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Abstract: In this review, we analyze the structure of multicomponent alloys without principal 

components (they are also called high entropy alloys—HEAs), containing not only metals but also 

hydrogen, nitrogen, carbon, boron, or silicon. In particular, we discuss the phenomenon of grain 

boundary (GB) wetting by the melt or solid phase. The GB wetting can be complete or incomplete 

(partial). In the former case, the grains of the matrix are completely separated by the continuous 

layer of the second phase (solid or liquid). In the latter case of partial GB wetting, the second solid 

phase forms, between the matrix grains, a chain of (usually lenticular) precipitates or droplets 

with a non-zero value of the contact angle. To deal with the morphology of GBs, the new GB tie-

lines are used, which can be constructed in the two- or multiphase areas of the multidimensional 

HEAs phase diagrams. The GBs in HEAs in the case of complete or partial wetting can also con-

tain hydrides, nitrides, carbides, borides, or silicides. Thus, GB wetting by the hydrides, nitrides, 

carbides, borides, or silicides can be used in the so-called grain boundary chemical engineering in 

order to improve the properties of respective HEAs. 

Keywords: high entropy alloys; grain boundary wetting; precipitation; phase transitions;  

phase diagrams 

 

1. Introduction 

The investigation of high-entropy alloys (HEAs) started in 2004 with the works of 

Cantor et al. and Yeh et al. [1,2]. Currently, several thousand papers have been devoted 

to HEAs. HEAs are frequently called alloys without principal components, or multiprin-

cipal alloys. This is because they contain at least five different elements. The first HEAs 

were equimolar [1–4]. Their most attractive feature was that they always consisted of 

just one phase. It was the uniform solid solution with body-centered cubic (bcc) [5–7] or 

face-centered cubic (fcc) [8–11] lattice. However, it was later observed that this homoge-

neous solid solution is stable only in a certain range of compositions and at certain tem-

peratures. Step by step, the interest in the inhomogeneous HEAs has gained momen-
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tum. This is because the presence of a second (third, etc.) phase can, for example, in-

crease the strength of HEA and prevent the grain growth and the following softening at 

elevated temperature, etc. The elements of heterogeneity can include the presence of 

other phases and the inhomogeneous distribution of elements in the bulk or in grain-

boundaries (GBs), etc. The investigations of inhomogeneous HEAs are frequently called 

metastability engineering [12,13]. This review is devoted to the important type of inho-

mogeneity in HEAs, namely to the GB phase transformations. Such phase transitions in-

clude GB wetting with a liquid phase or a second solid phase and the appearance of dif-

ferent thin GB phases [14–17]. The GB wetting phenomena strongly depend on the tem-

perature, pressure, and composition in a multicomponent system. They become espe-

cially interesting in HEAs including non-metallic elements such as nitrogen, carbon, bo-

ron, silicon, or hydrogen. 

In this short review, we will consider the HEAs containing nitrides, carbides, bo-

rides, silicides, and hydrogen. We will present several important examples of complete 

and partial GB wetting by the melt and/or by the second solid phase. These examples do 

not exhaust all cases of GB wetting in HEAs. They are merely the most typical illustra-

tions from recent publications. Indeed, similar microstructures can frequently be seen in 

papers devoted to HEAs. 

2. Grain Boundary Wetting Phenomena 

Usually, HEAs synthesis is based on the crystallization from the melt by induction 

or arc melting [5–11,18–35], plasma spark [36] or electric current assisted sintering 

[37,38], additive manufacturing by laser metal deposition [39], laser powder bed fusion 

[40,41] or laser or plasma cladding deposition of coatings [42–53], self-propagating high-

temperature synthesis (SHS) [54], or brazing of dissimilar materials [55,56]. However, 

several HEA manufacturing technologies are based exclusively on the processes occur-

ring in the solid state, such as solid-phase sintering [57] or sputter deposition of coatings 

[58]. In Figure 1, a schematic binary phase diagram is shown for the explanations of the 

GB wetting phenomena. When the hypo-eutectic liquid alloy (with concentration of 

component B below the eutectic point) begins to solidify, it first crosses the bulk liquidus 

line and enters into the two-phase L + α region of a phase diagram. Here, α is the solid 

phase (specifically a solid solution of component B in A) and L is the liquid phase. By a 

further decrease of the temperature, the bulk solidus line is crossed, the liquid phase L 

disappears, and only the solid solution, α, remains in the sample. However, if the solidi-

fication trajectory crosses the line of eutectic transformation instead of the solidus one, 

the rest of the melt transforms into the lamellar mixture of two solid solutions, namely α 

and β (see Figure 1). In the case of HEAs, the solidification process is much more com-

plicated. For example, a 6D phase diagram is needed for the description of a six-

component HEA. In such a case, between the single-phase melt, L, and the single-phase 

solid solution, α, areas, complicated regions with a number of solid and liquid phases 

can exist. 
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Figure 1. Schematic binary phase diagram for the explanation of GB wetting phenomena. Bold sol-

id lines show the bulk phase transitions. Thin solid lines show the tie-lines for the wetting of GBs 

in the α-phase by the liquid phase at Twmin (green line) and Twmax (blue line) as well as by the sec-

ond solid phase β at Tws (green line) and Tdws (blue line). The red dotted lines are the GB solidus (in 

the upper part of the scheme) and solvus lines (in the lower part of the scheme). Between the bulk 

and GB solidus lines, a GB contains a thin layer of the liquid-like phase, which is not stable in the 

bulk. Between the bulk and GB solvus lines, the α/α GB contains a thin layer of the β-like phase, 

which is not stable in the bulk. Insets show the schemes for the GB wetting: (a) complete wetting 

of α/α GB by the liquid phase L; (b) incomplete (partial) wetting of α/α GB by the liquid phase L; 

