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ABSTRACT 

 

Metformin is an antidiabetic agent widely used as a first-line treatment for 

type 2 diabetes (T2D). It has various advantages as well as variable therapeutic effects, 

contraindications, and side effects. The pharmacodynamic effects of metformin have been 

widely studied, interaction with gut microbiome or epigenetic regulation of the host along with 

other therapeutic target sites have been highlighted, yet details of these mechanisms remain 

obscure. Moreover, metformin’s pleiotropic effects have shown significant results in the 

treatment of many other diseases outside T2D. The high subject-specific variance and dynamic 

nature of both the gut microbiome and DNA methylation profile makes them a significant target 

for precision medicine biomarker discovery. 

The aim of this study was to identify taxonomic and functional gut microbiome biomarkers as 

well as epigenetic signatures of the host for metformin pharmacodynamics, therapy efficacy 

and tolerance. Using massive parallel sequencing based approaches for gut microbiome 

profiling we observed significant and immediate reduction of inner diversity in the healthy 

cohort and changes in the taxonomic profile caused by metformin therapy in both newly 

diagnosed T2D patients and healthy individuals. Employing shotgun metagenomics, we 

presented the possibility to use baseline sample composition as a prediction tool for metformin 

therapy efficacy and tolerance.  In addition, our study on global DNA methylation profile and 

its changes during metformin use presented the first and currently the only study evaluating 

longitudinal effects in peripheral blood cells of healthy human individuals. The results depicted 

that the genes representing the top-ranked differentially methylated probes corresponded to the 

main functional groups associated with previously described targets of metformin therapy: 

regulatory processes of energy homeostasis, inflammatory responses, tumorigenesis, and 

neurodegeneration. These results altogether bring novel data that could be used in future studies 

and in development of microbiome modulation approaches as well as precision medicine based 

treatment algorithms. 
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KOPSAVILKUMS 

 

Metformīns ir plaši izmantots pirmās izvēles antidiabētiskais medikaments 2. tipa cukura 

diabēta (T2D) ārstēšanai. Tam ir vairākas priekšrocības, tomēr raksturīga arī mainīga 

terapeitiskā iedarbība, kontrindikācijas un blakusparādības. Metformīna farmakodinamiskā 

iedarbība ir plaši pētīta, tiek uzsvērta tā mijiedarbība ar zarnu mikrobiomu, kā arī 

saimniekorganisma epiģenētisko regulāciju un citiem terapeitiskajiem mērķiem, tomēr 

informācija par šiem mehānismiem joprojām ir neskaidra. Papildus tam metformīna plejotropā 

iedarbība ir parādījusi būtiskus rezultātus daudzu citu slimību ārstēšanā ārpus T2D. Gan zarnu 

mikrobiomam, gan DNS metilācijas profilam raksturīgās indivīd-specifiskas iezīmes un 

dinamika padara tos par nozīmīgu mērķi precīzijas medicīnas biomarķieru atklāšanai. 

Šī pētījuma mērķis bija identificēt taksonomiskos un funkcionālos zarnu mikrobioma 

biomarķierus, kā arī saimniekorganisma epiģenētiskās iezīmes metformīna farmakodinamikai, 

terapijas efektivitātei un tolerancei. Izmantojot lielapjoma paralēlas sekvenēšanas pieejas zarnu 

mikrobioma profilēšanai, mēs novērojām metformīna terapijas izraisītu būtisku un tūlītēju 

iekšējās daudzveidības samazināšanos veselo indivīdu kohortā, kā arī taksonomiskā profila 

izmaiņas gan jaundiagnosticētiem T2D pacientiem, gan veseliem indivīdiem. Izmantojot visa 

metagenoma sekvenēšanu, mēs prezentējām iespēju izmantot pirms terapijas uzsākšanas iegūtā 

mikrobioma parauga taksonomisko sastāvu kā rīku metformīna terapijas efektivitātes un 

tolerances prognozēšanai. Papildus tam mūsu publikācija par globālo DNS metilēšanas profilu 

perifērajās asins šūnās un tā izmaiņām metformīna lietošanas laikā parādīja pirmo un pašlaik 

vienīgo pētījumu, kurā tika analizēta ietekme longitudinālā griezumā uz veseliem indivīdiem.  

Rezultāti parādīja to, ka gēni, kas atbilst top diferencēti metilētajām zondēm, reprezentē 

galvenās funkcionālās grupas, kas saistītas ar iepriekš aprakstītajiem metformīna terapijas 

mērķiem: enerģijas homeostāzi regulējošie procesi, iekaisuma reakcijas, tumoriģenēze un 

neirodeģenerācija. Šie rezultāti kopumā sniedz jaunas zināšanas, kurus kalpos par pamato 

turpmākiem pētījumiem un mikrobiomu modulācijas pieeju, kā arī precīzijas medicīnā balstītu 

ārstēšanas algoritmu izstrādē. 
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FXR farnesoid X receptor TSS transcription start site 
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GLP-1 glucagon-like peptide 1 

GPCR G protein-coupled receptor 

GUDCA glycoursodeoxycholic acid 

H19 long noncoding RNA H19 

HTS high-throughput sequencing 

ITS internal transcribed spacers 

LEfSe Linear discriminant analysis Effect Size 

LKB1 liver kinase B1 

lncRNA long non-coding RNA 

LPS lipopolysaccharides  

M0 samples collected before metformin treatment 

M10h samples collected 10 hours after the first metformin intake 

M24h  samples collected 24 hours after the first metformin dose 

M7d samples collected 7 days after starting the therapy 

mGDP mitochondrial glycerophosphate dehydrogenase 

miRNA micro RNA 

MODY maturity onset diabetes of the young 

mRNA messenger RNA 

MRCC1 mitochondrial respiratory chain Complex I 

mTORC1 mammalian target of rapamycin complex I 

ncRNA non-coding RNA  
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INTRODUCTION 

Diabetes mellitus is one of the most prevalent diseases worldwide, with T2D constituting more 

than 90% of cases. It has been recognized as a global burden for healthcare and economics. 

Therefore, timely identification of individuals at risk, improved detection and monitoring of 

T2D patients, effective treatment with reduced incidence of comorbidities, and improved 

awareness are the key elements for decreasing the future burden of this disease. Metformin is a 

first-line antidiabetic agent widely used for treatment of T2D. It has various advantages as well 

as variable therapeutic effects, contraindications, and side effects. The pharmacodynamic 

effects of metformin have been widely studied, interaction with gut microbiome or epigenetic 

regulation of the host along with other therapeutic target sites have been highlighted, yet details 

of these mechanisms remain obscure. 

Importance of this work: Early prediction of efficacy and tolerance for antidiabetic therapy is 

a significant way to develop precision medicine based approaches, therefore, improving quality 

of life for the patients. New knowledge about metformin pharmacodynamics is important to the 

development of efficient treatment algorithms for T2D patients and creation of new treatment 

strategies for metformin therapeutic targets outside T2D. 

Aims of the study: To identify taxonomic and functional gut microbiome biomarkers as well 

as epigenetic signatures of the host for metformin pharmacodynamics, therapy efficacy and 

tolerance. 

Tasks to reach the aims: 

1) Analyse the metformin effects on taxonomic profile of healthy human gut microbiome.  

2) Investigate the short-term metformin effects on peripheral blood DNA methylation 

profile in healthy individuals. 

3) Evaluate the similarities and population specific features of metformin induced 

taxonomic and functional changes in gut microbiome both in healthy and in newly 

diagnosed T2D patients. 

4) Determine possible biomarkers for metformin therapy efficacy and tolerance 
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1. LITERATURE REVIEW 

1.1. Human microbiome 

1.1.1. Characterization and development 

The human microbiome is defined as the collection of microorganisms (bacteria, archaea, 

viruses, eukaryotes) in a specific body site – habitat – together with their genomes and the 

surrounding environmental conditions, e.g. biochemical products (Marchesi and Ravel 2015). 

Moreover, the most recent discussions and amendments put additional emphasis on the 

temporal and spatial dynamics of the microbiome, as well as the integration, interaction, and 

coevolution with the host as part of the microbiome definition (Berg et al. 2020). The main 

human microbiome niches are skin, oral, respiratory, urogenital, and intestinal microbiomes, 

with most of them having several smaller subpopulations, dependent on physiological and 

environmental differences within the human body. Microbiome composition and functional 

capacity have been strongly proven to be associated with maintaining the health of the host as 

well as with the pathogenesis of various diseases (Figure 1). Unfavourable shifts in the human 

microbiome are defined as dysbiosis and have been studied and characterized in the context of 

inflammatory bowel disease, obesity, type 1 and type 2 diabetes, allergies, multiple sclerosis, 

autism, cancer, and several other diseases (Lloyd-Price et al. 2016, Paun and Danska 2016, 

Vivarelli et al. 2019, Chandra et al. 2020). 

Currently, it is mostly acknowledged that the colonization with the first microbial communities 

starts during birth, however, in recent years some studies have highlighted the possibility of 

microbiome subpopulations in the placenta, amniotic fluid, and meconium, therefore supporting 

in utero colonization hypothesis (Perez-Munoz et al. 2017). Nevertheless, the health of the 

mother and her microbiome, mode of delivery, feeding type (breastfeeding versus formula), 

early antibiotic use, and even pet keeping in the household have been established as the most 

important factors affecting the microbiome of an infant, its development in the first years of 

life, and effects on health in adulthood (Tanaka and Nakayama 2017, Kim et al. 2019, Moore 

and Townsend 2019). 

During life, the human microbiome is still highly dynamic, however, mostly maintaining its 

person-specific features. There has been characterized a wide range of factors impacting the 

microbiome throughout life, such as host genetics, diet, age, lifestyle (sleep, exercise, stress 

levels, smoking), hormonal shifts, use of antibiotics and other medications, infections, 

traveling, and other interactions with the environment (Rojo et al. 2017). 



9 

 

 

Figure 1. Taxonomic composition of various human microbiome subpopulations characterizing 

a healthy individual, as defined by data from previous large-scale human microbiome projects, 

and examples of various diseases associated with dysbiosis of their subpopulations. Adapted 

from  (Belizario and Napolitano 2015). 

