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ABSTRACT 

 

Application of high resolution mass spectrometry and multi-enzymatic biosensors for non-

targeted screening of chemical environmental and food contaminants. Ruško, J., supervisors Dr. 

Chem., Prof. Bartkevičs, V. and Dr. Chem., Prof. Vīksna, A. Doctoral thesis in analytical chemistry, 

127 pages, 33 figures, 8 tables, 127 literature references, 9 appendices. In English. 

 

A variety of studies were performed in the course of this thesis, contributing to the advancement 

of non-target mass spectrometry and the development of enzymatic bioassays. Novel analytical 

methodologies were developed using ultra high-performance liquid chromatography combined with 

high resolution mass spectrometry (UHPLC-HRMS) to ensure high analysis specificity and sensitivity. 

A targeted-suspect methodology was developed for the determination of veterinary drugs of 

anticoccidial class in poultry and eggs. Instrumental parameters were optimized by the means of 

statistical experimental designs to improve the sensitivity, precision, and repeatability of the method. 

High selectivity was achieved via full scan – data dependent tandem mass spectrometry (FS-ddMS2) 

detection method, allowing to broaden the scope of analysis with further suspect lists. 

A non-target screening strategy was developed for the safety evaluation of potentially hazardous 

chemicals in paper food contact materials (FCMs). A tentative list of suspect analytes was generated 

using publicly available FCM substance inventories. A workflow for mass spectrometric data analysis 

was developed for unambiguous identification of suspects. The workflow allowed for the identification 

of 74 suspect compounds, of which 40 were assigned a high confidence level of detection. Special 

attention in the study was drawn to the hazard identification and risk prioritization strategy using 

quantitative structure-activity relationship (QSAR) models to indicate which compounds have 

mutagenic or carcinogenic potential. 

Esterase-2 (EST2) from Alicyclobacillus acidocaldarius based biorecognition elements were 

used for the development of biosensor assays for the determination of organophosphate pesticides 

(OPs) and thio-OPs. In a combination with automated robotic system with fluorescence detection and 

fluorescent substrate, low detection levels were achieved of OP residues. Differences in the shape of 

the EST2 residual activity during the inhibition led to pseudo-fingerprinting of substances. 

 

NON-TARGET ANALYSIS, SUSPECT SCREENING, HIGH RESOLUTION MASS 

SPECTROMETRY, BIOSENSOR, ESTERASE, ALICYCLOBACILLUS ACIDOCALDARIUS, RISK 

ASSESSMENT 
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ANOTĀCIJA 

 

Augstas izšķirtspējas masspektrometrijas un multi-enzimātisku biosensoru pielietojums 

ķīmisko vides un pārtikas piesārņotāju nemērķētam (non-targeted) skrīningam. Ruško, J., 

zinātniskie vadītāji Dr. ķīm., prof. Bartkevičs, V. and Dr. ķīm., prof. Vīksna, A. Promocijas darbs, 127 

lappuses, 33 attēli, 8 tabulas, 127 literatūras avoti, 9 pielikumi. Angļu valodā. 

 

Šī darba ietvaros veikti vairāki pētījumi, kas ir sekmējuši nemērķētās masspektrometrijas nozares 

attīstību un enzimātisko biosensoru izstrādi. Analīzes specifiskuma (selektivitātes) un jutības 

nodrošināšanai, izstrādātas jaunas analītiskās metodoloģijas, izmantojot ultra augsti efektīvo šķidruma 

hromatogrāfiju apvienojumā ar augstas izšķirtspējas masspektrometriju (UHPLC-HRMS). 

Izstrādāta mērķa savienojumu metode veterināro zāļu kokcidiostatu noteikšanai mājputnu gaļā 

un olās. Lai uzlabotu metodes jutību, precizitāti un atkārtojamību, pētījuma gaitā, izmantojot statistikas 

eksperimentālos modeļus, optimizēti instrumentālie parametri. Augsta selektivitāte iegūta, izmantojot 

pilna masas skenēšanas diapazona – no datiem atkarīgas fragmentācijas (FS-ddMS2) noteikšanas 

instrumentālo metodi, kas ļauj paplašināt analizējamo kandidātsavienojumu (kandidātvielu) sarakstu. 

Pētījumu ietvaros izstrādāta nemērķētā skrīninga metode potenciāli bīstamu vielu noteikšanai 

pārtikas kontaktmateriālos (FCM). Tika izveidots kandidātsavienojumu saraksts, apkopojot publiski 

pieejamas FCM datubāzes. Darba procesā izstrādāta datu analīzes darbplūsma, lai identificētu 

kandidātu savienojumus. Darbplūsma ļāva identificēt 74 aizdomīgus savienojumus, no kuriem 40 

raksturo augsts identificēšanas ticamības līmenis. Īpaša uzmanība pētījumā pievērsta apdraudējuma 

faktoru identificēšanai un risku prioritizēšanai, izmantojot kvantitatīvās struktūras un aktivitātes 

(QSAR) modeļus, lai paredzētu, kuriem savienojumiem piemīt mutagēns vai kancerogēns potenciāls. 

No Alicyclobacillus acidocaldarius iegūti esterāzes-2 (EST2) enzīmi jeb bioatpazīšanas elementi 

tikai izmantoti, lai izstrādātu biosensorus organofosfātu pesticīdu (OP) un tio-OP noteikšanai. 

Apvienojot iegūtos EST2 proteīnus ar automatizētu robotizētu sistēmu ar fluoroscences noteikšanu un 

fluorescējošu substrātu, sasniegti zemi OP noteikšanas līmeņi. Atšķirības pēcinhibīcijas EST2 

aktivitātē ļāva identificēt individuālās vielas. 

 

NEMĒRĶĒTĀ ANALĪZE, KANDIDĀTVIELU SKRĪNINGS, AUGSTAS IZŠĶIRSTPĒJAS 

MASSPEKTROMETRIJA, BIOSENSORI, ESTERĀZE, Alicyclobacillus acidocaldarius, RISKA 

NOVĒRTĒJUMS 
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INTRODUCTION 

 

The development of modern analytical techniques has driven the progress in the exploration of 

the chemical space around us. The advancements and increasing availability of high-resolution mass 

spectrometry (HRMS) equipment has allowed to pave the way for advanced instrumental methods 

used for chemical discovery. One of the catalysts in the discovery process is the development of non-

target mass spectrometry methods. Non-target screening methodologies can now permit to 

simultaneously detect thousands of chemical compounds and identify the emerging unknown hazards. 

This thesis is a contribution to the continuing investigation of man-made chemicals via a novel 

approach. 

The practical relevance of the problem. 

There is a constant need for faster, cheaper, more sensitive, and more robust analytical methods, 

that can cover broader spectrum of chemical compounds of interest. A substantial part of this thesis, 

additionally to non-targeted experiments, was based on the targeted screening approach, where the 

goal was to develop as robust and reliable as possible analytical method for the determination of 

veterinary drugs with an option to increase the number of suspects analyzed, thus enabling non-target 

screening capabilities. It was important to develop a HRMS/MS method as it has been previously 

shown in literature [1] that full scan measurements using HRMS and tandem QqQ systems are not 

sufficiently selective and robust for the analysis of difficult matrices, such as liver, muscle, and urine. 

The developed FS-ddMS2 method allows for better confirmatory abilities over single reaction 

monitoring (SRM) or all ion fragmentation (AIF) detection methods [2] and enables us to attach the 

suspect lists of choice for confirmatory capabilities. Additionally, it is rare to see operators assess the 

influence of the instrumental parameter settings on the overall system sensitivity. The variables and 

factors of MS systems are interdependent and produce combined effects [3], and the optimization of 

these settings can yield an increase in the quality of analysis. The data generated using this method is 

relevant even after gathering occurrence data, as it allows for non-targeted retrospective screening [4]. 

After thoroughly assessing the methods quality assurance, the same instrumental LC-MS method 

would be later adapted for non-target experiments in the follow up paper. 

The work on food contact materials (FCMs) highlights the issues in the regulatory landscape of 

FCM testing and safety evaluation, especially in the context of upcoming changes as a part of 

European Union (EU) green strategy. Food contact materials as a source of chemical compounds in 

food are not a new phenomenon. There are regulations set in place that try to ensure the consumer 

safety, such as Regulation (EC) 1935/2004 [5]. The regulation prohibits for constituents of materials 

and articles manufactured and consumed in EU to endanger human health, which is an ambiguous 

definition. Besides the general safety requirement, some materials are well regulated, such as plastics 
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and recycled plastics by Regulations (EC) 10/2011, and 282/2008 [6,7]. First one is based on a positive 

list of authorized substances, which may be intentionally used in the manufacture of plastic layers in 

plastic materials. Specific manufacturing articles, related restrictions, and specific migration limits 

(SMLs) for individual compounds are listed. 

Analysis of the available legislative and inventory documents shows that over 6000 unique 

substances, including solvents, binders, dyes, pigments and photoinitiators can be used in the 

manufacture of printed paper and cardboard FCMs. Most of the substances have not been fully 

evaluated and have the potential to migrate into the food or drink and become bioavailable [8]. Many 

knowledge gaps exist which pose several questions about the occurrence of unwanted chemicals and 

potential adverse effects on human health. Quantitative structure-activity relationship (QSAR) 

screening and inventory comparison studies have previously identified many health effect endpoints 

for compounds present in the FCM substance inventories, which has exemplified that most of paper 

and cardboard FCMs sold on the market can potentially harm human health [9–12]. 

Material choice (paper straws) was largely in line with the current European Union green 

strategy to reduce the environmental pollution by banning single-use plastics, such as cutlery, cotton 

buds, straws, and stirrers. The regulation, first proposed in May 2018, has been valid and agreed on by 

EU ambassadors of the member states since 18th January 2019. The single-use plastics directive builds 

on the EU’s existing waste legislation, but goes further by setting stricter rules for those types of 

products and packaging, which are among the top ten most frequently found items polluting European 

beaches [13]. 

Regarding the use of biosensors for pesticide detection. Pesticides are one of the most known 

wide-spread persistent organic pollutants with undesirable health effects [14,15]. Pesticides and their 

transformation products have been found present in a wide variety of environmental samples [14,16]. 

These substances are usually found in water at low concentration levels, from traces at ppb levels to 

low ppm levels, but since they normally occur as complex mixtures, they have potential adverse 

effects on environment and human health [14]. One of the most widely used are organophosphate 

pesticides (OP). OP compounds are widely used for agriculture, horticulture, pest control, industrial, 

vector control and domestic purposes. Acute or chronic exposure to OPs can produce varying levels of 

toxicity in humans, animals, plants, and insects [17]. 

Most research on OP occurrence has been based on mass spectrometry methods. Though these 

methods provide excellent sensitivity and accuracy for the measurements, the routine analysis process 

is quite expensive and slow, and requires sample preparation. Enzyme-based techniques are gaining 

interest, due to lower cost per analysis. Several types of enzymes have been utilized for biosensor 

construction – acetylcholinesterase (AChE), butyrylcholinesterase (BChE), glucose oxidase (GOx), 

urease, organophosphorus acid anhydrolase and hydrolase (OPAA and OPH), among others [18]. 
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In our research, we have investigated the use of esterase-2 from Alicyclobacillus acidocaldarius 

(EST2) as efficient alternative in terms of stability (resistance to temperature, organic solvents, 

detergents, etc.) and specificity towards OPs. To increase the sensitivity threshold of OP detection by 

using EST2, our studies include the use of a fluorogenic substrate – 4-methylumbelliferyl butyrate (4-

MUBu) [19] to determine the residual enzymatic activity. 

 

The aim of the work. Two main aims were proposed during this work: 

i. Development of new non-target and suspect HRMS-based methodologies and their 

application for the analysis of various types of contaminants; 

ii. Development of biosensor-based methodologies for the screening of phosphorothionate 

and organophosphate pesticides. 

The approach used. To achieve the aims of the work, several tasks were proposed: 

i. Development and validation of a robust and efficient sample preparation method for the 

analysis of veterinary drugs in poultry meat and egg matrices; 

ii. Development of new UHPLC-HRMS analysis methods that are sufficiently robust for high 

sample throughput and analyte coverage; 

iii. Development of HRMS data analysis workflows intended for non-target data processing; 

iv. Hazard assessment and prioritization based on non-target results; 

v. Expression and purification of esterase-2 from E. coli strain BL21(DR3), and further use in 

fluorescence-based bioassays with 4-methylumbelliferone butyrate as a substrate. 

Scientific novelty: 

i. First published method for the analysis of anticoccidials using Orbitrap-HRMS system 

with improved results over other conventional systems using a simpler analysis protocol; 

ii. One of the first studies that has investigated the influence on individual ion generation 

(source conditions) and Orbitrap detection parameters on the sensitivity and stability of 

the analysis; 

iii. The study of non-target screening of FCMs highlights a prominent regulatory issue 

regarding the analysis of paper and board materials; 

iv. The developed workflow for FCM testing can be implemented for rapid bottom-up 

priority-based identification of hazards and be implemented in rapid risk assessment 

process; 

v. For the first time, prosphorothionate pesticide oxidation using N-bromosuccinimide has 

been used in combination with enzymatic assay; 

vi. An automated analysis process has been developed for the analysis of phosphorothionate 

and organophosphate pesticides using esterase-2 bioassay. 
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Practical application of the work. The developed suspect-target screening method of 

anticoccidial class veterinary drugs is used for continuous routine monitoring programs in poultry and 

egg samples. The non-target suspect screening method is highly adaptable and versatile, and is further 

applied in other studies of environmental and food analysis context. The work on biosensors is 

fundamental for the development of further applications, fine-tuning of methods and real-time 

detection in industry applications. 
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1. LITERATURE REVIEW 

 

1.1. Principles of non-target methodologies 

Identification of chemical compounds in the environmental analytical chemistry is split in three 

main approaches, that are target analysis, suspect screening, and unknown screening, the latter two 

being non-target analysis methods. 

For target screening, a reference standard should be available for each investigated compound 

and it should be determined using the exact same analysis setting for enable confirmation of the 

identity. Subsequently, high resolution mass spectrometry (HRMS) allows suspect screening. Those 

are the compounds that are expected in samples, but the reference standards for these compounds are 

not available. We know that these compounds might be present in samples based on various suspect 

lists, relevant to the scope of the investigation. Since the identity of accurate mass match is known, it is 

possible to confirm the theoretical suspected compound molecular formula with the one observed in 

samples by the isotope pattern. This and other evidence (later discussed in the compound identification 

chapter) can be used for a tentative confirmation of accurate identification. Target and suspect methods 

are complimented by the screening of unknowns. Unknown screening methods allow to observe all 

detectable substances in one measurement. Overviews in in environmental fields reveal that thousands 

of masses can be observed in a single sample and are reported in most non-targeted studies with 

available datasets. In most cases, that is multiple orders of magnitude higher of observed features than 

common targeted methods, which is a significant challenge for elucidation that requires careful 

detection and prioritization of relevant features [20,21].  

 

• Expected in samples 

• Confirmed by mass spectrometry 

• Reference standard available 

 

Known known 

• Known as part of expert knowledge or a 

mixture 

• Undocumented as an individual 

compound 

Unknown known 

Known unknown 

• “Suspected” or unknown to investigator 

• Documented in databases, literature 

Unknown unknown 

• Compound not documented 

• Full elucidation and confirmation required 

• Many, many suspects 

Figure 1.1. Types of suspects in analytical methods [22,23] 
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The increasing possibilities to elucidate unknowns and the ability to enable priority-based 

screening for the discovery of the unknown chemical space in human exposome is one of the reasons 

these methods are an increasingly important asset in modern analytical chemistry. Subsequently, the 

final step of all non-target analysis workflows is the true confirmation of the compound requiring a 

reference standard, thus, in a way, “upgrading” the suspects and unknowns to quantifiable target 

compounds [20,23]. 

Figure 1.1 illustrates the difference between the several categories of known and unknown 

substances [22,23]. Known knowns are substances that are expected to be in samples and whose 

identity is confirmed by mass spectrometry. Those are typical targeted method analytes. A known 

unknown is a compound that is unknown to the investigator, but the information of the compound is 

present in scientific literature or databases, hence these are the typical suspects in suspect screening 

methodologies. Unknown unknowns are compounds that have not yet been found or documented and 

are the major constituents of the gray area of the exposome and targets of unknown screening. 

Unknown knowns are substances that are known to be parts of complex mixtures, but are not yet 

documented as individual substances, e.g. homologue series consisting of discrete building blocks, 

such as perfluorinated compounds or lipids. 

For the mass spectrometry-based work performed in this thesis, the object of analyses has been 

the search of suspects or known unknowns in a definite subset of samples. 

 

1.1.1. Sample preparation methods 

Since the goal of non-targeted methods is to maximize the scope of the analytes investigated, 

generic sample preparation methods are needed. At the same time, the prepared sample extracts still 

must be relatively “clean” in order to decrease the contamination of the analysis system. Commonly 

used methods in environmental and food analysis include “dilute-and-shoot” methods and variations of 

liquid-liquid extraction, such as QuEChERS or generic extraction protocols using acidified methanol 

or acetonitrile, due to their compatibility with LC analysis. QuEChERS is advantageous because it is 

routinely used for pesticides and other compounds of concern in a variety of sample matrices [24]. 

Various sorbents are available for QuEChERS to reduce interfering compounds and further clean up 

the samples; however, investigators should be aware that the use of these sorbents may compromise 

the non-targeted method by removing suspects of interest [25]. Also, syringe or other membrane 

filters, used for sample extract cleanup prior LC-MS analysis, can account for potential heavy analyte 

loss. In a recent study [26], Aichinger et al. uncovered the fact that major losses of various Alternaria 

toxins occur when extracts are filtered. This resulted in a necessity to re-evaluate a lot of previous food 

occurrence data in the light of new results as Alternaria toxins are one of the biggest foodborne disease 

and cancer causes in the world [27]. 
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For any unknown or suspect screening application to be successful, methods need to be tested 

with appropriate standards and relevant sample types to demonstrate that they are fit for purpose. 

Repeat measurements of a pool of all samples of the same sample type can be beneficial in measuring 

the reproducibility of features common to that matrix, especially for routine screening of the same 

sample type. Due to the wide diversity and variety of sample matrices and potential compounds that 

may be present for food safety applications, the non-targeted field would benefit greatly from a 

validated QC standard that could be spiked into sample matrices [25]. It would need to be a stable 

mixture of compounds that covers a wide retention time and m/z range, molecular formula would need 

to contain elements that may be expected or should be monitored, and compounds should be included 

that ionize in positive and/or negative ion modes. These strategies would enable standardization and 

validation of developed sample preparation, instrumental analysis protocols and would help unknown 

and suspect screening methods to become routine [25]. 

 

1.1.2. Instrumental analysis methods 

Chromatography is a fine tool for the separation of difficult mixtures of environmental or food 

origin, however, the procedures to finely tune the chromatographic conditions to fit the purpose of the 

methods are quite time-consuming. Because of the continuous development of modern mass 

spectrometry equipment, the chromatographic requirements have become more flexible, allowing for 

faster method development. It is still very important to separate most of the analytes to prevent the 

effects of major ion suppression, which can result in poor quality signal or even missed peaks [28]. 

Even though ion suppression should be reduced by optimizing the analysis method, it is unavoidable 

and one of the reasons why robust quality control (QC) is necessary. 

For the types of chemical analysis performed in non-target screening, full-scan instruments are a 

requirement. Several types of instruments are used, most frequently tandem-HRMS, such as time of 

flight (TOF) and Orbitrap detectors equipped with quadrupoles and/or ion traps that allow for data-

dependent MS/MS or MS2 spectra acquisition (an example of ddMS2 experiment is illustrated in 

Figures 3.8., 3.9 and 3.10). ddMS2 events are triggered by the occurrence of either predefined ion lists 

(i.e. suspect lists) or by semi-random chance based on the most intensive precursor signals present in 

the full scan spectrum. The fragmentation events can also set to occur based on observed neutral losses 

in the full scan spectrum. The ddMS2 method is best used on TOF instruments, because the scan rate is 

much higher compared to Orbitrap detectors, which sacrifice the overall cycle time of measurements 

with an increase of MS2 scans. Higher cycle time can result in chromatographic peaks of poor shape or 

even missed peaks. The resolving power of full scan and MS/MS must be reduced as a tradeoff [29]. 
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1.1.3. Building blocks of non-target analysis 

Non-target analysis consists of the same building blocks as target analysis: sample preparation, 

instrumental and data analysis. However, the data analysis part is much more elaborate in non-target 

applications. Figure 1.2 illustrates the main differences between the workflows of target analysis, 

suspect and unknown screening and Figure 1.3 illustrates the steps and levels of the data analysis in 

non-target screening. 

 

Feature extraction and filtering 

For a successful non-target screening method, peak detection, and the merge of various adduct 

masses belonging to the same compound (ion deconvolution), the combination of both further 

referenced as feature extraction, plays an important role. Feature extraction and further filtering 

provides the best compromise between keeping most of the relevant mass spectral information and 

discarding a maximum of irrelevant data [30]. 

The feature extraction settings must be adjusted depending on the quality of the acquired 

chromatographic and mass spectrometric data. Peak width and shape, the frequency of scans and mass 

accuracy are the most important aspects of automated peak picking. In order to make the data 

reproducible both from a data analysis and generation perspective, most researchers use standard data 

processing protocols and analysis methods. For example, chromatographic separation is typically done 

on C18 columns using acidic water and methanol or acetonitrile mobile phase gradient. Further 

detection is performed using electrospray ionization in in positive and negative ion mode in separate 

analysis runs and full scan acquisition is performed [29]. 

Feature extraction software preprocesses raw LC-MS (or GC-) data and generates feature (or 

peak) lists, depending on the type of software. Then the data is smoothed and baseline is subtracted 

either using blank samples or various algorithms. An intensity threshold is specified to determine what 

can be considered peaks above the noise level. This is a crucial step as small differences in the cut-off 

value can yield orders of magnitude different amount of filtered features. Not only that, but when 

setting the threshold too high, critical components of mixtures can be overlooked. Afterwards, the 

retention times of common features are compared and aligned between samples of the same analysis 

sequence. Lastly, the individual peaks and the mass differences between peaks, considering the 

expected adducts and neutral losses, are grouped in the same features. In the end, each extracted 

chemical feature is a unique combination of m/z values, RT and sometimes MS/MS scans. 
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Figure 1.2. The main workflow differences between target and non-target analysis 

 

Most widely used open source software packages for feature extraction and further processing of 

LC-HRMS data are MZmine 2 [31] and XCMS [32] among others. Commercial, vendor specific 

software such as Compound Discoverer (Thermo), Progenesis QI (Waters), Masshunter software suite 

(Agilent) is also available for non-target analysis needs. 

 

 



 

Figure 1.3. Reprinted from Analytica Chimica Acta, Volume 1105, Pezzatti, J., Boccard, J., Codesido, S., Gagnebin, Y., 

Joshi, A., Picard, D., ... & Rudaz, S., Implementation of liquid chromatography–high resolution mass spectrometry 

methods for untargeted metabolomic analyses of biological samples: A tutorial, 28-44, CC-BY-NC-ND (2020), with 

permission from Elsevier 

Figure 1.4. Reprinted from Environmental Science & Technology, Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, 

M., Singer, H. P., & Hollender, J., Identifying small molecules via high resolution mass spectrometry: communicating 

confidence. CC-BY-NC-ND (2014), with permission from American Chemical Society 
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Figure 1.3. Steps comprised into the Data Processing part of the workflow [30] 

 

Following feature filtering, data often are accounted for drift in signal intensities and peak RTs 

in long analysis sequences and normalized. Long sequences can lead to changes in the LC-MS system, 

for example, build-up of contamination in the column and further column stationary phase degradation 

leading to poor chromatographic separation, or the contamination of ion source cone or needle, 

resulting in worse ionization efficiency [33]. Sample normalization is performed to account of bias in 

pre-instrumental analysis steps, which can lead to different amount of injected sample [30]. The 

methods used typically assume that most features do not change between similar samples [34]. The 

final step, illustrated in Figure 1.3, centering and scaling, is not commonly used in environmental non-

target investigations, but rather in metabolomics. It is used to account for different response factors for 

individual compounds. In mass spectrometry, the change in signal response is not always linear with 

the concentration of the analyte as the ionization efficiencies are varied and can be influenced by the 

sample matrix or mobile phase additives in LC-MS. 
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1.2. Compound identification in non-target mass spectrometry 

1.2.1. Confidence and bias in identification 

Schymanski et al. has proposed a scheme for reporting the identification confidence in non-target 

studies [22] based on originally published classification system by Goodacre et al. [35] for 

metabolomics. Figure 1.4 illustrates the system. Highest possible confidence level in structure 

identification is level 1. Level 1 indicates that the proposed structure is confirmed with a reference 

standard and all other criteria of identification are fulfilled – the precursor ion (MS level 1), 

fragmentation spectra (MS/MS) and retention time match for both the standard and proposed structure 

/ identified substance. Level 2 or “probable structure” is the second-best confidence level that can be 

assigned and the best that can be assigned in a typical non-target study, when the reference standards 

are typically scarce or not available. It is obtained by unequivocal match of MS1 and MS/MS spectra 

of spectral libraries (level 2a), generated from reference standards. Level 2b is obtained by diagnostic 

evidence and the match of in-silico generated fragmentation spectra with those measured in sample. 

For both levels additional bonus points of identification are granted if the modeled retention times 

match with those in samples. Level 3 or “tentative candidate” confidence is assigned to compounds 

where not enough evidence might be present for an unequivocal identification and assignment of level 

2, e.g. the presence of positional isomers or the confidence is depreciated due to the fact that the 

predicted compounds are an outlier of a retention time model (as was done in my work on non-target 

screening of food contact material substances). Level 4 and 5 identifications cannot be considered 

ambiguous and are assigned to compounds with no spectral or in-silico library matches to the 

fragmentation spectra present. For level 4 of identification the molecular formula is resolved based on 

the isotope pattern, but in no way that is considered an identification based on the molecular formula 

match in a database. Level 5 of confidence is typically assigned to compounds with observed exact 

mass at MS1 level. 

 

Figure 1.4. The identification confidence levels as proposed by Schymanski et al. [22] 
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Quality control in non-target screening 

Quality assurance (QA) and quality control (QC) are an essential part of analytical chemistry. 

While both aim at controlling and minimizing all the variance and biases affecting the whole 

workflow, QC comprises the activities undertaken prior to data acquisition, while QC refers to the 

techniques implemented during or after data acquisition step [30,36]. In targeted analysis, it is a well-

established process as there are whole protocols that describe the process of QC and QC. Targeted 

methods need to be validated, in order to prove the orderliness of the results by ensuring sufficient 

method accuracy and precision, and avoid false positive or negative results. On the contrary, there are 

no established regulations or protocols which underline any QC principles in non-target analysis [37]. 

Recently, efforts by the metabolomics community have led to guideline QA and QC processes 

published as tutorial type reviews, in which the authors describe the necessary measures [30,36]. 

In environmental and contaminant non-target analysis, the QA and QC processes are like those 

already applied in metabolomics workflows. Just as in targeted method development and application, 

system suitability samples and blank samples must be used to qualify the analytical process before and 

during the analysis of the samples of interest. Blank samples (also process blank samples) allow to 

detect any signals that could be interfering background, related to impurities in solvents, the 

contamination during sample preparation or of the analysis system, whether it is the LC or GC, the 

separation column, or the mass spectrometer. During the analysis, blank samples also allow to evaluate 

the presence of carry over contaminants. Invaluable is the fact that, in non-target approach, the blank 

samples are used for background subtraction and baseline correction in data processing workflows. 

There are different types of system suitability samples (SST), which can include several 

reference standard substances or a reference matrix (environmental, food or biological fluid). SSTs can 

be used for system suitability testing. Standard substance SSTs act as a clean sample free of biological 

matrix effects [30] and are used to evaluate the system suitability for the scope of the analytes. 

