
Journal of Luminescence 237 (2021) 118150

Available online 3 May 2021
0022-2313/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Exciton interaction with Ce3+ and Ce4+ ions in (LuGd)3(Ga, 
Al)5O12 ceramics 

Vasilii Khanin a,*, Ivan Venevtsev b, Kirill Chernenko c, Vladimir Pankratov c,d, 
Konstantin Klementiev c, Thomas van Swieten e, Arnoldus J. van Bunningen e, Ivan Vrubel f, 
Roman Shendrik g, Cees Ronda h, Piotr Rodnyi b, Andries Meijerink e 

a Delft University of Technology, Mekelweg 15, 2629 JB, Delft, the Netherlands 
b Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251, St. Petersburg, Russia 
c MAX IV Laboratory, Lund University, SE-22100, Lund, Sweden 
d Institute of Solid State Physics, University of Latvia, 8 Kengaraga Iela, LV-1063, Riga, Latvia 
e Utrecht University, Princetonplein 1, 3584 CC, the Netherlands 
f Skolkovo Institute of Science and Technology, Moscow, 121205, Russia 
g Vinogradov Institute of Geochemistry, Russian Academy of Sciences, Favorskogo 1A, 664033, Irkutsk, Russia 
h Philips Research, High Tech Campus 4, 5656 AE, Eindhoven, the Netherlands   

A R T I C L E  I N F O   

Keywords: 
Garnet scintillators 
Ce4+

Excitons 
Energy transfer 
Synchrotron 
XANES 

A B S T R A C T   

Scintillators based on Ce-doped garnets are regularly co-doped with Mg2+ or Ca2+ to form Ce ions in 4+ state and 
reduce undesired afterglow. However overly high Ce4+ concentration leads to poor light yield performance. In 
order to understand the reason for variation in luminescence efficiency of Ce3+- and Ce4+-doped garnets we 
investigate the differences in energy conversion processes in complex LuGd2Ga3Al2O12:Ce3+/Ce4+ ceramics by 
means of VUV synchrotron irradiation. At first we have established via transmission spectroscopy and X-ray 
absorption spectroscopy that LuGd2Ga3Al2O12:Ce, Mg sample contains cerium in the 4+ state only. Then we 
show with VUV spectroscopy efficient interaction of excitons with Gd3+ and Ce3+, and lack of exciton absorption 
edge in LuGd2Ga3Al2O12:Ce4+ excitation spectrum. Instead, Ce4+ exhibits charge-transfer absorption band in the 
range of exciton emission. We suggest that when Ce4+ concentration becomes too high, the exciton → Gd3+ → 
Ce3+ energy transfer path is hindered. It leads to high intensity of Gd3+ luminescence in Lu1Gd2Ga3Al2O12:Ce, 
Mg ceramics, but lowered Ce3+ X-ray excited luminescence. Fine balance between 3+ and 4+ Ce concentrations 
is necessary to achieve the best performance of garnet scintillators.   

1. Introduction 

Cerium doped complex garnets are actively investigated for scintil
lator [1] and persistent phosphor [2] applications. Modification of (Lu, 
Gd,Y)3(Ga,Al)5O12:Ce3+ cation composition [3] allows fine-tuning of 
light yield, emission wavelength, level of afterglow, radiation absorp
tion efficiency, luminescence temperature stability and etc. [4,5]. 
Adding small amounts of divalent ions like Mg2+ or Ca2+ can lead to 
lower levels of afterglow (by an order of magnitude) [6,7], and very fast 
(<50 ps) luminescence rise time under X-rays [8]. 

The improvement of timing characteristics of YAG:Ce, Mg [9] and 
LYSO:Ce, Mg [10] is ascribed to favorable change in charge migration 
processes by formation of Ce4+ (charge compensated with Mg2+). A 

model of e-h interaction with Ce3+ and Ce4+ ions explains the extremely 
fast rise time kinetics [6] and low afterglow levels. The corresponding 
processes proceed as follows [11]: 

Ce3+ + h→Ce4+ (1)  

Ce4+ + e− →(Ce3+)
∗ (2)  

(3) 

According to processes (1)–(3), Ce3+ radiatively relaxes after two 
sequent events of capturing a hole (1) and afterwards an electron (2). 
The delay of electron capture by process (1) means that Ce3+ is not able 
to compete with electron traps for the initial volley of CB-electrons [12]. 
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Contrary to Ce3+, equilibrium Ce4+ (charge compensated) is available 
for immediate capture of electrons (2) directly leading to luminescence 
(3) [13]. Furthermore, Ce4+, as Coulomb-active center in a 3+ lattice, 
provides efficient competition to electron traps [14]. Diminished 
amount of trapping then leads to increased light yield for LuAG:Ce, Mg 
[15]. Interestingly, increased light yield of LuAG:Ce, Mg is observed 
only for low concentrations of Mg co-doping. Likewise, in GGAG:Ce, Ca 
[16], GGAG:Ce, Mg [17,18] co-doping with Ca2+, Mg2+ above 0.1% 
leads to lower light yield by factor of 1.3–2. 