 

The definition of a healthy human microbiome is still unclear as there are several factors 

continuously affecting the microbiome and high inter-individual and intra-individual variety 

exists. At the moment determination of core microbiome or sets of specific features common 

to healthy microbiomes, such as prevalent organisms or molecular pathways, as well as 

dynamic modelling of compositional and functional fluctuations throughout life have been used 

to distinguish healthy or dysbiotic microbiomes (Lloyd-Price et al. 2016, Aguirre de Carcer 

2018).  

 

1.1.2. Gut microbiome  

The most diverse and most studied human microbiome subpopulation is specifically the human 

gut microbiome. It has been characterized as one of the most densely populated microbial 

populations on Earth, composed of more than 1000 species (Rinninella et al. 2019), with the 

dominant phyla Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and 

Verrucomicrobia, where the first two composes approximately 90% of the gut microbiota (Qin 
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et al. 2010). Gut microbiome continuously interacts with the host and other microbiome 

subpopulations, therefore, ensuring a number of evolutionary developed vital functions:  

(1) Extraction, absorption, and synthesis of various metabolites and nutrients, such as 

short-chain fatty acids (SCFAs), bile acids, and vitamins, therefore, enhancing the 

metabolic capacity and interacting with metabolic regulation of the host (Brestoff and 

Artis 2013, Kho and Lal 2018);  

(2) Protection from infections induced by opportunistic pathogens (colonization 

resistance), mostly through competition processes - antimicrobial peptide secretions, pH 

modification, nutrient metabolism, and effects on cell signalling pathways (Kim et al. 

2017, Ducarmon et al. 2019);  

(3) Strengthening the integrity of the gut and shaping the intestinal epithelium, thus, 

ensuring a mechanic barrier (Natividad and Verdu 2013); 

(4) Regulation of development, homeostasis, and function of both innate and adaptive 

immune systems of the host (Maynard et al. 2012). 

In addition to these functions, studies have shown the gut microbiome as a key player in the 

regulation of several physiological processes and systems of the host. Gut-brain axis, gut-liver 

axis, gut-muscle axis, and gut-skin axis are some of the most studied examples of these systemic 

interactions mediated by the gut microbial communities (O'Neill et al. 2016, Tripathi et al. 

2018, Osadchiy et al. 2019, Przewlocka et al. 2020).  

The gut microbiome is highly variable in the context of biogeography throughout the 

gastrointestinal (GI) tract. Host physiology, nutrient availability, competition, pH, and oxygen 

levels are only some of the factors behind this variability (Mark Welch et al. 2017). In addition, 

it is important to note that a vast majority of the studies are analysing specifically the faecal 

microbiome, which is significantly different from various subpopulations associated with the 

GI tissue. However, the data obtained from faecal microbiome can serve as non-invasive 

biomarkers often depicting similar shifts in microbial communities compared to biopsy samples 

(Tang et al. 2015, Engevik and Versalovic 2019). 

 

1.1.3. Microbiome analysis  

For many years, microbiome studies were done using culture-dependent methods, which still 

have significant limitations when it comes to studying the human gut microbiome, and even 

now, it is estimated that approximately half of the prokaryotic diversity found in the mammalian 

gut microbiome cannot be grown in any known culture (Lagkouvardos et al. 2017).  
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During the previous decade, the development of high-throughput sequencing (HTS) approaches 

has fostered a rapid advancement in microbiome studies. HTS methods can be classified into 

three categories: microbiome, DNA, and mRNA level analyses. (1) Culturome, in nowadays 

comprehension, is a recent method where HTS and other molecular methods have been 

combined with innovative culture techniques, therefore, renewing the interest in applying the 

culture-based approaches for microbiome studies (Lagier et al. 2018, Zou et al. 2019). 

(2) Amplicon based approach is estimated to be the most used HTS method for microbiome 

studies. Amplicon studies comprise various types of marker genes used for taxonomical profile 

determination of microbiome: 16S ribosomal RNA (16S rRNA) gene for prokaryotes; 18S 

ribosomal RNA (18S rRNA) gene for eukaryotes; internal transcribed spacers (ITS) for fungi 

(Woese and Fox 1977, Schoch et al. 2012). (3) The shotgun metagenome approach includes 

sequencing and analysis of all present DNA, therefore offering insight into the microbiome’s 

functional potential as well (Sharpton 2014). (4) Metatranscriptomic approach profile the 

mRNA levels of the microbial community, characterizing the current functional activity 

(Bashiardes et al. 2016).  However, the new approaches have brought new challenges, therefore, 

independently of the methods used their advantages and limitations should be taken into 

account (Figure 2).  

 

 

Figure 2. Advantages and limitations of current high-throughput sequencing-based approaches 

used in microbiome research. Adapted from (Liu et al. 2020).  
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Factors, such as sample type, amount of biomass, and the scientific question are used for the 

selection of the most suitable approaches. Most importantly, it is advisable to integrate different 

methods, therefore obtaining insight into both the taxonomic and functional profiles of the 

analysed microbiome. Such an approach is defined as multi-omics and includes not only HTS 

based methods but proteomics and metabolomics analyses, as well as it may include integration 

with data from the host (Wang et al. 2019, Liu et al. 2020). 

 

1.2. Epigenetic regulation  

1.2.1. Main mechanisms of the epigenetic regulation 

The term “epigenetics” was introduced in 1942 by Conrad Waddington, thereby stating – “an 

epigenetic trait is a stably heritable phenotype resulting from changes in a chromosome without 

alterations in the DNA sequence” (Waddington 1942). Based on our current understanding, 

epigenetic mechanisms are defined as processes that regulate gene expression through the 

alteration of chromatin structure without changing the nucleotide base sequences. These 

epigenetic influences can be further inherited both in transgenerational and in a mitotic way. 

The three most characterized mechanisms of epigenetic regulation are histone modifications, 

DNA methylation, and non-coding RNAs (ncRNAs). Importantly, most of the epigenetic 

modifications are reversible, therefore, this field offers a considerable promise for new targeted 

and precision medicine-based therapies (Allis and Jenuwein 2016, Kronfol et al. 2017, Cavalli 

and Heard 2019). 

The DNA in each eukaryotic cell is organized in tightly regulated structures – approximately 

145-147 base pairs (bp) of DNA are wrapped around an octameric and globular protein 

complex, thus, forming the “nucleosomal core particle”. Each octamer is formed by two dimers 

containing H2A and H2B core histones, and one tetramer containing two H3 and two H4 core 

histones. Also, the linker histone H1 is needed to form a full nucleosome and stabilise 

higher-order chromatin structures (Allan et al. 1980, Luger et al. 1997). In addition to the 

physical regulation of DNA accessibility determined by the nucleosomes, histones may carry 

various posttranslational modifications, which as well have a significant impact on chromatin 

accessibility and therefore the gene activity. The most studied histone modifications include 

acetylation, methylation, phosphorylation, sumoylation, ubiquitinylation, ADP ribosylation, 

and deamination (Kouzarides 2007). More recently, some new types of modifications have been 

characterized, such as propionylation and butyrylation (Kebede et al. 2015). Most of the 

best-studied histone modifications are located on the N-terminal tail regions, nevertheless, other 
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regions of histones can be modified, such as the central globular domains. All these 

modifications establish the “histone code” and function through disrupting chromatin contacts 

or by affecting the recruitment of other non-histone proteins to chromatin. Interestingly, histone 

modifications can affect each other, as well as they can interact with DNA methylation 

(Rothbart and Strahl 2014). 

DNA methylation is a common epigenetic modification of DNA in mammals. It is a mechanism 

involving a covalent transfer of a methyl group (CH3) from the universal donor 

S-adenosyl-L-methionine (SAM) to the C-5 position of the cytosine ring by DNA 

methyltransferases (DNMTs) (Borchiellini et al. 2019). In mammals, DNA methylation can 

occur at cytosines in any context in the genome, however, more than 98% of this modification 

occurs specifically on cytosines that precede guanine – CpG sites (Lister et al. 2009). CpG-rich 

genome regions are called CpG islands (CGI), usually located in the proximity of transcription 

start sites (TSSs) of the ~70% of human protein-coding genes (Saxonov et al. 2006). The 

addition of the CH3 group mediates conformational changes in the major groove of DNA, in 

that way altering the DNA-protein binding and further the gene expression (Liebl and Zacharias 

2019). Previously, the majority of studies have been focused on the methylation effects within 

CGIs located in the promoter or close to TSSs of protein-coding genes. However, more recently 

the significance of methylation in other genomic regions have been acknowledged, such as CG 

shores (up to 2 kb from CGI), shelves (2-4 kb from CGI), and open sea (the rest of the genome) 

(Visone et al. 2019). The effect of DNA methylation is proved to be mostly dependent on the 

genomic localization. For example, methylation of TSS-associated CGIs negatively correlates 

with gene expression, whereas, methylation in gene-body has shown a positive correlation with 

gene expression (Teissandier and Bourc'his 2017). 

Non-coding RNAs are defined as functional molecules that do not have the protein-coding 

ability. Currently, all ncRNAs can be classified as housekeeping ncRNAs and regulatory 

ncRNAs. The latter are further arbitrarily divided into two groups based on their 

size – small/ short-chain (≤200 nt) and long (>200 nt) –, and there are several subtypes within 

both of these groups. Most often, the following three subtypes of short ncRNAs are 

studied – short interfering or silencing RNA (siRNA), micro RNA (miRNA), and 

Piwi-interacting RNA (piRNA). Long non-coding RNAs (lncRNAs) as well can be divided into 

subclasses, but often these classes are not specified. It has been described that ncRNAs can 

interact with genes, therefore, up- or down-regulating their expression, interact with chromatin 

organizing proteins, guide methylation, etc. (Peschansky and Wahlestedt 2014). More recently, 

diverse chemical modifications of cellular RNAs have been described and termed as “RNA 
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epigenetics” or “epitranscriptome”, covering more than 100 known types of post-transcriptional 

modifications RNA epigenetics (Liu and Pan 2015). 

