
UNIVERSITY OF LATVIA

DOCTORAL THESIS

Parameter optimization and pattern
recognition for combustion and reaction

kinetics applications

Author:
Maksims MARINAKI

Supervisor:
Dr. math. prof. Uldis

STRAUTIN, Š

Department of Mathematics
Faculty of Physics, Mathematics and Optometry

September 14, 2021

http://www.lu.lv
mailto:maksims.marinaki@lu.lv
mailto:uldis.strautins@lu.lv
mailto:uldis.strautins@lu.lv
http://www.lu.lv/matematika
https://www.fmof.lu.lv/

i

UNIVERSITY OF LATVIA

Abstract
Department of Mathematics

Faculty of Physics, Mathematics and Optometry

Doctor of Philosophy

Parameter optimization and pattern recognition for combustion and reaction
kinetics applications

by Maksims MARINAKI

In this thesis we consider the simplified combustion models and describe the
chemical kinetics via different reaction mechanisms. We solve the resulting prob-
lems by the finite element techniques. Then we consider some model reduction
techniques and verify the results with the experimental ones by doing the param-
eter optimization. The leftover patterns of the optimization method are stored as
fixed points of the discrete dynamical system in order to be reproduced when the
experimental data is modified.

Keywords: combustion, chemical kinetics, mathematical modelling, finite ele-
ment method, PSO optimization, model reduction, pattern storage.

HTTP://WWW.LU.LV
http://www.lu.lv/matematika
https://www.fmof.lu.lv/

ii

Acknowledgements

Author would like to acknowledge the financial support from the Latvian Re-
search Cooperation Project of the Latvian Council of Science Nr. 623/2014, the ERAF
project Nr. 1.1.1.1/16/A/004 and SAM project Nr. 8.2.2.0/18/A/010.

Author would like to express his sincere gratitude to his thesis supervisor Uldis
Strautin, š, project supervisor Harijs Kalis, colleagues Andrejs Reinfelds, Andrejs Cibu-
lis and all the others who supported the accomplishment of the thesis.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

2 Combustion models 4
2.1 Equations solved for mass fractions . 4
2.2 The reaction term . 6
2.3 Temperature equation . 8

3 Partial differential equations and the FEM 9
3.1 The classification of PDEs . 9
3.2 Boundary and initial value problems . 10
3.3 Weak formulations . 11
3.4 Existence and uniqueness results . 17
3.5 Finite dimensional problems and the FEM 20
3.6 Treatment of the non-linear time-dependent system 25

4 Parameter optimization and model reduction strategies 33
4.1 Particle swarm optimization . 34
4.2 Reduction due to principal components 38
4.3 Information storage and pattern recognition 42

5 Test problem treatment with MATLAB 47
5.1 Triangulation settings . 48
5.2 Assembly of stiffness, mass matrix and a load vector 48
5.3 Boundary conditions . 50
5.4 Optimization of the parameters . 53
5.5 Pattern storage . 56

6 Applications 62
6.1 Solving PDEs for the single reaction model 62
6.2 Solving PDEs for the several reaction model 68
6.3 Parameter optimization for 3D model with one or several criteria . . . 77
6.4 Pattern storage results . 82

7 Conclusions 87

A Author’s participation in published works 88

B Author’s participation in international conferences 89

Bibliography 91

iv

List of Symbols

In order of appearance with several reorderings:

q scalar quantity (unless stated vectorial)

v vectorial quantity/column-vector

N number of species/PDEs/vector-function’s components

M number of chemical reactions

d number of spatial variables

n finite dimensional function space’s dimension/number of

experimental quantities/any natural number

D mixture molecular diffusivity/

the dimension of the pattern

S number of particles in a swarm

Dp number of parameters

L number of snapshots

K number of elements in the reduced basis

P number of patterns

NE number of experiments

NS number of recalculation stages

N number of iterations

T number of triangles

t time variable/triangle matrix

p node matrix/any natural number

j = 1..M for j from 1 till M

du
dt

, u′(t), u′ first derivative

∂u
∂t

, ut, ∂iu partial derivative

D
Dt

total derivative

∇ nabla operator

∇· divergence operator

v

u · v, (u, v) dot product

‖ · ‖ element norm (type specified)

‖ · ‖2 Rn element Euclidean norm

L(·) differential operator

vT transpose vector/matrix

det determinant of a matrix

E unit matrix

N set of natural numbers

N0 set of natural numbers and zero

R set of real numbers

R+ set of positive real numbers

∂Ω set boundary

Ω1 ∪Ω2 set union

Ω1 ∩Ω2 set intersection

Ω set closure

Ω1 ×Ω2 set Cartesian product

intΩ set interior

∅ empty set

inf Ω set infimum

H, H, G, G function space/Hilbert space

C∞ space of infinitely many times differentiable functions

C∞
0 space of infinitely many times differentiable functions

with compact support

H−1(Ω) the dual space

I, Ih interpolation operator

dim H space dimension

span linear hull

Πm space of m-th order polynomials

∼ U(a, b) uniformly distributed random numbers

trA trace operator

ei i-th unit vector

diag[A1, . . . , An] block diagonal matrix

∨ logical OR

:= is defined as

⇒ logical consequence (implication)

x̂ solution representative (snapshot)

vi

xp p-th vector (pattern)

Abbreviations:

ODE Ordinary Differential Equation

PDE Partial Differential Equation

BCs Boundary Conditions

FEM Finite Element Method

PSO Particle Swarm Optimization

SVD Singular Value Decomposition

PCA Principal Component Analysis

DDS Discrete Dynamical System

PC Pattern Creation

Prop. proposition (lemma or theorem)

Def. definition

Alg. algorithm

cgs centimetre–gram–second system of units

1

Chapter 1

Introduction

The idea to write thesis on this particular topic has been a direct consequence of the
collaboration between two research institutes: Institute of Mathematics and Com-
puter Science of University of Latvia (the one where the author’s employed) and the
Institute of Physics of University of Latvia. In the latter institution the researchers
have been widely interested in topics such as an efficient combustion of biomass for
a very long time and been facilitating the experiments involving the combustion and
gasification of different fuels.

The author has participated in the corresponding collaboration projects arised in
this field with the mathematical modelling contribution and decided to write the-
sis that would serve as a supplementary material for the published works in these
projects, containing the results in topics of author’s scientific interests only.

In [Mar18b] and [Mar19] the modelling and experimental results have been pub-
lished for experiments such as straw co-firing with peat or propane.

In [Mar18a] and [Mar16] for similar experiments the impact of electric and mag-
netic fields have been discussed and corresponding experiments have been facili-
tated.

In [Vey05] the modern theory and applications of combustion and gasification
processes is introduced. More classical theory is found in [Wil85] and [Bor01].

These processes are mostly modelled by systems of partial differential equations
(PDEs) and the choice of suitable numerical methods along with the theory of PDEs
is to be found in [Hac17], [Ben13], [Ang03].

The optimization of parameters, mainly the technical part of the process itself for
any optimization problem found in [BAE05], [Cle06].

When the problem becomes a high dimensional one, the principal component
analysis (PCA) comes to rescue and the results compatible with the models to be
proposed in this thesis are found in [Wil10], [Gre08]. Another aspect is the pattern
recognition out of high dimensional problem in order to minimize number of call-
ing out the costly procedure of obtaining the numerical solution thereof and general
theory and applications of recurrent networks can be found in [Cha01].

The main idea of this thesis is to develop the mathematical model that governs
the main basic physical processes, occurring in the experiments, facilitated by the
team, and at the same time uses the experimental data in order to improve itself by
using several modern techniques.
If one wants the concise formulation of thesis’ aims, these would be:

1) Find a way how to model chemical reactions with PDEs. The models should be
as simple as possible, but in two or three dimensions and the underlying chemistry

http://www.lumii.lv
http://www.lumii.lv
http://www.ipul.lv

Chapter 1. Introduction 2

should be described thoroughly and the transition between the design of chemical
reaction and the design of PDE should be visible.

2) Provide the necessary mathematics for the chosen set of models - the exis-
tence and uniqueness results, briefly discuss approximation and choose the numer-
ical methods - universal for the obtained models.

3) Develop concepts of measure between experimental and modelling data and
formulate all the necessary problems.

4) Perform several numerical experiments with either solution obtaining process
as it is or the parameter optimization with the pattern storage procedures - as pro-
posed in the abstract.

The necessity to introduce the concept of measure between modelling and ex-
perimental data in 3) is the main motivation to write this thesis. Along the way the
author came up with several techniques of solutions’ post-processing and storage
due to the repetitive nature of the experiments.

Due to the nature of author’s work, the main course of the following narration is
going to be aspects of implementation of well-known instruments in applied math
along with less-known ones for the sake of reaching goals arising throughout the
work. These instruments might be used for different purposes separately but they
do form a network in this thesis. Each chapter 2-4 shall represent one of them. Chap-
ter 5 shall represent the network along with the computer implementation. In par-
ticular:

In Chapter 2 we catalogue the equations to be solved in further chapters in their
dimensional forms along with the main laws of physics and combustion chemistry
that underlie in every term of these equations.

In Chapter 3 we build the theory till the point where one freely classifies the
partial differential equation and chooses the appropriate and universal methods to
solve one numerically.

Chapter 4 is the core of the thesis. Author considers several modern techniques
for optimizing the model: whether it is a matter of optimizing the parameters of the
parametrized model - making the model ’better’ in a way - closer to reality so to
speak, or a matter of reducing the dimension of the discretized model or fully refor-
mulating the problem as the pre-stored pattern recognition problem - something of a
vast importance when it comes to solve the problem by using the personal computer.

Since nowadays most of the modelling working hours are in front of the com-
puter developing a decent code for necessary computations, Chapter 5 is present
and contains all the necessary information on what are the main peculiarities when
it comes to code in Matlab software: either create user’s own script or uses the graph-
ical user interfaces.

Chapter 6 uses the results from the previous chapters to solve some applied prob-
lems. These are the ones, developed in Chapter 2 with parametrization and source
terms described in details for several different situations. The total scheme on how
to effectively solve the resulting problems in the area of applications chosen derived
in this thesis is implemented for each case and explicit step explanations with refer-
ences on results in previous chapters is provided.

Chapter 1. Introduction 3

The subdivision onto the aforementioned chapters is more or less natural when
it comes up to thorough description of each tool to be used. Now each model is to
be analysed by sticking to one and the same framework which means all the meth-
ods described in each chapter combined. The order of the actions corresponds to the
order of the chapters in the thesis and is something that is going to be discussed in
the beginning of each chapter.

All the codes used in the text are created by the author using the MATLAB soft-
ware. All the narrative is the result of the consistent work throughout the years of
PhD studies, teaching natural sciences and the participation in various projects and
in many cases, some well-known proofs are recreated and interpreted by the author
without straightforwardly using any literature, however, since the act of recreation is
still implying the fact that some pieces of bibliography were once used, we provide
references and discuss their values in prefaces of the corresponding topics. Whereas
a well-known algorithm or a widely-known proof is used, but its representation is
beyond the scope of this thesis, the author provides the reference links to the items
of bibliography as well.

In the end we formulate the conclusions on what has been done, provide the list
of literature and list of publications and conferences the author has been involved
in, see chapter 7 and appendices A, B.

4

Chapter 2

Combustion models

As stated in introduction, this chapter takes into account main laws of physics, de-
scribing the combustion process in the combustion chamber; formulates them in
their differential form and makes a lot of simplifications. Moreover, models of dif-
ferent complexities are constructed: different levels of complexity used for different
purposes in chapter 6.

Modelling stage, where we address the laws of physics in order to formulate the
concise mathematical model is a case of calling on the gathered common knowledge
throughout the history of science. Thus we seek the mathematical formulations of
the empirically proven laws. These are widely used and to be found in literature
along with the necessary derivations.

Whilst participating in projects, author had to analyse several books containing
mathematical models of combustion process and reacting flows. [Vey05] along with
its author’s lecture notes gave the best insight on topic and is the most recent and de-
cent one containing all the modern theory and applications. More classical ones such
as [Wil85] and [Bor01] were of a great value for achieving goals of our researches as
well.

Main purpose is to sort the detailed chemistry descriptions out of these models
presented in specialized literature rather than convection and diffusion aspects since
the latter is modelled mathematically in a more or less traditional way. Hence the
main stress is on reaction kinetics.

The idea is to pin down the terms of the combustion equations in their dimen-
sional form. Then to make simplifications and to neglect some terms. The goal of
the chapter is to obtain the parametrized equations to be solved for temperature T
and the mass fraction of the k-th specie Yk for each k in the reacting flow in the com-
bustion chamber and verify the dimensions. Then the solvability and the solution
process discussion will start in the next chapter 3.

2.1 Equations solved for mass fractions

The goal is to obtain the simplifications of the general mass fraction equation, which
simplifies the diffusion and convection terms whilst describes the underlying chem-
istry quite thoroughly. When we say that, we seek the form where one takes a certain
reaction (or the reaction mechanism) and easily plugs it in the model.

Following the monographs stated in the introduction of this chapter we shall
present the species equation for each specie in its general form. Then make simplifi-
cations in order to make it solvable in terms of theory presented in chapter 3.

We use the notation Yk for the mass fraction of k-th specie in the mixture and

define it as a partial density and mixture of gases density ratio Yk :=
ρk

ρ
.

Chapter 2. Combustion models 5

We want to solve nothing but a continuity equation for Yk. So it is necessary to
set it up first.

Def. 2.1.1. We call an equation

∂ρ

∂t
+∇ · j = σ (2.1)

a continuity equation in differential form for quantity q. Here ρ is the density of a
quantity q as an amount of q per cubic meters, j represents a flux of q and σ is the
generation of quantity q as an amount of that quantity per cubic meter per second.
Intuitively it is positive when the quantity q gets generated, negative when it gets
driven out and zero when the quantity gets conserved. In the latter case we might
as well call it a conservation equation.

In case of combustion the mass of each particular specie is not conserved, might
disappear and might also be created for each particular k, thus we model it with
non-zero σ, whilst the total mass clearly has to be conserved, where σ is neglected.

The mass continuity equation in fluid dynamics is defined by considering ρ as a
density of mass and setting j = ρu:

∂ρ

∂t
+∇ · (ρu) = 0, (2.2)

where ρ is the density as an amount of kilograms per cubic meter and u repre-
sents the velocity field of the reacting flow. It is clearly modelled with a zero valued
generation rate σ due to conservation of mass. We wish to write down the equations
that are true for each individual specie Yk, k = 1..N, defined above and observe the
consistency rules such that (2.2) holds at the same time.

For each partial density ρk = ρ · Yk we can write down the continuity equation
(2.1) by setting non-zero generation rate (usually denoted by ω̇k also referred to as
a reaction term) and flux j = ρk(u + vk), where vk is the diffusion velocity of k-th
specie:

∂

∂t
(ρYk) +∇ ·

(
ρYk(u + vk)

)
= ω̇k. (2.3)

Along with an obvious consistency relation

N

∑
k=1

Yk =

N
∑

k=1
ρk

ρ
= 1, (2.4)

by summing up N equations (2.3) and comparing it with the continuity equation
(2.2), we obtain two more:

N

∑
k=1

ω̇k = 0 − due to conservation of mass (2.5)

and
N

∑
k=1

Ykvk = 0 − the consistency in divergence terms. (2.6)

Chapter 2. Combustion models 6

Regarding the last one, usually the extension of Fick’s law does the job [Bet16; Bro13].
This is the first simplification we would like to make:

vkYk = −D∇Yk, (2.7)

where D is the molecular diffusivity in the mixture. This relation is the most com-
mon simplification which would allow us to consider more traditional models in
sense of mathematical theory to be discussed in chapter 3 and at the same time it
does satisfy the consistency relations.

The equation (2.3) now can be reformulated by using this simplification and the
total derivative notation. We split the linear divergence operator into two parts:

∂

∂t
(ρYk) +∇ · (ρYku) = ∇ · (ρD∇Yk) + ω̇k, (2.8)

and simplify the left hand side:

∂

∂t
(ρYk) +∇ · (ρYku) = ρ

∂Yk

∂t
+ ρu · ∇Yk + Yk

[∂ρ

∂t
+∇ · (ρu)

]
. (2.9)

The square brackets in the end is our mass continuity equation (2.2), thus these terms
are getting neglected. The remaining part divided by ρ is something we call a total
derivative and use the notation

DYk

Dt
:=

∂Yk

∂t
+ u · ∇Yk. (2.10)

Thus the species equation for the specie Yk, k = 1..N, has its simplified form:

ρ
DYk

Dt
= ∇ · (ρD∇Yk) + ω̇k. (2.11)

In the next section we pin down the reaction term ω̇k.

2.2 The reaction term

So far the equation (2.11) reads that the mass fraction of the k-th specie changes
in time due to convection and diffusion processes plus the rate of change due to
chemical reactions occurring in the flow. We wish to write down the reaction term
ω̇k as a sort of a template which holds for each reaction mechanism and to be fulfilled
with the parameters that are different for each mechanism. We split it into different
parts first and present it in one row afterwards.

In the previous section 2.1 we’ve numbered species such that they’re indexed by
k and it changes from 1 till N (total number of species considered in the model is N
and an individual k-th specie is considered in the equation).

At the same time we have to number the chemical reactions involved in the re-
acting flow. We do it in the same manner and number the reaction with an index j
and the total number of reactions is M and adopt the empirical laws commonly used
to model the reacting flow [Vey05].

The term ω̇k is the sum over all reactions:

M

∑
j=1

ω̇kj, (2.12)

Chapter 2. Combustion models 7

where ω̇kj is expressed as ω̇kj = qjwkνkj.
The explanation of this form starts with the νkj multiplier. This is constructed as

following: we consider M reactions in our model, through which N species are re-
acting. We consider forward reactions here and each j-th reaction, j = 1..M, usually
has the form

N

∑
k=1

ν′kj Mk →
N

∑
k=1

ν′′kj Mk, j = 1..M, (2.13)

where νkj is the number of moles of the k-th specie in the j-th reaction, and Mk is the
nomenclature of the corresponding specie.

Then we denote νkj := ν′′kj − ν′kj. So we have only one stoichiometric coefficient
describing the reaction instead of two, which can be either positive or negative. The
wk is the molecular weight of specie k, while the qj is the multiplier that covers the
Arrhenius law.

The Arrhenius law lies in the core of the reaction term and states the compound
exponential or quasipolynomial rate with respect to temperature and polynomial
with respect to mass fractions. For the forward reaction it has the following form:

qj = Kj

N

∏
k=1

N
ν′kj
k , (2.14)

Kj = Aje
−Ej
RT Tβ j . (2.15)

Here Nk is the concentration of the specie k as the amount of moles per cubic me-
ter. The reactivity parameters for the reaction j are the pre-exponential factor Aj,
the activation energy Ej and the temperature exponent β j and are either to be deter-
mined from the existing tables or their values would be estimated and afterwards
optimized which is the course of chapter 4. R is the ideal gas constant.

There’s an explicit temperature dependence and an implicit mass fraction depen-
dence in (2.14),(2.15). The concentration - mass fraction relation to use is

Nk =
ρYk

wk
. (2.16)

Now we are ready for the final formula of the reaction term ω̇k. In each k- th mass
fraction equation we construct the parametrized source term by considering the re-
action mechanism (2.13):

ω̇k =
M

∑
j=1

Aje
−Ej
RT Tβ j

N

∏
k=1

N
ν′kj
k wkνkj. (2.17)

Thus we have a framework where one takes the reaction mechanism as a list of
formulas (2.13), constructs the matrix ν by doing the arithmetics to a stoichiometry
coefficients and in a very convenient manner plugs everything into formula (2.17)
along with the parameters to be discussed in chapter 4.

Chapter 2. Combustion models 8

2.3 Temperature equation

One of the simplified forms of temperature equation for deflagrations is constructed
similarly to (2.3) by setting up the continuity equation for energy flow and reformu-
lating it for temperature:

ρcp
DT
Dt

= ∇ · (λ∇T) + ω′T, (2.18)

where ρ, cp and λ are respectively mass density, heat capacity and the thermal con-
ductivity.

The flux term, called a heat flux, similarly to (2.7) is given by λ∇T and is due to
Fourier’s law [Bet16; Bro13].

The source term for this equation has the form [Vey05]

ω′T = −
N

∑
k=1

(4H f ,k + hs,k)ω̇k, (2.19)

where 4H f ,k stands for the enthalpy of formation and the hs,k for the sensible en-
thalpy.

One can see that the source term consists of the aforementioned enthalpies and
the same source term ω̇k as in (2.3) and ends up with enthalpies of formation only if
uses heat capacity for mixture cp and not for the individual specie cp,k.

The heat capacity we shall consider independent of the temperature as well. The
source term we divide into two sums:

ω′T = −
N

∑
k=1
4H f ,kω̇k −

N

∑
k=1

hs,kω̇k. (2.20)

Under the assumption that the heat capacity doesn’t depend on the temperature

hs,k =

T∫
T0

cpkdT = (T − T0)cpk, (2.21)

or the species
N

∑
k=1

hs,kω̇k = (T − T0)cp

N

∑
k=1

ω̇k = 0, (2.22)

due to consistency relation (2.5), the only enthalpies we consider are the enthalpies
of formation.

The enthalpy of formation is to be found in the table for each specie in the re-
acting mixture, which concludes the parametrization of the equation, since the ω̇k
multiplier is the same as in the species equations. Thus the weighted sum of the
right hand sides from all N species equations is considered as the right hand side of
the temperature equation.

At the end of the day we are going to work with the reaction-diffusion partial
differential equation system (2.11), (2.18).

The next chapter 3 provides classical results in classification and well-posedness
of these equations; in other words the results of fields such as mathematical physics
and numerics for problems of mathematical physics we are going to address there.

9

Chapter 3

Partial differential equations and
the FEM

The description of physical laws in their differential forms in the previous chap-
ter 2 led to parametrized system of partial differential equations (2.11), (2.18). The
present chapter provides the definitions and the common classification of the partial
differential equations (PDEs). Then we address the aspects of the solution space dis-
cretization which leads to an equivalence of the discretized problem to a problem of
linear algebra. These definitions and proofs of the results are more or less common
for every book in the corresponding field - the author tried to make it as laconic as
possible by including the necessary stuff only and jump to the procedures part since
the thesis is mainly concerned on applications aspect.

These aspects are included in one and the same present chapter since every chap-
ter in the paper represents one step of processing the input information: in this case
the equations written down in their differential form will be reformulated as a prob-
lem of linear algebra or series of such problems. Series of such problems can be
solved subsequently by using a personal computer. The scheme used in the next
chapter will use these solutions as a function of parameter inputs as a part of a more
superior procedure which calls out the solution procedure many times.

But in order to obtain the desired solution, we consider the necessary theory
first. Author mostly inspired by books [Fou03], [Hac17], [Ben13], [Ang03]. All well-
known results to be presented are mostly taken from them. When the technical
aspects of the particular proof require more theory to be brought to the table these
are omitted and to be found in the literature presented. But in many cases the proofs
recreated by the author are to be present since the technical peculiarities and the
intermediate results thereof are of importance when building the necessary theory.