The model depicted above includes only e-h recombination on Ce3+/ 

4+ and does not account for excitons formation and their interactions 
with Ce and Gd ions. In garnets of simpler compositions, e.g. YAG 
exciton emission is detected as a broad UV emission band around 270 
nm [19], while excitons distorted by antisite defects emit at around 
300–350 nm [20]. The absorption bands of Ce3+ (4f-5d2) overlap well 
with excitonic emission. Indeed, doping YAG with RE ions significantly 
distorts and quenches exciton emission (see e.g. Ref. [21] for Ce3+ or 
[22] for Pr3+), indicating energy transfer to impurity RE ions. 

In complex solid solutions of (Gd,Y)3(Al,Ga,Sc)5O12 [23,24], the 
excitons emit at similar wavelengths of 250–350 nm, but with higher 
Gd3+ content their emission goes down in intensity. As such, in Gd3(Ga, 
Al)5O12:Ce crystals no emission from excitons was detected so far, while 
excitation spectra of Gd3+ and Ce3+ still contained excitation peaks 
characteristic for excitons [25]. That can be attributed to complete en
ergy transfer from excitons to Gd3+ ions. 

Ce4+ also has an absorption band in the UV range due to charge 
transfer (CT) transition from the O2− states of valence band to the Ce4+

ground state [13]. The CT absorption of Ce4+ does not lead to emission. 
Addition of Ce4+ potentially creates an exciton quenching channel (by 
CT absorption) that lowers the probability of exciton → Ce3+/Gd3+

energy transfer. Thus we consider it important to study exciton interplay 
with Ce3+, Ce4+ and Gd3+ ions in complex garnets. 

In the current work we investigate the differences in energy migra
tion processes in complex Lu3Ga3Al2O12 and LuGd2Ga3Al2O12 garnet 
ceramics doped with Ce3+ or Ce4+ ions. We first develop an under
standing on broad band UV emission in Lu3Ga3Al2O12:Ce garnet ce
ramics and lack of it in Gd3+-containing garnets. With X-ray Absorption 
Near Edge Structure (XANES) and transmission spectroscopy we estab
lish that Mg2+ co-doping fully converts Ce to 4+ state in LuGd2G
a3Al2O12:Ce, Mg samples. Then we study the differences in excitation 
spectra of LuGd2Ga3Al2O12:Ce4+ and LuGd2Ga3Al2O12:Ce3+ lumines
cence in the 4.5–10 eV range under synchrotron irradiation. 

1.1. Materials and experimental 

Luminescence spectroscopy was conducted at photoluminescence 
endstation [26,27] of the FinEstBeAMS undulator beamline [28] of MAX 
IV synchrotron (Lund, Sweden) located at the 1.5 GeV storage ring. The 
range of utilized excitation energy for this work was 4.5–45 eV, while 
temperature was varied from 7 to 300 K. The excitation spectra were 
corrected for beamline photon flux by measuring a reference curve with 
AXUV-100G diode. In order to suppress high orders of the undulator 
excitation passing through the monochromator a set of the filters (SiO2, 
MgF2 and Al) were selected. Luminescence detection in UV–visible 
spectral range (200–800 nm) was performed by an Andor Shamrock 
(SR-303i) spectrometer equipped with 8259-01 Hamamatsu photon 
counting head. The emission spectra were corrected for the spectral 
sensitivity of the detection system. 

XANES experiments were carried out on the Balder beamline [29] of 
MAX IV Laboratory (Lund, Sweden) located at the 3 GeV storage ring. 
The XANES spectra were measured in fluorescence detection mode by a 
7-element silicon drift detector. Continuous energy scanning was per
formed at a speed ~3.5min/XANES. For each sample, 10 repeats were 
collected and afterwards accumulated into a resulting spectrum. The 
reference CeO2 sample was measured in transmission mode in order to 
avoid self-absorption distortion. 