(c,e) incomplete (partial) wetting of α/α GB by the second solid phase β; (d) complete wetting of 

α/α GB by the second solid phase β. θ is the contact angle at the triple junction of a GB with two 

IBs. σGB is the energy of α/α GB. 2σSL is the energy of the two solid/liquid IBs. σαα is the energy of 

α/α GB. σββ is the energy of β/β GB. 2σαβ is the energy of the two α/β IBs. 

Consider now a polycrystalline sample in the L + α region of the phase diagram. 

This polycrystal contains GBs in the solid phase and interphase boundaries (IBs) be-

tween the solid and liquid phases. The triple junction between a GB and two IBs is char-

acterized by a certain value of a contact angle, θ. Here, the two cases are possible. They 

are shown in insets (a) and (b) in Figure 1. In case (b) contact angle θ is non-zero, θ > 0. It 

is a partial (or incomplete) wetting of α/α GB by the melt, L. It takes place when the en-

ergy of the two solid/liquid IBs 2σSL is higher than the GB energy, σGB, 2σSL > σGB, see 

scheme (b) in Figure 1. In the second case (a) of complete GB wetting, contact angle θ is 

zero, θ = 0. This is because the energy of two solid/liquid IBs is lower than the GB ener-

gy, 2σSL < σGB. In this case, the α/α GB is replaced by a layer of the liquid phase L. As a 

result, the abutting grains are completely separated from each other by a rather thick 

liquid layer. In most cases, the contact angle, θ, between the GB and the melt decreases 

with increasing temperature [59–63] and reaches zero value at a certain temperature, Tw, 

known as the temperature of GB wetting transition. This is the transition from incom-

plete to complete GB wetting. Similar to bulk phase transformations, such GB phase 

transitions can be of first or second order [64–66]. In the former case, the derivative 

dθ/dT of the contact angle, θ, with respect to temperature, T, has a discontinuity at Tw 

[60,64,65]. It drops at Tw from a certain finite value to zero. In the latter case of a second-

order GB wetting transition (also called continuous), the dθ/dT derivative continuously 

decreases with increasing temperature. It becomes equal to zero at Tw without any sud-

den change [64,65]. 
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The GB energy, σGB, strongly depends on the misorientation angle, ψ, and inclina-

tion angle, φ, of GBs [67]. GB misorientation angle, ψ, is the rotation angle around the 

crystallographic axis, which is common for both grains. Inclination angle, φ, measures 

the rotation of the GB plane from the symmetric position (φ = 0) when the misorienta-

tion, ψ, is fixed. It has deep minima at certain ψ and φ values [68]. These deep minima 

are sometimes observed at ψ values corresponding to the coincidence site lattices (CSL). 

For each CSL, the energy minima correspond to CSL planes densely packed with CSL 

nodes (and respective φ). For the non-CSL random GBs, the energy minima were associ-

ated with the high average interplanar spacing corresponding to the GB plane [69]. It is 

easy to see that the higher the σGB, the smaller the θ at the triple junction of a GB with 

two IBs [70]. The σGB spectrum in polycrystals is very broad [71]. This means that, at 

each temperature, a wide range of θ can be observed in a two-phase S + L polycrystal. 

Moreover, the contact angles, θ, for different GBs decrease at different rates at increasing 

temperatures. Because of this, the different GBs with different σGB should also possess 

the different Tw values. As a result, two GB wetting tie-lines appear in the phase diagram 

at Twmin and Twmax. The line at Twmin marks the transition from incomplete to complete 

wetting for GBs having a maximum σGB. Below Twmin, a polycrystal does not contain 

completely wetted GBs. Such polycrystal possesses exclusively partially wetted GBs 

with θ > 0. Above Twmin, the polycrystal aquires the first completely wetted GBs. When 

temperature increases further, the number of completely wetted GBs also increases. The 

portion of completely wetted GBs reaches unity at Twmax. Twmax is shown in Figure 1 in 

the S + L area with a second tie-line. Above Twmax, all GBs are completely wetted (see in-

sets in the diagram). In such a structure, all grains are embedded in the melt and do not 

contact each other because it is thermodynamically unfavorable due to the 2σSL < σGB. We 

see how the new tie-lines for GB wetting phase transition appear in the S + L two-phase 

region of a phase diagram. In the conventional phase diagrams, these tie-lines are not 

present because they do not consider the GBs in a system. Respectively, the microstruc-

ture of a solidified polycrystal should depend on the path along which the sample cross-

es the two-phase region during solidification. 