3.1 The classification of PDEs

We shall start with the classification of PDEs which is required for choosing the right
tool to solve it either analytically or numerically. Classification provided here built
in correspondence with the classification of second order curves in the analytical ge-
ometry.

We consider the second order linear partial differential equation

Lu = −∇ · (A∇u) + bT∇u + cu = f , (3.1)

where the unknown function u : Ω→ R, A ∈ Rd×d and elements of vector b along
with c and f - are bounded functions Ω→ R, Ω ⊂ Rd, d ∈N.

Chapter 3. Partial differential equations and the FEM 10

The classification of (3.1) depends only on the principal part of the equation, i.e
−∇ · (A∇u).

Def. 3.1.1. We call an equation (3.1) elliptic at point x if all the eigenvalues of A
λi > 0, i = 1..d or λi < 0, i = 1..d at x.
We call an equation (3.1) parabolic at point x if all but one eigenvalues of A
λi > 0, i = 1..d− 1 or λi < 0, i = 1..d− 1 whilst λd = 0 at x.

Def. 3.1.2. We call an equation (3.1) elliptic/parabolic in Ω if it’s elliptic/parabolic ∀x ∈ Ω.

Def. 3.1.3. We call a differential operator in (3.1) uniformly elliptic if ξT Aξ ≥ γ‖ξ‖2,
γ > 0, ξ ∈ Rd. The matrix A in this case is called uniformly positive definite.

Remark 3.1.1. The equations (2.11) and (2.18) in two or three spatial variables are elliptic
if made stationary, linearised and decoupled since A is in form cE, c ∈ R+ - a positive
function of positive physical constants.

Remark 3.1.2. The equations (2.11) and (2.18) in two or three spatial and one time variable
are parabolic when linearised and decoupled since there’s no second order derivatives with
respect to time involved, thus A has a zero-valued row and column.

3.2 Boundary and initial value problems

Well-posedeness of a problem containing equation (3.1) depends on an appropriate
choice of boundary conditions. Several types of boundary conditions are going to
be considered. Further definitions will deal with a boundary ∂Ω of a certain degree
of smoothness - a Lipshitz boundary.

Def. 3.2.1. We say that a bounded domain Ω ⊂ Rd has a Lipshitz boundary, if

∀x ∈ ∂Ω ∃B(x) ⊂ Oi :

Oi ∩Ω = Oi ∩Ωi, (3.2)

where B(x) is a sphere, Oi, i = 1..m - open sets,

Ωi = {(x1, x2) ∈ Rd : x1 ∈ Rd−1, x2 ∈ R, x2 < φi(x1)}, (3.3)

φi, i = 1..m - Lipshitz functions:

∃L > 0 ∀x, y ∈ ∂Ω |φi(x)− φi(y)| ≤ L|x− y|. (3.4)

Now that we have a boundary, the procedure is to define two types of bound-
ary conditions separately and afterwards mix them together in order to obtain the
model-type problem suitable for applications to be discussed further on.

Def. 3.2.2. We call a problem{
Lu = −∇ · (A∇u) + bT∇u + cu = f , Ω,
u = 0, ∂Ω

(3.5)

a Dirichlet boundary value problem (BVP) for an elliptic PDE.

Def. 3.2.3. We call a problem{
Lu = −∇ · (A∇u) + bT∇u + cu = f , Ω,
A∇u · n̂ = h, ∂Ω

(3.6)

Chapter 3. Partial differential equations and the FEM 11

a Neumann boundary value problem (BVP) for an elliptic PDE.

Here n̂ is an outer normal of Ω, h is a scalar function of spatial variables.
The Dirichlet boundary conditions here and in further claims are considered ho-

mogeneous. Any inhomogeneity can be eliminated by redefining the right hand side
of the problem by considering the auxiliary function.

For one and the same problem one can prescribe Dirichlet and Neumann bound-
ary conditions on different portions of the boundary ΓD and ΓN respectively such
that ΓD ∩ ΓN = ∅ and Γ̄D ∪ Γ̄N = ∂Ω.

Def. 3.2.4. We call a problem
Lu = −∇ · (A∇u) + bT∇u + cu = f , Ω,
u = 0, ΓD,
A∇u · n̂ = h, ΓN

(3.7)

a mixed boundary value problem (BVP) for an elliptic PDE.

Instead of considering zero row and column in matrix A due to nature of appli-
cations of parabolic equations such as heat and diffusion equations the first order
derivative with respect to time is written down as a separate term and not a part of
the gradient term.

In similar fashion we define the problem of finding the solution u(t, x) of parabolic
equation with mixed boundary conditions.

Def. 3.2.5. We call a problem
∂u
∂t

+ Lu = f , (0, T)×Ω,

u(t, x) = 0, (0, T)× ΓD,
A∇u · n̂ = h, (0, T)× ΓN ,
u(0, x) = u0, Ω

(3.8)

an initial boundary value problem for parabolic PDE with mixed boundary conditions.

Such approach lets us build the theory in such fashion that we start with the
elliptic part and regarding the time-dependence the problem gets split into sequence
of such problems.

In theory of classical solutions the smoothness required for the solution is such
as second order derivatives exist in the interior or the domain Ω. Numerics we are
going to apply usually deal with solutions of less smoothness requirements. In the
next section we address the weak formulations of boundary value problems (3.7),
(3.8) that seek the solutions with weakened requirements and discuss the solvability
afterwards.

3.3 Weak formulations

For elliptic PDEs the aim is to reformulate the BVP (3.7) in operator equation form

a(u, v) = f (v) (3.9)

in appropriate function spaces for u and v elements.

Chapter 3. Partial differential equations and the FEM 12

For parabolic PDEs the aim is to reformulate the IBVP (3.8) in operator equation
form

d
dt

(u, v) + a(u, v) = f (v) (3.10)

in appropriate function spaces for u and v elements.
In this section we set and examine the nature of right and left hand sides of these

equations.

Def. 3.3.1. We call a mapping
a(u, v) : H×H → R a bilinear form, if the following linearity axioms hold:

∀α ∈ R ∀u, v, u1, v1 ∈ H :

1. a(αu, v) = a(u, αv) = αa(u, v),

2. a(u + u1, v) = a(u, v) + a(u1, v),

3. a(u, v + v1) = a(u, v) + a(u, v1).

Def. 3.3.2. We call a mapping f (v) : H → R a linear functional, if the following linearity
axioms hold:

∀α ∈ R ∀v, v1 ∈ H:

1. f (αv) = α f (v),

2. f (v + v1) = f (v) + f (v1).

First we obtain the weak formulation for BVP (3.7).

Def. 3.3.3. We call a problem:

Find the function u ∈ H, that satisfies

a(u, v) = f (v) ∀v ∈ G, (3.11)

where a(u, v) - bilinear form, f (v) - linear functional,
a weak formulation of a problem (3.7).

There are several existence requirements on a(u, v) and f (v). We ask u and v
along with their partial derivatives to be square integrable.

Def. 3.3.4. For 1 ≤ p < ∞, the space Lp(Ω) is defined as follows:

Lp(Ω) = {u :
∫
Ω

|u(x)|pdx < ∞}. (3.12)

We define a norm in space Lp(Ω):

‖u‖Lp := ‖u‖0,p := (
∫
Ω

|u(x)|pdx)
1
p . (3.13)

The space L2(Ω) is a Hilbert space when equipped with a scalar product

(u, v)L2 := (u, v)0 :=
∫
Ω

uvdx. (3.14)

Chapter 3. Partial differential equations and the FEM 13

Def. 3.3.5. We call a function w ∈ L2(Ω) a weak derivative of a function u ∈ L2(Ω) if

(u, ∂αv)0 = (−1)|α|(w, v)0 for each test function v ∈ C∞
0 (Ω), (3.15)

where α = (α1, . . . , αn) - multi-index, |α| :=
n
∑

i=1
αi, ∂αv :=

∂α1

∂α1
x1

. . .
∂αn

∂αn
xn

.

The defined derivatives of u exist inside of the integration operator with respect
to test functions. The other concise notation to use is Dαu. Piecewise linear functions
we are about to consider when dealing with finite element procedures are weakly
but not strongly differentiable.

Def. 3.3.6. For m > 0 and p ≥ 1, Sobolev space Wm,p(Ω) is defined as follows:

Wm,p(Ω) = {u : u ∈ Lp(Ω), Dαu ∈ Lp(Ω), |α| ≤ m}. (3.16)

The space Wm,p(Ω) is a normed spaced when equipped with a norm:

‖u‖m,p := (∑
|α|≤m
‖Dαu‖p

0,p)
1
p .

The space Wm,2(Ω) is Hilbert space, when equipped with a scalar product

(u, v)m := ∑
|α|≤m

(Dαu, Dαv)0, (3.17)

and the notation often used is Hm(Ω) := Wm,2(Ω).

Def. 3.3.7. The space H1(Ω) defined as follows:

H1(Ω) = {u : u ∈W1,2(Ω)}. (3.18)

The space H1 contains the square integrable functions along with their square
integrable weak derivatives.
Now we are ready for the technical part of obtaining the weak formulation of (3.7).
Both sides of its equation

−∇ · (A∇u) + bT∇u + cu = f

get multiplied by the sufficiently smooth test function v. The necessary order of
smoothness of u and v to be determined later.

The resulting expression

−∇ · (A∇u)v + bT∇uv + cuv = v f (3.19)

we integrate over Ω:

−
∫
Ω

∇ · (A∇u)vdx +
∫
Ω

bT∇uvdx +
∫
Ω

cuvdx =
∫
Ω

f vdx. (3.20)

We apply partial integration for the principal part−
∫
Ω
∇· (A∇u)vdx such that there’s

no longer second order smoothness requirement.
For partial integration the divergence theorem is required in order reduce the

smoothness order.

Chapter 3. Partial differential equations and the FEM 14

Prop. 3.3.1. (Divergence theorem. For proof see [Pfe12].) For the domain Ω ⊂ Rd with a
boundary ∂Ω, fulfilling requirements (3.2.1) and the continuously differentiable vector field
u the following holds: ∫

Ω

∇ · u dx =
∫
∂Ω

(uT n̂)dσ,

where n̂ is the outer normal of Ω.

In order to extend the notion of function’s restriction to the boundary for Sobolev
functions, we need the following result.

Prop. 3.3.2. (Trace mapping theorem. For proof see [Fou03].) For the domain Ω ⊂ Rd

with a boundary ∂Ω, fulfilling requirements (3.2.1) there exists a unique continuous linear
mapping
γ0 : H1(Ω)→ L2(∂Ω) such that for all u ∈ C1(Ω) the following holds:

γ0(u) = u|∂Ω.

Prop. 3.3.3. (Partial integration of the principal part)
Under the conditions (3.18) for∇u and v and a boundary ∂Ω, fulfilling requirements (3.2.1),
we can integrate the principal part of (3.1) as follows:

−
∫
Ω

∇ · (A∇u)vdx = −
∫
∂Ω

v(A∇u)ndσ +
∫
Ω

∇vT A∇udx. (3.21)

Proof. Partial integration procedure can be performed due to the following differen-
tial relation:

∇ · (vA∇u) = ∇ ·

v(a11ux1 + · · ·+ a1duxd)
...

v(ad1ux1 + · · ·+ adduxd)

 =

= (v(a11ux1 + · · ·+ a1nuxd))x1 + · · ·+ (v(ad1ux1 + · · ·+ adduxd))xd =

= vx1(a11ux1 + · · ·+ a1duxd) + · · ·+ vxd(ad1ux1 + · · ·+ adduxd)+

+v(a11ux1x1 + · · ·+ a1duxdx1) + · · ·+ v(ad1ux1xd · · ·+ adduxdxd) =

= ∇vT A∇u +∇ · (A∇u)v.

Thus we can integrate

−
∫
Ω

∇ · (A∇u)vdx = −
∫
Ω

∇ · (vA∇u)dx +
∫
Ω

∇vT A∇udx. (3.22)

The divergence theorem (3.3.1) transforms the first summand in the right-hand
side: ∫

Ω

∇ · (vA∇u)dx =
∫
∂Ω

v(A∇u)ndσ. (3.23)

This yields the result.

The conditions for weak formulation (3.7) thus can be smoothened to u, v ∈ H1.

The operator equation for the weak formulation in problems (3.5), (3.6), (3.7) now
reads:

Chapter 3. Partial differential equations and the FEM 15

−
∫
∂Ω

v(A∇u)ndσ +
∫
Ω

∇vT A∇udx +
∫
Ω

bT∇uvdx +
∫
Ω

cuvdx =
∫
Ω

f vdx. (3.24)

For Dirichlet problem (3.5)

a(u, v) =
∫
Ω
∇vT A∇udx +

∫
Ω

bT∇uvdx +
∫
Ω

cuvdx,

f (v) =
∫
Ω

f vdx.
(3.25)

For Dirichlet problems we want boundary values to be incorporated into space def-
inition. Therefore we define the space for functions u and v for the homogeneous
Dirichlet problem.

Def. 3.3.8. The space H1
0(Ω) is defined as follows:

H1
0(Ω) = {u : u ∈ H1(Ω); γ0(u) = 0, ∂Ω}.

We are all set for the weak formulation for Dirichlet problem:

Find function u ∈ H1
0(Ω) that satisfies the equation

a(u, v) = f (v) ∀v ∈ H1
0 , (3.26)

where a(u, v), f (v) are in form (3.25).
Boundary conditions for Neumann problems (3.6) should be incorporated in the

right-hand functional:

a(u, v) =
∫
Ω
∇vT A∇udx +

∫
Ω

bT∇uvdx +
∫
Ω

cuvdx,

f (v) =
∫
Ω

f vdx +
∫
∂Ω

hγ0(v)dσ. (3.27)

Thus the weak formulation for Neumann problem (3.6) reads:

Find function u ∈ H1(Ω), that satisfies the equation

a(u, v) = f (v) ∀v ∈ H1, (3.28)

where a(u, v), f (v) are in form (3.27).
Now we are ready to mix two together and in similar fashion obtain the weak

formulation for the mixed problem (3.7).
The boundary conditions for mixed problems should be incorporated in the right-

hand functional and into function space:

a(u, v) =
∫
Ω
∇vT A∇udx +

∫
Ω

bT∇uvdx +
∫
Ω

cuvdx,

f (v) =
∫
Ω

f vdx +
∫
ΓN

hγ0(v)dσ. (3.29)

The space H for the solution and the test functions is defined as follows:

H = {u ∈ H1(Ω), γ0(u) = 0, ΓD}. (3.30)

Chapter 3. Partial differential equations and the FEM 16

Thus the weak formulation for the mixed boundary value problem (3.7) reads:

Find function u ∈ H, that satisfies the equation

a(u, v) = f (v) ∀v ∈ H, (3.31)

where a(u, v), f (v) are in form (3.29).
Since it is a mixture of two, further on we are going to refer to the mixed problem.

The other reason for considering it is that exactly this type of boundary conditions
is going to be considered mostly in the applications section of this thesis.

For the initial boundary value problems (3.8) the solution space should be rede-
fined first.

Def. 3.3.9. For Banach space H we define the space L2(0, T; H) as the space of functions

u : (0, T)→ H equipped with the norm ‖u‖L2(0,T;H) :=
(T∫

0
‖u(t)‖2

Hdt
) 1

2
.

In order to interpret the weak time derivative we need an appropriate definition
as well. This one is similar to (3.3.5) but with respect to L2(0, T; H). We present the
following weak formulations in the corresponding function spaces. More on choice
of these spaces e.g in [Ang03].

Def. 3.3.10. We call a function w ∈ L2(0, T; H−1) a weak derivative of a function
u ∈ L2(0, T; H) if

T∫
0

u(t)v′(t)dt = −
T∫
0

w(t)v(t)dt ∀v ∈ C∞
0 (0, T). (3.32)

Def. 3.3.11. The space W(0, T; H) is defined as follows:

{u : u ∈ L2(0, T; H), u′ ∈ L2(0, T; H−1)}. (3.33)

As for the operator equation for the weak formulation of (3.8) the procedure is
similar to (3.20) with the new term corresponding to the time derivative:

d
dt

∫
Ω

uvdx−
∫
Ω

∇ · (A∇u)vdx +
∫
Ω

bT∇uvdx +
∫
Ω

cuvdx =
∫
Ω

f vdx, (3.34)

and after the partial integration procedure due to (3.21) one gets the weak formula-
tion for the initial boundary value problem with mixed boundary conditions (3.8).

Find function u ∈W(0, T; H), that satisfies the equation

d
dt

(u, v)0 + a(u, v) = f (v) ∀v ∈ H, (3.35)

along with the initial condition

u(0) = u0 ∈ L2(Ω), (3.36)

where a(u, v), f (v) are in form (3.29).

Chapter 3. Partial differential equations and the FEM 17

With the reduced smoothness requirements the solution existence results from
classical theory don’t apply anymore, thus we have to consider different results that
propose the existence and uniqueness of solution for weakly formulated problems.

3.4 Existence and uniqueness results

There are several lemmas that guarantee the solution existence and uniqueness for
problems (3.31) and (3.35), (3.36) . The aim of this section is to present the appro-
priate results found in literature that state that several properties of objects used in
(3.31) hold and afterwards to check these properties.

Def. 3.4.1. Given H a Hilbert space. Defined in H×H bilinear form a(u, v) : H×H → R

is called continuous, if

∃λ > 0, ∀u, v ∈ H |a(u, v)| ≤ λ‖u‖H‖v‖H. (3.37)

Def. 3.4.2. Given H a Hilbert space. Defined in H×H bilinear form a(u, v) : H×H → R

is called coercive or H-elliptic, if

∃γ > 0, ∀u ∈ H γ‖u‖2
H ≤ a(u, u). (3.38)

Def. 3.4.3. Defined in a normed space H linear functional f (v) : H → R

is called continuous, if

∃M > 0, ∀v ∈ H | f (v)| ≤ M‖v‖H. (3.39)

The next results guarantee the existence and uniqueness for the solutions of
weakly-formulated problems (3.31) and (3.35),(3.36). The conditions to fulfill rely
on properties of the ’principal’ part of the bilinear form.

Prop. 3.4.1. (Lax-Milgram theorem. For proof see [Hac17], [Ben13], [Ang03].)
Given Hilbert space H. If defined in H × H bilinear form

a(u, v) : H × H → R is continuous and H-elliptic,
and a linear functional f (v) : H → R - continuous, then the weakly-formulated problem
(3.31) has a unique solution.

Prop. 3.4.2. Problem (3.31) fulfills the conditions of the Lax-Milgram theorem 3.4.1 assum-
ing L(·) is uniformly elliptic.

Proof. Several times we are going to use the Cauchy-Schwarz inequality in the ap-
propriate Hilbert space H:

∀ u, v ∈ H : (u, v)H ≤ ‖u‖H · ‖v‖H. (3.40)

Since we need to take account of our first derivatives, the notation ∂iu :=
∂u
∂xi

is

going to be widely used as well.

• The first property is the continuity of the bilinear form.
In order to show that |a(u, v)| ≤ λ‖u‖H‖v‖H, the bilinear form’s expression
a(u, v) may first be rewritten in form:

a(u, v) = ∑
0≤i,j≤d

(ãij · ∂iu, ∂jv)L2 , (3.41)

Chapter 3. Partial differential equations and the FEM 18

where the new matrix Ã has the structure

c 0 . . . 0
b1 a11 . . . a1d
...

...
. . .

...
bd ad1 . . . add

. Elements of

vector b and the function c are bounded in Ω. By using the Cauchy-Schwarz
and letting go the tilde notation, one can write down

|a(u, v)| = | ∑
0≤i,j≤d

(aij · ∂iu, ∂jv)L2 | ≤ λ ∑
0≤i,j≤d

‖∂iu‖L2‖∂jv‖L2 ≤

≤ λ

√∫
Ω

(|u|2 + |ux1 |2 + · · ·+ |uxd |2)dx
√∫

Ω

(|v|2 + |vx1 |2 + · · ·+ |vxd |2)dx =

= λ‖u‖H1‖v‖H1 , (3.42)

where λ = max
0≤i,j≤d

{Cij : |aij(x)| ≤ Cij}.

• The second property is the H-ellipticity of the bilinear form a(u, v).
We have to show, that a(u, u) ≥ γ‖u‖2

H1 . We use the uniform ellipticity (3.1.3)
ξT Aξ ≥ γ‖ξ‖2, γ > 0, ξ ∈ Rd and assume that Ã is uniformly positive
definite as well. Then we have

a(u, u) = ∑
0≤i,j≤d

(aij · ∂iu, ∂ju)L2 ≥ γ
∫
Ω

(|u|2 + |ux1 |2 + · · ·+ |uxd |2)dx = γ‖u‖2
H1 ,

where γ = min
0≤i≤d

{C : |aii(x)| ≥ C}.

• The last property is the continuity of the linear functional f (v).
When all boundary conditions are homogeneous, all we have to do is apply
the Cauchy-Schwarz:

| f (v)| = |(f , v)L2 | ≤ ‖ f ‖L2‖v‖L2 ≤ M‖v‖H1 . (3.43)

For problems with mixed boundary conditions (3.31) the functional has an ex-
tra term:

f (v) =
∫
Ω

f vdx +
∫
∂Ω

hvdx. (3.44)

Bearing in mind the trace-mapping theorem 3.3.2, one can use the relation be-
tween the norms:
for Lipshitz boundaries ∂Ω 3.2.1

∃K > 0 : ∀v ∈ H1(Ω) ‖v‖L2(∂Ω) ≤ K‖v‖H1(Ω). (3.45)

Using the estimate for homogeneous case along with Cauchy-Schwarz one ob-
tains:

| f (v)| ≤ |(f , v)L2(Ω)|+ |(h, v)L2(∂Ω)| ≤

≤ M‖v‖H1(Ω) + ‖h‖L2(∂Ω)‖v‖L2(∂Ω) = M‖v‖H1(Ω) + K1‖v‖L2(∂Ω) ≤

≤ M‖v‖H1(Ω) + K1 · K‖v‖H1(Ω) ≤ max{M, K1 · K}‖v‖H1(Ω). (3.46)

This concludes the proof.

Chapter 3. Partial differential equations and the FEM 19

The last technique in the latter proof can be applied whenever one wants to use
the continuity argument for boundary integral term in the right-hand side func-
tional. However in the applications section the Neumann boundary condition is
going to be homogeneous thus in further results the function h is going to be ne-
glected.

There is a result with the conditions similar to ones that the Lax-Milgram the-
orem uses and it serves as an extension to parabolic case. It shall serve us as an
existence-uniqueness result thereof.

Prop. 3.4.3. Given Hilbert space H. If defined in H × H bilinear form
a(u, v) : H × H → R is continuous and H-elliptic,
f ∈ L2(0, T; L2(Ω)) and u0 ∈ L2(Ω), then the weakly-formulated problem (3.35), (3.36)
has a unique solution.

