the YAlO₃ bulk lattice constant (3.712 Å). We used calculated theoretical YAlO₃ bulk lattice constant in the following YAlO₃ polar (111) surface structure calculations. In order to describe the chemical bonding and covalency effects, we used the classical Mulliken bond population analysis for the atomic charges Q and bond populations Pas described in Refs. 57 and 58 Calculated effective charges for the YAlO₃ bulk atoms are equal to (+2.523 e) for the Y atom, (+2.216 e) for the Al atom, and finally (-1.580 e) for the O atom. Calculated YAlO₃ bulk chemical bond population between Al and O atoms is equal to (+0.170 e), and it is considerably smaller, only (+0.010 e) between the Y and O atoms. Calculated YAlO₃ bulk optical band by means of the B3LYP method at Γ point is equal to 6.21 eV.

According to the results of performed calculations for Al-terminated YAlO₃ (111) surface (Table 1), the upper layer Al atom is strongly (by 4.85% of bulk lattice constant a_0) displaced inwards toward the bulk. The second layer metal Y atom is displaced inwards even more strongly (by 6.47% of a_0). The second layer O atom is displaced very slightly outwards (by 0.06% of a_0). The third layer Al atom, in contrast to the first layer Al atom, rather strongly (by 2.42% of a_0) is displaced outwards. As we can see from Table 1, according to performed calculations for all four materials, first and second layer metal atoms are strongly displaced inwards,

Table 1. Calculated displacement of Al-, Ti- and Zr-terminated YAlO₃, SrTiO₃, BaTiO₃ and BaZrO₃ (111) surface upper three layer atoms (as a percentage of the bulk crystal lattice constant $a_0 = 3.712$, 3.914, 4.021, 4.234 Å, respectively). Positive (negative) values describe atomic displacements in the direction outwards (inwards) of the surface.

Material		YAlO ₃	$SrTiO_3$	BaTiO ₃	$BaZrO_3$	
Layer	Ion	Displacement (Δz)	Displacement (Δz)	Displacement (Δz)	Displacement (Δz	
1	В	-4.85	-3.58	-11.19	-8.03	
2	Α	-6.47	-11.24	-6.22	-9.73	
	Ο	+0.06	+1.53	+2.74	+0.78	
3	В	+2.42	+0.26	-0.25	-0.02	

Table 2. Calculated displacement of YO₃-, SrO₃- and BaO₃-terminated YAlO₃, SrTiO₃, BaTiO₃ and BaZrO₃ (111) surface upper three layer atoms (as a percentage of the bulk crystal lattice constant $a_0 = 3.712, 3.914, 4.021, 4.234$ Å, respectively). Positive (negative) values describe atomic displacements in the direction outwards (inwards) of the surface.

Material		YAlO ₃	$SrTiO_3$	$BaTiO_3$	$BaZrO_3$	
Layer	Ion	Displacement (Δz)	Displacement (Δz)	Displacement (Δz)	Displacement (Δz)	
1	А	-1.51	+1.33	-1.24	+1.70	
	Ο	-0.16	-0.03	-3.98	-0.57	
2	В	+0.19	+1.81	+2.49	+0.21	
3	Α	+0.78	-0.03	+1.49	+0.71	
	Ο	+0.11	-0.26	-0.25	-0.01	

while all second layer O atoms are displaced outwards by much smaller displacement magnitude than the metal atoms inwards.

For YO₃-terminated YAlO₃ (111) surface, both upper layer atoms are displaced inwards, whereas all second and third layer atoms are displaced outwards (Table 2). Namely, the upper layer metal atom Y is displaced inwards by 1.51% of a_0 and also the oxygen atom slightly, only by 0.16% of a_0 , is displaced inwards. All second and third layer atoms are displaced outwards, but by rather small displacement magnitudes less than 1% of a_0 (Table 2). It is worth noting that for all four calculated perovskites (Table 2), the first layer oxygen atoms are displaced inwards, while all second layer atoms are displaced outwards.