Absorption spectra were recorded with a double-beam PerkinElmer 
Lambda 950 UV/vis/NIR spectrometer. The transparent ceramic sam
ples were placed in one optical path of the deuterium/halogen lamp 
without placing a reference sample in the second path. The transmitted 
beams were detected by a PMT. Spectra were acquired with a resolution 
of 0.5 nm within a spectral range of 200–700 nm. Below 330 nm the 
deuterium lamp was used, which automatically switched to the halogen 
lamp above 330 nm. 

X-ray excited luminescence spectra were measured under continuous 
X-ray (40 kV, 10 mA, 3 cm distance) excitation. Emission spectra were 
registered in a reflection geometry using a Lomo Photonica MDR-2 
monochromator (0.3 nm resolution) coupled to a Hamamatsu H8259- 
01 photon counting head. The spectra were corrected for wavelength- 
dependent transmission of the monochromator and the spectral sensi
tivity of the PMT. 

Ceramic Lu3Ga3Al2O12:Ce 0.2 mol.% and Lu1Gd2Ga3Al2O12:Ce 0.2 
mol.% garnet samples for this study were prepared at Philips Research 
Eindhoven by mixing the initial oxides Gd2O3, Lu2O3, Ga2O3, CeO2 and 
Al2O3, purity no less than 99.99% (4 N), with a dispersing agent and 
distilled water. This slurry is then milled for 100 h on a roller bench in a 
plastic jar using 2 mm Al2O3 balls. After grinding, organic binders were 
added to the slurry, and the suspension was then dried in a drying 
chamber. The dried granulate was sieved using a metal sieve with a 
mesh size of <500 μm and then dry-pressed in a uniaxial press into 
‘green-body’ pellets. After pressing, the resulting pellets were heat 
treated to burn off the organic binders. The pressed green-body pellets 
were then sintered for 8 h in an Astro Industries Inc. vacuum oven at a 
temperature of 1600–1750 ◦C, under high vacuum (10− 5 to 10− 6 mbar) 
or in oxygen atmosphere. The final ceramics are in the form of pills of 14 
mm diameter and 1 mm thickness. Based on the X-ray diffraction pat
terns it was concluded that all samples consisted of a single garnet phase. 
One Lu1Gd2Ga3Al2O12:Ce sample was co-doped 0.2 mol.% Mg. With 
transmission spectroscopy and XANES we established that the 
LuGd2Ga3Al2O12:Ce, Mg 0.2% sample had Ce in the 4+ state only, Fig. 1. 

The XANES peak shape and Ce LIII-edge positions were compared for 
LuGd2Ga3Al2O12:Ce, LuGd2Ga3Al2O12:Ce, Mg and CeO2 samples. The 
LuGd2Ga3Al2O12 singly doped with Ce exhibited an absorption peak at 
5726 eV, showing dominant presence of Ce3+ [30]. The CeO2 XANES 
profile showed two main peaks at 5731 and 5738 eV, caused by the 
interaction of hybridized 4f, 5d orbitals of Ce with O 2p orbitals of the 
nearest surrounding [31,32]. The XANES spectrum for LuGd2Ga3Al2O12: 
Ce, Mg repeated the one for CeO2 suggesting complete conversion of 
Ce3+ to Ce4+ in Mg co-doped ceramics. From in-line absorption spectra, 
Fig. 1b, similar conclusion could be drawn. LuGd2Ga3Al2O12:Ce sample 
exhibited two absorption bands with maxima at 2.75 eV (450 nm) and 
3.65 eV (340 nm) belonging to 4f-5d1,2 spin and parity allowed transi
tions. After co-doping with large concentration of Mg, LuGd2Ga3Al2O12: 
Ce, Mg sample showed no 5d1 absorption of Ce3+, instead there was a 
strong CT absorption band of Ce4+ below 3.55 eV (350 nm) [13,33]. 

1.2. Results and discussion 

1.2.1. Excitons, Ce3+ and Gd3+ excitation in mixed garnets 
We first focus on emission of excitons, Gd3+ and Ce3+ and respective 