Typically, these reference standard mixes should contain analytes across the whole method m/z range 

and chromatographic gradient. The standard mix should allow to evaluate the precision of MS method 

(i.e. m/z error less than 5 ppm, compared to theoretical mass) and the goodness of fit for the 

chromatographic method, by examining the deviation in retention times, the variability of peak areas 

and the shapes of peaks (incl. broadening, tailing, peak shoulders). Reference sample matrix is applied 

for the same purpose, and typically is used across the real sample analysis sequence. Inclusion of 

commercial reference materials is useful as a reference sample matrix and for comparison between 

various analysis sequences or long-term inter-laboratory studies [30,36]. 

A common type of SSTs are pooled QC samples, which are used on an intra-study basis. The 

pooled QC sample should reflect both the sample matrix and chemical composition. Data from pooled 

QC samples is used in a similar way to other SSTs – to evaluate the variance in data and monitor the 
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method quality control by specific intra-method scope markers (analytes) or using a non-selective 

approach, for example, using non-supervised statistical methods such as principal component analysis 

(PCA, Figure 1.5). If the variance is too high (i.e., RSD > 30%) for features detected in QC samples, 

then the corresponding features can be removed. In non-targeted workflows this is one of the first steps 

in the data analysis process. If pooled QC samples drawn from a single homogeneous source are used 

across multiple analytical batches, it is also possible to correct for between-batch systematic error. 

Often, changes in sensitivity can be observed between multiple analytical sequences. Once within-

sequence systematic error has been corrected then multiple sequences can simply be aligned by mean 

response. This is done by a grand mean calculation across all sequences, and then error between each 

sequence mean and the grand mean is subtracted from all the samples in that analytical sequence 

[30,38]. However, this type of QC measure (pooled samples) is not widely used in non-target studies 

with the purpose to detect contaminants in the analyzed samples. 

Furthermore, pooled QC samples can be used for other things than the measurement of precision. 

Pooled QC samples can be used to equilibrate, or stabilize the analysis system, prior to running the 

analysis sequence. This allows for higher reproducibility by removing the variance in retention times 

or the response measured by the detector. 

 

 

Figure 1.5. An example of pooled QC samples used in a non-target study – PC scores plot of 

Latvian, Georgian and pooled QC samples; the QC data points cluster tightly in comparison to 

the total variance in projection 

 

During the work of my PhD I have focused on a couple of QC aspects which were essential for 

the investigated studies. In the anticoccidial veterinary drug suspect study, method development stage 

was all about the QA of analysis by throughout optimization of various sample preparation and 

instrumental aspects. SSTs consisting both of analytical standards and matrix components were used. 
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A stepwise process was implemented in the optimization. The instrumental stability was improved 

using the SSTs by optimizing the ion source and Orbitrap detector conditions. Later the method was 

validated and in routine application QC is performed as per targeted method basis (e.g. Levey-Jenning 

quality control plots, standard addition to samples). In the food contact materials application QA was 

assured by using control and process blank samples, and by randomizing the sample analysis order. 

QC was performed mainly in the post-analysis stage by treatment of data by intra-workflow peak area 

normalization. 

 

1.2.2. Identification via mass spectra 

Fragmentation spectra is a great tool to identify chemical structures, but it is not possible to 

identify all of compounds based on a single MS/MS spectrum. Firstly, to obtain full fragmentation 

spectra coverage, the compounds must be fragmented over a range of collision energies (i.e. 10, 20, 40, 

60 NCE), and, if possible, MS3 or MSn experiments must be performed for unequivocal identification. 

However, this kind of experiments requires costly equipment (ion trap and quadrupole equipped 

Orbitrap tribrid models) and is rarely available. Furthermore, the mass spectra are not always unique or 

sufficiently informative [39], which can lead to equivocal identification of compounds. Also, the 

ability to identify compounds based on database fragmentation spectra match is based on the 

availability of reference spectra, which often is not available for the suspect of interest. Lastly, the 

knowledge and skillset of the operator is a crucial factor to avoid misidentification. 

Comprehensive databases are an essential part of any suspect or unknown analysis workflow as 

the databases largely set the scope of analysis and the number of compounds compiled in the database 

lists is proportional to the features detected. 

Most notable spectral libraries in environmental (e.g. non-biological) analysis are MassBank of 

North America (MoNA), MassBank, Global Natural Product Social Molecular Networking library 

(GNPS), NORMAN Suspect Exchange and many chemical lists available in the US EPA CompTox 

Chemistry Dashboard, among others. Notable is the fact that, Massbank allows for users to contribute 

to the growing amount of spectra records, by allowing to upload spectra of properly identified 

substances, preferably from reference standards. 

In-silico tools for the generation of fragment spectra such as SIRIUS combined with 

CSI:FingerID [40], CFM-ID [41] and MetFrag [42] are most notable. Each tool serves a similar 

purpose, but additional features extend the usability. For all the tools not only graphical user interface 

versions is available, but also console versions, which allow to streamline large batches of analysis 

faster and, in a way, enable better reproducibility. 

One of the first steps in structure elucidation is the correct assignment of molecular formula. It is 

a very well-integrated technique in most computational workflows, but quite often in non-target 
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analysis, the settings of formula assignment can be overlooked. High mass accuracy is required for 

proper identification of isotope pattern per compound basis, due to often overlapping mass signals. The 

most common set of elements abundant are carbon (C), hydrogen (H), oxygen (O), nitrogen (N), 

phosphorus (P) and sulphur (S). For each candidate molecular formula, an isotopic pattern is simulated 

and matched with the observed pattern and the distribution of intensities. Suspect databases help with 

the assignment of elements by limiting the maximum element types and count. 

In the study of food contact materials, I applied molecular formula assignment using Compound 

Discoverer 2.1 software. Prior the assignment, we used the elements and element molecular ranges 

from the database, to simplify the molecular formula search by limiting the amount of candidate 

formulas generated. 

 

Retention time prediction 

Accurate prediction of retention time for the proposed suspects adds another level of confidence 

on top of identification via mass spectra. It has been widely adapted in proteomics for accurate peptide 

identification [43], but has been less pronounced in environmental and food non-target analysis. 

Researchers have shown that simple models of retention time plotted vs log KOW can reduce the 

number of false positives by an average of 49% [37]. 

For more advanced chromatography methods employing hydrophilic interaction chromatography 

(HILIC), more advanced retention time prediction algorithms are needed. For example, Quantitative 

Structure-Retention Relationship (QSRR) models can search chemical space to define the correct 

polarity value for a compound in order to comprehensively understand the elution mechanisms in 

HILIC conditions [44]. The developed models in the mentioned study helped to accurately identify 10 

new pharmaceutical transformation products and 28 biocides in influent and effluent of a wastewater 

treatment plant [44]. 

In our study of food contact materials, we also applied a linear regression model of retention 

time vs log KOW, which helped to identify 6 outlier compounds for which the confidence was 

depreciated. 

 

1.3. Biosensors 

1.3.1. Biochemical strategies for the chemical detection 

The search for a quick and easy detection of the neurotoxin levels in the environment has 

fostered the search for systems alternative to currently employed analytical methods. In particular, the 

development of sensors and biosensors for the precise detection and estimation of hazardous chemicals 

in a variety of sample matrices (i.e. water, human fluids, and tissue) has been gaining momentum. 
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The advantages of biosensors compared to the current technological approaches could be 

summarized in a few words: easy, cheap, and rapid. 

Figure 1.6. illustrates the main building blocks of biosensors. Biosensors are characterized by a 

bio-recognition element, which is the biological part recognizing the substance, a transducer element, 

that transforms the biological interaction into a measurable signal, and a signal processor, that 

produces a readable output. Sometimes a signal amplifier can be used to amplify the signal improving 

the sensitivity of the biosensor [45,46]. 

 

 

Figure 1.6. Main components of biosensors 

 

Biosensors for chemical substances can be based on microorganisms, antibodies, enzymes, and 

nucleic acids [47–49]. The limit of detection for a number of these biosensors is comparable and 

sometimes better than common analytical techniques, such as mass spectrometry [50–53]. Further 

details on the characteristics of the most recent biosensors and on the advances in the development of 

these technologies can be found in several recent reviews and articles [45–47,49,54–56]. There are two 

distinguishable types of applications of biosensors – diagnostic use in clinical settings and the 

environmental monitoring of chemical substances. The recent development of diagnostic biosensors 

permits us to hypothesize about their possible use in routine clinical analysis [57–59].  
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New emerging biosensors for the analysis of environmental chemicals have been proposed in 

order to offer a simple alternative means of assessment approach, such as VHH antibodies (the antigen 

binding fragment of heavy chain antibodies) that combines the comparable performance of 

conventional antibodies with the affinity for small molecules [60], or genetically engineered microbial 

whole-cells, that respond to target chemicals and produce detectable output signals [61]. However, 

these advances in the field of environmental chemical monitoring are still far from producing a 

continuous real-time and on-line system for their detection. 

Even though biosensors provide a valid alternative to the classical analysis techniques, compared 

to the possibilities of non-target analysis using mass spectrometry, the scope of analysis is often 

limited to target or suspect analysis. Based on the type of the bio-recognition element, biosensors are 

excellent for the analysis of similar chemical compound classes, for example, sulfonamides [62] or 

organophosphates [63,64], the development of which are within the scope of this thesis. 

 

1.3.2. Principle of enzymatic biosensors 

In Figure 1.7, a schematic illustration of an enzymatic biosensor is presented, the enzyme bonded 

to the surface of a generic support (membrane, gold, etc.) reacts with different analytes. 

The resulting interaction, as the formation of specific products, mediated or not by other 

molecules and enzyme, is transformed by a transducer (optical, 

electrochemical, etc.) in an appropriate output signal to be used 

for the analyte detection.  

Detection of analytes by enzymatic activity could be 

carried out by two different approaches: one is the measurement 

of the residual enzymatic activity after inhibition, and the other 

is the determination of the products after the hydrolysis of 

analytes. The first approach is most often based on the enzyme 

inhibition [65]. The inhibition mechanism takes place in the 

formation of an irreversible enzyme-inhibitor covalent complex. 

A general protocol to measure the inhibitory activity of 

analytes provides a measurement of enzyme activity before the 

inhibition (Anative), the incubation of the enzyme in the presence 

of inhibitor, and the measurement of activity after inhibition 

(Ainhibited). The inhibition percentage is determined as I% = (Anative – Ainhibited ) x 100 / Anative or as I% = 

100 – (Ainhibited / Anative x 100). 

Figure 1.7. Schematic 

illustration of an enzymatic 

biosensor 
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Strictly depending on the detection system (transducer), different substrates could be used 

[66,67], as well as mediator compounds that enhance the detection sensitivity and minimize the 

contribution of other compounds to the total signal [67]. 

Direct detection by analytes hydrolysis is realized by detection of the product from the 

enzymatic hydrolysis at once or by other molecule/enzyme mediator using several transducers [67]. 

 

1.3.3. Detection of neurotoxic chemicals  

Excluding neurotoxic poisons produced by certain fish, insects and reptiles (such as 

Bungarotoxin, Chlorotoxin, Conotoxin, and Tetrodotoxin), or by certain plants, algae and bacteria 

(such as Anatoxin-a, Tetanus and the Botulinum toxins), as well as some metals, such as lead and 

mercury, that can affect the activities of the nervous system, the most diffuse synthetic chemicals that 

impair the central nervous system are nerve agents, certain pesticides (for example, the 

organophosphates) and some organic solvents, such as hexane. These neurotoxins affect the 

transmission of chemical signals between neurons, causing several disorders and even fatality. In 

particular, the majority (the nerve agents and organophosphate pesticides) act as inhibitors of 

acetylcholinesterase activity [68]. Acetylcholinesterases are enzymes belonging to the carboxylesterase 

family, involved in the regulation of nerve signal transmission at the chemical synapses, by 

hydrolyzing acetylcholine and other choline ester neurotransmitters. The inactivation of this enzyme 

causes paralysis and even death. As this result, indeed, is the specific target of the above-mentioned 

toxic chemicals, this family of enzymes remains the one most extensively studied for use as 

bioreceptors in the development of biosensors for neurotoxic chemicals [69–71]. The principles of 

acetylcholinesterase biosensors are based on the measurement of the residual activity of the enzyme 

using different substrates, such as acetylcholine and thiocholine, that can be monitored using 

potentiometric, amperometric and optical devices [69–71]. The LODs that can be obtained using 

acetylcholinesterase activities, from insects, for the detection of these neurotoxic compounds, remain 

among the highest obtainable [72]. 

Recently, new alternative bioreceptors have been proposed, including new enzymes, 

microorganisms, antibodies, and aptamers [73–76], which represent a possible alternative to overcome 

the limitations involved in the use of acetylcholinesterases. 
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2. EXPERIMENTAL PART 

 

2.1. Targeted suspect methodology – determination of anticoccidials 

2.1.1. Chemicals and materials 

Amprolium (APL), clopidol (CLOP), decoquinate (DEC), monensin (MON), nequinate (NEQ), 

toltrazuril (TOL), toltrazuril sulfone (TOLS), and toltrazuril sulfoxide (TOLX) were obtained from 

Sigma-Aldrich, Germany. Diclazuril (DCZ), lasalocid (LAS), and salinomycin (SAL) were purchased 

from Dr. Ehrenstorfer, Germany. Halofuginone (HAL) was obtained from WITEGA Laboratorien 

Berlin-Adlershof, Germany. The standards of maduramicin (MAD), narasin (NAR), nicarbazin (as 

marker compound DNC), robenidine (ROB), and semduramicin (SEM) were provided by the 

European Union Reference Laboratory for Residues of Veterinary Drugs (EURL). Internal standards 

of nigericin (NIG) (SigmaAldrich), robenidine-d8 (ROB-d8) (EURL), decoquinate-d5 (DEC-d5), 

halofuginone-13C6 (HAL-13C6), toltrazuril-d3 (TOL-d3), DNC-d8 (WITEGA) were used in our study. 

All the compounds used in this study were of purity of 95% or higher, except for MON, NAR (86%) 

and SAL (80%). All compounds were dissolved in acetonitrile or DMSO and three diluted working 

mix solutions (two native compound solutions for each matrix and one internal standard solution) were 

prepared in acetonitrile at the concentrations given in Annex 1. Six intermediate native compound 

calibration solutions for standard addition samples for each matrix were prepared by diluting 50, 100, 

200, 300, 400, and 600 µL of each working standard up to 1000 µL volume in acetonitrile. 

Acetonitrile, methanol, formic acid (all MS grade), and DMSO (anhydrous, 99.5% purity) were 

purchased from Merck, Germany. Aqueous solutions were prepared in deionized water (resistivity >18 

MΩ cm) obtained by using a Milli-Q purification system (Millipore, Billerica, MA, USA). 

 

2.1.2. Samples and sample preparation 

Two types of poultry – chickens raised for laying eggs and broilers, as well as two types of eggs 

– quail and chicken eggs were used for method validation. The samples were collected at a local 

poultry farm near Riga, Latvia. No information was available regarding possible previous treatment of 

these animals with veterinary drugs. The method specificity and the occurrence of anticoccidials were 

studied using another set of a variety of egg and poultry samples collected within the State monitoring 

program performed by the Institute of Food Safety, Animal Health and Environment – “BIOR” (Riga, 

Latvia). 

The samples were homogenized using an Ultra-Turrax® T25 homogenizer system (IKA, USA) 

and frozen (−21 °C) immediately after collection, and thawed in small batches. 
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Homogeneous samples (5.00 ± 0.02 g) were weighed in 50 mL polypropylene (PP) tubes. 

Internal standard mixture (100 µL, 5 µg mL−1 of all compounds, 12.5 µg mL−1 of DNC-d8) was added 

to all samples. Matrix-fortified calibration samples were prepared by adding 100 µL of the 

intermediate calibration solutions to blank control samples resulting in a total of six calibration levels 

for each matrix. The calibration concentrations were prepared at 0.25, 0.5, 1, 1.5, 2.0, and 3.0 times the 

ML or MRL values. The samples were vortexed and equilibrated for 20 – 30 min, then diluted with 

acetonitrile (20 mL) and vortexed again for 10 s. The samples were agitated in a rotary shaker at high 

speed for 20 min and then centrifuged for 15 min at 4750 rpm while cooling at 0 °C, followed by rapid 

(up to 5 min) transfer of 10 mL aliquots to 15 mL polypropylene vials. The sample extracts were found 

to be the most stable at this point and could be kept in a freezer (-20 °C) for at least one week. The 

extracts were then evaporated to dryness under nitrogen stream at 60 °C using a Turbovap LV system 

and then reconstituted in 500 µL solution of acetonitrile-aqueous sodium acetate (5 mM) (30:70, v/v). 

The samples were vortexed (1 min) and sonicated (5 min) prior to the LC-HRMS analysis. The final 

extracts were found to be stable for two days at -21 °C. 

 

2.1.3. Parameters of UHPLC-HRMS method 

Chromatographic analyses were conducted on an UltiMate 3000 (Dionex, Olten/Switzerland) 

HPLC system using a Kinetex C18 (100 mm × 2.1 mm i.d., 1.7 µm) analytical column (Phenomenex, 

Torrance, CA, USA). The column and autosampler temperatures were held at 35 °C and 10 °C, 

respectively. The mobile phase for baseline separation consisted of A – water, B – acetonitrile, and C – 

methanol, with all components containing 0.1% of formic acid. The following gradient elution 

program was used: the initial pre-run composition with equilibration for 6.0 min prior to injection – 

7% B; 0–4.0 min – 7–80% B; 4.0–4.1 min – 80–95% B; 4.1–6 min – 95–100% B; 2 min hold at 100% 

B; 8.0–8.5 min – 100% B to 100% C; 2 min column washing at 100% C; 11.5–12.0 min – return to the 

initial conditions. The flow rate was 0.300 mL min−1. The total run time was 18 min. The injection 

volume was 4 µL. Acetonitrile-water (30:70, v/v) mixture was employed as the solvent system for 

filling the sample loop and washing the needle. 

The chromatographic system was coupled to a Q Exactive mass spectrometer (Thermo 

Scientific,Bremen, Germany) equipped with a Heated Electrospray Ionization Source II (HESI II). The 

qualification and quantification analyses were performed under heated electrospray ionization 

conditions in full scan/data-dependent MS2 (FS-ddMS2) mode in two separate runs for negative and 

positive ionization. Full mass range scans were used for quantification and ddMS2 – for confirmatory 

analysis. The optimized HESI II conditions were: sheath gas, 20 arbitrary units (a.u.); auxiliary gas, 6 

a.u. (positive ionization, +) or 10 a.u. (negative ionization, -); spray voltage, 4.5 kV (+) or -3.5 kV (-); 

capillary temperature, 265 °C (+) or 293 °C (-); heater temperature, 400 °C. In the FS-ddMS2 mode the 
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Q Exactive HRMS instrument performed a full scan followed by a ddMS2 scan. The full scan mass 

range was set to 100-1000 m/z with a resolution of 35 000 (FWHM at 200 m/z). The optimized 

automatic gain control (AGC) target was assigned a value of 5.0·106 (the maximum number of ions 

filling C-Trap) with the maximum ion injection time (IT) of 80 ms. For ddMS2 scans, the precursor 

quadrupole isolation window was set to 0.6 m/z. The data-dependent settings (underfill ratio, apex 

trigger, charge exclusion, dynamic exclusion, excluded isotopes, and peptide match) were disabled. 

Selected precursor ions (Table 2.1.) were admitted for the activation of MS2 fragmentation with 

collision energies specified in the inclusion list of the software. The default charge state was set to 1. 

The multiplex and loop count were set to 1 and 2, respectively, as appropriate for a Top 2 ddMS2 

method. Orbitrap resolution was set to 17 500 FWHM, the AGC target at 1.0·105, and IT was set at 20 

ms for the ddMS2 scan period. The instrument was calibrated using Pierce LTQ Velos ESI positive and 

negative ion calibration solutions. 

Thermo Scientific XcaliburTM and TraceFinderTM software suites were used for both qualitative 

and quantitative assessment of the obtained data. The native compounds and isotopically labeled 

internal standards were quantified by measuring a ratio of peak areas in FS EICs. The ddMS2 

transitions (qualifiers) were used to confirm the identity of the native analytes, but did not contribute to 

the quantification results. 

 

2.1.4. Method optimization workflow 

In order to obtain the optimal performance of mass spectrometer, such as signal stability and 

sensitivity, a chemometric approach was applied by using the MiniTab 17 software (Minitab, State 

College, PA, USA). The optimization strategy consisted of several steps, during which particular 

experiments were performed. A stepwise plan of all procedures performed in this work is shown in 

Figure 2.1. 

The compound-specific collision energies were optimized by adding the individual standards at 

1 µg mL−1 concentration in reconstitution solvent with a syringe at a flow rate of 5 µL min−1. Using 

the Q Exactive tune program, the precursor ions of the corresponding anticoccidial drug residues were 

selected by setting the quadrupole in the t-MS/MS mode and the intensities of product ion signals were 

assessed by increasing the Normalized Collision Energy (NCE). The value of NCE was optimal when 

complete fragmentation of precursor ions occurred. The monoisotopic masses of the monitored ions 

and the optimal NCE values are shown in Table 2.1. The LC conditions were defined at this point by 

selecting the appropriate mobile and stationary phases to achieve the necessary resolution and 

reasonable chromatographic peak shape. 
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Table 2.1 

Mass spectral properties of the investigated analytes 

  

    

Precursor ions (quantifiers)   Product ions (confirmatory) 

[M ± Adduct] 
Monoisotopic exact mass 

(m/z) 

Absolute mass errorb 
(ppm) 

  

NCE a [M] 
Ion 1 exact mass 

(m/z) 
[M] 

Ion 2 exact mass 
(m/z) 

ISTD Charge 
Egg 

matrix 

Poultry 

matrix 
  

APL HAL-13C6 + [C14H18N4+H] 243.1604 3.6 4.6   10 [C8H12N3] 150.1026 [C6H8N] 94.0651 

CLOP HAL-13C6 + [C7H7Cl2NO+H] 191.9977 4.4 3.9   90 [C5H6Cl] 101.0153 [C4H4Cl] 86.9996 

DEC DEC-d5 + [C24H35NO5+H] 418.2588 4.7 4.1   35 [C22H32NO5] 390.2275 [C22H30NO4] 372.2169 

DCZ TOL-d3 - [C17H9Cl3N4O2-H] 404.9718 0.2 0.2   25 [C15H7Cl3N3] 333.9711 [C15H7Cl2N3] 299.0023 

HAL HAL-13C6 + [C16H17
80BrClN3O3+H] 416.0193 4.8 5.4   30 [C5H10NO] 100.0757 [C8H10N] 120.0808 

LAS HAL-13C6 + [C34H54O8+Na] 613.3711 5.3 3.6   35 [C21H38NaO4] 377.2662 [C34H50NaO6] 577.3470 

MAD HAL-13C6 + [C47H80O17+Na] 939.5288 4.6 5.8   20 [C46H78NaO14] 877.5284 [C46H80NaO15] 895.5389 

MON HAL-13C6 + [C36H62O11+Na] 693.4184 4.8 4.0   50 [C25H42NaO6] 461.2874 [C25H44NaO7] 479.2979 

NAR NIG + [C43H72O11+Na] 787.4967 4.5 3.9   40 [C23H36NaO6] 431.2404 [C29H48NaO7] 531.3292 

NEQ HAL-13C6 + [C22H23NO4+H] 366.1700 6.5 4.8   30 [C21H22NO4] 352.1543 [C21H20NO3] 334.1438 

DNC DNC-d8 - [C13H10N4O5-H] 301.0578 0.1 0.6   10 [C6H5N2O2] 137.0346 [C3H7O4] 107.0350 

ROB ROB-d8 + [C15H13Cl2N5+H] 334.0621 5.3 5.6   40 [C7H5ClN] 138.0105 [C7H8ClN2] 155.0371 

SAL HAL-13C6 + [C42H70O11+Na] 773.4810 5.4 4.3   40 [C23H36NaO6] 431.2404 [C29H48NaO7] 531.3292 

SEM HAL-13C6 + [C45H76O16+Na] 895.5026 5.3 3.7   20 [C44H74NaO13] 833.5022 [C44H76NaO14] 851.5049 

TOL TOL-d3 - [C18H14F3N3O4S-H] 424.0584 0.9 0.5   - [C18H14F3N3O4S-H] 425.0608 [C18H14F3N3O4S-H] 426.0576 

TOLS TOL-d3 - [C18H14F3N3O5S-H] 440.0533 0.8 0.4   - [C18H14F3N3O5S-H] 441.0557 [C18H14F3N3O5S-H] 442.0526 

TOLX TOL-d3 - [C18H14F3N3O6S-H] 456.0483 0.1 0   - [C18H14F3N3O6S-H] 457.0506 [C18H14F3N3O6S-H] 458.0477 

DEC-d5 

- 

+ [C24D5H30NO5+H] 423.2902 4.5 4.4   

- 

DNC-d8 + [13C6C10H17
80BrClN3O3+H] 422.0393 5.9 5.3   

HAL-13C6 - [C13D8H2N4O5-H] 309.1081 0 0.1   

NIG + [C40H68O11+Na] 747.4654 6.1 4.8   

ROB-d8 + [C15H5D8Cl2N5+H] 342.1123 6.8 5.9   

TOL-d3 - [C18D3H11F3N3O4S-H] 427.0773 0.9 0.8   
a The actual HCD energy is calculated on a basis of mass and charge of the selected precursor ion. 
b Average mass error obtained at validation level for each matrix during 4 day validation period. (n=8) 
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Figure 2.1. Step-by-step plan of general work strategy 

 

The HESI II ionization source parameters and Orbitrap MS detector conditions were optimized 

using Box-Behnken response surface designs (BBD). The campaign of experiments for optimization of 

ion source parameters involved 5 different factors at 3 levels, for a total of 46 runs. The Orbitrap 

parameters (AGC, IT, and resolution) were optimized at three levels for a total of 15 runs. A total of 5 

replicate runs were planned for the ion source and 3 replicate runs for the optimization of Orbitrap 

parameters. The experiments were conducted in both positive and negative ionization modes and in 

randomized order. 

The ion source and Orbitrap analyzer conditions were optimized using analytical standards at 

20 µg kg−1 concentration. The injection time was studied by one factor at a time (OFAT) optimization 

using matrix-matched standards at 20 µg kg−1 concentration for both matrices. The experimental 

factors were tested by both BBD and OFAT approaches. The optimization experiments are compiled 

in Table 2.2. 

Table 2.2 

The optimization steps performed and statistical methods used in the study 

  Parameter Abbrevation -1 0 1 

1. Optimization of HESI 

conditions  

(BBD) 

Sheath gas flowa A 20 40 60 

Auxiliary gas flowa B 6 12 18 

Spray voltage, positive (kV) C1 +2.5 +3.5 +4.5 

Spray voltage, negative (kV) C2 -1.5 -2.5 -3.5 

Capillary temperature (°C) D 250 300 350 

Auxiliary gas temperature (°C) E 300 350 400 

2. Optimization of mass 

spectroscopic parameters 

(BBD) 

Resolution F 35 000 70 000 140 000 

AGC G 5.0·104 5.0·105 5.0·106 

Injection time (ms) H 20 100 180 

    Variables 

3. The effect of injection time in 

the presence of matrix (OFAT) 
Injection time (ms) 

20 40 60 80 

100 120 140 180 
a Arbitrary units 
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2.1.5. Method validation 

To evaluate the performance and suitability of the developed LC-HRMS method for the 

determination of anticoccidial veterinary drugs, it was validated according to the predefined criteria 

summarized in Table 2.3. A matrix-comprehensive in-house validation concept was applied using the 

InterVAL software according to 2002/657/EC [77] for a quantitative confirmatory method. 

Table 2.3 

Validation criteria used in the study 

Validation 

parameter 
Requirement/Criteria 

Selectivity 
No interfering peaks at the defined analyte RT and a confirmatory 

fragmentation scan.  