Proof. For problem (3.35), (3.36) with homogeneous boundary conditions one first
obtains the smoothing estimate of the solution’s norm

‖u(t)‖L2 ≤ ‖u0‖L2 · e−γt +

t∫
0

‖ f (s)‖L2 · e−γ(t−s)ds, t ∈ (0, T), (3.47)

where γ is the coerciveness constant for our bilinear form (3.4.2).
The argument is shown by setting v = u(t).
In that case

(u′(t), u(t))L2 =
1
2

d
dt
‖u(t)‖2

L2 = ‖u(t)‖L2
d
dt
‖u(t)‖L2 . (3.48)

The H-ellipticity of the bilinear form gives

a(u(t), u(t)) ≥ γ‖u(t)‖2
H ≥ γ‖u(t)‖2

L2 (3.49)

and the Cauchy-Schwarz for linear functional

(f (t), u(t))L2 ≤ ‖ f (t)‖L2‖u(t)‖L2 . (3.50)

One obtains

‖u(t)‖L2
d
dt
‖u(t)‖L2 + γ‖u(t)‖2

L2 ≤ ‖ f (t)‖L2‖u(t)‖L2 . (3.51)

For non-trivial solutions after dividing by ‖u(t)‖L2 and multiplying by eγt one gets

eγt d
dt
‖u(t)‖L2 + γeγt‖u(t)‖L2 =

d
dt

(eγt‖u(t)‖L2) ≤ eγt‖ f (t)‖L2 . (3.52)

The result is now integrated from 0 to t:

eγt‖u(t)‖L2 − 1 · ‖u(0)‖L2 ≤
t∫
0

‖ f (s)‖L2 · eγsds. (3.53)

In order to obtain the desired result (3.47) one multiplies the relation by e−γt and
applies the initial condition u(0) = u0.

The uniqueness can now be proven by contradiction. Suppose there are two
solutions u1 and u2. The function w = u1−u2 solves the homogeneous problem with

Chapter 3. Partial differential equations and the FEM 20

f ≡ 0 and u0 ≡ 0. By applying the smoothing estimate (3.47) one now concludes
that ‖w‖L2 = 0 and thus u1 = u2.

Since we have constructed the parabolic differential operator in form ut + Lu, the
checking process of properties for objects involved in the variational formulation for
parabolic equations is somewhat similar to elliptic case bearing in mind that the
smoothness requirement for the initial condition has to hold as well. In fact, it is
the same for the bilinear form and time-independent linear form in the right-hand
sides of the equations resulting from (2.11), (2.18) we are going to consider in the
applications section.

Since there exists only one solution for each problem (3.31) and (3.35),(3.36) we
are all set to jump on to the techniques of obtaining the numerical solution thereof.
The next section shall address the discretization aspects of these problems.

3.5 Finite dimensional problems and the FEM

The approach behind all the techniques we are about to mention is the function space
discretization. If we consider the finite amount of basis elements, our weak formula-
tions (3.31) and (3.35),(3.36) would become equivalent to problems of linear algebra.
This approach is closely related to Galerkin method and would involve full matrices
in case if our basis functions each is defined and mainly non-zero in the whole in-
terior of the geometrical space. In order to obtain sparse matrices for convenience
in numerics, one can combine the solution and test function space-discretization ap-
proach with the geometrical space discretization such that the basis functions each
have a local support i.e each is zero in most of the interior of the geometrical space
and locally non-zero. This approach is closely related to the Finite element method.

We now are going to work with the so-called discrete weak formulation and ob-
tain the existence and uniqueness results thereof. We will present the general formu-
lation when one does not at all or specifies only some of the basis functions whilst
the formulation stays universal and leaves space for wide variety of such. The na-
ture of chosen basis shall appear in the coding chapter 5 and shall be explained there
in addition.

We are going to work in finite dimensional spaces that are subspaces of the infi-
nite dimensional ones

Hh ⊂ H1, W(0, T; Hh) ⊂W(0, T; H1). (3.54)

If n is the dimension of Hh then we clearly have n ∼ 1
h and when h→ 0,

n = dim Hh → ∞.

The discrete analogue to our weak formulation (3.31) shall look like this:

Find the function uh ∈ Hh(Ω), that satisfies the equation

a(uh, vh) = f (vh) ∀vh ∈ Hh(Ω). (3.55)

The discrete analogue to our weak formulation (3.35), (3.36) shall look like this:

Chapter 3. Partial differential equations and the FEM 21

Find the function uh(t) ∈ W(0, T; Hh(Ω)) such that uh(0) = Ihu0 ∈ Hh, that satisfies
the equation

d
dt

(uh(t), vh)0 + a(uh(t), vh) = f (vh) ∀vh ∈ Hh(Ω). (3.56)

We need the representation and the existence-uniqueness result for the discrete
case.

Prop. 3.5.1. The formulation (3.55) is equivalent to linear system Aξ = f ; ξ, f ∈ RN . The
formulation (3.56) is equivalent to initial-value problem for the ODE system
ξ̇(t) + Bξ(t) = f (t), ξ(0) = ξ0; ξ, f : R→ RN , ξ0 ∈ RN .
If the bilinear form is continuous and H-elliptic then each problem has a unique solution.

Proof. We are going to use the notion of basis in our finite dimensional subspace Hh
as a set of n linearly independent elements S := {φ1, . . . , φn} with the property

∀φ ∈ Hh ∃β ∈ Rn : φ =
n

∑
i=1

βiφi. (3.57)

In an n-dimensional space Hh we choose a basis S and consider n equations. For
every i, i ∈ {1 . . . n} we substitute our test function vh ∈ Hh by φi ∈ Hh:

a(uh, φi) = f (φi) ∀i ∈ {1 . . . n}. (3.58)

The element uh then is represented by
n
∑

j=1
ξ jφj:

a(
n

∑
j=1

ξ jφj, φi) = f (φi) ∀i ∈ {1 . . . n}. (3.59)

Due to bilinearity and linearity of a(uh, vh) and f (vh):

n

∑
j=1

a(φj, φi) · ξ j = f (φi) ∀i ∈ {1 . . . n}. (3.60)

This n× n linear system can be rewritten in matrix form:

Aξ = f , (3.61)

where aij = a(φj, φi), fi = f (φi).
The uniqueness of the finite dimensional weak formulation (3.55) is the direct

consequence of the infinite dimensional case. This can be also shown by proving the
fact that the system matrix is not singular.

Since our bilinear form a(u, v) is H1-elliptic in Hh ⊂ H1, the a(uh, vh) Hh-ellipticity
yields that the matrix A is positive definite: ξT Aξ > 0 ∀ξ ∈ Rn \ {0}, where
A = (a(φj, φi)), 1 ≤ i, j ≤ n, since

ξT Aξ =
n

∑
i,j=1

a(φj, φi)ξ jξi (3.62)

and due to bilinearity and H1-ellipticity for non-trivial solutions:

n

∑
i,j=1

a(φj, φi)ξ jξi = a(
n

∑
j=1

ξ jφj,
n

∑
i=1

ξiφi) = a(uh, uh) ≥ γ‖uh‖2
H1 > 0. (3.63)

Chapter 3. Partial differential equations and the FEM 22

The positive definite matrix has all positive eigenvalues and thus det A > 0 yielding
that the linear system has a unique solution.

As for the parabolic case Aξ = f transforms to Aξ(t) = f (t) by assuming the

solution and the data are time-dependent but there is one more term
d
dt

(uh(t), vh)0

to add to the left-hand side.

If we choose the same space discretization for test functions

Hh = span{φ1, . . . , φn}, (3.64)

the solution’s representation would be

uh(t) =
n

∑
j=1

ξ j(t)φj. (3.65)

For each linear equation in the system the test function is again vh = φi, i = 1..N.
Thus, due to linearity, for i = 1..n we have

d
dt

(uh(t), vh)0 =
d
dt

(
n

∑
j=1

ξ j(t)φj, φi)0 =
d
dt

n

∑
j=1

(φj, φi)0 · ξ j(t) = Mξ̇(t), (3.66)

where Mij = (φj, φi)0 - is commonly called a mass matrix.
Thus we have a formulation

Mξ̇(t) + Aξ(t) = f (t). (3.67)

The initial condition uh(0) = Ihu0 ∈ L2(Ω) should be interpreted in weak sense. In
order to write it in form ξ(0) = ξ0 ∈ Rn, by using the same argument, as for all t,
one rewrites for the initial value(N

∑
j=1

ξ j(0)φj, φi

)
0
= Mξ(0), (3.68)

which should be equal to (u0, φi) =: ϕ. Thus in order to get coefficients ξ0 one has
to solve the linear system

Mξ(0) = ϕ. (3.69)

By showing that the mass matrix is invertible, one gets the desired formulation.
The mass matrix is again positive definite since

∀ξ ∈ Rn \ {0} ξT Mξ =
n

∑
i,j=1

(φj, φi)0ξ jξi = (
n

∑
j=1

ξ jφj,
n

∑
i=1

ξiφi)0 = (uh, uh)0 = ‖uh‖2
L2 > 0

(3.70)
and thus it is not singular.

The uniqueness of the finite dimensional weak formulation (3.56) is the direct
consequence of the uniqueness result for infinite dimensional case.

The system matrix B = −M−1A for parabolic case is the multiplication of two
positive definite matrices with the minus sign and thus is negative definite, real parts

Chapter 3. Partial differential equations and the FEM 23

of all the eigenvalues are strictly negative and thus the system is asymptotically sta-
ble. This property is of importance in our applications section when one would like
to connect the stationary and non-stationary case.

The nature of objects involved in our formulation is now clear. In order to exam-
ine them in details, we are left with a choice of our basis functions. If we want our
matrices to be sparse, this choice is to be closely related to a partition of domains.
Here we have arrived to a definition of the finite element.

This means that the basis functions have to be defined locally, on Ω subsets or
elements. The plan is to subdivide Ω onto such elements. In this case the number of
elements is closely related to the number of basis functions.

Another requirement is that the basis functions are piecewise linear or polyno-
mial, which would guarantee the existence of quantities aij = a(φj, φi), fi = f (φi),
since these types of functions are square integrable and possess their weak deriva-
tives, necessary to compute these quantities.

One of the opinions is that the main aspect of the method nevertheless is the
subdivision of the domain onto subdomains or the introduction of the triangulation
for the domain Ω.

Therefore we arrive to the definition of triangulation.

Def. 3.5.1. The bounded domain’s Ω ⊂ Rn subdivision Th onto elements T ⊂ Rn, T ∈ Th
is called the triangulation of set Ω if the following holds:

1. Ω = ∪
T∈Th

T.

2. ∀T ∈ Th: T - closed set, int(T) 6= ∅, ∂T - Lipshitz boundary according to definition
(3.2.1).

3. ∀Ti, Tj ∈ Th, i 6= j : int(Ti) ∩ int(Tj) = ∅.

For polyhedral subdivisions we require an admissibility condition:

4. ∀Ti ∈ Th : each Ti face is either other element’s Tj face or it belongs to set’s Ω boundary
∂Ω.

We shall use the polynomial finite elements hence the definition.

Def. 3.5.2. The space

S(m)
h := {u ∈ C0(Ω̄) : u|Ti ∈ Πm ∀Ti ∈ Th} (3.71)

is called the m-th order polynomial finite element space with respect to triangulation Th.

One of the most popular special cases is the Linear Lagrangian elements:

S(1)
h := {u ∈ C0(Ω̄) : u|Ti ∈ Π1 ∀Ti ∈ Th}. (3.72)

This one is to be used in our applications chapter 6.

One way to refer to a finite element is to refer to a Th element, but there exists
more general definition, which takes into account several method’s aspects.

Chapter 3. Partial differential equations and the FEM 24

Def. 3.5.3. We call a finite element in Rn a triplet (T, P, Σ), where:

1. T - closed set, int(T) 6= ∅, ∂T - Lipshitz boundary.

2. P - defined on T finite dimensional function T → R space.

3. Σ - finite set of linearly independent functionals ϕi with the unisolvency property:
∀αi ∈ R ∃p ∈ P : ϕi(p) = αi, i = 1.. dim P.

Thus, the finite element is characterized by the basis functions p ∈ P, defined on
this element, and the degrees of freedom ϕi.

The property of the set Σ gives us a chance to unambiguously set the linear or
polynomial functions, defined on element T.

In case when these degrees of freedom are in form p → p(ai), where ai are the
mesh points, the task of finding the basis functions is a simple interpolation task.

We need to say some words on quality of approximation.
It is clear that the quality of approximation depends on all the aspects in our

abstract definition: quality of subdivision of domain and the degree of polynomial
basis functions.

But there’s a result, which would say that the Galerkin solution uh itself, with-
out saying anything about the nature of shape functions, is as close to an analytical
solution as any other function from Hh.

Prop. 3.5.2. (Céa’s lemma [Hac17], [Ben13], [Ang03].)
Under the conditions that the bilinear form a is continuous and H1-elliptic, the solutions

of problems (3.31) and (3.55) u and uh do satisfy the following:

‖u− uh‖H1 ≤ c inf
vh∈Hh

‖u− vh‖H1 , (3.73)

where c > 0.

Proof. We work in the subspace Hh ⊂ H1.
Our weak formulation (3.31) reads a(u, vh) = F(vh).
Due to linearity we’ve got

a(u, vh)− a(uh, vh) = a(u− uh, vh) = F(vh)− F(vh) = 0 ∀vh ∈ Hh. (3.74)

vh is an arbitrary Hh element and by setting vh = uh, one obtains

a(u− uh, uh) = 0, a(u− uh, vh) = 0 (3.75)

and by subtracting them both from a(u− uh, u), due to linearity one gets

a(u− uh, u− uh) = a(u− uh, u− vh). (3.76)

Hence by using the continuity and H1- ellipticity with the corresponding continuity
and coerciveness constants λ and γ as in (3.4.1), (3.4.2), the estimate holds:

a(u− uh, u− uh) ≥ γ‖u− uh‖2
H1 (3.77)

and

a(u− uh, u− vh) ≤ λ‖u− uh‖H1‖u− vh‖H1 (3.78)

Chapter 3. Partial differential equations and the FEM 25

and therefore

γ‖u− uh‖2
H1 ≤ λ‖u− uh‖H1‖u− vh‖H1 (3.79)

and for non-zero differences one gets

‖u− uh‖H1 ≤
λ

γ
‖u− vh‖H1∀vh ∈ H1, (3.80)

or in other terms
‖u− uh‖H1 ≤ c inf

vh∈Hh
‖u− vh‖H1 , (3.81)

where c :=
λ

γ
6= 0, c > 0.

This concludes the proof.

This basically means that the approximation uh is the best amongst all the candi-
dates vh ∈ Hh. The result is the key to the approximation and convergence results in
different norms which we do not present here as they are beyond the scope of this
thesis but one can find them in literature such as [Hac17], [Ben13], [Ang03].

What we can conclude from all of the above is that there is always choice on the
partition of geometrical domain, type of basis functions and the degrees of freedom.
Along with the choice of Linear Lagrangian elements (3.72), the methods for solving
the resulting linear system and the linear ODE system are going to be chosen de-
pending on application. Some more comments on that in the next section.

Now we have some techniques on how to obtain a certain-type numerical solu-
tion of problems (3.31) and (3.35), (3.36) - weak formulations of single linear differen-
tial equation, either elliptic or parabolic. Since the problems (2.11), (2.18) about to be
considered in our applications chapters shall be coupled in a system and would in-
volve non-linear source terms, the next section shall consider these aspects in order
to conclude the chapter.

3.6 Treatment of the non-linear time-dependent system

There is a reason why we considered decoupled equations first and now about to
jump to a coupled system properties.

First of all, some algorithms would use the decoupling whereas a single equation
to be solved at each step of the solution process.

Secondly, we’ll show that the weak formulation’s extension to system form would
require a simple summation and thus the existence-uniqueness proofs would use
the results obtained for the bilinear form and linear functional formed out of single
equation.

Thus we do a somewhat straightforward extension to several dimensions for
our functions to become the vector-valued ones and discuss the underlying aspects
along the way.

The capital N notation for the number of components for our vector functions
is going to be used and is in consistence with the number of species from chapter 2
and thus the number of the equations and unknown functions in the system (actually
N + 1 if we solve for N mass fractions and 1 temperature, but due to conservation of
mass, one mass fraction can be excluded from the system thus the consistency still
holds).

Chapter 3. Partial differential equations and the FEM 26

We define the vector functions Rd → RN as u := (u1, . . . , uN)
T, v := (v1, . . . , vN)

T.
The components are either elements of L2(Ω) or H1(Ω) thus [L2(Ω)]N and [H1(Ω)]N

are still Hilbert spaces equipped with scalar product (u, v)k =
N
∑

i=1
(ui, vi)k and the in-

duced norm [(u, u)k]
1
2 for k = 0, 1.

The construction of our elliptic or parabolic PDE system is in accordance with
models (2.11), (2.18) from chapter 2 and has a somewhat diagonal structure. Thus,
more generally they look like this:

L1u1 = f1(u1, . . . , uN), Ω,
. . .
Lnun = fn(u1, . . . , uN), Ω,
ui(x) = 0, ΓDi ,
∇ui · n̂ = 0, ΓNi ,

(3.82)

i = 1..N.
The notation Li stands for indexed elliptic differential operators that have the same
construction as a single operator L for each i as in (3.1).

Similar construction is obtained for parabolic case. This one is going to be in cor-
respondence with the system (2.11), (2.18) from chapter 2, thus, again the diagonal
structure and only one time derivative for each equation.

∂ui

∂t
+ Liiui = fi(u1, . . . , uN), (0, T)×Ω,

ui(t, x) = 0, (0, T)× ΓDi ,
∇u · n̂ = 0, (0, T)× ΓNi ,
ui(0, x) = u0,i, Ω,

(3.83)

i = 1..N.
In order to obtain the weak formulations one scalarly multiplies both sides of our
system with a test vector function v. We arrive to weak formulations similar to
(3.29):

a(u, v) =
∫
Ω

[L1u1v1 + · · ·+ Lnunvn]dx, f (v) =
∫
Ω

[f1v1 + · · ·+ fnvn]dx. (3.84)

Partial integration to be applied to all principal parts similarly to (3.21). We assume
that the right-hand side function is linearised and more on that below in this chapter.

The coerciveness and continuity would again guarantee the solvability and the
uniqueness of solution for weak formulations of (3.82) and (3.83) (if the vector-
valued initial condition is also in [L2(Ω)]N) due to the results (3.4.1) - (3.4.3). Thus
we formulate the following proposition.

Prop. 3.6.1. The bilinear form in (3.84) is [H1(Ω)]N continuous and coercive, the linear
form in (3.84) is [H1(Ω)]N continuous.

Proof. The proof is analogous to the case with a single unknown function (Prop.
3.4.2). Sobolev norms are constructed in a way such that the integral has new sum-
mands out of the derivatives and vector function norms introduce even more sum-
mands in the same fashion.

Now we check whether the three properties are true in the same way as (3.4.2).

Chapter 3. Partial differential equations and the FEM 27

• The continuity of the bilinear form.
In order to show that |a(u, v)| ≤ λ‖u‖H‖v‖H, the bilinear form’s expression
a(u, v) may first be rewritten in form same as in (3.4.2) with the new index
k = 1..N taking into account the vector function component numeration. The
coefficients are stored in the 3-dimensional object aijk:

a(u, v) = ∑
0≤i,j≤d

1≤k≤N

(aijk · ∂iuk, ∂jvk)L2 .

Again, by applying the Cauchy-Schwarz, one can write down

|a(u, v)| = | ∑
0≤i,j≤d

1≤k≤N

(aijk · ∂iuk, ∂jvk)L2 | ≤ λ ∑
0≤i,j≤d

1≤k≤N

‖∂iuk‖L2‖∂jvk‖L2 ≤

≤ λ

√∫
Ω

(|u1|2 + |u1x1
|2 + · · ·+ |u1xd

|2 + · · ·+ |uN |2 + |uNx1
|2 + · · ·+ |uNxd

|2)dx·

·
√∫

Ω

(|v1|2 + |v1x1
|2 + · · ·+ |v1xd

|2 + · · ·+ |vN |2 + |vNx1
|2 + · · ·+ |vNxd

|2)dx =

= λ‖u‖[H1]N‖v‖[H1]N , (3.85)

where λ = max
1≤k≤N

0≤i,j≤d

{Cijk : |aijk(x)| ≤ Cijk}.

• The second property is the H-ellipticity of the bilinear form a(u, v).
We have to show, that

a(u, u) ≥ γ‖u‖2
[H1]N . (3.86)

For each vector-function component k one uses the coerciveness result from
(3.4.2):

ak(uk, uk) ≥ γk‖uk‖2
H1 , (3.87)

where γk = min
0≤i≤d

{C : |aiik(x)| ≥ C}.
Since a(u, u) = ∑

1≤k≤N
ak(uk, uk), we’ve got the estimate

a(u, u) ≥ γ(‖u1‖2
H1 + · · ·+ ‖uN‖2

H1) = γ‖u‖2
[H1]N , (3.88)

where γ = min
1≤k≤N

{|γk|}.

• The last property is the continuity of the linear functional f (v).
As we’d agreed, we only consider the homogeneous case - the one that is going
to be considered in the applications chapters. Inhomogeneous case had been
proven in (3.4.2) for a single function and the extension to the vector functions
is straightforward. We apply the Cauchy-Schwarz as usual along with the fact
that each component of the vector function f is bounded:

| f (v)| = ∑
1≤k≤N

|(fk, vk)L2 | ≤ ∑
1≤k≤N

‖ fk‖L2‖vk‖L2 ≤ ∑
1≤k≤N

Mk‖vk‖H1 ≤ M‖v‖[H1]N ,

(3.89)

Chapter 3. Partial differential equations and the FEM 28

where M = ‖(M1, . . . , MN)
T‖2.

In the similar fashion, since the uniqueness is proven, we can jump to the dis-
cretization aspects. These are again a slight generalization of what has already been
done.

The choice of test vector-functions for the application section is the following:

{v1e1, v2e1, . . . , vNe1, v1e2, v2e2, . . . , vNe2 . . . , vNeN}. (3.90)

This leads to larger stiffness matrix that has a block-diagonal structure:

diag[A1, . . . AN]. (3.91)

The system is again solvable in linear algebra sense since each block has the origin
already discussed for single unknown function and the uniqueness proven in (3.4.2).
The block-diagonal matrix constructed out stiffness matrices for each individual el-
liptic differential operator Li is still positive definite. The linearization would add
extra non-zero elements, which doesn’t affect the positive-definiteness. The nature
of these extra elements and how to decompose the non-linear problem onto sequence
of linear problems is what we are going to discuss till the end of this chapter.

Here we address the notion of linearization, which naturally would come to-
gether with the time discretization. In case if the problem is given linear or time-
independent, we only consider the special one-step case of what we are going to
consider.

All our results so far were obtained for linear PDEs or systems of PDEs. Some
notes were made that we consider the linearised equations. The problems from the
chapter 2 are non-linear. Such approach is due to the fact that the linearisation theory
would transform the non-linear problem onto sequence of linear problems, thus the
solution process for uniquely solvable linear problems is to be called several times.

Recall the objects from the proposition 3.5.1. The discretization of a weak formu-
lation for elliptic BVP (3.31) leads to system Aξ = g.