With the aim to compare the calculated and experimental $SrTiO_3$ (001) surface structures, the surface rumpling s (the relative displacement of the metal atom with respect to oxygen in the upper surface layer) as well as the changes in the interlayer distances Δd_{ij} (where i and j are numbers of layers) are collected in Table 3. Calculated interlayer distances are based on the positions of displaced metal atoms, which as we know are much better electron scatterers than oxygen atoms.⁵⁹ As we can see from Table 3, the agreement is fairly good for all theoretical calculation methods, which give the same sign for the surface rumpling as well as the changes of the interlayer distances. For example, the surface rumpling s for the SrO-terminated surface is calculated to be much larger than for the TiO₂-terminated SrTiO₃ (001) surface by all theoretical methods.^{60–63} As we can see from Table 3, both calculated

	SrO-ter	minated SrTi	O_3 (001)	TiO_2 -terminated $SrTiO_3$ (001)		
SrTiO_3	8	Δd_{12}	Δd_{23}	8	Δd_{12}	Δd_{23}
This work	5.66	-6.58	1.75	2.12	-5.79	3.55
Shell model ⁶⁰	8.2	-8.6	3.0	1.2	-6.4	4.0
$HF-LYP^{61}$	3.8	-4.3	1.3	1.2	-4.9	2.2
$Ab \ initio^{62}$	5.8	-6.9	2.4	1.8	-5.9	3.2
$Ab \ initio^{63}$	7.7	-8.6	3.3	1.5	-6.4	4.9
LEED exp^{59}	4.1 ± 2	-5 ± 1	2 ± 1	2.1 ± 2	1 ± 1	-1 ± 1
RHEED \exp^{64}	4.1	2.6	1.3	2.6	1.8	1.3
MEIS exp^{65}				1.5 ± 0.2	0.5 ± 0.2	
SXRD exp^{66}	1.3 ± 12.1	-0.3 ± 3.6	-6.7 ± 2.8	12.8 ± 8.5	0.3 ± 1	

Table 3. Calculated and experimental surface rumpling s and relative displacements Δd_{ij} (in percent of the bulk lattice constant) for the upper three surface planes of SrO- and TiO₂-terminated SrTiO₃ (001) slabs.

TiO₂- and SrO-terminated (001) SrTiO₃ surfaces exhibit a reduction of interlayer distance Δd_{12} and an expansion of Δd_{23} .

The calculated surface rumpling amplitudes s for both SrTiO₃ (001) surface terminations are in fair agreement with the LEED, RHEED, MEIS and SXRD experiments^{59,64–66} (Table 3). Nevertheless, the calculated changes in interlayer distances are in disagreement with the LEED experiments⁵⁹ for the TiO₂-terminated SrTiO₃ (001) surface, which show an expansion of the Δd_{12} and a reduction of Δd_{23} . In contrast, all *ab initio* as well as classical shell model calculations show a reduction of interlayer distance Δd_{12} and an expansion of Δd_{23} (Table 3). Nevertheless, as we can see from Table 3, unfortunately, the different experiments contradict each other with respect the sign of Δd_{12} and Δd_{23} for the SrO-terminated SrTiO₃ (001) surface, and for sign of Δd_{23} of the TiO₂-terminated SrTiO₃ (001) surface.

Calculated surface relaxation energy for Al-terminated YAlO₃ (111) surface (-1.24 eV) is more than seventeen times larger than the surface relaxation energy for YO₃-terminated YAlO₃ (111) surface (-0.07 eV) (Table 4). Calculated surface energy for the YO₃-terminated YAlO₃ (111) surface is equal to 9.26 eV/cell and thereby it by 1.17 eV/cell exceeds the surface energy for Al-terminated YAlO₃ (111) surface 8.09 eV/cell (Table 4).