A significant characteristic of epigenetic regulation is that it is dynamic, can be modified, and 

is strongly affected by various environmental and behavioural factors throughout life. Such 

factors as environmental pollutants, physical activity levels, sleep pattern, stress levels, diet, 

medication use, smoking, and gut microbiome profile fluctuations have a significant effect on 

epigenetic patterns and their dynamics (Alegria-Torres et al. 2011). As most of the 

aforementioned factors are controllable, new lifestyle-based primary care, and preventive 

medicine recommendations and approaches have been developed and are definitely an 

emerging field at the moment (Lee et al. 2020). In addition, it is important to emphasize that 

the mechanisms of epigenetic regulation altogether cannot be viewed only individually, but as 

a complex regulatory system with various levels of interaction. 

 

1.2.2. Interaction between epigenetic regulation and human gut microbiome 

The current understanding of various molecular mechanisms how regulatory interactions 

between the host and its microbiome are implemented mostly remains elusive (Carbonero 

2017). Nevertheless, studies have shown that changes in taxonomic and functional profiles of 

the gut microbiome correlate with epigenetic changes, moreover, various metabolites produced 

by microbiota, such as SCFAs, biotin, folates, and trimethylamine-N-oxide (TMAO), can 

regulate the epigenetic modifications of the host (Nicholson et al. 2012, Devaux and Raoult 

2018). In mice, microbiota modulates the expression of numerous lncRNAs in various 

metabolic and other organs (Dempsey et al. 2018), as well as its modulated changes of miR-181 

expression levels in adipose tissue have been demonstrated (Virtue et al. 2019). In regards of 

DNA methylation, the action of DNMTs can be affected by metabolic activities of the 

microbiome, especially those involving the synthesis of metabolites participating in one-carbon 

metabolism, as these metabolites can further serve as methyl group donors for SAM (Mischke 

and Plosch 2013). In addition, communities in the gut can metabolize choline into various 

metabolites, including trimethylamine, which further can be metabolized into TMAO – known 

to be responsible for reduced methylation levels amongst other effects (Romano et al. 2015, 

Sun et al. 2016, Romano et al. 2017). As another mechanism, SCFAs, for example, butyrate, 

induce phosphorylation of ERK (extracellular signal-regulated kinase), which results in 

downregulation of DNMT1 and further demethylation of specific genes (Sarkar et al. 2011). 

The gut-derived SCFAs can also regulate the action of histone acetyltransferases and histone 

deacetylases, therefore, contributing to the regulation of histone modifications and chromatin 
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remodelling (Krautkramer et al. 2016, Yuille et al. 2018). As the epigenetic modifications are 

central mechanisms taking part in directing the transcriptional response to the environmental 

cues, they have been proposed to be a potential interface for the microbiota to implement 

dynamic interaction with the host genome and metabolism (Woo and Alenghat 2017). 

In addition to the described systemic interactions, more insights of microbiome effects on host 

epigenetics have been gained in the context of colon epithelial cells (Allen and Sears 2019) and 

this specific case can be used as an example characterizing the complexity and significance of 

microbiome-epigenome interactions (Figure 3).  

 

 

Figure 3. Effect of the gut microbiome on the colon epithelial cell (CEC) genome and 

epigenome. A. Enterotoxigenic Bacteroides fragilis (ETBF) and pks + Escherichia coli cause 

DNA damage in CECs that is mediated by B. fragilis toxin (BFT) and colibactin, 

respectively. Enterococcus faecalis, through the impact on macrophages, induces chromosomal 

instability and tumor-inducing DNA mutations in cancer driver genes. B. Antibiotics, germ-

free mice, and specific microbes induce both the hypermethylation and the hypomethylation of 

genes belonging to pathways that are dysregulated in colorectal cancer (CRC). C. Studies with 

antibiotics and germ-free mice have shown – gut microbes do not generally affect global 

chromatin structure in CECs, but do cause changes in the accessibility of transcription factor 

binding sites, in histone modifications, and in the location of those modified histones. 

D. Antibiotics, germ-free mice, and specific microbes have been used to show that gut microbes 
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alter the expression of onco-miRNAs and anti-onco-miRNAs in CECs. They also alter the 

expression of long non-coding RNAs (lncRNAs) that are involved in G protein-coupled 

receptor (GPCR) and transforming growth factor (TGF) signalling. Abbreviations: ETS e26 

transformation-specific, IRF interferon regulatory factor, miRNA microRNA, ROS reactive 

oxygen species, STAT signal transducer, and activator of transcription. Adapted from (Allen 

and Sears 2019).  

 

1.3.  Type 2 diabetes mellitus 

1.3.1. Characterization and pathogenesis mechanisms 

Diabetes Mellitus is a heterogeneous and complex group of metabolic disorders characterized 

by elevated blood glucose levels secondary to defects in insulin secretion, insulin action, or 

both. Currently, more than 460 million adults (age 20-79) worldwide have diabetes, and the 

prevalence of diabetes is estimated to continue to rise rapidly, as it will likely reach up to 

700 million by 2045 (Kharroubi and Darwish 2015, International Diabetes Federation 2019). 

Approximately 5% of all cases are type 1 diabetes (T1D) – induced by autoimmune destruction 

of β cells of the pancreas. T1D usually develops in childhood or the teenage years (Saberzadeh-

Ardestani et al. 2018). Also, other diabetes types of diabetes have been characterized, such as 

gestational diabetes (hyperglycaemia during pregnancy) (Plows et al. 2018) and the monogenic 

maturity onset diabetes of the young (MODY) (Hoffman and Jialal 2020). However, more than 

90% is specifically type 2 diabetes (T2D), characterized by the presence of insulin resistance 

(inability of insulin-sensitive tissues to respond to insulin) with an inadequate compensatory 

increase in insulin secretion. The onset of T2D is usually later in life, however, the increasing 

obesity in adolescents has led to an increase of T2D in younger populations (Zheng et al. 2018). 

Most importantly, it is estimated that a large portion of T2D patients are still undiagnosed or 

the length of diagnosis is different than the true duration from the onset of T2D (International 

Diabetes Federation 2019). 

Currently, it is known that T2D risk factors and pathogenesis mechanisms include a complex 

combination of genetic, metabolic, and environmental factors. Previous genome-wide 

association studies have shown the polygenic nature of T2D, with the discovered loci predicted 

to impact intermediate mechanisms of T2D pathophysiology: insulin resistance, lowering 

insulin secretion with normal fasting glycemia, reducing insulin secretion with fasting 

hyperglycemia, altering insulin processing (Dimas et al. 2014). A sedentary lifestyle, the 

energy-dense Western-style diet, and consequential obesity are the major modifiable risk 
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factors associated with increased insulin resistance, inflammation, and development of T2D 

(Bao et al. 2014, Bellou et al. 2018).  

Moreover, the chronic hyperglycaemia of diabetes is associated with long-term damage and 

even failure of various organ systems, therefore, various diabetes complications are common to 

both T1D and T2D patients. Diabetes complications are mostly divided into two main 

groups – microvascular and macrovascular. Microvascular complications are the most common 

and include nephropathy, neuropathy, and retinopathy. Macrovascular complications contain 

cardiovascular disease, stroke, and peripheral artery disease. Other complications that cannot 

be classified into these two groups are occurring as well – reduced resistance to infections, 

dental disease, impaired wound healing, etc. (Papatheodorou et al. 2018).  

 

1.3.2. T2D and gut microbiome 

The human gut microbiome has been associated with the pathophysiology of most chronic 

diseases, including T2D. As a modifiable factor and a key element in T2D development, the 

gut microbiota has received significant attention in a high number of studies focusing on early 

T2D prediction, management, and treatment. Because of the high inter-individual and regional 

variability characteristic to the microbiome, as well the effects of various treatment strategies, 

it has been challenging to obtain consistent results across different study cohorts analysing 

associations between specific taxa and T2D, like many other diseases (Forslund et al. 2015, He 

et al. 2018). However, a recent review summarized 42 previous human microbiome studies to 

highlight common associations at the genus level, as a result, Bifidobacterium, Bacteroides, 

Faecalibacterium, Akkermansia, and Roseburia were shown to be negatively associated with 

T2D, while Ruminococcus, Fusobacterium, and Blautia were described to be positively 

associated with T2D. Interestingly, the widely used diversity indexes or the 

Bacteroidetes/Firmicutes ratio did not show consistent results in relation to T2D (Gurung et al. 

2020). As the methods for gut microbiome detection have developed rapidly and costs have 

been reduced, the increased number of studies employing shotgun metagenomics has 

highlighted the need to focus on species and even strain-specific effects (Yan et al. 2020).  

Such processes as gut permeability, inflammation, glucose and lipid metabolism, as well as 

energy homeostasis of the host - widely known to be regulated by gut microbiota inhabitants – 

have been proposed as the main molecular mechanisms of microbiome effects on T2D (Gurung 

et al. 2020). Nevertheless, numerous therapeutic applications based on microbiome modulation 

to improve metabolic profile of the host are continuously being created and tested. The simplest 
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of them being the dietary intervention, often adding prebiotics (e.g. dietary fibre) to diet, 

therefore, supporting growth of beneficial bacteria, such as species producing SCFAs. Usually, 

lifestyle modifications, which include dietary interventions, are the first step for T2D treatment. 

However, the response to such dietary interventions usually have variable results due to 

interindividual differences of microbiome composition (Marin-Penalver et al. 2016, Houghton 

et al. 2018). Another type of microbiome targeted T2D therapy is administration of probiotics 

– “live microorganisms that confer health benefits on the host when administered in proper 

amounts”. Animal studies show positive effects on improving such parameters as insulin 

resistance or glucose-insulin homeostasis, nevertheless, results from human studies does not 

offer consensual results yet (Sun and Buys 2016, Tiderencel et al. 2020). As the third approach, 

faecal microbiota transplantation (FMT) should be mentioned. Current results show that FMT 

could improve insulin sensitivity, however, further conclusions are limited mostly due to small 

study sizes. Moreover, similarly to others the efficacy of this approach is affected by baseline 

microbiome composition of the recipient (Kootte et al. 2017). In addition to the 

abovementioned directly targeted microbiome modulation with aim to improve the health of 

the host, various antidiabetic agents have presented direct or secondary impact on the 

microbiome composition, which results in both beneficial and adverse effects (Kyriachenko et 

al. 2019). Overall, development of microbiome modulation approaches for T2D treatment as 

well as for improvement of pharmacodynamic effects for antidiabetic agents currently represent 

an emerging field of research and innovation (Brunkwall and Orho-Melander 2017, Gurung et 

al. 2020, Quigley and Gajula 2020).  