We have intentionally changed f to g so we get f in a final result.
The discretization of a weak formulation for parabolic IBVP (3.35), (3.36) leads to

ODE system Mξ̇ + Aξ = g.
If one takes a closer look, the non-linearity appears in the right hand side only

and for models from chapter 2 is time independent.
If we want to extend the theory up to a non-linear right hand side case, in the

equivalence result 3.5.1 instead of g we get g(ξ):
respectively Aξ = g(ξ) and Mξ̇ + Aξ = g(ξ).

In more general form for both problems (the IBVP as well after time discretiza-
tion for each time step we’re about to discuss) we have to solve the non-linear system
of algebraic equations f(ξ) = 0, where f : RN → RN - nonlinear, assumed differen-
tiable vector function.

This is due to the fact that by using a suitable time-stepping scheme the linear
first term of Mξ̇ + Aξ = g(ξ) with respect to ξ(t) now becomes linear with respect
to all introduced quantities in discrete time.

Chapter 3. Partial differential equations and the FEM 29

One of the choices is the backward Euler scheme [Hac17], [Ang03].

Def. 3.6.1. We call the scheme ξ̇ ≈ ξk − ξk−1

τk
a backward Euler scheme

with the time steps τk, k = 1..N.
Then, by substituting that in (3.67), we obtain

M
ξk − ξk−1

τk
+ Aξk = g(ξk), (3.92)

or in more compact way f(ξ) = 0 with

f(ξk) = (M + τk A)ξk −Mξk−1 − τkg(ξk). (3.93)

The scheme is selected as a more or less universal one, but other implicit schemes
would yield the same model - a system of non-linear algebraic equations.

Thus in the following we omit the vectorial notation and present some results on
linearisation of general non-linear systems
f (x) = 0.

First approach is to make a set of equivalent algebraic operations which leads to
simple iterations. This trick at the same time proves that if the convergence is ob-
tained, the limit element is indeed one of the solutions of the system. One can easily
construct a simple iteration technique for this problem:

f (x) = 0,

h f (x) = 0,

h f (x) + x = x, (3.94)

with the iteration process

xk+1 = xk + hk f (xk), x0 = x̃0, hk ∈ R \ {0}, k = 0..N. (3.95)

Def. 3.6.2. We call the method (3.95) a simple iteration method.

One can observe that if the convergence has been obtained, i.e
x∗ = x∗ + hk f (x∗), then f (x∗) = 0, which means that the fixed point is one of the
solutions of the given non-linear system.

But this fact is not enough since one need to exclude the divergent iterations,
therefore one requires the notion of the contraction map.

We define our function f in Ω ⊂ Rn - convex, bounded set, so f : Ω→ Ω.
We consider the results quite abstractly - in metric spaces.

Let Ω be a metric space (Ω, ρ) with standard metric space axioms:
ρ : Ω×Ω→ [0, ∞) :

1) ρ(x, y) ≥ 0,

2) ρ(x, y) = 0⇔ x = y,

Chapter 3. Partial differential equations and the FEM 30

3) ρ(x, y) = ρ(y, x),

4) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) ∀z ∈ Ω.

We can choose ρ(x, y) = ‖x− y‖ if Ω - linear normed space.
Once we’ve got the metrics we need the notion of convergence.

Def. 3.6.3. (Convergence) A sequence {xn} of metric space’s (Ω, ρ) elements does converge
to an element x∗ ∈ Ω iff ρ(xn, x∗)→ 0, n→ ∞.

Def. 3.6.4. (Contraction) We call a mapping f : Ω→ Ω a contraction when
ρ(f (x), f (y)) ≤ q · ρ(x, y),
∀x, y, f (x), f (y) ∈ Ω, 0 ≤ q < 1.

Prop. 3.6.2. Assume that Ω ⊂ Rn - convex, bounded set.
Then for each contraction f : Ω→ Ω ∃! x∗ ∈ Ω :
f (x∗) = x∗

- a fixed point.

Proof. 1) Existence
For an arbitrary element x0 ∈ Ω we can make a sequence of Ω elements {xn} :
xk+1 = f (xk), k = 0, 1, 2, . . . ,

we show that {xn} → x∗, by using the convergence definition.
f (x∗) = x∗ means that ρ(f (x∗), x∗) = 0 or ρ(xk, x∗)→ 0.

We construct the iteration process:
x0 ∈ Ω,
f (x0) = x1 ∈ Ω,
ρ(x0, x1) ≤ C (due to convex and bounded set).

x2 = f (x1) ∈ Ω. (3.96)

ρ(x1, x2) = ρ(f (x0), f (x1)) ≤ q · ρ(x0, x1) ≤ q · C,

x3 = f (x2) ∈ Ω. (3.97)

ρ(x2, x3) = ρ(f (x1), f (x2)) ≤ q · ρ(x1, x2) ≤ q2 · C,

...

xk+1 = f (xk) ∈ Ω. (3.98)

ρ(xk, xk+1) = ρ(f (xk−1), f (xk)) ≤ q · ρ(xk−1, xk) ≤ qk · C, k = 1, 2 (3.99)

The limit x∗ exists since

ρ(xk, x∗) ≤
∞

∑
n=k

ρ(xn, xn+1) ≤ C
∞

∑
n=k

qn = C
qk

1− q
→ 0, k→ ∞. (3.100)

Chapter 3. Partial differential equations and the FEM 31

We have used the formula for sum of geometric series

∞

∑
k=0

qk =
q0

1− q
=

1
1− q

, |q| < 1. (3.101)

2) Uniqueness.

We assume that there exists x∗1 and x∗2 - two fixed points of the contraction f (x):

f (x∗1) = x∗1 , f (x∗2) = x∗2 , ρ(x∗1 , x∗2) > 0. (3.102)

By using the definition of the contraction (3.6.4),

ρ(f (x∗1), f (x∗2)) ≤ q · ρ(x∗1 , x∗2), (3.103)

or
ρ(x∗1 , x∗2) ≤ q · ρ(x∗1 , x∗2), (3.104)

thus
ρ(x∗1 , x∗2) = 0, (3.105)

which leads to a contradiction.

Thus, by using the simple iterations xk+1 = xk + hk f (xk), or any other iteration
method in form xk+1 = g(xk), x0 = x̃0, in order for method to converge (or a fixed
point to exist and be unique), the following has to hold:
g(x) - a contraction, Ω → Ω (since the proof held for an arbitrary x0 ∈ Ω). Hence
the next result.

Prop. 3.6.3. g : Ω→ Ω, Ω ⊂ Rn, g ∈ C1(Ω).
The iteration method in form xk+1 = g(xk) does converge (g is contraction) if
‖J(g(x))‖ < 1, ∀ x ∈ Ω.

Proof. We apply the finite increment formula [Fin]:
g : Ω→ Ω, Ω ⊂ Rn, g ∈ C1(Ω). Ω - convex, bounded set.
Then

‖g(x)− g(y)‖ ≤ sup
ξ∈Ω
‖J(g(ξ))‖ · ‖x− y‖. (3.106)

That is done by choosing a suitable matrix norm (1, 2 or ∞ - all are equivalent in a
finite dimensional space). In our terms:

‖g(x)− g(y)‖ = ‖J(g(ξ)) · (x− y)‖ ≤ ‖J(g(ξ))‖ · ‖x− y‖ ≤ max
ξ∈[a,b]

‖J(g(ξ))‖ · ‖x− y‖.

(3.107)
g would become contraction when max

ξ∈[a,b]
‖J(g(ξ))‖ < 1 or

‖J(g(x))‖ < 1, ∀ x ∈ Ω. (3.108)

This concludes the proof.

The special case of this condition is the Newton method - the one that guarantees
that the condition (3.6.3) holds by neglecting the growth factor J(g(x)) ≡ θn×n since
‖J(g(x))‖ = 0⇔ J(g(x)) ≡ θn×n.

Chapter 3. Partial differential equations and the FEM 32

For our simple iterations (3.95) that means:

g(x) = x + h f (x),

xk+1 = g(xk) = xk + hk f (xk),

J(g(xk)) = E + hk J(f (xk)), (3.109)

thus
hk = −J−1(f (xk)). (3.110)

Therefore the method has the form

xk+1 = xk − J−1(f (xk)) · f (xk), k = 0..N. (3.111)

Thus whenever one wishes to solve the non-linear (or linear) system (3.83) with
iteration techniques one considers the process (3.6.2) to reach the predefined toler-
ance and moreover if the constructed function g(x) is differentiable one considers
the Newton method (3.111) to annihilate the growth factor entirely or one of the
other parameter optimization techniques.

In the applications’ chapter 6 the methods to be chosen depending on situation.
Numerical simulations will show that Newton’s method or the one with the approx-
imate derivatives in it lead to convergence in case of non-linearities in our models.

The treatment of the non-linearity has now been pinned down and this concludes
the chapter since now one knows how to consider the linear stationary problem in
its differential form, discretize the solution space and obtain the discretized problem
and regarding the time stepping and linearization, one transforms the non-linear
time dependent problem onto sequence of linear time-independent ones.

The next chapter deals with special techniques on solution post-processing such
as parameters’ optimization, model reductions and the information storage, which
are to be much more closely related with the main topic of this thesis and real life
applications.

33

Chapter 4

Parameter optimization and model
reduction strategies

This chapter is the core of the thesis. Models obtained in Chapter 2 are parametrized
and the parametrization is to be discussed more thoroughly in the applications Chap-
ter 6 for each particular application. In this chapter however we address the general
procedures arising in the topic of treatment of the parametrization aspect and con-
sider several modern techniques.

The idea to introduce the topic in the first place comes from the fact that there
won’t be enough reactions introduced in the model or won’t be enough data in gen-
eral. If we work with an adequate dimension (for author to program and simulate
in a short amount of time) but assume that the model parameters can be varied, one
can teach the model to be close enough to the experimental data.

Now, ’close enough’ interprets such that the quantities have to be minimized,
thus we consider a class of optimization problems. Since the numerical solution
obtaining procedure is rather complex, we shall consider the class of optimization
techniques that cannot be solved with an exact algorithm. The concept of heuristics
is crucial here - by doing research on that and how the notion is related to the opti-
mization problems, one can find different results in publications and books [BAE05],
[Cle06], [Wil10], [Gre08].

Several techniques amongst those the author has found shall be considered here,
given in their classical forms. Then the modification of each of them shall be intro-
duced and motivated by the class of application problems.

Whether one or another optimization procedure is called out, it is a part of a
scheme, which uses the procedures from the previous chapter. It takes the vector of
parameters as an input by calling out the solution process many times, teaches itself
how to reach the optimization goal. Then in the applications chapter, for each of the
applications this goal is formulated. Finally, the result of the last solution procedure
can be interpreted as the final one and brought further for the post-processing.

For the applications considered in chapter 6 one or several techniques presented
in the next sections shall be applied. A brief analysis of each such application such
as dimensionality and the type of the problem allows us to pick the appropriate tool
amongst the following techniques.

The main motivation to consider the optimization technique is that the modelling
results are not necessarily consistent with the experimental results. Thus we need a
concept to minimize the distance between the chosen quantities.

Chapter 4. Parameter optimization and model reduction strategies 34

The reason to choose the stochastic numerical method is that the data might be
not smooth enough and the functional to optimize appears as a sort of black box in
complicated cases even though in simple cases the structure can be visible.

In general the expression to minimize shall look like this:

f (p) = ‖Qexp −Qmod(p)‖2, (4.1)

where Qexp ∈ Rn is the given vector of experimental values and Qmod ∈ Rn is
the result of post-processing of the PDE system (2.11), (2.18) solution. The minim-
imization problem then should look like this

min
p
‖Qexp −Qmod(p)‖2. (4.2)

Also p is the vector of parameters for our parametrized model - dimension to be
denoted as Dp depends on the nature of the task.

In our models (2.11), (2.18) it might be maximal and outlet temperatures compar-
ison to name the least:

min
p
‖Tmaxexp − Tmaxmod‖2,

min
p

∥∥∥(Tmaxexp

Toutexp

)
−
(

Tmaxmod

Toutmod

)∥∥∥2
.

These and other choices of cost functional to be discussed in the applications
chapter 6.

One good feature of the functionals constructed is that they directly represent
the measure between experimental and modelling data in a certain way to a certain
extent. After one stops the optimization procedure, the value of the functional can
be claimed as such measure and it can easily be reported.

In the first section we discuss the choice of the optimization technique, present
its algorithm, convergence criterion and prove the convergence criterion.

4.1 Particle swarm optimization

The choice of this numerical non-gradient optimization method is due to the fact that
in general we don’t have an explicit expression of the functional. This is either due
to the iterative nature of finding the solution of the PDE system (2.11), (2.18) when
we code the solver by ourselves or to the complete black-box nature of our solving
process when we use an industrial package for solving it. Thus we look onto the set
of gradient-free methods.

For several other applications throughout the PHD studies author had made his
choice on the PSO due to simplicity, universality and since it has been showing good
result in terms of leading to optimal directions.

In this section we present the method (4.3), (4.4) and the convergence criterion
4.1.1. The results are adopted out of several books and publications [BAE05], [Cle06].

We present the algorithm in its classical form. It uses a modification of discrete
velocities and positions of particles and for each particle determines winning states

Chapter 4. Parameter optimization and model reduction strategies 35

pi ∈ RDp and for the entire swarm - the winning state g ∈ RDp and depends on
method’s parameters w, c1, c2 ∈ R and r1, r2 ∈ R:

vi
d(k + 1) = wvi(k) + c1r1(pi

d − xi
d(k)) + c2r2(gd − xi

d(k)), (4.3)

xi
d(k + 1) = xi

d(k) + vi
d(k + 1), (4.4)

k = 1..N, d = 1..Dp, i = 1..S, where N - number of iterations, Dp - number of
parameters, S - number of particles.
c1r1 and c2r2 are usually combined and the notations φ1 := c1r1 and φ2 := c2r2
are widely used and is due to the fact that r1,2 are usually picked as two uniformly
distributed random numbers ∼ U(0, 1).

The choice of parameters to be discussed below.
The process (4.3), (4.4) iterates the quantity xi

d(k) in upper and lower bounds
blo, bup.

In order to program this method as we are going to in chapter 5, we need to
construct the algorithm out of our formulas (4.3), (4.4) along with the initialization
of data.

We come up with the simplest way how to do it and the algorithm looks as fol-
lows:

Alg. 4.1.1.

1) The initial cycle.
Randomize the swarm’s best known position g and the position of each particle

xi ∼ U(blo, bup), g ∼ U(blo, bup), i = 1..S, (4.5)

and the particle’s best known position set to its initial position pi := xi.
If f (pi) < f (g) then set g := pi.

Initialize the particle’s velocity:

vi ∼ U(−|bup − blo|, |bup − blo|) (4.6)

The randomization and absolute value taking is happening component-wise.

2) The main cycle.
For k = 1..N, d = 1..Dp, i = 1..S :
implement the formulas (4.3), (4.4).

Update the winning states:

f (xi) < f (pi) ⇒ pi := xi,

f (pi) < f (g) ⇒ g := pi. (4.7)

The implementation of this algorithm in Matlab is going to be pinned down in
the next chapter 5.

Since upper and lower bounds bup, blo are present, we need to apply some
boundary controls. The linear operations in (4.3), (4.4) can easily compute the new
state xi

d(k) out of bounds. This thing should be taken care of a-priori.

The author came up with the following naive set of actions, which so far have
shown to be consistent with all the author’s experiments and in particular the ones

Chapter 4. Parameter optimization and model reduction strategies 36

from the applications chapter 6.

In order to perform a constrained optimization between blo, bup, we apply the
following actions.

The first action is for each k (round brackets omitted):

xi
d + vi

d < blod ∨ xi
d + vi

d > bupd ⇒ vi
d := −vi

d, (4.8)

which is to switch the velocity sign in case if the generated velocity at the cor-
responding step k is about to make the particle move through the boundary. This
would lead us to bouncing backwards from the boundary, but doesn’t guarantee
that we don’t move beyond the opposite boundary by applying this action. Thus
one more set of controls is to be applied:

xi
d + vi

d < blod ⇒ vi
d := blod − xi

d,

xi
d + vi

d > bupd ⇒ vi
d := bupd − xi

d, (4.9)

which guarantees that we never move beyond any boundary by staying at the
corresponding boundary if the velocity sign switching action gives no luck.

The convergence to at least a local minimum is what we wish to discuss now.
In the applications section we need to make our quantities closer to each other to a
certain extent - due to the nature of our problems (4.1). The algorithm (4.5)-(4.7) has
appeared to be trustworthy in an empirical way - so far it has been consistent with
all the experiments - in our case - test problems with the a-priori known optimum.

And the other thing is - the nature of our problems (4.1) is always to tend dis-
tances to zero - therefore in our rather complex models in the applications chapter 6
the parameter optimization procedure always knows the optimal value of the func-
tional but the argmin value is to be determined which eases the life in this particular
aspect to a certain extent. And finally, for sake of applications considered we are
totally fine with finding only one of argmins in case if there are several.

Thus we present the convergence criterion - the choice of method’s parameters,
that guarantees us to tend the value of our functional to the optimal one and as we
see experimentally - for our applications in the applications chapter 6, indeed find
the argmin of the approximated zero value of our functional.

Prop. 4.1.1. The choice of parameters such as max{|λ1|, |λ2|} < 1,

where λ1 =
1 + w− φ1 − φ2 + γ

2
and λ2 =

1 + w− φ1 − φ2 − γ

2
,

γ =
√
(1 + w− φ1 − φ2)2 − 4w

guarantees the convergence of (4.3), (4.4) to the best state of their population g:

lim
k→∞

xi
d(k) = gd, d = 1..Dp, i = 1..S. (4.10)

The design of the criterion is rather counter-intuitive but let’s see why it is the
case by proving the statement.

Proof. In order to talk about convergence, first of all we need to obtain a recurrence
relation as a function of previous states for xi

d(k), k ∈ N0 for each d = 1..Dp and
i = i..S denoted as x(k) from now on since the dimensions are independent and

Chapter 4. Parameter optimization and model reduction strategies 37

we only work with linear operations on vectors. Same with velocities and winning
states:

v(k + 1) = wv(k) + φ1(p− x(k)) + φ2(g− x(k)), (4.11)

x(k + 1) = x(k) + v(k + 1). (4.12)

By iterating the system and using common notation for difference equations
xk := x(k), k ∈N0, one obtains

xk+1 = xk − φ1xk − φ2xk + wvk + φ1 p + φ2g. (4.13)

Since vk = xk − xk−1, one obtains

xk+1 = xk − φ1xk − φ2xk + wxk − wxk−1 + φ1 p + φ2g, (4.14)

or
xk+1 + Axk + Bxk−1 = f , (4.15)

where
A = φ1 + φ2 − w− 1, B = w, f = φ1 p + φ2g. (4.16)

In order to iterate the difference equation (4.15) we should set the initial condi-
tions

x0 = x̃0, x1 = x̃1, x̃0, x̃1 ∈ R. (4.17)

The problem (4.15), (4.17) describes the trajectory of each particle’s each compo-
nent up until either particle’s winning state p or global winning state g gets updated.
After each update the process continues with the new values. Since the difference
equation’s coefficients A and B do not depend on p and g, one can show conver-
gence for every p, g ∈ R.

The solution for this problem for second order difference equation with constant
coefficients (4.15) is sought in form

xk = C1λk
1 + C2λk

2 + xpart, (4.18)

where C1, C2 ∈ R, λi ∈ C, i = 1..2 and it is done by means of substitution
xk = Cλk−1, C ∈ R \ {0}, λ ∈ C \ {0} - a discrete analogue of Euler substitution

for differential equations.
Thus for the homogeneous part we obtain the characteristic equation

λ2 + Aλ + B = 0. (4.19)

Thus λ1 and λ2 are the roots of the quadratic equation (4.19):

λ1,2 =
−A±

√
A2 − 4B

2
, (4.20)

from where

λ1 =
w + 1− φ1 − φ2 +

√
(φ1 + φ2 − w− 1)2 − 4w
2

, (4.21)

λ2 =
w + 1− φ1 − φ2 −

√
(φ1 + φ2 − w− 1)2 − 4w
2

. (4.22)

Chapter 4. Parameter optimization and model reduction strategies 38

Regarding the particular solution xpart = C, C ∈ R, it can be found by plugging it
in the equation (4.15):

C(��1+φ1 + φ2 −��w− �1 +��w) = φ1 p + φ2g, (4.23)

hence
C = xpart =

φ1 p + φ2g
φ1 + φ2

. (4.24)

and by tending k to infinity in the representation (4.18) one gets
xk →

k→∞
xpart when the condition max{|λ1|, |λ2|} < 1 holds.

The weighted average (4.24) of the global and local best states g and p obviously
would tend to g at point when all the particles don’t seem to find any better pi in
comparison with the state g.

Thus we have obtained that there exists a parameter region whereas particles
would stop moving in the iteration process (4.3), (4.4) while each moving step is ei-
ther stagnant or indeed minimizes the functional (4.1).

What we don’t want to do in formulas (4.21) and (4.22) is go to complex values
such as (φ1 + φ2 − w− 1)2 > 4w (even though it is still an option and the absolute
value in Prop.4.1.1 can be interpreted as the length of a complex number) or these
quantities to be larger or equal to unity.

The popular parameter choice, that can be found in different sources and to be
used in this thesis since it has been consistent with all author’s numerical experi-
ments so far is w = 0.3, φi ∈ (0, 1.2), i = 1..2. As we stated in the beginning, φi is
decomposed onto ciri, where ri ∼ U(0, 1), ci = 1.2, i = 1..2.

If one plugs in the numbers it is easy to see that this gives somewhat extreme
values in order not to go to a complex plane as well as the ratios not to exceed the
unity.

The other aspect is the functional values’ comparison operation that also lies
within.

The practice shows that the optimization process runs rather fast but there obvi-
ously is one costly part, which is the functional evaluation process. This is clearly
the running of the PDE solution process and the post-processing of the solution.

The PDE solution process is the part that should be taken care of since the invert-
ing of large matrices or many matrix-vector multiplications are brought to the table
and moreover this complex of actions should be done many times in the optimiza-
tion process.

In the next sections we discuss how to overcome these difficulties to a certain
extent and simplify these underlying procedures.

4.2 Reduction due to principal components

The present model reduction technique naturally has to be introduced for general
models, discussed briefly in chapter 2, where we solve for 5+ N equations, where we
take the account of temperature, velocities, density and N is the number of species,

Chapter 4. Parameter optimization and model reduction strategies 39

which can be measured in hundreds. One can see how these models look like e.g in
[Vey05] or [Wil85].

As for the models introduced in this thesis, the idea is to reduce the dimension
for the discretized and linearized models (3.67). There’s a necessity for that since our
optimization procedures described in previous chapter lead to high computational
times.

We do the reduction to the certain extent: the dimension should be reduced as
much as possible, whilst at the same time measure of difference between the results
should be admissible.

The author is mainly inspired by the published results [Wil10], [Gre08].
So main technique we are going to use here is the Principal Component Analysis.