Calculated YO₃- and Al-terminated YAlO₃ (111) surface energies (9.26 and 8.09 eV/cell) (Table 4) are considerably larger than the YO- and AlO₂-terminated YAlO₃ (001) surface energies (2.33 and 3.31 eV/cell) (Table 5 and Fig. 3). Also for another calculated SrTiO₃, BaTiO₃ and BaZrO₃ perovskites, their (111) surface energies for both AO₃ and B-terminations (Table 4) are always larger than their relevant surface energies for both AO- and BO₂-terminated (001) surfaces (Table 5). From Table 4 we can see that the AO₃-terminated perovskite (111) surface energies are always larger than the B-terminated surface energies for YAlO₃, SrTiO₃, BaTiO₃ and BaZrO₃ perovskites (Table 4). It is worth noting that the ABO₃ perovskite (001) surface energies are always smaller than the ABO₃ perovskite (011) surface energies.¹⁶ The only exception is calculations by Zhang *et al.*,⁶⁷ where

Surface (111)	$E_{\rm cl}~({\rm AO}_3{+}{\rm B})$	Termination	$E_{\rm rel}$	$E_{\rm surf}$ (111)
YAlO ₃	9.33	Al-terminated	-1.24	8.09
		YO ₃ -terminated	-0.07	9.26
$SrTiO_3$	6.65	Ti-terminated	-1.66	4.99
		SrO_3 -terminated	-0.35	6.30
$BaTiO_3$	9.22	Ti-terminated	-1.94	7.28
		BaO ₃ -terminated	-0.82	8.40
$BaZrO_3$	9.43	Zr-terminated	-1.49	7.94
		BaO_3 -terminated	-0.10	9.33

Table 4. Calculated cleavage, relaxation, and surface energies for YAlO₃, SrTiO₃, BaTiO₃ as well as BaZrO₃ (111) surfaces (in electron volt per surface cell).

Table 5. Calculated surface energies for YAlO₃, SrTiO₃, BaTiO₃ as well as BaZrO₃ (001) surfaces (in electron volt per surface cell).

Surface (001)	Termination	$E_{\rm surf}$ (001)
YAlO ₃	YO-terminated	2.33
	AlO ₂ -terminated	3.31
$SrTiO_3$	SrO-terminated	1.15
	TiO_2 -terminated	1.23
$BaTiO_3$	BaO-terminated	1.19
	TiO_2 -terminated	1.07
$BaZrO_3$	BaO-terminated	1.30
	ZrO_2 -terminated	1.31

Fig. 3. (Color online) Our calculated surface energies (in eV/cell) for AO- (1) and BO₂-terminated (2) (001) as well as B- (3) and AO₃-terminated (4) (111) surfaces of YAIO₃, SrTiO₃, BaTiO₃ and BaZrO₃ perovskites by means of the hybrid B3LYP or B3PW exchange-correlation functionals.

Table 6. Calculated B–O chemical bond population of YAlO₃, SrTiO₃, BaTiO₃ and BaZrO₃ perovskite bulk, BO₂-terminated (001) as well as AO₃-terminated (111) surfaces (in e).

B–O bond population	YAlO ₃	SrTiO_3	BaTiO_3	$BaZrO_3$
Bulk	+0.170	+0.088	+0.098	0.108
BO_2 -terminated (001)	+0.232	+0.118	+0.126	0.132
AO_3 -terminated (111)	+0.252	+0.098	+0.118	0.118

Fig. 4. (Color online) Calculated bulk (1) as well as BO₂-terminated (001) (2) and AO₃-terminated (111) surface B–O chemical bond populations (in e) for YAlO₃, SrTiO₃, BaTiO₃ and BaZrO₃ perovskites.

they found that the A-type O-terminated $CaTiO_3$ (011) surface energy is smaller than the TiO₂-terminated CaTiO₃ (001) surface energy.

The covalent nature of the chemical bonding between Al and O atoms in the YAlO₃ bulk is confirmed by the large bond population values between Al and O atoms (+0.170 *e*) (Table 6 and Fig. 4). This Al–O bond population valued for the YAlO₃ bulk is considerably larger than the relevant B–O chemical bond population for another our calculated SrTiO₃, BaTiO₃ and BaZrO₃ perovskites (0.088, 0.098 and 0.108 *e*, respectively). The Al–O chemical bond population near the AlO₂-terminated YAlO₃ (001) surface is 1.36 times larger than in the YAlO₃ bulk (Table 6). Nevertheless, the Al–O chemical bond population reach its maximal value near the YO₃-terminated YAlO₃ (111) surface and is equal to (0.252 *e*), or in another words, it is 1.48 times larger than in the YAlO₃ bulk. It is interesting to notice, that also for another our calculated SrTiO₃, BaTiO₃, BaTiO₃ and BaZrO₃ perovskites the B–O chemical bond population near the (001) and (111) surfaces is considerably larger than in the bulk. Nevertheless, for SrTiO₃, BaTiO₃ and BaZrO₃ perovskites, in contrast to YAlO₃, the B–O chemical bond population near the (001) surfaces is larger than near the (111) surfaces.