VUV excitation spectra to determine their interaction with each other. In 
Fig. 2a the emission spectra of Lu3Ga3Al2O12:Ce 0.2% and LuGd2G
a3Al2O12:Ce 0.2% samples under 6.4 eV excitation by synchrotron 
irradiation at 7 K are shown. The Lu3Ga3Al2O12:Ce 0.2% spectrum (or
ange curve) exhibits the double emission band of Ce3+ 5d-4f transitions 
at around 2.5 eV (500 nm) and the UV emission band at 4.6 eV (270 nm). 
The broad UV luminescence band in YAG and LuAG:Ce has been 
determined with optical and electron-paramagnetic resonance (EPR) 
methods as exciton related [19,21,34]. In similar solid solutions of e.g. 
(Y,Lu)3(Al,Ga)5O12 [35], the excitons also emit at energies of 3.5–5 eV. 
For Gd-containing garnets the emission spectrum shows different fea
tures in the UV range. Instead of broad excitonic emission band the 
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spectrum at 7 K is dominated by 8S7/2 → 6PJ, 8S7/2 → 6IJ f-f transitions of 
Gd3+ 4.51 and 3.96 eV (275 and 313 nm, respectively) for LuGd2G
a3Al2O12:Ce 0.2%, black curve. It has been shown that excitonic emis
sion can be distorted/quenched by the absorption bands of doped 
species (Ce3+ [21], Nd3+ [36], Pr3+ [22], Gd3+ [25,37]), which leads to 
exciton → dopant energy transfer. For temperature dependence of the 
LuGd2Ga3Al2O12:Ce 0.2% emission spectra and energy transfer between 
Gd3+ and Ce3+ please see supporting information. 

Fig. 2b shows VUV excitation spectra of Ce3+ emission at 480 nm and 
of UV emission band at 4.58 eV (270 nm) in Lu3Ga3Al2O12:Ce 0.2%. 
Ce3+ spectrum exhibits a 5d3-5 (2D5/2, t2g unresolved triplet state) 
excitation band [38] and the fundamental absorption edge that con
tinues into the region of interband transitions (above ~7 eV, 180 nm). 
The 4.58 eV emission band is only excited effectively above 6.3 eV with 
a sharp excitation edge, which is a distinctive shape of excitation spec
trum for excitons [39]. For more detail on the dependence of the exci
tation spectra of excitons on monitored emission wavelength please see 
supporting information. 

In Fig. 2c the excitation spectra for Gd3+ and Ce3+ in LuGd2G
a3Al2O12:Ce 0.2% are shown. Gd3+ excitation spectrum exhibits several 
lines and a sharp absorption edge at 6.3 eV, while Ce3+ spectrum ex
hibits the same lines of Gd3+ transitions, the same absorption edge and 
an additional excitation band at 5.2 eV. The Gd3+ lines at 4.85 eV (255 
nm), 5.02 eV (247 nm) and 6.05 eV (205 nm) are due to 8S7/2→6D9/2, 
8S7/2→6D7/2 and 8S7/2→6GJ f-f transitions, respectively [40]. Existence 
of these lines in the excitation spectrum of Ce3+ indicates Gd3+-Ce3+

energy transfer [41]. The 5.2 eV (240 nm) excitation band of Ce3+ be
longs to 5d3-5 excitation band [42] (same as Fig. 2b, blue). 

The excitation spectra of Ce3+ and Gd3+ emission in LuGd2G
a3Al2O12:Ce 0.2% from Fig. 2c indicate interaction between excitons and 
Ce3+/Gd3+. The sharpness of the absorption edge at 6.3 eV in both 

excitation spectra is due to exciton creation and its localization at Gd3+

or Ce3+ [21,43,44]. At 6.3 eV the contribution from excitons to Gd3+ is 
much more significant than to Ce3+. That suggests a stronger interaction 
of excitons with Gd3+ instead of Ce3+, most probably in view of Gd/Ce 
concentration ratio. 

To summarise: Gd-free garnets show a UV emission band of signifi
cant intensity, the corresponding sharp excitation band at 6.3 eV allows 
to attribute the UV emission to formation of excitons. In garnets con
taining Gd3+ (LuGd2Ga3Al2O12:Ce) excitonic emission is quenched, 
while the excitation spectra of Gd3+ and Ce3+ still show the sharp 
excitation edge at 6.3 eV. That supports the notion that excitons transfer 
their energy to Gd3+ and Ce3+ ions. 

1.2.2. Ce3+ and Ce4+ excitation in mixed garnets 
Here we discuss luminescence and excitation spectra of LuGd2G

a3Al2O12:Ce, Mg under band-to-band excitation and their difference 
from those of LuGd2Ga3Al2O12:Ce. In Experimental we have shown with 
XANES and transmission spectroscopy that the Mg-codoped sample has 
no Ce3+. 