A principal component analysis is required in order to speed up the evaluation
of the functional whilst performing the optimization. Since we are going to mostly
deal with vectorial quantities, the bold notation for vectors is going to be omitted till
the end of the chapter.

The procedure requires making of the matrix of snapshots first:

X = [x̂1, . . . , x̂L]. (4.25)

This matrix should contain the representative solutions x̂k, k = 1..L at different
time steps. This should be calculated once with full dimension. Afterwards this ma-
trix is going to be used to form a suitable basis.

If we seek the representation of the snapshots in the reduced basis with the intro-
duced measure of quality of the representation, we wish to minimize the quantity

L

∑
k=1
‖x̂k − V̂C‖2

2 (4.26)

subject to orthogonal bases of K elements, stored as the columns of matrix
V̂ ∈ Rn×K, K < L. Small n here is in correspondence with the number of basis
elements for Galerkin or FEM solution from chapter 3.

C represents the vector of coefficients in this basis - for each V̂ to be uniquely
determined.

Matrix of snapshots is rectangular and there’s a necessity to introduce the gener-
alization of matrices eigenrepresentation: the Singular Value Decomposition.

Def. 4.2.1. The SVD - a (compact) singular value decomposition is a factorization of a
matrix X ∈ Rn×L in form X = VΣUT, where V ∈ Rn×L is an orthogonal matrix,
Σ ∈ RL×L = diag([σ1, σ2, . . . , σL]) with positive diagonal elements, U ∈ RL×L - an
orthogonal matrix.

If we consider the left singular vector matrix V in the SVD X = VΣUT, where
X = [x̂k] - matrix of the solution representatives (4.25), we need to know the repre-
sentation of the basis vectors as well as the quality of approximation of snapshots.
As usual in this thesis we formulate one vast proposition and the technical peculiar-
ities throughout the proof are going to be of importance.

Prop. 4.2.1. For a matrix of snapshots X ∈ Rn×L the left singular vector matrix V is the
orthogonal eigenvectors matrix of XXT.
The right singular vectors in U are the orthogonal eigenvectors of XTX.
The singular values are the square roots of eigenvalues of XTX.

Chapter 4. Parameter optimization and model reduction strategies 40

If we choose the set of K < L left singular vectors to form a reduced basis in (4.26), the value
of (4.26) shall be ‖σ‖2

2, where σ ∈ RL−K - the vector of leftover singular values,
corresponding to L− K left singular vectors.

Proof. We are going to widely use the property of the transpose of the product of two
matrices (AB)T = BT AT, A ∈ Rn×m, B ∈ Rm×p as well as the dot product property
for A ∈ Rn×n, x, y ∈ Rn : (Ax, y) = (x, ATy)
since

(Ax, y) := (Ax)Ty = xT ATy = (x, ATy). (4.27)

The first part is a link between the eigenrepresentation and the singular repre-
sentation:

XXT = VΣUT(VΣUT)T = VΣUTUΣVT = VΣ2VT (4.28)

and
XTX = (VΣUT)TVΣUT = UΣVTVΣUT = UΣ2UT (4.29)

since U and V are orthogonal and Σ is diagonal.
The Σ2 representation is diag([σ2

1 , . . . , σ2
L]) and in comparison with the regular

eigenvalue representation VΛV−1,
we would have the coincidence of V and U as well as the relation λk = σ2

k , k = 1..L.
iff the eigenvectors for both XTX and XXT were orthogonal.

Both XTX and XXT are symmetric since (XTX)T = XTX and (XXT)T = XXT

and assuming there are no eigenvalues of multiplicity > 1 (in this case the repre-
sentatives can be reconstructed), one can choose the orthonormal eigenvector basis
since we have for λi 6= λj
and vi, vj, i, j = 1..L :
λi(vi, vj) = (λivi, vj) = (Avi, vj).

Due to (4.27) and symmetry we have (Avi, vj) = (vi, Avj) = (vi, λjvj) = λj(vi, vj).
Therefore (λi − λj)(vi, vj) = 0 when the scalar product is zero.
As for the last part:

for XTX we have

L

∑
k=1

λk(XTX) = trXTX =
L

∑
k=1
‖Xk‖2

2 (4.30)

since on the diagonal of XTX we’ve got
(Xk, Xk), where the lower index stands for column number.

Therefore, by representing each snapshot in full basis x̂k = VVT x̂k and comput-
ing the coefficients in the reduced basis C = V̂T x̂k in (4.26), we’ve got

L

∑
k=1
‖x̂k − V̂C‖2

2 =
L

∑
k=1
‖VVT x̂k − V̂V̂T x̂k‖2

2 = trYTY (4.31)

where
Y = VVTX− V̂V̂TX (4.32)

and since

VVT =
L

∑
k=1

VkVT
k , V̂V̂T =

K

∑
k=1

VkVT
k , (4.33)

Y =
[L

∑
k=K+1

VkVT
k

]
X = VLVT

L X, (4.34)

Chapter 4. Parameter optimization and model reduction strategies 41

where VL is the matrix of leftover basis vectors, not taken into reduced basis.

Due to orthogonality one gets

YTY = (VLVT
L X)T(VLVT

L X) = XTVL���VT
L VLVT

L X = XTVLVT
L X (4.35)

and by taking SVD of X = VΣUT, one obtains

UΣVTVLVT
L VΣUT. (4.36)

Since, due to orthogonality, ΣVTVL and VT
L VΣ pick out only leftover singular values,

one ends up with the eigenrepresentation UΛLUT, where ΛL,kk = σ2
k , k = K + 1..L

if it corresponds to leftover basis vector VL,k or zero otherwise (when k = 1..K).
Hence by using the above statements,

L

∑
k=1
‖x̂k − V̂C‖2

2 = tr(YTY) =
L

∑
k=1

λk(YTY) =
L

∑
k=1

[σk(Y)]2 =
L

∑
k=K+1

[σk(X)]2 = ‖σ‖2
2,

(4.37)
with σ ∈ RL−K.
This concludes the proof.

Thus, in order to form a suitable reduced basis, one should take the most ’ener-
getic’ singular vectors - the ones corresponding to largest singular values.

Whenever we execute the PDE solution process, described in Chapter 3 and ar-
rive to a system of ODEs after spatially discretizing the system of parabolic PDEs
with FEMs or to a linear system in steady case, we introduce the vector of reduced
states xr, Vxr ≈ x and x0,r, Vx0,r ≈ x0. It is easy to invert the orthogonal matrix by
transposing and the spatially discretized system (recall (3.67) with non-linearity in
the RHS) then becomes:

ẋr = VTBVxr + VTg(Vxr), x0,r = VTx0 (4.38)

and after iterating the system in time as in Chapter 3, the closer we are to the
snapshot representation the better and at a single step if one of the snapshots is
not represented at the reduced basis, we iterate with an introduced error since the
iterations of the reduced system would perturb the representative vectors.

Overall, as we see in the applications’ chapter 6, leaving behind the vectors cor-
responding to small singular values and taking into basis the energetic ones shall
show very good results and the dimension shall be reduced and the quality of ap-
proximation is given by Prop. 4.2.1.

After time discretization and applying the back substitution x = Vxr one does
the regular solution post-processing in order to compute the value of the functional
(4.1) in the optimization procedure.

Thus we end up with the approximated zero of the functional. To tackle this ap-
proximation, the author came up with the algorithm for the applications section:

Alg. 4.2.1.

Chapter 4. Parameter optimization and model reduction strategies 42

1) Before running but after initializing the PSO (4.3), (4.4), compute the snapshot
matrix for initial vector of parameters.

2) Run the optimization procedure with the reduced states.

3) Converge to an approximated zero of the functional.

4) Compute the value of the functional with the p=argmin for the solution in full
basis. At the same time get the new snapshot matrix.

5) If the tolerance not reached, repeat the procedure.

The new snapshot matrix in 4) would clearly continue the procedure such as we
are even closer to zero at all further steps since the movement of the best particle is
possible only if the better value is found and even if robustness perturbs the values,
running the whole thing several times would apply the control at step 4) as many
times as required.

The ways of simplifying the functional evaluation procedure has now been con-
sidered and the choice to reduce the dimension by using the technique as long with
its properties’ choice shall be used separately for each application in the applica-
tions’ chapter 6.

Now we are ready for the last section in the present chapter, which deals with
treatment of the unstored information appearing in the optimization cycles in our
general optimization scheme.

4.3 Information storage and pattern recognition

The goal is to reduce the number of evaluations of the functional (4.1).
Consider the sequence of experiments Ei, i = 1..NE. If the new experimental

data is considered for some i, one can use the gathered knowledge from the previ-
ous optimization stages for previous experiments since the optimization technique
processes a lot of solutions not feasible for the present experiment, but that might be
feasible for any subsequent experiment.

The idea is to store some of the information from previous experiments in a form
of network - a discrete dynamical system with a certain convergence-guaranteed
properties, which can be addressed as a first step of the optimization strategy. Due
to these properties its evaluation shall be much less costly than the functional eval-
uation.

In a realm of applications of a certain nature (likewise considered in the applica-
tion chapter 6 for this thesis) it might be possible to reduce the complex differential
parametrized problem onto such network such as for some experiments there is a
need to address the latter only.

Experimental values are either provided by the team that actually facilitates the
experiments (and in this case the application has some value in terms of an actual
interdisciplinary collaboration) or are somewhat intuitively set by an author and in
this case the application has a potential value (in case someone provides an accurate

Chapter 4. Parameter optimization and model reduction strategies 43

numerical value to be compared with). The origin of each, to be chosen in the appli-
cations chapter, is going to be discussed individually for each application.
The optimization method (4.3), (4.4) considered processes a lot of feasible or not fea-
sible solutions. The techniques used leave lots of data unstored whilst most of the so-
lutions, especially if the initial guess isn’t close enough, most likely should be stored.
The motivation to store the data for further usages is quite natural since there might
be a situation where the new experimental data is brought to the table. And lots of
contemporary techniques such as perceptrons and recurrent networks is something
that we here about a lot nowadays and some of their features go together quite well
with the fact that we might want to seek the solution close to one of the many that
has been already processed and do not want to run the costly computational proce-
dure from the very beginning. Before doing that one would address different types
of models first such as pattern recognition and in case if those don’t give any good
results, run the procedure (4.3), (4.4) once again, at the same time storing the new
data. Gradually if we repeat this procedure necessary amount of times, we naturally
arrive at the point where there is no necessity to initiate the stage of costly proce-
dures, and simply either run the solution process once with all the parametrization
fully determined or, if we get an approximation out of it, use it as a starting point in
our costly procedures which would substantially reduce the number of iterations.
Thus till the end of the present chapter we address the technique of storing the in-
formation in a way such that the resulting structure reproduces it in a smart way -
given an arbitrary piece of information the system produces the closest one in terms
of the defined measure. Similar approach is to be found in theory of recurrent sys-
tems and finite automation [Cha01]. Then the author adopts it for the considered
applications and couples it with the optimization procedure (4.3), (4.4).

The idea is to introduce the discrete dynamical system

x(k + 1) = f (x(k)), x(0) = x0, (4.39)

where
f (x) = sign(Ax), k = 0..N, x0, x(k) ∈ {−1, 1}D, D ∈N (4.40)

and the bold-case sign stands for the sign function component-wise with zero mapped
to one. Each pattern xi, i = 1..P to be stored can be represented as a vector of binary
values thus the number D can be large.

One of the ways to define the matrix in (4.39),(4.40) is the following:

A =
P

∑
i=1

xi[xi]T. (4.41)

The latter representation allows to dynamically add or remove patterns.
We need a system to converge to a fixed point and the best scenario is that this

fixed point is one of the patterns.
As usual we prove one vast proposition whereas the proof itself explains a lot on

this matter.

Prop. 4.3.1. The system (4.39),(4.40) with A constructed as in (4.41) with
[Ax]d 6= 0, d = 1..D, x ∈ {−1, 1}D

always converges to a fixed point x∗ : f (x∗) = x∗.

Moreover if the condition
P
∑

i,j=1
i 6=j

|(xi, xj)| < D holds, then it converges to a fixed point, which

Chapter 4. Parameter optimization and model reduction strategies 44

is one of the patterns: x∗ ∈ {x1, . . . , xP}.

Proof. First observation is that the system matrix A is symmetric and positive semi-
definite.

We are going to widely use the transpose array property for the product of two
[ab]T = bTaT, a, b ∈ RD.

The symmetry holds due to the fact that AT = A since for D × P matrix X of
patterns entered column-wise

AT = [XXT]T = [XT]TXT = XXT = A, (4.42)

and the positive semi-definite property ξT Aξ ≥ 0, ξ ∈ RD holds due to

ξTXXTξ = [XTξ]TXTξ = (XTξ, XTξ) ≥ 0. (4.43)

Now it is convenient to address the optimization problem equivalent to (4.39).

We define the quadratic energy functional

φ(x) = xT Ax (4.44)

and seek the fulfilment of the property

x 6= f (x)⇒ φ(f (x)) > φ(x) (4.45)

such that the iterations solve the maximization problem for the quadratic form in a
finite set:

max
x∈{−1,1}D

φ(x). (4.46)

In order to prove that this property holds we consider the difference φ(f (x))− φ(x)
in a finite set and show that it is always positive.

For that we require a piece of arithmetics of the quadratic forms - specifically the
difference of two.

We’ve got the result

xT Ax− yT Ay = (x− y)T A(x− y) + 2(x− y)T Ay (4.47)

for x, y ∈ RD, A ∈ RD×D - a symmetric matrix
as a multi-dimensional generalization of the one-dimensional

ax2 − ay2 = a(x− y)2 + 2a(x− y)y, a, x, y ∈ R. (4.48)

This is shown by opening brackets and using symmetry of A:

(x− y)T A(x− y) + 2(x− y)T Ay = xT Ax− yT Ax− xT Ay + yT Ay + 2xT Ay− 2yT Ay.
(4.49)

The underlined terms form the necessary statement, while the remaining ones cancel
out due to symmetry of A. Thus for our case we have

φ(f (x))− φ(x) = (f (x)− x)T A(f (x)− x) + 2(f (x)− x)T Ax > 0 (4.50)

when x 6= f (x).
This is due to the fact that the first summand is non-negative for positive semi-

definite A and since f (x) = sign[Ax], the second summand is strictly positive since

Chapter 4. Parameter optimization and model reduction strategies 45

for x 6= f (x) or f (x)− x 6= θD, only two variants of the non-zero d-th component
contribution to scalar product (f (x)− x, Ax) are possible with the non-zero [Ax]d:

[f (x)− x]d = 2⇒ [f (x)]d = 1⇒ [Ax]d > 0, (4.51)

[f (x)− x]d = −2⇒ [f (x)]d = −1⇒ [Ax]d < 0, (4.52)

d = 1..D.
In a finite set the existence of the monotonically increasing or decreasing (in our

case increasing) energy functional clearly implies the existence of a fixed point.

As for the second part:

we want to use the condition
P
∑

i,j=1
i 6=j

|(xi, xj)| < D in order to prove that each pattern xp

is a fixed point of the system, i.e sign[Axp] = xp, p = 1..P.
By using the representation of A (4.41) we’ve got the estimate

Axp =
P

∑
i=1

xi[xi]Txp =
P

∑
i=1

xi(xi, xp) = Dxp +
P

∑
i,p=1

i 6=p

xi(xi, xp) (4.53)

and or each d-th component we get

|[Axp − Dxp]d| ≤
P

∑
i,p=1

i 6=p

|(xi, xp)| < D (4.54)

hence
sign[Axp]d = [xp]d, d = 1..D, p = 1..P (4.55)

or
sign[Axp] = xp, p = 1..P, (4.56)

or, in other words, each pattern is a fixed point.
This concludes the proof.

The system matrix A is constructed out of the patterns arising from the data left
over of the optimization procedure for (4.3), (4.4). Each time one has to find the
parameters for the system (2.11), (2.18) given some experimental data regarding the
solution, the vector x has to be constructed. One of the ways is to put the given data
inside and regarding the unknown values put the deterministic function such as the
extreme or average value.

Then running the procedure (4.39) several times will find the closest pattern in
terms of the predefined measure. The value of the measure is to be chosen separately
for each application in 6.

One can come up with the following algorithm for this matter. It is to be imple-
mented in Matlab in chapter 5, second part of the section 5.5.

Alg. 4.3.1.

1) Analyse the dimensions of the given solution and corresponding parameter
data and create the patterns such that they fulfil or are close to condition in (4.3.1).

Chapter 4. Parameter optimization and model reduction strategies 46

2) Convert the given initial value in pattern form. In case if some parameter
values are left to be unknown, use the deterministic or random values in the given
intervals.

3) Call out the DDS (4.39) with the reasonable amount of iterations.

4) Decode the obtained values.

In 3) the whole idea of binary design of the patterns justifies itself and hence
strolling around the corners of corresponding hypercube as in 4.3.1 only, usually
yields a sufficiency of small amount of iterations.

In 4) in case if the produced unknown parameters are out of bound, the whole
procedure can be repeated. This can happen due to presence of spurious fixed points
and can be easily eliminated by simple bound control, usually same as we used in
PSO in section 4.1 but might be even simpler by considering the reiteration tech-
nique only due to the introduced non-costly procedures.

Then the PDE system (2.11), (2.18) is to be solved with the determined param-
eters and if the result is close enough in terms of the measure (4.1) from the first
section of this chapter, one stops, or alternatively the result can be used as a good
starting point for further optimization.

Concluding this chapter, one can say that the measure between the experimental
and modelling results has been introduced, defined and in terms of this measure
the solution close enough to the experimental data can been found by using several
model reduction techniques when necessary.

We have described the necessary techniques for the application section in details
to a certain extent. They all are prepared in a way such that it is easy to code the
underlying algorithms. In the next chapter we are going to discuss some program-
ming aspects in terms of Matlab programming language, which shall naturally come
together with more detailed problem description, whereas the aspects of computa-
tion, not discussed whilst setting the rather abstract theory in the first chapters, are
now going to be discussed in details by using the computational approach.

47

Chapter 5

Test problem treatment with
MATLAB

We intentionally left some parts of the modelling undiscussed since it is more con-
venient to illustrate them by showing the sample computer codes at the same time.
These would be:

What domain and which partition of the domain to choose in order to define
shape functions.

How to assemble the stiffness matrix, mass matrix and the load vector.
Incorporation of the boundary conditions.
Parametrization and criteria of the optimization method.
Coding and decoding the information for pattern storage task.
MATLAB [Tla] is considered as a very useful tool when it comes to matrix oper-

ations.
Our goal here is to create a code which consists of several parts, corresponding

to different modelling aspects in previous chapters such that the pieces were to be
used either simultaneously or separately.

The motivation of mostly not using the built-in codes lies in a necessity to fully
access all the transitional data arrays, required to be controllable when implement-
ing the model reduction (4.38) and the optimization techniques (4.3), (4.4).

The code will consist of several part: - the PDE solver - implementation of the
results from Chapters 2, 3. Second - the parameter optimizer - the implementation
of the algorithms from Chapter 4. The last one - storage of patterns to a new model
- a dynamical system from Chapter 4 and some coding/decoding aspects to be ex-
plained there as well.

Each aspect of modelling in the following sections shall be illustrated with a con-
cise piece of code - a function which depends on a set of parameters and returns a
set of values. This function shall be called an m-file - and the reason for that is that
the software produces the file with an extension ∗.m.

These sample m-files to be extended for each applications to some extent, but the
main common coding ideas for all considered applications are something we want
to present in this chapter.

In order to make it readable (usually the code goes last in the paper and hard to
interpret), the author decided to make it different this time and simplify the general
code by splitting it onto several parts, making comments and considering simplified
test models only.

The author has learned the aspects of MATLAB coding throughout the years of
studies in masters and PhD and the tutorials on Mathworks web page [Tla] along
with the provided forums were always of great help.

Chapter 5. Test problem treatment with MATLAB 48

5.1 Triangulation settings

The goal is to produce the grid data in form used by many packages which is some-
what ’equidistant’. This is useful whenever we want to solve the models where we
do not want to refine grid in subdomains but are ok with grid of same quality in all
domain. In this case we use the fact that each element of the stiffness matrix doesn’t
have to be treated separately, but there’s a pattern to be used in order to assemble
one.

Grid data is a set of arrays, and, mathematically speaking, several matrices we
want to find. The main two are the node matrix p ∈ Rn×m, where n is the dimension
(of physical space) and m is the number of points. And the other one is the triangle
matrix t ∈ {1, 2 . . . m}(n+1)×T, where T is the number of triangles.

We illustrate the coding process with two dimensional equidistant triangulation
of the rectangle [0, L1]× [0, L2]. The author came up with the algorithm that uses the
step size h1 in x direction and the step size h2 in y direction and produces the grid
data p ∈ R2×m and t ∈ {1, 2 . . . m}3×T.

Taking the lengths and the steps as the inputs, it produces the triangulation data

function [trmx,nodemx]=grd(l_1_2,h_1_2)

n=l_1_2(1)/h_1_2(1)+1; m=l_1_2(2)/h_1_2(2)+1;

We obtain the triangulation out of the equidistant grid in x and y directions by con-
necting each north-west and south-east point with the hypotenuse.

trmx=[];

for i=1:m*n

if mod(i,n)~=0&&i+n<=m*n

trmx=[trmx;[i,i+1,i+n]];

trmx=[trmx;fliplr([i+1,i+n,i+n+1])];

end

end

Afterwards we construct the node matrix, bearing in mind the geometry and the
numeration.

for i=1:n*m

nodemx(i,:)=[mod(i-1,n)*h_1_2(1),floor((i-1)/n)*h_1_2(2)];

end

end

5.2 Assembly of stiffness, mass matrix and a load vector

Within the main function we start entering the data. The dimension of the entered
data would determine how the code reacts - either solves a single PDE or a system
of PDEs. The one below illustrates the two equations case. For that we use the three-
dimensional arrays.

Chapter 5. Test problem treatment with MATLAB 49

A=[eye(2),eye(2)];A(:,:,2)=[0*eye(2),eye(2)];

b=[0;0];

b(:,:,2)=[0;0];

c=0;c(2)=0;c(:,:,2)=[0 0];

src=1;src(:,:,2)=0;

The integrals in weak formulations (3.31), (3.35), (3.36) to be computed locally on a
unit triangle by means of variable affine transformations and, since several triangles
are adjacent to one node, the element of any matrix in a system would be a sum of
the local results. The function to be considered now deals with these local results.

function [lsm,lmm]=lsmx(BT,bt,A,b,c)

gphi=[-1 -1;1 0;0 1];

phiphi=1/24*ones(3,3)+1/24*eye(3);

for ii=1:3

for jj=1:3

lsm(ii,jj)=0.5*abs(det(BT))*(((A*(gphi(jj,:))')'*(inv(BT)))*...

