




Abstract

In this research empirical likelihood methods for comparing two and multiple independent
populations based on robust location estimators are developed. Empirical likelihood (EL)
is a nonparametric statistics method that does not require the normality assumption of
the data. New asymptotic results are proven for the following empirical likelihood-based
methods. 1. The difference of two M-estimators (in particular, two smoothed Huber
estimators), 2. the difference of two trimmed means and 3. EL-based ANOVA method
for comparing multiple trimmed means. A simulation study was designed and data ex-
amples were analysed showing that the newly-established methods provide a comparable
alternative to the classical procedures when the data is normally distributed, demonstrat-
ing similar power and ability to control the type I error. In addition, the methods have
good robustness properties, having an advantage over the classical procedures when the
assumption of normality does not hold.

Keywords: empirical likelihood; robust statistics; M-estimator; smoothed M-
estimator; trimmed mean; two-sample problem; EL ANOVA
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List of designations

⌊.⌋ – the floor function
a.s.−−→ – convergence with probability 1
d−→ – convergence in distribution
p−→ – convergence in probability
#A – number of occurrences of an event A
cdf - cumulative distribution function
E – expectation
EF – expectation with respect to a distribution F
ecdf - empirical cumulative distribution function
EL – empirical likelihood
i.i.d. – independent and identically distributed
Fn,k – F -distribution with n and k degrees of freedom
FBP – finite-sample breakdown point
IA – indicator function of an event A
log – the natural logarithm
LRT – likelihood ratio test
maxeig(A) – the largest eigenvalue of a symmetric matrix A
mineig(A) – the smallest eigenvalue of a symmetric matrix A
MLE – maximum likelihood estimator
MSE – mean squared error
op(an) – a random variable Xn such that for a set of constants an, Xn/an

p−→ 0
pdf – probability density function
pmf – probability mass function
sgn – the sign function
Var – variance
X(1), . . . , X(n) – ordered statistics of a sample X1, . . . , Xn

δa – point mass distribution at a
µαβ – trimmed mean with trimming proportions α, β from the left and the right, respec-
tively
ϕ – density function of the standard normal distribution
Φ – cumulative distribution function of the standard normal distribution
X – sample space
χ2
k – chi-square distribution with k degrees of freedom
χ2
k,1−p – 1− p quantile of chi-square distribution with k degrees of freedom
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Introduction

Comparing two populations in the classical setting
A common problem in statistical analysis is to compare two populations F1 and F2

based on observations of two samples X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 . For example,
one might be interested to find whether a new medicament administered to the treatment
group is more effective than the placebo given to a control group. Or one may want to
test whether two different doses of the same medicament induce similar changes in pa-
tients’ physiological or biochemical health indicators. The most widely used test in such
situations is Student’s t-test [40] for comparing the means of two independent normal
populations. In case X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 are independent and identically
distributed (i.i.d.) and with equal variances, i.e., from N(µ1, σ

2) and N(µ2, σ
2), respec-

tively, Student’s t-test is optimal in the sense that it is the size α likelihood ratio test for
the hypotheses H0 : µ1 = µ2 versus H1 : µ1 > µ2 (see, for example, [3, Chapter 9]).

Sample mean has useful theoretical properties: under the normal distribution it is the
maximum likelihood estimator of the population mean and hence is asymptotically the
most efficient (has the smallest variance) among all unbiased estimators (see, for example,
[5, Chapter 10]). Unfortunately, the efficiency of the sample mean decreases quickly under
slight departures from normality. Intuitively, a single observation can change the value
and standard error of the sample mean by an arbitrary large amount. It can be said that
the sample mean is not robust to the departures from normality.

At the onset of the theory of estimation the statistical variability was almost exclu-
sively due to measurement errors and as such, was a nuisance to get rid of [18]. It is in this
context that Carl Friedrich Gauss introduced the normal distribution and provided an
elegant way to describe the behaviour of errors around the arithmetic mean. However, the
assumption that the observed data is exactly normally distributed is rarely achievable in
most practical applications. The data collected can be sampled from skewed distributions,
from distributions with heavy tails (heavier than normal distribution), or it can contain
one or several outliers (atypical observations deviating from the most of the data).

Regarding the Student’s t-test, the presence of outliers or heavy tails inflates the
standard error of the mean thus decreasing the power of the test. When distributions
differ in skewness, the Student’s t-test is not even asymptotically correct [7]. Bernard
L. Welch [54] developed an approximate degrees of freedom (ADF) modification that
overcomes the problems associated with the inequality of variances, problems associated
with outliers and heavy tails remain. When nonnormality occurs simultaneously with the
variance heterogeneity and unbalanced sample sizes, the probability of a type I error may
considerably differ from the nominal (see, for example, [57] for review).

Comparing multiple populations
Let Yi = (Yi1, Yi2, . . . , Yini

), i = 1, . . . , k be independent samples from k populations
F1, . . . , Fk. The classical method to compare the means of multiple independent popula-
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tions is the analysis of variance (ANOVA) F -test introduced by Ronald Fisher. ANOVA
F -test is based on the normality assumption and the equality of variances across the
k groups. It is well known that ANOVA F -test cannot handle violations of these as-
sumptions: variance heterogeneity and outliers can break down the results of the test
completely when not taken into account properly. As a consequence, ANOVA has prob-
lems of controlling the probability of empirical type I error at the specified nominal level.
B. Welch [55] proposed a version of the F -test for the heteroscedastic case; similarly as
for the two-sample problem, the method is based on the modification of the degrees of
freedom of the limiting distribution. However, Welch’s ANOVA test is not robust to
departures from normality and outliers, especially when the skewness differs among the
groups [23].

Empirical likelihood
Empirical likelihood (EL) was introduced by Art B. Owen in 1988 [28]. EL is a non-

parametric method that does not require assumptions about the distribution family of
the data. A. B. Owen [28] showed that the empirical likelihood ratio statistic for an
estimator θ(F ) expressed as a function of an unknown distribution F has a limiting chi-
square distribution. Analogically to the parametric likelihood case, EL allows estimating
parameters, constructing confidence intervals, and hypothesis tests. For the one-sample
case, a general framework based on smooth estimating equations was provided by Jin
Qin and Jerry Lawless in 1994 [34]. Regarding the two-sample problem, Yonsong Qin
and Lincheng Zhao [35] extended the EL method for the difference of two univariate pa-
rameters. The properties of EL for some two-sample problems were analysed empirically
by Jānis Valeinis et al. [49] and a complementary R program [36] package EL [6] was
developed. EL method, in an ANOVA-like setting for comparing means of k independent
groups, was demonstrated by A. B. Owen in 1991 [30]. A general overview on EL meth-
ods can be found in [31]. More recent monographs are written by Mai Zhou [61], and
Albert Vexler and Jinhee Yu [50]. The first monograph is devoted to empirical likelihood
methods in survival analysis, while the second presents EL methods with applications in
biostatistics, especially in light of nonparametric Bayesian inference.

EL is devised by constructing a multinomial distribution on the observed data points,
hence it has an advantage that the associated confidence intervals are not necessarily
symmetrical and have a data driven shape. For example, EL confidence intervals for the
mean tend to be extended in directions where the data is skewed [31]. However, the pres-
ence of outliers can greatly lengthen the EL confidence intervals for the mean in direction
of their placement in the sample, and therefore the resulting coverage probabilities of
the interval estimates might be incorrect [10]. [43] demonstrated that the finite-sample
breakdown point of the length of the EL confidence interval for the mean is 1/n based
on a sample of size n, namely, a single outlying observation can arbitrarily increase the
length of the interval. Thus the problems inherent to the inference for means are relevant
to the empirical likelihood setting as well.

A. B. Owen [31] discussed two approaches towards a more robust empirical likeli-
hood: first, using estimators θ(F ) that are more robust than the mean, and second, to
construct a more robust likelihood function. The second approach relates to the weighted
empirical likelihood. For example, [10] proposed weights depending on an automatic
outlier detection procedure based on absolute deviation statistics. Their weighted EL
estimator for the mean had a smaller mean squared error (MSE) than the classical EL
estimator in simulation settings of normal data contaminated with outliers. [45] consider
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another weighted EL approach for estimating the common mean of k independent sam-
ples, where the weights depend on the sample dispersion estimates. Their method was
shown to have an advantage over the classical EL method in simulation setting for data
sampled from skewed distributions with heterogeneous variances. [59] further provided a
bootstrap-calibration for the weighted empirical likelihood and observed its advantage in
the skewed distribution setting.

Robust estimators
The centre of interest of this thesis, however, is the first of Owen’s propositions, namely,

to study the empirical likelihood method for some robust estimators. In particular, we
are interested in robust estimators of location or centre of the data. As for the meaning of
the word robustness, it signifies “insensitivity to small deviations from the assumptions”
[19, p. 2]. The main concern of robust statistics is the distributional robustness, i.e., the
behaviour of the methods when the true underlying distribution deviates slightly from
the assumed (usually normal) model.

The discipline of robust statistics developed in 1960s with the work of John W. Tukey
and Peter J. Huber, when the inefficiency problems associated with the classical estimators
(such as sample mean, sample variance and the least squares regression) were started to be
studied in a comprehensive manner. J. W. Tukey ([46], cf. [14]) considered contaminated
normal distributions of the form (1 − ϵ)N(µ, σ2) + ϵN(µ, 9σ2), where ϵ varies from 0 to
1/2 and thus represents a proportion of erroneous observations increased by factor 3. J.
W. Tukey compared the efficiency of the mean, median and several other estimators in
the contaminated normal distribution setting. As a conclusion, he advocated the use of
the 6%-trimmed mean that demonstrated good efficiency throughout the whole range of
ϵ contaminations.

Trimmed mean is a simple location parameter that is obtained by calculating the
arithmetic mean after removing a fixed proportion of the most extreme observations from
the sample. [47] proposed a one-sample trimmed t procedure based on t-statistic for
trimmed mean and Winsorized square deviations of the sample (in case of Winsorization,
the extreme values are shifted towards the middle of the data instead of being removed).
This method was extended to the two-sample case by Karen K. Yuen [60]. Stephen M.
Stigler provided the conditions for the asymptotic normality of the trimmed mean in [39].

In 1964 P. J. Huber published the seminal paper “Robust Estimation of a Location
Parameter” [17], inventing a class of M-estimators that, in a sense, is a generalization of the
maximum likelihood (MLE) estimators. Consider an MLE estimator θ̂ = θ̂(X1, . . . , Xn)

of the parameter θ. Then θ̂ is defined as the value that minimizes the minus of the log
likelihood function, i.e.,

θ̂ = argmin
θ

n∑
i=1

− log fθ(Xi),

where fθ is the probability density function (pdf) of Xis under θ. Huber proposed to
replace the function − log fθ with a general ρ-function, i.e.,

θ̂ = argmin
θ

n∑
i=1

ρ(Xi, θ).

Equivalently, if ψ is differentiable in θ, θ̂ is the solution of
n∑

i=1

ψ(Xi, θ) = 0,
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where ψ = (∂/∂θ)ρ(x, θ). In the same article, P. J. Huber also set out the conditions for
the consistency and asymptotic normality of the newly-established M-estimators. Finally,
he demonstrated that there existed a certain ‘optimal’ M-estimator in a full neighbourhood
of the normal distribution. Namely, he considered the class of contaminated distributions
Pϵ = (1 − ϵ)Φ + ϵH, where Φ is the standard normal cumulative distribution function
(cdf) and H is a cdf of any symmetric distribution. Then an M-estimator, now referred
to as the Huber estimator, defined for a given positive constant c by

ψ(x) = max(−c,min(c, x)),

has the minimax asymptotic variance among all translation-equivariant location estima-
tors. Moreover, Huber estimator is the MLE for the so-called Huber’s least favourable
distribution, which is normal in the middle, but exponential in the tails.

The performance of the Huber estimator is rather sensitive to the behaviour of the
underlying distribution F at the points ±c, where the function ψ(x) is not differentiable
[17] , and better results could be attained if the ψ-function was smoothed around ±c.
The smoothing principle for a Huber estimator was first proposed by Frank Hampel in
[12]. For a ψ-function of a general M-estimator, the smoothing principle was presented
in 2011 by Frank Hampel et al. [13], where the degree of smoothness depends on the
sample size. The smoothed estimators were demonstrated to have smaller MSE than
their non-smoothed counterparts in small and moderate sample settings.

Empirical likelihood for robust location estimators in the one-sample case
At first it might seem unnecessary to consider distributional robustness in the case

of empirical likelihood, since there are no explicit distributional assumptions involved.
However, EL is essentially a likelihood defined on the empirical cdf, thus the robustness
properties of the estimators considered are still relevant. A. B. Owen [28] demonstrated
that the EL method can be applied to certain M-estimators, including the Huber estima-
tor. [43] gave the expression of a finite-sample breakdown point of the length of the EL
confidence interval for the Huber estimator and showed that it is asymptotically equal to
0.5, which is the best attainable value for any estimator.

Regarding the trimmed mean, a key assumption for the classical EL approach is the
independence of the observations, however, the trimmed sample consists of dependent
observations. In the context of time series, the dependence can be removed by grouping
data in blocks before using the EL method [22], however, such an approach does not
seem to be possible for the trimmed mean case. Instead, Gensheng Qin and Min Tsao
[33] defined the EL ratio directly for the trimmed sample and proved that the limiting
distribution was a scaled chi-square. They demonstrated that the EL confidence interval
for the trimmed mean is more accurate than the confidence interval based on the normal
approximation in a skewed distribution simulation setting. A different approach was taken
in [44], where the EL method for the trimmed mean was constructed as in the case of the
means, but a more conservative quantile of the chi-square distribution was used to define
the respective confidence interval. However, in a limited simulation study we found that
the confidence interval described in [44] does not attain the right coverage probability
when the null hypothesis is true.