By means of the B3LYP functional calculated $SrTiO_3$ bulk bandgap (3.99 eV) is only by 0.24 eV or approximately 6.4% overestimated regarding the experimental

Table 7. Calculated optical bandgaps at the Γ -point for YAlO₃, SrTiO₃, BaTiO₃ and BaZrO₃ bulk as well as AO₃- and B-terminated (111) and BO₂- and AO-terminated (001) surfaces (in eV).

Optical bandgap	$YAlO_3$	SrTiO_3	$BaTiO_3$	$BaZrO_3$
Bulk	6.21	3.99	3.55	4.79
AO_3 -terminated (111)	4.57	3.72	3.60	4.51
B-terminated (111)	5.95	3.98	4.14	4.47
AO-terminated (001)	6.02	3.72	3.49	4.71
BO_2 -terminated (001)	6.41	3.95	2.96	4.37
Experiment	8.5^{a}	3.75^{b}	$2.84^{\rm c}$	5.3^{d}

Notes: ^aRef. 71, ^bRef. 68, ^cRef. 70, ^dRef. 69.

Fig. 5. (Color online) Calculated (1) and experimental (2) bulk as well as calculated AO (3) and BO₂-terminated (4) (001), AO₃ (5) and B-terminated (6) (111) surface Γ - Γ bandgaps (in eV) for YAIO₃, SrTiO₃, BaTiO₃ and BaZrO₃ perovskites.

bulk bandgap value of 3.75 eV^{68} (Table 7 and Fig. 5). Also for BaZrO₃ bulk, by means of the B3LYP method calculated bandgap (4.79 eV) is only by 0.51 eV or 9.6% underestimated regarding the experimental bulk bandgap value of 5.3 eV^{69} (Table 7). According to the recent experimental data, the BaTiO₃ bulk bandgap in its cubic phase is equal to approximately 2.84 eV.⁷⁰ We compared the B3LYP calculation result for YAlO₃ bulk bandgap in the cubic phase with the experimental result obtained for its orthorhombic phase 8.5 eV.⁷¹

Calculated ABO₃ optical bandgaps near the (001) surfaces as a rule are smaller than the ABO₃ perovskite bulk bandgaps. The single exception is the YAlO₃ perovskite AlO₂-terminated (001) surface bandgap (6.41 eV), which by 0.2 eV exceeds the YAlO₃ bulk bandgap value (6.21 eV). Also for YAlO₃, SrTiO₃ and BaZrO₃ perovskite (111) surfaces, our calculated bandgap near the (111) surfaces is reduced with respect to the bulk bandgap value. The only exception from this tendency is increase of our calculated bandgaps near the BaTiO₃ (111) surfaces.

4. Summary and Conclusions

We performed a large amount of B3LYP and B3PW calculations for YAlO₃, SrTiO₃, BaTiO₃ and BaZrO₃ (001) and (111) surfaces, and as a result detected following systematic trends:

- (1) The relaxation of (001) and (111) surface metal atoms for YAlO₃, SrTiO₃, BaTiO₃ and BaZrO₃ perovskite, in the upper three surface layers for both AO and BO₂ (001) as well as AO₃ and B (111) surface terminations, in most cases, are considerably larger than that of oxygen atoms.
- (2) For the AO- and BO₂-terminated (001) as well as AO₃- and B-terminated (111) surfaces of YAlO₃, SrTiO₃, BaTiO₃ and BaZrO₃ perovskites, the systematic trend, with a few exceptions, according to performed B3LYP and B3PW calculations, is that all atoms of the upper surface layer relax inward, whereas all atoms of the second surface layer relax outward.
- (3) The YAlO₃, SrTiO₃, BaTiO₃ and BaZrO₃ (001) surface energies for both calculated AO and BO₂-terminations, in most cases, are almost equal. In contrast, the (111) surface energies for both AO₃ and B-terminations are quite different, also the AO₃-terminated (111) surface energies are always considerably larger than the B-terminated (111) surface energies. Calculated AO₃- and B-terminated (111) surface energies always are much larger than the AO- and BO₂-terminated (001) surface energies.
- (4) The B–O chemical bond population in YAlO₃, SrTiO₃, BaTiO₃ and BaZrO₃ perovskite bulk are always smaller than near the (111) and especially the (001) surfaces. In most cases the B–O chemical bond population near the (001) surfaces are slightly larger than near the (111) surfaces.
- (5) As follows from the performed B3LYP and B3PW calculations for YAlO₃, SrTiO₃, BaTiO₃ and BaZrO₃ perovskites, the AO- and BO₂-terminated (001) as well as AO₃- and B-terminated (111) surface bandgaps are always reduced with respect to their bulk bandgap values. The only exceptions are the BaTiO₃ (111) surface bandgaps as well as BO₂-terminated YAlO₃ (001) surface bandgaps.

Acknowledgments

We greatly acknowledge the financial support via Latvian-Ukrainian Joint Research Project No. LV-UA/2018/2, Latvian Council of Science Grant No. 2018/2-0083 "Theoretical prediction of hybrid nanostructured photocatalytic materials for efficient water splitting", Latvian Council of Science Grant No. 2018/1-0214 as well as ERAF Project No. 1.1.1.1/18/A/073.

References

- 1. M. Dawber, K. M. Rabe and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005).
- 2. S. E. Reyes-Lillo, K. M. Rabe and J. B. Neaton, Phys. Rev. Mater. 3, 030601 (2019).

- 3. Y. A. Mastrikov et al., J. Mater. Chem. A 6, 11929 (2018).
- 4. C. G. Ma, V. Krasnenko and M. G. Brik, J. Phys. Chem. Solids 115, 289 (2018).
- 5. R. I. Eglitis and D. Vanderbilt, *Phys. Rev. B* 76, 155439 (2007).
- 6. W. Jia et al., J. Lumin. 83–84, 109 (1999).
- 7. J. Meng et al., J. Mater. Sci. 54, 1967 (2019).
- 8. R. I. Eglitis, Int. J. Mod. Phys. B 28, 1430009 (2014).
- 9. R. A. P. Ribeiro et al., Appl. Surf. Sci. 452, 463 (2018).
- 10. B. C. Luo et al., Appl. Surf. Sci. 351, 558 (2015).
- 11. R. Eglitis, Int. J. Mod. Phys. B 33, 1950151 (2019).
- 12. Z. Zhao et al., Phys. Rev. Mater. 3, 043601 (2019).
- 13. M. Sokolov et al., Int. J. Mod. Phys. B 31, 1750251 (2017).
- 14. E. A. Kotomin et al., Phys. Chem. Chem. Phys. 10, 4258 (2008).
- 15. M. V. Ananev et al., Russ. J. Electrochem. 48, 879 (2012).
- 16. R. I. Eglitis et al., J. Mater. Sci. 55, 203 (2020).
- 17. N. M. Porotnikova, M. V. Ananev and E. Kh. Kurumchin, *Russ. J. Electrochem.* 47, 1250 (2011).
- 18. R. I. Eglitis and A. I. Popov, J. Nano-Electron. Phys. 11, 01001 (2019).
- 19. H. Y. Hwang et al., Nat. Mater. 11, 103 (2012).
- 20. T. Matsuda et al., J. Alloys Compd. 351, 43 (2003).
- 21. Z. Zhang et al., Adv. Energy Mater. 7, 1700242 (2017).
- 22. A. A. Emery and C. Wolverton, Sci. Data 4, 170153 (2017).
- 23. K. Szot et al., Appl. Phys. A 62, 335 (1996).
- 24. J. Druce et al., Energy Environ. Sci. 7, 3593 (2014).
- 25. G. Z. Zhu, G. Radtke and G. A. Botton, *Nature* **490**, 384 (2012).
- 26. M. S. J. Marshall *et al.*, *Phys. Rev. B* **83**, 035410 (2011).
- 27. Y. Y. Lin et al., Surf. Sci. 605, L51 (2011).
- 28. R. Shimizu et al., Appl. Phys. Lett. 100, 263106 (2012).
- 29. R. I. Eglitis and D. Vanderbilt, Phys. Rev. B 77, 195408 (2008).
- 30. R. I. Eglitis and D. Vanderbilt, Phys. Rev. B 78, 155420 (2008).
- 31. M. G. Brik, C. G. Ma and V. Krasnenko, Surf. Sci. 608, 146 (2013).
- 32. E. A. Kotomin et al., Thin Solid Films 400, 76 (2001).
- 33. K. Yang et al., Int. J. Mod. Phys. B 30, 1650168 (2016).
- 34. R. I. Eglitis, J. Phys.: Condens. Matter 19, 356004 (2007).
- 35. M. Saghayezhian et al., J. Phys. Chem. C 123, 8086 (2019).
- 36. R. I. Eglitis and A. I. Popov, J. Saudi Chem. Soc. 22, 459 (2018).
- 37. J. R. Sambrano et al., J. Mol. Struct. 813, 49 (2007).
- 38. G. Borstel et al., Phys. Stat. Sol. B 236, 253 (2003).
- 39. R. I. Eglitis and A. I. Popov, Nucl. Instr. Meth. B 434, 1 (2018).
- 40. N. Sivadas et al., Phys. Rev. B 89, 075303 (2014).
- 41. R. I. Eglitis, Appl. Surf. Sci. 358, 556 (2015).
- 42. W. Liu et al., Solid State Commun. 149, 1871 (2009).
- 43. R. I. Eglitis, Solid State Ion. 230, 43 (2013).
- 44. J. Feng, X. Zhu and J. Guo, Surf. Sci. 614, 38 (2013).
- 45. R. I. Eglitis, Phys. Stat. Sol. B 252, 635 (2015).
- 46. Y. Liang et al., Sci. Rep. 5, 10634 (2015).
- 47. R. I. Eglitis, Ferroelectrics 483, 53 (2015).
- 48. G. M. Vanacore, L. F. Zagonel and N. Barrett, Surf. Sci. 604, 1674 (2010).
- 49. A. Pojani, F. Finocchi and C. Noguera, Surf. Sci. 442, 179 (1999).
- 50. A. Pojani, F. Finocchi and C. Noguera, Appl. Surf. Sci. 142, 177 (1999).
- 51. V. R. Saunders et al., CRYSTAL User Manual (University of Torino, Italy, 2009).