 

1.4. Type 2 diabetes therapy and metformin pharmacodynamics 

1.4.1. T2D therapy 

A number of international guidelines have been created for the management of T2D (Aschner 

2017, Doyle-Delgado et al. 2020). With the first choice of action being lifestyle-related 

modifications (improved diet, physical activities, reducing smoking), drug therapy options and 

algorithms have rapidly evolved. The recommended starting pharmacological treatment is 

metformin, following combination therapy or other alternatives in cases of metformin 

inefficiency, intolerance, or specific patient-related factors. Other commonly used antidiabetic 

medications include insulin, sulfonylureas, sodium-glucose co-transporter-2 (SGLT-2) 

inhibitors, glucagon-like peptide 1 (GLP-1) receptor agonists, dipeptidyl peptidase 4 (DPP-4) 

inhibitors, and thiazolidinediones, with each of them having specific efficacy levels, effects on 

cardiovascular system, weight, and risks for side effects (Quattrocchi et al. 2020).  
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1.4.2. Metformin 

Metformin (1,1-dimethylbiguanide) is the first choice antidiabetic agent for the treatment of 

T2D, characterized by low costs and high safety. It has been widely used in clinical practice for 

more than 60 years and has clear benefits to not only glucose metabolism but diabetes 

complications as well. However, despite the long history of use and the high research interest, 

the mechanisms of metformin’s action are still not fully understood (Rena et al. 2017, Lv and 

Guo 2020).  

More interestingly, a number of studies have given insight into other therapeutic targets of 

metformin outside T2D therapy, such as obesity, polycystic ovary syndrome (PCOS), cancer, 

neurodegenerative, liver, cardiovascular, renal diseases, and even aging (Lv and Guo 2020). 

The main currently known underlying mechanisms for these diverse targets have been 

summarized in Figure 4. 

 

Figure 4. Summary of the major underlying mechanisms for metformin action in various 

diseases. FGF21 - fibroblast growth factor 21; PI3K – phosphatidylinositol-3-kinase; AKT - 

protein kinase B; mTOR - mammalian target of rapamycin; ACC - acetyl-CoA carboxylase; 

SREBP1c - sterol-regulatory-element-binding protein 1c; LDL - low-density lipoprotein; 

AMPK - adenosine 5'- monophosphate - activated protein kinase; SHP - small heterodimer 

partner; CBP - CREB binding protein; mTORC1 - mammalian target of rapamycin complex I; 

GDP - glycerol-3-phosphate dehydrogenase; FBP1 - fructose-1, 6-bisphosphatase-1; GLP1 - 

glucagon-like-peptide-1; GUDCA - glycoursodexoycholic acid; GLUT4 - glucose transporter 

4; ROS - reactive oxygen species; NF-κB - nuclear factor-κB; p53 - tumor protein p53. Adapted 

from (Lv and Guo 2020).  
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The primary antidiabetic action of metformin is through the suppression of hepatic glucose 

production by 25-40% (Hundal et al. 2000) and this effect is accompanied by insulin-stimulated 

systemic glucose disposal (predominantly in skeletal muscle, mediated through glucose 

transporter 4 (GLUT4)). Moreover, metformin increases peripheral glucose utilization by the 

intestine, and, interestingly, it has been shown that the concentration of metformin in the 

jejunum reaches 30 – 300 times higher values than in the plasma (Bailey et al. 2008). Other 

effects of metformin include an increase in insulin signalling, a decrease in fatty acid and 

triglyceride synthesis, and an increase in fatty acid β-oxidation (Gong et al. 2012). It is 

important to note that metformin is not metabolized and, therefore, is excreted unchanged in 

faeces and urine (Graham et al. 2011). 

Metformin’s anti-hyperglycaemic effects are mostly exerted through AMP-activated protein 

kinase (AMPK)-dependent or AMPK-independent pathways. Mitochondria is characterized as 

one of the main molecular targets for metformin’s action. Specifically, the inhibition of the 

mitochondrial respiratory chain Complex I (MRCC1) is widely studied. This results in 

suppressed ATP production and increased cellular AMP:ATP and ADP:ATP ratios, which 

further activate the cellular energy sensor AMPK (Vial et al. 2019). In addition, recently it has 

been shown that metformin could activate AMPK via the lysosomal pathway – the 

AXIN/LKB1-v-ATPase-Ragulator pathway (Zhang et al. 2016). AMPK activation further leads 

to activation of small heterodimer partner (SHP), inhibition of phosphorylation of CREB (cyclic 

AMP response element binding protein) binding protein (CBP), thus suppressing the expression 

of gluconeogenic genes (Kim et al. 2008, He et al. 2009). Moreover, AMPK-dependent 

inhibition of the mammalian target of rapamycin complex I (mTORC1) as well results in 

suppression of gluconeogenesis (Howell et al. 2017). 

As for AMPK-independent metformin effects in T2D therapy, during the previous years, the 

inhibition of mitochondrial glycerophosphate dehydrogenase (mGDP) has been shown to be a 

significant contributor to metformin’s glucose-lowering effects (Madiraju et al. 2014). 

However, the relative contributions of inhibition of MRCC1 and mGDP in metformin effects 

need to be clarified (Rena et al. 2017). Another recent discovery is the metformin’s ability to 

directly target fructose-1,6-bisphosphatase-1 (FBP1), thus inhibiting hepatic glucose 

production (Hunter et al. 2018). 

In addition to a number of effects in the liver and muscles, metformin stimulates GLP-1 release 

in the intestine (both fasting and postprandial) by the enteroendocrine L cells, thus enhancing 

insulin secretion (Mannucci et al. 2004, Holst 2007, Bahne et al. 2018). Moreover, the gut 

microbiota has been characterized and is continuously being studied as one of the central targets 
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and mediators for metformin effects in T2D and other diseases, as well as a significant 

contributor to both efficacy and tolerance of metformin (McCreight et al. 2016).  

 

1.4.3. Metformin pharmacodynamics using multi-omics 

Pharmacodynamics is the study of a drug's molecular, biochemical, and physiologic effects or 

actions (Marino and Zito 2020). The advances in technological opportunities have supported 

the rapid development of medication pharmacodynamics studies with a recent focus on the 

application of various –omics based approaches. Therefore, a new 

direction – pharmaco-omics – has been emerged and it offers new promises for the 

development of optimized and individualized treatment strategies (Weinshilboum and Wang 

2017). In addition, since 2010 a more specific field focusing on interactions between drugs and 

the microbiome has been defined as “pharmacomicrobiomics”, which investigates the multiple 

levels of variation represented by the microbiome components and its complexity that may have 

effects on drug response and disposition (Rizkallah et al. 2010, Doestzada et al. 2018). 

A number of in vitro and animal experiments on metformin pharmacodynamics have been 

implemented (Luizon et al. 2016, Udhane et al. 2017, Meng et al. 2020), moreover, the data in 

human studies have accumulated significantly as well. Metformin effects on the human body 

have been widely studied with a focus on such –omics as genomics (Zhou et al. 2016), 

metabolomics (Safai et al. 2018), transcriptomics (Ustinova et al. 2019, Ustinova et al. 2020), 

epigenomics (Garcia-Calzon et al. 2017, Zhong et al. 2017, Garcia-Calzon et al. 2020), 

microbiomics (Forslund et al. 2015, Wu et al. 2017, Vallianou et al. 2019), and with a 

combination of these approaches.  

Human gut microbiome studies regarding the metformin effects present a wide range of results, 

which are often different from animal studies and even present inconsistencies across the human 

study populations, however, some common effects have been clarified (Zhang and Hu 2020). 

It has been shown that metformin therapy reverses many of the bacterial changes occurring 

during T2D. The most common change in microbiota reported is the metformin-induced 

increase in abundance of Akkermansia muciniphila and other SCFA-producing bacteria such as 

Bifidobacterium, Lactobacillus, Blautia (de la Cuesta-Zuluaga et al. 2017, Wu et al. 2017). The 

increased ability of microbiota to produce SCFAs has been stated as one of the central 

mechanisms behind metformin’s beneficial effects in the gut as well as at a systemic level. 

Moreover, the probiotic effects of Akkermansia muciniphila includes maintaining the integrity 

of the intestinal mucosa and regulation of host metabolism and immune responses, therefore, 



22 

 

the abundance of this species has been negatively correlated with obesity, diabetes, 

cardiovascular and immune diseases (Cani and de Vos 2017, Zhang et al. 2019). In addition, 

several studies in obese individuals or T2D patients, as well as healthy individuals have shown 

significant increase in abundance of Escherichia spp. (Forslund et al. 2015, Wu et al. 2017, 

Bryrup et al. 2019, Ejtahed et al. 2019), reduction in abundance of Intestinibacter spp. 

(Forslund et al. 2015, Wu et al. 2017, Bryrup et al. 2019), and changes in proportions of various 

Bacteroides species during metformin therapy (Paley et al. 2017, Sun et al. 2018).  

Regarding the mechanisms behind the interaction between metformin and the habitants of 

microbiota, in vitro studies have demonstrated direct metformin effects on promoting the 

growth of such bacteria as Akkermansia muciniphila and Bifidobacterium adolescentis, and 

other interaction mechanisms have been proposed to be mediated through changes in 

bacteria-to-bacteria interactions or physiological/environmental conditions (Wu et al. 2017). 

As another significant mechanism of interaction the metformin’s ability to impact the bile acid 

pool through changing the microbiome composition has been demonstrated. A recent study in 

T2D patients showed that metformin reduces the abundance of Bacteroides fragilis and its bile 

salt hydrolase activity, therefore, increasing levels of the bile acid glycoursodeoxycholic acid 

(GUDCA). In such way metformin acts through B. fragilis–GUDCA–intestinal FXR (farnesoid 

X receptor) axis which results in AMPK-independent improvement of glucose intolerance and 

insulin resistance (Sun et al. 2018).  