Aims of the research
The goal of the thesis is to develop empirical likelihood-based methods for comparing

two or more independent populations using some well-established robust location param-
eter estimators. Given the good robustness properties of the trimmed mean and the
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Huber estimator in the one-sample case, they are good candidates for establishing robust
methods also in the two-sample and ANOVA case.

The aims of the research are as follows:

1. Develop an empirical likelihood method for the difference of two location M-
estimators using the results of Y. Qin and L. Zhao [35]. In particular, consider
the smoothed Huber estimator [13].

2. Develop an empirical likelihood method for the difference of two population trimmed
means extending the results of G. Qin and M. Tsao [33], and Y. Qin and L. Zhao
[35].

3. Develop an ANOVA-like empirical likelihood method to compare the trimmed means
of multiple populations, extending the results of G. Qin and L. Tsao [33], and A. B.
Owen [30].

4. Develop a simulation study comparing the performance of the newly-established
empirical likelihood methods for robust location parameter estimators with some
widely used classical and robust methods.

5. Study the applications of the newly-developed methods on real data sets comparing
with some classical and robust alternatives.

Structure of the thesis
The thesis is organized as follows. The preliminaries are given in the first two chapters.

In Chapter 1, the theory of the empirical likelihood method is presented. The parametric
likelihood is shortly revisited, the empirical likelihood function is introduced, and details
on the EL estimation for the one- and two-sample cases with smooth unbiased estimating
equations are presented. In Chapter 2, theory regarding robust location estimation is
presented. M-estimators, smoothed M-estimators, and trimmed means are defined and
their properties are described.

The original theoretical results of the author are presented in Chapters 3, 4 and 5. In
Chapter 3, we present the EL method for the difference of two M-estimators. We give
the conditions under which the EL ratio can be constructed for a difference of general
M-estimators, and show that the Huber estimator fits in this setting. In Chapter 4, the
empirical likelihood method for the difference of two trimmed means is presented. In
Chapter 5, the EL-based ANOVA test for comparing more than two population trimmed
means is presented.

In Chapter 6, the simulation study and data analysis results are presented. The newly-
developed EL methods are compared with some well-known classical and robust methods.
Finally, the conclusions and the theses of the doctoral research are given.

Approbation of the results and contribution of the author
The doctoral thesis research has been presented in twelve scientific conferences (see

appendix Conferences): eleven international conferences, C1-C10, C12, and one na-
tional conference in Latvia, C11. The research results have been published in three
peer-reviewed scientific papers:
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• M. Velina, J. Valeinis, L. Greco, G. Luta. Empirical Likelihood-Based ANOVA
for Trimmed Means. International Journal of Environmental Research and Public
Health. 13(10):953, 2016. https://doi.org/10.3390/ijerph13100953 (Indexed
in SCOPUS, SCIE (Web of Science))

• M. Velina, J. Valeinis, G. Luta. Empirical Likelihood-Based Inference for the
Difference of Two Location Parameters Using Smoothed M-Estimators. Jour-
nal of Statistical Theory and Practice 13(34), 2019. https://doi.org/10.1007/
s42519-019-0037-8 (Indexed in SCOPUS, zbMATH)

• M. Delesa-Vēliņa, J. Valeinis, G. Luta. Comparing Two Independent Popula-
tions Using a Test Based on Empirical Likelihood and Trimmed Means. Lithua-
nian Mathematical Journal 61: 199-–216, 2021. https://doi.org/10.1007/
s10986-021-09516-x (Indexed in SCOPUS, SCIE (Web of Science), zbMATH)

Māra Delesa-Vēliņa proved the asymptotic results, performed the simulation study and
data analysis (in cooperation with Luca Greco in [51]), and contributed to the writing
and editing of the papers.
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Chapter 1

Empirical likelihood method

Empirical likelihood is a nonparametric method of statistical inference that, unlike the
parametric maximum likelihood, does not require knowledge about the family of the data
distribution. However, there are many similarities between the empirical likelihood and
the classical maximum likelihood: both methods allow estimating parameters, construct-
ing likelihood ratio tests and estimating confidence intervals by the test inversion. A
nonparametric analogue of Wilks’ theorem [58] exists for the empirical likelihood ratio
and leads to the same limiting chi-square distribution as in the parametric case. Chapter
1.1 gives the main ideas on the maximum likelihood method.

It is well known that the empirical distribution function is the maximum likelihood
estimate of the underlying probability distribution function the sample was taken from. A.
B. Owen constructed an empirical likelihood ratio function for distributions and showed
in his 1988 paper [28] that it can be used to construct confidence intervals for the sample
mean, for the class of M-estimators, and for differentiable statistical functionals. Chapter
1.2 presents the EL method in its simplest case for the mean of independent random
vector as introduced in [28].

The information about the parameter of interest θ(F ), associated with the distribution
F , is often available in the form of estimating equations. For the one-sample case, a
general approach to EL with estimating equations involving smooth estimating functions
was developed by J. Qin and J. Lawless [34], and is presented in Chapter 1.4. Y. Qin
and L. Zhao [35] generalized the EL method with estimating equations to the two-sample
case, and their method is described in Chapter 1.4. It builds upon the results of [34] and
also requires smooth estimating functions. This method is essential in developing our new
EL-based methods in Chapters 3 and 4.

1.1 Maximum likelihood method
Definition 1.1.1. [5, p. 315] Let X = (X1, . . . , Xn) be a sample of independent
and identically distributed random variables (i.i.d.) from a population with probabil-
ity density function (pdf) or probability mass function (pmf) f(x|θ), θ ∈ Θ ⊂ Rk. Let
x = (x1, . . . , xn) be the observed sample values. The likelihood function is a function of θ
defined by

L(θ|x) = L(θ1, . . . , θk|x1, . . . , xn) =
n∏

i=1

f(xi|θ1, . . . , θk). (1.1)
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The likelihood function provides one of the most popular techniques for deriving esti-
mators, namely, the maximum likelihood estimators (MLE). MLE is the parameter point
for which the observed sample is the most likely to occur. A formal definition is given
below.

Definition 1.1.2. [5, p. 316] For each observed sample x, let θ̂(x) be a parameter value
at which L(θ|x) attains its maximum as a function of θ, with x held fixed. An MLE
estimator of the parameter θ based on a sample X is θ̂(X).

If the likelihood function is differentiable in θi, the MLE can be found solving
∂

∂θi
L(θ|x) = 0, i = 1, . . . , k,

and finding the global maximum. We list regularity conditions on f(x|θ) that are essential
for some useful properties of the MLE to hold. The regularity conditions relate to the
differentiability of f(x|θ) and the ability to interchange differentiation and integration,
and are usually satisfied in most reasonable problems.

Assumption 1.1.1. (Regularity conditions of MLEs) [5, p. 516]

(A1) We observe X1, . . . , Xn, where Xi ∼ f(x|θ) are i.i.d.

(A2) The parameter is identifiable, i.e., if θ ̸= θ′, then f(x|θ) ̸= f(x|θ′).

(A3) The densities f(x|θ) have common support, and f(x|θ) is differentiable in θ.

(A4) The parameter space Ω contains an open set ω of which the true parameter value
θ0 is an interior point.

(A5) For every x in sample space X , the density f(x|θ) is three times differentiable
with respect to θ, the third derivative is continuous in θ, and

∫
f(x|θ)dx can be

differentiated three times under the integral sign.

(A6) For any θ0 ∈ Ω, there exists a positive number c and a function M(x) such that∣∣∣∣ ∂3∂θ3 log f(x|θ)
∣∣∣∣ ≤M(x) ∀x ∈ X , θ0 − c < θ < θ0 + c,

with Eθ0 [M(X)] <∞.

Properties of MLEs [5, pp. 320, 470, 472]
Let X1, . . . , Xn be an i.i.d. sample from a population with pdf or pmf f(x|θ), and let θ̂
be the MLE of θ.

1. Functional invariance. For a function τ(θ), define the MLE of τ(θ) = η as a value
η̂ that maximizes

L∗(η|x) = sup
θ:τ(θ)=η

L(θ|x).

Then for any function τ(θ), the MLE of τ(θ) is τ(θ̂).

2. Consistency. Let τ(θ) be a continuous function of θ. Under the regularity conditions
(A1) - (A4) in Assumption 1.1.1 on f(x|θ), τ(θ̂) is a consistent estimator of τ(θ),
i.e., for every ϵ > 0 and every θ ∈ Θ,

lim
n→∞

Pθ(|τ(θ̂)− τ(θ)|≥ ϵ) = 0.
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3. Asymptotic normality and efficiency. Let τ(θ) be a continuous function of θ. Under
the regularity conditions (A1) - (A6) in Assumption 1.1.1 on f(x|θ),

√
n(τ(θ̂)− τ(θ))

d−→ N(0, ν(θ)) as n→ ∞,

where ν(θ) is the Cramér-Rao Lower Bound

ν(θ) =
( d
dθ
τ(θ))2

nEθ{( ∂
∂θ

log f(x|θ))2}
. (1.2)

The quantity in the denominator of (1.2) is called the Fisher information.

The maximum likelihood estimators lead to the likelihood ratio method of hypothesis
testing. If θ denotes the population parameter, consider the hypotheses H0 : θ ∈ Θ0 and
H1 : θ ∈ Θc

0, where Θ0 is some subset of the parameter space Θ and Θc
0 is its complement.

Definition 1.1.3. [5, p. 375] The likelihood ratio test statistic for testing H0 : θ ∈ Θ0

versus θ ∈ Θc
0 is

λ(x) =
supΘ0

L(θ|x)
supΘ L(θ|x)

. (1.3)

A likelihood ratio test (LRT) is any test that has a rejection region R of the form R =
{x : λ(x) ≤ c}, where 0 ≤ c ≤ 1.

The connection between the MLEs and LRTs is as follows. If θ̂, an MLE of θ, exists, it
is obtained by unrestricted maximization of the likelihood function L(θ|x) over the entire
parameter space. Consider another MLE of θ, call it θ̂0, which is obtained by assuming
the parameter space is Θ0, that is, maximizing L(θ|x) over all θ ∈ Θ0. Then the LRT
statistic is

λ(x) =
L(θ̂0|x)
L(θ̂|x)

.

To evaluate the performance of a hypothesis test, the notions of power function and size
of the test are important. Consider a hypotheses test of H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc

0.

Definition 1.1.4. [5, p. 383] Suppose R denotes the rejection region for a hypothesis
test. The power function of a hypothesis test is the function of θ given by

β(θ) = Pθ(X ∈ R).

A good test should have a power function close to 1 for values of θ ∈ Θc
0, and close to

0 for values of θ ∈ Θ0.

Definition 1.1.5. [5, p. 385] For 0 ≤ α ≤ 1, a test with power function β(θ) is a size α
test if

sup
θ∈Θ0

β(θ) = α.

A test is a level α test if
sup
θ∈Θ0

β(θ) ≤ α.
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It is desirable to find the test with the highest power under H1 among all size α tests.
If such a test exists, it is called the most powerful test. In the special case of simple
hypothesis H0 : θ = θ0 versus H1 : θ = θ1, the likelihood ratio test provides the most
powerful test.

Theorem 1.1.1. (Neyman-Pearson lemma) [5, Theorem 8.3.12] Let X1, . . . , Xn be a
random sample from a pdf or pmf f(x|θ). Consider a test H0 : θ = θ0 versus H1 : θ = θ1.
Let

λ(x) =
f(x|θ0)
f(x|θ1)

=
L(θ0|x)
L(θ1|x)

and R = {x : λ(x) ≤ k}, where k is a constant such that

α = Pθ0(X ∈ R).

Suppose we reject H0 when x ∈ R, then this test is the most powerful, size α test.

Neyman-Pearson lemma considers simple hypotheses, however, for most practical uses,
we are interested in a composite hypothesis. Consider the likelihood ratio test statistic
λ(x) given by (1.3). Given the data X = x is observed, to define a level α test, the
constant c must be chosen so that

sup
θ∈Θ0

Pθ(λ(X) ≤ c) ≤ α.

The following theorem indicates a general procedure to obtain an approximate value for
c in the asymptotic case.

Theorem 1.1.2. (Asymptotic distribution of LRT, Wilks’ theorem) [5, Theorem 10.3.3]
Let X1, . . . , Xn be a random sample from a pdf or pmf f(x|θ). Under the regularity
conditions in Assumption 1.1.1, if θ ∈ Θ0 and n→ ∞, then

−2 log λ(X)
d−→ χ2

q−p,

where the degrees of freedom of the chi-square distribution are determined by the number
of free parameters q specified by θ ∈ Θ and the number of free parameters p specified by
θ ∈ Θ0, where p < q.

Finally, we remark that there is a general equivalence between the hypothesis testing
and the interval estimation that allows to construct interval estimates by test inversion.
The following theorem formalizes this equivalence.

Theorem 1.1.3. [5, Theorem 9.2.2] For each θ0 ∈ Θ, let A(θ0) be the acceptance region
of a level α test of H0 : θ = θ0. For each x ∈ X , define a set C(x) in the parameter space
by

C(x) = {θ0|x ∈ A(θ0)}.

Then the random set C(X) is a 1 − α confidence set. Conversely, let C(X) be a 1 − α
confidence set. For any θ0 ∈ Θ, define

A(θ0) = {x|θ0 ∈ C(x)}.

Then A(θ0) is the acceptance region of a level α test of H0 : θ = θ0.
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1.2 Empirical likelihood method
This section presents the basis of empirical likelihood inference through a nonparametric
likelihood ratio function as developed by A. B. Owen [28]. We first consider the mean of
a scalar random variables and independent random vectors. Denote F (x−) = P (X < x)
and so P (X = x) = F (x)− F (x−).

Definition 1.2.1. [31, p. 6] Let X1, . . . , Xn ∈ R. For for −∞ < x < ∞, the empirical
cumulative distribution function (ecdf) of X1, . . . , Xn is defined as

Fn(x) =
1

n

n∑
i=1

IXi≤x.