Another interesting field in the schematic phase diagram in Figure 1 is the two-

phase region where two solid phases, α and β, are in equilibrium. The α and β phases 

are two solid solutions, namely that of component B in component A (α-phase) and that 

of A in B (β-phase). Such α + β two-phase polycrystal contains three types of interfaces. 

First, these are the α/β IBs between the α and β phases, second, these are the α/α GBs in 

solid solution α, and third, these are the β/β GBs in solid solution β. These α/α GBs, β/β 

GBs, and α/β IBs can form four types of triple junctions (TJ). The first two types of TJs 

are the triple junctions of α/α GBs and TJs of β/β GBs. Another two types of TJs are α/α 

GBs with α/β TJs and β/β GBs with α/β IBs. 

The possible relationships of the energies of these GBs σαα, σββ and IBs σαβ also al-

low the situations of complete and incomplete GB wetting. Thermodynamically, they are 

very similar to the GB wetting by the liquid phase (see above). Nevertheless, in the case 

of two solid phases, α + β, the phase that wets the GB is also solid. Consider now the 

contact of α/α GB and two α/β IBs. We have to underline here that different α/β IBs have 

different energies, σαβ. The spectrum of σαβ is at least as broad as that of σαα or σββ. How-

ever, for simplicity we suppose here that these two α/β IBs have the same energy, σαβ. If 

the α/α GB energy, σαα, is less than the energy of two IBs 2σαβ, σαα < 2σαβ, the wetting of 

the α/α GB by the second phase, β, is incomplete. In this case, the contact point of α/α 

GB and two α/β IBs is characterized by the nonzero contact angle θ > 0 (see insets (c,e) in 

the lower part of Figure 1). If the condition σαα > 2σαβ is fulfilled, then the contact angle 

will be equal to zero, θ = 0. In turn, the α/α GB will be replaced by an interlayer of phase 

β. In this case, this is the complete wetting of α/α GB by the interlayer of a β-phase, as in 

inset (d) in Figure 1. The GB wetting transitions by the second solid phase have been di-

rectly observed in numerous binary metallic systems such as Ti–Fe [72,73], Ti–Co [74], 

Ti–Al–V [75], Zr–Nb [76], Al–Mg [77], Cu–Co [78], Al–Zn [79,80], Fe-Au [81], Cu–In 
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[82,83] and Mg-RE alloys [84]. An example for the Al–Zn system is shown in Figure 2 

(unpublished results from the work partially described in [82]). This Figure shows the 

light micrographs of the cross-sections of two Zn—5 wt.% Al samples annealed at 345 °C 

for 672 h (a) and at 275 °C for 2016 h (b). In Figure 2a, the (Zn)/(Zn) GB is completely 

wetted by the continuous layer of solid (Al) phase (appears dark). In Figure 2b, the solid 

(Al) phase forms the chain of lenticular particles with a certain contact angle, θ, along 

the (Zn)/(Zn) GB. It is, therefore, partially wetted. 

 

 

Figure 2. Optical micrographs of the cross-sections of Zn—5 wt.% Al samples annealed at (a) 345 

°C for 672 h and (b) at 275 °C for 2016 h. Unpublished micrographs from our work done for [81]. 

The (Zn) phase appears bright and the (Al) phase appears dark. In Figure 2a, the (Zn)/(Zn) GB is 

completely wetted by the continuous layer of the solid (Al) phase. In Figure 2b, the (Zn)/(Zn) GB is 

incompletely wetted, and the solid (Al) phase forms the chain of lenticular particles with a certain 

contact angle, θ. 

In this consideration, we cannot see a qualitative difference between the situation of 

GB wetting by the liquid-phase and by the second solid-phase. On the other hand, the 

liquid phase has no crystal lattice and, therefore, contains no GBs. If the second phase, β, 

is solid, it has the GBs inside. As a result, the first solid phase, α, can also completely or 

partially wet the GBs in the second solid phase, β. If σββ < 2 σαβ, the incomplete wetting 

of the β/β GB by the solid phase, α, takes place. If σββ > 2 σαβ, then the β/β GB should be 

replaced by an interlayer of phase α, and the contact angle θ = 0. This is the case for the 

complete wetting of the β/β GB by an interlayer of the α phase. Moreover, the conditions 

of complete wetting can be simultaneously fulfilled for β/β and α/α GBs, namely, σββ > 2 

σαβ and σββ > 2 σαβ. In this case, the GBs in a two-phase, α + β, polycrystal cannot exist at 

all, and only α/β IBs would remain. The two-dimensional section of this polycrystal will 

topologically resemble a chessboard. 