Decision limit 

(CC⍺) 

and detection 

capability (CCβ) 

  
Set validation levels from lowest ML/MRL (μg kg-1) 

Egg matrix Poultry meat matrix 

APL 10 50 

CLOP 10 50 

DEC 20 500 

DCZ 2 500 

HAL 6 10 

LAS 150 60 

MAD 2 2 

MON 2 8 

NAR 2 50 

NEQ 10 10 

DNC 300 50 

ROB 25 200 

SAL 3 5 

SEM 2 10 

TOL 10 100 

TOLS 10 100 

TOLX 10 100 

 

 

 

 

, where ML/MRL- maximum limit/maximum residue limit (μg kg-1); 

RSDwR - standard deviation of the within-laboratory reproducibility at 

validation level. 
 

Recovery 
-30 to +10% at concentration range 1 - 10 (μg kg-1); 

-20 to +20% at concentrations higher than 10 (μg kg-1). 

Linearity 
R2 > 0.90 

, where R2 - coeficcient of determination of calibration graph. 

Reproducibility / 

repeatability 

< 45% at concentration range 1 - 10 (μg kg-1); 

< 32% at concentration range 10 - 100 (μg kg-1); 

< 23% at concentration range 100 - 1000 (μg kg-1); 

< 16% at concentrations higher than 1000 (μg kg-1). 

Uncertainty 

Freely chosen criteria: 100% at 95% confidence interval (k = 2). 

 

 

, where U - uncertainty at 95% confidence interval (%); 

k - overlapping coefficient; 

RSDwR - standard deviation of the within-laboratory reproducibility at 

validation level. 
 

 

(1) 

(3) 

 

 

 
(2) 
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The validation levels for poultry and eggs were chosen according to the ML and MRL values of 

the target anticoccidial drugs in the relevant European Commission regulations and were set at 0.5, 1, 

1.5, and 2 times the ML and MRL values. Substances without defined MRL were validated at 5, 10, 

15, and 20 µg kg−1 concentrations. The whole validation study for each matrix type consisted of 8 

replicate standard addition experiments, which were performed by two operators over two days. Fresh 

matrix calibration series and three matrix blank samples fortified with the internal standard were 

additionally prepared on both days in order to prove the specificity and the lack of susceptibility to 

matrix interference during the validation. Four validation levels per experiment, two calibration and 

blank series resulted in a total of 50 samples per each type of eggs (chicken and quail eggs) and 50 

samples per each poultry (chickens raised for laying eggs and broilers) matrix. Additional selectivity 

evaluation experiments were performed post-validation using different samples of eggs (n = 20) and 

meat (n = 5) to further ensure the robustness of the method. 

The stability of anticoccidials in spiked (20 µg kg−1) sample extracts was evaluated by using 

reconstituted extracts. The extracts were stored at -20 °C and monitored for a week, with aliquots 

analyzed after 1, 2, 4, and 7 days. A fresh reference sample was prepared on each day of analysis to 

evaluate and compare the recoveries. Five sample injections were performed and a narrow recovery 

threshold of -20 to +10% was applied, taking into account a previous study involving such 

evaluation [78]. 

 

2.2. Non-target methodology - food contact materials 

2.2.1. Sampling and sample preparation 

In total, 17 commercially available straw samples were purchased at local catering outlets in 

Riga, Latvia. One sample was made from recycled biodegradable, transparent plastic, the rest were 

from paper or multilayer composite paper. The samples were separated into two groups – large 

diameter (8 mm, n = 5) and small diameter straws (6 mm, n = 12). No information was available 

regarding the detailed material composition and the technology used in the manufacture of these 

FCMs. Most of the paper and plastic straws were labelled as “biodegradable” and “biologically 

friendly”. A detailed list of samples and their characteristics, as well as dates and outlets of purchase, 

origin or products is available in Annex 5. No information was available regarding the detailed 

material composition and the technology used in the manufacture of these FCMs.  

To account for any background contamination, before the extraction, all non-disposable 

glassware, e.g., Erlenmeyer flasks, glass vials and measuring cylinders were soaked in 95% ethanol for 

at least 8 hours and heated at 200 °C for a minimum of 12 h. All plastic equipment was also soaked in 

95% ethanol for at least 8 hours and dried overnight in room temperature. Crimp top chromatography 
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vials with inlets (BGB Analytic AG) and Vivaspin® 500 Centrifugal filter vials (0.2 µm) were used as 

received. 

Two straws were used per leeching experiment. The straws were flattened out with some 

reminder of open volume in the middle and cut in 6-8 mm long pieces with cleaned scissors. Samples 

were then transferred to clean Erlenmeyer flasks, with 25 and 40 mL of warm (35 – 40 °C) extraction 

solution added to smaller and larger diameter straws, respectively. The solvents were chosen based on 

simulants described for plastics testing in Commission Regulation 10/2011 and were 3% acetic acid in 

deionized water (w/v) as simulant B and 50% ethanol in deionized water (v/v) as simulant D1. Two 

negative control samples were prepared solely with 40 mL of extraction solvents. The flasks were 

capped and sealed with a plastic clamp, transferred into airtight bags, and submerged in a water bath 

for 24 hours at 40 °C. After 24 hours, the extracts were transferred to clean 50 mL glass vials, cooled 

down to room temperature and stored in 4 °C in the dark. Additional leaching trend experiments were 

undertaken, to determine the rate of compound migration in simulants. For the leaching trend 

experiments, aliquots of 0.2 mL were taken and analyzed immediately. 

The extracts were filtered with centrifugal filter vials and transferred to chromatography vials 

prior to LC-MS analysis. 

 

2.2.2. Databases used as basis for suspect screening 

Databases 

The choice and volume of “suspect” compound lists largely influences the result of investigation. 

Databases for chemicals of concern (COC) as well as regulatory and non-regulatory FCM substance 

lists were obtained based on the previously published and reviewed inventories by Geueke et al. [9]. 

The COC databases retrieved were: Substitute It Now! (SIN); Substances of Very High Concern 

(SVHC); The Endocrine Disruption Exchange (TEDX). The databases of FCM substances were: 

USFDA indirect food additive list; USFDA SCOGS (Generally Recognized As Safe or GRAS 

substances); EFSA Scientific cooperation (ESCO) coatings, colorants, cork and wood, paper and 

board, printing inks, rubber and silicones; EU Plastics regulation (Union list). Additionally, native 

Thermo extractables and leachables list was included as provided by the software manufacturer. The 

non-specific public online databases (PubChem, ChemSpider) were avoided, as fitting the 

experimental data would allow for a high risk of false positive results. The entries from databases were 

acquired in December 2018. 
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Processing of databases 

The extracted CASRNs were processed using a modified version of the MS-Ready workflow 

[79] (Figure 2.2) based on the opensource environment KNIME Analytics platform 3.7.0. Chemical 

Identifier Resolver (CIR) extension was used to process the CASRN and to obtain SDF identifiers 

prior to the MS-Ready workflow. 

 

 

Figure 2.2. A modified version of MS-ready workflow by the addition of chemical identifier 

parsing nodes 

 

The CIR extension node used the network service by the CADD Group at the NCI/NIH as a 

resolver for different chemical structure identifiers and allowed to convert a given structure identifier 

into another representation or structure identifier. Cheminformatic steps were performed using an 

updated version of Indigo 2 nodes. In addition to the MS-Ready workflow nodes, we also added nodes 

to obtain the molecular formulas and monoisotopic masses for the import into Compound Discoverer 

2.1. The processed databases are available as a .csv file in the Harvard Dataverse repository [80]. 

The obtained molecular formulas were used to obtain the atomic ranges for the prediction of 

molecular formula node in Compound Discoverer. For the purpose of determining the maximum 

element counts, a ChemRegex Visual Basic (VBA) macro was used. The formulas were predicted 

using the 99.8th percentile values of the calculated maximum element count from all the compounds in 

extracted databases. The VBA macro is available in Annex 6. The resulting maximum ranges are 

available together with Compound Discoverer 2.1 parameters in Annex 7. 
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2.2.3. Parameters of UHPLC-HRMS method 

The conditions for the instrumental LC-HRMS analysis based on modified previously published 

methods [81]. The order of experiments was as follows: two different MS experiments were carried 

out in positive ion mode. First, all samples, control samples and blank solvents were run in full scan 

(100 - 1200 Da) – data-dependent mode (FS-ddMS2) with no inclusion list provided, referred to as the 

screening experiment. After preliminary data processing, an inclusion list was created based on the 

most prominent chromatographic and mass features in the sample pool (see Data Processing section). 

A second batch of experiments were then performed using the same samples, but with the inclusion list 

attached to the FS-ddMS2 method (the identification experiment), providing the most prevalent 

precursor masses. The resolution of 70,000 full width at half maximum (FWHM) at 200 m/z was used 

in the FS mode and the ddMS2 resolution was set to 17500 at 200 m/z. Normalized collision energy 

(NCE) of 40% was applied in the screening experiment and three levels of 20%, 40% and 60% of NCE 

were applied in the identification experiments. The top three most intense precursor MS/MS spectra 

were collected per each scan cycle. 

Chromatographic analyses were conducted on an UltiMate 3000 (Dionex, Olten/Switzerland) 

HPLC system using a Kinetex C18 (100 mm × 2.1 mm i.d., 1.7 μm) analytical column (Phenomenex, 

Torrance, CA, USA). The column and autosampler temperatures were held at 40°C and 4°C, 

respectively. The mobile phase for baseline separation consisted of A – water, B – acetonitrile, and C – 

methanol, with all components containing 0.1% of formic acid. The following gradient elution 

program was used: the initial pre-run composition with equilibration for 6.0 min prior to injection – 

7% B; 0–4.0 min – 7–80% B; 4.0–4.1 min – 80–95% B; 4.1–6 min – 95–100% B; 2 min hold at 100% 

B; 8.0–8.5 min – 100% B to 100% C; 2 min column washing at 100% C; 11.5–12.0 min – return to the 

initial conditions. The flow rate was 0.300 mL min−1. The total run time was 18 min. The injection 

volume was 4 μL. Additionally a Kinetex C18 (50 mm × 2.1 mm i.d., 1.7 μm) analytical column 

(Phenomenex, Torrance, CA, USA) was placed between the HPLC pump and the injection valve for 

the retardation of substances originating from the mobile phase and the analytical instrument. 

The chromatographic system was coupled to a Q Exactive mass spectrometer (Thermo Fisher 

Scientific, Bremen, Germany) equipped with a Heated Electrospray Ionization Source II (HESI II) set 

at C position. The screening and identification analyses were performed under heated electrospray 

ionization conditions in full scan/data-dependent MS2 (FS-ddMS2) mode in separate runs for negative 

and positive ionization. The HESI II probe was set to C position depth. The conditions for HESI II 

were: sheath gas, 40 arbitrary units (a.u.); auxiliary gas, 10 a.u.; spray voltage, 4.5 kV (positive 

ionization, +) or -3.5 kV (negative ionization, -); capillary temperature, 280 °C; heater temperature, 

400 °C. The S-lens RF level was set to 50. In the FS-ddMS2 mode the Q Exactive HRMS instrument 

performed a full scan followed by multiple ddMS2 scans. The full scan mass range was set to 100–



 

 

38 

1200 m/z with a resolution of 70’000 full width at half maximum (FWHM) at 200 m/z. The automatic 

gain control (AGC) target was assigned a value of 5.0∙106 (the maximum number of ions filling C-

Trap) with the maximum ion injection time (IT) of 100 ms. 

For ddMS2 scans, the precursor quadrupole isolation window was set to 0.6 m/z. The data-

dependent settings (underfill ratio, apex trigger, charge exclusion, dynamic exclusion, excluded 

isotopes, and peptide match) were disabled. Selected precursor ions after the screening experiment 

were admitted for the activation of MS2 fragmentation. The default charge state was set to 1. The 

multiplex and loop count were set to 1 and 3. Orbitrap resolution was set to 17 500 FWHM at 200 m/z, 

the AGC target at 1.0∙105, and IT was set at 20 ms for the ddMS2 scan period. The instrument was 

calibrated using Pierce LTQ Velos ESI positive and negative ion calibration solutions. 

Thermo Scientific Xcalibur™ software suite was used for sequence setup and acquisition. 

 

2.2.4. Data processing and compound identification 

The acquired data for both experiment types were processed using Compound Discoverer 2.1 

(Thermo Scientific) analysis workflow nodes including peak alignment, unknown compound 

detection, grouping, gap filling, composition prediction, mass lists, mzCloud, mzVault, ChemSpider 

search and compound annotation. 

A background subtraction was performed by Mark Background Compounds node. Detailed 

parameters for each node are available in Annex 7. The conceptual workflow for the analysis and 

identification of potentially hazardous chemicals is presented in Figure 2.3 and was as follows: 

● Peak lists were generated by Compound Discoverer from the exact mass chromatograms of the 

samples, extraction solvent blanks and control samples; 

● Retention time alignment was performed and the peaks detected in negative control samples 

were subtracted from the real samples; 

● All peaks with the maximum area of less than 500000 across all the sample pool were filtered 

out; 

● Compounds with retention time less than 1 min were filtered out; 

● Exact masses of the remaining peaks were searched against suspect databases and filtered; 

● Molecular formulas were generated based on the isotope pattern fit; 

● Candidates with a spectrum fit score (SFit) greater than 80% were filtered; 

● The remaining candidates were included in an Xcalibur inclusion list for ddMS2 analysis and 

the samples were re-run; 

● Fragmentation spectra of candidates were searched against MassBank, MassBank of North 

America (MoNA), mzCloud and mzVault; 
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● Fragmentation spectra of candidates were averaged between 20%, 40% and 60% NCE, then 

matched and ranked against MetFrag [42] search. Individual spectra were also submitted to 

SIRIUS 4 [40]. Both tools were populated with SMILES and InChlKeys from the suspect 

database. 

In-house R script that was used to implement the spectra averaging and search against MetFrag 

is available upon request. The levels of confidence for the identification of the detected compounds 

matched those used by [22], where level 2 was assigned to the probable structure, subdivided into two 

levels – 2a (spectral library match) and 2b (diagnostic evidence and in silico prediction match). Level 

2ab was assigned to candidates for which both spectral library and diagnostic evidence provided 

unanimous agreement. 

Level 3 was assigned to tentative candidates, when there was not enough evidence for level 2 

confirmation and level 4 to candidates with unequivocal molecular formulas. The original spectra and 

average spectra of final candidates, exported in .csv format, are available at Harvard Dataverse 

repository [80]. For the candidates with multiple isobaric compounds, spectra were collected from the 

highest intensity peaks. 

Multivariate model regression analysis of retention time and the logarithm of the octanol-water 

partitioning coefficient (logKOW) for the annotated structures were used to check retention time 

plausibility and to evaluate the outliers by applying Cook’s distance. 

 

Figure 2.3. Conceptual workflow for the analysis, identification and ranking of the suspects 
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2.2.5. Toxicological endpoint screening 

To assess whether any experimental data concerning mutagenicity or carcinogenicity may be 

already available for any of the compounds tentatively identified in this study, the free software 

application OECD QSAR Toolbox v4.3 [82] was used for in-silico analysis of the toxicity of 

individual compounds, serving as a reference database comprising experimental toxicity data for 

different endpoints. Information retrieval from the OECD QSAR Toolbox v4.3 was performed as 

described in [83]. In short, with a focus on the endpoints of mutagenicity and carcinogenicity, all 

databases provided under the headline “Human Health Hazards” within the “Endpoint” tool were used 

to (i) extract the number of experimental studies being available within these databases, and to (ii) 

extract the number of experimental studies indicating that the respective substance was mutagenic or 

carcinogenic. 

In addition, the compounds tentatively identified in this study also were subjected to (Q)SAR 

analyses for in silico toxicity predictions. Five (Q)SAR tools were used for the prediction of 

mutagenicity and three tools were used for carcinogenicity predictions following an approach adapted 

from [83]. In short, TEST (https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-

test) was used for mutagenicity predictions; VEGA (https://www.vegahub.eu/) and LAZAR 

(http://lazar.in-silico.de/predict) were used to predict mutagenic and carcinogenic endpoints. 

The Toxicity Estimation Software Tool (TEST; v4.2.1) provided by the USEPA predicts 

mutagenicity using three different QSAR methodologies based on either hierarchical clustering, the so-

called FDA approach as applied by the USFDA, a nearest neighbor approach, and a consensus model. 

The output given by TEST models was a numeric value within the limits of 0 and 1; when no output 

results were produced the mutagenic score was set to the value of 0.5. For the cumulative analysis 

using all the models, the consensus score was used following normalization as suggested in [83]. 

The VEGA platform v1.1.4 [84] comprises an array of toxicity estimation models including four 

models (CAESAR, SarPy/IRFMN, ISS and KNN/Read-Across) for mutagenicity predictions later 

combined in a consensus model and four carcinogenicity models (CAESAR, ISS, IRFMN/Antares and 

IRFMN/ISSCAN-CGX). In accordance with [83], the VEGA results obtained were translated into 

numeric values. The models provided two different types of information for every individual 

compound. The first layer of information was a simple yes/no prediction for mutagenicity 

(carcinogenicity); in addition, compounds could be marked as suspected mutagens. The second layer 

of information was related to the reliability of the prediction made by the respective model. The 

possible outputs were “experimental activity”, “good reliability”, “moderate reliability”, or “low 

reliability”. Following the approach described in [83], these two types of information were combined 

and translated into a numeric value in the range between 0 and 1, which then served as mutagenic 
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(carcinogenic) scores for the respective model of the VEGA platform. For the cumulative analysis 

using all the models for mutagenicity, the consensus model score was used. 

LAZAR (lazy, structure–activity relationship) [85] comprises one model for mutagenicity and 

three models for carcinogenicity. The mutagenicity model yields binary yes/no answers, which are 

presented alongside probability scores (0 to 1) that indicate to which class the prediction belongs to. 

Binary and probability outputs were combined, translated into numeric values, and normalized to 

obtain a single LAZAR mutagenicity score in the range of 0 to 1. Accordingly, the results of the 

LAZAR carcinogenicity models were translated into normalized carcinogenic scores for LAZAR. 

Following the individual (Q)SAR analysis, the three normalized mutagenic scores and the 

carcinogenic scores (all of the VEGA model scores and the LAZAR scores) were combined by 

calculating the mean values for each predicted endpoint and the tentatively identified compounds were 

sorted and ranked according to their final cumulative mutagenic and carcinogenic scores. 

The R script implemented in this case study including the output data are available at Harvard 

Dataverse repository [80] as a .rmd file and in Annex 8. 

 

2.3. Biosensors 

2.3.1. Reagents 

All reagents were of analytical grade and obtained from commercial sources. 2-[4-(2 

Hydroxyethyl)-1-piperazino]ethansulfonic acid (HEPES), 4-methylumbelliferyl butyrate (4-MUBu), 4-

methylumbelliferone (4-MU), N-bromosuccinimide (NBS), diethyl (4-nitrophenyl)phosphate 

(paraoxon), diethoxy-(4-nitrophenoxy)sulfanylidenephosphorane (parathion), 3-chloro-7-diethoxy-

phosphinothioyloxy-4-methyl-chromen-2-one (coumaphos), dimethoxy-(4 nitrophenoxy)-

sulfanylidenephosphorane (methyl parathion), diethoxy-(4- methylsulfinylphenoxy)-sulfanylidene-

phosphorane (fensulfothion), O-4-cyanophenyl O,O-dimethyl phosphorothioate (cyanophos), 

diethoxysulfanylidene- (3,5,6-trichloropyridin-2-yl)oxyphosphorane (chlorpyrifos), diethoxy-(6-

methyl- 2-propan-2-ylpyrimidin-4-yl)oxy-sulfanylidene-phosphorane (diazinon), N-(mercapto- 

methyl)phthalimide S-(O,O-dimethyl) phosphorothionate (phosmet), O-(2-(diethylamino)- 6-methyl-4-

pyrimidinyl) O,O-dimethylphosphorothioate (pirimiphos), O,Odimethyl O-(2,6-dichloro-4-

methylphenyl) phosphorothioate (tolclofos), were from Sigma-Aldrich (St. Louis, MO, USA). 

 

2.3.2. MU standard calibration curve in HEPES 

Stock solution of 1 mM methylumbelliferone (MU) in 100 % DMSO was prepared as a standard 

reference for the calculation of the reaction product concentrations in our experimental conditions. 

Fluorescence emission was measured at 445 nm after excitation at 365 nm for MU solution aliquots at 
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different concentration levels in the range from 0.01 to 0.66 mM. The slopes obtained from the plotted 

fluorescence intensities versus the MU concentrations were used for the determination of fluorescence 

intensity coefficients, further used to quantify the amount of MU released during the hydrolysis of MU 

by EST2. All measurements were carried out at least three times, and the acquired data was analyzed 

using the software QtiPlot 0.9.7.10 (Copyright 2004–2009 Ion Vasilief, IONDEV SRL - Bucuresti, 

Romania). 

 

2.3.3. Enzyme purification 

EST2 was over-expressed in the mesophilic host E. coli strain BL21 (DE3) and purified as 

previously described in Manco et al. [86]. Purity was tested by SDS-PAGE. The protein concentration 

was estimated by the optical absorbance at 280 nm, using a molar extinction coefficient of 

1.34 × 105 M−1 cm−1 in 40 mM sodium phosphate buffer, pH 7.1 (slightly alkali), at 25 °C, as 

described in Manco et al. [86]. 

 

2.3.4. Fluorescence standard enzymatic assay 

The standard assay was prepared in a 0.5 mL final volume reaction mixture containing 25 mM 

HEPES buffer, pH 7.0 (neutral), 1% C14H22O(C2H4O)n (TRITON X-100) and 1 mM 4-MUBu (from a 

stock solution of 40 mM 4-MUBu in 100% DMSO). After 2 min incubation at 30 °C, aliquots of EST2 

(1.46 pmol) in 25 mM HEPES at pH 7.0 were added to the assay solution. Fluorescence measurements 

were carried out in a JASCO FP-777 spectrofluorometer (Jasco Analytical Instruments, Tokyo Japan), 

equipped with an external thermostatic bath Julabo F25 (Julabo GmbH, Seelbach, Germany) at the 

temperature of 30 °C, using a quartz cuvette of 1 cm optical path. The rate of 4-MUBu hydrolysis by 

the EST2 enzymatic activity was determined by monitoring the increase of the fluorescence emission 

at 445 nm (Ex = 365 nm) due to the release of 4-MU as a reaction product. The coefficient of 4-MU 

fluorescence intensity, determined as previously described, was used for the calculation of the 

concentration of reaction products. One unit of enzymatic activity was defined as the amount of 

enzyme required to release 1 µmol min-1 of 4-MU under the indicated experimental conditions. 

 

2.3.5. Kinetic constants 

Enzyme kinetic constants on 4-MUBu were determined under standard assay conditions at 

substrate concentrations in the range from 0.1 to 4 mM. The kinetic constant values (KM and kcat) were 

calculated by plotting the reciprocals of EST2 hydrolysis rates versus the substrate concentrations 

(Lineweaver-Burk transformation plot). All measures were carried out at least three times, and the data 
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were analyzed by the software QtiPlot 0.9.8.9 (Copyright 2004–2011 Ion Vasilief, IONDEV SRL - 

Bucuresti, Romania). 

 

2.3.6. Inhibition Assay of EST2 in Presence of Pesticides  

Ten mM stocks of paraoxon, coumaphos, fensulfothion, methyl-parathion, parathion, cyanophos, 

pirimiphos and diazinon in 100% DMSO, and 20 mM stocks of phosmet, chlorpyrifos and tolclofos in 

100% DMSO, were prepared in order to use as EST2 activity inhibitors. The inhibition assays were 

carried out under the standard assay conditions by incubating aliquots of 1.46 pmol of EST2 in 

presence of increasing concentrations of each inhibitor in the range from 0 to 2.1 pmol in a final 

volume of 10 µL. After 1 min incubation, aliquots of inhibited enzyme were removed from the mixture 

and the residual activity was measured in the standard assay conditions. The inhibition percentage was 

calculated based on the following as previously described [72] equation:  

 

 

 

 in which I0 represents the inhibition percentage in absence of inhibitor and I the percentage of 

inhibition at the indicated inhibitor concentration. All measurements were carried out at least three 

times and the data analyzed by the software QtiPlot 0.9.8.9 (Copyright 2004–2011 Ion Vasilief). 

 

2.3.7. Docking analysis 

Computer simulations were carried out as described in Carullo et al. [75] using the 3D 

crystallographic structure of EST2 resolved at 2.6 Å (ID number 1EQV from the Protein Data Bank 

(http://www.rcsb.org/pdb/)). In particular, the EST2 pdb file was opportunely edited by removing the 

4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid bound to the serine 155 residue in the catalytic 

site, and the 2-amino-2-hydroxymethyl-propane-1,3-diol molecule bound to the protein during the 

crystallization process. Using Avogadro software (https://avogadro.cc/), the resulting structure was 

optimized through a brief energy minimization, by using the Assisted Model Building with Energy 

Refinement (AMBER) force field with the steepest descent algorithm, in order to remove potential 

problems, such as bad contacts, clashes and nonphysical contacts/interactions. The 4-MUBu and p-

nitrophenyl butyrate 3D structures were generated using Avogadro software (https://avogadro.cc/) and 

the structures optimized through the MMFF94 force field with the steepest descent algorithm. The 

docking analysis was carried out using Autodock Vina, that employed the Broyden-Fletcher-Goldfarb-

Shanno algorithm, significantly improving the average accuracy of the binding mode predictions with 
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respect to AutoDock 4 [87]. A box of about 89 Å3 was used to include both catalytic protein pockets, 

with an exhaustiveness of 8. During the docking procedure, both the protein and ligands are considered 

as rigid, because the rigidity of the double ring of 4-MUBu and of the thermophilic proteins at room 

temperature. The structures were analyzed and the images produced by using the PyMOL (Schrödinger 

- New York, NY, USA) molecular graphic software [88]. 

 

2.3.8. Phosphorothionate pesticide oxidation by NBS 

The chemical oxidation of phosphorothionate compounds was carried out by incubating these 

compounds in the presence of NBS. Aliquots of NBS (90 mM in water) were added at the final 

concentration of 300 µM to aliquots of OPs which possess the sulphur atom in binding with phosphate, 

at room temperature, in a ratio 1:90, and immediately mixed. After 5 min of incubation, the mixture 

was used in the inhibition assays of EST2. Incubation time and concentration ratio were determined by 

measuring the inhibition efficiency of oxidized-parathion on EST2 activity and the lack of NBS effects 

in the enzymatic activity. 

 

2.3.9. MS analysis of NBS-oxidized pesticides 

The chemical oxidation of phosphorothionate compounds by NBS was tested by using LC-MS. 

LC steps were performed with a Nexera X2 series UHPLC system (Shimadzu, Kyoto, Japan). The 

chromatographic separation was achieved on a Symmetry C18 column (5 µm, 4.6 × 150 mm, Waters, 

Dublin, Ireland). The column oven temperature was kept at 40 °C and the temperature of autosampler 

was set at 10 °C. Flow rate was set at 0.400 mL min-1. Compounds were separated with a gradient of 

water (A) and ACN (B), both with added 4 mM ammonium acetate and 0.1% acetic acid. Gradient 

conditions were as follows: 5 min equilibration at initial 5% B, then increased to 60% B at 2 min with 

a further increase to 90% B at 5 min, followed by final increase to 95% B at 12 min. Gradient was 

returned to initial conditions of 5% B during 0.5 min and allowed for 2.5 min re-equilibration. Total 

analysis time was 20 min. Injection volume was set to 10 µL. MS analysis was performed with a 4500 

QTrap mass spectrometer (AB Sciex, Courtaboeuf, France), equipped with turbo ion spray interface 

(ESI), operated in positive ionization mode. The source conditions were as follows: ion spray voltage, 

5.5 KV; curtain gas pressure, 25 psi; nebulizer and heating gas pressure, 50 psi. The source 

temperature was set at 500 ◦C. Data acquisition was performed with the MRM mode. The declustering 

potential, the collision energy and the cell exit potential were found from literature data. Detailed 

MRM transitions, voltage settings and literature references are shown in Annex 9. Data were plotted 

by using the software QtiPlot 0.9.8.9. 
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2.3.10. Determination of EST2 activity in presence of NBS 

The effect of NBS on the activity of EST2 was measured by pre-incubating 1.46 pmol of EST2 

in the presence of several concentrations of NBS in the range from 0 to 50 mM in a final volume of 10 

µL. After 1 min of incubation, aliquots of EST2 were taken from the mixture and the residual activity 

was measured in the standard assay conditions. All measurements were carried out at least in triplicate 

and the data analyzed by the software QtiPlot 0.9.8.9. 