Definition 1.2.2. [31, p. 6] Let X1, . . . , Xn be i.i.d. random variables with unknown cdf
F . The empirical likelihood L(F ) of the cdf F is given by

L(F ) =
n∏

i=1

(F (Xi)− F (Xi−)) =
n∏

i=1

pi, (1.4)

where pi = P (X = Xi) and
∑n

i=1 pi = 1.

The value L(F ) in (1.4) is the probability of getting exactly the observed sample values
X1, . . . , Xn from the distribution function F . If F is a continuous distribution, L(F ) = 0.
Thus, to have a positive empirical likelihood, F must belong to a parametric family that
is a multinomial distribution on all n observed data values. The empirical likelihood L(F )
is maximized by the empirical cumulative distribution function.

Theorem 1.2.1. [31, Theorem 2.1.] Let X1, . . . , Xn ∈ R be i.i.d. random variables with
a cdf F0. Let Fn be their ecdf and let F be any distribution function. If F ̸= Fn, then
L(F ) < L(Fn).

Thus it can be said that Fn(x) is a “nonparametric maximum likelihood estimator” of
F (x), and, similarly to the parametric likelihood, it is possible to define a nonparametric
likelihood ratio that can be used a a basis for constructing nonparametric hypothesis tests
and confidence intervals.

Definition 1.2.3. The nonparametric likelihood ratio for a distribution F is given by

R(F ) =
L(F )

L(Fn)
=

n∏
i=1

npi.

Suppose we are interested in some parameter θ expressed as a real-valued functional
T on distributions, i.e., θ = T (F ), F ∈ F where F is a set of distributions. To evaluate
the empirical likelihood of θ, we search for the optimal distribution F and choose a value
of θ that maximises the likelihood function. Thus the maximisation is carried out both
over p = (p1, . . . , pn) and θ. Usually, this is done by the profiling, i.e., for a fixed value of
θ, optimal weights p are found, thus p = p(θ).

Definition 1.2.4. The profile empirical likelihood ratio function is given by

R(θ) = sup{R(F )|T (F ) = θ, F ∈ F}. (1.5)
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For the true unknown parameter θ0 = T (F0), empirical likelihood hypothesis test
rejects H0 : T (F0) = θ0 when R(θ0) < r0 for some threshold r0, and the empirical
likelihood confidence region for the true unknown parameter θ0 = T (F0) is in the form
{θ|R(θ) ≥ r0}.

Example 1.2.1. Consider a hypothesis test about the population mean µ∗ = EFXi:

H0 : µ = µ∗, H1 : µ ̸= µ∗.

In the functional form, µ∗ =
∫
xdF (x), F ∈ F . F is a class of multinomial distributions

placing nonnegative weights on the observations Xi. Thus for a fixed µ∗ we are looking
for an optimal F = (p1, . . . , pn), where pi ≥ 0, and

∑n
i=1 pi = 1. The functional form

under F becomes
∑n

i=1 piXi = µ∗, and the profile empirical likelihood function is given
by

R(µ) = sup
p

{
n∏

i=1

npi |
n∑

i=1

piXi = µ∗, pi ≥ 0,
n∑

i=1

pi = 1

}
. (1.6)

The next theorem provides the basis for the calibration of the confidence intervals for
the mean and can be regarded as a nonparametric analogue to Wilks’ Theorem 1.1.2.

Theorem 1.2.2. [31, Theorem 2.2.] Let X1, . . . , Xn be i.i.d. random variables with
common distribution function F0. Let µ0 = EF0Xi, and suppose that 0 < VarXi < ∞.
Then

−2 logR(µ0)
d−→ χ2

1 as n→ ∞.

Two comments can be given regarding Theorem 1.2.2. First, the asymptotic limit of
the empirical likelihood is the same χ2

1 as in the nonparametric case. And second, it is
not required for the Xi to be bounded; they only require to have bounded variance, which
constrains how fast the sample minimum and sample maximum grow as n increases.

A 1− α confidence interval for the mean is given by

Cα = {µ ∈ R|−2 logR(µ) ≤ χ2
1,1−α},

where χ2
1,1−α denotes the 1−α quantile of χ2

1 distribution. The interval Cα is an asymptotic
coverage interval, i.e.,

P (µ0 ∈ Cα) → (1− α) as n→ ∞.

Now, consider independent d-dimensional random vectors Xi, d ≥ 1, assuming com-
mon distribution F0. It is convenient to describe distributions by probabilities they attach
on sets. Let F (A) denote P (X ∈ A) for X ∼ F and A ⊆ Rd, and let δx denote the dis-
tribution under which X = x with probability 1. Thus δx(A) = Ix∈A.

Definition 1.2.5. Let X1, . . . Xn ∈ Rd. The empirical distribution function of X1, . . . Xn

is defined by

Fn =
1

n

n∑
i=1

δXi
. (1.7)
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Definition 1.2.6. Given X1, . . . Xn ∈ Rd with common distribution function F0, the
nonparametric likelihood of F is

L(F ) =
n∏

i=1

F ({Xi}).

Here F ({Xi}) is the probability of observing a value Xi in a sample from F . Like
in the univariate case, the nonparametric likelihood L(F ) is maximized by the empirical
distribution function Fn.

Now, for the multivariate mean, the empirical likelihood ratio is the same as in (1.6),
except that it is now defined on Rd. The confidence region is in form

Cr,n =

{
n∑

i=1

piXi |
n∏

i=1

npi > r, pi ≥ 0,
n∑

i=1

pi = 1

}
,

and is a subset in Rd. The univariate EL Theorem 1.2.2 generalizes to a vector case.
Theorem 1.2.3. [31, Theorem 3.2.] Let X1, . . . Xn ∈ Rd be independent random vectors
with common distribution F0 having mean µ0 and variance-covariance matrix V0 of rank
q > 0. Then Cr,n is a convex set and

−2 logR(µ0)
d−→ χ2

q as n→ ∞.

1.3 Empirical likelihood for general estimating
equations

Consider X1, . . . , Xn ∈ Rd i.i.d. random variables with unknown distribution F , and a
p-dimensional parameter θ associated with F . Assume that the information about θ and
F is available in the form of r ≥ p functionally independent unbiased estimating functions
gj(X, θ), j = 1, . . . , r, where

EF{gj(X, θ)} = 0.

In vector form,
g(X, θ) = (g1(X, θ), . . . , gr(X, θ))

T ,

where EF{g(X, θ)} = 0.
In the case θ is the mean, the estimating equation is in the form g(X, θ) = X − θ. In

the case θ is the quantile θq = F−1(q), the estimating equation is in the form g(X, θq) =
IX≤θq − q. J. Qin and J. Lawless [34] demonstrated how to use the estimating equations
to estimate F and θ under empirical likelihood setting. When r = p, the method in [34]
is the same as developed by A. B. Owen in [28, 29].

Maximize the likelihood L(F ) =
∏n

i=1 pi subject to restrictions

pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pig(Xi, θ) = 0. (1.8)

For a fixed θ, a unique maximum exists, if θ is inside the convex hull of the points
g(X1, θ), g(X2, θ), . . . , g(Xn, θ) [34], and the maximum may be found with the help of
Lagrange multipliers method. Define

H =
n∑

i=1

log pi + λ0

(
1−

n∑
i=1

pi

)
− nλT

n∑
i=1

pig(Xi, θ), (1.9)
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where λ = (λ1, . . . , λr)
T and λ0 are Lagrange multipliers. Taking derivatives of (1.9) with

respect to pi,
∂

∂pi
H =

1

pi
− λ0 − nλT g(Xi, θ) = 0,

n∑
i=1

pi
∂

∂pi
H = n− λ0 = 0 ⇒ λ0 = n,

and
pi =

1

n

1

1 + λT g(Xi, θ)
.

Using the last restriction from (1.8), we get

0 =
n∑

i=1

pig(Xi, θ) =
1

n

n∑
i=1

g(Xi, θ)

1 + λT g(Xi, θ)
, (1.10)

thus λ can be expressed in terms of θ as follows: from the restriction 0 ≤ pi ≤ 1 observe
that 1+λTg(Xi, θ) ≥ 1/n for all i. For a fixed θ, consider Dθ = {λ : 1+λTg(Xi, θ) ≥ 1/n}.
Dθ is convex and closed, and bounded if 0 is inside the convex hull of g(Xi, θ)’s. Moreover,
the derivative of (1.10) with respect to λ,

∂

∂λ

{
1

n

n∑
i=1

g(Xi, θ)

1 + λTg(Xi, θ)

}
= − 1

n

n∑
i=1

g(Xi, θ)g
T (Xi, θ)

(1 + λTg(Xi, θ))2
,

is negative definite for λ in Dθ provided that
∑n

i=1 g(Xi, θ)g
T (Xi, θ) is positive definite.

By the inverse function theorem, λ = λ(θ) is a continuous differentiable function in θ.
Empirical likelihood function for a parameter θ is defined as

L(θ) =
n∏

i=1

{(
1

n

)
1

1 + λT (θ)g(Xi, θ)

}
and the empirical likelihood ratio is

R(θ) =
n∏

i=1

npi =
n∏

i=1

1

1 + λT g(Xi, θ)
.

It is convenient to work with the empirical log likelihood ratio

l(θ) = − logR(θ) =
n∑

i=1

log
(
1 + λT (θ)g(Xi, θ)

)
. (1.11)

Minimizing l(θ), we can obtain the empirical likelihood estimator for θ,

θ̃ = argmin
θ
l(θ).

The next Lemma and Theorem provides regularity conditions for the EL inference in
the setting with general estimating functions.

Lemma 1.3.1. [34, Lemma 1] Assume that E{g(Xi, θ)g
T (Xi, θ)} is positive definite,

(∂/∂θ)g(x, θ) is continuous in the neighbourhood of the true value θ0, ||(∂/∂θ)g(x, θ)||
and ||g(x, θ)3|| are bounded by some integrable function G(x) in this neighbourhood, and
the rank of E{(∂/∂θ)g(x, θ0)} is p. Then, as n → ∞, with probability 1 l(θ) attains its
maximum at some point θ̃ in the interior of the ball ||θ − θ0||≤ n−1/3.
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Theorem 1.3.1. [34, Theorem 2] In addition to the conditions of Lemma 1.3.1, assume
that (∂2/∂θ∂θT )g(x, θ) is continuous in θ in the neighbourhood of the true parameter
θ0, and ||(∂2/∂θ∂θT )g(x, θ)|| can be bounded by some integrable function G(x) in this
neighbourhood. Then the empirical likelihood ratio statistic for testing H0 : θ = θ0

W(θ0) = 2l(θ0)− 2l(θ̃)
d−→ χ2

p,

as n→ ∞ when H0 : θ = θ0 is true, where l(θ) is given by (1.11).

Theorem 1.3.1 allows to construct empirical likelihood confidence interval for param-
eter θ. Choose r0 such that

P (χ2
p ≤ r0) = 1− α.

Then the empirical likelihood 1− α confidence interval is in the form

Cα = {θ|W(θ) ≤ r0},

and due to Theorem 1.3.1, its asymptotic coverage ratio is

P (θ0 ∈ Cα) = P{W(θ0) ≤ r0} = 1− α.

1.4 Empirical likelihood method in general
two-sample case

Consider the two-sample problem, where X1, . . . , Xn1 are i.i.d. random variables with
unknown distribution F1, and Y1, . . . , Yn2 are i.i.d. random variables with unknown dis-
tribution F2. Let θ0 and θ1 be univariate parameters associated with the distributions F1

and F2, respectively. We are interested in the difference of the parameters, ∆0 = θ1 − θ0.
It was shown by Y. Qin and L. Zhao [35] that under certain regularity conditions, the
EL test statistic for the difference ∆0 of two univariate parameters has the asymptotic χ2

1

distribution.
Assume that the information about F1, F2, θ0 and θ1 is given by two estimating

functions w1(X, θ0,∆0) and w2(Y, θ0,∆0) satisfying

EF1w1(X, θ0,∆0) = 0, (1.12)
EF2w2(Y, θ0,∆0) = 0, (1.13)

where ∆0 is the true parameter of interest and θ0 is considered a nuisance parameter.

Example 1.4.1. The difference of means. Denote θ0 =
∫
xdF1(x), θ1 =

∫
ydF2(y) and

∆0 =
∫
ydF2(y)−

∫
xdF1(x). The estimating functions have the following form:

w1(X, θ0,∆0) = X − θ0, w2(Y, θ0,∆0) = Y − θ0 −∆0.