Moreover, in the case of GB wetting by the liquid phase, the σGB values usually de-

crease with increasing temperature more slowly in comparison with σSL. This is because 

the liquid phase has higher entropy in comparison with the solid one. As a result, the 

contact angle, θ, always decreases with increasing temperature and reaches zero θ = 0 at 

Tw. Above Tw, it remains equal to zero until the melting point. This behavior of the con-

tact angle has been observed in numerous binary systems [60–62,64–66]. The tempera-

ture dependencies of σαα and σββ for GBs and IBs σαβ have no obvious difference. There-

fore, contact angle θ can both increase and decrease with increasing temperature. For 

example, the θ value in the Al–Mg alloys increases with increasing temperature, as in 

liquid phase GB wetting [77]. In the Al–Zn alloys, the θ value in TJs between (Al)/(Al) 

GBs and solid zinc decreased with decreasing temperature until it reached zero at the 

transition temperature, Tws, from incomplete GB wetting the complete one [79]. Fur-
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thermore, the dependences σαα (T) and 2σαβ (T) can intersect twice with changing tem-

perature. In this case (inset (e) in Figure 1), the θ value can decrease with increasing 

temperature up to a certain temperature of the transition to the complete GB wetting, 

Tws. Afterwards, all α/α GBs are wetted with interlayers of the second solid phase β (in-

set (d) in Figure 1). Further, a second transition occurs at Tdws when GB wetting disap-

pears at the de-wetting temperature. Above Tdws, the α/α GBs are again incompletely 

wetted (inset (c) in Figure 1) by the second solid phase, β (as in, for example, the Cu–In 

alloys [82,83]). 

In the schematic Figure 1, in the two-phase region, α + β, these tie-lines are shown 

for wetting at Tws and for the de-wetting at Tdws. It is important to underline that this is a 

very simplified scheme. In fact, all GBs in a polycrystal have different energies, σGB, and 

for each value of σGB energy, there is its own value of the wetting phase transition tem-

perature, Tw. This means that, in reality, the tie-lines at Tws and Tdws should split into a 

spectrum of tie-lines, as in the case of GB wetting by the melt. Therefore, one has to 

draw not one tie-line for each temperature, Tws and Tdws, but at least two lines for the 

maximum, Twsmax, Tdwsmax, and minimum, Twsmin, Tdwsmin, values of Tw. If we neglect again 

the energy, σαβ, difference between different IBs, one can expect that the α/α GBs with 

highest energy, σαα, would become completely wetted at Twsmin and completely de-

wetted at Tdwsmax. In turn, the α/α GBs with the lowest energy, σαα, would become com-

pletely wetted at Twsmax and completely de-wetted at Tdwsmin. In other words, the GBs 

with high energy, σαα, would remain wetted by the second solid phase in a broader tem-

perature interval than the GBs with low energy. 

We observed recently a comparable phenomenon for the wetting of GB TJs by the 

second solid phase [83,84]. Earlier, we studied the wetting of GB triple junctions by the 

liquid phase [85]. Namely, the GB TJs become completely wetted by the melt at a tem-

perature, TwTJ, lower than Twmin. This follows from the simple geometric considerations. 

Thus, in the case of GB wetting, the GB with σGB is substituted by two IBs with 2σSL. In 

the case of GB TJ, the “star” of three GBs is substituted by the triangle of IBs. In other 

words, we have a softer wetting condition, σGB > 3½ σSL, instead of σGB > 2σSL and, there-

fore, TwTJ should be lower than Twmin [85,86]. In the case of TJ wetting by the second solid 

phase, not only Tw is present in the phase diagram but also Tdw. As a result, the GB TJs 

become wetted below Tw for GBs and will de-wet above Tdw for GBs. Thus, the tempera-

ture interval where GB TJs are wetted is broader than that for GBs. 

Some indications of GB wetting by the second solid phase (such as the observed 

thick continuous GB layers) can also be found in numerous metallic HEAs such as 

Al0.5CoCuNiTi [9], TiZrNbHfTa [87,88], CrHfNbTaTi [10], TiNbTaZrMo [89], 

Mo0.5VNbTiCrx [27], Co35Cr32Ni27-Al3Ti3 [17], AlCoCrFeNiTi0.5 [90], CoCrFeMnNi [36], 

Co35Cr25Fe40−xNix [91], TiNbTa0.5ZrAl0.5 [92], and CoNiAlWTaTi [93]. 

Another important point is that, in the case of GB wetting with the liquid phase, the 

equilibrium structure can be attained very quickly because of the high rate of mass 

transfer in the melt. One can count that the half-an-hour-long annealing is enough to 

reach thermodynamic equilibrium. If the phase that wets the GB is also solid, the mass 

transfer is significantly slower. This means that, by studying the GB wetting with the 

second solid phase, one has to employ very long annealing times to reach thermody-

namic equilibrium, up to several months [77–79,82,83]. In the next sections, we discuss 

the works on HEAs where the published microstructures indicate the presence of the GB 

wetting phenomena. These four sections are devoted, respectively, to HEAs containing 

carbides and borides, silicides, hydrides, and nitrides. 
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3. GB Wetting Phenomena in HEAs Containing Carbides and Borides 

The MoNbRe0.5TaW(TiC)x HEA composite ingots were prepared by arc melting in a 

high-purity argon atmosphere [26]. They were composed of bcc solid solution and multi-

component carbide (MC) with an fcc structure (see XRD patterns in Figure 3f). With in-

creasing TiC addition, microstructure exhibits an evolution from hypo-eutectic (with x = 

0.2, 0/5 and 0.8) to eutectic, and then to a hyper-eutectic one (with x = 1.0 and 1.5). This is 

explained by the analysis of the solidification process in the calculated equilibrium 

phase diagram [26]. Figure 3 shows scanning electron microscopy (SEM) images (a to e) 

and X-rays diffraction (XRD) patterns (f) of the MoNbRe0.5TaW(TiC)x composites for x = 

0.2 (a), x = 0.5 (b), x = 0.8 (c), x = 1.5 (d), and x = 1.0 (e). In hypo-eutectic samples, the liq-

uid phase during solidification completely wets the GBs between the bcc matrix grains 

(see Figure 3a–c). 