 

2.3.11. EST2 assay on robotic workstation and OP screening 

Enzyme activity assay in the presence of irreversible inhibitors for pesticide screening and 

fingerprint purpose was carried out in 96 well micro-plates V-bottom, black, from Greiner Bio-one 

(Kremsmünster, Austria), using a Microlab® STAR Liquid Handling Workstation (Hamilton Europe, 

Bonaduz, Switzerland), equipped with an eight-channel liquid handler arm and a Hamilton Microlab® 

iSwap robotic arm, a gripper tool that can access plates on or off the deck, and Hamilton Heater 

Shaker. The STAR line workstation is equipped with a sensor for the control of temperature set in our 

experiments at 20 °C and controlled from a Microlab® Star Vector software 4.0. The workstation was 

also connected to a VICTORTM X3 Multi-label Plate Reader (PerkinElmer, Waltham, MA, USA) a 

luminescence, fluorescence, and UV-Absorbance reader, equipped with a dispenser module and a 

shaker with adjustable speed. In Figure 2.4a, the layout of the robotic workstations worktable is 

described. In the worktable column 1 the first solvent reservoir carrier (total volume of about 250 mL) 

was filled with 50 mL of 0.025 M HEPES buffer pH 7.0, and 96-well micro-plates were placed in the 

worktable columns 3, 4 and 5. As described in Figure 2.4b, the mother plate in the temperature 

controller (set at 20 °C) of column 3 in Figure 2.4a, was prepared manually by the operator to contain 

150 µL of EST2 enzyme at the final concentration of 0.7 µM in 0.025 M buffer HEPES pH 7.0 in the 

well 4A, and 11 different NBS treated OP inhibitors (10 µL each) at a final concentration of 3.3 µM in 

3.3% DMSO, pre-incubated in presence of 300 µM NBS, in the wells from 1B to 2D, and a blank 

reference sample containing 3.3% DMSO and 300 µM NBS in water in the well 1A. 

Incubation mixtures were prepared by the robotic liquid handler in the plate of worktable column 

4, using the solutions from the solvent reservoir in column 1 and the plate in column 3, and dispensing 

in the wells from 1A to 2D the following solutions: 187 µL of 0.025 M HEPES buffer pH 7.0, 10 µL 

of EST2 (7 pmol). Then 3 µL of reference sample in the well 1A and 3 µL of each inhibitor (9.9 pmol) 

in the wells from 1B to 2D (Figure 2.4c). The plate was agitated in the shaker for 5 s and 10 µL 

aliquots, containing 0.35 pmol of fully inhibited enzyme with 0.495 pmol of the inhibitors, were 

withdrawn and dispensed in the plates in the worktable column 5 (each mixture had four replicates) for 

the assay of enzymatic residual activity (Figure 2.4d). The Microlab® iSwap robotic arm was used to 
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transfer the plate to the Victor X3 plate reader, where the internal temperature was set at 30 °C, and the 

dispenser added to a single well 250 µL of a reaction mixture containing 25 µM MUBu in 0.025 M 

HEPES pH 7.0, 1% Triton X-100. Then the plate was shaken for 5 s and the increase in fluorescence at 

445 nm, after excitation at 350 nm, was measured for 30 s. The instrument automatically was set to 

repeat the entire process of dispensation/agitation/reading for each well, until all the inhibitors were 

tested. All measurements were carried out four times and the data analyzed by the software QtiPlot 

0.9.8.9. 

 

 

Figure 2.4. Representation of the robotic workstation worktable and plates layout for the 

measurement of EST2 residual activity. (a) In the worktable column 1 the solvent reservoir 

carriers, in column 2 disposable tip carriers (10, 200, 1000 μL), in column 3 the stock solution 

and reagent plate in the temperature controller, in column 4 the incubation plate on the heated 

shaker, and in column 5 the plates for the enzymatic residual activity assays, were placed. (b) 

Plate placed in column 3 of (a), prepared by the operator manually, containing the enzyme 

(EST2) and the NBS treated OP inhibitors (I.1, I.2, … I.n) and a blank reference (R). (c) Plate in 

column 4 of (a), containing the incubation mixtures (enzyme-inhibitors) prepared by the robotic 

liquid handler. (d) Plate layout in column 5 for the assays of enzymatic residual activity, samples 

are divided in three groups for the assay of each mixture. The arrows indicated the direction of 

measurements for each group 
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2.3.12. Collection of human urine and blood samples 

All samples were collected in accordance with European ethical guidelines, and those who 

agreed to participate in this study provided written consent. Human urine samples were collected from 

two healthy adult volunteers in 50 mL sterile falcons. After centrifugation at 14,000 rpm for 10 min to 

remove particulate matter, all urine samples were used immediately after collection in the fluorescence 

experiments. 

Human blood samples of 10 mL were collected from two healthy adult volunteers in a sterile 

tube. After 30 min to allow the blood to clot, serum was separated by centrifugation at 2000 rpm for 10 

min and stored at 4 °C to be used in the fluorescence experiments. 

 

2.3.13. EST2 residual activity in human urine 

Aliquots of a urine sample in the concentration from 0 to 10 % were added to a solution (50 µL 

final volume) containing 1.46 pmol of EST2 in buffer 25 mM HEPES, pH 7.0, and incubated for 5 min 

at 25 °C. Aliquots of 45 µL were withdrawn from the mixture, and the activity of EST2 was then 

measured in the standard assay conditions in the presence of 1 mM 4-MUBu. All measurements were 

carried out at least three times, and the data were analyzed by the software QtiPlot 0.9.8.9 (Copyright 

2004–2011 Ion Vasilief, IONDEV SRL - Bucuresti, Romania). 

 

2.3.14. Paraoxon inhibition assay of EST2 in human urine 

Aliquots of 1.46 pmol of EST2 were incubated in a solution (50 µL final volume) containing 4% 

urine in buffer 25 mM HEPES, pH 7.0, and increasing concentrations of paraoxon in the range from 0 

to 2.1 pmol. After 1 min incubation, aliquots of 45 µL were removed from the mixture and the EST2 

residual activity was measured in the standard assay conditions. All measurements were carried out at 

least three times, and the data were analyzed by the software QtiPlot 0.9.8.9 (Copyright 2004–2011 

Ion Vasilief, IONDEV SRL - Bucuresti, Romania). 
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3. RESULTS AND DISCUSSION 

 

3.1. Targeted suspect methodology – determination of anticoccidials 

3.1.1. Sample extraction 

During the initial stage of method development, a convenient sample preparation procedure for 

routine samples was optimized. Since poultry and eggs contain large amounts of problematic matrix 

components such as fats and proteins, some basic clean-up is mandatory. Considering the previous 

studies [89–95], acetonitrile was chosen as the extraction solvent and partitioning clean-up at 

moderately low temperature (0 °C) was applied. 

 

3.1.2. Liquid chromatography 

The selection of UHPLC method and the choice of specific conditions were influenced by 

previous studies [95–97]. First, we tested a gradient system of 0.5% formic acid in water and methanol 

systems [96], which led to a good overall performance, except for polyether ionophore anticoccidials 

that showed poor results, including notable tailing. A modified method developed by Pereira et al. [97] 

was found to be applicable in our case. Excellent peak shapes for all compounds were observed using a 

Hypersil Gold (50 mm × 2.1 mm, 1.9 µm particle size) column, but co-elution of some peaks occurred. 

A longer Kinetex C18 column (100 mm × 2.1 mm, 1.7 µm particle size) was chosen as a compromise. 

The selected gradient program produced excellent peak shapes and chromatographic separation, while 

also effectively removing the matrix components and thus reducing the noise level, decreasing the 

risks of carry-over effect, and minimizing column deterioration. During the method development, 

validation and sample analysis, the retention time of analytes did not deviate by more than ± 0.1 min. 

A solution of acetonitrile-aqueous sodium acetate (5 mM) (30:70, v/v) was used as the injection 

solvent. Polyether ionophore anticoccidials are known to favor sodium adducts [95,98] and a 

significant increase in signal was observed. Another reason in favor of using this solution was the 

increased stability of analytes under mildly basic (pH = 7–8) conditions [95]. The injection volume of 

4 µL was found to be satisfactory for balancing the sensitivity and selectivity of the method. 

 

3.1.3. MS conditions 

TOL, TOLS, and TOLX did not produce suitable fragment ions while using the electrospray 

ionization interface. Previous studies have shown that the confirmatory fragmentation criteria for these 

three compounds can be met by MS systems operating in atmospheric pressure chemical ionization 

mode [99]. In our work, however, the confirmation of species derived from TOL was possible by using 
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full scan spectra and confirming the presence of monoisotopic target ions with the expected isotope 

pattern and applying a narrow (10 ppm) window of mass tolerance to all the aforementioned species. 

 

3.1.4. Optimization of MS parameters 

The responses were assessed as absolute peak areas in arbitrary units. A series of diagnostic tests 

(e.g., residual normal probability test, residuals vs. run order, histograms) did not indicate the presence 

of any significant outliers which would indicate experimental errors for any of the statistical DoE. 

BBD and OFAT optimization parameters are shown in Table 2.2. The analysis of variance (ANOVA) 

results for all the factor interactions along with the final coefficients for BBD equations in terms of 

actual and coded response factors regarding all the analytes both for the ion generation region and the 

optimization of analyzer are available upon request. 

 

Source conditions 

The HESI source factors exerting significant effects on the MS response were identified through 

simultaneous batch screening and optimization experiments using a BBD model. Five main source 

parameters – the sheath (A) and auxiliary (B) gas flow rates, spray voltage (C1 for positive and C2 for 

negative ionization), capillary (D) and auxiliary gas heater temperatures (E) were considered as 

independent variables. A wide range of values were chosen and the original Orbitrap software auto-

tune settings were selected as the center point of BBD. The BBD models showed a good fit for most of 

the compounds analyzed, with R2 > 0.9 in most of the cases. Significant lack-of-fit was observed for 

MAD (p < 0.001), MON (p < 0.001), and NAR (p < 0.05), indicating that the model did not fit the data 

within the observed variations among replicate samples. The fit values were insignificant for other 

compounds, showing a good fit with the experimental model. The terms were found to be significant at 

95% confidence interval with the p values of the F-test being lower than 0.05 (statistically significant) 

or 0.001 (statistically highly significant). 

The experimental study showed differences in the most significant parameters depending on the 

ionization modes used. For all the compounds analyzed in positive ionization mode, ANOVA allowed 

to identify three parameters (A, B, and C1) and the corresponding linear terms that most affected the 

response with a high statistical significance (p < 0.001). Four out of 11 compounds were also 

significantly affected by parameters D and E. As for the squared interactions, 9 compounds out of 11 

showed significant (p < 0.05) interaction for A2, 5 compounds out of 11 for B2, 4 compounds out of 11 

for C12 and D2, and E2 was found to be significant for HAL. Response surface curvature was found for 

some 2-way interactions and ANOVA confirmed the significance of BC (auxiliary gas flow × spray 
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voltage) interactions for 7 compounds, as well as AB, AD, AE, and BD interactions for 2 compounds. 

The AC, BE, and DE interactions were significant for only one compound in each case. 

The significance of the linear term A in the case of negative ionization was observed with 5 

compounds out of 6, and 4 compounds out of 6 for the term C. The linear terms of B, D and E had a 

significant impact on individual compounds. The squared interaction of C2 2 was evident for 3 

compounds out of 6, while A2 and D2 affected 2 compounds. Statistically significant (p < 0.05) and 

visible (surface curvature) 2-way interactions were AB and AE for 3 compounds out of 6; BC for 2 

compounds out of 6; AC and DE for 1 compound each. 

 

 

Figure 3.1. Desirability plots for optimization of HESI source conditions in positive ionization 

 

The optimal source parameter values were established separately for positive and negative ionization 

by using the integrated response optimizer function (Figures 3.1 and 3.2). The target compound 

responses were optimized simultaneously with the goal to maximize the intensities and to achieve the 

highest composite desirability. The overall value of composite desirability combines the individual 

desirability of compounds and reflects the relative importance of the responses. The higher the 

desirability, the closer it is to 1 (measured on a scale from 0 to 1). Composite desirability of 0.9922 

was achieved in positive ionization mode and 0.9135 in negative ionization mode for 11 and 6 target 

compounds, respectively. The maximum simultaneous responses for all compounds in positive 

ionization mode were obtained with the following parameters: sheath gas flow rate 20 a.u., auxiliary 

gas flow rate 6 a.u., capillary voltage + 4.5 kV, capillary temperature 265 °C, auxiliary gas heater 

temperature 400 °C. 
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Figure 3.2. Desirability plots for optimization of HESI source conditions in negative ionization 

 

The finalized parameter values in negative ionization mode were: sheath gas flow rate 20 a.u., 

auxiliary gas flow rate 10 a.u., capillary voltage −3.5 kV, capillary temperature 293 °C, auxiliary gas 

heater temperature 400 °C. The desirability contour plots for anticoccidials and their residues analyzed 

in positive and negative ionization modes are shown in Figures 3.1 and 3.2, respectively. Another way 

to interpret the data is shown in tables provided in Annexes 2 and 3, which contain center point levels 

of source variables for methods used in the optimization and the resulting relative responses and RSD 

values for HESI ionization source conditions according to the BBD design. 

 

Orbitrap detector conditions 

The AGC values were expressed as decimal logarithms as they differed from each other by a 

factor of 10 (Log(G), further G) and the resolution values were normalized using natural logarithm so 

the difference between the levels was constant (Ln(F), further F). Center-reducing the data yielded 

[−1; 0; +1] values that were expected to fit in the BBD levels. The rest of the variables for the MS 

system, which were found in the previous steps, were set at the values optimized for these 

experiments. 

The BBD models did not fit as well for the factors associated with the mass analyzer as for those 

of the ionization source, with generally lower R2 values observed. Significant (p < 0.05) lack-of-fit was 

observed for APL, CLOP, MON, while the lack-of-fit was very significant (p < 0.001) for DEC and 

NEQ. Otherwise, the statistical model performed quite well. The terms were found to be significant at 
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95% confidence interval, with the p values of the F-test being lower than 0.05 (statistically significant) 

or 0.001 (statistically highly significant). 

Yet again, various parameters affected the response, depending on the ionization modes used. 

The BBD models revealed that the most significant linear term affecting the response in positive 

ionization mode was resolution (p < 0.001 for 7 compounds out of 11; p < 0.05 for 3 compounds; no 

significance of resolution setting for 1 compound). Among the squared terms, F2 was found to be 

significant (p < 0.001 for 7 compounds; p < 0.01 for 1 compound; p < 0.05 for 3 compounds) and the 

2-way term of FG showed the p-values of < 0.01 for APL and DEC and < 0.05 for SEM. 

 

Figure 3.3. Contour plots illustrating the most significant interactions of parameters and their 

effects on the Orbitrap detector response, where dark blue area represents the highest response. 

Plots: (A) – APL signal response plotted versus resolution (ln(F)) and AGC (log(G)) value, (B) – 

DEC vs ln(F), log(G), (C) – SEM vs ln(F), log(G), (D) – CLOP vs log(G), injection time (H), (E) – 

MAD vs log(G), H 

 

The terms G and G2 were found significant for 4 compounds with p-values <0.01. The 2-way 

interaction of GH was significant for CLOP and MAD, with the p-values of <0.05 and <0.01, as shown 

by the contour plots of interactions in Figure 3.3 D and E, accordingly. Longer injection times were 

favored in the case of CLOP, but not in the case of MAD, as it can be seen both in the Figure 3.3 

contour plot E and Figure 3.4 desirability plot. 

For compounds analyzed in the negative ionization mode, the change of terms had barely any 

effect on the total response according to ANOVA. ROB was the only compound affected by the linear 

terms of F and G, the squared terms of F2 and G2, and the 2-way term FG (p < 0.001). As a matter of 

fact, the collection time of ions or the injection time (H) in both the positive and negative ion modes 
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had no significant influence on the signal intensity. C-trap typically reached the AGC target value in 

fewer milliseconds than set, before the time interval allotted for ion gathering. This observation 

conforms with the findings by Lemonakis et al. [100] who showed that suppression effects can occur 

in an Orbitrap MS analyzer in the presence of a difficult matrix with barely any clean-up. 

 

 

Figure 3.4. Desirability plots for optimization of Orbitrap detector conditions for compounds 

analyzed in positive ionization 

 

The optimal values were established separately for the positive and negative ionization modes, as 

two separate runs were required for the analysis. The target compound responses were optimized 

simultaneously with the goal to maximize the signal intensities and to achieve the highest composite 

desirability. The composite desirability was achieved with a desirability coefficient of 0.8740 in the 

positive ionization mode and 0.8386 in the negative ionization mode for 11 and 6 target compounds, 

respectively. The optimization results were quite similar for both ionization modes – the response was 

the highest when the resolution was kept low (35 000 FWHM), the AGC was set to represent the 

maximum loading capacity of the C-trap (target of 5∙106 ions), and IT was kept low (20 ms for positive 

and 26 ms for negative ionization). The effect of resolution on the Orbitrap sensitivity was an 

interesting finding that was backed up by statistically significant experiments. A plausible explanation 

could be the loss of ion energy during the travel time and distance, which is more pronounced at high 

resolution. This observation could be particularly relevant when trying to achieve the required MRLs 

for specific compounds at low concentrations. We did not find a correlation between the mass to 
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charge ratios of particular compounds and the observed effect and additional studies may be needed to 

further explore this phenomenon. If the aim is to look for a specific analyte in a pool of isobaric 

compounds, the selectivity still can be improved by using fragmentation mode transitions to 

compensate for the relatively low resolution.  

 

 

Figure 3.5. Desirability plots for optimization of Orbitrap detector conditions for compounds 

analyzed in negative ionization 

 

The desirability contour plots for Orbitrap detector optimization are shown as Figures 3.4 and 

3.5 for anticoccidials and their residues analyzed in the positive and negative ionization modes, 

respectively. Annex 4 contains a table with methods and levels with the corresponding relative 

responses and RSD values used for the optimization of Orbitrap detector conditions using the BBD 

design. 

 

Optimization of the ion injection time in the presence of matrix 

The injection time was further optimized by the means of OFAT experiments through a stepped 

increase of injection time over the range from 20 ms to 180 ms, same as previously done in BBD 

experiments, but this time including the food matrix. Poultry and egg samples spiked at 20 μg kg-1 

level were analyzed in five replicates for each injection time. The values were normalized against the 

responses obtained for injection time of 20 ms (Figures 3.6 and 3.7). 
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Figure 3.6. Influence of injection time in presence of egg matrix; a, b – relative intensities, c, d – 

corresponding RSD values 
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Figure 3.7. Influence of injection time in presence of meat matrix; a, b – relative intensities, c, d – 

corresponding RSD values 
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The observations for egg and poultry matrices were the same. In positive ion mode, a small 

suppression of signal was observed ranging from 0.5 to 3%, with the RSD values not significantly 

influenced by the change of injection time. On the other hand, a small but notable increase of signal by 

0.5% occurred in negative ion mode for all the analyzed compounds, while the RSD also tended to 

vary less. In the presence of egg matrix, the compound most affected by the injection time was MAD, 

due to the particularly strong signal of co-eluted unidentified matrix components observed in TIC. 

Short injection times (20–40 ms) produced jagged peaks and occasionally even loss of signal, so we 

preferred 80 ms injection time both for the positive and negative ionization modes. 

 

Optimization of data-dependent acquisition 

Data-dependent scans were introduced as a source of fragmentation criteria and used to further 

reduce the chance of false positive results. The ddMS2 events occur when there is a precursor ion 

detected in the full scan measurement. The following scan cycles include the fragmentation scan 

events of the detected precursors. A single data-dependent scan provides full scan spectra of an 

isolated and fragmented precursor ion, which contains confirmatory fragment ions. Rajski et al. 

described the overall FS-ddMS2 workflow superiority over other confirmation modes, with greater 

repeatability at low concentration levels and equal selectivity than that of targeted single reaction 

monitoring (SRM). It was also superior to other non-targeted Orbitrap methods (all ion fragmentation 

(AIF) and variable data-independent analysis (vDIA)) [2]. Similar work has been done by Kumar et al. 

[101]. 

 

 
Figure 3.8. The effect of ddMS2 method loop count (N) on the number of scans per peak in full 

scan (first row) and data-dependent MS2 (second row). Loop count: (A) – 1, (B) – 2, (C) – 3 
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The ddMS2 procedure was optimized by taking account the number of co-eluting analytes, which 

correspond to the parameter N in Top N approach. Since the maximum number of co-eluting analytes 

was 2 and the other analytes were baseline separated, the loop count was set to 2, thus making the 

method a Top 2 approach. The number of scans acquired per very narrow 3.2 s peak of SAL using a 

Top 2 approach is illustrated in Figure 3.8B. The total scan cycle time was 340 ms, allowing for one 

full scan and two fragmentation scans per cycle. The peak was covered by 9 full scans for quantitative 

purposes and 9 fragmentation scans for qualitative purposes. When the loop count was set to 1, the Q 

Exactive instrument prioritized the ddMS2 scan for the precursor ion of the highest 

intensity (Figure 3.9). 

 

 

Figure 3.9. Co-elution of peaks vs. Selected loop count. Columns: A – 1 loop, B – 2 loops. 

Rows: 1 – DEC, 2 – MAD, 3 – SAL, 4 – MON, 5 – NAR 

 

In the case of signal overlap between different compounds, this feature increased the chance of 

missed confirmatory scans. Thus, even though more scans were acquired, there was a slight chance of 

a false negative result. It should be noted that the ddMS2 data can also be used for quantitation 

purposes in the case when full-scan interference is present. Figure 3.10 illustrates the scheme of FS-
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ddMS2 data acquisition and gives an example for the achieved selectivity of DNC and SAL, in positive 

and negative ionization modes, accordingly. 

The ddMS2 workflow also enabled the specificity needed for confirmation using the ion ratios. 

The non-targeted fragment acquisition modes such as AIF and vDIA were susceptible to altered ion 

ratios in the presence of isobaric fragmentation ions, while the selectivity of ddMS2 was improved 

tremendously due to the narrow (0.6 m/z) isolation window of quadrupole. The known fragmentation 

patterns of precursor ions enabled the use of intensity ratios of two fragment ions determined in 

preliminary experiments as confirmation criteria. 

 

 

Figure 3.10. Scheme of FS-ddMS2 data acquisition. Extracted ion chromatograms for quantifier 

and qualifier ions for DNC (A) and SAL (B) at the validation and blank concentration levels in 

egg matrix are displayed 
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The isolation of fragment ions was performed by the means of inclusion list of specified target 

compound masses, retention times, and compound-specific collision energies. The data-dependent 

scan was set to trigger when the accurate mass of precursor ion was detected within the bounds of 

10 ppm. The fragment ion ratio measurements during the method development, validation and sample 

analysis were within ± 20% from the original ratios observed in the standard solutions, thus the HCD-

induced ddMS2 fragmentation was deemed to be a suitable confirmatory tool. Table 3.1 contains the 

calculated ion ratios within the ddMS2 scanning mode, observed in the standard sample analysis. 

 

Table 3.1 

Ion ratios of the investigated compounds within the ddMS2 scans 

  Relative abundance (%) Ion ratio 

  Quan Ion 1 Ion 2 (Ion 1 / Precursor) (Ion 2 / Precursor) 

APL 2 100 35 50 18 

CLOP 47 100 91 2 2 

DEC 4 100 21 25 5 

DCZ 8 100 10 13 1 

HAL 4 100 53 25 13 

LAS 6 100 41 17 7 

MAD 1 100 6 100 6 

MON 10 100 95 10 10 

NAR 7 100 42 14 6 

NEQ 9 100 7 11 1 

DNC 1 100 8 100 8 

ROB 4 100 85 25 21 

SAL 7 100 42 14 6 

SEM 4 100 14 25 4 

TOL 

- TOLS 

TOLX 

 

Results of the optimization 

Numerical optimization steps led to an impressive overall signal improvement for most of the 

compounds, even in the presence of either poultry meat or egg matrices. Repeated analysis of spiked 

(20 µg kg−1) sample extracts showed 10–99% increase of signal intensity for 16 out of the 17 

anticoccidials, as illustrated in Figure 3.11 a minor (10%) decrease of signal intensity was observed for 

HAL, but it was more than compensated by the significant gains of sensitivity obtained for other 

analytes. 

 



 

 

60 

 

Figure 3.11. Mean signal increase after the performed optimization procedures; (A) – spiked (20 

μg kg-1) egg sample, (B) – spiked (20 μg kg-1) poultry meat sample 

 

3.1.5. Analytical method validation 

The optimized methodology was validated to confirm its applicability for routine analysis of 

samples and to assess the reliability of results. The parameters evaluated were repeatability, within-

laboratory reproducibility, recovery, selectivity, CCα, and CCβ. The results of this validation fulfilled 

the defined validation criteria and are summarized in Table 3.2. The recovery was corrected using 

isotopically labeled internal standard addition and matrix calibration to account for possible matrix 

effects. After the additional selectivity evaluation experiments, no significant interference was 

observed at the expected retention time of analytes after the analysis of negative samples (n=20 for 

eggs, n=5 for poultry meat). The final sample extracts were found to be stable for 2 days, after which 

the recoveries for some of the analytes dropped below 80% when compared to freshly prepared sample 

extracts. The results are in agreement with those of Spisso et al. [95]. 