In Fig. 3a the emission spectra under 7 eV excitation of LuGd2G
a3Al2O12:Ce 0.2% (black) and LuGd2Ga3Al2O12:Ce, Mg 0.2% (red) are 
presented. The spectra show the same 2.25 eV Ce3+ emission and the 
lines of Gd3+ at 4.50 and 3.96 eV. The spectra are normalized on Gd3+

emission and LuGd2Ga3Al2O12:Ce, Mg exhibit three times lower Ce 
emission intensity probably due to lack of energy transfer between Gd3+

and Ce4+ as opposed to Gd3+ and Ce3+ interaction. 
Excitation spectra of Ce luminescence in the two samples show very 

different properties, Fig. 3b. For LuGd2Ga3Al2O12:Ce sample excitation 
spectrum has been explained above (Fig. 2c, black): one can see the band 
at 5.2 eV (direct excitation of Ce3+), Gd3+ lines at 4.85 and 5.02 eV 
(Gd3+→Ce3+ energy transfer) and contribution from excitons as a sharp 

Fig. 1. a) XANES spectra performed at RT for LuGd2Ga3Al2O12:Ce and LuGd2Ga3Al2O12:Ce, Mg samples. For the reference CeO2 measurement is shown. b) In-line 
transmission spectra for LuGd2Ga3Al2O12:Ce and LuGd2Ga3Al2O12:Ce, Mg measured at RT. 

Fig. 2. a) Emission spectra of Lu3Ga3Al2O12:Ce 0.2% and LuGd2Ga3Al2O12:Ce 0.2% under 6.4 eV excitation at 7 K. The arrows indicate the monitored emission 
energy Eem for excitation spectra measurements in Fig. 2b and c b) Excitation spectra of UV emission band (4.58 eV, 270 nm) and Ce3+ (2.58 eV, 480 nm) in 
Lu3Ga3Al2O12:Ce 0.2% measured at 7K. c) Excitation spectra of Gd3+ (3.96 eV, 313 nm) and Ce3+ (2.25 eV, 550 nm) emission of LuGd2Ga3Al2O12:Ce 0.2% at 7K. 
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edge at 6.3 eV. The excitation spectrum of LuGd2Ga3Al2O12:Ce, Mg 
sample shows no Gd3+ f-f transitions (see inset) and can only be excited 
above 6.3 eV. The shape of the band-to-band excitation is rather flat, 
showing small contribution from direct exciton formation [39]. From 
the difference between excitation spectra of LuGd2Ga3Al2O12:Ce and 
LuGd2Ga3Al2O12:Ce, Mg we propose that Ce4+ interacts neither with 
Gd3+ nor with excitons in ways that lead to luminescence. 

Now we compare X-ray excited luminescence (XRL) spectra of the 
two LuGd2Ga3Al2O12:Ce and LuGd2Ga3Al2O12:Ce, Mg samples and their 
intensity, see Fig. 4. As with PL emission spectra, the shape of XRL 
emission spectra of the samples is the same: 2.25 eV band of Ce3+ 5d-4f 
transitions. The XRL intensity for LuGd2Ga3Al2O12:Ce, Mg 0.2% is lower 
by a factor of three, consistent with findings of W. Chewpraditkul et al. 
[17] on light yield of GGAG:Ce, Mg crystals with 0.1% Mg co-doping. 
We connect the low XRL intensity (low light yield) of garnets overly 
co-doped with Mg2+ to hindered exciton channel of energy transfer to
wards Ce ions. Formation of (Ce–Mg)-centers [45] and O− -Mg2+ centers 
[6,14,46] was shown to occur, likely leading to lower scintillation effi
ciency. Additionally, the re-charging of Ce4+ to its equilibrium state can 
be delayed by hole-trapping [6,7] lowering the efficiency of Ce4+ as 
recombination center. 

Based on the experiments described above we have constructed 
bandgap diagrams on how the thermalized charge carriers recombine on 
Ce for two extreme cases of only Ce3+ or Ce4+ present in garnets, Fig. 5a 

and b, respectively. 
In the diagrams two recombination channels are described, the e-h 

(h-e) recombination on Ce, steps (1)–(3), and exciton formation, step 1′, 
with sequent energy transfer to Gd3+ and Ce3+. After absorption of X-ray 
photon secondary electrons and holes thermalize to the bottom of CB 
and top of VB respectively. The e-h pair can be captured by Ce3+ or Ce4+

in sequent manner, leading to Ce3+ 5d-4f emission (green arrow). The e- 
h recombination on Ce4+ is usually distinguished from h-e recombina
tion on Ce3+ experimentally with rise-time measurements [8] and 
transient spectroscopy [9]. In depth these mechanisms are describe in 
Refs. [12,14,16]. Here we are more focused on alternative process of 