 

Figure 3. Back-scattered electron (BSE) SEM images (a–e) and XRD patterns (f) of the 

MoNbRe0.5TaW(TiC)x composites: (a) x = 0.2, (b) x = 0.5, (c) x = 0.8, (d) x = 1.5, (e) x = 1.0. Reprinted 

with permission from [26]. Copyright 2020 Elsevier. 

Further, this liquid phase decomposes according to the eutectic reaction into the bcc 

phase and MC. In hyper-eutectic samples (Figure 3d,e) the GB wetting is also quite well 

pronounced. Figure 4 shows the dark-field transmission electron microscopy (TEM) im-

age of the MoNbRe0.5TaW(TiC)x1.0 composite (a) and corresponding element distribution 

maps for Mo, Nb, Re, Ta, W, Ti, and C. The high-magnification TEM micrograph (Figure 

4a) shows that the eutectic mixture of bcc and multi-component carbide has a remarka-

ble structure, similar to a chessboard (see above, the discussion of Figure 1 in Section 2). 

This could be the sign of mutual solid-state wetting of bcc/bcc and MC/MC GBs. In other 

words, the MC layers wet the bcc/bcc GBs and, simultaneously, the bcc layers wet the 

MC/MC GBs. 
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Figure 4. Dark-field TEM image of the MoNbRe0.5TaW(TiC)x1.0 composite (a) and corresponding element distribution 

maps (micrograhs Mo, Nb, Re, Ta, W, Ti, and C). Reprinted with permission from [26]. Copyright 2020 Elsevier. 

The samples of CoCrFeNiMn–(Ti–Si–B(C)) HEAs were obtained by centrifugal 

metallothermic self-propagating high-temperature synthesis (SHS) [53]. The SHS of 

highly exothermic mixtures proceeds at temperatures sufficient to obtain combustion 

products in the molten state (>2500 °C) and to prepare cast ingots. The idea of the work 

was to introduce the carbides and borides into a conventional matrix of CoCrFeNiM 

HEA with an fcc structure in order to improve its mechanical properties. Indeed, the mi-

crostructure of these HEAs was found to consist of an CoCrFeNiM HEA-based matrix 

and new structural inclusions of carbides and borides of titanium (see Figures 7–9 in 

[53]). They are concentrated in the Cr-rich bcc intergranular layers. These Cr-rich bcc 

phases with carbides and borides completely separate the fcc matrix grains. From our 

point of view, this is an indication of complete GB wetting in the fcc matrix by the liquid 

phase in solidification during SHS, or even GB wetting by the flat carbide and boride 

precipitates forming in solid-state during ingot cooling. 

In [94], different Al0.5CoCrFeNiTiC HEAs with small additions of Al, Ti, and C were 

prepared in a high-purity argon atmosphere by arc melting. The Al0.5CoCrFeNiTiC 

HEAs consist of a bcc matrix and fcc metallic or carbide precipitates. Figure 5 demon-

strates how the cast microstructures of all alloys studied in [94] depend on the chemical 

composition. In the left column in Figure 5 are low magnification back-scattered electron 

(BSE) micrographs of reference alloy Al13 (a) and samples with C0.25 (b), Al16, (c), Ti3 (d), 

and Ti3C0.25 (e). From each micrograph in the left column, a corresponding high magnifi-

cation image is shown in the right column. It is well visible in Figure 5 how the carbide 

layers (Figure 5b,e) separate the grains of the bcc matrix, thus showing the wetting of bcc 

GBs by the melt during solidification. The GB wetting indications are also well visible in 

(Figure 5a,c,d). 
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Figure 5. Effect of chemical composition on cast microstructures of all alloys studied in [94]. In the 

left column are low magnification BSE-micrographs of (a) reference Al13, (b) C0.25, (c) Al16, (d) Ti3, 

and (e) Ti3C0.25 alloys. From each micrograph in the left column, a corresponding high magnifica-

tion image (marked in the left column by the yellow square) is shown in the right column. The 

volume fraction of the fcc phase, the prior grain size, d, as well as the mean thickness of the fcc 

plates, λ, are indicated at the top right and bottom left corners, respectively, of images (a–e). The 

pink framed inset in the right column of (d) shows the bcc/B2 interplate region, while the black 

dots highlighted with yellow arrows in the right column of (e) are TiC particles. Reprinted with 

permission from [94]. Copyright 2019 Elsevier. 