Overall, the method covered a wide and unique range of analytes, with only a couple of 

previously published methods providing such scope for the analysis of multiclass anticoccidials in 

poultry and eggs. 
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Table 3.2 

The validation results for fortified egg and poultry meat samples 

  

Egg matrix   Poultry matrix 

MRL/ML 

level 

(μg kg-1) 

a RSD 

Sr 

(%) 

b RSD 

SwR 

(%) 

Corrected 

recovery (%) 

Total uncertainty 
c at VL (%) 

CCα 

(μg 

kg-1) 

CCβ 

(μg 

kg-1)  

  

MRL/ML 

level 

(μg kg-1) 

a RSD 

Sr 

(%) 

b RSD 

SwR 

(%) 

Corrected 

recovery (%) 

Total uncertainty 
c at VL (%) 

CCα 

(μg 

kg-1) 

CCβ 

(μg 

kg-1)  

APL 10 8.4 10.3 96.8 10.5 12 15.8   50 6.9 8.6 101.9 8.7 58.5 73.6 

CLOP 10 20.3 20.9 97.7 21.3 13.8 
> 

20.0 
  50 5.4 10.8 99.2 11.3 62.8 90.2 

DEC 20 14.5 15.3 96.3 15.6 26.2 37.6   500 5.5 7.7 105.2 7.8 577 721 

DCZ 2 11.8 12.8 105.8 13 2.54 3.54   500 8 9.4 100.8 9.5 589 749 

HAL 6 5.5 7.5 97.2 7.5 6.79 8.21   10 5.5 7.5 99.2 7.5 11.4 13.9 

LAS 150 10.4 11.6 97.8 11.8 183 255   60 11.8 13.4 102 13.6 77.9 109 

MAD 2 15.6 16.4 99.2 16.8 2.64 3.78   2 19.4 20.1 91.6 20.4 2.64 3.74 

MON 2 2 5.4 100.5 5.4 2.2 2.58   8 12.6 13.6 97.3 13.8 9.95 14.2 

NAR 2 13.5 15 99.9 15.3 2.55 3.52   50 6 8.4 102.6 8.5 58.4 75.1 

NEQ 10 6.8 8.6 99.5 8.7 11.6 14.4   10 6 7.8 105.7 7.9 11.5 14.1 

DNC 300 3.6 6.1 101.2 6.2 336 401   50 3.6 6.2 104.4 6.3 56 67.2 

ROB 25 8.9 10.2 102.9 10.4 30.1 39.3   200 7.3 9.7 99.9 9.9 238 310 

SAL 3 12.7 13.6 101.2 13.9 3.77 5.13   5 9.4 11 99.1 11.2 5.97 7.79 

SEM 2 19.7 20.7 94.1 21.1 2.71 3.96   10 14.3 15.1 97.2 15.4 12.9 17.9 

TOL 10 1.4 5.2 101 5.2 12.5 12.9   100 1.2 5.1 100.2 5.2 110 129 

TOLS 10 11.7 12.8 102.9 13 12.5 16.9   100 7.9 9.4 101.5 9.5 118 150 

TOLX 10 10 11.2 99.6 11.4 12.2 16   100 7.4 8.9 102.5 9 117 147 
a RSD Sr - repeatability 
b RSD SwR - within-laboratory reproducability 
c Total uncertainty takes into account the within-laboratory reproducability standard deviation and additionally the uncertainty of recovery correction 
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3.1.6. Method applicability 

The present method has been applied to eighty-one egg samples and three poultry muscle 

samples over a 5-month time, as a part of the 2017 Latvian national monitoring program. The results 

are displayed with uncertainty. One egg sample was found to be non-compliant, with 102 ± 7 μg kg-1 

concentration of TOLS, along with TOL and TOLX at the levels of 10.2 ± 0.5 and 4.0 ± 1.1 μg kg-1, 

respectively. The same sample contained DNC at the level of 10.1 ± 4.1 μg kg-1. Among the rest of the 

samples, five contained the target compounds at levels lower than the MRL. DNC was found in 3 

samples at the levels of 1.4 ± 0.6, 49 ± 6, and 133 ± 11.9 μg kg-1. Another two samples contained TOL 

and its metabolites. The first sample contained 7.0 ± 1.2 μg kg-1 of TOLS, 1.9 ± 0.4 μg kg-1 of TOL, 

with trace levels of TOLX detected. The second sample contained 2.9 ± 1.4 μg kg-1 of TOLS and trace 

levels of TOL and TOLX. One sample contained 2.4 ± 0.4 μg kg-1 of SAL and 1.8 ± 0.3 μg kg-1 of 

NAR. 

 

3.2. Non-target methodology application for a case study of food contact materials 

3.2.1. Data acquisition and processing 

A total of 17 samples in each extraction solvent, two negative control samples and two extraction 

solvent samples were analyzed in the initial screening experiment, resulting in 38 data files. After the 

identification experiments, the LC-HRMS analysis resulted in 114 data files to be deconvoluted by the 

“Detect Unknown compounds” node of Compound Discoverer. 

A total of 21’380 unique chromatographic peaks were extracted from the data files. After the 

subtraction of negative control samples, the number of candidates was reduced to 18’432. To exclude 

the candidates that could later present difficulties in structure elucidation, the candidates were filtered 

based on the peak area. The candidates with peak areas of less than 500’000 were excluded, as isobaric 

compounds in full scan spectrum can mislead the accuracy of formula prediction based on isotope 

pattern. Also, area (max.) > 500’000 was necessary to acquire MS/MS spectra as low intensity of 

precursor ion signals results in low quality of fragmentation spectra. The area cutoff gave the largest 

reduction of suspects to 2817 (84.7% reduction). Additionally, masses with retention times less than 1 

minute were excluded to avoid the compounds that elute with the void volume and form unresolvable 

peaks. 

The remaining peaks were searched against the databases and yielded 279 assigned peaks across 

all samples. Hits against any of the compounds on the mass list were registered in the inclusion list for 

the identification experiment. The most useful reference was the Thermo native EFS database 

(Figure 3.12), with 114 unique mass hits that also matched the molecular formula composition. Other 
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notable hits were 49 hits from the SIN database, 51 hits from the endocrine disruptor database, and 

ESCO printing inks database with 52 mass hits. 

 

 

Figure 3.12. Hits of the monoisotopic mass search vs. mass lists 

 

The assigned peak isotope patterns and peak intensities were inspected against the predicted 

molecular composition. The predicted compositions node in Compound Discoverer lists the possible 

chemical formulas based on the accurate monoisotopic mass values. Full match was achieved for 209 

compounds. Goodness of fit was evaluated for the predicted compositions by enabling strict criteria of 

SFit > 80%. SFit is a value which resembles the spectrum fit to the proposed molecular formula. This 

function compares the mass shifts and intensities of the centroids in the isotope pattern for the detected 

compound to a set of defined mass shifts and relative intensities. The fit range is from 0 to 100%, with 

a higher value given for a better fit. Altogether, 31.6% of the 209 remaining peaks were excluded, with 

143 compounds left to be identified. Systematic filtering or data reduction strategies are critical for 

prioritizing the most relevant masses or compounds in the samples on which the effort should focus for 

subsequent identity assignment. In our study we have efficiently used the filtering strategy to refine the 

valid chromatographic peaks resulting in a total of 0.67 % of the initial features. The filtration steps 

taken for candidate list pruning are briefly covered in Table 3.3. 
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Table 3.3 

Reducing the number of candidates by various filtering steps 

No Filtering step Number of candidates % filtered out 

 Total Peaks 21380 - 

1 Background, negative control subtraction 18432 13.8 

2 Area (max.) > 500’000 2817 84.7 

3 Retention time > 1 min 2500 11.3 

4 Mass list match 279 88.8 

5 Predicted compositions – Full match 209 25.1 

6 Predicted compositions – SFit > 80% 143 31.6 

7 Reference spectra available 37 - 

8 In silico match successful 74 - 

 

3.2.2. Identification of migrating compounds - method performance 

Of the 143 remaining candidates, 74 candidates were assigned with a unique molecular formula 

composition. Of these, 23 candidates were with more than one isobar and 51 with a single detected 

isobar. For the molecular formulas with more than one isobar, only level 3 and 4 identification was 

possible. However, for most of the compounds with only one isobar present, level 2 or 3 confidence 

was assigned. 

In total, the methodology yielded a list of 40 compounds annotated at the highest level of 

confidence possible without reference standards and for all of them a plausible structure was assigned. 

The suspects identified at the level 2 are summarized in Table 3.4. For a full table containing all the 

tentatively identified compounds, as well as a table listing the corresponding linked spectra matches to 

the libraries and the search results from batch MetFrag query, the readers are welcome to refer to the 

Supplementary workbook of published online version of the FCM article [102]. 

 

 The levels of confidence for the suspects were based on multiple criteria: 

• presence of reference MS/MS spectra; 

• agreement of in silico predictions between MetFrag and SIRIUS; 

• high structural similarity in SIRIUS; 

• not being an outlier according to the retention time model; 

• no interference from isobaric compounds (instant downgrade of confidence to level 3); 

• the substance is known to be used in the manufacture of paper FCMs. 
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Table 3.4 

List of candidates of the highest confidence levels, confirmed by library spectra and/or in silico fragmentation prediction match 

ID Compound CASRN Unequivocal molecular formula 

Presence 
across 

suspect 

lists* 

Confidence 

level 

Substance 

classification 
Use in FCM manufacture*** 

Occurrence in paper 
FCMs, 

bibliographical 

reference 

#1 1,4-Dihydroxybenzene 123-31-9 C6H6O2 8/15 2ab IAS** Coloring Additive, Photosensitive Chemical [103] 
#2 2-Methyl-4-isothiazolin-3-one 2682-20-4 C4H5NOS 6/15 2ab IAS**/NIAS Antimicrobial [103,104] 

#7 Acetamidocyclohexane 1124-53-4 C8H15NO 1/15 2b NIAS Byproduct/Intermediate/Reactant  

#9 Phthalic anhydride 85-44-9 C8H4O3 5/15 2ab IAS** Byproduct/Intermediate/Reactant, Plasticizer [103] 
#10 Phenol, Isobutylenated 68610-06-0 C10H12O 3/15 2b NIAS Antimicrobial, Antioxidant  

#11 5-Chloro-2-methyl-4-isothiazolin-3-one 26172-55-4 C4H4ClNOS 3/15 2ab IAS/NIAS Antimicrobial [104] 

#13 1,2-Benzisothiazolin-3-one 2634-33-5 C7H5NOS 6/15 2ab IAS/NIAS Antimicrobial [104] 

#20 1,4-Cyclohexanedicarboxylic acid 1076-97-7 C8H12O4 4/15 2ab IAS** Byproduct/Intermediate/Reactant, Coloring additive  

#21 4-Styrenesulfonic acid 98-70-4 C8H8O3S 2/15 2b IAS** Byproduct/Intermediate/Reactant, Coloring additive  

#22 6-Hydroxy-2-naphthalenecarboxylic acid 16712-64-4 C11H8O3 1/15 2b IAS** Byproduct/Intermediate/Reactant  
#24 4,4'-Oxydianiline 101-80-4 C12H12N2O 4/15 2ab NIAS Byproduct/Intermediate/Reactant [105] 

#25 Diphenyl phosphine oxide 4559-70-0 C12H11OP 1/15 2ab NIAS Byproduct/Intermediate/Reactant  

#27 Diphenylphosphinic acid 1707-03-5 C12H11O2P 2/15 2ab NIAS Byproduct/Intermediate/Reactant  
#29 2,4,6-Trimethylbenzophenone 954-16-5 C16H16O 1/15 2b NIAS Byproduct/Intermediate/Reactant, Photosensitive Chemical [106] 

#35 Ethyl 2-cyano-3,3-diphenylacrylate 5232-99-5 C18H15NO2 3/15 2ab IAS** Photosensitive Chemical  

#36 2-Ethylhexyl 4-(dimethylamino)benzoate 21245-02-3 C17H27NO2 4/15 2b NIAS Coloring Additive, Photosensitive Chemical [103,107,108] 
#37 Linolenic acid and isomers 463-40-1 C18H30O2 4/15 2ab IAS** Surfactant  

#40 Dimethoxy ethyl phthalate 117-82-8 C14H18O6 4/15 2ab NIAS Byproduct/Intermediate/Reactant, Plasticizer [109] 
#41 Hexaethylene glycol 2615-15-8 C12H26O7 2/15 2ab NIAS Adhesive additive  

#42 2,6-Di-tert-butyl-4-phenylphenol 2668-47-5 C20H26O 2/15 2b NIAS Byproduct/Intermediate/Reactant, Antioxidant  

#43 Octyl 4-methoxycinnamate 5466-77-3 C18H26O3 3/15 2b NIAS Photosensitive Chemical  
#45 Tridemorph 24602-86-6 C19H39NO 2/15 2ab IAS/NIAS Fungicide  

#47 Dehydroabietic acid 1740-19-8 C20H28O2 4/15 2ab NIAS Byproduct/Intermediate/Reactant, Degradation product [10,103] 

#48 Pigment Orange 64 72102-84-2 C12H10N6O4 1/15 2b NIAS Coloring Additive  
#49 Abietic acid 514-10-3 C20H30O2 5/15 2ab IAS** Coloring Additive, Adhesive Additive, Surfactant [12] 

#55 Heptaethylene glycol 5617-32-3 C14H30O8 1/15 2ab NIAS Adhesive additive  

#57 Dipropyleneglycol dibenzoate 20109-39-1 C20H22O5 2/15 2ab NIAS Coloring Additive, Adhesive Additive [10] 

#58 
2-Benzyl-2-(dimethylamino)-1-(4-morpholin-4-

ylphenyl) butan-1-one 
119313-12-1 C23H30N2O2 3/15 2b NIAS Coloring Additive, Photosensitive Chemical [103] 

#59 Tetraethylene glycol mono(p-nonylphenyl) ether 7311-27-5 C23H40O5 2/15 2b NIAS Surfactant  
#60 Dibutoxyethoxyethyl adipate 141-17-3 C22H42O8 3/15 2ab NIAS Byproduct/Intermediate/Reactant, Plasticizer  

#61 Dodecaethylene glycol 6790-09-6 C24H50O13 1/15 2b NIAS Adhesive additive, Plasticizer  

#64 Behenamide 3061-75-4 C22H45NO 4/15 2ab IAS** Adhesive Additive  
#65 Methyl 9,10-dihydroxystearate 1115-01-1 C19H38O4 1/15 2b NIAS Byproduct/Intermediate/Reactant, Photosensitive Chemical  

#66 Diethylene glycol dibenzoate 120-55-8 C18H18O5 2/15 2ab NIAS Byproduct/Intermediate/Reactant, Plasticizer [109] 

#69 N-Butylbenzene sulfonamide 3622-84-2 C10H15NO2S 1/15 2ab NIAS Byproduct/Intermediate/Reactant, Plasticizer [12] 
#70 Tributyl citrate 77-94-1 C18H32O7 4/15 2ab NIAS Coloring Additive, Plasticizer  

#71 4,4'-Bis(diethylamino)benzophenone 90-93-7 C21H28N2O 1/15 2ab NIAS Coloring Additive, Photosensitive Chemical [106] 

#72 Benzophenone 119-61-9 C13H10O 6/15 2ab IAS** Byproduct/Intermediate/Reactant, Photosensitive Chemical [103,106–108,110] 
#73 Dodine 2439-10-3 C13H29N3 3/15 2ab IAS/NIAS Fungicide  

#74 Stearamide 124-26-5 C18H37NO 6/15 2ab IAS** Adhesive Additive [10,103] 

* Number of databases in which the unique candidate monoisotopic mass is listed 

** Defined by Commission Regulation 10/2011 as amended 
*** In case the compound is labeled as Byproduct/Intermediate/Reactant, the exact usage of compound might be uncertain 
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The fragmentation spectra of the candidates and some of the isobaric compounds were submitted 

to all spectral libraries mentioned in chapter regarding databases and mass lists, with annotations 

returned for 37 candidates. All the candidates were annotated by MetFrag and SIRIUS, however, the 

candidate ranking was occasionally different between the two tools. Based on the retention time 

regression analysis and outlier treatment by Cook’s distance, 5 compounds were dismissed as less 

likely candidates and the confidence level was depreciated (data available at the Harvard Dataverse 

repository [80] and as Figure 3.13). 

 

 

Figure 3.13. Linear regression for the identification of outliers based on Cook’s distance 

 

3.2.3. Leaching of the materials 

The migration pattern was similar for both simulants, however, the ethanol-based simulant D1 

showed higher leaching rate. In additional time trend leaching experiments, observations were made 

that more than half of the maximum relative peak area was already achieved for most compounds 

within 5 minutes of simulation (Figure 3.14). The mean relative peak area for the sum of the 

compounds increased in the time trend, however, the migration rate was sample and material 

dependent, with a slightly different trend observed for various samples (Figures 3.14-18). For some 
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compounds, the relative peak area at early migration stages corresponded to as much as 200% of the 

observed peak area in the 24-hour extracts, which can be explained by matrix-related signal 

suppression in electrospray ionization by the leached compounds in later migration stages. 

 

 

Figure 3.14. Box plot representation of the leaching time trend for sample No. 16 

 

 

Figure 3.15. Box plot representation of the leaching time trend for sample No. 1 
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Figure 3.16. Box plot representation of the leaching time trend for sample No. 5 

 

 

Figure 3.17. Box plot representation of the leaching time trend for sample No. 8 
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Figure 3.18. Box plot representation of the leaching time trend for sample No. 10 

 

Since the main focus of the study was the investigation of paper materials, only one plastic straw 

sample (sample 6) was examined. It was observed from the base peak chromatogram (Figure 3.19) and 

the sample 6 row in Figure 3.20 that generally fewer compounds migrated and the peaks were of lower 

intensity. For a better understanding and elucidation of the migrants leaching from the plastic straws, 

concentration or cleanup procedures would be necessary. 

 

 

Figure 3.19. Overlaid base peak chromatograms of 24-hour migration in two simulant types; 

(upper section) chromatogram of migration from paper straw sample 1; (lower section) 

chromatogram of migration from biodegradable plastic straws 
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3.2.4. Characteristics of the identified substances 

Considering the nature of samples used in this study, the tentative identification of compounds 

matching the profile of the FCMs was prioritized. We identified various additives that serve in the 

roles of adhesives, chemical intermediates, UV stabilizers and other photosensitive chemicals, 

plasticizers, ink and coating additives, and preservatives. A similar pattern of added chemicals was 

observed between the samples of the same countries of origin (also manufacturers, indicated in Figure 

3.20), within the groups 1-5, 7-9, 10-13, and 14-17. 

 

 

Figure 3.20. Relative peak areas for compounds identified in the samples after 24-hour leaching; 

samples grouped within groups of the same manufacturer 

 

Primarily, the substances can be categorized into two major groups – intentionally added 

substances (IAS) and non-intentionally added substances (NIAS). The latter can be broadly defined as 

side products, breakdown products and contaminants of the added chemicals [111], however, the 

definition is open to interpretation as there are more elaborate definitions available. The former, IAS 
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can be defined as compounds added in the production process to the final articles, as starting materials, 

or to improve certain properties of the material. The interpretation and classification of substances 

belonging to these two groups depends on the form of the final article in which the substances occur. 

In the present study, we attempted to classify the substances in either of the two categories and 

provided the application notes for each of the identified compounds. The information is presented in 

Table 3.4 for the substances of highest structural confidence and in the Supplementary workbook 

(available in the online version of [102]) for all the tentative candidates. Most of the substances were 

classified as NIAS, however, there is no general authorization or listing of NIAS, which means that the 

listing of a substance in suspect databases may or may not cover them. Exceptions were made and IAS 

classification was assigned for the substances that are listed in the Union list, according to Commission 

Regulation No 10/2011 [6]. The Union list encompasses substances that have been authorized for use 

in plastic FCMs and includes monomers, other starting materials, macromolecules obtained from 

microbial fermentation and additives. 

In some cases, no unequivocal assignment could be made. For example, the identified microbial 

and fungicide substances could be considered both IAS and NIAS, depending on the material 

formulation. The largest groups of identified substances regarding their purpose in the FCMs consisted 

of coloring additives (n=17), adhesive additives (n=10), photosensitive chemicals (n=13), 

antimicrobials or fungicides (n=7), as well as byproducts/intermediates/reactants (n=34). 

 

3.2.5. Hazard identification and risk prioritization 

Tentatively identified compounds with the highest structural confidence levels of 2 and 3 (n = 

72) were used for toxicological endpoint assessment. To screen and theoretically evaluate mutagenic 

and carcinogenic potential of the identified compounds, experimental toxicity data (when available) 

was collected using the OECD Toolbox v4.3a. The OECD Toolbox provided experimental 

mutagenicity data for 23 substances and carcinogenicity data for 9 out of the 72 substances detected in 

the present study (see Table 3.5). In addition, (Q)SAR based toxicity prediction and prioritization 

approach recently described in [83] was employed. In the present work, original model-specific 

classifications were recoded as described in [83] and the output of the five and three different 

predictions tools for mutagenicity and carcinogenetic, respectively are presented in form of numeric 

values ranging from “0” and “1”. The higher the value associated with a prediction the higher the 

probability that the substance detected is mutagenic or carcinogenic. The candidates with available 

experimental data and the corresponding (Q)SAR model score mean values are shown in Table 3.5; 

Figure 3.21 depicts a representation of the results of the in-silico analysis regarding both endpoints 
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investigated for all the candidates. Detailed lists of the model outputs, as well as the script 

implemented for model processing is available in Harvard Dataverse repository [80]. 

 

Table 3.5 

Substance experimental data and the corresponding (Q)SAR model scores 

ID Compound CASRN 
Confide

nce level 

  

Mean 

(Q)SAR 

mutagenic
ity a 

Experimental 
mutagenicity 

data b 

  

Mean 

(Q)SAR 

carcinogeni
city a 

Experimental 
carcinogenicity 

data b 

In 

vitro 

In 

vivo 

In 

vitro 
In vivo 

#1 1,4-Dihydroxybenzene 123-31-9 2ab 0.21 5/19 2/2 0.93 1/1 9/10 

#2 2-Methyl-4-isothiazolin-3-one 2682-20-4 2ab 0.4 0/12  0.5   

#3 Indole 120-72-9 3 0.14 0/11  0.44  0/1 

#6 N-Isopropylaniline 768-52-5 3 0.05 0/21  0.67   

#9 Phthalic anhydride 85-44-9 2ab 0.14 2/24  0 0/5 0/6 

#11 5-Chloro-2-methyl-4-isothiazolin-3-one 26172-55-4 2ab 0.67  0/1 0.5   

#12 Triethylene Glycol 112-27-6 3 0.57 1/11  0.32  0/2 

#13 1,2-Benzisothiazolin-3-one 2634-33-5 2ab 0.54 0/8  0.5   

#14 Methyl paraben 99-76-3 3 0.11 0/11 1/1 0.21   

#24 4,4'-Oxydianiline 101-80-4 2ab 1 24/43 7/9 1 2/2 14/14 

#26 Ethoxyquin 91-53-2 3 0.1 0/15 0/1 0.31  0/3 

#31 1,3-Bis(2-isocyanato-2-propyl) benzene 2778-42-9 3 0.39 0/1  0.46   

#32 Diallyl phthalate 131-17-9 3 0.05 2/24 0/1 0.1  0/3 

#33 
4,4'-bis(dimethylamino)benzophenone 

(Michler's ketone) 
90-94-8 3 0.78 11/22 2/2 1 1/1 13/13 

#37 Linolenic acid and isomers 463-40-1 2ab 0.2 0/16  0.37   

#40 Dimethoxy ethyl phthalate 117-82-8 2ab 0.62 1/1  0.43   

#43 Octyl 4-methoxycinnamate 5466-77-3 2b 0.03 0/21  0.42   

#45 Tridemorph 24602-86-6 2ab 0.14 0/1  0.53   

#49 Abietic acid 514-10-3 2ab 0.08 0/11  0.46   

#56 Dicyclohexyl phthalate 84-61-7 3 0.01 0/21  0.5   

#67 Diglyme 111-96-6 3 0.15 0/21  0.73   

#72 Benzophenone 119-61-9 2ab 0.11 0/27 0/2 0.54  3/3 

#74 Stearamide 124-26-5 2ab 0.14 0/9  0.45   

a Mean score as provided from normalized (Q)SAR model output 
b Positive experimental tests; Data provided by QSAR Toolbox v4.3 

 

Following the procedure described in [83], for further interpretation of the combined (Q)SAR 

output, mean model scores were classified into three areas: (i) compounds with a mutagenic 

(carcinogenic) score higher than 0.66 may be considered mutagenic (carcinogenic) with a high 

probability, (ii) scores between 0.33 and 0.66 indicate that reliable prediction of mutagenicity 

(carcinogenicity) cannot be made, and (iii) compounds with scores below 0.33 may be considered non-

mutagenic (non-carcinogenic). 
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Figure 3.21. Schematic representation of the results of the in-silico analysis in regard to the 

endpoints (A) mutagenicity and (B) carcinogenicity 

 

Regarding predicted mutagenicity, the mean model probability scores of four substances were 

higher than 0.66. For two out of four compounds – 4,4’-oxydianiline (compound ID #24) and 

Michler’s ketone (#33) the experimental results were in consensus as these substances have been tested 

positive for mutagenicity. Third substance – 5-chloro-2-methyl-isothiazolin-3-one or CMI (#11) with a 

probability score of 0.67 had been tested negative in a single in vivo experiment. The Toolbox did not 

provide experimental data for the fourth compound predicted to be mutagenic - quinacridone (#52). A 

total of 22 compounds, were found to obtain equivocal (Q)SAR mean summary scores ranging from 

0.33 to 0.66 and the bulk of the substances detected in the present work (n = 46) were considered non-

mutagenic, with mean model scores of less than 0.33. Two substances of the latter two groups were 

identified as experimentally positive according to the OECD Toolbox data, namely 1,4-

dihydroxybenzene (#1, score 0.21) and dimethoxy ethyl phthalate (#40, score 0.62), accordingly. 

The investigation of the carcinogenicity endpoint by the (Q)SAR tools yielded the scores higher 

than 0.66 for eight compounds which could be considered carcinogenic. The provided experimental 

results were in agreement for #1, #24 and #33. For the remaining five – N-isopropyl aniline (#6), 2-

ethylhexyl 4-(dimethyl amino) benzoate (#36), quinacridone (#52), diglyme (#67) and 4,4'-

bis(diethylamino) benzophenone (#71) there were no available experimental data. Only 12 substances 

were considered non-carcinogenic with the model scores less than 0.33, however, the equivocal gray 

area provided by model results was rather large – 52 compounds. Single substance was found positive 
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in vivo for carcinogenicity experimentally – benzophenone (#72), however it was assigned an 

equivocal mean (Q)SAR model score of 0.54. 

When applying a screening battery of complementary (Q)SAR systems using different 

mathematical algorithms and different training data sets conflicting predictions might occur. 

Mathematical predictions of toxicity are not yet predictable with sufficient reliability and will always 

be less favorable than any experimental data of a given substance provided for by in vivo or in vitro 

studies [83]. Therefore, future work, should focus on experimental (in vitro or in vivo) validation of the 

findings obtained in the present work. In addition, alternative combine and conquer strategies for 

(Q)SAR analyses should be investigated and their performance in priority ranking evaluated. 

Regardless, of the current limitations when applying (Q)SAR tools, the present study demonstrated the 

benefits of combining high throughput mass spectrometry-based detection and in silico hazard ranking 

of novel contaminants in FCMs. 

 

3.2.6. General remarks regarding the analysis of paper food contact materials 

Potential limitations of the study, similarly to other studies investigating FCMs, are associated 

with the recovery of analytes from FCMs. A multitude of factors such as the selectivity of extraction 

solvents, temperature, time, material thickness and density can influence the results of analysis. 

Multiple scenarios can be possible under non-simulated circumstances and a multitude of variables 

should be considered, as straws can be used in various types of beverages with different exposure time. 

When it comes to the assessment of risk to human health, for precautionary reasons usually the worst-

case scenario is considered [83]. Since this study was performed with a qualitative approach, we have 

scrutinized the worst possible endpoints, as the real degree of risk is difficult to evaluate. 

In order to obtain reliable occurrence and exposure data, suitable analytical methodologies need 

to be developed. In this study, novel HRMS instrumentation and data processing methodologies were 

used to identify the suspects. However, mass spectrometry is not intrinsically quantitative and 

differences in ionization efficiency can lead to relative intensities of compounds not accurately 

reflecting their concentrations [112], as it was observed in the time trend leaching investigation. The 

method applied for the identification of the substances was designed to be as comprehensive as 

technically achievable. However, without the use of reference substances, we might not have the best 

quality of evidence for the occurrence of various added chemicals, but untargeted methodology 

allowed to screen and tentatively identify hundreds and thousands of possible suspects. These methods 

are not intended to create a comprehensive inventory of the chemicals in the FCMs and are not 

intended to replace hazard assessment and migration testing. 
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For many of the identified compounds no toxicological data are available. To overcome this 

limitation, (Q)SAR modeling can be implemented, best used as a combination of multiple tools 

[11,83], as the models can have different simulation principles and produce different outcomes. While 

in silico modeling suffers from various limitations it provides helpful evidence for the investigation of 

the toxicological properties of compounds which can be obtained rapidly, at low cost and without 

excessive experimental testing [8,113]. What is more, applying in silico toxicity predictions for 

efficient priority ranking of substances of most concern can be performed and provide a basis for the 

selection of compounds for future exposure and subsequent risk assessments [83]. 

 

3.3. Determination of organophosphate suspects by biosensors 

This chapter summarizes the outcome of the research performed during the EU-FORA 

fellowship, granted by European Food Safety Agency. During the fellowship, the work was carried out 

at the Institute of Protein Biochemistry, a part of National Research Council of Italy. Since then, the 

Institute has been merged and at the time of writing this thesis is now Institute of Biochemistry and 

Cell Biology. 

The main results from the scientific work are shown in two parts. Firstly, an automated robotic 

workstation method was developed for organophosphate pesticide analysis using enzymatic 

biosensors. Secondly, the method was adapted for the determination of paraoxon in human urine. 