Example 1.4.2. The difference of distribution functions. For a fixed point t0, 0 < t0 < 1,
consider θ0 = F1(t0), θ1 = F2(t0), and ∆0 = F2(t0)− F1(t0). Then

w1(X, θ0,∆0) = IX≤t0 − θ0, w2(Y, θ0,∆0) = IY≤t0 − θ0 −∆0.
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In the two-sample case, the empirical likelihood function is defined as

L(F1, F2) =

n1∏
i=1

(F1(Xi)− F1(Xi−))

n2∏
j=1

(F2(Yj)− F2(Yj−)) =

n1∏
i=1

pi

n2∏
j=1

qj, (1.14)

where pi = P (X = Xi) and qj = P (Y = Yi). L(F1, F2) has maximum value n−n1
1 n−n2

2 ,
i.e., it is maximized when F1 and F2 are the respective empirical cumulative distribution
functions Fn1 and Fn2 . Thus the empirical likelihood ratio is defined as

R(F1, F2) =
L(F1, F2)

L(Fn1 , Fn2)
=

n1∏
i=1

n1pi

n2∏
j=1

n2qj,

and the profile empirical likelihood ratio is in the form

R(∆, θ) = sup
p,q

{
n1∏
i=1

n1pi

n2∏
j=1

n2qj |
n1∑
i=1

piwi(Xi, θ,∆) = 0,

n2∑
j=1

qjw2(Yj, θ,∆) = 0

}
, (1.15)

where pi ≥ 0,
∑n1

i=1 pi = 1, qj ≥ 0 and
∑n2

i=1 qj = 1. Thus we first fix ∆ and θ, and solve
for pi, qj, using Lagrange multipliers. Consider

H(∆, θ) =

n1∑
i=1

log pi +

n2∑
j=1

log qj + t1(∆, θ)(1−
n1∑
i=1

pi) + t2(∆, θ)(1−
n2∑
j=1

qj) (1.16)

−n1λ1(∆, θ)

n1∑
i=1

piw1(Xi, θ,∆)− n2λ2(∆, θ)

n2∑
j=1

qjw2(Yj, θ,∆),

where t1(∆, θ), t2(∆, θ), λ1(∆, θ), λ2(∆, θ) are Lagrange multipliers. Calculating the
partial derivatives of (1.16) with respect to pi’s, we have

∂

∂pi
H =

1

pi
− t1(∆, θ)− n1λ1(∆, θ)w1(Xi,∆, θ) = 0,

thus
n1∑
i=1

pi
∂

∂pi
H = n1 − t1(∆, θ) = 0 ⇒ t1(∆, θ) = n1,

and

pi =
1

n1(1 + λ1(∆, θ)w1(Xi, θ,∆))
, i = 1, . . . , n1. (1.17)

Similarly, solving for (∂/∂qj)H = 0, we obtain

qj =
1

n2(1 + λ2(∆, θ)w2(Yj, θ,∆))
, j = 1, . . . , n2. (1.18)

Using the restrictions on the estimating functions, we obtain
n1∑
i=1

w1(Xi, θ,∆)

1 + λ1(∆, θ)w1(Xi, θ,∆)
= 0, (1.19)

n2∑
j=1

w2(Yj, θ,∆)

1 + λ2(∆, θ)w2(Yj, θ,∆)
= 0, (1.20)
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from which the Lagrange multipliers λ1 and λ2 can be expressed in terms of θ similarly
as in the one-sample case (1.10). Inserting pi and qj from (1.17) - (1.18) in (1.15) and
taking the logarithm, we obtain the empirical log likelihood ratio function as

logR(∆, θ) = −
n1∑
i=1

log(1 + λ1(∆, θ)w1(Xi, θ,∆))−
n2∑
j=1

log(1 + λ2(∆, θ)w2(Yj, θ,∆)).

To solve for θ̂(∆) that maximizes R(∆, θ), set (∂/∂θ){logR(∆, θ)} = 0, and obtain
n1∑
i=1

λ1(∆, θ)α1(Xi, θ,∆)

1 + λ1(∆, θ)w1(Xi, θ,∆)
+

n2∑
j=1

λ2(∆, θ)α2(Yj, θ,∆)

1 + λ2(∆, θ)w2(Yj, θ,∆)
= 0, (1.21)

where α1 = ∂w1/∂θ and α2 = ∂w2/∂θ. The sufficient conditions for the existence of the
solution to (1.21) are given by Assumption 1.4.1.

Assumption 1.4.1. [35, p. 26]

(C1) θ0 ∈ Ω, and Ω is an open interval.

(C2) EF1w
2
1(X, θ,∆) > 0 and EF2w

2
2(Y, θ,∆) > 0, α1(X, θ,∆) and α2(Y, θ,∆) are con-

tinuous in the neighbourhood of θ0, α1(X, θ,∆) and w3
1(X, θ,∆) are bounded by

some integrable function G1(X) in this neighbourhood, α2(Y, θ,∆) and w3
2(Y, θ,∆)

are bounded by some integrable function G2(Y ) in this neighbourhood, and
EF1α1(X, θ,∆) and EF2α2(Y, θ,∆) are non-zero.

(C3) n2/n1 → k (as n1, n2 → ∞) and 0 < k <∞.

Theorem 1.4.1. [35, Theroem 1] Under Assumption 1.4.1, there exists a root θ̂(∆) of
(1.21) such that θ̂(∆) is a consistent estimator of θ0, R(∆, θ) attains its maximum at
θ̂(∆), and

−2 logR(∆0, θ̂(∆0))
d−→ χ2

1 as n1, n2 → ∞.

The proof can be found in [35]. The confidence intervals for the true parameter ∆0

can be obtained by test inversion and have the form {∆ |R(∆, θ̂(∆)) > c}, where the
constant c can be calibrated using Theorem 1.4.1.
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Chapter 2

Robust estimation of a location
parameter

In this chapter we consider the ideas of robust estimation theory that will be of impor-
tance in developing our new robust EL-based methods. In Chapter 2.1 we consider the
M-estimators proposed by P. J. Huber [17]. We introduce the model of location and define
the scale-equivariant M-estimators for the location parameter. We also report the condi-
tions for the asymptotic normality of a general M-estimator. Finally, we introduce the
smoothing principle for the ψ-function of a general M-estimator [13] and give a definition
of the smoothed Huber estimator. The smoothing principle is essential to this research,
since our new EL-based method for the difference of two M-estimators is applicable to
the smooth Huber estimator, but not to the non-smooth version of it.

In Chapter 2.2 we consider another important class of robust estimators, L-estimators,
and in particular the trimmed mean. The trimmed mean is an appealing robust location
estimator that is obtained by trimming a fixed proportion of the extreme data values.
We report the theorem on the asymptotic distribution of the trimmed mean by S. Stigler
[39]. The asymptotic distribution of the trimmed mean is more complicated than that
of an M-estimator; it is necessary and sufficient that the trimming be done at uniquely
defined percentiles of the population distribution to establish its asymptotic normality.
This theorem is important to prove the asymptotic results for our new two-sample EL
method for the trimmed means.

In Chapter 2.3 we introduce an important property of the estimator used to quantify
its robustness, the finite-sample breakdown point (FBP). Informally, the breakdown point
of an estimator θ̂ of parameter θ is the largest proportion of atypical points that the data
may contain such that θ̂ still measures θ, i.e, the information related to the typical data
points. The breakdown point can be defined for the finite-sample and the asymptotic
case, but here only the latter will be considered. The definition of a FBP for the length
of a confidence interval will be given.

2.1 M-estimators
Let X1, X2, . . . , Xn be i.i.d. random variables from sample space X ⊆ R with a common
distribution Fθ, where the unknown parameter θ belongs to some parameter space Θ.
In classical statistics, it is assumed that Xi are distributed exactly as Fθ. For example,
X = R, Θ = R and Fθ is normally distributed random variable with mean θ and variance
equal to one; X = [0,∞], Θ = (0,∞) and Fθ is exponential distribution with expectation
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θ. Consider an MLE estimator θ̂ = θ̂(X1, . . . , Xn) of the parameter θ. It follows from
(1.1) that θ̂ is the value that minimizes the minus of the log likelihood function, i.e.,

θ̂ = argmin
θ

n∑
i=1

− log fθ(Xi).

If Fθ is known exactly, the MLE is ‘optimal’ in the sense that it attains the variance
lower bound as described in Chapter (1.1). In robust statistics, it is assumed that we
know Fθ only ‘approximately’, and we look for estimators that are ‘optimal’ at Fθ (e.g.,
normal distribution) and ‘nearly optimal’ in the neighbourhood of Fθ (e.g., contaminated
normal distribution).

With this goal in mind, Huber [17] proposed to generalize the concept of the maximum
likelihood estimation by replacing the function − log fθ with a general ρ-function, i.e.,

θ̂ = argmin
θ

n∑
i=1

ρ(Xi, θ), (2.1)

where ρ is a function on X ×Θ. Suppose that ρ has a derivative ψ(x, θ) = (∂/∂θ)ρ(x, θ),
then (2.1) is equivalent to

n∑
i=1

ψ(Xi, θ) = 0. (2.2)

Definition 2.1.1. [14, p. 101] An estimator defined in the form (2.1) or (2.2) is called
M-estimator. If Gn is the ecdf generated by the sample, then the solution θ̂ of (2.2) can
also be written as T (Gn), where T is the functional given by∫

ψ(x, T (G))dG(x) = 0 (2.3)

for all distributions G where the integral is defined.

2.1.1 M-estimators of location
In this thesis, we are mainly interested in the estimation of the location parameter of a
distribution F , the definition of which is given below.

Definition 2.1.2. [26, p. 17] Let X1, . . . Xn be i.i.d. random variables with distribution
function F that depend on an unknown parameter θ through the model

Xi = θ + ui, i = 1, . . . , n, (2.4)

where the errors ui are i.i.d and have the distribution function F0, and F0(u) = 1−F0(−u).
The model (2.4) is called the location model, and θ is referred to as the location parameter.

Definition 2.1.3. [26, p. 25] Consider the location model (2.4). Given a function ρ, an
M-estimator of location parameter θ is defined as

θ̂ = argmin
θ

n∑
i=1

ρ(Xi − θ). (2.5)
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If ρ is differentiable with respect to θ, then θ̂ is the solution to the equation
n∑

i=1

ψ(Xi − θ) = 0, (2.6)

where ψ(x, θ) = (∂/∂θ)ρ(x, θ).
Note that choosing ρ(x, θ) = − log fθ(x − θ) and ψ(x, θ) = −(∂/∂θ) log fθ(x − θ) in

(2.5) and (2.6), respectively, we obtain an MLE of a location parameter θ of fθ.

Example 2.1.1. MLE of the standard normal. If Fθ is N(0, 1), apart from a constant,
ρ(x, θ) = (x− θ)2/2 and ψ(x, θ) = x− θ. From (2.3) it follows that θ = EX, the mean.

Example 2.1.2. MLE of exponential distribution. The density is fθ(x) = 1/2 exp(−|x|),
and we have ρ(x, θ) = |x − θ|. The derivative of ρ exists for x ̸= 0 and is given by the
sign function,

ψ(x, θ) = sgn(x− θ).

Note that sgn(x) = Ix>0 − Ix<0, thus (2.5) yields
n∑

i=1

sgn(Xi − θ) =
n∑

i=1

(IXi>θ − IXi<θ) =

= #(Xi > θ)−#(Xi < θ) = 0,

and we have #(Xi > θ) = #(Xi < θ), thus θ is the median.

Example 2.1.3. Huber estimator. For a given positive constant k, the Huber estimator
is defined by (2.5) or (2.6) with

ρ = ρk(x) =


2kx− k2, x > k

x2, −k ≤ x ≤ k

−2kx− k2, x < −k
(2.7)

with derivative 2ψk(x), where

ψ = ψk(x) =


k, x > k

x, −k ≤ x ≤ k

−k, x < −k.
(2.8)

Huber [17] proved that this estimator has minimax asymptotic variance among the
class of contaminated distributions Pϵ = (1− ϵ)Φ + ϵH, where Φ is the standard normal
cdf and H is a cdf of any symmetric distribution. The Huber estimator is the MLE for
the so-called Huber’s least favourable distribution given by the density

fk(x) =


(1− ϵ)ϕ(k) exp(−k(x− k)), x > k

(1− ϵ)ϕ(x), −k ≤ x ≤ k

(1− ϵ)ϕ(k) exp(k(x+ k)), x < −k,
(2.9)

where k and ϵ are related through the formula

2ϕ(k)/k − 2Φ(−k) = ϵ/(1− ϵ), (2.10)
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Figure 2.1: ρ-function (2.7) (left) and ψ-function (2.8) (right) of the Huber M-estimator with
k = 1.35, where x = k is represented by the dotted line.

and ϕ denotes the pdf of standard normal distribution. Huber estimator can be inter-
preted as an intermediary estimator between the mean and the median. For k → 0, one
obtains the sample median, while k → ∞ leads to the sample mean as the limiting cases.
Based on extensive simulation results, it was concluded in [17] that Huber estimator is
not too sensitive to the choice of k, and that any value of k between 1 and 2 yields
satisfactory results for all contamination rates ϵ < 0.2. A common proposal is to take
k = 1.35 as recommended in [26] and [31], which corresponds to a 95% efficiency of the
Huber estimator compared to the sample mean at the standard normal distribution. In
simulation settings when ϵ is known, one may choose the k that satisfies (2.10). ψk(x)
and ρk(x) defining the Huber estimator with k = 1.35 are plotted in Figure 2.1.

Example 2.1.4. Bisquare estimator is defined by (2.5) and (2.6) with

ρ(x) =

{
1− [1− (x/k)2]

3
, |x|< k

1, |x|≥ k,
(2.11)

with derivative ρ′(x) = 6ψ(x)/k2, where

ψ(x) = x

[
1−

(x
k

)2]2
I|x|≤k. (2.12)

One may choose k = 4.68 which corresponds to 95% efficiency of the bisquare estimator
at the standard normal distribution. ψ(x) and ρ(x) defining the bi-square estimator with
k = 4.68 are plotted in Figure 2.1. The ρ-function of the bi-square estimator is bounded.
The ψ-function is not monotone, it is everywhere differentiable, and is zero outside interval
[−k, k]. Note that the bi-square estimator is not an MLE of any distribution.

The kind of ψ functions that tend to zero at infinity are referred to as “redescend-
ing”, and the related solutions of (2.6) are called “redescending M-estimators”. They can
provide increased robustness against heavy tails and large outliers [26].

Remark 2.1.1. Existence of a solution. Assume ψ is monotone nondecreasing with
ψ(−∞) < 0 < ψ(∞). Then (2.6) and hence (2.5) always has a solution [26, Theorem
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Figure 2.2: ρ-function (2.11) and ψ-function (2.12) of the bisquare M-estimator with k = 4.68,
where x = k is represented by the dotted line.

10.1]. If ψ is continuous and increasing, the solution is unique, otherwise the set of
solutions is a point or an interval.