The WC-(Al)CoCrCuFeNi cemented carbides with nominally high entropy alloy 

binders were studied in [95]. The conventional cemented carbides consist of WC grains 

surrounded by a cobalt-based binder [96–98]. It is well known that the cobalt-based 

binder wets the WC/WC GBs in cemented carbides during the liquid-phase sintering of 

these technologically important materials [96–98]. Approximately 10% of WC/WC GBs 

are completely wetted, and the other GBs are partially wetted with rather small contact 

angles. In [95], HEAs were manufactured using two different methods, namely mechan-

ical alloying and gas atomization. The as-manufactured binder alloy powder after gas 

atomization was sieved, and its fine grain fraction was used for further experiments. The 

model cemented carbides (WC + HEA binder) were manufactured by the standard pow-

der metallurgical route in a planetary ball mill. Figure 6 shows the energy dispersive X-

ray (EDX) mapping for Co, Cr, Cu, and O signals across the structure of CoCrCuFeNi 

sintered cemented carbide [95]. The HEA binder exhibits especially good contrast in the 

Cu map. The WC grains look black in the Cu map. They are clearly separated from each 

other by the Cu-rich HEA layers, appearing yellow. Approximately one-half of the 

WC/WC GBs are completely separated from each other by the HEA binder. The other 

half of WC/WC GBs are partially wetted by the HEA binder. The contact angles between 
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the HEA binder and the WC/WC GBs in GB TJs are non-zero. Some flat lenticular binder 

particles (or droplets) are also visible between GB TJs in the WC/WC GBs. 

 

Figure 6. Co, Cr, Cu, and O signals of EDX mapping across the structure of CoCrCuFeNi sintered 

cemented carbide. Reprinted with permission from [95]. Copyright 2019 Elsevier. 

4. GB Wetting Phenomena in HEAs Containing Silicides 

Ingots with a nominal composition of FeCoNiCuTiSix (x = 0, 0.05, 0.1, 0.2, 0.4, and 

0.5) were prepared by arc-melting [31]. The as-cast samples contain the fcc matrix phase 

and minority C14 Laves phase, as well as bcc silicides. The portion of bcc silicides in-

creased with increasing Si concentration, as did the lattice period of the bcc phase. It is 

well visible from micrographs published in [31] how the bcc phase surrounds the grains 

of the fcc matrix phase, thus wetting the fcc/fcc GBs. This is especially clear for x = 0.4 

and 0.5. 

In [19], one can find the indications for GB wetting by the liquid and by the second 

solid phase. The Nb-24Ti-18Si-5Al-5Cr-5Ge-5Sn-Si HEAs were prepared in the form of 

small buttons in a Ti-gettered Ar atmosphere using arc melting with a non-consumable 

tungsten electrode. The samples were annealed at 1400 °C for 100 h. For this purpose, 

the samples were wrapped in Ta foil and placed in an alumina crucible in a calibrated 

alumina tube furnace, where it was heat-treated under a constant flow of Ti-gettered Ar. 

Figure 7 shows the BSE images of the microstructure of the as-cast Nb-24Ti-18Si-5Al-

5Cr-5Ge-5Sn-Si alloy for the bulk (a) and bottom (b) parts of the ingot. In the as-cast 

state, the matrix consists of an Nb5Si3 phase (Figure 7). Obviously, during the solidifica-

tion, almost all Nb5Si3/Nb5Si3 GBs were completely wetted by the 10–20 μm thick layers 

of the melt. This melt transformed during the last stages of crystallization into an Nb3Sn 

+ NbCr2 eutectic mixture. However, the conditions of solid-phase GB wetting are quite 

different in comparison to GB wetting by the melt. After heat treatment at 1400 °C for 

100h, the microstructure strongly changed (see Figure 8). Figure 8 shows the BSE images 

of the microstructure of the Nb-24Ti-18Si-5Al-5Cr-5Ge-5Sn-Si alloy after heat treatment 

at 1400 °C for 100 h for the bulk (a) and bottom (b) parts of the ingot. Now the Nb5Si3 

phase surrounds the Nb3Sn and NbCr2 grains. However, one can suppose that the Nb3Sn 

conglomerates are polycrystalline and, therefore, not all Nb3Sn/Nb3Sn GBs are wetted by 

the Nb5Si3 phase. 
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Figure 7. BSE images of the microstructure of the as-cast Nb-24Ti-18Si-5Al-5Cr-5Ge-5Sn-Si alloy. 

(a) bulk and (b) bottom. Reprinted with permission from [19]. Copyright 2020 MDPI. 

 

Figure 8. BSE images of the microstructure of the Nb-24Ti-18Si-5Al-5Cr-5Ge-5Sn-Si alloy after heat 

treatment at 1400 °C for 100 h. (a) bulk and (b) bottom. Reprinted with permission from [19]. Cop-

yright 2020 MDPI. 