The main results from the scientific work at the institute are published in two publications and 

one manuscript is in preparation for submission (non-disclosed research). 

 

3.3.1. A robotic system for an automated biosensor analysis 

In vitro pesticides activation by using NBS 

Considering the massive presence on the market of phosphorothionate OPs, we investigated the 

ability of EST2 to detect these compounds. EST2 similarly to acetylcholinesterase activities showed 

less affinity toward thio-OP, although it can reversibly bind many of these compounds such as 

parathion and chlorpyriphos [75,114]. Starting from the evidence that thio-OPs are required to be in 

the active form of oxon-OP products, in order to irreversibly inhibit the acetylcholinesterase activities 

[115], the sample principle was applied in this research for the irreversible inhibition of EST2. 

Inhibition assay experiments were carried out in combination with an oxidant pre-treatment of the thio-

OP compounds using a selective and rapid oxidant agent NBS (Figure 3.22b), obtaining a complete 

conversion to oxon form within 5 min as described by Bavcon et al. [116]. The MS measurements of 

NBS treated thio-OPs, such as parathion, in a ratio 90:1 for 5 min, indicated the complete transition 

from thio-OP compounds to the oxon-OP counterparts (Figure 3.22c). In Figure 3.22c, the MS signal 
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for parathion mass transition 292.0 -> 236 m/z (baseline 1) and for paraoxon mass transition 276.1 -> 

220. m/z (baseline 2), were reported. Before the oxidation step, only parathion was present in the 

chromatogram and, as indicated by the baseline, it is all converted to paraoxon after the oxidation. 

 

 

Figure 3.22. NBS-oxidized pesticides detection in water. (a) Chemical structures of N-

bromosuccinimide and general formula of thio- and oxo-organophosphates. (b) NBS-mediated 

parathion/paraoxon transition. (c) LC-MS plot of transformation from parathion (baseline 1) to 

paraoxon (baseline 2), before (on the left) and after (on the right) the NBS oxidation step 

 

Effects of NBS on EST2 activity 

Measurement of the EST2 residual activity in the presence of NBS indicated that the chemical 

modification reagent slightly influenced the enzyme activity. Only 9.3 ± 1.9% of the EST2 activity 

was inhibited by 30 µM NBS (Figure 3.23), corresponding to the final amount of oxidant in the 

inhibition assay of NBS-oxidized pesticides. These results were in agreement with data obtained with 

other esterase activities [117]. To avoid deviancy in results, all the measurements were carried out 
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using a reference enzymatic activity of EST2 in both normal and oxidative (with addition of NBS) 

conditions. 

 

 

Figure 3.23. Plot of EST2 residual activity in presence of increasing NBS concentration levels 

 

EST2 inhibition measurements on in vitro NBS-activated pesticides 

The principle of EST2 inhibition by OPs was largely described in literature [118,119]. Briefly, 

the reactive organophosphorus group reacts with the catalytic serine residue in the active site of 

enzyme producing a covalent intermediate. This results in the irreversible inhibition of EST2 

characterized by a progressive decrease of enzymatic activity over time, until complete inhibition in 

presence of inhibitor excess. The most interesting thing is that the affinity showed by EST2 toward the 

paraoxon is so high and the reaction is so far, that the reactive rate cannot be measured by 

conventional method of pseudo first-order rate-constant for the determination of irreversible inhibition 

[118,120]. The high interest in bioreceptors showing high affinity irreversible inhibition, is particularly 

evident in the case of compounds that are highly toxic for living organisms, such as pesticides or never 

agents. By exploiting the fast inhibition rate of high affinity irreversible inhibitors, it becomes possible 

to measure the amount of toxic compound independently from the time and the amount of inhibitor, 

having as its only limit the detection of enzymatic activity. In fact, an increased sensitivity and 

reproducibility of the enzyme assay increases the possibility to measure small differences in the 

residual activity of the enzyme with increased sensitivity in the determination of the inhibitor 

concentrations. Using a fluorescence-based assay, in our previous work we detected 230 fmol of 

paraoxon at 10% of inhibition, reaching a quantification limit of 125 fmol of pesticide [121]. The same 

conditions for the assays of thio-OP pesticides were used.  
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Figure 3.24. Plot of EST2 residual activity in absence (reference activity) and presence of 

different pesticides in their native form (light) and oxidized with NBS (dark) 

 

The plotted data of the residual activity of EST2, with respect to the various pesticides tested 

(Figure 3.24) in both condition – without and after NBS oxidation – revealed the capability of oxidized 

thio-OPs to irreversibly inhibit the EST2 activity. As expected, data indicated a complete loss in 

residual activity for methyl-parathion and parathion pesticides after NBS treatment. In fact, these thio-

OP compounds, as demonstrated by mass spectrometry measurements on parathion (Figure 3.24c), are 

transformed in methyl paraoxon and paraoxon, respectively, which completely inhibit the EST2 

activity in very short time [118,119]. Moreover, we observed a significant reduction of EST2 residual 

activity for chlorpyrifos, coumaphos and phosmet. Also, the oxidized form of diazinon, cyanophos, 

pirimiphos and tolcofos reduced the enzyme activity of about 30-50% with respect to the same 

phosphorothionate compounds. 

No significant effects were observed for the inhibition measured by assaying fensulfothion after 

oxidation. The pesticide paraoxon, as expected, showed a total reduction in the enzyme activity 

without oxidant pre-treatment in this experiment, as an excellent positive control. 

In previous research there already has been demonstrated the binding of some thio-OP 

pesticides, such as parathion, diazinon and chlorpyrifos [75], to the acyl- or alcohol- binding pockets 

of EST2. This means that the EST2 is already able to bind almost all the OP compounds, including 

thio-OPs. However, these intermediates were non-covalently bonded to the protein when in the thio-

form, because of the low reactivity of sulphur group. Thus, in presence of an excess of colorimetric or 

fluorescent substrates for this enzyme, the pesticide is displaced from the catalytic site and the 

enzymatic activity remains unaltered. The obtained data is significant and clearly demonstrates the 

different between the efficacy of inhibition for the pesticides tested in oxidizing conditions compared 
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to the original ones. In fact, in the latter conditions, the oxon-OP products irreversibly inhibited the 

EST2 activity as determined by the decrease in activity over time. Data also confirms the previously 

proposed hypothesis [122], that the replacement of Sulphur with oxygen bring an increased positive 

charge density on the central phosphorous atom that allows for a more favorable nucleophilic attack of 

the -OH group of serine, irreversibly inhibiting the enzyme activity. The oxidative form of tested 

compounds can be produced during storage and by breakdown products released from microorganisms 

or through natural exposition to light during application in the external environment. The findings in 

this study support the hypothesis that mandatory monitoring and analysis is necessary of oxidized 

forms of thio-OP for a complete risk assessment. 

 

Automatic approach in the pesticide determination by robotic system 

In this study, an automatized assay was developed allowing a streamlined, multi-sample analysis 

process using a biosensing device. The goal was achieved by exploiting an automatized approach on a 

Microlab® STAR Liquid Handling Workstation equipped with a robotic arm and a VICTORTM X3 

Multi-label Plate Reader. Using the robotic workstation, protocols were developed for a 96-well plate 

assay using EST2, the pesticide paraoxon as a standard molecule and 4-MUBu as a substrate of the 

enzymatic reaction that can also provide the fluorescent signal. As a first step, we assessed the 

existence of a linear relationship between amount of 4-MU used and fluorescence intensity measured. 

The data obtained demonstrated a good linearity (R2 = 0.9975) between fluorescence intensity 

measured by the VICTORTM plate reader and 4-MU in the assayed range of concentrations (0.4 – 3.2 

mM) (Figure 3.25).  

 

 

Figure 3.25. Calibration curve of fluorescence intensity at increasing concentration levels of 4-

MU in HEPES buffer, measured using the robotic workstation 
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The accuracy of robot for the dispensation of 4-MU aliquots in the plate wells was tested. In 

agreement with the standard assay for the spectrofluorometer, similar results were observed for the 

assay of EST2 activity using 4-MUBu as substrate in the plate reader by measuring a linear increase of 

the signal of fluorescence intensity. Using the fluorescence-based assay, a sensitivity of 4.3 × 10-2 ± 

2.2 × 10-3 in the linear range (R2 = 0.986) from 500 to 2000 fmol of paraoxon was obtained (Figure 

3.26), mathematically represented by the linear regression, where x is the concentration of paraoxon, y 

is the residual activity and b (intercept) is the sensitivity of the biosensor. In these conditions, we 

calculated a LOD of 205.5 ± 6.98 fmol at 10% of inhibition and a precision within the 5% of standard 

deviation. The precision, as well as the accuracy in the determination of paraoxon, increases at higher 

pesticide concentration levels, because the ratio enzyme-inhibitor is closer to 1:1 ratio, as widely 

explained in our previous works [118,119]. 

 

 

Figure 3.26. Calibration curve of inhibitory activity at increasing concentration levels of 

Paraoxon in HEPES buffer in presence of enzyme EST2 

 

An inhibition pattern similar to the one obtained manually, was also observed by measuring 

EST2 residual activity in presence of oxidized pesticides by robotic workstation (Figure 3.27a). The 

observed variability within 20% difference, in the automated assay with respect to non-automated 

measurements, was prevalently related to differences in the incubation times and in the reproducibility 

of dispensation. Although manual operations have been conducted under controlled conditions, the 

reproducibility of assays is conditioned by the ability of operator in combination with instrumental 

errors. In the automated assay the reproducibility of dispensation is assured by the air displacement 

pipetting of the Hamilton workstation to achieve superior measurement accuracy. In addition, the 

pipette channels and tips are designed to fit precisely together to eliminate tip distortion and ensure the 
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highest accuracy during liquid handling steps (less of 0.1% error). Moreover, anti-droplet control and 

liquid level detection technologies safeguard samples and results integrity. Furthermore, the automated 

assay granted high reproducibility in the time of incubation and measuring, because the system is 

software supervised and all processes of dispensation, incubation, and assay, are scheduled. Also, the 

automated process allowed to easily collect data at different times in order to obtain a complete 

inhibition kinetic for each inhibitor. 

 

 

Figure 3.27. Robotic approach for OP detection in water. (a) Plot of EST2 residual activity in 

absence (Reference activity) and presence of different pesticides oxidized with NBS, measured 

using the robotic workstation. (b) Plot of EST2 residual activity measured using the robotic 

workstation at different inhibition times in absence and in presence of cyanophos and phosmet 

oxidized with NBS 

 

In agreement with the irreversible inhibitory action of the enzyme catalytic-site by pesticides, we 

observed a time dependent inactivation of EST2 activity (Figure 3.27b). Differently from the fast 

inhibition of EST2 activity in presence of paraoxon, we observed a slowed rate of inhibition for some 

NBS-treated thio-OPs, requiring from seconds to a few minutes for the complete inhibition of enzyme 

activity. These differences could also explain the different results obtained in the non-automated assay. 
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A delay in the assay condition due to the manual operations could give different results in the 

determination of the residual activity at some time resulting in the lack of synchronization between 

time and residual activity, reducing the accuracy of the determination. 

The time dependent inactivation for each thio-OP cannot extensively describe the EST2 ability to 

covalently bind these compounds, several parameters can be determined, such as the affinity constants. 

Thus, this is the start point for a future biochemical characterization of these group of pesticides that in 

this work we have demonstrated can inhibit the EST2 activity. 

 

Pesticide pseudo fingerprint  

The extension of the incubation time of EST2 in presence of oxidized pesticides, revealed 

differences in the shape of the curves for the residual activity decrease, indicating a distinctive 

inhibition kinetics for the different pesticides (Figure 3.27b). These differences in the inhibition 

efficiency are probably related to steric hindrance of different OP molecules, as previously 

demonstrated for some of them [75]. The differences in the inhibition kinetics could be used for the 

characterization and identifying of pesticides. 

 

 

Figure 3.28. Box-plot of EST2 residual activity in presence of different NBS-oxidized pesticides 

measured in the range of time from 0 to 9 min by the robotic workstation 

 

In Figure 3.28, a box-plot of EST2 residual activity in presence of NBS-oxidized pesticides 

measured by the robotic workstation, is illustrated. Except for paraoxon and parathion, almost all the 

pesticides show a distinctive distribution of the residual activity permitting a pseudo-fingerprinting of 

compounds. The identification is still limited to the presence of a single pesticide, but the development 

of mathematical models in data processing software will help in circumventing such limitation by 

identifying the key compound features. In addition, the development of multi-enzymatic devices, 



 

 

83 

carrying bioreceptors with different specificity towards OP compounds, such as EST2 mutants [114], 

could provide supplementary parameters in order to discriminate between the different pesticides 

present in a complex solution more similar to real food samples. Moreover, being able to obtain, by the 

automated approach, lot of data in a very short time, the use of machine learning or deep learning 

methods for pesticide recognition could be hypothesized. In fact, these techniques usually based on 

artificial neural networks, require a large amount of data both to be used as “training” data and data for 

algorithm validation, in order to perform a task, for example, to predict the pesticide composition in a 

sample. 

 

3.3.2. Determination of organophosphates in urine 

4-MUBu Fluorescence Measurements and the Determination of Kinetics Parameters 

The sensitivity of fluorescence detection is approximately one thousand times greater than 

absorption spectrophotometric methods. This has led to greater limits of detection simultaneously 

using less sample material. In order to develop detection methods able to discriminate smaller amounts 

of organophosphate (OP) inhibitors, the conditions for the measurements of EST2 activity were set up 

using 4-MUBu as a fluorogenic substrate. One of the first uses of 4-MUBu as fluorogenic substrate has 

been described in 1977 to detect mycobacterial esterase easily and rapidly [123]. The use of this 

substrate has allowed to detect very low lipolytic activity [19], while testing multiple samples 

simultaneously and maintaining short incubation times. In the study, a suitable resistance of 4-MUBu 

to the spontaneous hydrolysis (Figure 3.29A) at neutral pH was observed, using 25 mM HEPES pH 

7.0 (curve 1 in Figure 3.30A), a zwitterionic organic chemical buffer. All the further experiments were 

carried out in these conditions. In agreement with an enzyme-substrate reaction, as described in the 

Figure 3.29B, a linear increase of the signal of fluorescence intensity after the addition of EST2 to the 

4-MUBu solution was observed, indicating the release of 4-MU (curve 2 in Figure 3.30A). A 

coefficient value of 57.16 ± 1.03 fluorescence units for pmol of 4-MU, was determined by using a 

calibration curve in HEPES (Figure 3.30B). By measuring the amount of 4-MU released by EST2 

activity at different 4-MUBu concentrations, determination of the kinetic constant values is possible 

with this substrate. The KM and kcat values of 221.6 µM and 30.7 × 102 s −1, respectively, were 

determined for the hydrolysis of 4-MUBu by measuring the EST2 activity at 30 °C in 25 mM HEPES 

buffer pH 7.0. 
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Figure 3.29. Mechanism of (A) the spontaneous hydrolysis of 4-MUBu, in HEPES buffer and (B) 

by enzymatic hydrolysis after the addition of EST2; the release of 4-MU results in the increase of 

fluorescence 

 

 

Figure 3.30. EST2 assay using 4-MUBu. (A) Fluorescence development of 4-MUBu by 

spontaneous hydrolysis in HEPES buffer (curve 1) and enzymatic hydrolysis after the addition 

of EST2 (curve 2). (B) Calibration curve of fluorescence intensity at increasing concentrations of 

4-MU in HEPES buffer for the calculation of the coefficient value necessary for the 

determination of the amount of reaction products from the enzymatic hydrolysis (R2 = 0.996, SD 

from n=3) 

 

The EST2 kinetic constants determined using 4-MUBu as a substrate were compared, with the 

ones determined on p-nitrophenyl butyrate, a chromogenic substrate with the same carbon chain length 

of the acidic moiety. The values obtained on fluorogenic substrate differ about 2-fold with respect to 

the kinetic constants previously determined using p-Nitrophenyl butyrate as substrate in 40 mM 

sodium phosphate pH 7.0 at 70 °C (90 ± 6 μM and 18.5 ± 0.9 × 102 s-1) [124]. The different affinity 
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could be explained by used an assay temperature of 40 °C lower than the optimal one. This makes the 

protein structure more rigid to the binding, with the substrate generally decreasing the enzyme affinity. 

However, the enzyme characterization at 30 °C is justified for its use at room temperature as a 

biosensing device. Moreover, the greater steric hindrance of the two phenolic rings of 4-MUBu with 

respect to the single ring of p-nitrophenyl ester in the chromogenic substrates could play a different 

role in the binding at the active site of the enzyme.  

 

 

Figure 3.31. Docking analysis with binding free energies (shown as kcal mol-1) of complexes 

between EST2 and substrates. Trace representation of EST2 backbone (black), residues in the 

catalytic site are represented as stick in gray, the substrates MUBu (dark gray) and p-

nitrophenyl-butyrate (gray) are depicted as a van der Waals surface (WDV) representation. (A) 

Accommodation of 4-MUBu in the alcohol pocket of EST2, with respect to the p-nitrophenyl-

butyrate bonding to the acyl one; and (B) arrangement of 4-MUBu in the catalytic site with less 

affinity with respect to the alcohol pocket 

 

Notably, the poses with the lowest energy of binding, or binding affinity, determined for both 

substrates by docking simulations, highlights unexpected accommodation of 4-MUBu in the alcohol-

binding site of the enzyme, differently from the p-Nitrophenyl butyrate which is accommodated in the 

acyl pocket one (Figure 3.31A). 

This result is in accordance with the substrate-induced switch demonstrated for long chain 

substrates (with high steric hindrance) in the EST2 reaction mechanism [125]. Further, less binding 
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free energy (about 1 kcal mol-1), with a distance from the best pose determined by the root-mean-

square deviation (RMSD) lower and upper bound of 4.326 and 7.494, respectively, is measured for the 

binding of the two phenolic rings of 4-MUBu into the acyl-binding pocket of the EST2 catalytic site 

(Figure 3.31B). The energy released in the formation of noncovalent bonds is only 1−5 kcal mol-1, 

much less than the bond energies of single covalent bonds; moreover, the average kinetic energy of 

molecules at room temperature (25 °C) is about 0.6 kcal mol-1. Considering the energies involved in 

these interactions, the allocation in the alcohol pocket is favorite with respect to the acyl one. Despite 

the different affinity shown towards the fluorescent substrate by EST2, the catalysis efficiency was 

almost doubled, and, most importantly, the assay sensitivity for substrate was improved about 20 

times. In fact, at room temperature, using colorimetric substrates, measurements with a stable signal 

for the enzymatic activity were possible by assaying 29.2 pmol of enzyme [118]. Further assays using 

1.46 pmol of EST2 were highly reproducible at similar conditions of pH and temperature (30 °C). 

 

EST2 inhibition with paraoxon determined by fluorescence assay 

The EST2 inhibition mechanism is proposed in [119], taking into account the widely described 

reaction mechanism [125] (Figure 3.32A). In summary, the affinity constant towards the inhibitor (Ki) 

represents the KM constant for the substrate, while the inhibition rate constant ki corresponds to the 

acylation constant k2. The rate constant of deacylation (kcat) is very high in the enzymatic reaction on 

the substrate, but on the contrary is very small in the irreversible inhibition kinetics, hence freezing the 

enzyme-inhibitor intermediately into a very stable complex (Figure 3.32A). 

The EST2 affinity towards paraoxon results higher than that of synthetic substrate, meaning that 

the Ki is not determinable by using the conventional method of pseudo-first-order kinetics [119] for the 

determination of irreversible inhibition constants. The formation of the covalent bond between the 

side-chain of serine residue 155, in the catalytic site, and the reactive organophosphate group of 

paraoxon [119], is favored (Figure 3.32B). 
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Figure 3.32. Inhibition of EST2 by diethyl (4-nitrophenyl) phosphate (paraoxon). Description of 

the kinetic (A) and molecular (B) mechanism of the inhibition of EST2 by paraoxon. The 

inhibited enzyme is frozen in a stable covalent intermediate with the organophosphate group of 

pesticide. (C) Plot of EST2 residual activity in presence of an increasing concentration of 

paraoxon. In the insert, the percentage of the inhibition of EST2 in the presence of this 

increasing concentration of paraoxon. The error bars represent the standard deviation (SD) 

from three independent experiments 

 

This covalent intermediate results in a very stable conformation, that irreversibly inhibits the 

enzyme, requiring a stronger nucleophilic group, with respect to water, in order to complete the next 

diacylation step to release the free enzyme [118,119]. In particular, the balance of this reaction is 

completely shifted towards the formation of the covalent intermediate, in a matter of few seconds, 

obtaining the full inhibition of an amount of enzyme corresponding to the quantity of paraoxon added 

in a concentration ratio 1:1 [118,119]. Taking advantage of the high affinity of EST2 towards these 

compounds, allows to utilize the residual activity of the enzyme after irreversible inhibition for the fast 

detection and quantification of OPs in human and environmental samples. The fluorometric assay 

allows us to measure the EST2 residual activity in the presence of very low concentration levels of 

paraoxon in the range from 100 to 2100 fmol (Figure 3.32C). The coefficient of determination (R2 > 

0.96), determined for the residual activity plotted against paraoxon concentration, indicated a good 

linear response for the determination of the residual activity. 
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The calculation of the percentage of inhibition, after incubation with paraoxon in the 

experimental conditions, allowed to calculate a value of 230 fmol for the tested pesticide at a 10% of 

inhibition (insert in Figure 3.32C). Compared to previous work [118], the improved the limit of 

detection for paraoxon using EST2 was about 80-fold, reaching a quantification limit of 125 fmol. The 

calculated quantification limit is comparable to more sophisticated analytical systems used, such as 

mass spectrometers. 

 

Paraoxon determination in human fluid samples 

The main problem related to the use of a substrate for esterase activity is represented by the 

presence of lipase activities in human fluids. In fact, the measurements carried out on assay solutions 

containing serum aliquots from human blood highlight that is it impossible to measure the EST2 

activity due to the massive presence of lipase activities in the blood, which hydrolyzes the 4-MUBu. 

New methodologies need to be developed in order to selectively inhibit the lipase activities, using 

inhibitors inactive on EST2, or by removing them from the samples using a preliminary protein 

aggregation/precipitation step, that allows for the measurement of EST2 residual activity in human 

serum for the detection of OP metabolites in blood. Instead, the low amount of lipase activities, less 

than 1 unit dl-1 in 24-hour urine samples from healthy donors, has made it possible to measure the 

EST2 activity in samples of this human fluid. In order to verify if urine affects the EST2 activity, 

enzymatic activity was measured at increasing concentrations of urine (Figure 3.33A). 

 

 

Figure 3.33. Determination of paraoxon in human urine. (A) Plot of EST2 residual activity in 

presence of increased amount of urine. (B) Plot of EST2 residual activity in 4% urine, in the 

presence of the increasing concentration of paraoxon. In the insert, the percentage of inhibition 

of EST2 in the presence of this increasing concentration of paraoxon. The error bars represent 

the SD from three independent experiments 
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EST2 activity is affected by the addition of urine concentrations higher than 4%, so it was used 

as an appropriate final concentration for the inhibition measurements. A decrease of enzymatic activity 

was measured after EST2 incubation in the presence of a mixture containing 4% urine and paraoxon 

(Figure 3.33B). The enzyme did not appear to be completely inhibited by a stoichiometric amount of 

paraoxon, in agreement with previous data on complex matrices, such as fruit juices [118].  

Probably, as described in the irreversible inhibition kinetics [119], the retained enzyme activity 

could be explained by the presence of protecting substances that compete with the irreversible inhibitor 

for the same binding site. Since human urine is a complex solution that reflects the physiological state 

of an individual, we cannot exclude that in some samples, i.e., from individual following specific diets 

of under medication, there could be chemicals present which could regenerate the enzyme activity 

after inhibition or affect the fluorescent emission of 4-MU (by fluorescence quenching or 

enhancement), thus yielding some false positive or negative samples. 

Exploiting the high specificity of EST2 towards paraoxon, the improved sensitivity of the 

fluorescence assay on the substrate and the low amount of urine (only 4%) required for the 

measurement, we can reduce the effects coming from the presence of unwanted metabolites in urine 

samples. Moreover, in order to completely solve the exposed problems, two fast reference tests 

(quality control samples) could be included in the measurement in order to determine the 100% 

activity in presence of the urine sample, and the residual activity at a known paraoxon concentration. 

The equation of linear regression determined for the residual activity against the paraoxon 

concentrations showed R2 > 0.99, indicating a good linear response for the determination of the 

residual activity in the presence of 4% urine. From the measurements an amount of 524 ± 14.15 fmol 

of paraoxon was recognized at 10% inhibition, with a LOQ of 262 ± 8.12 pmol mL-1 of paraoxon in 

urine and the possibility of similar detection limits in other bodily fluids [126]. These values were 

comparable to the amount determined by LC and GC-MS in urine samples of donors exposed to OPs 

[127]. 
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CONCLUSIONS 

 

1. The developed analytical method for the determination of multi-class anticoccidial 

drug residues in poultry and egg matrix using UHPLC-Orbitrap-HRMS with FS-ddMS2 

detection ensures reliable detection of these veterinary drug residues at or below the regulated 

levels. The method was thoroughly optimized and validated according to the EU Commission 

Regulation 2002/657/EC to meet the suitability criteria for veterinary drug screening, quality 

control programs and occurrence studies. The main advantage of the proposed method is the 

relatively quick and generic sample preparation procedure with indisputable confirmatory 

abilities. 

2. A step by step optimization procedure was employed in our work and represents a 

systematic approach for the optimization of Orbitrap MS parameters. We have highlighted the 

significance and influence of a wide range of parameters on the MS response to selected 

veterinary drugs. Our design of experiments (DoE) approach allowed to find the most suitable 

values of parameters and to enhance the signal intensity by 10%–99% for 16 out of the 17 

analyzed compounds. 

3. High selectivity was achieved by the application of FS-ddMS2 workflow with a 

suspect inclusion list, acquiring simultaneous full scan and MS2 spectra. FS detection was chosen 

over targeted quantification (t-SIM and PRM), to allow for further broadening of the scope of 

veterinary drugs (suspects) analyzed and to enable the merging of distinct sample preparation 

methods. 

4. The UHPLC-Orbitrap-HRMS methodology developed for the non-targeted suspect 

screening of potentially hazardous substances in food contact materials made of paper was 

shown to be useful and adaptable. This study provided evidence about the occurrence of 

substances of concern, some of which have been identified for the first time in paper materials, 

and the possibilities for the use of in silico modelling in the confines of rapid, priority-based 

hazard assessment. 

5. Prioritization strategy by suspect mass lists yielded an initial identification of masses 

of interest and was followed by dedicated fragmentation experiments, which allowed for 

tentative identification of suspects by mass spectra library search and in silico fragmentation 

tools. The combination of MetFrag and SIRIUS 4 helped direct identification efforts by adding 

another layer of confidence in the structures annotated by spectra library search. In total, 27 

substances were annotated with library spectra and in silico fragmentation annotation (level 2ab) 

and 13 substances were annotated solely based on high similarity of in silico fragmentation 



 

 

91 

spectra (level 2b). The identification criteria were not fulfilled for 34 substances and the 

confidence level was lowered in those cases. 

6. There were no in vivo or in vitro toxicity data available for most of the tentatively 

identified compounds, consequently, to evaluate the hazardous potential of these substances, the 

theoretical toxicity was estimated by (Q)SAR predictions. Three and eight substances were 

determined as possible mutagens and carcinogens, respectively. The two positive mutagens (4,4ʹ-

oxydianiline and Michler’s ketone) and three carcinogens (1,4-dihydroxybenzene, 4,4ʹ-

oxydianiline and Michler’s ketone) were in accordance with the experimental results, provided 

by the OECD Toolbox. Some outliers were indicated as the experimental data showed positive 

tests, but the mean model scores yielded equivocal assignment for two mutagens (1,4-

dihydroxybenzene and dimethoxy ethyl phthalate) and one carcinogen (benzophenone). Vice 

versa, in some cases (Q)SAR mean model scores predicted borderline positive or equivocal test 

results while experimental data is available showing no adverse reactions suggestive of toxicity. 