(gphi(ii,:)*(inv(BT)))')+...

abs(det(BT))*b.'*(gphi(jj,:)*(inv(BT)))'*(1/6)+...

abs(det(BT))*c*phiphi(jj,ii);

end

end

lmm(ii,jj)=abs(det(BT))*phiphi(jj,ii);

end

In this way we’ve computed the elements of local stiffness, local mass matrix by
considering three linear functions φ1 = 1− ξ − η, φ2 = ξ, φ3 = η and computing
integrals locally on a unit cell {(ξ, η) : ξ > 0, η > 0, η < 1− ξ}. This approach
easily to be extended to 3 dimensions.

Now we are ready for the big cycle, which computes the elements of each block
of our large sparse block-diagonal matrix (3.91). The cycle is fashioned in a way that
it solves a single PDE as a special case when the corresponding data is entered.

The main idea here is to deal with node and triangle matrices obtained in the
beginning, call out the lsm and lmm functions - stands for local stiffness and local
mass matrices - and apply the main idea of assembly of a global matrix gmx out of
several local matrices lm, namely the following algorithm (5.1).

for each i− th triangle in the triangle matrix trmx and j, k = 1..3 do

gmx(trmx(i, j), trmx(i, k)) = gmx(trmx(i, j), trmx(i, k)) + lm(j, k). (5.1)

Thus we start with initializing the arrays and coding the main cycle.

gsmxs=[];gsmx2=[];fs=[];intrs=[];sols=[];sol=[];

remove3s=[];periods=[];remove1s=[];

for d=1:size(A,3)

Chapter 5. Test problem treatment with MATLAB 50

f=zeros(size(nodemx,1),1);

for g=1:size(A,2)/size(A,1)

%

gsmx=zeros(size(nodemx,1),size(nodemx,1));msmx=gsmx;

for i=1:size(trmx,1)

BT=[nodemx(trmx(i,2),1),nodemx(trmx(i,3),1);

nodemx(trmx(i,2),2),nodemx(trmx(i,3),2)]...

-[nodemx(trmx(i,1),1),nodemx(trmx(i,1),1);

nodemx(trmx(i,1),2),nodemx(trmx(i,1),2)];

bt=[nodemx(trmx(i,1),1);nodemx(trmx(i,1),2)];

[lsm,lmm]=lsmx(BT,bt,A(:,(g-1)*size(A,1)+1:g*size(A,1),d),b(:,:,d),c(:,g,d));

for j=1:3

if g==size(A,2)/size(A,1)

f(trmx(i,j))=f(trmx(i,j))

+abs(det(BT))*src(:,:,d)*(1/6); end

for k=1:3

gsmx(trmx(i,j),trmx(i,k))=gsmx(trmx(i,j),trmx(i,k))+lsm(j,k);

msmx(trmx(i,j),trmx(i,k))=msmx(trmx(i,j),trmx(i,k))+lmm(j,k);

end

end

end

The last lines directly implement the local-to-global algorithm (5.1).
The illustration is two dimensional, but can easily be extended to three dimen-

sional by working with the corresponding structured triangulations and augment-
ing the upped bounds in the cycle. The next part deals with boundary conditions.
This would modify our created arrays depending on type of BCs.

5.3 Boundary conditions

The types of boundary conditions considered here are Dirichlet (case 1 in the code)
and Neumann (case 2) for two dimensional Lipshitz boundary (3.2.1), but other
types can be easily coded. Given functions or normal derivatives on a boundary
are coded as function-handles @(x, y) [Tla], but can be easily extended in three di-
mensions if needed.

bnd1=1;bnd2=1;bnd3=1;bnd4=1;

bnd1(:,:,2)=1;bnd2(:,:,2)=1;bnd3(:,:,2)=1;bnd4(:,:,2)=1;

bnd1=bnd1(:,:,g);bnd2=bnd2(:,:,g);bnd3=bnd3(:,:,g);bnd4=bnd4(:,:,g);

dir={{@(x,y)-1,@(x,y)1,@(x,y)2,@(x,y)3},{@(x,y)0,@(x,y)0,@(x,y)0,@(x,y)0}};

Chapter 5. Test problem treatment with MATLAB 51

neum={{@(x,y)0,@(x,y)0,@(x,y)0,@(x,y)0},{@(x,y)0,@(x,y)0,@(x,y)0,@(x,y)0}};

dir=dir{g};neum=neum{g};

intr=[];

for i=1:size(nodemx,1)

l_1_2=[1 1];

if nodemx(i,2)==0&&nodemx(i,1)~=0&&nodemx(i,1)~=l_1_2(1) bnd3=[bnd3;i];

elseif nodemx(i,2)==l_1_2(2)&&nodemx(i,1)~=0&&nodemx(i,1)~=l_1_2(1) bnd4=[bnd4;i];

elseif nodemx(i,1)==0 bnd1=[bnd1;i];

elseif nodemx(i,1)==l_1_2(1) bnd2=[bnd2;i];

else intr=[intr;i];end;

end

The last part creates the bnd arrays - the sets of nodes, which belong to the bound-
aries, coded by identifying the nodes’ positions.

Once these have been identified, one can modify the system matrices or the right
hand side depending on the type of BC.

Start with creating the boundary matrix.

bndmx=zeros(max([size(bnd1,1),size(bnd2,1),size(bnd3,1),size(bnd4,1)]),4);

bndmx(1:size(bnd1,1),1)=bnd1;

bndmx(1:size(bnd2,1),2)=bnd2;

bndmx(1:size(bnd3,1),3)=bnd3;

bndmx(1:size(bnd4,1),4)=bnd4;

remove3=[];remove11=[];period=[];nodrem=[];remove1b=[];remove1c=[];%remove1s=[];

Then goes the loop where we modify the right hand side and identify the positions
to remove - all depending on type of boundary conditions. Illustation for Dirichlet
(case 1) and Neumann (case 2). The loop can be easily extended to other types by
adding other cases.

for j=1:size(bndmx,2)

for i=2:size(bndmx,1)

if bndmx(i,j)==0 break; end

if bndmx(1,j)==1

f=f-dir{j}(nodemx(bndmx(i,j),1),nodemx(bndmx(i,j),2))*gsmx(:,bndmx(i,j));

remove1=[remove1,bndmx(i,j)];

remove11=[remove11,bndmx(i,j)];

nodrem=[nodrem;j];

end

if bndmx(1,j)==2

f=f+neum{j}(nodemx(bndmx(i,j),1),nodemx(bndmx(i,j),2))*msmx(:,bndmx(i,j));

intr=[intr;bndmx(i,j)];

end

end

end

Afterwards the modification of arrays happens - cutting off and concatenations
for large system matrix with the block diagonal structure.

Chapter 5. Test problem treatment with MATLAB 52

remove1_1=[remove1,remove1b];

gsmx(:,remove1_1)=[];

remove1_1=[];

remove1=[remove1,remove1c];

%end_boundaries

intr=sort(intr);

period=sort(period);

nodrem(:,2:3)=nodemx(remove11,:);

dirn=dir(nodrem(:,1));

%system

gsmx2=[gsmx2,gsmx];

if d==size(A,3) intrs=[intrs;intr+(g-1)*size(nodemx,1)];

for i=1:size(remove11,2)

sol(remove11(i))=dirn{i}(nodrem(i,2),nodrem(i,3));

end

remove3s=[remove3s;remove3+(g-1)*size(nodemx,1)];

periods=[periods;period+(g-1)*size(nodemx,1)];

remove1s=[remove1s,remove1+(g-1)*size(nodemx,1)];

if size(sols,1)>1 zrs=size(nodemx,1)-size(sols',2);

else zrs=0; end

sols=[sols;zeros(zrs,1);sol'];

sol=[];

end

end

gsmxs=[gsmxs;gsmx2];

fs=[fs;f];gsmx2=[];end

%

gsmxs(remove1s,:)=[];

fs(remove1s)=[];

Then we finally solve the linear system - the illustration is the backslash in Matlab
- a built in elimination method, but can be replaced by any iterative method from

Chapter 5. Test problem treatment with MATLAB 53

numerical linear algebra, such as gradient method [Mei08] if need be.

solintrs=gsmxs\fs;

sols(intrs)=solintrs;

sols(remove3s)=sols(periods);

if size(sols,1)==1 sols=sols'; end

After that the array sols is to be stored for post-processing. It can be plotted straight
away in Matlab by using it together with the node and triangle matrix. Averaged or
minimal-maximal values can be easily computed.

The line with the backslash operator can be adopted for the time dependent prob-
lems, non-linear problems or problems with the reduced dimension. This is usually
a matter of modifying this line according to formulas obtained in chapter 4 for the
proposed cases and calling out the whole function described in this section several
times. Due to the repetitive nature we don’t present them here.

5.4 Optimization of the parameters

In this section we are going to code the PSO method described in 4. In shall be as
usual in m-file-Matlab function form: the function will take another function as an
argument, as well as a stopping criterion, and produce all the necessary data, such
as the optimal value, value of the arguments, where the optimum is achieved, termi-
nal state of the particles, as well as in case of necessity it shall tell us the information
about all the intermediate states of the particles, functions values and arguments.

The author has created an m-file ps_try.m, which has two arguments: k1 - the
number of iterations and k2 - an initial state - either user defined or randomized. It
produces the optimal value g of the functional f (p), where p is the vector of param-
eters.

function g=ps_try(k1,k2)

The function optimizes the outcome of any function or procedure f (p) - all we
have to do is create the separate m-file f (p) in the same folder.

We choose the method’s parameters w, ϕp and ϕg - the choice is in accordance
with w, ϕ1 and ϕ2 from the result (4.1.1) from chapter 4.

w=0.3;phi_p=1.2;phi_g=1.2;

The number of particles in the method (4.3), (4.4) is denoted as S. Many experi-
ments have shown that 8 is a workable choice.

S=8;

Then we define two vectors of boundary values: blo ∈ RDp and bup ∈ RDp ,
where Dp is the number of parameters. What we enter here is crucial and the dimen-
sion will be determined out of this data and should be consistent with the dimension
of the vector of parameters p.

Chapter 5. Test problem treatment with MATLAB 54

sz=size(b_lo); Dp=sz(1);

Now we use our second input k2 - the initial condition. If there’s no input, it should
produce the vector of uniformly distributed random numbers - each component in
interval [bloi , bupi], i = 1..Dp.

g=k2;

if length(k2)==0 g=b_lo+(b_up-b_lo).*rand(Dp,1); end;

Thus the first value of the functional f (g) can be computed for the further com-
parison:

fg=f(g);

Now we are ready for the initial loop that creates the initial values of the nec-
essary quantities for the first and all the subsequent loops. For each particle one
randomly chooses the position vector and sets the winning states p as x for the first
time:

for i=1:S

x(:,i)=b_lo+(b_up-b_lo).*rand(Dp,1);

p(:,i)=x(:,i);

Then we compute the value of the functional and compare it with the first value.
It is necessary to use the format f pi < f g instead of f (p(:, i)) < f (g) to reduce the
number of functional evaluations as for our applications it can be too costly.

fpi=f(p(:,i));

if fpi<fg g=p(:,i); end

Finally the initial velocity is chosen to be randomized as well:

a=-abs(b_up-b_lo);

b=abs(b_up-b_lo);

v(:,i)=a+(b-a).*rand(Dp,1);

end

Now we are ready for the main loop. Evaluate till we reach the number of iter-
ations k1. For each particle initiate the parameters rp and rg as random uniformly
distributed numbers U(0, 1).

k=0;

while k<k1

for i=1:S

r_p=rand(1,1);

r_g=rand(1,1);

Now implement the formula (4.3):

Chapter 5. Test problem treatment with MATLAB 55

for d=1:Dp

v(d,i)=w*v(d,i)+phi_p*r_p*(p(d,i)-x(d,i))+phi_g*r_g*(g(d)-x(d,i));

end

Here goes the bound control as in (4.8), (4.9). First try the opposite direction trick:

for d=1:Dp

if x(d,i)+v(d,i)<b_lo(d)||x(d,i)+v(d,i)>b_up(d)

v(d,i)=-v(d,i);

end

And if it doesn’t work, try the boundary value trick:

if x(d,i)+v(d,i)<b_lo(d)

v(d,i)=b_lo(d)-x(d,i);

end

if x(d,i)+v(d,i)>b_up(d)

v(d,i)=b_up(d)-x(d,i);

end

end

After it’s done we update the particle position, evaluate and compare functional
values in order to determine the new best state and the winning state, as well as
increase the iteration number by 1:

x(:,i)=x(:,i)+v(:,i);

fxi=f(x(:,i));

if fxi<fpi p(:,i)=x(:,i);fpi=fxi;

if fpi<fg g=p(:,i);fg=fpi; end

end

end

k=k+1

end

This ends the while loop and the computer implementation of the method. In case of
necessity it can solve the maximization problems (by changing the functional com-
parison procedure to the opposite inequality sign) and all the parameters are fully

Chapter 5. Test problem treatment with MATLAB 56

controllable. This setting chosen by author by analysing many sources has appeared
to be consistent with all the experiments so far.

Now we are ready for the pattern storage part in order to conclude the present
chapter.

5.5 Pattern storage

We store the patterns to form a system matrix of our discrete dynamical system.
We take the theory set in 4.3 to a programming level.
For this matter we create the test m-file storage.m that converts the real number

into sequence of ones and minus ones and afterwords constructs the system matrix.
Then the backwards conversion is applied.

We create a test m-file, which has two arguments: c stands for the integer to be
converted to binary and tested as a pattern and step represents the one-dimensional
distance between two adjacent patterns to be stored.

function storage(c,step)

Then we allocate memory for the matrix A - in the test example let be A ∈ R20×20:

A=zeros(20,20);

Now we consider the double loop - the one where we store patterns - elements
of the grid {j · step}20

1 and converts them into binary vectors with minus ones and
ones.
For this matter one can use the built-in operator ’decimalToBinaryVector’ in order to
obtain zeros and ones and afterwards replace zeros by minus ones.
The outer loop starts with:

for j=1:20

x(:,j)=decimalToBinaryVector(step*j,20)';

and the inner loop is

for i=1:20

if x(i,j)==0 x(i,j)=-1; end

end

and to end the outer loop the matrix is constructed by (4.41):

A=A+x(:,j)*x(:,j)';

end

Then the pattern c - an input which we want to converge to a nearest fixed point
is converted as well and becomes an initial value of our discrete dynamical system:

y(:,1)=decimalToBinaryVector(c,20)';

for i=1:20

if y(i,1)==0 y(i,1)=-1; end

end

Chapter 5. Test problem treatment with MATLAB 57

Then the system itself gets initiated with an update of zero-component to minus
one. For the test example there are 10 iterations.

for k=1:10

y(:,k+1)=sign(A*y(:,k));

for i=1:20

if y(i,k+1)==0 y(i,k+1)=1; end

end

end

And finally we take the last value and convert it back. For this matter we use
Matlab operator ’binaryVectorToDecimal’.

k=y(:,10);

for i=1:20

if k(i)==-1 k(i)=0; end

end

binaryVectorToDecimal(k')

end

The binary representation is not the best one when it comes to finding the clos-
est pattern since the difference in value in certain positions yields the big difference
when decoded. Hence the author came up with the following algorithm for binary
representation that works with data from optimization procedure, codes it and feeds
to the discrete dynamical system above.

For this matter we adopt the above for our patricular types of applications and
create the function that takes the optimization data mx, mx5, M, N, win and the
initial value of the (4.39) dynamical system vec as arguments and produces the clos-
est value KK by means of this system.

Here N is the dimension of the particle, M is the number of criteria, arrays mx
and mx5 have S columns, where S is the number of particles and mx is the concate-
nation of N + 1 particle positions and mx5 is the concatenation of N + 1 outputs. N
stands for number of iterations. Augmented due to presence of initialization in PSO.
win is the winning column to be stored. All columns can be stored if we reshape the
matrices to form single vectors, but usually one winning particle trajectory with its
solution outputs storage is enough.

function KK=stor_last_rand(mx,mx5,M,N,win,vec)

global mxx

mx_par=mx(:,win); mx_val=mx5(:,win);

n=M*45+N*45;

if length(mxx)==0

VV=zeros(n,1); idt=zeros(3*(M+N),1);

We start the loop that creates the patterns:

for j=1:2^n/100

P=size(VV,2);

Chapter 5. Test problem treatment with MATLAB 58

if length(mx_val)<M||length(mx_par)<N break;end

A=[mx_val(1:M);mx_par(1:N)]; D=[]; idtt=[];

This particular storage approach uses the standard form of the number in.dec · 10ten.

for i=1:length(A)

ten=0; in=0; dec=0; B=abs(A(i));

if B>=1 && B<10

in=floor(B)*sign(A(i)); dec=floor(10*(vpa(B,2)-floor(B))); end

if B>=10

while B>=10 B=B/10; ten=ten+1; end

in=floor(B)*sign(A(i)); dec=floor(10*(vpa(B,2)-floor(B)));

end

if B<1 && B~=0

while B<1 B=B*10; ten=ten-1; end

in=floor(B)*sign(A(i)); dec=floor(10*(vpa(B,2)-floor(B)));

end

It is important not to save the repeating patterns after rounding up hence the counter
kk.

idtt=[idtt; in;dec;ten]

kk=0;

if i==length(A)

for k=1:size(idt,2)

double(double(idt(:,k))==double(idtt))

if double(double(idt(:,k))==double(idtt))==ones(3*(M+N),1) kk=kk+1

break; end

end

end

if kk>0 mx_val(1:M)=[];mx_par(1:N)=[]; end

if i==length(A)&&kk==0 idt=[idt idtt]

end

The idea of one building block is to locate randomly ones (if positive) or minus
ones (if negative) amongst their negative values for in and dec values and same in
the middle for dec which is always positive. This is quite good for orthogonality
or closeness to it if we want to fulfil the condition such as (4.3.1). The number of
elements of the same sign then represents the integer we wish to code.

Chapter 5. Test problem treatment with MATLAB 59

if kk==0

DD=[-sign(in)*ones(18,1);-ones(9,1);-sign(ten)*ones(18,1)];

if in~=0 DD(randperm(18,9+abs(in)))=sign(in); end

if in==0 DD(1:9)=-1;DD(10:18)=1; end

if dec~=0 DD(randperm(9,double(dec))+18)=1; end

if ten~=0 DD(randperm(18,9+abs(ten))+27)=sign(ten); end

if ten==0 DD(28:36)=-1;DD(37:45)=1; end

D=[D;DD];

Then the condition from (4.3.1) comes, but one can put here any other condition or,
as concluded experimentally, let it loose a little bit for higher dimensional problems
not to take ages to construct the patterns.

if i==length(A)&&norm(VV'*D,1)<n

norm(VV'*D,1)

VV=[VV D]

mx_val(1:M)=[];mx_par(1:N)=[];

end

end

end

end

mxx=VV;

end

The matrix mxx were defined as a global variable in the beginning so for one ap-
plication one can run the costly procedure of constructing the patterns only once.
Hence ’if length(mxx)==0’ in the beginning.
Now the vec input to be coded as well:

vec_bin=[];

for i=1:size(vec,1)

DD=[-sign(vec(i,1))*ones(18,1);-ones(9,1);-sign(vec(i,3))*ones(18,1)];

if vec(i,1)~=0 DD(randperm(18,9+abs(vec(i,1))))=sign(vec(i,1)); end

if vec(i,1)==0 DD(1:9)=-1;DD(10:18)=1; end

if vec(i,2)~=0 DD(randperm(9,double(vec(i,2)))+18)=1; end

if vec(i,3)~=0 DD(randperm(18,9+abs(vec(i,3)))+27)=sign(vec(i,3)); end

if vec(i,3)==0 DD(28:36)=-1;DD(37:45)=1; end

vec_bin=[vec_bin;DD];

end

Afterwords the procedure as in ’storage(c,step)’ above is called out but it has
to be rewritten so it takes the pattern matrix and the initial value of the discrete
dynamical system as inputs.

k=stor_pat_bin(mxx(:,2:size(mxx,2)),vec_bin);

It produces the fixed point k. Then we decode it:

Chapter 5. Test problem treatment with MATLAB 60

K=reshape(k,[45 M+N]); KK=[];

for i=1:M+N

int=0;dec=0;ten=0;

bb=K(1:18,i);

if sum(bb>0)>sum(bb<0)

int=sum(bb>0)-9;end

if sum(bb>0)<sum(bb<0)

int=-(sum(bb<0)-9);end

bb=K(19:27,i);

dec=sum(bb>0);

bb=K(28:45,i);

if sum(bb>0)>sum(bb<0)

ten=sum(bb>0)-9;end

if sum(bb>0)<sum(bb<0)

ten=-(sum(bb<0)-9);end

KK=[KK;(int+sign(int)*dec/10)*10^ten];

end

vpa(KK)

end

The obtained fixed point can be used now for further purposes. As we’ve al-
ready discussed in the end of chapter 4, for our applications - solve the PDE system
(2.11), (2.18) with the obtained parameters only once (instead of many times if no
pattern storage were ever introduced), check the measure (4.1) and make decision
on whether it is close enough or the additional optimization is still required.

These simple steps will serve as the base for all the complex applications - num-
ber of iterations can be easily increased as well as the nature of the patterns as well
as the stopping criterion.

The procedure can be called out several times in order to serve the purposes of
our problems, when only part of the vector is given. The stopping criterion is then
the closeness to the known values. Afterwords the solution process is to be called
with the determined values out of this system only once.

This ends the description of the ’Pattern storage’ coding aspects by means of a
test code, as usual in the present chapter.

At the end of the day, in this chapter we have described different stages of our
complex model with the short test codes. All the codes are fully controllable and
can be further developed when necessary. The optimization and the pattern storage
sections can be applied as user-created post-processing stages of the solution pro-
duced by some commercial industrial package or can be applied elsewhere even for
non-differential problems.

Now we are finally ready for the last chapter with the applications - or in other
words - several worked examples with the data given or to be determined - as states
the nature of our problems. For each example a certain model-reduction procedure

Chapter 5. Test problem treatment with MATLAB 61

is going to be considered as in (4.38), as well as the optimization and data determi-
nation procedure as in (4.3), (4.4) as well as the pattern storage procedure as in (4.39),
(4.41).

62

Chapter 6

Applications

In the last chapter the author obviously wants to show the numerical results out of
frameworks presented in the previous chapters in form of pictures and tables.

We start with the solution of two problems with one or three reactions. For these
problems the parameters are taken to be determined. This modelling stage has been
discussed in chapters 2 and 3.

Then run the optimization process - choose several experimental results, and
minimize the functional (4.1) by applying PSO.

Finally by using the stored intermediary results of the previous section, construct
the discrete dynamical system as in (4.39) and run couple more experiments by ad-
dressing it first before considering the PDE solution framework.

Author has made a lot of numerical experiments in this topic and would like to
present only small part of them in the thesis. Other results can be found in author’s
published works, see Appendix A.

The plots are going to be one, two and three-dimensional. All three settings can
obviously be obtained out of the framework, discussed in previous chapters either
by solving the 3D first and then consider cross-sectional plots or by solving 1D and
2D as separate problems, and whenever it is more convenient to use cross-sectional
plots to show some specific results, we do that.