Studies about metformin interaction with DNA methylation profile have been implemented 

only recently. It has been shown that metformin induce both hypomethylation and 

hypermethylation at the promoters of different genes. The results suggest that metformin can 

modify DNA methylation, possibly via regulation of the H19/SAHH axis (Zhong et al. 2017) 

or by AMPK-mediated inhibition of DNMT1 (Marin et al. 2017). Also, AMPK mediated effects 

on the global levels of 5-hydroxymethylcytosine (5hmC) has been proven, as metformin has a 

significant impact on the glucose-AMPK-TET2-5hmC axis, therefore, increasing the global 

5hmC levels and proposing one of the key mechanisms for metformin’s cancer preventing 

actions (Wu et al. 2018). Interestingly, reduced DNA methylation levels of transporter genes 

SLC22A1, SLC22A3, and SLC47A1 was observed in liver tissue of T2D patients on metformin 

therapy compared to subjects without antidiabetic treatment (Garcia-Calzon et al. 2017). 

However, the specific mechanisms and functional consequences of metformin’s effects on 

DNA methylation and further on gene expression in still not fuly understood (Bridgeman et al. 

2018).  
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2. MATERIALS AND METHODS 

2.1. Study design and sample collection 

2.1.1. Summary of all three publications 

The study design describing the analysed cohorts of healthy individuals and newly-diagnosed 

T2D patients is summarized in figure 5.  

 

Figure 5. Visual representation of the study design summarizing cohorts analysed in three 

publications. Samples and visits were coded as follows: M0 – before starting metformin 

therapy; M10h – 10 hours after first metformin dose (but before the second dose); 

M24h – 24 hours after starting metformin therapy; M7d – after 7 days long metformin therapy; 

M3m – after three months of metformin therapy; BA – blood sample for 

biochemical/haematological analysis.  

Study participants were recruited through the Genome Database of Latvian Population (Rovite 

et al. 2018). All samples and data from healthy individuals were obtained in the framework of 

a clinical trial (registration number: 2016-001092-74 (www.clinicaltrialsregister.eu)). The 

newly-diagnosed T2D patients were recruited within the framework or OPTIMED study. 

Informed consent was obtained from all participants at the beginning of the study. 

Inclusion/exclusion criteria for both cohorts are summarized in Apendix 1. The study was 

carried out in accordance with the principles of the Declaration of Helsinki, and approved by 

the Central Medical Ethics Committee (1/19-10-22) and State Agency of Medicines of the 

Republic of Latvia (17–1723).  

http://www.clinicaltrialsregister.eu)/
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Blood samples for hematological and biochemical analyses were collected in the fasting state 

1–3 days before starting metformin administration. Data were used to evaluate significant 

health indicators for kidney and liver function, as well as other criteria characterizing the 

suitability of individuals for medicament therapy. All hematological and biochemical analyses 

were conducted in the same certified clinical laboratory. For the patient cohort, a repeated 

biochemical/hematological analysis was performed three months later (follow-up coded as a 

time point M3m). 

 

2.1.2. Publication I: Association of metformin administration with gut microbiome 

dysbiosis in healthy volunteers 

Eighteen healthy volunteers of Caucasian origin were included in this study. Participants took 

metformin (850 mg tablets; Berlin-Chemie AG, Germany) twice daily during meals with a glass 

of water for a period of 7 days. Diet, physical activities, and side effects were registered daily 

in specific questionnaires during the whole study period. Dietary data were registered using a 

7-day food record during the week of metformin use, and an additional 2-day food record was 

filled before starting the use of metformin.  

Stool samples in two aliquots were collected at three time points: before starting metformin 

treatment (M0) and 24 hours (M24h) and 7 days (M7d) after the first intake of metformin. After 

collection, faecal samples were stored at room temperature until delivery to the laboratory, and 

frozen at −80˚C as soon as possible but not later than within 24 hours of collection. Sample 

collection, storage, and handling were done by following the developed standard operating 

procedures with the aim to minimize unnecessary freezing and thawing cycles and to reduce 

the possibility of artefacts caused by temporary storage at room temperature. 

 

2.1.3. Publication II: Significantly altered peripheral blood cell DNA methylation profile 

as a result of immediate effect of metformin use in healthy individuals 

The study group involved 12 healthy metformin-naïve voluntary individuals. The research 

subjects received an 850-mg metformin tablet (Berlin-Chemie AG) twice a day for a week. 

Whole blood samples for methylation analysis were collected by certified medical personnel at 

three time points: (1) before starting metformin therapy (morning, fasting state) — M0, (2) 10h 

after first metformin intake, before the second tablet (evening) — M10h, and (3) after 7 days 

of metformin administration (morning, fasting state) — M7d. 
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2.1.4. Publication III: Baseline gut microbiome composition predicts metformin therapy 

short term efficacy in newly diagnosed type 2 diabetes patients 

The study involved two longitudinal cohorts of participants: OPTIMED cohort of 

newly-diagnosed T2D patients (N=50) and a cohort of healthy individuals (N=35). Healthy 

individuals received 850mg metformin twice a day for 7 days, while T2D patients were treated 

with metformin monotherapy according to therapy prescribed by an endocrinologist (individual 

dosage, titration, etc.).  

Stool samples were collected in two aliquots at pre-determined time points during the study, 

depending on the design for each study cohort. Samples were coded as follows: M0 – before 

metformin treatment, M24h – 24 hours after the first metformin dose (only in the study group 

of healthy individuals), and M7d – 7 days after starting the therapy. All samples were collected 

by participants at home, using sterile collection tubes without buffer (collection date and time 

were marked). Within 24 hours participants delivered samples to the closest clinical or research 

laboratory where samples were frozen at −80°C (delivery time was registered). 

The information on anthropometric measurements, dietary habits, and 

biochemical/hematological analyses was obtained before starting metformin administration. 

Healthy volunteers registered their diet during the metformin administration, as well as any 

observed SE in special questionnaires. Patients of OPTIMED cohort were interviewed via 

phone by their endocrinologists after the first week of metformin therapy to register possible 

metformin-induced SE.   

For the analysis of gut microbiome mediated metformin’s therapy efficacy patients were 

divided into two subgroups based on the observed reduction of HbA1c during three months long 

metformin therapy. Patients were defined as Responders if their HbA1c levels had decreased 

by ≥12.6 mmol/mol (1%), or Non-responders if their HbA1c levels had decreased 

by <12.6 mmol/mol (1%). This threshold has been previously established within a systematic 

review comparing three months long metformin therapy with placebo and used in other studies 

as well (Sherifali et al. 2010, Kashi et al. 2016). 

 

2.2. Isolation of DNA 

2.2.1. Microbial DNA 

Microbial DNA was extracted from frozen stool samples using FastDNA Spin Kit for Soil 

(MP Biomedicals, Santa Ana, CA, USA) and FastPrep Instrument according to the instructions 

of the manufacturer. 
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2.2.2. Human DNA 

DNA isolation from whole blood samples collected from healthy participants was performed 

using the phenol-chloroform extraction method by Genome Database of Latvian Population as 

described before (Rovite et al. 2018).  

 

2.3. Gut microbiome analysis 

2.3.1. 16S rRNA amplicon library preparation and massive parallel sequencing 

For each microbial DNA sample, the V3 region of the 16S rRNA gene was amplified using the 

Probio_Uni/Probio_Rev primer set (Milani et al. 2013). The amplified PCR products were 

purified using NucleoMag magnetic beads (Macherey-Nagel, Du¨ren, Germany), and their 

quantity and quality were evaluated with the Agilent 2100 Bioanalyzer DNA High Sensitivity 

chip (Agilent Technologies, Santa Clara, CA, USA). Sequencing of the amplicon libraries was 

performed with Ion Torrent Personal Genome Machine (PGM) System (Thermo Fisher 

Scientific; Ion 318 Chip Kit v2, Ion PGM Hi-Q Sequencing Kit, minimal sequencing depth per 

sample – 250 000 reads) according to the instructions of the manufacturer. 

 

2.3.2. Shotgun metagenome library preparation and massive parallel sequencing 

Shotgun metagenomic library preparation was done by fragmenting the microbial DNA at 

300 bp (Covaris) and following the manual of the Ion Plus Fragment Library kit (ThermoFisher 

Scientific, USA). That included the following sample processing steps: (1) end repair after the 

physical fragmentation and clean-up with NucleoMag magnetic beads (Macherey-Nagel, 

Düren, Germany), (2) adaptor ligation, nick repair, and clean-up, (3) size selection in the range 

360 – 440 bp, performed with BluePippin DNA 2% Dye-Free Agarose gel cassette with 

V1 Marker, and clean-up, and (4) amplification and clean-up. Samples were sequenced using 

Ion Proton sequencer with Ion PI Chip Kit v3 (>3 000 000 reads/sample). 

 

2.4. DNA methylation analysis and RNA expression validation 

The extracted human DNA samples were quantified with Qubit® 2.0 Fluorometer using Qubit 

dsDNA HS Assay Kit (TherfmoFisher Scientific, USA). For the bisulfite conversion, the EZ 

DNA Methylation-Gold TM kit (Zymo research, USA) was used according to the 

manufacturer’s instructions. DNA methylation was determined by the Illumina Infinium 
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HumanMethylation450 BeadChip Array (Illumina, USA), using 500 ng of each bisulfite-treated 

DNA sample. 

Total RNA for validation analysis was isolated from whole blood samples using PerfectPure 

RNA Blood Kit (5Prime GmbH, Ham- burg, Germany). Ribosomal RNS depletion was done 

with Low Input RiboMinus ™ Eukaryote System v2 (Thermo Fisher Scientific, USA). For 

cDNA library preparation, we used Ion Total RNA-Seq Kit v2 (Thermo Fisher Scientific, 

USA), and sequencing was performed on the Ion Proton ™ System and Ion PI ™ Chip (Thermo 

Fisher Scientific, USA). 

2.5. Bioinformatical and statistical analyses 

2.5.1. Publication I: Association of metformin administration with gut microbiome 

dysbiosis in healthy volunteers 

Raw sequence data were processed using mothur software v.1.39.1 (Schloss et al. 2009). 