7. While providing helpful evidence for hazard identification of “known unknowns”, 

more research is required to continuously improve and experimentally validate mathematical 

models underlying (Q)SAR predictions. In addition, improved model averaging algorithms must 

be developed, which better account for cases in which conflicting predictions are obtained by the 

different tools employed. 

8. A fluorescence-based automated robotic system employing esterase-2 from 

Alicyclobacillus acidocaldarius as a bioreceptor was developed for the detection of 11 

chemically oxidized thio-organophosphates in aqueous matrices. Low detection limits of 10 

pmol of inhibitors were achieved. 

9. Differences in the shape of the inhibition curves were determined by measuring the 

decrease of esterase-2 residual activity over time. These differences could be used for the 

characterization and identification of thio-organophosphate pesticides, leading to a pseudo 

fingerprinting for each of these compounds. 

10. The developed biosensor method was later adapted for the determination of a single 

residue (paraoxon) in human urine. Method robustness tests indicated the stability of esterase-2 

in a diluted solution of 4% human urine. The determined concentration levels of paraoxon were 

accurately determined in the range from 0.1 to 2 pmol. The system sensitivity for OP detection is 

calculated at 524 ± 14.15 fmol of paraoxon recognized at 10% of inhibition, with an estimated 

limit of quantification of 262 ± 8.12 pmol mL−1. 

11. The research performed on biosensors represents a starting point to develop 

technologies for automated screening of chemical compounds in environmental, food or 

biological samples  
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ANNEXES 

Annex 1 

The tolerance limits for anticoccidial drugs residues in poultry muscle and eggs and the 

working standard concentrations 

  Tolerance limit (μg kg-1)  Mixed working standard concentration (µg mL-1) 

  Poultry muscle Eggs Poultry muscle Eggs 

APL Not listed Not listed 12.5 2.5 

CLOP Not listed Not listed 12.5 2.5 

DEC 500 a 20 b 125 5 

DCZ 500 c 2 d 125 0.5 

HAL Not listed 6 b 2.5 1.5 

LAS 60 e 150 e 15 37.5 

MAD 30/2 d,f 12 d 0.5 3 

MON 8 g 2 h 2 0.5 

NAR 50 i 2 b 12.5 0.5 

NEQ Not listed Not listed 2.5 2.5 

DNC 50 d 300 d 12.5 75 

ROB 200 j 25 b 50 6.25 

SAL 5 b 3 b 1.25 0.75 

SEM Not listed 2 b 2.5 0.5 

TOL 100 k Not permitted k 25 2.5 

TOLS 100 k Not permitted k 25 2.5 

TOLX 100 k Not permitted k 25 2.5 

DEC-d5 

ISTDs 

5 5 

DNC-d8 12.5 12.5 

HAL-13C6 5 5 

NIG 5 5 

ROB-d8 5 5 

TOL-d3 5 5 
a Commission Implementing Regulation No. 291/2014. 
b Commission Regulation No. 124/2009. 
c Commission Implementing Regulation No. 115/2013. 
d Commission Regulation No. 610/2012. 
e Commission Implementing Regulation No. 1277/2014. 
f Commission Implementing Regulation No. 388/2011. 
g Commission Implementing Regulation No. 495/2011. 
h Commission Implementing Regulation No. 59/2013. 
i Commission Regulation No. 885/2010. 
j Commission Regulation No. 101/2009. 
k Commission Regulation No. 37/2010. 
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Annex 2 

Experimental design results for the optimization of source parameters. Values are normalized to the observed maximum (in green font, bold) 

Runs 
Center point levels   Analyte     

A B C D E   APL CLOP DCZ DEC DNC HAL LAS MAD MON NAR NEQ ROB SAL SEM TOL TOLS TOLX   Signal intensity score a 

1 0 0 0 -1 -1   59 49 44 4 31 73 8 2 2 2 61 71 3 3 26 36 42   516 

2 0 0 -1 0 -1   42 39 22 1 28 63 2 1 1 1 44 55 1 1 10 16 10   337 

3 0 -1 0 0 -1   78 72 51 28 60 63 47 46 34 20 71 75 30 41 37 62 64   879 

4 -1 0 0 0 -1   74 68 83 59 35 70 73 27 33 22 76 72 37 42 80 76 65   992 

5 1 0 0 0 -1   33 24 17 1 39 54 2 1 0 0 32 40 1 2 14 20 25   305 

6 0 1 0 0 -1   40 34 44 2 40 67 2 1 1 0 41 63 1 1 34 44 35   450 

7 0 0 1 0 -1   67 52 78 18 42 81 20 23 6 17 63 60 13 11 66 68 66   751 

8 0 0 0 1 -1   31 37 54 5 36 56 9 2 2 2 50 54 3 5 40 49 36   471 

9 0 0 -1 -1 0   57 47 22 1 35 83 1 1 1 1 48 54 1 1 11 18 15   397 

10 0 -1 0 -1 0   87 77 58 18 67 95 22 14 11 7 94 90 13 18 46 61 76   854 

11 -1 0 0 -1 0   91 80 91 32 58 88 47 11 12 11 95 78 25 27 75 96 99   1016 

12 1 0 0 -1 0   44 36 40 1 36 69 2 1 1 0 43 59 1 1 28 33 37   432 

13 0 1 0 -1 0   53 44 22 1 48 79 3 1 1 1 50 66 1 2 13 25 15   425 

14 0 0 1 -1 0   77 63 77 14 48 99 15 34 16 20 77 85 10 14 67 81 79   876 

15 0 -1 -1 0 0   69 57 41 14 80 81 19 22 9 14 60 84 6 13 23 27 35   654 

16 -1 0 -1 0 0   61 67 43 12 63 80 18 18 10 9 64 69 18 12 38 62 43   687 

17 1 0 -1 0 0   32 31 8 0 28 56 0 1 0 0 24 48 0 0 6 10 7   251 

18 0 1 -1 0 0   30 33 3 0 24 64 0 0 0 0 22 54 0 0 2 5 2   239 

19 -1 -1 0 0 0   100 100 54 100 88 81 100 100 100 100 94 89 100 100 47 73 94   1520 

20 1 -1 0 0 0   67 58 72 33 43 69 23 27 19 16 64 73 22 24 57 53 43   763 

21 0 0 0 0 0   66 58 50 29 79 88 12 6 6 3 70 59 5 11 34 60 62   698 

22 0 0 0 0 0   62 53 58 20 60 83 12 5 4 3 66 82 6 8 47 65 59   693 

23 0 0 0 0 0   57 50 69 10 69 77 8 2 3 2 65 75 4 5 54 68 63   681 

24 0 0 0 0 0   54 50 28 3 83 83 5 1 1 1 66 84 2 2 23 36 53   575 

25 0 0 0 0 0   51 48 40 6 79 78 7 2 2 1 65 80 3 3 32 50 59   606 

26 0 0 0 0 0   52 42 59 4 54 80 11 2 2 2 50 65 4 5 43 53 51   579 

27 -1 1 0 0 0   55 61 61 5 54 90 11 2 2 2 81 88 3 7 54 70 59   705 

28 1 1 0 0 0   26 25 23 1 33 55 1 0 0 0 26 41 0 0 12 19 12   274 

29 0 -1 1 0 0   96 83 84 43 77 93 43 86 42 43 86 93 74 44 77 91 100   1255 

30 -1 0 1 0 0   88 89 100 93 70 97 80 63 45 58 96 100 44 77 100 100 92   1392 

31 1 0 1 0 0   44 40 58 8 40 70 10 20 4 7 39 49 5 6 48 54 39   541 

32 0 1 1 0 0   54 47 73 13 42 83 12 12 5 7 59 69 5 6 59 74 62   682 

33 0 0 -1 1 0   27 39 13 1 49 67 1 1 1 0 45 58 0 1 10 17 10   340 

34 0 -1 0 1 0   60 70 73 48 63 72 23 25 17 22 74 70 26 22 60 62 59   846 

35 -1 0 0 1 0   48 58 89 32 45 72 51 26 17 20 52 60 17 35 92 79 77   870 

36 1 0 0 1 0   22 29 28 3 24 51 3 1 1 1 37 45 1 1 19 30 18   314 

37 0 1 0 1 0   20 29 33 1 35 60 2 0 0 0 31 45 1 1 22 34 23   337 

38 0 0 1 1 0   41 50 85 17 53 74 16 28 13 20 66 72 19 12 78 80 77   801 

39 0 0 0 -1 1   77 63 32 18 95 100 12 4 3 3 78 88 4 9 26 39 45   696 

40 0 0 -1 0 1   50 50 18 1 67 86 1 1 1 1 53 70 1 1 11 21 20   453 

41 0 -1 0 0 1   92 75 79 44 88 94 34 43 29 17 69 79 24 28 70 76 64   1005 

42 -1 0 0 0 1   74 84 52 33 100 93 43 19 17 10 100 85 30 31 50 88 91   1000 

43 1 0 0 0 1   35 38 44 6 66 64 2 1 1 1 48 53 2 1 31 39 35   467 

44 0 1 0 0 1   40 42 39 1 74 77 1 0 0 0 49 64 1 1 30 53 49   521 

45 0 0 1 0 1   66 65 94 52 78 90 17 42 14 25 80 81 24 14 89 93 83   1007 

46 0 0 0 1 1   33 41 63 9 47 78 8 3 3 2 49 57 4 4 46 52 35   534 
a Signal intensity score calculated as sum of relative intensities of all analytes acquired for corresponding method. Higher score is better. (n=5) 
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Annex 3 

RSD figures for the data acquired from the optimization of source parameters. Values were normalized to the observed maximum intensities for 

corresponding analytes 

Runs 
Center point levels   Analyte     

A B C D E   APL CLOP DCZ DEC DNC HAL LAS MAD MON NAR NEQ ROB SAL SEM TOL TOLS TOLX   RSD scorea 

1 0 0 0 -1 -1   4 7 12 6 51 28 77 61 48 78 3 7 72 80 42 40 55   671 

2 0 0 -1 0 -1   10 4 25 27 12 12 75 47 49 93 12 19 93 55 57 44 35   669 

3 0 -1 0 0 -1   6 4 54 13 19 11 34 18 8 6 8 19 6 24 44 8 5   287 

4 -1 0 0 0 -1   4 6 9 18 18 11 3 28 19 18 1 21 17 28 7 18 12   238 

5 1 0 0 0 -1   16 28 79 26 10 17 19 16 81 29 4 18 73 50 27 3 75   571 

6 0 1 0 0 -1   13 6 12 35 21 6 10 84 93 20 10 9 46 41 14 12 11   443 

7 0 0 1 0 -1   2 2 12 17 26 9 27 23 19 19 1 15 62 11 18 27 14   304 

8 0 0 0 1 -1   9 1 29 33 9 9 39 17 17 20 3 4 17 54 57 58 11   387 

9 0 0 -1 -1 0   7 14 18 20 48 19 27 13 11 31 22 64 29 16 63 40 57   499 

10 0 -1 0 -1 0   2 2 58 21 29 7 39 42 62 11 4 8 16 46 56 9 36   448 

11 -1 0 0 -1 0   5 8 25 13 4 22 48 41 53 60 9 14 99 76 21 8 15   521 

12 1 0 0 -1 0   2 2 36 13 13 5 62 55 91 61 3 10 109 138 45 27 22   694 

13 0 1 0 -1 0   7 3 36 24 38 5 79 79 72 66 9 16 66 76 23 37 56   692 

14 0 0 1 -1 0   4 4 30 30 14 6 20 51 16 48 6 4 28 78 31 7 5   382 

15 0 -1 -1 0 0   8 15 37 23 16 11 59 28 15 19 51 7 42 57 32 54 57   531 

16 -1 0 -1 0 0   15 15 39 26 17 7 28 103 70 27 52 4 121 20 83 65 27   719 

17 1 0 -1 0 0   5 4 61 19 20 5 21 50 68 4 19 20 1 65 71 85 77   595 

18 0 1 -1 0 0   1 4 34 17 32 5 18 35 39 14 11 22 38 20 43 36 52   421 

19 -1 -1 0 0 0   8 10 51 18 12 17 19 31 25 19 2 16 24 41 23 39 63   418 

20 1 -1 0 0 0   5 2 14 13 6 7 17 44 71 55 0 8 71 50 16 5 6   390 

21 0 0 0 0 0   0 2 20 10 3 8 68 8 7 25 2 6 27 34 15 6 11   252 

22 0 0 0 0 0   5 4 43 17 8 1 33 52 14 34 3 14 44 42 45 11 5   375 

23 0 0 0 0 0   2 2 7 34 4 6 24 61 38 48 1 4 117 49 3 4 1   405 

24 0 0 0 0 0   1 0 25 6 6 5 29 13 9 32 1 3 51 43 19 7 30   280 

25 0 0 0 0 0   1 2 30 61 3 18 28 27 69 44 5 1 75 17 44 12 21   458 

26 0 0 0 0 0   6 19 9 10 23 10 25 22 18 32 41 19 60 52 17 5 7   375 

27 -1 1 0 0 0   3 4 50 82 28 14 54 47 92 69 7 27 59 92 66 68 28   790 

28 1 1 0 0 0   16 9 38 136 35 14 85 75 101 71 18 10 47 57 62 75 63   912 

29 0 -1 1 0 0   3 4 17 12 14 4 15 23 11 28 7 7 22 42 8 13 10   240 

30 -1 0 1 0 0   7 14 53 85 30 4 29 26 45 72 7 18 43 47 63 28 24   595 

31 1 0 1 0 0   9 8 31 85 3 5 58 46 11 67 52 23 24 75 57 59 31   644 

32 0 1 1 0 0   7 4 3 68 28 14 55 43 57 54 2 28 52 67 19 24 14   539 

33 0 0 -1 1 0   2 3 54 17 12 12 39 14 38 7 2 4 22 46 39 96 66   473 

34 0 -1 0 1 0   12 19 23 53 35 9 14 97 29 72 6 23 27 22 31 47 34   553 

35 -1 0 0 1 0   8 17 11 105 13 6 27 54 50 20 86 72 133 27 23 3 7   662 

36 1 0 0 1 0   10 2 51 94 16 6 22 27 24 76 5 21 93 25 76 58 25   631 

37 0 1 0 1 0   9 15 50 31 32 18 34 17 33 47 39 20 58 47 71 58 49   628 

38 0 0 1 1 0   11 5 21 15 33 7 32 17 20 60 7 18 15 22 30 18 8   339 

39 0 0 0 -1 1   3 2 35 58 4 10 48 65 59 77 2 17 30 54 27 31 61   583 

40 0 0 -1 0 1   4 2 69 1 40 16 30 36 29 22 3 25 36 28 24 56 24   445 

41 0 -1 0 0 1   11 17 23 44 45 8 20 16 47 37 56 28 49 27 24 36 24   512 

42 -1 0 0 0 1   5 4 79 50 21 16 49 63 77 46 7 18 46 35 75 21 22   634 

43 1 0 0 0 1   28 11 36 86 48 17 58 55 70 46 10 12 75 54 31 48 35   720 

44 0 1 0 0 1   6 4 68 39 15 7 47 25 27 68 2 24 78 72 47 4 15   548 

45 0 0 1 0 1   18 15 16 42 44 25 42 56 69 57 10 12 68 34 23 35 15   581 

46 0 0 0 1 1   15 28 14 47 29 12 22 43 26 44 51 59 25 41 18 58 13   545 
a Score calculated as a sum of relative intensity standard deviations of all analytes aquired for corresponding method. Lower score is better. (n=5) 
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Annex 4 

Experimental design results for the optimization of Orbitrap parameters. Values were normalized to the observed maximum intensities for 

corresponding analytes 

Runs 
Center point levels   Analyte       

F G H   APL CLOP DEC DCZ HAL LAS MAD MON NAR NEQ DNC ROB SAL SEM TOL TOLS TOLX   RSD Score a Signal intensity score b 

1 0 -1 -1 
RSD% 12 4 3 11 2 11 13 14 6 3 9 2 17 16 10 10 10   

153 1369 
Max% 62 70 81 87 76 85 89 87 91 74 78 68 87 74 87 83 90   

2 -1 0 -1 
RSD% 3 1 2 2 1 4 5 6 6 1 4 2 2 7 5 7 5   

63 1575 
Max% 83 80 96 100 87 93 95 92 93 88 97 81 100 94 98 99 99   

3 1 0 -1 
RSD% 3 1 1 7 2 3 7 9 11 2 1 4 19 4 3 7 3   

84 1243 
Max% 62 64 64 90 68 67 70 65 67 62 90 66 80 64 84 87 93   

4 0 1 -1 
RSD% 2 5 4 6 4 12 6 9 13 5 6 4 11 14 4 8 4   

117 1603 
Max% 90 88 89 91 98 100 100 98 99 96 98 96 99 86 92 94 89   

5 -1 -1 0 
RSD% 5 3 6 7 3 12 6 3 7 1 3 1 3 23 6 7 8   

105 1412 
Max% 60 73 79 93 80 83 94 88 89 78 82 73 92 77 87 88 96   

6 1 -1 0 
RSD% 4 4 5 3 5 3 17 13 6 3 5 4 20 7 5 6 6   

114 1202 
Max% 56 58 66 83 62 66 75 73 78 61 72 55 78 69 87 81 82   

7 0 0 0 
RSD% 1 2 2 2 3 7 10 8 20 1 5 1 12 16 1 5 2   

98 1498 
Max% 72 72 85 94 81 95 96 92 96 81 88 79 95 100 90 91 91   

8 0 0 0 
RSD% 4 5 3 1 5 4 4 2 8 2 3 2 2 3 5 5 4   

60 1476 
Max% 75 71 84 96 79 90 88 91 87 80 92 78 93 88 92 97 95   

9 0 0 0 
RSD% 2 0 3 1 2 6 3 3 11 1 3 1 5 17 8 1 3   

69 1489 
Max% 76 76 88 97 81 87 88 86 87 80 94 79 94 94 92 96 94   

10 -1 1 0 
RSD% 2 3 6 5 4 13 5 6 6 3 7 3 13 18 5 8 6   

114 1652 
Max% 100 100 100 99 100 98 99 86 96 100 100 100 92 86 100 100 96   

11 1 1 0 
RSD% 2 2 3 2 2 4 8 8 17 3 2 2 8 5 4 2 3   

77 1371 
Max% 77 86 71 93 79 75 75 70 78 78 96 87 77 56 92 93 88   

12 0 -1 1 
RSD% 3 3 4 8 2 7 6 9 27 2 9 5 8 10 10 12 8   

132 1415 
Max% 64 69 78 95 73 86 100 87 100 72 84 69 83 73 97 85 100   

13 -1 0 1 
RSD% 2 3 3 2 3 5 1 3 9 2 4 3 2 5 9 5 4   

63 1569 
Max% 82 79 98 98 88 96 93 100 94 88 94 82 92 93 98 98 96   

14 1 0 1 
RSD% 8 1 4 4 3 11 7 11 10 2 13 6 17 11 11 19 6   

144 1226 
Max% 61 63 63 86 67 67 69 70 79 62 83 65 75 62 85 81 88   

15 0 1 1 
RSD% 1 7 6 19 8 15 6 12 11 6 17 7 5 18 19 18 20   

195 1534 
Max% 91 97 91 90 97 93 87 82 87 94 95 97 90 73 92 92 86   

a Score calculated as sum of relative intensity standard deviations of all analytes aquired for corresponding method. Lower score is better. (n=3) 

b Signal intensity score calculated as sum of relative intensities of all analytes aquired for corresponding method. Higher score is better. (n=3) 
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Annex 5 

Characteristics of samples used in non-target FCM study 

No. Sample Outlet 
Country of 

origin 
Date purchased 

Dimensions 

(mm) 
Description 

1 Black 

Gemoss 

Germany 

November 16, 

2018 255 × 8 
White with colorful, thick stripes 

2 Purple 

3 Red 

4 Green 

5 Flower January 8, 2019 White, with flower pattern print 

6 Plastic Sweden 
November 16, 

2018 
150 × 6 Biodegradable 

7 
Bamboo 

print 
United 

Kingdom 

January 8, 2019 

200 × 6 

Bamboo resembling print 

8 Silver print Glossy silver resembling print 

9 
Copper 

print 
Glossy copper resembling print 

10 Red 

Flying 

Tiger 
China 185 × 6 Single color straws 

11 Pink 

12 Teal 

13 Dark blue 

14 Green 

Party 

supplies 

store 

USA 190 × 6 

White with colorful stripes 15 Yellow 

16 Orange 

17 Gold print 
White straws with glossy gold print 

stripes 
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Annex 6 

VBA code for ChemRegex module. 

Option Explicit 

 

Public Function ChemRegex(ChemFormula As String, Element As String) As Long 

    Dim strPattern As String 

    strPattern = 

"([A][cglmrstu]|[B][aehikr]?|[C][adeflmnorsu]?|[D][bsy]|[E][rsu]|[F][elmr]?|[G][ade]|[H][efgos]?|[I][nr]?|[K][r]?|[

L][airuv]|[M][cdgnot]|[N][abdehiop]?|[O][gs]?|[P][abdmortu]?|[R][abefghnu]|[S][bcegimnr]?|[T][abcehilms]|[U]|[V]

|[W]|[X][e]|[Y][b]?|[Z][nr])([0-9]*)" 

    Dim regEx As New RegExp 

 

    Dim Matches As MatchCollection, m As Match 

 

    If strPattern <> "" Then 

        With regEx 

            .Global = True 

            .MultiLine = True 

            .IgnoreCase = False 

            .Pattern = strPattern 

        End With 

 

        Set Matches = regEx.Execute(ChemFormula) 

        For Each m In Matches 

            If m.SubMatches(0) = Element Then 

                ChemRegex = IIf(Not m.SubMatches(1) = vbNullString, m.SubMatches(1), 1) 

                Exit For 

            End If 

        Next m 

    End If 

End Function  
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Annex 7 

Processing settings used in Compound Discoverer 2.1 for peak detection, alignment, and 

identification 

Node and parameters Setting 

1. Select spectra   

- Lower RT Limit 0.3 

- Upper RT Limit 11.7 

- Min. Precursor Mass 100 

- Max. Precursor Mass 1200 

- Total Intensity Threshold 5000 

2. Align Retention Times   

- Alignment Model Adaptive curve 

- Maximum Shift [min] 0.5 

- Mass Tolerance 5 ppm 

3. Detect Unkown Compounds   

General Settings   

- Mass Tolerance 5 ppm 

- Intensity Tolerance [%] 30 

- S/N Threshold 3 

- Min. Peak Intensity 100000 

- Ions [M+H]+1 

- Min. Element Counts C H 

- Max. Element Counts C80 H140 O30 N15 S4 P4 Cl8 Br6 F30 I1 Si4 Sn1 

- Peak detection   

- Filter Peaks True 

- Max. Peak Width [min] 0.75 

- Remove Singlets True 

- Min. # Scans per Peak 5 

- Min. # Isotopes 2 

4. Group Unknown Compounds   

Compound Consolidation   

- Mass Tolerance 5 ppm 

- RT Tolerance [min] 0.2 

Fragment Data Selection   

- Preferred Ions [M+H]+1 

5. Fill Gaps   

- Mass Tolerance 5 ppm 

- S/N Threshold 3 

- Use Real Peak Detection True 

6. Mark Background Compounds   

- Max. Sample/Blank 5 

- Hide Background True 

7. Predict Compositions   

Prediction Settings   

- Mass Tolerance 5 ppm 
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- Min. Element Counts C H 

- Max. Element Counts C80 H140 O30 N15 S4 P4 Cl8 Br6 F30 I1 Si4 Sn1 

- Min. RDBE 0 

- Max. RDBE 60 

- Min. H/C 0.1 

- Max. H/C 3.2 

- Max. # Candidates 10 

Pattern Matching   

- Intensity Tolerance [%] 30 

- Intensity Threshold [%] 0.1 

- S/N Threshold 3 

- Min. Spectral Fit [%] 30 

- Min. Pattern Cov. [%] 90 

- Use Dynamic Recalibration True 

Fragments Matching   

- Use Fragments matching True 

- Mass Tolerance 5 ppm 

- S/N Threshold 3 

8. Search Mass Lists   

- Input databases 

ESCO list (Silicones, Coatings, Rubber, Printing Inks, Paper 

and Board, Cork and Wood, Colorants); FDA SCOGS list; 

FDA Indirect Additives list; SVHC list; SIN list; SVHC list; 

Extractables and Leachables HRAM Compound Database; 

EFS HRAM Compound Database; Union list 

- Consider Retention False 

- Mass Tolerance 5 ppm 

9. Search ChemSpider   

- Databases 
ACToR: Aggregated Computation Toxicology Resources; 

FDA UNII – NLM; FooDB 

- Mass Tolerance 5 ppm 

- Max. # of results per compound 100 

- Max. # of Predicted Compositions to 

be searched per Compound 
3 

10. Search mzCloud   

- Compound Classes All 

- Match Ion Activation Type False 

- Match Ion Activation Energy Match with Tolerance 

- Ion Activation Energy Tolerance 40 

- Apply Intensity Threshold True 

- Precursor Mass Tolerance 5 ppm 

- FT Fragment Mass Tolerance 5 ppm 

- IT Fragment Mass Tolerance 0.4 Da 

- Identity Search HighChem HighRes 
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- Similarity Search None 

- Library Reference 

- Post Processing Recalibrated 

- Match Factor Threshold 50 

- Max. # Results 10 

11. Search mzVault   

- mzVault Library 
/mzVault February 2017.db; 

/EFS_HRAM_Spectra_Library.db 

- Compound Classes All 

- Match Ion Activation Type False 

- Match Ion Activation Energy Match with Tolerance 

- Ion Activation Energy Tolerance 40 

- Match Ionization Method True 

- Apply Intensity Threshold True 

- Remove Precursor Ion True 

- Precursor Mass Tolerance 5 ppm 

- FT Fragment Mass Tolerance 5 ppm 

- IT Fragment Mass Tolerance 0.4 Da 

- Match Analyzer Type True 

- Search Algorith HighChem HighRes 

- Match Factor Threshold 50 

- Max. # Results 10 

12. Assign Compound Annotations   

- Mass Tolerance 5 ppm 

- Data Source #1 MassList Match 

- Data Source #2 mzCloud Search 

- Data Source #3 mzVault Search 

- Data Source #4 ChemSpider Search 
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Annex 8 

In silico analysis of: 

Combination of toxicological outputs according to Frenzel et al. 2017 

Libraries 

library(tidyverse) 

library(dbplyr) 

library(scales) 

library(matrixStats) 

library(DT) 

library(data.table) 

The QSAR predictions were processed and combined as described in Frenzel et al. 2017. 

In the table below the data transformations are summarized. 

 

Data preparation of mutagenic predictions for each analysis 

Tool Test Negative Positive Notes 

TEST Mutagenicity Consensus 0 1 Take output as is 

LAZAR Mutagenicity (Salmonella typhimurium) mutagenic non-mutagenic Footnote 1 

VEGA Mutagenicity consensus model 0 1 Take output as is 

 

Data preparation of carcinogenic predictions for each analysis 

Tool Test Negative Positive Notes 

VEGA Carcinogenicity model (CAESAR) - assessment NON-

Carcinogen 

Carcinogen Conversion as in Frenzel 

et al. 

VEGA Carcinogenicity model (ISS) - assessment NON-

Carcinogen 

Carcinogen Conversion as in Frenzel 

et al. 

VEGA Carcinogenicity model (IRFMN/Antares) - 

assessment 

NON-

Carcinogen 

Carcinogen Conversion as in Frenzel 

et al. 

VEGA Carcinogenicity model (IRFMN/ISSCAN-CGX) - 

assessment 

NON-

Carcinogen 

Carcinogen Conversion as in Frenzel 

et al. 