In all the following experiments the geometry of the combustion chamber is go-
ing to be represented either by a cylinder of radius 1 meter and height 4 meters or the
axial symmetry may be considered depending on situation and then it gets solved
in two dimensions on the rectangle. The inhomogeneous Dirichlet boundary condi-
tions are to be set at inlet and the homogeneous Neumann boundary conditions to
be set at all the remaining portions of the boundary. The plots of PDE solutions are
going to be in 3 dimensions.

First section deals with one single-step reaction in a three-dimensional setting.

6.1 Solving PDEs for the single reaction model

For the beginning the model with one standard combustion reaction

2H2 + O2 → 2H2O (6.1)

is considered.
The same framework can be applied for single reaction with different species (the

determined parameter values would change).
This leads to 4 PDEs (3 species equations and one temperature equation). The

species equation for the specie Yk has it’s form (2.11), as in chapter 2:

Chapter 6. Applications 63

ρ
DYk

Dt
= ∇ · (ρD∇Yk) + ω̇k. (6.2)

The term ω̇k has its form as in (2.12)

M

∑
j=1

ω̇kj. (6.3)

The numeration for the species is as follows:

Y1 := Y(H2), Y2 := Y(O2),

Y3 := Y(H2O). (6.4)

Then the matrix ν in the reaction mechanism (2.13) is

−2
−1
2

 , and the matrix ω̇

is

−2q1w1
−q1w2
2q1w3

 .

According to the Arrhenius law (2.14), (2.15),

q1 = A1e
−E1
RT

(ρY1

w1

)2(ρY2

w2

)
. (6.5)

Also we consider the axial velocity component w only. The diffusivity D is con-
sidered as a constant and equal for every specie in the system.

In this case, the species equations are (terms are divided by ρ):

∂Y1

∂t
+ w

∂Y1

∂x
= D4Y1 − 2A1e

−E1
RT

ρ2

w1w2
Y2

1 Y2,

∂Y2

∂t
+ w

∂Y2

∂x
= D4Y2 − A1e

−E1
RT

ρ2

w2
1

Y2
1 Y2,

∂Y3

∂t
+ w

∂Y3

∂x
= D4Y3 + 2A1e

−E1
RT

ρ2w3

w2
1w2

Y2
1 Y2.

(6.6)

The temperature equation is subject to one more simplification: the heat capacity
we shall consider independent of the specie or the temperature as in (2.19)-(2.22).
The right hand side of the temperature equation is

−
N

∑
k=1

(4H f ,k + hs,k)ω̇k, (6.7)

which we divide into two sums:

−
N

∑
k=1
4H f ,k −

N

∑
k=1

hs,kω̇k. (6.8)

Under the assumption that the heat capacity doesn’t depend on the temperature

hs,k =

T∫
T0

cpkdT = (T − T0)cpk (6.9)

Chapter 6. Applications 64

or the species
N

∑
k=1

hs,kω̇k = (T − T0)cp

N

∑
k=1

ω̇k = 0, (6.10)

the only enthalpies we need are the enthalpies of formation to be determined from
the tables [Mil00].

The temperature equation is as in (2.18):

ρcp
DT
Dt

= ∇ · (λ∇T)−
N

∑
k=1
4H f ,kω̇k, (6.11)

and now we rewrite it explicitly by using the right hand sides of the species equa-
tions (the diffusivity λ is considered as a constant):

ρcp
∂T
∂t

+ ρcpw
∂T
∂x

= λ4T + A1e
−E1
RT

ρ2

w2
1w2

Y2
1 Y2

[
2w14H f ,1 + w24H f ,2 − 2w34H f ,3

]
.

(6.12)
The resulting system of partial differential equations in its dimensional form now

is:

∂Y1

∂t
+ w

∂Y1

∂x
= D4Y1 − 2A1e

−E1
RT

ρ2

w1w2
Y2

1 Y2,

∂Y2

∂t
+ w

∂Y2

∂x
= D4Y2 − A1e

−E1
RT

ρ2

w2
1

Y2
1 Y2,

∂Y3

∂t
+ w

∂Y3

∂x
= D4Y3 + 2A1e

−E1
RT

ρ2w3

w2
1w2

Y2
1 Y2,

ρcp
∂T
∂t

+ ρcpw
∂T
∂x

= λ4T + A1e
−E1
RT

ρ3

w2
1w2

Y2
1 Y2

[
2w14H f ,1 + w24H f ,2 − 2w34H f ,3

]
.

(6.13)
We subject the vector of unknown functions X = (Y1, Y2, Y3, T)T to the boundary

and the initial conditions:

X|ΓD = XD,

X|ΓN = 0,

X(0) = XDe−x, (6.14)

where ΓD is the Dirichlet portion of the boundary (the inlet), XD are the pre-
scribed values at ΓD and ΓN is the Neumann portion of the boundary. The smooth
exponential decay initial condition is considered.

In order to start the simulation one has to specify all the parameters values, e.g.
to answer the question, what values are inside this vector of unknowns:

(
ρ, cp, D, λ, w1, w2, w3, w, A1, E1, R,4H f ,1,4H f ,2,4H f ,3, Y1,D, Y2,D, Y3,D

)T . (6.15)

The parameters are to be taken from different tables [Mil00], [Woo02], [20 04],
[Tab20].

For the simulation we consider the density of mixture ρ to be 1[kg
m3]. The heat

capacity for the mixture to be 1000[J
kg·K].

Chapter 6. Applications 65

The molecular diffusivity D is 5 · 10−5[m2

s] and the thermal conductivity λ is 5 ·
10−2[J

m·s·K]. The atomic weights w1,2,3 are straightforwardly to be taken from the
periodic table: w1 = 0.002[kg

mol], w2 = 0.032[kg
mol], w3 = 0.018[kg

mol].
The constant axial velocity is set to 1[m

s].
The pre-exponential factor and the activation energy for the reaction (6.1) are

something to be discussed in the optimization section. If we are lucky, the parame-
ters can be found in Chemkin format table or found in publications [Woo02], [20 04].
These are the empirical results and not necessarily suit our experiments. As for now
we choose A1 = 1.7 · 1013[cgs] and E1 = 47780[cal

mol] = 47780 · 4.18[J
mol] as we’ve

seen some estimates in [Wil10] or values for similar but not exact same reactions in
[Woo02], [20 04].

In order to convert the pre-exponential factor A1 accurately into the SI units, one
has to see what the dimension of this factor is for the corresponding reaction. Each
term of the dimensional species equation has a dimension of [s−1]. By considering

the reaction term of, for example, first equation, e.g −2A1e
−E1
RT

ρ2

w1w2
Y2

1 Y2, the only

dimensional multiplier left is
ρ2

w1w2
, which is in

[
�
�kg2mol2

m6
�
�kg2

]
. Thus the dimension of

the pre-exponential factor is
[m6

s ·mol2

]
. If it is given in the cgs units, 12 digits are to

be taken off, which for the factor of 1013 is good news from the numerical point of
view.

The ideal gas constant R = 8.314[J
mol·K] should be divided by the mean atomic

weight w̄ in order to use it in the right hand sides of our equations: R = R
w̄ .

The enthalpies of formation for the species H2 and O2 are by convention zero
at the reference temperature. Then the enthalpy of formation for the H2O is set to
−285800[J

mol].
Finally, to prescribe the constant values on the Dirichlet portion of the boundary,

we use the stoichiometric ratio s =
0.032

2 · 0.002
= 8, and then solve the system for the

mass fractions at stoichiometry: {
Y1
Y2

= 1
8 ,

Y1 + Y2 = 1,
(6.16)

which gives us Y1,D = 1
9 and Y2,D = 8

9 .
The product Y3,D is set to zero on this portion of the boundary.

By means of the spatial linear finite element discretization (3.56), (3.72) and the
treatment of non-linear time depending system (3.84), (3.93), one gets the 4-second
process graphical description with the time step of τ = 0.01.

In figures 6.1-6.10 we present the snapshots for the distributions of Y(H2), Y(O2),
Y(H2O) and T at times t = 0, 1, 2, 3, 4 s.

Chapter 6. Applications 66

(A) Y(H2) (B) Y(H2O) (C) Y(O2)

FIGURE 6.1: Mass fractions at t = 0 s

FIGURE 6.2: T at 0 s

(A) Y(H2) (B) Y(H2O) (C) Y(O2)

FIGURE 6.3: Mass fractions at t = 1 s

FIGURE 6.4: T at 1 s

Chapter 6. Applications 67

(A) Y(H2) (B) Y(H2O) (C) Y(O2)

FIGURE 6.5: Mass fractions at t = 2 s

FIGURE 6.6: T at 2 s

(A) Y(H2) (B) Y(H2O) (C) Y(O2)

FIGURE 6.7: Mass fractions at t = 3 s

FIGURE 6.8: T at 3 s

Chapter 6. Applications 68

(A) Y(H2) (B) Y(H2O) (C) Y(O2)

FIGURE 6.9: Mass fractions at t = 4 s

FIGURE 6.10: T at 4 s

According to the rates of corresponding reactions in (6.6) we obtain the decay of
the first and the third mass fraction, growth (tendency to unity) of the second and
the distribution of temperatures according to (6.12). For the chosen parameters (fully
determined in this example), at 4 seconds, the maximal temperature is close to 600 K
and the outlet temperature is close to 450 K.

The numerical simulation takes several minutes to perform. More on computa-
tional speeds in the last section of this chapter.

This application is good start for considering the next one 6.2, where we extend
the number of reacting species. Also it motivates us for considering the application
in section 6.3, whereas we have to optimize the parameters since the parameters in
this one are chosen to be determined only for sake of actually being able to perform
the computations and aren’t at all commonly approved. The parameter region usu-
ally is given. More on that in sections 6.3, 6.4. But in the next section we consider
the three reaction model. This transition would show us that the framework from
chapter 2 works for any amount of species and reactions.

6.2 Solving PDEs for the several reaction model

The model with three combustion reactions

O2 + CO→ O + CO2,

CO2 + H → CO + OH,

H2 + OH → H2O + H (6.17)

Chapter 6. Applications 69

is now considered. Same framework can be applied for any other three reaction
mechanism of the same template but for different species (the determined parameter
values would change).

By using the framework from chapter 2, this leads to 9 PDEs (8 species equations
and one temperature equation).

The species equation for the specie Yk has it’s form (2.11) as in chapter 2:

ρ
DYk

Dt
= ∇ · (ρD∇Yk) + ω̇k. (6.18)

The term ω̇k has its form as in (2.12):

M

∑
j=1

ω̇kj. (6.19)

The numeration for the species is as follows:

Y1 := Y(O2),

Y2 := Y(CO),

Y3 := Y(O),

Y4 := Y(CO2),

Y5 := Y(H),

Y6 := Y(OH),

Y7 := Y(H2),

Y8 := Y(H2O). (6.20)

Then the matrix ν in the reaction mechanism (2.13) is

−1 0 0
−1 1 0
1 0 0
1 −1 0
0 −1 1
0 1 −1
0 0 −1
0 0 1

, and the

matrix ω̇ is

−q1w1 0 0
−q1w2 q2w2 0
q1w3 0 0
q1w4 −q2w4 0

0 −q2w5 q3w5
0 q2w6 −q3w6
0 0 −q3w7
0 0 q3w8

.

According to the Arrhenius law (2.14), (2.15),

q1 = A1e
−E1
RT

(ρY1

w1

)1(ρY2

w2

)1
,

q2 = A2e
−E2
RT

(ρY4

w4

)1(ρY4

w4

)1
,

Chapter 6. Applications 70

q3 = A3e
−E3
RT

(ρY6

w7

)1(ρY6

w7

)1
. (6.21)

First power have been intentionally left as they are to show the nature of the for-
mulas and compare with the previous case.
Also we consider the axial velocity component w only. The diffusivity D is consid-
ered as a constant and equal for every specie in the system:

In this case, the species equations are (terms are divided by ρ):

∂Y1

∂t
+ w

∂Y1

∂x
= D4Y1 − q1w1

ρ ,
∂Y2

∂t
+ w

∂Y2

∂x
= D4Y2 +

−q1w2+q2w2
ρ ,

∂Y3

∂t
+ w

∂Y3

∂x
= D4Y3 +

q1w3
ρ ,

∂Y4

∂t
+ w

∂Y4

∂x
= D4Y4 +

q1w4−q2w4
ρ ,

∂Y5

∂t
+ w

∂Y5

∂x
= D4Y5 +

−q2w5+q3w5
ρ ,

∂Y6

∂t
+ w

∂Y6

∂x
= D4Y6 +

q2w6−q3w6
ρ ,

∂Y7

∂t
+ w

∂Y7

∂x
= D4Y7 − q3w7

ρ ,
∂Y8

∂t
+ w

∂Y8

∂x
= D4Y8 +

q3w8
ρ .

(6.22)

The temperature equation is as in (2.18) and due to considerations of the previous
section 6.1:

ρcp
DT
Dt

= ∇ · (λ∇T)−
N

∑
k=1
4H f ,kω̇k. (6.23)

We subject the vector of unknown functions X = (Yi, T)T, i = 1..8 to the bound-
ary and the initial conditions:

X|ΓD = XD,

X|ΓN = 0,

X(0) = XDe−x, (6.24)

where ΓD is the Dirichlet portion of the boundary (the inlet), XD are the pre-
scribed values at ΓD and ΓN is the Neumann portion of the boundary. The smooth
exponential decay initial condition is considered.

As in the previous section 6.1, in order to start the simulation one has to specify
all the parameters values:(

ρ, cp, D, λ, wi, w, Aj, Ej, R,4H f ,i, Yi,D
)

, (6.25)

i = 1..8, j = 1..3.
Same as in the previous section 6.1, the parameters are to be taken from different
tables [Mil00], [Woo02], [20 04], [Tab20].

For the simulation we consider the density of mixture ρ to be 1[kg
m3]. The heat

capacity for the mixture to be 1000[J
kg·K].

The molecular diffusivity D is 5 · 10−5[m2

s] and the thermal conductivity
λ is 5 · 10−2[J

m·s·K].

Chapter 6. Applications 71

The atomic weights w1,..,8 are straightforwardly to be taken from the periodic ta-
ble: w1 = 0.032[kg

mol], w2 = 0.028[kg
mol], w3 = 0.016[kg

mol], w4 = 0.044[kg
mol], w5 =

0.001[kg
mol], w6 = 0.017[kg

mol], w7 = 0.002[kg
mol], w8 = 0.018[kg

mol].
The constant axial velocity is set to 1[m

s].
The pre-exponential factor and the activation energy for the reactions (6.17) are:
A1 = 2.5 · 1012[cgs] and E1 = 47690[cal

mol] = 47690 · 4.18[J
mol].

A2 = 1.5 · 107[cgs] and E2 = −497[cal
mol] = −497 · 4.18[J

mol].
A3 = 2.2 · 1012[cgs] and E3 = 3430[cal

mol] = 3430 · 4.18[J
mol].

For this model we were lucky enough to find the same reaction mechanism in
[20 04]. But this result is an empirical one suitable for some applications and the
mechanism itself might be an idealisation for different models hence additional pa-
rameter optimization still should be considered.

The ideal gas constant R = 8.314[J
mol·K] should be divided by the mean atomic

weight w̄ in order to use it in the right hand sides of our equations: R = R
w̄ .

The enthalpies of formation for the species are4H f ,1 = 0[J
mol], 4H f ,2 = −110435[J

mol],
4H f ,3 = 248919[J

mol], 4H f ,4 = −393129[J
mol], 4H f ,5 = 217778[J

mol],
4H f ,6 = 38957[J

mol], 4H f ,7 = 0[J
mol], 4H f ,8 = −241604[J

mol] .

Finally, to prescribe the constant values on the Dirichlet portion of the boundary,
we use the atomic weights’ ratios and then solve the system for the mass fractions at
stoichiometry:

Y1
Y2

= 8
7 ,

Y1
Y4

= 8
11 ,

Y4
Y5

= 44,
Y4
Y7

= 22,
Y7
Y6

= 2
17 ,

Y1 + Y2 + Y4 + Y5 + Y6 + Y7 = 1.

(6.26)

The pure products in this chain of reactions are set to zero on this portion of the
boundary.

By means of the spatial linear finite element discretization (3.56), (3.72) and the
treatment of non-linear time depending system (3.84), (3.93), one gets the 4-second
process graphical description with the time step of τ = 0.01.

In figures 6.11-6.30 we present the snapshots for the distributions of Y(O2), Y(CO),
Y(O), Y(CO2), Y(H), Y(OH), Y(H2), Y(H2O) and T at times t = 0, 1, 2, 3, 4 s.

Chapter 6. Applications 72

(A) Y(O2) (B) Y(CO) (C) Y(O)

FIGURE 6.11: Mass fractions at t = 0 s

(A) Y(CO2) (B) Y(H) (C) Y(OH)

FIGURE 6.12: Mass fractions at t = 0 s

(A) Y(H2) (B) Y(H2O)

FIGURE 6.13: Mass fractions at t = 0 s

FIGURE 6.14: T at 0 s

Chapter 6. Applications 73

(A) Y(O2) (B) Y(CO) (C) Y(O)

FIGURE 6.15: Mass fractions at t = 1 s

(A) Y(CO2) (B) Y(H) (C) Y(OH)

FIGURE 6.16: Mass fractions at t = 1 s

(A) Y(H2) (B) Y(H2O)

FIGURE 6.17: Mass fractions at t = 1 s

FIGURE 6.18: T at 1 s

Chapter 6. Applications 74

(A) Y(O2) (B) Y(CO) (C) Y(O)

FIGURE 6.19: Mass fractions at t = 2 s

(A) Y(CO2) (B) Y(H) (C) Y(OH)

FIGURE 6.20: Mass fractions at t = 2 s

(A) Y(H2) (B) Y(H2O)

FIGURE 6.21: Mass fractions at t = 2 s

FIGURE 6.22: T at 2 s

Chapter 6. Applications 75

(A) Y(O2) (B) Y(CO) (C) Y(O)

FIGURE 6.23: Mass fractions at t = 3 s

(A) Y(CO2) (B) Y(H) (C) Y(OH)

FIGURE 6.24: Mass fractions at t = 3 s

(A) Y(H2) (B) Y(H2O)

FIGURE 6.25: Mass fractions at t = 3 s

FIGURE 6.26: T at 3 s

Chapter 6. Applications 76

(A) Y(O2) (B) Y(CO) (C) Y(O)

FIGURE 6.27: Mass fractions at t = 4 s

(A) Y(CO2) (B) Y(H) (C) Y(OH)

FIGURE 6.28: Mass fractions at t = 4 s

(A) Y(H2) (B) Y(H2O)

FIGURE 6.29: Mass fractions at t = 4 s

FIGURE 6.30: T at 4 s

Chapter 6. Applications 77

According to the rates of corresponding reactions in (6.22) we obtain the mass
fraction evolutions and the distribution of temperatures according to (6.23). For the
chosen parameters (fully determined in this example), at 4 seconds, the maximal
temperature is close to 1400 K and the outlet temperature is close to 1000 K.

The numerical simulation takes more than several minutes but still less than an
hour to perform. More on computational speeds in the last section of this chapter.

This application along with the previous one motivates us for considering the
next section, which is the parameter optimization.

6.3 Parameter optimization for 3D model with one or several
criteria

We would like to start with the first optimization application. This would be the
three dimensional setting with a single reaction as in section 6.1, but the parameters
are not explicitly given this time and the interval thereof is estimated.

For each experiment we consider the reduced order solutions as in 4.2 and per-
form it in a way that is is easy to store the data as in 4.3.

The region is deducted from the fact that there are similar reactions (with similar
list of species, but not exactly the same), that can be found in Chemkin format table
[20 04] or other published works, which are empirically obtained. The author then
gathers data from these tables of works and estimates the interval. In figures 6.31a -
6.33b the one is represented by the red square. Following the notation from Chapter

5, our vectors of boundary values blo and bup are respectively
(

1.7 · 10−3

47780/100

)
and(

1.7 · 101

47780 · 100

)
.

The division, multiplication by a hundred as well as the power of one have in-
tentionally been left as they are so the nature of obtaining the parameter interval is
visible.

This estimates are obtained by gathering as much as possible data for similar re-
actions since this particular reaction hasn’t been found there in its very form. For
different reaction mechanisms this approach has given good results.

For this particular application we compare the maximal temperature max
x∈Ω

T(x)

with the experimental value of 740 K.
The functional choices had been described in Chapter 4 and is due to the formula

(4.1).
One can see in figures 6.31a - 6.33b the motion of two dimensional particles. The

blue dot represents the winning state. The winning parameter values are approxi-

mately
(

10.44
5235.25

)
.

The measure in this example has been obtained and kept small (less than 1 K).

Chapter 6. Applications 78

(A) 1st iteration (B) 3rd iteration

FIGURE 6.31: Particle positions at k = 1, 3

(A) 5th iteration

(B) 7th iteration

FIGURE 6.32: Particle positions at k = 5, 7

Chapter 6. Applications 79

(A) 15th iteration

(B) 30th iteration

FIGURE 6.33: Particle positions at k = 15, 30

As discussed previously, for the proposed goals we are totally fine with only
one argmin that brings the modelling data close to experimental data. The series of
further numerical experiments 6.34a-6.34c can show that the close to zero distance
can be obtained at different points. The region at these figures is localised. The
nature of the region depends on how the initial problem had been parametrized and
is not a matter of current discussion since finding of one feasible variant usually
stops the costly procedure and the obtained vector of parameters is proposed as the
optimal one and further stages of modelling are considered. It is so mostly due to
the fact that the global reaction mechanism, regulating the source term, itself is an
approximation of the real-life situation of much more complex reaction mechanisms.

Chapter 6. Applications 80

(A) winning particle I (B) winning particle II

(C) winning particle III

FIGURE 6.34: Winning states for different initializations

The process of obtaining this measure took around 6-10 hours when the initial
guess wasn’t close enough. When the initial guess was close enough, the time could
be substantially reduced, however for this application the random positions are cho-
sen at the beginning. This motivates us to use the model reduction techniques when
necessary from chapter 4 section 4.2 and the pattern storage application from 4 sec-
tion 4.3. The former would reduce the amount of hours whilst keeping the resulting
quantities close and the latter shall define the auxiliary problem to be called out be-
forehand.

The algorithm 4.2.1 introduced in chapter 4 for the optimization with the reduced
states can be applied when necessary. The motivation is to compute the PDE solu-
tions for the optimization purposes in the reduced basis most of the times and come
up with several stages of the functional value rechecking. This should be a time
saver to a certain extent. The figure 6.35 illustrates its behaviour.

Chapter 6. Applications 81

FIGURE 6.35: Four stages of comparison

This is a simple illustration on how the optimization procedure can solve the
PDE system mostly with reduced states. The number of PSO iterations (experimen-
tally, usually N is around 30 is enough) is split into several parts (NS - number of
stages - four on 6.35) in order to apply the algorithm 4.2.1. The matrix of snapshots
and its SVD is recalculated at each stage. According to the algorithm these are the
only times when the solution gets calculated in full basis and thus for N � NS it
gets calculated in reduced bases only.