Analyses were done using a modified version of the publicly accessible MiSeq SOP. In the 

sequence filtering, step reads were removed if they were 75 bp or shorter, or contained 

ambiguous bases or homopolymers longer than eight bases. A representative sequence from 

each cluster was chosen and used to identify taxonomic groups from the SILVA 

database v.123 (Quast et al. 2013); the flip parameter was set as true. Chimeric sequences and 

sequences containing potential sequencing errors were removed using UCHIME (Edgar et al. 

2011) or pre-clustering (threshold = 2), respectively. Operational taxonomic units were defined 

at ≥99 % sequence identity, using the OptiClust algorithm. Reads were classified using the 

naïve Bayesian classifier (Wang et al. 2007). 

The correlation between gut microbiome taxa and the defined food groups was evaluated with 

Spearman’s correlation analysis and the results were adjusted for multiple testing using the 

Benjamini–Hochberg method. 

Statistical analyses were performed on taxonomic units found in at least 50% of samples with 

R program v.3.2.2 packages edgeR, limma, phyloseq, DESeq, vegan (adjustment for multiple 

testing by Benjamini–Hochberg method), and graphics were created with package ggplot2. 

Sample normalization was done as implemented in edgeR (calcNormFactors function) or the 

relative abundances were used if necessary. Additional analysis to detect differential abundance 

was performed using the Linear discriminant analysis Effect Size (LEfSe) method (Segata et 

al. 2011) integrated in the Galaxy framework. In particular, the non-parametric Kruskal–Wallis 

sum-rank test was used to detect differentially abundant taxa, and Linear Discriminant Analysis 

(LDA) was used to estimate the effect size. The genus level alpha diversity of each sample was 
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calculated by the Shannon index (Shannon 1948), beta diversity across samples was evaluated 

with non-metric multidimensional scaling (NMDS) using Bray–Curtis distances. Permutational 

multivariate analysis of variance (PERMANOVA) was used (permutations = 9999) for 

comparing the analyzed groups of ordinations. Statistical significance for changes of Shannon 

index and for taxonomic units between specific sample groups was evaluated by Wilcoxon 

signed-rank test. 

 

2.5.2. Publication II: Significantly altered peripheral blood cell DNA methylation profile 

as a result of immediate effect of metformin use in healthy individuals 

For methylation data analysis, IDAT files were imported using R package minfi (Aryee et al. 

2014). Cell counts were estimated from methylation data using Houseman algorithm 

(Houseman et al. 2012) implemented in minfi. 

Data preprocessing and normalization was done using Enmix (Xu et al. 2016). Briefly, probes 

with detection p-value >0.05 and probes with a multimodal distribution were filtered out. 

Background correction was performed with the function preprocessENmix using unused color 

channels as a background parameter estimate. Probe intensities were normalized using a 

quantile normalization method and probe type bias was adjusted using the Regression on 

Correlated Probes (RCP) method (Niu et al. 2016). Probes having a SNP or single base 

extension annotation in CpG site were excluded. Due to interrupted use of metformin by one of 

the study subjects, the sample taken after 1 week of metformin administration for that particular 

subject was discarded. 

Batch effect was removed from data using slide and subsequently subjects as covariates as they 

showed the strongest influence on the probe methylation variability. Batch effect was removed 

using ComBat (Johnson et al. 2007) wrapped in the Enmix package. Differentially methylated 

probes between time points were identified using limma (Ritchie et al. 2015) on ComBat 

preprocessed data, adjusting for the following cell types estimated by minfi: CD8T, CD4T, NK 

and Gran. Inflation factor of p-value distribution was estimated using R package GenABEL 

(Aulchenko et al. 2007). All analyses were performed using R (3.3.3). 

Statistically significant differentially methylated regions (DMRs) were identified with 

DMRcate software (Peters et al. 2015), FDR <0.05. Threshold for minimum number of probes 

within the region was set to three. DMRs were estimated from methylation M-values using the 

individual CpG site significance threshold at FDR <0.05. The interval between individual 

significant CpG sites had to be less than 1000 bp in the regions. The bandwidth scaling factor 
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was set as suggested in the manual (C=2). Regulatory information from Ensembl 91 regulation 

resources was added to identified differentially methylated probes (DMPs) and DMRs using 

Ensembl Regulation API (Zerbino et al. 2016). 

Pathway enrichment analysis was performed with the IPA tool (Kramer et al. 2014). 

Information about enriched canonical pathways and networks was obtained performing the core 

analysis on all significant DMPs with FDR <0.05. 

For RNA-seq data analysis, reads were mapped against human reference genome GRCh38 and 

read quantification was performed using STAR (2.5.3a) (Dobin et al. 2013). Obtained per-gene 

read counts were normalized using trimmed mean normalization and counts per million (CPM) 

values were calculated with edgeR (Robinson et al. 2010). ComBat (Johnson et al. 2007) 

implemented in R package sva (Leek et al. 2012) was used to adjust CPM values for subject 

specific effects and the Spearman correlation was estimated for the adjusted CPM values and 

the beta values for 11 selected CpG sites with SciPy (Olivier et al. 2002). 

 

2.5.3. Publication III: Baseline gut microbiome composition predicts metformin therapy  

Raw data from the sequencer were processed as follows: adapters were removed with 

cutadapt 1.16, sequences were trimmed with Trimmomatic v0.38 (5bp window, quality 

threshold = 20, average quality = 20, minimal length = 75), mapping was performed with 

bowtie2-2.3.5.1 using Homo sapiens genome Ensembl GRCh38 release-90 reference to remove 

host DNA sequences.  

Composition and functionality from the remaining sequences of gut microbiome samples were 

analyzed using the HUMAnN2 pipeline (Franzosa et al. 2018), and taxonomic data were 

obtained with MetaPhlAn2 (Truong et al. 2015), analyses were performed with default 

parameters. Species level alpha diversity was calculated as the exponential of the Shannon 

index resulting in the effective number of species, and beta diversity was analyzed with NMDS 

using Bray-Curtis distances. Results of beta diversity were compared between subgroups with 

PERMANOVA. To explain the effects of environmental variables, adonis function (vegan 

package) was used to test the significance of individual variables, and complemented with 

Canonical Correspondence Analysis and visualized with biplot using R software (version 3.6.0) 

(Torondel et al. 2016). Evaluation of variables of interest was performed in two cases: (1) for 

all samples – both groups, baseline and follow up – to evaluate the contribution of age, gender 

and BMI; (2) only for T2D patient samples – to evaluate possible effect of the different 

prescribed metformin doses. Changes during metformin therapy and differences between study 
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subgroups within the taxonomic and functional profiles were evaluated by R package limma 

using voom transformation with sample-specific quality weights (further referred as 

limma+voom). All tests were adjusted by age, gender, and BMI, false discovery rate (FDR) 

adjusted values were used. T2D group data were adjusted by baseline HbA1c levels. Only taxa 

present in ≥10% of samples were included. To compare metformin therapy response groups, 

the corrected data matrix was used for sparse Partial least squares discriminant 

analysis (sPLS-DA), a supervised model to reveal microbiota variation between groups. Key 

taxonomic groups responsible for the differential microbiota structure were detected using the 

“splsda” function in the R package “mix Omics” (Le Cao et al. 2011), tuning of sPLS-DA 

parameters was performed to determine the main taxonomic groups that enable discrimination 

of the subgroups with the lowest possible error rate. Taxonomic groups with variable 

importance in projection (VIP) > 1.5 were considered to be important contributors to the model. 

Additional cellular function enrichment analysis and visualization of functional profile data 

were performed using the Omics Dashboard integrated into MetaCyc (Paley et al. 2017). 

Statistical significance for changes/differences of the Shannon index and other analyzed 

parameters was evaluated by the Wilcoxon signed-rank test. Data normalizations were 

performed as integrated into the used tools, paired comparisons were used when appropriate. 
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3. RESULTS 

I Association of metformin administration with gut microbiome dysbiosis in 

healthy volunteers 

 

Highlights: 

1. The metformin-induced reduction of inner diversity was observed at the markedly short 

time-period of 24 hours. 

2. Individuals with side-effects had higher abundance of the opportunistic pathogen 

Escherichia-Shigella spp. before starting the metformin, and the inner diversity in the 

M7d sample compared to M24h sample increased only in the groups with side effects 

together with the abundance of Escherichia-Shigella spp. 

3. Metformin administration induced reduction in abundance of the family 

Peptostreptococcaceae and three genera within it. 

4. We did not observe a significant increase in abundance of Akkermansia spp. after 

correction. 
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II Significantly altered peripheral blood cell DNA methylation profile as a 

result of immediate effect of metformin use in healthy individuals 

 

 

Highlights: 

1. In total, 125 significantly modified sites were discovered, and 11 differentially 

methylated CpGs with the largest and most consistent changes in beta values at different 

contrasts were prioritized: POFUT2, CAMKK1, EML3, KIAA1614, UPF1, MUC4, 

LOC727982, SIX3, ADAM8, SNORD12B, and VPS8. 

2. Genes corresponding to the top-ranked DMPs represent the main functional groups 

associated with previously described targets of metformin therapy: regulatory processes 

of energy homeostasis, inflammatory responses, tumorigenesis, and neurodegeneration. 

3. A significant correlation between the expression levels and methylation changes of the 

corresponding CpG sites were found for three genes: UPF1, MUC4, KIAA1614. 

4. The pathway enrichment analysis revealed metformin’s association with various 

pathways some of which already has been described in connection with metformin 

action but not in the context of epigenetic regulation. 
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III Baseline gut microbiome composition predicts metformin therapy 

short-term efficacy in newly diagnosed type 2 diabetes patients 

 

 

Highlights: 

1. At the species level, reduction in the abundance of Clostridium bartlettii and Barnesiella 

intestinihominis, and an increase in the abundance of Parabacteroides distasonis and 

Oscillibacter unclassified overlapped between both T2D patients and healthy 

individuals. 

2. Non-Respoders group had higher abundance of species Prevotella copri compared to 

Responders before starting metformin therapy. 