If ψ is redescending, some solutions of (2.6) may not correspond to the absolute
minimum criterion of (2.5). The uniqueness of the asymptotic value of a redescending
M-estimator requires that the density f(x) of Xi’s is symmetric and unimodal; in other
words, f(x) is a decreasing function of |x| [26, Theorem 10.2].

Finally we list the properties of the ρ- and ψ-functions that cover the most cases of
interest in the estimation.

Definition 2.1.4. [26, p. 31] A ρ-function will denote a function ρ such that

(R1) ρ(x) is a nondecreasing function of |x|.

(R2) ρ(0) = 0.

(R3) ρ(x) is increasing for x > 0 such that ρ(x) < ρ(∞).

(R4) if ρ is bounded, it is also assumed that ρ(∞) = 1.

A ψ-function will denote a function ψ which is a derivative of a ρ-function. In particular,
it implies

(P1) ψ is odd and ψ(x) ≥ 0 for x ≥ 0.

2.1.2 Scale equivariant M-estimators of location
Next we discuss some useful properties of estimators, the shift and scale equivariance, as
well as shift invariance.

Definition 2.1.5. [26, pp. 18, 35] An estimator θ̂ = θ̂(X1, . . . , Xn) is called shift equiv-
ariant if for any constant c ̸= 0

θ̂(X1 + c,X2 + c, . . . , Xn + c) = θ̂(X1, X2, . . . , Xn) + c.
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θ̂ is called scale equivariant if

θ̂(cX1, cX2, . . . , cXn) = |c|θ̂(X1, X2, . . . , Xn).

θ̂ is called shift invariant if

θ̂(X1 + c,X2 + c, . . . , Xn + c) = θ̂(X1, X2, . . . , Xn).

Any statistic satisfying the shift invariance and scale equivariance will be called a disper-
sion estimator.

Any location M-estimator θ̂ given by (2.5) or (2.6) is shift equivariant (see, for example,
[26]), however, it is not necessarily scale equivariant. A lack of scale equivariance can
create problems, since the estimator value may be heavily dependent on the measurement
units. To obtain scale equivariant location M-estimator, using an auxiliary dispersion
estimator is necessary.

Definition 2.1.6. [26, 38] A scale equivariant M-estimator θ̂ for the location parameter
θ with a previous estimation of dispersion is defined as the solution to the equation

n∑
i=1

ψ

(
Xi − θ̂

σ̂

)
= 0, (2.13)

where σ̂ is a previously computed dispersion estimator.
Intuitively, σ̂ in (2.13) should be robust itself. The classical dispersion estimator,

the standard deviation, is not robust. A popular choice for σ̂ is the normalized median
absolute deviation about the median (MADN).

Definition 2.1.7. [26, p. 36] The median absolute deviation about the median (MAD) is
defined by

MAD(X) = MAD(X1, . . . , Xn) = Med{|X −Med(X)|}, (2.14)
where Med denotes the sample median. The normalized MAD (MADN) is defined as

MADN(X) = MAD(X)/0.6745,

where the choice of the constant 0.6745 is motivated by the fact that at the standard
normal distribution MAD is equal to 0.6745, thus the MADN is equal to the standard
deviation.

Finally, we note that there exists an alternative approach to consider a location-
dispersion model with two unknown parameters µ and σ that allows constructing simul-
taneous M-estimators of location and dispersion. However, estimation with a previously
computed dispersion estimator is more robust than simultaneous estimation [26, Chapter
2.7.2], thus the simultaneous estimation is not considered in this work.

2.1.3 Asymptotic distribution of M-estimators of location
Except for the mean and the median, there are no explicit expressions of the distributions
of M-estimators for finite sample sizes. However, asymptotic approximations of the distri-
bution of a general M-estimator can be established. The next two theorems provide the
conditions for the asymptotic normality of the M-estimator of location and M-estimator
of location with a preliminary dispersion estimator. In this section, let X1, . . . , Xn be
i.i.d. random variables with distribution F .
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Theorem 2.1.1. [26, Theorem 10.7] Consider an M-estimator of location parameter θ
defined by the equation (2.6) with θ ∈ R. Define λF (θ) = EFψ(Xi − θ). Assume that
A = EFψ

2(Xi − θ) < ∞ and B = λ′(θF ) exists and is non-null. Let θ̂n be the solution
of (2.6) such that θ̂n

p−→ θF . Then the distribution of
√
n(θ̂n − θF ) tends to N(0, ν) as

n→ ∞ with
ν = A/B2.

If ψ′(x− θ) = (∂/∂θ)ψ(x− θ) exists and verifies for all x, θ

|ψ′(x− θ)|≤ K(x) with EK(x) <∞,

then B = Eψ′(Xi − θF ).

Remark 2.1.2. For the mean, the existence of A requires the existence of EX2. In
general, if ψ is bounded, A always exists. If ψ′ exists, then λ′(θ) = −Eψ′(x− θ). If λ′(θF )
does not exist, θ̂n tends to θF faster than with the rate n−1/2, and there is no asymptotic
normality.

For each n let σ̂n be a dispersion estimator and denote θ̂n the solution (assumed
unique) of

n∑
i=1

ψ

(
Xi − θ

σ̂n

)
= 0.

Assumption 2.1.1. (Consistency of an M-estimator of location with a preliminary scale)
[26, p. 385]

(A1) ψ is monotone and bounded with a bounded derivative.

(A2) There exists σ such that σ̂n
p−→ σ.

(A3) The equation E(ψ(Xi − θ)/σ) = 0 has a unique solution θ0.

Theorem 2.1.2. [26, Theorem 10.12] If Assumption 2.1.1 holds, then

θ̂n
p−→ θ0.

Define ui = Xi − θ0 and

a = Eψ2
(ui
σ

)
, b = Eψ′

(ui
σ

)
, c = Eψ

(ui
σ

)
ψ′
(ui
σ

)
. (2.15)

Assumption 2.1.2. (Asymptotic normality of an M-estimator with preliminary scale)
[26, p. 385]

(A1) Quantities defined in (2.15) exist and b ̸= 0.

(A2)
√
n(σ̂n − σ) converges to some distribution.

(A3) c = 0.

Theorem 2.1.3. [26, Theorem 10.13] Under Assumption 2.1.2,
√
n(θ̂n − θ0)

d−→ N(0, ν) with ν = σ2 a

b2
.
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2.1.4 Smoothed M-estimators
F. Hampel et al. [13] provided a smoothing principle for a ψ-function of an M-estimator,
where the degree of smoothness depends on the sample size n, so that the ψ-function
is much smoother for small sample n, but asymptotically equivalent. The smoothing
principle can be applied to any M-estimator, even if ψ is already smooth.

Definition 2.1.8. [13, p. 325] Consider i.i.d. random variables X1, . . . , Xn with common
distribution Fθ,σ with uni-modal symmetric density

fθ,σ(x) =
1

σ
f

(
x− θ

σ

)
,

and consider a score function ψ̃(x) of a general ψ-function of an M-estimator

ψ̃(x) =

∫
ψ(x+ u)dQn(u), (2.16)

where Qn is the distribution of the initial non-smooth M-estimator based on n i.i.d ob-
servations from an assumed underlying distribution. Then the smoothed M-estimator of
the location parameter θ is defined as a solution t of

n∑
i=1

ψ̃

(
Xi − t

σ

)
= 0. (2.17)

Remark 2.1.3. The distribution Qn(u) of the M-estimators for finite sample sizes cannot
be expressed explicitly except for the mean and the median case. However, due to the
asymptotic normality of M-estimators in Theorem 2.1.3, Qn can be approximated by
N(0, V/n), where V is the asymptotic variance of the initial non-smooth M-estimator. For
the maximum likelihood estimators, Qn may be chosen as the corresponding distribution
under which the maximum likelihood estimator is derived. For the Huber estimator, it is
Huber’s least favourable distribution with the density fk from (2.9).

Proposition 2.1.1. [13, p. 326] Taking fk (2.9) as the density of Qn in (2.16), the
ψ̃-function defining the smoothed Huber estimator can be expressed in the explicit form as

ψ̃k(x) = kΦ

(
x− k

σn

)
− k

(
1− Φ

(
x+ k

σn

))
+ x

(
Φ

(
x+ k

σn

)
− Φ

(
x− k

σn

))
+ σn

(
ϕ

(
x+ k

σn

)
− ϕ

(
x− k

σn

))
, (2.18)

where σn =
√
V/n, and k is the tuning constant defining the non-smoothed Huber estimator

(2.8).
Simulation study in [13] considered several symmetric distributions both with fixed

and unknown scale parameter σ of (2.17): the standard normal distribution, Huber’s
least favourable distribution with k = 0.862, the double exponential distribution, and
the Cauchy distribution. For scenarios with an unknown scale parameter, MAD was
used as a preliminary dispersion estimator for σ, and the asymptotic variance was set to
V = 2.046. The value V = 2.046 is motivated by the equation (2.10): it is the value of the
asymptotic variance of Huber estimator under the Huber’s least favourable distribution
with k = 0.862, that represents ϵ = 0.2 contamination level to the normal distribution
(see, for example, Table 1 in [17]). The graph of the ψ̃k is depicted in Figure 2.3.
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Figure 2.3: ψ-function of the smoothed Huber estimator, ψ̃k (2.18). Smoothness depends on
the sample size n. Note, that ψ̃k is odd; only the portion for x negative is depicted.
Left: ϵ = 0.2, k = 0.862 and V = 2.046. Right: ϵ = 0.05, k = 1.35 and V = 1.256.

A small-sample simulation study in [13] demonstrated that the smoothed M-estimators
performed better than their non-smooth counterparts (in terms of MSE distribution) in
all the settings, especially in the tail area of the MSE distribution, the comparative gain
in the efficiency being up to 10%.

2.2 Trimmed mean
Definition 2.2.1. [33, p. 2199] Let X1, X2, . . . , Xn be i.i.d. random sample from popu-
lation F0 and let X(1), X(2), . . . , X(n) be ordered statistics. The trimmed mean is defined
as

X̄αβ =
1

m

s∑
i=r

X(i), (2.19)

where 0 ≤ α < 1/2, 0 ≤ β < 1/2 are trimming proportions from the left and the right
side, respectively, r = ⌊nα⌋+ 1, s = n− ⌊nβ⌋, and m = n− ⌊nα⌋ − ⌊nβ⌋.

The trimmed mean belongs to the class of the so called L-statistics that stands for
linear functions of order statistics. For several distributions, L-statistics provide good
estimators of location and scale parameters.

Definition 2.2.2. [1, p. 227] Suppose ai,n is a double sequence of constants. The statistic

Ln =
n∑

i=1

ai,nX(i)

is called an L-statistic. When used as an estimator, Ln is referred to as L-estimator.
A variety of limiting distributions is possible for Ln. For example, if Ln is a function of

a single order statistic, i.e., when ai,n is non-zero for all but one i, the limiting distribution
of X(i) depends on how i is related to n, and the limiting distribution might not exist for
some extreme order statistics. If many ai,n’s are non-zero, Ln is asymptotically normal
when the weights are reasonably smooth [1]. The specific results for the asymptotic
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distribution of the trimmed mean was provided by S. Stigler in [39]. His result is stated
below.

First, let

A = F−1
0 (α)− F−1

0 (α−) and B = F−1
0 (1− β)− F−1

0 ((1− β)−) (2.20)

represent the jumps of F−1
0 at the trimming proportions. For any 0 < p < 1 denote

ξp := F−1
0 (p) and introduce a distribution function H(x) obtained by truncating F0 as

follows:

H(x) =


0, x < ξα
F0(x)−α
1−α−β

, ξα ≤ x ≤ ξ1−β

1, x > ξ1−β.

(2.21)

Let µαβ and σ2
αβ denote the mean and the variance of the distribution H, respectively.

Theorem 2.2.1. [39, p. 473] Let 0 < α < 1− β < 1 and n→ ∞. Then
√
n(X̄αβ − µαβ)

d−→ W, where

W =
1

1− α− β
[Z + (ξα − µαβ)Z1 + (ξ1−β − µαβ)Z2 − Amax(0, Z1) + Bmax(0, Z2)] ,

A and B are the quantities defined in (2.20), the random variable Z is N(0, (1−α−β)σ2
αβ),

Z is independent from the random vector (Z1, Z2), and (Z1, Z2) is N(0, C), where

C =

(
α(1− α) −αβ
−αβ β(1− β)

)
.

For the proof of the Theorem 2.2.1, see [39] or [1].

Remark 2.2.1. If A = 0 and B = 0 in Theorem 2.2.1 (in other words, the trimming is
done at uniquely defined percentiles of distribution F0), the asymptotic distribution W of
the trimmed mean has a simpler form. In such case, EW = 0 and

VarW =
1

(1− α− β)2

(
VarZ + (ξα − µαβ)

2VarZ1

+ 2(ξα − µαβ)(ξ1−β − µαβ)Cov(Z1, Z2) + (ξ1−β − µαβ)
2V arZ2

)
=

1

(1− α− β)2

(
σ2
αβ + α(1− α)(ξα − µαβ)

2

− 2αβ(ξα − µαβ)(ξ1−β − µαβ) + β(1− β)(ξ1−β − µαβ)
2

)
=: τ 2αβ,

thus
√
n(X̄αβ − µαβ)

d−→ N(0, τ 2αβ).

2.3 Finite-sample breakdown point
Definition 2.3.1. [26, p. 61] Let θ̂n(x) be an estimator of θ ∈ Θ defined for samples
x = {x1, . . . , xn}. The replacement finite-sample breakdown point (FBP) of θ̂n at x is

33



the largest proportion of ϵ∗n(θ̂n,x) data points that can be arbitrarily replaced by outliers
without θ̂n leaving a set which is bounded and also bounded away from the boundary of
Θ. More formally, let

Xm = {y | #(y) = n,#(x ∩ y) = n−m},

i.e., Xm is the set of all data sets y of size n having n −m elements in common with x.
Then

ϵ∗n(θ̂n,x) =
m∗

n
,

where m∗ = max{m ≥ 0 : θ̂n(y) bounded and also bounded away from ∂Θ ∀y ∈ Xm}.
For most cases of interest, ϵ∗n(θ̂n) does not depend on x.