Fig. 3. a) Emission spectra at 7 K of LuGd2Ga3Al2O12 ceramics doped with 0.2% Ce (black) or 0.2% Ce and Mg (red), excited at 7 eV respectively. b) Excitation 
spectra at 7 K of Ce emission (λem = 525 nm) for LuGd2Ga3Al2O12 ceramics doped with 0.2% Ce (black) or 0.2% Ce and Mg (red). The inset shows the presence of Gd 
f-f transitions in LuGd2Ga3Al2O12:Ce excitation spectrum and lack of those in LuGd2Ga3Al2O12:Ce, Mg excitation spectrum. 

Fig. 4. X-ray excited luminescence spectra at 300K LuGd2Ga3Al2O12 ceramics 
doped with 0.2% Ce (black) or 0.2% Ce and Mg (red). 

Fig. 5. Bandgap diagrams describing the mechanisms of e-h and exciton cap
ture and transport towards a) Ce3+ and b) Ce4+. ‘X-rays’ stands for creation of 
electrons (e− ) and holes (h+) in CB and VB, respectively. The steps (1)–(3) of 
sequent e-h recombination on Ce3+ and Ce4+ are constructed after [14]. Step 
(1′) is an alternative path of exciton formation. Solid arrows indicate radiative 
transition: green – Ce3+ emission, purple – exciton emission, blue – Gd3+ 3.96 
eV emission. Dashed arrows indicate resonant energy transfer or re-absorption. 
Note that in (b) excitonic path does not lead to Ce luminescence. 
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exciton formation (step 1’), which can then emit (solid purple arrow) or 
become localized/transfer energy to Gd3+ or Ce3+states (dashed purple 
arrow). The Gd3+ 8S7/2→6IJ and Ce3+ 2F5/2/2F7/2→2D5/2 transitions 
overlap well with UV exciton emission [37]. Gd3+ can emit on its own as 
6PJ→8S7/2 at 3.96 eV (313 nm) as the last step for exciton path in 
LuGd2Ga3Al2O12:Ce, Mg sample (blue solid line, Fig. 5b), or Gd3+ can 
transfer energy to Ce3+ (Fig. 5a, for details see supporting information or 
[47]). 

In LuGd2Ga3Al2O12:Ce case formation of excitons leads to Ce3+

luminescence, while Ce4+ in LuGd2Ga3Al2O12:Ce, Mg cannot interact 
positively with Gd3+ or excitons (dashed blue and solid arrow on CT in 
Fig. 5b). Additionally, CT absorption band of Ce4+ can re-absorb exci
tonic and Gd3+ emission further negatively impacting on the light yield 
of garnet materials. 

Ce4+ in scintillators is used to rectify the short-comings of Ce3+

ability to compete with electron traps [7,12,48], but in case Ce4+ con
centration becomes too high the number of transport pathways for 
delocalized charge to reach Ce is diminished. 

2. Conclusions 

Based on our finding we conclude the following. As Ce3+ 5d3-5 band 
is located in UV range where excitons emit, Ce3+ can accept energy from 
excitons. When part of the lattice is substituted with Gd ions, Ce3+

luminescence is enhanced via exciton → Gd3+ → Ce3+ energy transfer. 
The energy transfer from excitons is visible in excitation spectra for both 
Ce3+ and Gd3+. 

The excitation spectrum of LuGd2Ga3Al2O12:Ce, Mg (Ce4+) lumi
nescence shows no Gd3+ f-f transitions and no interactions with excitons. 
From the difference between excitation spectra of LuGd2Ga3Al2O12:Ce 
and LuGd2Ga3Al2O12:Ce, Mg we have found that Ce4+ interacts neither 
with Gd3+ nor with excitons in ways that lead to luminescence. The 
exciton → Gd3+ → Ce3+ energy transfer path is interrupted, which is one 
of the reasons for lowered Ce3+ X-ray excited luminescence in 
LuGd2Ga3Al2O12:Ce, Mg ceramics. 

The combined presence of Ce3+ and Ce4+ ions allows efficient 
competition with hole and electron traps, as well as practical channels 
for host excitations to reach activator ions. Finely-tuned concentration 
of both Ce3+ and Ce4+ in the material has led to the highest light yield 
garnet materials. 
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S. Vielhauer, K. Chernenko, L. Reisberg, P. Turunen, A. Kivimäki, E. Kukk, 
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