3. The gut microbiome of metformin therapy Responders at baseline was characterized by 

enrichment of Enterococcus faecium, Lactococcus lactis, Odoribacter, and Dialister. 
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4. DISCUSSION 

Type 2 diabetes is a complex and heterogeneous group of metabolic disorders with increasing 

incidence and prevalence worldwide and it has been recognized as a global burden for 

healthcare and economics. Therefore, timely identification of individuals at risk, improved 

detection and monitoring of T2D patients, effective treatment with reduced incidence of 

comorbidities, and improved awareness are the key elements for decreasing the future burden 

of this disease (Alzaid et al. 2020). Metformin is a first-line antidiabetic drug used for more 

than 60 years, moreover, its pleiotropic effects have shown significant results in the treatment 

of many other diseases outside T2D (Lv and Guo 2020). In addition, metformin has been 

characterized by a high safety profile, low costs, and even a protective effect on various 

diseases. Despite the high number of studies on metformin effects, the pharmacodynamic 

actions of this medication are not fully understood and variance of the therapy efficacy and 

tolerance exists (Rashid et al. 2019, Gedawy et al. 2020).  

The gut microbiome has been proven to be a significant mediator and as well as a place of 

action for metformin pharmacodynamics. Many high-quality studies have been performed 

worldwide, however, results are often controversial and discovery of new confounding factors 

interferes with the certainty of some findings. Such factors as a dose of medication, effects of 

other drugs, comorbidities, different experimental designs, variation across individuals and 

study populations have been highlighted as some of the most significant reasons for the diverse 

results (Zhang and Hu 2020).  

The strongest and most consistent observation validated by the results in gut microbiome of 

both analysed study populations from this thesis, healthy individuals and newly diagnosed T2D 

patients, is the reduction in the abundance of Peptostreptococcaceae family. As expected, the 

study employing shotgun metagenomics analysis allowed to identify these changes even at the 

species level as a reduction of Clostridium bartlettii (latest classification: Intestinibacter 

bartlettii (Gerritsen et al. 2014)). Most of the other human microbiome studies performed have 

confirmed these metformin-induced changes as well (Forslund et al. 2015, Wu et al. 2017, 

Bryrup et al. 2019), therefore, suggesting it to be a pronounced effect, most likely independent 

from the population or disease specific background.  

Similarly, our results from the healthy cohort were among the first in series of findings 

observing metformin-induced increase in abundance of Escherichia spp. (or 

Escherichia/Shigella spp. in studies based on 16S rRNA) (Forslund et al. 2015, Wu et al. 2017, 

Bryrup et al. 2019, Ejtahed et al. 2019) while it was not significant in our T2D cohort. This 
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increase has been thought to be one of the mechanisms responsible for the metformin-induced 

gastrointestinal side effects (Forslund et al. 2015). However, a recent study proposed that this 

increase could also be related to metformin’s beneficial effects on weight reduction as in some 

cohorts a negative correlation of Escherichia coli abundance with BMI has been observed. The 

same study hypothesized that the underlying mechanism could be related to possible 

satietogenic protein release from commensal Escherichia coli (Ejtahed et al. 2019). Additional 

longitudinal studies in T2D patients or obese individuals are needed to validate this hypothesis. 

Moreover, the observed differences between metformin effects in the healthy individuals and 

the newly diagnosed T2D patients support the previously reported variation of metformin 

effects (Zhang and Hu 2020), thus, emphasising the need for new high quality studies in 

diseases other than T2D for which metformin beneficial effects have been proposed. 

Interestingly, we observed a significant increase in the abundance of Akkermansia muciniphila, 

considered one of the most beneficial gut microbiome species, only with the more sensitive 

shotgun metagenomics approach and only in the cohort of healthy individuals. This species has 

been widely characterized in the context of metformin therapy and its increase has been 

proposed as one of the most significant metformin effects in the gut (Rodriguez et al. 2018), as 

A. muciniphila mediates many beneficial effects on the host (Macchione et al. 2019). Our 

results indicate this species' relatively low presence in our cohorts, which might be one of the 

Latvian population-specific microbiome signatures.  

More than 20% of patients fail to reach the glycaemic target when on metformin monotherapy 

(Kahn et al. 2006) and more than 30% experience gastrointestinal side effects (Knowler et al. 

2002). Therefore, the use of specific microbiome signatures in baseline samples (collected 

before starting metformin) to predict therapy efficacy and tolerance is a promising approach 

and can significantly improve the treatment algorithms. Such knowledge, combined with the 

wide range of possibilities to modify the gut microbiome (Quigley and Gajula 2020, Deehan et 

al. 2021), can help to develop microbiome modulation approaches improving the metformin’s 

therapeutic efficacy and reducing the incidence of gastrointestinal side effects. This would 

significantly improve the quality of life for patients and increase adherence to the prescribed 

therapy. For example, a combination of metformin therapy with prebiotic 

mannan-oligosaccharides suggested augmentation of metformin’s hypoglycaemic effects in 

mice (Zheng et al. 2018). Also, the addition of a prebiotic gastrointestinal microbiome 

modulator compared to placebo significantly reduced metformin intolerance in T2D patients 

(Burton et al. 2015). However, in obese patients metformin treatment has been shown to 

compromise microbiome changes and even the metabolic improvements observed from the 
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probiotic intervention (Hiel et al. 2020), highlighting some challenges of possible metformin 

therapy combinations with the microbiome modulation approaches. 

Our results (Elbere et al. 2020) offer novel knowledge for the creation of such 

microbiome-based prediction algorithms as we were the first to report results of analysis 

combining metformin therapy efficacy and microbiome profile data from newly diagnosed and 

treatment naïve T2D patients. Classification of T2D patients as metformin therapy Responders 

and Non-responders according to changes HbA1c has been done before only in the context of 

other parameters, like genetic polymorphisms, urine metabolites, or DNA methylation 

(Mahrooz et al. 2015, Park et al. 2018, Ebid et al. 2019, Garcia-Calzon et al. 2020) largely 

ignoring the potential of microbiota composition in this regard. Future studies including a 

combination of various markers would be significant for defining the complex mechanisms 

behind metformin therapy response. 

It is important that the different microbiome analysis methods (16S rRNA amplicon vs. shotgun 

metagenome sequencing) applied for the two publications in this thesis present highly similar 

results despite the different sample sizes, providing additional integrity of the obtained results. 

The level of consistent results across these methods has been tested and demonstrated before 

(Rausch et al. 2019). Our most recent study using the shotgun metagenomics approach 

highlights the possible species and even strain-specific effects, which is in line with the latest 

understanding regarding the significance of strain-level epidemiology in the human 

microbiome (Yan et al. 2020). These results emphasize the advantages of this method for 

explaining metformin pharmacodynamic effects in the gut microbiome and predictive 

biomarker detection that could be further used for the development of precision medicine based 

therapy algorithms and approaches.  

At the time of publication, our study about metformin effects on DNA methylation in the 

healthy individual group was the first to report the immediate effect of metformin on white 

blood cell DNA methylation in humans at therapeutic doses. Therefore, the discussion about 

similar or controversial findings was limited. New data has been published in this field during 

the previous two years, including several studies in human subjects. In a targeted study 

metformin therapy during pregnancy prevented DNA methylation changes of offspring 

associated with the intrauterine PCOS environment (Echiburu et al. 2020). Two studies 

employing genome-wide methylation profile analysis showed interesting results in T2D 

patients. Firstly, metformin treated versus newly diagnosed T2D patients showed significantly 

different DNA methylation profiles with mostly observed metformin-associated 

hypermethylation (Solomon et al. 2020). Secondly, in a pre-print paper metformin anti-aging 
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effects have been studied in the context of the epigenetic clock and show enrichment in cellular 

pathways related to the aging process in T2D patients (Li et al. 2021). Similar to the first 

above-mentioned genome-wide methylation study, our results depicted mostly DNA 

hypermethylation associated with metformin therapy, in contrast to results observed by Li and 

colleagues (Li et al. 2021). In a previous analysis of genome-scale DNA methylation changes 

in vitro, metformin effects on the epigenetic regulation showed a combination of hyper, hypo, 

and non‐differentially methylated CpG sites, therefore, highlighting the differential effects of 

metformin on gene methylation (Zhong et al. 2017). However, the results about specific CpGs 

or DMRs observed in our study have not yet been replicated by any of the human studies 

performed later. One of the explanations might be the population-specific difference in patient 

cohorts. Also, it is important to note that all of the recent human studies have been performed 

in case-control design comparing metformin users versus non-users, and any longitudinal data 

to which compare our results are missing, hindering many patient-specific changes in 

methylation profile.  

In addition to metformin's effects on DNA methylation and similarly to the gut microbiome, 

some studies have focused on the possible use of DNA methylation profile as a prediction tool 

for metformin’s therapy efficacy or tolerance (Garcia-Calzon et al. 2020). As the paper 

mentioned above includes data from our OPTIMED cohort, future research could combine gut 

microbiome and DNA methylation biomarkers for prediction purposes. Even 

other -omics-based data collected from healthy and T2D cohorts could take a step closer to 

more precise and personalized prediction tools. 

Importantly, when comparing in vitro and animal studies with those involving human subjects 

the discussion regarding metformin concentration used in such studies remains inconclusive. 

The doses are often not comparable (even 10 - 100 times higher than maximally achievable 

therapeutic concentrations), therefore, questioning the possible transfer of results from these 

studies to effects in clinical trials and everyday treatment strategies (He and Wondisford 2015). 

Thus, the growing number of metformin pharmacodynamic studies involving humans in 

combination with the preclinical experiments creates a reliable knowledge base for improving 

treatment approaches in clinical practice.  

Multi-omics approaches have been widely used for metformin pharmacodynamic studies both 

individually and in combination. Nevertheless, the complex interaction among the metformin 

pharmacodynamic effects, microbiome, and DNA methylation altogether remains elusive. 