5. GB Wetting Phenomena in HEAs Containing Hydrogen 

The TiZrCrMnFeNi HEA was prepared from high-purity Ti (99.99%), Zr (99.5%), Cr 

(99.99%), Mn (99.95%), Fe (99.97%) and Ni (99.9%) elements by arc melting [28]. This 

HEA has a promising hydrogen storage performance. The mixture was rotated and re-

melted six times to improve the compositional homogeneity. The as-cast state the alloy 

contained about 95 wt.% of C14 Laves phase (P63/mmc, a = 0.493 nm, c = 0.809 nm) and 

small amount of cubic phase (Pm-3m, a = 0.305 nm). It is one of the seldom HEAs not 

with fcc or bcc but with the hexagonal matrix. Figure 9 demonstrates the formation of 

coarse grains of hexagonal C14 Laves phase and fine grains of Ti- and Ni-rich cubic 

phase in this TiZrMnCrFeNi HEA. Figure 9a contains the orientation map obtained by 

the electron back-scattering diffraction (EBSD) with a beam step size of 1 μm. Figure 9b 

contains the EBSD phase map with a shorter beam step size of 300 nm. It is quite clear 

from the high-resolution EBSD map how the 3–5 μm thick layers of fcc phase (appearing 

blue in Figure 9b) separate about one-half of grains of the C14 Laves phase (they appear 

red in Figure 9b). 
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Figure 9. Formation of coarse grains of C14 Laves phase and fine grains of Ti- and Ni-rich cubic 

phase in high-entropy alloy TiZrMnCrFeNi. (a) EBSD orientation map with a beam step size of 1 

μm, (b) EBSD phase map with a beam step size of 300 nm and (c) SEM image and corresponding 

EDS elemental mappings. Reprinted with permission from [28]. Copyright 2020 Elsevier. 

Figure 9c shows the SEM image and corresponding EDS elemental mappings for Ti, 

Zr, Cr, Mn, Fe and Ni. It can be seen from EDS elemental mappings for Ti- and Ni that 

the Ti-,Ni-rich fcc phase completely wets about one-half of the C14/C14 GBs (see Figure 

9c). It is the indication of liquid phase GB wetting during solidification. For the examina-

tion of hydrogen storage performance, a disk sample with ~250 mg weight was crushed 

mildly in a glove box under an Ar atmosphere to reduce the particle size below 100 μm 

and loaded to a cell of a Sieverts-type gas absorption apparatus. The studied TiZrCrM-

nFeNi alloy absorbs and desorbs 1.7 wt.% of hydrogen. Unlike traditional materials for 

room temperature hydrogen storage such as TiFe and Ti–V–Cr, the designated alloy 

does not need any activation process for hydrogen uptake. The alloy also has good re-

sistance to the ambient atmosphere and can be handled and stored in the air, while 

many other hydrogen storage materials should be stored in an inert gas atmosphere to 

avoid the deactivation problem. 

The TiZrNbTa HEAs were prepared by using vacuum arc remelting followed by 

suction casting [30]. Disk samples were cut from the as-cast ingot and mechanically 

ground for hydrogen absorption. Hydrogen absorption and desorption were carried out 

in a self-made Sieverts device. The hydrogen absorption was conducted under a hydro-

gen pressure of 3 × 104 Pa at 800 °C for 10 min, and desorption was conducted under the 

vacuum of 0.1 Pa at 850 °C for 20 min. For comparison, the same heat treatment process 

(800 °C for 10 min and 800 °C for 10 min + 850 °C for 20 min) under vacuum was con-

ducted on the as-cast TiZrNbTa sample. Figure 10 shows the XRD patterns (a) and (b–d) 

BSE images of as-received, hydrogen absorbed, and hydrogen desorbed TiZrNbTa sam-

ples. The microstructure of the as-cast sample consisted of a single bcc phase (see Figure 

10a). However, it is visible in Figure 10b that the matrix bcc grains exhibiting bright con-

trast are surrounded by the layers appearing grey. It is the indication of the complete 

wetting of bcc/bcc GBs by the last portions of melt during solidification. During hydro-

gen absorption at 800 °C the initial bcc phase decomposed into two phases bcc1 and bcc2 

(see Figure 10a,c). These phases remain in the alloy also after hydrogen desorption at 850 

°C (see Figure 10a,d). 
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Figure 10. (a) XRD patterns and (b–d) BSE images of as-received, hydrogen absorbed, and hydro-

gen desorbed TiZrNbTa samples. Reprinted with permission from [30]. Copyright 2020 Elsevier. 

Figure 11 shows the bright-field TEM images and corresponding selected electron 

diffraction patterns of TiZrNbTa samples for as-received state (a), after hydrogen ab-

sorption (800 °C for 10 min) (b), after hydrogen desorption (800 °C for 10 min + 850 °C 

for 20 min) (c), and after similar heat-treatment (800 °C for 10 min + 850 °C for 20 min) 

but without hydrogen (d). These high magnification TEM micrographs show that after 

these heat treatments in the solid-state the fine-scale GB wetting takes place (see Figure 

11b,c). Namely, the bcc1 and bcc1 phases form a structure similar to a chessboard (see 

above the discussion of Figure 1 in Section 2 or description of structure in Figure 4, Sec-

tion 3). It can be the indication of mutual solid-state wetting of bcc1/bcc1 and bcc2/bcc2 

GBs. In other words, bcc2 layers wet the bcc1/bcc1 GBs and, simultaneously, the bcc1 

layers wet the bcc1/bcc1 GBs. It is remarkable, that after the same heat treatments but 

without hydrogen (Figure 11d) the formation of two phases bcc1 and bcc2 does not take 

place (and GB wetting transitions as well). 