Example 2.3.1. Equivariant location estimators. FBP is given by

ϵ∗n(θ̂n) ≤
1

n

⌊
n− 1

2

⌋
.

This bound is attained by M-estimators with an odd and bounded ψ-function (see [26]
for proof).

Example 2.3.2. M-estimator with a preliminary dispersion estimator (2.13). The break-
down point cannot be larger than that of the dispersion estimator. For bounded, monotone
and symmetric ψ-functions and MAD dispersion estimator it holds

ϵ∗n(θ̂n) =
1

n

⌊
n− 1

2

⌋
.

Note that the ψ-function of Huber estimator is odd and bounded, and the same holds for
the smoothed Huber estimator.

Example 2.3.3. For the α-trimmed mean, m∗ = [nα], so that ϵ∗n ≈ α for large n.
An important property of a confidence interval is its length and whether it is sensitive

to outliers in the data. A finite-sample breakdown point can be defined also for the length
of a confidence interval.

Definition 2.3.2. [43, p. 138] Let Ln be the length of a confidence interval based on a
sample X1, . . . , Xn, |Xi|<∞. The finite-sample breakdown point of Ln is given by

ϵn(Ln;X1, . . . , Xn) =
1

n
min

{
m | max

i1,...,im
sup

Y1,...,Ym

{Ln(Z1, . . . , Zn)} = ∞
}
,

where Z1, . . . , Zn is obtained by replacing m data points Xi1 , . . . , Xim by the arbitrary
values Y1, . . . , Ym. Here, Xi and Yi are not random variables.

Definition 2.3.3. [43, p. 138] Define the finite-sample upper breakdown point ϵUn of Ln

as

ϵUn =
1

n
min

{
m | sup

Y(1),...,Y(m)

{
Ln(X(1), . . . , X(n−m), Y(1), . . . , Y(n))

}
= ∞

}
,

where m largest Xis are replaced by m large Yis that satisfy X(n−m) < Y(1), . . . , < Y(m).
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Chapter 3

Empirical likelihood method for the
difference of two location
M-estimators

The aim of this chapter is to establish the empirical likelihood method for the difference
of two M-estimators. The results presented in this chapter have been published in M.
Delesa-Vēliņa et al. [52]

In Chapter 3.1 we present the existing results for the EL inference for M-estimators
in the one-sample case. A. B. Owen [28] provided conditions under which the empirical
likelihood confidence intervals can be constructed for M-estimators. Intuitively, the em-
pirical likelihood inference for the mean is not a robust procedure, since the EL confidence
interval borders are impacted by the outlier values in the data set. It was demonstrated
formally in [43] that the EL confidence intervals for Huber estimator are in a certain sense
(regarding their length) more robust than the EL confidence intervals for the means. The
good properties of the EL inference for the Huber estimator in the one-sample case pro-
vides the motivation for exploring the corresponding method in the two-sample case.

In Chapter 3.2 the main results of the Chapter are presented: we establish the condi-
tions under which the empirical likelihood ratio can be constructed for a difference of two
general M-estimators and show that the smoothed Huber estimator fits in this setting.
Note that the two-sample EL setting of Y. Qin and L. Zhao [35] cannot be applied directly
to the Huber estimator, since the condition (C1) in Assumption 1.4.1 that necessitates
a continuous derivative of the estimating function does not hold for Huber estimator’s
ψ-function (2.8). Thus the smoothed ψ-function (2.18) is used.

As it was noted in Chapter 2, the M-estimators defined by (2.5) or (2.6) are not
scale-equivariant and the results may depend on the measurement units to a large extent.
Thus, the scale-equivariant M-estimators defined by (2.13) are preferred. The difficulty
involved is that the real value of the scale parameter σ in (2.13) is not known in practical
situations. Thus, the scale parameter is interpreted as an additional nuisance parameter
for the EL maximization problem and needs to be dealt with appropriately. One option
is to profile the empirical likelihood ratio simultaneously on all the nuisance parameters
θ0, σ1 and σ2 [31, Chapter 3.5]. However, this approach is computationally complicated.
The second option taken in this work is to use the plug-in empirical likelihood that allows
possibly infinite-dimension nuisance parameters in estimating equations. The plug-in EL
was formalized for the one-sample case by N. Hjort et al. [16]. J. Valeinis [48] generalized
the conditions for the plug-in EL method for the two-sample case.
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3.1 Empirical likelihood for M-estimators in the one-
sample case

Theorem 3.1.1. [28, p. 243] Let T (F ) be an M-estimator solving the equation (2.3)
and let X1, X2, . . . , Xn be i.i.d. random variables with common distribution F0. Consider
univariate functions ψ·t(x) and ψx·(t) given by

ψ·t(x) = ψ(x, t) = ψx·(t).

Assume that (i) T (F0) = τ exists and is unique; (ii) ψ·τ (x) is measurable; (iii)
Var {ψ(Xi, τ)} > 0; (iv) E {|ψ·τ (Xi)|3} < ∞ and (v) ψ(x, t) is a non-increasing func-
tion in t for all x in the support of F0. For a positive c < 1 and empirical likelihood
ratio R(θ) given by (1.5), consider Fc,n = {F |R(θ) ≥ c, F ≪ Fn}, where F ≪ Fn denotes
distributions with support in the sample, and

Sc,n =
⋃

F∈Fc,n

{
t
∣∣∣ ∫ ψ(x, t)dF (x) = 0

}
.

Then Sc,n is an interval and

P (T (F0) ∈ Sc,n) → P
{
χ2
1 ≤ −2 log c

}
as n→ ∞.

Assumptions (i)-(v) hold for the ψ-function of the Huber location estimator given by
(2.8). Consider an estimating equation ψ {(Xi − t)/σ̂}, where σ̂ is a preliminary dispersion
estimator. Then the profile EL ratio is in the form

R(t) = sup
p

{ n∏
i=1

npi|pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piψ

(
Xi − t

σ̂

)
= 0
}
. (3.1)

Put Zi = ψ(Xi − t). Then (3.1) is maximized by

pi = {n(1 + λZi)}−1 ,

and λ is the unique root of
1

n

n∑
i=1

Zi

1 + λZi

= 0

in the interval (−Z−1
(n),−Z

−1
(1)). A. B. Owen [28] provides bracketing values for λ as a

solution to {n(1 + λz)}−1 = 2, where z takes the values Z(1) and Z(n).
Regarding the confidence interval for the mean, its end points are determined by

weighted means of the data. Since all the weights pi are positive by construction, intu-
itively, the length of the confidence interval can be greatly influenced by outlier values. It
might be interesting to consider the finite-sample breakdown point (FBP) of the length
of the EL confidence interval as defined in (2.3.3). M. Tsao and J. Zhou [43] gave a FBP
ϵUn of the length of the EL confidence interval for the mean and for the Huber estimator.
They proved that ϵUn = 1/n for the EL confidence interval of the mean, namely, it suf-
fices to arbitrary change one observation in the sample for the interval length to break
down. In contrast, EL confidence interval for the Huber estimator is more robust and its
breakdown point attains 0.5 when n→ ∞.
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Theorem 3.1.2. [43, p. 133] The finite-sample upper breakdown point ϵUn (2.3.3) of 1−α
EL confidence interval length Ln for Huber estimator is given by

ϵUn = min {m | c(m) ≥ c} /n,

where n is sample size, c = exp(−χ2
1,α/2) and

c(m) =
( n

2m

)m( n

2(n−m)

)(n−m)

.

Note the interpretation of c(m): it is the maximum value of the likelihood ratio R(µ)
from (3.1) in the case where sample contains m outliers in the upper side. The maximum
is attained by weights pi where pi = 1/(2m) if the ith observation is an outlier, and
pi = 1/{2(n−m)} otherwise. The ϵUn depends on the confidence level and on the sample
size n. For example, for 95% confidence interval, ϵU10 = 0.246, ϵU20 = 0.318, and ϵU100 = 0.419
[43].

3.2 Main results
Consider the two-sample problem defined in Chapter 1.4: X1, . . . , Xn1 are i.i.d. random
variables with unknown distribution F1, and Y1, . . . , Yn2 are i.i.d. random variables with
unknown distribution F2, and we are interested in the difference of two M-estimators θ0
and θ1 of the samples X and Y respectively. The estimating functions in (1.12) - (1.13)
have the form

w1(X,∆0, θ0, σ
0
1, σ

0
2) = ψ

(
X − θ0
σ0
1

)
, (3.2)

w2(Y,∆0, θ0, σ
0
1, σ

0
2) = ψ

(
Y −∆0 − θ0

σ0
2

)
,

where ψ corresponds to a general ψ-function of an M-estimator defined in (2.13), σ1 and
σ2 are the scale parameters for the samples X and Y with true values of σ0

1 and σ0
2,

respectively, and θ denotes the location parameter for the sample X with the true value
θ0.

The two-sample problem setting in [35] is for fixed estimating functions w1 and w2, but
in our case (3.2) involves nuisance parameters θ, σ1, σ2, V1 and V2. In addition, estimating
function is dependent on sample size n via V . There are two possible approaches of dealing
with the nuisance parameters. First approach is to profile the EL function on several
nuisance parameters. Consider a fixed V and profile on θ0, σ1 and σ2 simultaneously
(see for example, [31]). The second approach involves the plug-in empirical likelihood,
that allows estimation of the nuisance parameters under some additional restrictions, see
[16] for general assumptions in one sample case. The plug-in EL approach for smooth
estimating equations was extended to two-sample case in [48].

We define the profile empirical likelihood function

R(∆, θ, σ1, σ2) = nn1
1 n

n2
2 sup

p,q

{ n1∏
i=1

pi

n2∏
j=1

qj : pi ≥ 0, qj ≥ 0,

n1∑
i=1

pi = 1,

n2∑
j=1

qj = 1,

n1∑
i=1

piψ

(
Xi − θ

σ1

)
= 0,

n2∑
j=1

qjψ

(
Yj −∆− θ

σ2

)
= 0.

}
(3.3)
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A unique solution to (3.3) exists, provided that 0 is both inside the convex hull of the
w1(Xi,∆, θ, σ1, σ2)’s and the convex hull of the w2(Yj,∆, θ, σ1, σ2)’s.

The maximum may be found by using the standard Lagrange multipliers method,
where the Lagrange multipliers now depend not only on ∆ and θ, but also on the nuisance
parameters σ1 and σ2, i.e., λ1 = λ1(∆, θ, σ1, σ2) and λ2 = λ2(∆, θ, σ1, σ2). Lagrange
multipliers can be determined in therms of ∆(θ) from the equations (1.19)-(1.20) with
the estimating functions defined by (3.2), i.e., from

n1∑
i=1

ψ
(

Xi−θ
σ1

)
1 + λ1ψ

(
Xi−θ
σ1

) = 0,

n2∑
j=1

ψ
(

Yj−∆−θ

σ2

)
1 + λ2ψ

(
Yj−∆−θ

σ2

) = 0. (3.4)

We define the empirical log likelihood ratio (multiplied by minus two) as

W(∆, θ, σ1, σ2) = −2 logR(∆, θ, σ1, σ2) =

= 2

n1∑
i=1

log

(
1 + λ1ψ

(
Xi − θ

σ1

))
+ 2

n2∑
j=1

log

(
1 + λ2ψ

(
Yj −∆− θ

σ2

))
.

To find an estimator θ̂ = θ̂(∆, σ1, σ2) for θ that maximizes R(∆, θ, σ1, σ2), set

∂

∂θ
W(∆, θ, σ1, σ2) =

n1∑
i=1

λ1ψ
′
(

Xi−θ
σ1

)
1 + λ1ψ

(
Xi−θ
σ1

) +

n2∑
j=1

λ2ψ
′
(

Yj−∆−θ

σ2

)
1 + λ2ψ

(
Yj−∆−θ

σ2

) = 0, (3.5)

where ψ′ = (∂/∂θ)ψ.

Let σ̂1 and σ̂2 be two estimators for the scale parameters σ1 and σ2 respectively. We
present the assumptions for a general ψ-function of M-estimator defined in (2.13):

Assumption 3.2.1.

(A1) θ0 ∈ Ω and Ω is an open interval.

(A2) Eψ2 ((Xi − θ)/σ̂1) > 0, Eψ2 ((Yj − θ −∆)/σ̂2) > 0, ψ′ ((Xi − θ)/σ̂1),
ψ′ ((Yj − θ −∆)/σ̂2) are continuous in the neighbourhood of θ0, ψ′ ((Xi − θ)/σ̂1)
and ψ3 ((Xi − θ)/σ̂1) are bounded by some integrable function G1(X) in this
neighbourhood, ψ′ ((Yj − θ −∆)/σ̂2) and ψ3 ((Yj − θ −∆)/σ̂2) are bounded by
some integrable function G2(Y ) in this neighbourhood, and Eψ′ ((Xi − θ)/σ̂1),
Eψ′ ((Yj − θ −∆)/σ̂2) are non-zero.

(A3) n2/n1 → k (as n1, n2 → ∞) and 0 < k <∞.

Assumption 3.2.2.

(B1) σ̂1
p−→ σ0

1, σ̂2
p−→ σ0

2.

(B2) Eψ2
(

Xi−θ0
σ0
1

)
= V1 <∞, Eψ2

(
Yj−θ0−∆0

σ0
2

)
= V2 <∞.

(B3) E
((

Xi−θ0
σ0
1

)
ψ′
(

Xi−θ0
σ0
1

))
= 0, E

((
Yj−θ0−∆0

σ0
2

)
ψ′
(

Yj−θ0−∆0

σ0
2

))
= 0.
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(B4) E
((

Xi−θ0
σ0
1

)
ψ
(

Xi−θ0
σ0
1

)
ψ′
(

Xi−θ0
σ0
1

))
<∞,

E
((

Yj−θ0−∆0

σ0
2

)
ψ
(

Yj−θ0−∆0

σ0
2

)
ψ′
(

Yj−θ0−∆0

σ0
2

))
<∞.