LAZAR Rodents multiple species carcinogenic non-

carcinogenic 

Footnote 1 

LAZAR Rat carcinogenic non-

carcinogenic 

Footnote 1 

LAZAR Mouse carcinogenic non-

carcinogenic 

Footnote 1 

Footnote 1: In LAZAR additional probability score of pos/neg prediction is provided which 

indicate the probabilities that the prediction belongs to one of the two classes. The approach described 

in Frenzel et al was adapted for use with this new output. In essence, the difference between the two 
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probabilities was calculated and then re-scaled on a scale from 0-1. If a compound was in the training 

set, 1 and 0 were assigned for experimentally tested compounds which showed (1) or did not show (0) 

mutagenic (carcinogenic) activities. If no result was obtained the score was set to 0.5. 

 

Table 1. Frenzel et al, 2017 

Prediction Reliability Carcinogenic score 

Carcinogen Experimental activity 1 

Good reliability 0.9 
 

Moderate reliability 0.7 
 

Low reliability 0.5 
 

Non-carcinogen Low reliability 0.5 

Moderate reliability 0.3 
 

Good reliability 0.1 
 

Experimental activity 0 
 

 

#Mutagenicity 

Retrieve data required for this analysis. 

##TEST 

# 

<dbl> 

ID 

<dbl> 

Exp 

<chr> 

Compound 

<chr> 

CASRN 

<chr> 

SMILES 

<chr> 

1 1 0 1,4-Dihydroxybenzene 123-31-9 C1=CC(=CC=C1O)O 

2 2 N/A 2-Methyl-4-isothiazolin-3-one 2682-20-4 CN1C(=O)C=CS1 

3 3 0 Indole 120-72-9 C1=CC=C2C(=C1)C=CN2 

4 4 N/A 3-Methylstyrene 100-80-1 CC1=CC=CC(=C1)C=C 

5 5 N/A N-Methylcaprolactam 2556-73-2 CN1CCCCCC1=O 

6 6 0 N-Isopropylaniline 768-52-5 CC(C)NC1=CC=CC=C1 

6 rows | 1-6 of 10 columns 

##TEST 

Pred_Hierarchical clustering 

<chr> 

Pred_FDA 

<chr> 

Pred_Nearest neighbor 

<chr> 

Pred_Consensus 

<dbl> 

0.19 0.06 0 0.08 

0.25 0.51 0 0.25 

0.3 0.43 0.33 0.35 

N/A 0.02 0 0.01 

0.03 -0.06 0 -0.01 

0.23 -7.0000000000000007E-2 0 0.05 

6 rows | 7-10 of 10 columns 
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##LAZAR 

lazar_muta_out <- readxl::read_excel("./Compiled_tox_output.xlsx", sheet = "Tox - LAZAR muta out") 

  

lazar_muta <- lazar_muta_out %>%  

  mutate(mutagen_lazar = case_when( 

     is.na(.$`Lazar Prediction`) ~ 0.5, 

     .$Measurements == "mutagenic" ~ 1, 

     .$Measurements == "non-mutagenic" ~ 0, 

    .$`Lazar Prediction` == "mutagenic" ~ rescale(  

      .$`Lazar predProbability mutagenic` / .$`Lazar predProbability non-mutagenic`,to=c(0.5,1)), 

    .$`Lazar Prediction` == "non-mutagenic" ~ rescale(  

      .$`Lazar predProbability non-mutagenic` / .$`Lazar predProbability mutagenic`, to=c(0.5,0)))) 

 

##VEGA 

vega_out <- readxl::read_excel("./Compiled_tox_output.xlsx", sheet = "Tox - VEGA out") 

vega_out$ID <- as.numeric(gsub("#", "", vega_out$ID)) 

  

eq_vega_mut <- vega_out %>% select("ID", starts_with("Muta")) %>%  

  select("ID", contains("CONSENSUS")) %>%  

  select("ID", contains("assessment")) %>%  

  separate("Mutagenicity (Ames test) CONSENSUS model - assessment", into =c ("CMP", "ADI"), sep="[(]Consensus 

score:") %>%  

  mutate(ADI = as.numeric(str_replace(ADI, "[)]", ""))) %>%  

  mutate(mutagen_vega = case_when( 

    .$CMP == "Mutagenic " ~  rescale(.$ADI, to=c(0.5,1)), 

    .$CMP == "NON-Mutagenic " ~ rescale(.$ADI, to=c(0.5, 0)))) 

 

#Carcinogenicity 

Retrieve data required for this analysis. 

##LAZAR 

#Connection to SQlite 

lazar_carc_rodent_out <- readxl::read_excel("./Compiled_tox_output.xlsx", sheet = "Tox - LAZAR carc out1", skip = 1) 

%>% type.convert() 

 

lazar_carc_rat_out <- readxl::read_excel("./Compiled_tox_output.xlsx", sheet = "Tox - LAZAR carc output2", skip = 2) 

%>% type.convert() 

 

lazar_carc_mouse_out <- readxl::read_excel("./Compiled_tox_output.xlsx", sheet = "Tox - LAZAR carc output3", skip = 

2) %>% type.convert() 

  

lazar_carc_rodent <- lazar_carc_rodent_out %>%  

  mutate(carci_lazar_rod = case_when( 

     is.na(.$`Lazar Prediction`) ~ 0.5, 

     .$Measurements == "carcinogenic" ~ 1, 

     .$Measurements == "non-carcinogenic" ~ 0, 

    .$`Lazar Prediction` == "carcinogenic" ~ rescale(  
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      .$`Lazar predProbability carcinogenic` / .$`Lazar predProbability non-carcinogenic`,to=c(0.5,1)), 

    .$`Lazar Prediction` == "non-carcinogenic" ~ rescale(  

      .$`Lazar predProbability non-carcinogenic` / .$`Lazar predProbability carcinogenic`, to=c(0.5,0)))) 

  

lazar_carc_rat <- lazar_carc_rat_out %>%  

  mutate(carci_lazar_rat = case_when( 

     is.na(.$`Lazar Prediction`) ~ 0.5, 

     .$Measurements == "carcinogenic" ~ 1, 

     .$Measurements == "non-carcinogenic" ~ 0, 

    .$`Lazar Prediction` == "carcinogenic" ~ rescale(  

      .$`Lazar predProbability carcinogenic` - .$`Lazar predProbability non-carcinogenic`,to=c(0.5,1)), 

    .$`Lazar Prediction` == "non-carcinogenic" ~ rescale(  

      .$`Lazar predProbability non-carcinogenic` - .$`Lazar predProbability carcinogenic`, to=c(0.5,0)))) 

  

lazar_carc_mouse <- lazar_carc_mouse_out %>%  

  mutate(carci_lazar_mus = case_when( 

     is.na(.$`Lazar Prediction`) ~ 0.5, 

     .$Measurements == "carcinogenic" ~ 1, 

     .$Measurements == "non-carcinogenic" ~ 0, 

    .$`Lazar Prediction` == "carcinogenic" ~ rescale(  

      .$`Lazar predProbability carcinogenic` - .$`Lazar predProbability non-carcinogenic`,to=c(0.5,1)), 

    .$`Lazar Prediction` == "non-carcinogenic" ~ rescale(  

      .$`Lazar predProbability non-carcinogenic` - .$`Lazar predProbability carcinogenic`, to=c(0.5,0)))) 

 

##VEGA 

vega_carc <- vega_out %>% select("ID", starts_with("Carci")) %>%  

  select("ID", contains("assessment"))  

 

vega_carc_ceasar <- vega_carc %>% select("ID", contains("CAESAR")) %>%  

  separate("Carcinogenicity model (CAESAR) - assessment", into =c ("CMP_CAESAR", "ADI_CAESAR"), sep="[(]") 

%>%  

  mutate(ADI_CAESAR = str_replace(ADI_CAESAR, "[)]", "")) %>%  

  mutate(vega_carci_caesar = case_when( 

    (.$CMP_CAESAR == "Carcinogen " | .$CMP_CAESAR == "Possible Carcinogen ")  & ADI_CAESAR == 

"EXPERIMENTAL value" ~ 1.0, 

    (.$CMP_CAESAR == "Carcinogen " | .$CMP_CAESAR == "Possible Carcinogen ")  & ADI_CAESAR == "good 

reliability" ~ 0.9, 

    (.$CMP_CAESAR == "Carcinogen " | .$CMP_CAESAR == "Possible Carcinogen ")  & ADI_CAESAR == "moderate 

reliability" ~ 0.7, 

    (.$CMP_CAESAR == "Carcinogen " | .$CMP_CAESAR == "Possible Carcinogen ")  & ADI_CAESAR == "low 

reliability" ~ 0.5, 

    (.$CMP_CAESAR == "NON-Carcinogen "  | .$CMP_CAESAR == "Possible NON-Carcinogen ") & ADI_CAESAR == 

"low reliability" ~ 0.5, 

    (.$CMP_CAESAR == "NON-Carcinogen "  | .$CMP_CAESAR == "Possible NON-Carcinogen ") & ADI_CAESAR == 

"moderate reliability" ~ 0.3, 

    (.$CMP_CAESAR == "NON-Carcinogen "  | .$CMP_CAESAR == "Possible NON-Carcinogen ") & ADI_CAESAR == 

"good reliability" ~ 0.1, 

    (.$CMP_CAESAR == "NON-Carcinogen "  | .$CMP_CAESAR == "Possible NON-Carcinogen ") & ADI_CAESAR == 

"EXPERIMENTAL value" ~ 0.0)) 

 

vega_carc_iss <- vega_carc %>% select("ID", contains("ISS")) %>%  

  separate("Carcinogenicity model (ISS) - assessment", into =c ("CMP_iss", "ADI_iss"), sep="[(]") %>%  

  mutate(ADI_iss = str_replace(ADI_iss, "[)]", "")) %>%  

  mutate(vega_carci_iss = case_when( 

    (.$CMP_iss == "Carcinogen " | .$CMP_iss == "Possible Carcinogen ")  & ADI_iss == "EXPERIMENTAL value" ~ 1.0, 

    (.$CMP_iss == "Carcinogen " | .$CMP_iss == "Possible Carcinogen ")  & ADI_iss == "good reliability" ~ 0.9, 
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    (.$CMP_iss == "Carcinogen " | .$CMP_iss == "Possible Carcinogen ")  & ADI_iss == "moderate reliability" ~ 0.7, 

    (.$CMP_iss == "Carcinogen " | .$CMP_iss == "Possible Carcinogen ")  & ADI_iss == "low reliability" ~ 0.5, 

    (.$CMP_iss == "NON-Carcinogen "  | .$CMP_iss == "Possible NON-Carcinogen ") & ADI_iss == "low reliability" ~ 

0.5, 

    (.$CMP_iss == "NON-Carcinogen "  | .$CMP_iss == "Possible NON-Carcinogen ") & ADI_iss == "moderate reliability" 

~ 0.3, 

    (.$CMP_iss == "NON-Carcinogen "  | .$CMP_iss == "Possible NON-Carcinogen ") & ADI_iss == "good reliability" ~ 

0.1, 

    (.$CMP_iss == "NON-Carcinogen "  | .$CMP_iss == "Possible NON-Carcinogen ") & ADI_iss == "EXPERIMENTAL 

value" ~ 0.0)) 

 

 

vega_carc_antares <- vega_carc %>% select("ID", contains("Antares")) %>%  

  separate("Carcinogenicity model (IRFMN/Antares) - assessment", into =c ("CMP_antares", "ADI_antares"), sep="[(]") 

%>%  

  mutate(ADI_antares = str_replace(ADI_antares, "[)]", "")) %>%  

  mutate(vega_carci_antares = case_when( 

    (.$CMP_antares == "Carcinogen " | .$CMP_antares == "Possible Carcinogen ")  & ADI_antares == "EXPERIMENTAL 

value" ~ 1.0, 

    (.$CMP_antares == "Carcinogen " | .$CMP_antares == "Possible Carcinogen ")  & ADI_antares == "good reliability" ~ 

0.9, 

    (.$CMP_antares == "Carcinogen " | .$CMP_antares == "Possible Carcinogen ")  & ADI_antares == "moderate 

reliability" ~ 0.7, 

    (.$CMP_antares == "Carcinogen " | .$CMP_antares == "Possible Carcinogen ")  & ADI_antares == "low reliability" ~ 

0.5, 

    (.$CMP_antares == "NON-Carcinogen " | .$CMP_antares == "Possible NON-Carcinogen ")  & ADI_antares == "low 

reliability" ~ 0.5, 

    (.$CMP_antares == "NON-Carcinogen " | .$CMP_antares == "Possible NON-Carcinogen ")  & ADI_antares == 

"moderate reliability" ~ 0.3, 

    (.$CMP_antares == "NON-Carcinogen " | .$CMP_antares == "Possible NON-Carcinogen ")  & ADI_antares == "good 

reliability" ~ 0.1, 

    (.$CMP_antares == "NON-Carcinogen " | .$CMP_antares == "Possible NON-Carcinogen ")  & ADI_antares == 

"EXPERIMENTAL value" ~ 0.0)) 

 

vega_carc_cgx <- vega_carc %>% select("ID", contains("IRFMN/ISSCAN-CGX")) %>%  

  separate("Carcinogenicity model (IRFMN/ISSCAN-CGX) - assessment", into =c ("CMP_cgx", "ADI_cgx"), sep="[(]") 

%>%  

  mutate(ADI_cgx = str_replace(ADI_cgx, "[)]", "")) %>%  

  mutate(vega_carci_cgx = case_when( 

    (.$CMP_cgx == "Carcinogen " | .$CMP_cgx == "Possible Carcinogen ") & ADI_cgx == "EXPERIMENTAL value" ~ 

1.0, 

    (.$CMP_cgx == "Carcinogen " | .$CMP_cgx == "Possible Carcinogen ") & ADI_cgx == "good reliability" ~ 0.9, 

    (.$CMP_cgx == "Carcinogen " | .$CMP_cgx == "Possible Carcinogen ") & ADI_cgx == "moderate reliability" ~ 0.7, 

    (.$CMP_cgx == "Carcinogen " | .$CMP_cgx == "Possible Carcinogen ") & ADI_cgx == "low reliability" ~ 0.5, 

    (.$CMP_cgx == "NON-Carcinogen " | .$CMP_cgx == "Possible NON-Carcinogen ") & ADI_cgx == "low reliability" ~ 

0.5, 

    (.$CMP_cgx == "NON-Carcinogen " | .$CMP_cgx == "Possible NON-Carcinogen ") & ADI_cgx == "moderate 

reliability" ~ 0.3, 

    (.$CMP_cgx == "NON-Carcinogen " | .$CMP_cgx == "Possible NON-Carcinogen ")  & ADI_cgx == "good reliability" 

~ 0.1, 

    (.$CMP_cgx == "NON-Carcinogen " | .$CMP_cgx == "Possible NON-Carcinogen ") & ADI_cgx == 

"EXPERIMENTAL value" ~ 0.0)) 

 

#Summary files 

Mutagenicity 

xlsx::write.xlsx(test_muta, "./Compiled_tox_output.xlsx", sheetName="test_muta", col.names=TRUE, row.names=TRUE, 

showNA=FALSE, append=TRUE) 

xlsx::write.xlsx(lazar_muta, "./Compiled_tox_output.xlsx", sheetName="lazar_muta", col.names=TRUE, 

row.names=TRUE, showNA=FALSE, append=TRUE) 
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xlsx::write.xlsx(eq_vega_mut, "./Compiled_tox_output.xlsx", sheetName="eq_vega_mut", col.names=TRUE, 

row.names=TRUE, showNA=FALSE, append=TRUE) 

 

test_muta_out_smry <- test_muta %>% select(ID, Compound, CASRN, SMILES, mutagen_test) 

lazar_muta_smry <-lazar_muta %>% select(ID, mutagen_lazar) 

eq_vega_mut_smry <- eq_vega_mut %>%  select(ID, mutagen_vega) 

 

mutagens <- left_join(test_muta_out_smry, lazar_muta_smry, by="ID")  

mutagens <- left_join(mutagens, eq_vega_mut_smry, by="ID") 

 

select_vars <- c("mutagen_test",  "mutagen_lazar", "mutagen_vega") 

mutagens <- mutagens %>%  

  mutate(mean_muta3 = rowMeans(select(., select_vars))) 

 

xlsx::write.xlsx(mutagens, "./Compiled_tox_output.xlsx", sheetName="mutagens", col.names=TRUE, row.names=TRUE, 

showNA=FALSE, append=TRUE) 

 

Carcinogenicity 

xlsx::write.xlsx(lazar_carc_rodent, "./Compiled_tox_output.xlsx", sheetName="lazar_carc_rodent", col.names=TRUE, 

row.names=TRUE, showNA=FALSE, append=TRUE) 

xlsx::write.xlsx(lazar_carc_rat, "./Compiled_tox_output.xlsx", sheetName="lazar_carc_rat", col.names=TRUE, 

row.names=TRUE, showNA=FALSE, append=TRUE) 

xlsx::write.xlsx(lazar_carc_mouse, "./Compiled_tox_output.xlsx", sheetName="lazar_carc_mouse", col.names=TRUE, 

row.names=TRUE, showNA=FALSE, append=TRUE) 

 

lazar_carc_rodent_smry <- lazar_carc_rodent %>% select(ID, carci_lazar_rod) 

lazar_carc_rat_smry <- lazar_carc_rat %>% select(ID, carci_lazar_rat) 

lazar_carc_mouse_smry <- lazar_carc_mouse %>% select(ID, carci_lazar_mus) 

 

 

lazar_carci_smry <- left_join(lazar_carc_rodent_smry, lazar_carc_rat_smry, by="ID")  

lazar_carci_smry <- left_join(lazar_carci_smry, lazar_carc_mouse_smry, by="ID") 

 

select_vars <- c("carci_lazar_rod", "carci_lazar_rat",  "carci_lazar_mus") 

lazar_carci_smry <- lazar_carci_smry %>%  

  mutate(mean_carci_LAZAR3 = rowMeans(select(., select_vars)))  

 

xlsx::write.xlsx(lazar_carci_smry, "./Compiled_tox_output.xlsx", sheetName="lazar_carci_smry", col.names=TRUE, 

row.names=TRUE, showNA=FALSE, append=TRUE) 

  

xlsx::write.xlsx(vega_carc_ceasar, "./Compiled_tox_output.xlsx", sheetName="vega_carc_ceasar", col.names=TRUE, 

row.names=TRUE, showNA=FALSE, append=TRUE) 

xlsx::write.xlsx(vega_carc_iss, "./Compiled_tox_output.xlsx", sheetName="vega_carc_iss", col.names=TRUE, 

row.names=TRUE, showNA=FALSE, append=TRUE) 

xlsx::write.xlsx(vega_carc_antares, "./Compiled_tox_output.xlsx", sheetName="vega_carc_antares", col.names=TRUE, 

row.names=TRUE, showNA=FALSE, append=TRUE) 

xlsx::write.xlsx(vega_carc_cgx, "./Compiled_tox_output.xlsx", sheetName="vega_carc_cgx", col.names=TRUE, 

row.names=TRUE, showNA=FALSE, append=TRUE) 

 

vega_carc_ceasar_smry <- vega_carc_ceasar %>% select(ID, vega_carci_caesar) 

vega_carc_iss_smry <- vega_carc_iss %>% select(ID, vega_carci_iss) 

vega_carc_antares_smry <- vega_carc_antares %>% select(ID, vega_carci_antares) 

vega_carc_cgx_smry <- vega_carc_cgx %>% select(ID, vega_carci_cgx) 

 

 

vega_carci_smry_1 <- left_join(vega_carc_ceasar_smry, vega_carc_iss_smry, by="ID")  

vega_carci_smry_2 <- left_join(vega_carc_antares_smry, vega_carc_cgx_smry, by="ID") 

vega_carci_smry <- left_join(vega_carci_smry_1, vega_carci_smry_2, by="ID") 
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select_vars <- c("vega_carci_caesar", "vega_carci_iss", "vega_carci_antares", "vega_carci_cgx") 

vega_carci_smry <- vega_carci_smry %>%  

  mutate(mean_carci_vega4 = rowMeans(select(., select_vars))) 

 

xlsx::write.xlsx(vega_carci_smry, "./Compiled_tox_output.xlsx", sheetName="vega_carci_smry", col.names=TRUE, 

row.names=TRUE, showNA=FALSE, append=TRUE) 

  

 

carci_smry <- left_join(lazar_carci_smry, vega_carci_smry, by="ID")  

 

select_vars <- c("carci_lazar_rod", "carci_lazar_rat",  "carci_lazar_mus", "vega_carci_caesar", "vega_carci_iss", 

"vega_carci_antares", "vega_carci_cgx") 

 

carci_smry <- carci_smry %>%  

  mutate(mean_carci = rowMeans(select(., select_vars)))  

 

vega_out_sub <- vega_out %>% select(ID, Compound, CASRN, SMILES) 

carci_smry <- left_join(vega_out_sub, carci_smry, by="ID") 

 

xlsx::write.xlsx(carci_smry, "./Compiled_tox_output.xlsx", sheetName="carci_smry", col.names=TRUE, 

row.names=TRUE, showNA=FALSE, append=TRUE) 

 

Plots 

Mutagenicity 

Barplot [input data example].

ID 

<fctr> 

Compound 

<chr> 

CASRN 

<chr> 

24 4,4'-Oxydianiline 101-80-4 

52 Quinacridone 1047-16-1 

33 4,4'-bis(dimethylamino)benzophenone (Michler's ketone) 90-94-8 

11 5-Chloro-2-methyl-4-isothiazolin-3-one 26172-55-4 

40 Dimethoxyethyl phtalate 117-82-8 

48 Pigment Orange 64 72102-84-2 

12 Triethylene Glycol 112-27-6 

71 4,4'-Bis(diethylamino)benzophenone 90-93-7 

13 1,2-Benzisothiazolin-3-one 2634-33-5 

29 2,4,6-Trimethylbenzophenone 954-16-5 

1-10 of 72 rows | 1-3 of 8 columns 

SMILES 

<chr> 

mutagen_tes

t 

<dbl> 

mutagen_laza

r 

<dbl> 

mutagen_veg

a 

<dbl> 

C1=CC(=CC=C1N)OC2=CC=C(C=C2)N 1.00000000 1.0000000 1.00000000 

C1=CC=C2C(=C1)C(=O)C3=CC4=C(C=C3N2)C(=O)C5=CC=CC=C5

N4 

0.80909091 0.9624409 0.85294118 

CN(C)C1=CC=C(C=C1)C(=O)C2=CC=C(C=C2)N(C)C 0.35454545 1.0000000 1.00000000 
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SMILES 

<chr> 

mutagen_tes

t 

<dbl> 

mutagen_laza

r 

<dbl> 

mutagen_veg

a 

<dbl> 

CN1C(=O)C=C(S1)Cl 0.88181818 0.5000000 0.61764706 

COCCOC(=O)C1=CC=CC=C1C(=O)OCCOC 0.42727273 0.4433872 1.00000000 

CC1=CC2=C(C=C1N=NC3C(=O)NC(=O)NC3=O)NC(=O)N2 0.43636364 0.8077564 0.52941176 

C(COCCOCCO)O 0.29090909 0.4231483 1.00000000 

CCN(CC)C1=CC=C(C=C1)C(=O)C2=CC=C(C=C2)N(CC)CC 0.14545455 0.7533737 0.76470588 

C1=CC=C2C(=C1)C(=O)NS2 0.29090909 1.0000000 0.32352941 

CC1=CC(=C(C(=C1)C)C(=O)C2=CC=CC=C2)C 0.50909091 0.6608195 0.32352941 

1-10 of 72 rows | 4-7 of 8 columns 

mutagen_test 

<dbl> 

mutagen_lazar 

<dbl> 

mutagen_vega 

<dbl> 

mean_muta3 

<dbl> 

1.00000000 1.0000000 1.00000000 1.000000000 

0.80909091 0.9624409 0.85294118 0.874824322 

0.35454545 1.0000000 1.00000000 0.784848485 

0.88181818 0.5000000 0.61764706 0.666488414 

0.42727273 0.4433872 1.00000000 0.623553310 

0.43636364 0.8077564 0.52941176 0.591177281 

0.29090909 0.4231483 1.00000000 0.571352462 

0.14545455 0.7533737 0.76470588 0.554511367 

0.29090909 1.0000000 0.32352941 0.538146168 

0.50909091 0.6608195 0.32352941 0.497813270 

1-10 of 72 rows | 5-8 of 8 columns 

barplot_muta <- ggplot(muta, aes(x = ID, y = mean_muta3)) + 

  geom_bar(stat = "identity") +  

  geom_col(aes(fill = mean_muta3)) +  

  scale_fill_gradient2(low = "green",  

                       high = "red",  

                       midpoint = 0.5) + 

  theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5)) + 

  ggtitle("Schematic plot of in silico mutagenicity analysis") + 

  xlab("Compound") + ylab("Mutagenic score") + 

  theme(legend.position = "none") 

 

barplot_muta 
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Carcinogenicity 

Barplot 

carc <- 

    carci_smry %>% 

    arrange(-mean_carci) %>% 

    data.table() 

 

carc$ID <- 

    factor( 

        carc$ID, 

        levels = carc$ID 

    ) 

  

barplot_carci <- ggplot(carc, aes(x = ID, y = mean_carci)) + 

  geom_bar(stat = "identity") +  

  geom_col(aes(fill = mean_carci)) +  

  scale_fill_gradient2(low = "green",  

                       high = "red",  

                       midpoint = 0.5) + 

  theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5)) + 

  ggtitle("Schematic plot of in silico carcinogenicity analysis") + 

  xlab("Compound") + ylab("Carcinogenic score") + 

  theme(legend.position = "none") 

 

barplot_carci 
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Annex 9 

MRM Transitions and Mass Spectrometry Settings. 

Analyte RT(min) Q1(Da) Q2(Da) DP(V) EP(V) CE(V) CXP(V) Reference 

Paraoxon-methyl 1 7.2 248.1 90.1 71 10 37 16 1 

Paraoxon-methyl 2 7.2 248.1 202.1 71 10 27 10 1 

Paraoxon-ethyl 1 7.7 276.1 220 69 10 19 6 2 

Paraoxon-ethyl 2 7.7 276.1 248.1 69 10 13 6 2 

Phosmet 1 8.1 318 160 61 10 17 10 2 

Phosmet 2 8.1 318 133 61 10 49 11 2 

Parathion-methyl 1 8.2 264 125 85 10 25 8 3 

Parathion-ethyl 1 9 292 236 80 10 20 7 2 

Parathion-ethyl 2 9 292 264 80 10 15 7 2 

Coumaphos 1 9.2 363 227 100 10 36 10 2 

Coumaphos 2 9.2 363 307 100 10 25 10 2 

Tolclofos-methyl 1 9.7 301 268.9 59 10 23 6 2 

Tolclofos-methyl 2 9.8 301 175 59 10 35 6 2 

Diazinon 1 10 305 169 80 10 27 11 2 

Diazinon 2 10 305 153 80 10 28 11 2 

Pirimiphos-methyl 1 10.4 306.1 164.1 75 10 29 6 2 

Pirimiphos-methyl 2 10.4 306.1 108 75 10 40 6 2 

Chlorpyrifos 1 10.8 350 198 82 10 29 9 2 

Chlorpyrifos 2 10.8 350 97 82 10 49 9 2 
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Drawbacks of a Sampling Method Involving Evaporation under Nitrogen. Anal. Bioanal. Chem. 

2014, 406 (5), 1541–1550. 

(2) Wang, J.; He, Z.; Wang, L.; Xu, Y.; Peng, Y.; Liu, X. Automatic Single‐Step Quick, Easy, 

Cheap, Effective, Rugged and Safe Sample Preparation Devices for Analysis of Pesticide 

Residues in Foods. J. Chromatogr. A 2017, 1521, 10–18. 

(3) Feng, X.; He, Z.; Wang, L.; Peng, Y.; Luo, M.; Liu, X. Multiresidue Analysis of 36 

Pesticides in Soil Using a Modified Quick, Easy, Cheap, Effective, Rugged, and Safe Method by 

Liquid Chromatography with Tandem Quadruple Linear Ion Trap Mass Spectrometry. J. Sep. 

Sci. 2015, 38 (17), 3047–3054. 
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