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Development of hybrid organic-inorganic perovskite solar cells (PSC) has been one of 
the hottest research topics since 2013. Within brief literature review, we would like to achieve 
two objectives. Firstly, we would like to indicate that a whole set of physical properties, such 
as high change carrier mobility, very low recombination rates, large carrier life time and diffu-
sion length, large absorption coefficients and very weak exciton binding energies, are defining 
high power conversion efficiency (PCE) of methyl ammonium lead trihalide SC. The second 
objective is to draw attention to some, in our opinion, important aspects that previously have 
not been satisfactory addressed in literature. Although degradation of PSC is widely discussed, 
processes at very first exposure to ambient conditions after deposition of top electrode are 
uncovered.
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1. INTRODUCTION

Due to the increasing demand for clean 
energy, much research effort has been dedi-
cated to the improvement of solar energy 
technologies. As a result, in 2013 Grätzel’s 
group created a mesoporous hybrid organic-

inorganic perovskite solar cell (PSC) with 
certified power conversion efficiency (PCE) 
of 15 % [1]. At the same time, Snaith’s group 
also succeeded in creating a planar organic-
inorganic perovskite solar cell with PCE of 
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15.4 % [2]. In the prominent scientific jour-
nal “Nature”, these PSCs were described as 
one of the ten greatest scientific achieve-
ments of 2013 [3]. Since the time of these 
achievements, the research into PSCs has 
grown rapidly, which has been described 
as a “perovskite fever” [4], and in 2019 the 
efficiency of the PSCs reached 24.2 % [5]. 

These astonishing efficiencies are 
attributed to the very interesting electronic 
and optical properties of the perovskite 
layer [6]–[13]. The most studied compound 
for the perovskite solar cells is methyl 
ammonium lead triiodide (CH3NH3PbI3). 
It has a charge carrier mobility of 8 cm2/
(V·s) in thin polycrystalline layers [6], 
but this quantity is much higher for mono-
crystals, reaching 105±35 cm2/(V·s) [13]. 
These perovskites also have extremely 
low charge carrier recombination rates for 
both the monomolecular and the bimo-

lecular recombinations [6]. In addition, 
they feature an ambipolar charge transport 
with a balanced electron and hole diffusion 
lengths, these being greater than 100 nano-
meters in a polycrystalline CH3NH3PbI3 
layer [14], [15]. In monocrystals, though, 
the electron and the hole diffusion lengths 
exceed 175 μm under illumination of 
nominal full sunlight intensity and even 
3 mm under 1000 times weaker illumina-
tion [13]. The aforementioned features of 
trihalide perovskites provide long lifetime 
of photogenerated charge carriers [6], [11], 
[14], [16]. These perovskites have a broad 
absorption spectrum covering all the visible 
range up to 800 nm on the red side, with a 
high absorption coefficient from 5·104 up to 
5·105 cm–1 [17]–[20]. Commonly, a thick-
ness of 300÷400  nm is sufficient for such 
a perovskite to fully absorb the incident  
visible light [18], [21], [22]. 

2. DISCUSSION

It is possible to create exceptionally 
thin solar cells with a record power-per-
weight figure of merit of 23  W·g–1 [22], 
which was never achieved by any other 
competing photovoltaic technologies. 
Another advantage is the low fabrication 
cost of such solar cells, “because material 
cost of the CH3NH3PbI3 absorber (300 nm 
thick) is less than US$ 2 per square meter 
and the coating processes are very simple” 
[18]. These cells do not have excitonic 
nature, unlike the organic solar cells, but 
rather have photoexcitations spontaneously 
dissociating into free carriers in the bulk of 
the junction, as in the inorganic cells [23]. 
This characteristic is determined by the 
very small exciton binding energy of ~  2 
meV [24] and high static dielectric constant 
ε ~ 70 [24]. These very low exciton binding 
energy values were also confirmed by other 

groups, namely, 6 meV [25], [26] at the 
room temperature for high-quality metal-
organic triiodide perovskite layers obtained 
by the interdiffusion method; a somewhat 
higher value of ~ 22÷24 meV was found by 
optical spectroscopy using Elliott analysis 
[27]. This explains the very impressive per-
formance of the metal-organic perovskite 
solar cells: following the absorption of the 
light, the free charge carriers are generated 
spontaneously.