Assumption 3.2.3.

(C1) n1
−1
∑n1

i=1 ψ
′
(

Xi−θ0
σ̂1

)
p−→M1,

n2
−1
∑n2

j=1 ψ
′
(

Yj−∆0−θ0
σ̂2

)
p−→M2.

(C2) 1√
n1

∑n1

i=1 ψ
(

Xi−θ0
σ̂1

)
d−→ U1, where U1 ∼ N(0, V1),

1√
n2

∑n2

j=1 ψ
(

Yj−θ0−∆0

σ̂2

)
d−→ U2, where U2 ∼ N(0, V2).

(C3) n−1
1

∑n1

i=1 ψ
2
(

Xi−θ0
σ̂1

)
p−→ V1,

n2
−1
∑n2

j=1 ψ
2
(

Yj−θ0−∆0

σ̂2

)
p−→ V2.

Remark 3.2.1. Assumption 3.2.1 is very similar to Assumption 1.4.1, except that now
the conditions need to hold for the estimating functions with the nuisance parameters σ̂1
and σ̂2. Part (A1) states that the true parameter θ0 should be in an open interval. Part
(A2) was also used in [34] (see Theorem 1.3.1) and describes the smoothness conditions
for the estimating functions. Part (A3) requires that the sample sizes are asymptotically
comparable.

Assumption 3.2.2 is necessary to establish the asymptotic distribution of the location
M-estimator with a preliminary scale, see Assumptions 2.1.1 and 2.1.2 in Chapter 2. (B1)
holds for a suitable scale estimator under mild (smoothness) conditions on the underlying
distribution. (B2) holds for a bounded ψ-function. (B3) holds for F1, F2 symmetric and
ψ odd.

Assumption 3.2.3 contains technical assumptions for the plug-in empirical likelihood,
similarly as in [16] and [48]. It allows establishing the limiting distribution of the plug-in
EL ratio assuming that the solution to the EL maximisation problem exists. To establish
the existence of the solution, stronger assumptions would be necessary, since it would
require almost sure convergence instead of convergence in probability of the nuisance
parameter estimators in (B1), see Valeinis [48] for the details.

Next, we present Lemma 3.2.1 commenting on the relationship between the Assump-
tions 3.2.1 - 3.2.3, the main Theorem 3.2.1 that establishes the EL method for the dif-
ference of two general M-estimators, and Lemma 3.2.2 that states the conditions under
which the smoothed Huber estimator fits in the setting of Theorem 3.2.1. We proceed
with the proofs in the next section.

Lemma 3.2.1. (M. Delesa-Vēliņa et al. [52]) For a general ψ-function of an M-estimator
satisfying Assumptions 3.2.1 and 3.2.2, Assumption 3.2.3 holds.

Theorem 3.2.1. (M. Delesa-Vēliņa et al. [52]) Assume that the EL maximization problem
has a solution θ̂(∆, σ̂1, σ̂2) determined by (3.5). Then, for a general ψ-function of an M-
estimator satisfying Assumptions 3.2.1 and 3.2.3, as n1, n2 → ∞,

−2 logR(∆0, θ̂(∆0, σ̂1, σ̂2), σ̂1, σ̂2)
d−→ χ2

1.
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Lemma 3.2.2. (M. Delesa-Vēliņa et al. [52]) Let ψ̃k be the score function (2.18) defining
the smoothed Huber M-estimator and let σ̂1 and σ̂2 be the mean absolute deviation (MAD)
dispersion estimates (2.14) of samples X and Y , respectively. Assume that the underlying
distributions F1 and F2 of X and Y are symmetric. Then Assumptions 3.2.1 and 3.2.2
hold for ψ = ψ̃k.

3.3 Proofs
At first, we present one technical Lemma.

Lemma 3.3.1. Suppose 1/3 < η < 1/2 and Assumption 3.2.3 is satisfied. Then

λ1(θ) = Op(n
−η
1 ), λ2(θ) = Op(n

−η
2 )

uniformly around θ ∈ {θ : |θ − θ0|≤ cn−η
1 |}, where c is some positive constant.

For the proof of Lemma 3.3.1, see [35].

Proof of Theorem 3.2.1. Denote λ̂1 = λ1(∆, θ̂, σ̂1, σ̂2), λ̂2 = λ2(∆, θ̂, σ̂1, σ̂2).
First, we show that given the root θ̂ = θ(∆, σ̂1, σ̂2) of (3.5), the following holds:

√
n1(θ̂ − θ0)

d−→ N

(
0,
V1V2(M

2
1 + kM2

2 )

c21

)
, (3.6)

λ̂1 = −k
(
M2

M1

)
λ̂2 + op(n

−1/2
1 ), (3.7)

√
n1λ̂2

d−→ N

(
0,
M2

1

kc1

)
, (3.8)

where
c1 = V2M

2
1 + kV1M

2
2 .

Consider

Q1(θ, λ1, λ2) =
1

n1

n1∑
i=1

ψ
(

Xi−θ
σ1

)
1 + λ1ψ

(
Xi−θ
σ1

) ,
Q2(θ, λ1, λ2) =

1

n2

n2∑
j=1

ψ
(

Yi−∆−θ
σ2

)
1 + λ2ψ

(
Yi−∆−θ

σ2

) ,
Q3(θ, λ1, λ2) = λ1 ×

1

n1

n1∑
i=1

ψ′
(

Xi−θ
σ1

)
1 + λ1ψ

(
Xi−θ
σ1

) + λ2 ×
1

n1

n2∑
j=1

ψ′
(

Yi−∆−θ
σ2

)
1 + λ2ψ

(
Yi−∆−θ

σ2

) .
Then we have

Qi(θ̂, λ̂1, λ̂2) = 0 for i = 1, 2, 3.

By Taylor expansion, we have

0 = Qi(θ̂, λ̂1, λ̂2) = Qi(θ0, 0, 0) +
∂Qi(θ0, 0, 0)

∂θ
(θ̂ − θ0) +

∂Qi(θ0, 0, 0)

∂λ1
λ̂1

+
∂Qi(θ0, 0, 0)

∂λ2
λ̂2 +Op(n

−2η
1 ), i = 1, 2, 3.
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Hence,

Qi(θ0, 0, 0) +
∂Qi(θ0, 0, 0)

∂θ
(θ̂ − θ0) +

∂Qi(θ0, 0, 0)

∂λ1
λ̂1 +

∂Qi(θ0, 0, 0)

∂λ2
λ̂2 = op(n

−1/2
1 ),

i = 1, 2, 3.

From conditions (C1) - (C3) of Assumption 3.2.3 it follows

∂Q1(θ0, 0, 0)

∂θ
→M1 a.s., ∂Q1(θ0, 0, 0)

∂λ1
→ −V1 a.s., ∂Q1(θ0, 0, 0)

∂λ2
= 0,

∂Q2(θ0, 0, 0)

∂θ
→M2 a.s., ∂Q2(θ0, 0, 0)

∂λ1
= 0,

∂Q2(θ0, 0, 0)

∂λ2
→ −V2 a.s.,

∂Q3(θ0, 0, 0)

∂θ
= 0,

∂Q3(θ0, 0, 0)

∂λ1
→M1 a.s., ∂Q3(θ0, 0, 0)

∂λ2
→ kM2 a.s.

Thus θ̂ − θ0
λ̂1
λ̂2

 = S−1

Q1(θ0, 0, 0)
Q2(θ0, 0, 0)

0

+ op(n
−1/2
1 ),

where

S =

M1 −V1 0
M2 0 −V2
0 M1 kM2


and

S−1 =
1

c1

 V2M1 kV1M2 V1V2
−kM2

2 kM1M2 V2M1

M1M2 −M2
1 V1M2

 .

Then we have

θ̂ − θ0 =
1

c1
(V2M1Q1(θ0, 0, 0) + kV1M2Q2(θ0, 0, 0)) + op(n

−1/2
1 ),

λ̂1 = −kM2

c1
(M2Q1(θ0, 0, 0)−M1Q2(θ0, 0, 0)) + op(n

−1/2
1 ),

λ̂2 =
M1

c1
(M2Q1(θ0, 0, 0)−M1Q2(θ0, 0, 0)) + op(n

−1/2
1 ).

Note that according to Assumption 3.2.3 it holds that

√
n1

(
Q1(θ0, 0, 0)
Q2(θ0, 0, 0)

)
d−→ N

(
0,

(
V1 0
0 k−1V2

))
.

The statements (3.6) - (3.8) follow. By Assumption 3.2.1 (A2), ψ3((Xi− θ̂)/σ̂) is bounded
by some integrable function G1(X). Thus E|ψ((Xi − θ̂)/σ̂1)|3 exists, which is equivalent
to ∑

P (|ψ((Xi − θ̂)/σ̂1)|3> n1) <∞,

see, for example, [28]. It follows by the Borel-Cantelli lemma that |ψ((Xi − θ̂)/σ̂1)|< n
1/3
1

with probability 1. This implies that

max
1≤i≤n1

|ψ((Xi − θ̂)/σ̂1)|≤ n
1/3
1 .
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Thus, using Lemma 3.3.1 with η ∈ (1/3; 1/2) we have

max
1≤i≤n1

∣∣∣∣∣λ̂1ψ
(
Xi − θ̂

σ̂1

)∣∣∣∣∣ = Op(n
−η
1 )op(n

1/3
1 ) = op(1),

and with ξ ∈
[
0, λ̂1ψ

(
Xi−θ̂
σ̂1

)]
by the law of large numbers we have

1

n1

n1∑
i=1

ψ3
(

Xi−θ̂
σ̂1

)
(1 + ξ)3

= Op(1).

Thus, the following holds:

n1

3
λ̂31

1

n1

n1∑
i=1

ψ3
(

Xi−θ̂
σ̂1

)
(1 + ξ)3

= O(n1)Op(n
−3η
1 )Op(1) = Op(n

−3η+1) = op(1).

A similar argument can be made for λ̂2. Then, using Taylor expansion for log(1 + x), we
have

logR(∆0, θ̂, σ̂1, σ̂2) =

= −
n1∑
i=1

log

(
1 + λ̂1ψ

(
Xi − θ̂

σ̂1

))
−

n2∑
j=1

log

(
1 + λ̂2ψ

(
Yj −∆0 − θ̂

σ̂2

))
= −n1λ̂1S1x(θ̂) +

n1

2
λ̂21S2x(θ̂)− n2λ̂2S1y(θ̂) +

n2

2
λ̂22S2y(θ̂) + op(1), (3.9)

where

S1x(θ̂) =
1

n1

n1∑
i=1

ψ

(
X − θ̂

σ̂1

)
, S2x(θ̂) =

1

n1

n1∑
i=1

ψ2

(
X − θ̂

σ̂1

)
,

S1y(θ̂) =
1

n2

n2∑
j=1

ψ

(
Y −∆0 − θ̂

σ̂2

)
, S2y(θ̂) =

1

n2

n2∑
j=1

ψ2

(
Y −∆0 − θ̂

σ̂2

)
.

From (3.4) we have

0 =

n1∑
i=1

ψ
(

Xi−θ̂
σ̂1

)
1 + λ1ψ

(
Xi−θ̂
σ̂1

)
=

1

n1

n1∑
i=1

ψ

(
Xi − θ̂

σ̂1

)1− λ̂1ψ

(
Xi − θ̂

σ̂1

)
+

λ̂21ψ
2
(

Xi−θ̂
σ̂1

)
1 + λ̂1ψ

(
Xi−θ̂
σ̂1

)


= S1x(θ̂)− λ̂1S2x(θ̂) +
1

n1

n1∑
i=1

λ̂21ψ
3
(

Xi−θ̂
σ̂1

)
1 + λ̂1ψ

(
Xi−θ̂
σ̂1

) .
The absolute value of the last term is bound by

1

n1

n1∑
i=1

|ψ3((Xi − θ̂)/σ̂1)||λ̂1|2|1 + λ̂1ψ((Xi − θ̂)/σ̂1)|−1= O(1)Op(n
−2η
1 )Op(1) = Op(n

−2η
1 ).
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Thus, it follows (using a similar argument for λ̂2) that

S1x(θ̂) = λ̂1S2x(θ̂) +Op(n
−2η
1 ), S1y(θ̂) = λ̂2S2y(θ̂) +Op(n

−2η
1 ).

Hence from (3.9) we have

−2 logR(∆0, θ̂, σ̂1, σ̂2) = n1λ̂
2
1S2x(θ̂) + n2λ̂

2
2S2y(θ̂) + op(1).

From condition (C3) of Assumption 3.2.3 we have

S2x(θ̂) = V1 + op(1), S2y(θ̂) = V2 + op(1),

and using (3.7)

−2 logR(∆0, θ̂, σ̂1, σ̂2) = n1λ̂
2
1S2x(θ̂) + n2λ̂

2
2S2y(θ̂) + op(1)

= n1k
2M

2
2

M2
1

λ̂22V1 + n2λ̂
2
2V2 + op(1)

= k
[√

n1λ̂2

]2(kV1M2
2 + V2M

2
1

M2
1

)
+ op(1).

Using (3.8), we have
√
n1λ̂2

d−→ N

(
0,

M2
1

k(V2M2
1 + kV1M2

2 )

)
.

Then
−2 logR(∆0, θ̂, σ̂1, σ̂2)

d−→ χ2
1,

which proves Theorem 3.2.1.