For the considered types of models, experimentally, it is possible to reduce the
dimension by 10%− 20% and number of stages NS around 4− 6 is enough. This is
a time saver, but the whole procedure still takes hours to perform and motivates us
to consider the pattern storage concept in 6.4. However when the experiments are
not connected, we consider completely new model, or it gets substantially modified,
etc, the PCA is always a good way to start.

The problem can become more complex when we introduce several criteria. The-
oretically this concept can be used to solve the whole closest curve or surface finding
task by using the proposed techniques. This would be the topic of further researches
and to show that this works in the present paper we extend the number of criteria by
one. Same task will be solved in storage pattern section 6.4 by using present results.

So we consider the PSO iterations with 2 criteria:
Tmax = 740 K and Tout = 450 K.

30 iterations of minimizing the functional (4.1) takes the same time as in case with
one criterion but since the dimension has been increased the value of the functional
can be not as close to zero as in case with one criterion. Hence additional iterations
are required if one wishes to keep the measure between experimental and modelling
data small and this motivates us even more to consider pattern storage in 6.4 in case
if there are more parameter optimization tasks with similar model to go.

The convergence obtained obviously mean that we approximately reach the de-
sired temperature values. We’ll show the one dimensional projections of these 3D
graphics after the pattern storage procedure in the next section.

Chapter 6. Applications 82

6.4 Pattern storage results

The nature of figures 6.31a - 6.33b for section 6.3 is the processing of the optimization
intermediate states. This has good geometrical representation when the dimension
and the number of particles is kept small. However when this in not the case (lots
of degrees of freedom to be compared amongst in our functional) there is a lot of
unstored and unprocessed data.

The idea that author came up with for the last type of applications is that this
data can be stored in a certain smart way for later applications.

In this simple example we store the data of the evolution of the winning (blue)
particle from 6.31a - 6.33b. Form a discrete dynamical system as in (4.39). Then call
it out with the new experimental data and unknown (but guessed as an initial state)
parameter values. Then see how close is the result obtained by the system (4.39) in
terms of measure (4.1). In case of necessity it can be used as a starting guess in the
PSO (4.3), (4.4) and not apply the randomization in the beginning. We show how the
computational time can be substantially reduced.

The first experiment is as follows: we store the winning trajectory in (4.3), (4.4)
along with the maximal temperatures at last time step.

We create the discrete dynamical system by applying (4.41) and running 5.5.
Then assume then the next experiment has been held with the new value of

640 K. Remember that 30 iterations for 740 K took around 6 − 10 machine com-
putation hours depending on the initial randomization.

The computational time of creating the patterns depends on condition in the re-
sult 4.3.1 and randomization but usually takes several minutes for chosen dimen-
sion.

The iterations of the discrete dynamical system takes several seconds.
We don’t know the parameters - all we know is the new maximal temperature

value at last time step, which is 640 K. We choose the values in the allowed intervals

for two parameters and feed the system the matrix

6 4 2
1 0 1
4 1 4

 . Since blo and bup

are taken from section 6.3 and respectively are
(

1.7 · 10−3

47780/100

)
and

(
1.7 · 101

47780 · 100

)
,

this is a good place to start.
After several iterations of the processes 5.5 the machinery has produced the vec-

tor

 640
10

8200

 , which is too good to be true so solving the system of PDEs (2.11),

(2.18) with these parameters was necessary which gave the close enough value be-
tween 635 and 645 Kelvins. The figure (6.36) shows the closeness to the temperature
profile.

In table 6.4 we see how we have substantially reduced the computational time
for the new experiment. The times are in seconds as results of tic and toc in Matlab.

T value/method PSO DDS with PC DDS PDE
740 K 37412 - - -
640 K - 160 - 119.4
700 K - - 32.2 119.3

It all started (first row in table 6.4) with the full PSO for 740 K which took around 10
hours to perform on a powerful but not super computer.

Chapter 6. Applications 83

FIGURE 6.36: T at 4 s - max T around 640 K

The sequence of experiments afterwards is considered whereas we do not wish
to wait that long and use the leftover information of the optimization trajectories.

For illustration we considered two subsequent experiments with finding the pa-
rameters for solution with maximal temperatures of 640 and 700 K (second and third
rows of table 6.4).

DDS stands for iterating the discrete dynamical system and the one with PC
(stands for pattern creation) is when we create the patterns as in 5.5 first. This took
between 2 and 3 minutes and gave an approximation since the standard forms of
numbers had been considered and by feeding to the system the trajectory of only
one particle there is no guarantee the chosen maximal values are close to the values
on the trajectory.

Therefore the one last solution of PDE (the last column) were called out with the
wait time of around about 2 minutes.

For the experiment in the 3rd row and all the hypothetical subsequent experi-
ments there is no need for pattern creation so it takes around 30 seconds to iterate
the DDS several times and find the approximated parameter values.

In comparison with lots of hours if we had to optimize the parameters every time
this is a significant time saver.

In the next application we consider the two criteria for optimization - maximal
and outlet temperature with the model as in the last part of section 6.3. This would
demonstrate that for more complicated problem the pattern storage is a life saver
for the sequence of subsequent experiments and if there are even more sophisticated
potential applications the framework can be applied as well.

We consider the PSO iterations with 2 criteria:
Tmax = 740 K and Tout = 450 K. This is possible scenario to converge onto out of
the solutions with determined parameters in sections 6.1, 6.2. And by running the
optimization procedure wisely (applying the pattern storage procedure at the same
time) this has given us lots of trajectories to store.

Therefore, analogously to the first part of the section, we consider the next pos-
sible parameter optimization task with Tmax = 670 K and Tout = 430 K.

Again: the parameters can be chosen somewhat randomly or according to the

last good experiment if any. For this illustration we choose the matrix

6 7 2
4 3 2
1 0 1
4 1 3

 .

Chapter 6. Applications 84

This matrix sets standard forms of three numerical values: first two rows - what
we wish to obtain and last two rows - the chosen values of the parameters. These we
wish to be detrmined after we feed it to the DDS. Again: parameters are obviously
chosen to belong to the feasible interval.

What our machinery has to obey is that any produced decoded value has to be-
long to its feasible interval. This is obtained by a simple bound control as in (4.8),
(4.9) but when it comes to DDS, which has been designed to work very fast, the
bound control can discard all the values beyond the given interval and run the pro-
cess which lasts several seconds only several times till it gives out a set of feasible
values.

Experiments show that the more we teach the system with values in interval, the
better it stays inside of it.

After several iterations and running the PDE solver we have found the necessary
close enough projection. The figure (6.37) graphically compares the temperature
hypersurface projection (magenta curve) with the lines corresponding to the desired
values.

FIGURE 6.37: T at 4 s - max T around 670 K, out T around 430 K

We construct the table with tics tocs from Matlab as well.

T values/method PSO DDS with PC DDS PDE
740, 450 K 25816.8 - - -
670, 430 K - 868.9 - 105.9
700, 440 K - - 277.7 107.5

The explanation of this table is similar to the previous one, but instead of one cri-
terion there are two.

Again, we begin with the first row in table with the full PSO for 740 K, 450 K this
time, which took around 7-8 hours to perform on a powerful but not super computer.
The few hour difference (as it is if we compare it with the first table) can always be
explained by the random nature of the initial guess in (4.3), (4.4).

Again, the sequence of experiments afterwards is considered whereas we do not
wish to wait that long and use the leftover information of the optimization trajecto-
ries.

Chapter 6. Applications 85

For illustration we considered two subsequent experiments with finding the pa-
rameters for solution with temperatures pairs of 670, 430 and 700, 440 Kelvins (sec-
ond and third rows of the table).

DDS stands for iterating the discrete dynamical system and the one with PC
(stands for pattern creation) is when we create the patterns as in 5.5 first. This took
about 15 minutes and gave an approximation since the standard forms of numbers
had been considered and by feeding to the system the trajectory of only one particle
there is no guarantee the chosen maximal values are close to the values on the tra-
jectory. Here the dimension doubled and the binary representation took a little bit
more time to create.

Therefore the one last solution of PDE (the last column) were called out with the
wait time of around about 2 minutes.

For the experiment in the 3rd row and all the hypothetical subsequent experi-
ments there is no need for pattern creation so it takes around 4 minutes to iterate the
DDS several times and find the approximated parameter values.

Again, in comparison with lots of hours if we had to optimize the parameters
every time this is a significant time saver.

One can conclude that for two criteria the timings haven’t been significantly in-
creased (even decreased at some point but this is as usual a matter of an initial guess)
and in case of necessity one can increase the number of criteria and the codes in 5.5
have been created such as we can easily implement it.

Formulation of the problem whereas the number of criteria is greater than the
number of parameters is also possible after examining the behaviour of the solu-
tions for different values of parameters. This can lead to values of measure not as
close to zero. That is also the case for the ’improper’ choice of criteria values when
the numbers coincide or the number of criteria is smaller than the number of param-
eters. The nature of our considered problems however (comparison of modelling
and experimental data and modification of models therefore) makes us analyse the
experimental data first and then formulate the optimization problem. In case when
the measure is obtained inadmissible one may consider reformulating the optimiza-
tion problem. The figure 6.38 shows how the measure can still be obtained in case
when the number of criteria is larger (we’ve added the third one - the temperature
value in the middle) but the formulation of the corresponding optimization problem
and the execution of the algorithms is still possible.

Chapter 6. Applications 86

FIGURE 6.38: T at 4 s - desired max T - 700 K, out T - 450 K, mid T -
550 K.

In similar fashion we can continue the experiments for the chosen types of mod-
els, which shall be a matter of author’s further researches, or can apply the obtained
machinery for different types of models (not even necessarily described by PDEs).

This ends the applications section. We have chosen illustrative examples to show
how the machinery works and given pictorial and tabular representations of our
results.

The formulation of the conclusions of the whole thesis is the subject of the last
pages as well as the list of author’s publications and the list of literature.

87

Chapter 7

Conclusions

Sticking to the plan proposed in chapter 1 led to results applicable in the field of
combustion and chemical kinetics experiments. The techniques used for that are
obviously applicable elsewhere as well since the code had been created such that its
separate parts can be used as a part of another code for the field or in other various
fields.

In particular, the framework when we know the list of chemical reactions in the
model and don’t know some of their parameters but do know how to estimate their
regions has been created. Very briefly at the end of the day:

In chapter 2 we’ve learned how to take the list of forward chemical reactions and
construct the source terms in the equations of the PDE system. The other classical
terms of the equations of the PDE system have been discussed as well.

In chapter 3 we’ve chosen universal methods to be safe to obtain the feasible
solutions of the PDE system and have presented the necessary theory of weak solu-
tions, function space approximation, finite element method and the linearisation.

In chapter 4 we went step further, considering the process of obtaining the nu-
merical solution has been developed, we have presented the parameter optimiza-
tion technique and at the same time concluded that the process is time demanding
and thus considered the model reduction and pattern storage and recognition tech-
niques.

In chapter 5 the simple test codes in Matlab have been presented to serve as
building blocks for the general code governing all the techniques presented in the
thesis.

In chapter 6 some graphical and numerical results along with the tables have
been presented where one can see that proposed techniques in the thesis work very
well in simple cases.

The main author’s contribution is the application of different modern techniques
not yet ever used in this particular combination for the combustion and reaction ki-
netics applications along with their modifications and adopting them for this partic-
ular matter.

The pattern storage results are something the author had come up within the last
steps of gathering data for the thesis and the simple examples such as single and two
criteria recognition has only been considered, but theoretically this concept can be
used to solve the whole closest curve or surface finding task by using the proposed
machinery. This would be the topics of author’s further researches.

88

Appendix A

Author’s participation in published
works

Publications presented here are the ones author has been involved in for the last
couple of years whilst researching the topic.

These have a lot of co-authors too since there have been a lot of colleagues in
several projects the author has been involved in.

Amongst the wider list of publications and proceedings with author’s contribu-
tions on similar but not exactly the same topic, we present the list of thematically
connected publications on the topic of this particular thesis only and omit most of
the conference proceedings.

• On the numerical simulation of the vortex breakdown in the combustion pro-
cess with simple chemical reaction and axial magnetic field, International Jour-
nal of Differential Equations and Applications, Volume 14, No. 3, 2015, p. 235-
250. Coauthors: H. Kalis, U.Strautin, š, O. Lietuvietis.

• Magnetic Field Control of Combustion Dynamics. Latvian Journal of Physics
and Technical Sciences, Vol. 53, N4, p. 36-47, 2016. Coauthors: I. Barmina, R.
Valdmanis, M. Zak, e, H. Kalis, U. Strautin, š.

• On numerical simulation of electromagnetic field effects in the combustion
process. Mathematical Modelling and Analysis, 23(2), p. 327-343, 2018. Coau-
thors: H. Kalis, U. Strautin, š, M. Zak, e.

• Experimental Study and Mathematical Modelling of Straw Co-Firing with Peat.
Chemical Engineering Transactions, Vol. 65, p. 91-96, 2018. Coauthors: I.
Barmina, A. Kolmičkovs, R. Valdmanis, M. Zak, e, H. Kalis.

• Experimental study and mathematical modelling of straw co-firing with propane.
Chemical Engineering Transactions, Vol.74, p. 19-24, 2019. Coauthors: I. Barmina,
A. Kolmičkovs, R. Valdmanis, M. Zak, e, H. Kalis.

• Mathematical Modelling and Experimental Study of Straw co-Firing with Gas.
Mathematical Modelling and Analysis, Vol. 24, N4, p. 505-529, late 2019. Coau-
thors: I. Barmina, H. Kalis, A. Kolmičkovs, L. Ozola, U. Strautin, š, R. Valdma-
nis, M. Zak, e.

• Mathematical Modelling and Experimental Study of Straw co-Firing with Gas
Using Electric Field Control of Combustion Characteristics. Contents of Pro-
ceedings of 19th International Scientific Conference Enginering for Rural De-
velopment, p. 1059-1064, 20.-22.05.2020, Jelgava, Latvia. Coauthors: H. Kalis,
A. Kolmičkovs, R. Valdmanis.

The present results are to be published in 2021.

89

Appendix B

Author’s participation in
international conferences

The list contains all the events during the last couple of years, whereas the author
participated with the thematically connected presentations.

• On the vortex formation in the combustion process with simple chemical reac-
tion and axial magnetic field // Mathematical Modelling and Analysis (MMA
2015) : 20th International Conference, Sigulda, Latvia, May 26-29, 2015 : ab-
stracts Riga : University of Latvia, 2015. p. 43.

• On the numerical simulation of the combustion process with simple chemi-
cal reaction, 7th Baltic Heat Transfer Conference, August 24-26, 2015, Tallinn,
Estonia.

• Mathematical modeling of MHD flow in the combustion process . Acta Soci-
etatis Mathematicae Latviensis, Abstr. of the 11-th Latvian Mathematical Con-
ference, 15.04.2016, Daugavpils, Latvia, p. 37.

• On mathematical modelling of the combustion process of biomass. Acta Soci-
etatis Mathematicae Latviensis, Abstr. of the 11-th Latvian Mathematical Con-
ference, 15.04.2016, Daugavpils, Latvia, p. 38.

• On numerical modelling of swirl flow in the combustion process // Mathe-
matical Modelling and Analysis (MMA 2016) : 21st International Conference,
Tartu, Estonia, June 01-04, 2016 : abstracts Tartu : University of Tartu, 2016. p.
36.

• Experimental and numerical study of the development of swirling flow and
flame dynamics and combustion characteristics at biomass thermo-chemical
conversion. 16th International Scientific Conference Enginering for Rural De-
velopment, 24.-26.05.2017, Jelgava, Latvia.

• Effects of gradient magnetic field on swirling flame dynamics, 16th Interna-
tional Scientific Conference Enginering for Rural Development 24.-26.05.2017,
Jelgava, Latvia.

• Electric field effects on gasification/combustion at thermo-chemical conver-
sion of biomass mixtures. 16th International Scientific Conference Enginering
for Rural Development, 24.-26.05.2017, Jelgava, Latvia.

• On numerical simulation of electromagnetic field effects in the combustion
process. Abstr. of MMA2017, May 30-June 02, 2017, Druskininkai, Lithuania,
p. 41.

Appendix B. Author’s participation in international conferences 90

• Mathematical Modelling on Electromagnetic Field Control of the Combustion
Process, Modelling for Materials Processing, Riga, September 21-22, 2017.

• On mathematical modelling of the chemical reactions for two-dimensional dif-
fusion flames. Acta Societatis Mathematicae Latviensis, Abstr. of the 12-th
Latvian Mathematical Conference, 13.04.2018, Ventspils, Latvia, p. 40.

• Development of combustion dynamics at co-combustion of straw with wood.
17th International Scientific Conference Enginering for Rural Development,
23.-25.05.2018, Jelgava, Latvia.

• Influence of electric field on thermo-chemical conversion of mixtures of straw
pellets with coal. 17th International Scientific Conference Enginering for Rural
Development, 23.-25.05.2018, Jelgava, Latvia.

• Mathematical modelling and experimental study of co-firing straw with gas.
Abstr. of MMA2018, May 29-June 1, 2018, Sigulda, Latvia.

• Numerical study of electrodynamic control of straw co-firing with propane.
Engineering for Rural Development: 18th International Scientific Conference,
May 22-24, 2019, Jelgava, Latvia.

• Mathematical Modelling and Experimental Study of Straw co-Firing with Gas
Using Electric Field Control of Combustion Characteristics. Engineering for
Rural Development: 19th International Scientific Conference, 20.-22.05.2020,
Jelgava, Latvia.

91

Bibliography

[20 04] Kinetic Mechanism for 20 torr. In: (2004). URL: http://web.mit.edu/
anish/www/pub20torr.mec.

[Ang03] P. Knabner, L. Angermann. “Numerical Methods for Elliptic and Parabolic
Partial Differential Equations”. In: Springer (2003).

[BAE05] F. van den Bergh, A.P. Engelbrecht. “A study of particle swarm optimiza-
tion particle trajectories”. In: Information Sciences (2005).

[Ben13] M.G. Larson, F. Bengzon. “The Finite Element Method Theory, Imple-
mentation, and Applications”. In: Springer (2013).

[Bet16] A. Bettini. “A Course in Classical Physics 2 — Fluids and Thermodynam-
ics”. In: Springer (2016).

[Bor01] E.S. Oran, J.P. Boris. “Numerical Simulation of Reactive Flow”. In: Cam-
bridge University Press, NY USA (2001).

[Bro13] R.L. Brooks. “The Fundamentals of Atomic and Molecular Physics”. In:
Springer (2013).

[Cha01] D. Mandic, J. Chambers. “Recurrent neural networks for prediction: learn-
ing algorithms, architectures, and stability”. In: John Wiley (2001).

[Cle06] M. Clerc. “Particle Swarm Optimization”. In: Iste (2006).

[Fin] In: Encyclopedia of Math (2016). URL: https://encyclopediaofmath.org/
wiki/Finite-increments_formula.

[Fou03] R.A. Adams, J.J.F. Fournier. “Sobolev Spaces”. In: Elsevier (2003).

[Gre08] M.A. Singer, W.H. Green. “Using adaptive proper orthogonal decom-
position to solve the reaction–diffusion equation”. In: Applied Numerical
Mathematics (2008).

[Hac17] W. Hackbusch. “Elliptic Differential Equations Theory and Numerical
Treatment”. In: Springer (2017).

[Mar16] I. Barmina, R. Valdmanis, M. Zak, e, H. Kalis, U. Strautin, š, M. Marinaki.
“Magnetic Field Control of Combustion Dynamics”. In: Latvian Journal of
Physics and Technical Sciences, Vol. 53, N4, p. 36-47 (2016).

[Mar18a] H. Kalis, U. Strautin, š, M. Zak, e, M. Marinaki. “On numerical simulation
of electromagnetic field effects in the combustion process”. In: Mathemat-
ical Modelling and Analysis, 23(2), p. 327-343 (2018).

[Mar18b] I. Barmina, A. Kolmičkovs, R. Valdmanis, M. Zak, e, H. Kalis, M. Mari-
naki. “Experimental Study and Mathematical Modelling of Straw Co-
Firing with Peat”. In: Chemical Engineering Transactions, Vol. 65, p. 91-96
(2018).

[Mar19] I. Barmina, A. Kolmičkovs, R. Valdmanis, M. Zak, e, H. Kalis, M. Mari-
naki. “Experimental study and mathematical modelling of straw co-firing
with propane”. In: Chemical Engineering Transactions, Vol.74, p. 19-24 (2019).

http://web.mit.edu/anish/www/pub20torr.mec
http://web.mit.edu/anish/www/pub20torr.mec
https://encyclopediaofmath.org/wiki/Finite-increments_formula
https://encyclopediaofmath.org/wiki/Finite-increments_formula

Bibliography 92

[Mei08] A. Meister. “Numerik linearer Gleichungssysteme”. In: Vieweg (2008).

[Mil00] R.J. Kee, F.M. Rupley, J.A. Miller. “The Chemkin Thermodynamic database”.
In: Reaction design, Sandia National Laboratories Report SAND87-8215B (2000).

[Pfe12] W.F. Pfeffer. “The Divergence Theorem and Sets of Finite Perimeter”. In:
Taylor and Francis (2012).

[Tab20] Dynamic Periodic Table. In: (2020). URL: https://ptable.com/.

[Tla] In: Mathworks (2021). URL: https://se.mathworks.com/help/matlab/
getting-started-with-matlab.html.

[Vey05] T. Poinsot, D. Veynante. “Theoretical and Numerical Combustion”. In:
Edwards, PA USA (2005).

[Wil10] M. Buffoni, K. Willcox. “Projection-based model reduction for reacting
flows”. In: 40th Fluid Dynamics Conference and Exhibit (2010).

[Wil85] F.A. Williams. “Combustion Theory. The Fundamental Theory of Chem-
ically Reacting Flow Systems”. In: Taylor and Francis, FI USA (1985).

[Woo02] D.M.T. Hall, D.L. Torek, P.V. Schrock, C.R. Wooldridge. “H2/O2 reaction
mechanism”. In: M.S., Proc. Combust. Inst. 29 (2002), in press (2002).

https://ptable.com/
https://se.mathworks.com/help/matlab/getting-started-with-matlab.html
https://se.mathworks.com/help/matlab/getting-started-with-matlab.html

	Abstract
	Acknowledgements
	Introduction
	Combustion models
	Equations solved for mass fractions
	The reaction term
	Temperature equation

	Partial differential equations and the FEM
	The classification of PDEs
	Boundary and initial value problems
	Weak formulations
	Existence and uniqueness results
	Finite dimensional problems and the FEM
	Treatment of the non-linear time-dependent system

	Parameter optimization and model reduction strategies
	Particle swarm optimization
	Reduction due to principal components
	Information storage and pattern recognition

	Test problem treatment with MATLAB
	Triangulation settings
	Assembly of stiffness, mass matrix and a load vector
	Boundary conditions
	Optimization of the parameters
	Pattern storage

	Applications
	Solving PDEs for the single reaction model
	Solving PDEs for the several reaction model
	Parameter optimization for 3D model with one or several criteria
	Pattern storage results

	Conclusions
	Author's participation in published works
	Author's participation in international conferences
	Bibliography