Although the triiodide perovskites are 
the most widely investigated ones, usage of 
a mixed halide perovskite CH3NH3PbI3–xClx  
as light absorber has some advantages, as 
it has much higher charge carrier mobilities 
and diffusion lengths even in polycrystal-
line layers (up to 1μm, which is an order of 
magnitude higher than for the pure iodide 
perovskite) [11]. The Cl– presence in the 
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perovskite precursor solution improves 
the layer crystallization and increases the 
charge carrier lifetime up to 1μs [12], [20]. 
The mixed halide perovskites also have 
higher PCE values and are more stable 
[28]. Despite the content of chlorine in 
the CH3NH3PbI3–xClx is very small and x 
does not exceed 2÷4 % [12], [20], [29], it 
decreases concentration of the bulk traps by 
about an order of magnitude compared to the 
CH3NH3PbI3 [30], [31]. The chlorine addi-
tive alters the direction of the grain growth 
for perovskite layers formed from the pre-
cursor solution in DMF on PEDOT:PSS-
covered indium-tin oxide (ITO) glass, so 
that the CH3NH3PbI3 forms a fibrous struc-
ture with a low surface coverage, whereas 
the CH3NH3PbI3–xClx tends to crystallize in 
a planar fashion with a practically complete 
substrate coverage [30].

Another option for obtaining the highest 
power conversion efficiencies is mesopo-
rous bulk heterojunction cells; these, how-
ever, typically contain expensive charge-
transport-and-blocking layers, which need 
high-temperature (400÷500 °C) [32]–[34] 
sintering, thus increasing the processing 
time and the cost of the solar cell. To over-
come these drawbacks, a low-temperature-
processed inverted planar p|i|n solar cell 
could be produced using poly(3,4-ethylene-
dioxythiophene) poly(styrenesulphonate) 
(PEDOT:PSS) as the hole-transport (p) 
and electron-blocking layer material, while 
the phenyl-C61-butyric acid methyl ester 
(PCBM or, more specifically, PC61BM) is 
employed in the electron transport (n) layer 
(ETL), as frequently done in the design of 
planar inverted hybrid solar cells [28], [35], 
[44]–[46], [36]–[43]. These charge-carrier 
transport layers are also applicable to the 
low-cost printable or roll-to-roll manufac-
turing solar cells [47].

Usually after PCBM is spin-coated onto 
a perovskite film, the traps are efficiently 

passivated and their density in the cell is 
decreased by nearly two orders of magni-
tude within the 0.4÷0.5 eV range; photocur-
rent hysteresis is also diminished [48], [49]. 
The shallow trap states in the 0.35÷0.40 eV 
range, however, are passivated only after 
thermal annealing of the PCBM layer for 
45 min at 100 °C [48]. The hole mobility in 
the plane direction has also been reported to 
increase up to 114 cm2/(V·s) for a polycrys-
talline perovskite film covered by PCBM 
layer [48]. This means that after thermal 
annealing, the PCBM diffuses into the 
perovskite layer along the grain boundar-
ies, passivating the shallow trap states there 
and reducing the energy barrier between 
the grains, which enhances the hole trans-
port in the plane direction [48]. Even bet-
ter trap passivation has been achieved when 
the PCBM layer is covered with a C60 layer. 
Such a bilayer ETL can passivate not only 
the shallow trap states but also the ones 
deeper than 0.5 eV [50], and it also reduces 
the dark current by 3÷4 orders of magni-
tude. 