Many effector molecules derived from the gut microbiome have a significant impact on host 

epigenetics. The most known of them are various methyl donors (folate, choline, vitamin B12, 
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etc.), as well as SCFAs (Ye et al. 2017). Interestingly, metformin is known to be associated 

with level alterations and even deficiencies of B-group vitamins, especially vitamin B12 (Yang 

et al. 2019). Together with other previous studies, our results have shown metformin associated 

alterations in microbiome functional pathways related to B-group vitamin synthesis and 

metabolism (Olgun 2017, Rosario et al. 2018). Previous research has characterized such gut 

microbial communities as Lactobacillus and Bifidobacteria to be important regulators of these 

methyl donor nutrients (Rossi et al. 2011), and for some of the species, their effects on DNA 

methylation have been proved in vitro (Cortese et al. 2016). Moreover, most of the studies in 

animal models or humans analysing metformin effects on the gut microbiome report increase 

in at least one of these taxa, and direct metformin effects on bacterial growth have been shown 

in the case of Bifidobacterium adolescentis (Wu et al. 2017, Zhang and Hu 2020). Therefore, it 

could be hypothesized that both direct and indirect effects of metformin on the gut microbiome 

composition and functionality could be another pathway for alterations related to B-group 

vitamin metabolism and even a significant mediator for available methyl donors and the 

observed changes in the epigenetic profile of the host. 

One of the main and beneficial effects observed in the human gut microbiome during metformin 

use is an increase in the abundance of Akkermansia muciniphila and other SCFA-producing 

bacteria. Despite the described mechanisms of SCFA induced phosphorylation of ERK, which 

results in downregulation of DNMT1 and further demethylation of specific genes (Sarkar et al. 

2011), metformin therapy has been associated with both global DNA hypermethylation and 

hypomethylation (Elbere et al. 2018, Solomon et al. 2020). Moreover, the reduced activity of 

DNMT1 that leads to demethylation of specific tumour suppressor genes has been proposed as 

one of the mechanisms of action for anticancer and antidiabetic effects of metformin 

(Bridgeman et al. 2018). In the case of metformin effects on A. muciniphila abundance, some 

population-specific microbiome diversity needs to be taken into account, as in our study groups 

we observed that almost a half of participants did not have detectable levels of these species. 

Nevertheless, other SCFA producing taxa could fill the niche and employ the microbiome 

mediated beneficial effects of metformin treatment.  

In addition, although the mechanisms are not clear, a study showed that commensal microbiota 

increases DNA methylation level in the Toll-Like Receptor 4 (TLR4) gene, which usually 

recognizes lipopolysaccharides (LPS) and further activates the innate immune system. This 

increased methylation then leads to decreased responsiveness to LPS to ensure maintenance of 

bacterial insensitivity in the colon (Takahashi et al. 2011). In our study employing shotgun 

metagenomics, we observed metformin induced increase in abundance of various pathways 
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involved in biosynthesis and metabolism of LPS, similarly to results reported previously (Wu 

et al. 2017), however, only in healthy individuals. Interestingly, in our methylation study (that 

includes a subgroup of the same healthy individuals analysed in the microbiome study) we 

found increased methylation level for the most significantly changed probe representing the 

TLR4 gene (both contrasts: M10h vs M0 and M7d vs M0). This change was unfortunately not 

significant after correction (unpublished results). In intestinal epithelial cells of healthy 

individuals, such increase of methylation in TLR4 gene represents a significant example of a 

mechanism contributing to the maintenance of intestinal symbiosis (Takahashi et al. 2011). 

Nevertheless, the absence of significant results in our study could be explained not only by the 

small sample size but also by the different cell types analysed compared to the literature. These 

data offer insight into correlations that need to be tested in future studies employing a bigger 

cohort as well as additional statistical analysis. Altogether, the possible microbiome mediated 

effects on the epigenetic profile of the host highlight the need for more extensive multi-omics 

studies as well as gives insight into the complex nature of multi-level interactions between 

various sites depicting metformin’s pharmacodynamic mechanisms of action. 

The main limitation of our results is the relatively small study groups. Nevertheless, both the 

microbiome profile and DNA methylation signatures are dynamic and highly subject-specific, 

therefore, the applied longitudinal design represents one of the main advantages of the studies 

included in this thesis. The repeated sampling increases the statistical power allowing the 

baseline samples from the same individuals to be treated as controls. This as well controls for 

a number of possible confounding factors, such as age, gender, diet, etc. (Goodrich et al. 2014). 

Moreover, the unique cohort of newly diagnosed and antidiabetic treatment naïve patients 

ensures a higher homogeneity of the group.  

A significant strength of our study is the short period between the collected samples which 

allows evaluating immediate effects of the metformin. While additional data from samples 

collected during a longer period would definitely benefit the results, it is important to note that 

when analysing samples from patients with stable metformin therapy for more than three 

months, it would be challenging to distinguish metformin-mediated effects from those 

secondary to the metabolic improvements due to therapy.  

Moving forward, a new analysis could be performed employing the existing data and the 

continuously growing sample size of the OPTIMED cohort to:  

(1) Validate findings presented in this theses using bigger sample size; 
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(2) Obtain more precise results by performing microbiome analysis with higher sequencing 

depth; 

(3) Confirm the proposed hypothesis regarding the interaction between the gut microbiome 

and the DNA methylation profile. 

In addition, functional studies implemented with mice models, in vitro experiments, or the new 

state-of-the-art microfluidic systems like gut-on-a-chip should be needed to move from the 

observed associations to evidence about causality.   
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5. CONCLUSIONS 

1. Metformin-induced reduction in the abundance of Peptostreptococcaceae family (and 

Intestinibacter bartlettii species) is the most pronounced effect of metformin on the gut 

microbiota. 

2. Changes in gut microbiome diversity, composition, and functional profile during 

metformin use are group-specific. 

3. The increase in the abundance of opportunistic pathogens represents a possible trigger 

for the occurrence of side effects. 

4. Metformin induces significant effects on peripheral blood cell DNA methylation profile 

already after one dose. 

5. Changes in peripheral blood cell DNA methylation profile of healthy individuals 

represent the main functional groups associated with previously described targets of 

metformin therapy: regulatory processes of energy homeostasis, inflammatory 

responses, tumorigenesis, and neurodegeneration. 

6. Gut microbiome composition enriched with various probiotic species is a significant 

biomarker for increased therapeutic efficacy of metformin. 

7. The baseline composition of the gut microbiome may influence metformin therapy 

efficacy and tolerance in T2D patients and could be used as a powerful prediction tool. 
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6. THESIS 

1. Metformin pharmacodynamic effects on the human gut microbiome and DNA 

methylation profile are immediate and can be observed already within the first 24 hours 

after its administration. 

2. Metformin-affected microbiota contributes significantly to the development of 

gastrointestinal side effects. 

3. Gut microbiome composition before the antidiabetic treatment has a high potential to 

be used as an effective prediction tool for efficacy and tolerance of metformin therapy. 

4. Changes in DNA methylation profile depict new mechanisms of metformin’s action.  
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Appendix 1. List of inclusion/exclusion criteria of the studied cohorts 

 

1. List of inclusion/exclusion criteria for the cohort oh healthy individuals 

1.1. Inclusion criteria: 

a) A healthy individual: 

(1) With no known illnesses at the time of application to this study that could 

affect the result of the study;  

(2) Whose body characteristics are within the healthy reference interval (e.g., 

BMI range is 18.5 – 29.9);  

(3) Whose mental state allows him to understand the research process, and give 

a legal consent for the participation in it; 

(4) Whose physical state allows complying with the needs of the study protocol. 

b) Age: 18 – 64 years;  

c) European descent; 

d) Both males and females with reproductive potential match the contraception 

requirements of the study protocol. 

e) Prior to the study-related procedures, the consent of a person's participation in the 

clinical trial is received by submitting a signed and dated informed consent document. 

 

1.2. Exclusion criteria: 

a) Hypersensitivity to any of the components in Metforal 850mg; 

b) Use of any medication that is not compatible with Metforal 850mg therapy (according 

to Metforal description); 

c) Pregnancy or lactation; 

d) Diagnosis of type 1 or type 2 diabetes mellitus, pancreatogenic diabetes, impaired 

glucose tolerance (evaluated by HbA1c and fasting glucose levels); 

e) Polycystic ovary syndrome; 

f) Chronical gastrointestinal, oncological, or autoimmune diseases; 

g) Renal failure or dysfunction (evaluated by glomerular filtration rate - Cockcroft-Gault 

formula); 

h) Liver dysfunction (ALAT results are not in the reference interval) or alcoholism; 

i) Acute conditions with possible effects on kidney functions (dehydration, severe 

infection, shock); 

j) Acute or chronical diseases that could cause tissue hypoxia, (e.g., heart or breathing 

failure, recent myocardial infarct, shock); 
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k) Diarrhea during  the week before the study;  

l) Previous long term use of metformin; 

m) Use of any of the following medications in the past two months:  

i. Antibiotics; 

ii. Pharmaceutical-grade probiotics; 

iii. Proton pump inhibitors (e.g. omeprazole, lansoprazole, pantoprazole, 

etc.); 

iv. Immunosuppressive drugs (methotrexate, etc.); 

v. Corticosteroids (e.g. cortisone, hydrocortisone, prednisolone, etc.); 

n) Concurrently to the study, any radiologic procedures involving intravascular 

administration of iodinated contrast materials are intended. 

 

2. List of inclusion/exclusion criteria for the OPTIMED cohort 

2.1. Inclusion criteria 

a) Newly diagnosed type 2 diabetes mellitus and initiation of oral antidiabetic therapy; 

b) Previous diagnosis of type 2 diabetes mellitus and no oral antidiabetic or insulin therapy 

used in the previous three months;  

c) Newly diagnosed patients for glycemic control for an acute on-site intensive insulin 

therapy up to five days, continued afterwards;  

d) Patients unavailable and not optimized in drug trials; 

e) Age of 18; 

f) Patients meeting the diagnostic criteria for type 2 diabetes mellitus: 

i. Fasting blood glucose ≥7 mmol / l; 

ii. Blood glucose two hours after OGTT with 75 g glucose ≥11.1 mmol / l.  

g) Prior to the study-related procedures, the consent of a person's participation in the 

clinical trial is received by submitting a signed and dated informed consent document. 

2.2. Exclusion criteria: 

a) Use of peroral antidiabetic therapy; 

b) Use of Type 2 diabetes mellitus insulin therapy; 

c) Pregnancy. 

ALAT - alanine aminotransferase; HbA1c - hemoglobin A1c; OGTT – oral glucose tolerance 

test. 