 

Figure 11. Bright-field images and corresponding selected electron diffraction patterns of TiZrN-

bTa samples. (a) As-received, (b) hydrogen absorbed (800 °C 10 min), (c) hydrogen desorbed (800 

°C 10 min + 850 °C 20 min), and (d) heat-treated (800 °C 10 min + 850 °C 20 min) but without hy-

drogen. Reprinted with permission from [30]. Copyright 2020 Elsevier. 
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6. GB Wetting Phenomena in HEAs Containing Nitrides 

Crystalline (Hf,Ta,Ti,V,Zr)N nitride thin films, with a high-entropy metal-

sublattice, were synthesized at 440 °C by reactive magnetron sputtering using an 

equimolar Hf-Ta-Ti-V-Zr-compound target [58]. These coatings consisted of fcc mono-

nitride. The atom probe tomography (APT) indicated the homogenous distribution of all 

elements in the fcc mono-nitride (Hf,Ta,Ti,V,Zr)N, even after annealing in vacuum at 

1300 °C (see Figure 9a in [58]). However, after annealing at 1500 °C, a loss of nitrogen 

took place, and hexagonal nitride (Ta,V)2N formed. The very thin layers of this hexago-

nal (Ta,V)2N are located most probably in the GBs of mono-nitride (see Figure 9c in [58]). 

This can be an indication that, at 1500 °C, the sample is between the bulk solvus and the 

GB solvus (shown in Figure 1 by red dotted line) and contains thin layers of the GB 

phase. It has been observed earlier in binary and ternary systems that the few nm thin 

layers of GB phases can drastically increase the GB diffusivity [99], GB mobility [100], 

and GB sliding [101–105], etc. 

Another two examples of GB wetting in HEAs by nitrides can be found in [105,106]. 

Cantor alloy FeCoCrNiMn (CA) and nitrogen-doped Cantor alloy (NCA) were both 

prepared by arc melting in a water-cooled copper mold [105]. Some of these NCA ingots 

were then aged at 800 °C in a muffle furnace for 24 h and then water quenched. CA and 

NCA ingots all had a single phase fcc structure. The NCA-aged alloy contained the 

chains of Cr2N nitride precipitates in some fcc/fcc GBs. They witness the partial GB wet-

ting by the nitride at 800 °C. In [106,107], the ingots with equiatomic composition 

Fe20Mn20Cr20Ni20Co20 (HEA, at. %) as well as samples doped with 1 at. % nitrogen 

Fe20Mn20Cr20Ni20Co19N1 (HEA-1N) and with 1 at. % carbon Fe20Mn20Cr20Ni20Co19C1 (HEA-

1C) were produced by vacuum induction melting and casting in a pure Ar atmosphere. 

The chains of nitrides (Figure 12a) and carbides (Figure 12b) were observed in GBs of the 

fcc matrix phase, demonstrating the partial GB wetting by nitride and carbide precipi-

tates. 

  

Figure 12. Typical BSE SEM images of Fe20Mn20Cr20Ni20Co19N1 (a) and Fe20Mn20Cr20Ni20Co19C1 (b) 

HEAs. The chains of nitrides (a) and carbides (b) are visible in GBs of the fcc matrix. Reprinted 

with permission from [107]. Copyright 2020 Elsevier. 
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7. Conclusions 

In this paper, we provided several examples of GB wetting in HEAs containing hy-

drogen, nitrogen, carbon, boron, and silicon and, consequently, hydrides, nitrides, car-

bides, borides, and silicides. The given cases do not exhaust all possibilities of such GB 

wetting phenomena in HEAs. We mentioned only some typical ones from recent publi-

cations, and similar microstructures ca often be seen in other works on HEAs. Indeed, 

we can see now that modern HEAs can contain more than one multicomponent solid so-

lution but also hydrides, nitrides, carbides, borides, and silicides. The shape and spatial 

distribution of additional phases in these inhomogeneous HEAa can be determined by 

the GB wetting phenomena. Particularly, GB wetting can control the distribution of mi-

nor phases among the grains of the matrix phase. Previously, such phenomena have 

been extensively studied in binary metallic alloys [71–75,83,84,97,98,108]. These data can 

also be used for the description of multicomponent alloys. In particular, in the two- and 

multiphase areas of phase diagrams for HEAs, the additional tie-lines of the GB phase 

transitions can appear (see Figure 1). One can apply the new knowledge regarding GB 

wetting transformations in HEAs to modify their microstructure and properties. 

The thick and thin GB layers of hydrides, nitrides, carbides, borides, and silicides 

can appear in HEAs during their manufacturing and/or subsequent annealing. The un-

derlying phenomenon for the formation of such layers of GB phase(s) is the complete or 

incomplete GB wetting by the melt or another solid phase. Thus, the equilibrium layers 

of a second phase between matrix grains appear if the GB energy is higher than the en-

ergy of two interphase boundaries. The presence of these GB layers can have both posi-

tive and negative effect on the properties of HEAs. One can apply the GB wetting phe-

nomena in hydride-, nitride-, carbide-, boride-, or silicide-containing HEAs to tailor their 

structure and properties. One can also use the knowledge on the tie-lines of GB wetting 

transitions as GB solidus and solvus lines in HEAs phase diagrams for the improvement 

of HEAs properties. 
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