Despite the attractive performance and 
the low fabrication cost of organic-inor-
ganic perovskite solar cells, the long-term 
stability is a major drawback hindering their 
practical application [28], [44], [51]–[57]. 
These cells degrade rapidly under humid 
air, sunlight and heat [51]–[58]. Among 
these causes, humidity is the main as it sig-
nificantly amplifies the degradation speed 
of the cell under oxygen, light and tem-
perature after reaching a threshold of 2·1010 
langmuir of water vapour exposure [58]–
[60]. It was shown that moisture permeates 
into the polycrystalline perovskite MAPbI3 
layer through the grain boundaries much 
more quickly than reacts with the grain top 
surface, as the grain boundaries consist of 
a ~5 nm thick amorphous intergranual film 
[61]. The degradation process proceeds in 
two stages. At first, the perovskite mono-
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hydrate CH3NH3PbI3·H2O and also the 
mixed dihydrate are formed, which are fully 
reversible reactions, the direction of which 

depends on the water vapour concentration 
in air [53, 57, 60, 61]:

CH3NH3PbI3 + H2O ⇄  CH3NH3PbI3·H2O	  (1a)

3CH3NH3PbI3 + CH3NH3PbI3·H2O + H2O ⇄ (CH3NH3)4PbI6·2H2O + 3PbI2	  (1b)

(CH3NH3)4PbI6·2H2O ⇄  4CH3NH3I + PbI2 + 2H2O	  (1c)

CH3NH3I→CH3NH2↑ + HI↑	  (1d)

4HI + O2→2I2↑ + 2H2O	 (1e)

However, with additional moisture and 
time, especially the dihydrate can decom-
pose into CH3NH2, PbI2, HI, I2 and H2O, 
which is irreversible due to the volatility of 
many of these products [53]. The degrada-
tion process can be slowed down by choos-
ing appropriate charge transport layers [44].

In case when a bilayer ETL of the 
PCBM/C60  is used, not only passivation 
of the trap states takes place, but also the 
hysteresis diminishes and the cell humidity 
stability improves due to the hydrophobic 
nature of the PCBM top layer in the inverted 
cell [37]. Another option how to slow down 
degradation could be making the top elec-
trode thick enough. However, at the present 
time it is difficult to find data in literature 
on how the top electrode thickness influ-
ences cell degradation during its exposure 
to ambient air after thermal deposition of 
the top electrode. 

As far as we know, there is only one 
study in literature, which considers the pres-

sure influence upon the solar cell parameters 
[62]; yet its authors have investigated only 
the open-circuit voltage (VOC) change kinet-
ics in vacuum and only for a direct mesopo-
rous pure-triiodide perovskite cell. Similar 
investigations for the inverted planar mixed 
halide perovskite CH3NH3PbI3–xClx cell, to 
our knowledge, have not been reported.

Most studies involve only determining 
the spectral dependence of the short-circuit 
photocurrent (SCP) EQE (see, for example, 
[1], [37], [63]), but it is not always pos-
sible to reliably describe the cell response 
to varying external factors by acquiring of 
just this single parameter. Therefore, addi-
tional spectral dependencies for the fill fac-
tor (FF), VOC and the power conversion effi-
ciency (PCE) determined before and after 
the cell exposure to air could be useful to 
describe the first steps of degradation. We 
have not found such a type of cell charac-
terisation reported in the literature.

3. CONCLUSION

1.	 The main physical parameters con-
cerning high change carrier mobil-
ity, very low recombination rates, 
large carrier life time and diffusion 
length, large absorption coefficients 

and very weak exciton binding ener-
gies have been reported to explain very 
impressive performance of organic-
inorganic perovskite solar cells.	  
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2.	 Literature analysis has shown that 
adding a small amount of Cl– ions in 
Pb triiodide perovskite (mixed halide 
perovskite cells) has a favourable 
effect on the above-mentioned physical 
parameters.

3.	 Employing the double electron transport 
layer (ETL) PCBM/C60 is beneficiary 
because it is clearly evident that such 
ETL passivates the shallow and also 
deep trap states and diminishes hyster-
esis. Double ETL also improves the cell 
humidity stability by its hydrophobic 
nature. These observations demonstrate 

how important is to choose hydropho-
bic character charge carrier transport 
layers to diminish the cell degradation 
processes. 

4.	 To get a deeper insight into organic-
inorganic perovskite solar cell degrada-
tion processes, it would be valuable to 
study spectral dependencies of FF and 
Voc. This could provide valuable infor-
mation about cell PCE spectral changes 
under degradation as well as better 
understanding of what occurs with 
charge carrier recombination processes 
and possible hot carrier participation.
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