- 52. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
- 53. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785 (1988).
- 54. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
- 55. R. I. Eglitis et al., Ceram. Int. 30, 1989 (2004).
- 56. S. Piskunov et al., Surf. Sci. 575, 75 (2005).
- 57. C. R. A. Catlow and A. M. Stoneham, J. Phys. C: Solid State Phys. 16, 4321 (1983).
- 58. R. C. Bochiccio and H. F. Reale, J. Phys. B: At. Mol. Opt. Phys. 26, 4871 (1993).
- 59. N. Bickel et al., Phys. Rev. Lett. 62, 2009 (1989).
- 60. E. Heifets, E. A. Kotomin and J. Maier, Surf. Sci. 462, 19 (2000).
- 61. E. Heifets et al., Phys. Rev. B 64, 235417 (2001).
- 62. J. Padilla and D. Vanderbilt, Surf. Sci. 418, 64 (1998).
- 63. C. Cheng, K. Kunc and M. H. Lee, Phys. Rev. B 62, 10409 (2000).
- 64. T. Hikita et al., Surf. Sci. 287–288, 377 (1993).
- 65. A. Ikeda et al., Surf. Sci. 433, 520 (1999).
- 66. G. Charlton et al., Surf. Sci. 457, L376 (2000).
- 67. M. Zhang et al., Phys. Rev. B 76, 115426 (2007).
- 68. K. van Benthem, C. Elsässer and R. H. French, J. Appl. Phys. 90, 6156 (2001).
- 69. J. Robertson, J. Vacuum Sci. Technol. B 18, 1785 (2000).
- 70. V. Mishra et al., J. Appl. Phys. **122**, 065105 (2017).
- 71. C. Lushchik et al., J. Phys.: Condens. Matter 6, 11187 (1994).