Proof of Lemma 3.2.1. We will present the proof only for the sample X, as for Y the
result can be obtained similarly. Condition (A2) of Assumption 3.2.1 states that ψ′ is
bounded by some integrable function; thus, the expectation exists and condition (C1) of
Assumption 3.2.3 holds by the law of large numbers. To prove (C2) and (C3), we follow
the technique used in [26, Section 10.6] to establish the asymptotic distribution of the
location M-estimators with a preliminary scale. Denote ui = Xi − θ0 and σ̂1 = σ0

1 + δ.
Expand ψ(ui/σ̂1) to the second order Taylor series around θ0:

ψ

(
ui
σ̂1

)
= ψ

(
ui

σ0
1 + δ

)
≈ ψ

(
ui
σ0
1

)
+
ui
σ0
1

ψ′
(
ui
σ0
1

)(
1− σ0

1

σ̂1

)
.

Summing over i and dividing by √
n1, we obtain

1
√
n1

n1∑
i=1

ψ

(
ui
σ̂1

)
=

√
n1An1 +

√
n1Bn1

(
1− σ0

1

σ̂1

)
, (3.10)

where
An1 =

1

n1

n1∑
i=1

ψ

(
ui
σ0
1

)
, Bn1 =

1

n1

n1∑
i=1

(
ui
σ0
1

)
ψ′
(
ui
σ0
1

)
.

Eψ(ui/σ
0
1) = 0 by the definition of the M-estimator, thus √

n1An1

d−→ N(0, V1) by As-
sumption 3.2.2 condition (B2). According to Assumption 3.2.2 condition (B3), √n1Bn1

tends to a normal distribution by the central limit theorem, and since (1−σ0
1/σ̂1) → 0 by
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Assumption 3.2.2 condition (B1), the second term in the right-hand side of (3.10) tends
to zero by Slutsky’s lemma. Hence, we obtain Assumption 3.2.3 condition (C2).

Now, we expand ψ(ui/σ̂1) around θ0:

ψ2

(
ui

σ0
1 + δ

)
= ψ2

(
ui
σ0
1

)
+ 2ψ

(
ui
σ0
1

)
ψ′
(
ui
σ0
1

)(
ui
σ0
1

)(
1− σ0

1

σ̂1

)
.

Summing over i and dividing by n1,

1

n1

n1∑
i=1

ψ2

(
ui

σ0
1 + δ

)
= Cn1 + 2Dn1

(
1− σ0

1

σ̂1

)
,

where
Cn1 =

1

n1

n1∑
i=1

ψ2

(
ui
σ0
1

)
, and Dn1 =

1

n1

n1∑
i=1

ψ

(
ui
σ0
1

)
ψ′
(
ui
σ0
1

)(
ui
σ0
1

)
.

By the central limit theorem and Assumption 3.2.2 condition (B2), Cn1 tends to V1, Dn1

tends to a constant by condition (B4), and (1− σ0
1/σ̂1) → 0. Hence we obtain (C3).

Proof of Lemma 3.2.2. First, we verify that Assumption 3.2.1 condition (A2) holds.
The derivative ψ̃′

k is continuous due to the general smoothing principle of M-estimators
established in (2.16). Next, 0 ≤ ψ̃′

k(x) ≤ 1 and 0 ≤ ψ̃3
k(x) ≤ k3, thus they are bounded.

Now, we verify that conditions of Assumption 3.2.2 hold. (B1) holds for σ̂1 = MAD =
Med{|X −Med(X)|} under mild (smoothness) conditions on the underlying distribution
F (see, for example, [11]). (B2) holds because ψ̃k with k < ∞ is a bounded ψ-function.
For F1 symmetric, θ0 coincides with the center of symmetry and, since ψ̃k is odd, (B3)
holds. Next, as ψ̃′

k(x) = 0 for |x|> k, for F1 symmetric (B4) is an expectation of an even
and bounded function, hence it is finite.
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Chapter 4

Empirical likelihood method for the
difference of trimmed means

In this chapter a new empirical likelihood method for the difference of two trimmed means
is developed. The results provided in this chapter have been previously published by M.
Delesa-Vēliņa et al. [8].

In Chapter 4.1 the EL method for the trimmed means in the one-sample case by
G. Qin and M. Tsao [33] are presented. Owen [28] established the EL method for in-
dependent observations, while the observations of the trimmed sample are dependent.
Using Owen’s EL method [28] on the trimmed means directly results in incorrect limiting
distribution. Instead, G. Qin and M. Tsao [33] proposed to estimate the EL ratio for
the trimmed sample, and consequently established the impact of the dependence on the
limiting distribution of the EL ratio, obtaining a scaled chi-square distribution. They
showed in a simulation setting that the EL confidence interval for the trimmed mean had
better coverage than the confidence interval for the trimmed mean based on the normal
approximation.

In Chapter 4.2 our new EL method for the difference of two trimmed means is devel-
oped, extending the results of [33] to the two-sample case using the tools of Y. Qin and
L. Zhao [35] described in Chapter 1. In Chapter 4.3 the proofs are given.

4.1 Empirical likelihood for trimmed means in the
one-sample case

Consider the setting of Chapter 2.2: let X1, X2, . . . , Xn be i.i.d. random variables with
distribution F0, and X(1), X(2), . . . , X(n) be ordered statistics. Let X̄αβ be the sample
trimmed mean as defined by (2.19), i.e.,

X̄αβ =
1

m

s∑
i=r

X(i),

where 0 < α < 1/2, 0 < β < 1/2 are trimming proportions from the left and the
right side respectively, r = ⌊nα⌋ + 1, s = n − ⌊nβ⌋, and m is the effective sample size
m = n− ⌊nα⌋ − ⌊nβ⌋.

According to Theorem 2.2.1, the asymptotic value of the sample trimmed mean X̄αβ

is
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µαβ =
1

1− α− β

∫ ξ1−β

ξα

xdF0.

Let weights pi = 0 for i < r and i > s, pi ≥ 0 for r ≤ i ≤ s and
∑s

i=r pi = 1. Define
the empirical likelihood ratio for the trimmed mean as

R(µαβ) = sup

{ s∏
i=r

mpi : pi ≥ 0,
s∑

i=r

pi = 1,
s∑

i=r

piX(i) = µαβ

}
.

Theorem 4.1.1. [33, Theorem 2.1]
Assume F0 is continuous, F ′

0(ξα) > 0 and F ′
0(ξ1−β) > 0, and let µ0

αβ be the true value
of the trimmed mean µαβ. Then

−2a logR(µ0
αβ)

d−→ χ2
1,

where
a = σ2

αβ/((1− α− β)τ 2αβ),

σ2
αβ =

1

(1− α− β)

∫ ξ1−β

ξα

x2dF0(x)− µ2
αβ, (4.1)

and

τ 2αβ =
1

(1− α− β)2
((1− α− β)σ2

αβ + β(1− β)(ξ1−β − µαβ)
2

− 2αβ(ξα − µαβ)(ξ1−β − µαβ) + α(1− α)(ξα − µαβ)
2). (4.2)

The proof of the Theorem 4.1.1 can be found in [33].

Remark 4.1.1. From conditions F ′
0(ξα) > 0 and F ′

0(ξ1−β) > 0 it follows that A = 0 and
B = 0 in Theorem 2.2.1, i.e., the trimming is done at unique percentiles of the distribution
F0 (note that there was a typo in [33] demanding F ′

0(ξβ) < 0 instead of F ′
0(ξ1−β) > 0). Note

that µαβ and σ2
αβ are the mean and the variance, respectively, of the truncated distribution

of F0 defined by (2.21). Under the conditions of Theorem [33], it follows from Theorem
2.2.1 and Remark 2.2.1 that the asymptotic distribution of X̄αβ is normal with mean µαβ

and variance τ 2αβ.

G. Qin and M. Tsao [33] provided a consistent estimator for scaling constant a by

â = σ̂2
αβ/((1− α− β)τ̂ 2αβ),

where

σ̂2
αβ =

1

(1− α− β)

∫ ξ̂1−β

ξ̂α

x2dFn(x)− X̄2
αβ, (4.3)

τ̂ 2αβ =
1

(1− α− β)2
((1− α− β)σ̂2

αβ + β(1− β)(ξ̂1−β − X̄αβ)
2

− 2αβ(ξ̂α − X̄αβ)(ξ̂1−β − X̄αβ) + α(1− α)(ξ̂α − X̄αβ)
2), (4.4)

ξ̂p = inf{x : Fn(x) ≥ p} for any 0 < p < 1 and Fn(x) is the empirical distribution function.
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4.2 Main results
To obtain a test for the difference of two trimmed means, the idea is to combine the results
of [33] and [35]. Consider the two-sample EL problem described in Chapter 1.4, where
i.i.d. random variables X1, . . . , Xn1 and Y1, . . . , Yn2 have unknown distribution functions
F1 and F2, respectively.

We are interested in the difference of two trimmed means with trimming proportions
0 < α < 1/2, 0 < β < 1/2. Thus for (1.12) - (1.13) consider the parameters

θ0 =
1

1− α− β

∫ ξ1−β

ξα

xdF1 =: µαβ1, θ1 =
1

1− α− β

∫ ξ1−β

ξα

ydF2 =: µαβ2,

and
∆0 = µαβ2 − µαβ1.

Consider the respective sample means

X̄αβ =
1

m1

s1∑
i=r1

X(i), Ȳαβ =
1

m2

s2∑
j=r2

Y(j),

where r1 = ⌊n1α⌋ + 1, s1 = n1 − ⌊n1β⌋, r2 = ⌊n2α⌋ + 1, s2 = n2 − ⌊n2β⌋, and m1

and m2 are the effective sample sizes after trimming, i.e., m1 = n1−⌋n1α⌋ − ⌊n1β⌋,
m2 = n2 − ⌊n2α⌋ − ⌊n2β⌋. Similarly as in Theorem 4.1.1, let weights pi = 0 for i < r1,
i > s1, and qj = 0 for j < r2 and j > s2. Define the estimating functions

w1(X,µαβ1,∆0) = X − µαβ1, w2(Y, µαβ1,∆0) = Y −∆0 − µαβ1.

Finally, define the profile empirical likelihood ratio function for the difference ∆ of the
trimmed means as

R(∆, µt) = sup
pi,qj

{ m1∏
i=1

m1pi

m2∏
j=1

m2qj|pi ≥ 0, qj ≥ 0,

s1∑
i=r1

pi = 1,

s2∑
j=r2

qj = 1,

s1∑
i=r1

piw1(X(i), µt,∆) = 0,

s2∑
j=r2

qjw2(Y(j), µt,∆) = 0

}
, (4.5)

where µt is considered as a nuisance parameter and has the real value µαβ1. This setting is
similar to the one described in Chapter 1.4, with a distinction that additional restrictions
pi = 0 for i < r1, i > s1, and qj = 0 for j < r2, j > s2 are added. A unique solution
of (4.5) exists, provided that 0 is inside the convex hull of the points w1(X(i), µt,∆)’s
and w2(Y(j), µt,∆)’s, r1 ≤ i ≤ s1, r2 ≤ j ≤ s2, and may be found using the Lagrange
multipliers method. Similarly to (1.17) - (1.18) we have

pi =
1

m1(1 + λ1w1(X(i), µt,∆))
, i = r1, . . . , s1,

qj =
1

m2(1 + λ2w2(Y(j), µt,∆))
, j = r2, . . . , s2,

where the Lagrange multipliers λ1 = λ1(µt,∆) and λ2 = λ2(µt,∆) can be determined in
terms of µt by the equations

s1∑
i=r1

w1(X(i), µt,∆)

1 + λ1w1(X(i), µt,∆)
= 0,

s2∑
j=r2

w2(Y(j), µt,∆)

1 + λ2w2(Y(j), µt,∆)
= 0.
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The empirical log likelihood ratio is defined as
W(∆, µt) = −2 logR(∆, µt) (4.6)

= 2

s1∑
i=r1

log(1 + λ1w1(X(i), µt,∆)) + 2

s2∑
j=r2

log(1 + λ2w2(Y(j), µt,∆)).

To find an estimator µ̂t = µ̂t(∆) for the nuisance parameter µt that maximizes R(∆, µt)
for a fixed parameter ∆, set (∂/∂µt)W(∆, µt) = 0. Noting that the derivatives of w1 and
w2 with respect to µt are equal to −1, we obtain the empirical likelihood equation

∂

∂µt

W(∆, µt) =

s1∑
i=r1

−λ1
1 + λ1w1(X(i), µt,∆)

+

s2∑
j=r2

−λ2
1 + λ2w2(Y(j), µt,∆)

= 0. (4.7)

Assumption 4.2.1.
(A1) F1, F2 is continuous, F ′

1(ξα) > 0, F ′
1(ξ1−β) > 0, F ′

2(ξα) > 0, F ′
2(ξ1−β) > 0.

(A2) µαβ1 ∈ Ω, where Ω is an open interval.

(A3) n2/n1 → k as n1, n2 → ∞, and 0 < k <∞.
Remark 4.2.1. Assumption 4.2.1 condition (A1) comes from Theorem 4.1.1 and ensures
that the samples are trimmed so that the corresponding percentiles of the population dis-
tributions F1 and F2 are uniquely defined. Notice that it is assumed that the trimming
proportions α and β are positive. To allow α or β to be equal to zero, an additional con-
dition E(X2) < ∞ and E(Y 2) < ∞ should be imposed, and the proof of Theorem 4.2.1
would require a slight change. Conditions (A2) and (A3) are inherited from assumptions
for the EL method in the general two sample case, Assumption 1.4.1.
Theorem 4.2.1. (M. Delesa-Vēliņa et al. [8]) Under Assumption 4.2.1 there exists a
root µ̂t(∆0) of (4.7) such that µ̂t(∆0) is a consistent estimator for µαβ1, R(∆0, µt) attains
its local maximum value at µ̂t(∆0), and

−2a2 logR(∆0, µ̂t(∆0))
d−→ χ2

1

as n1, n2 → ∞, with the scaling constant

a2 =
n1n2(m2σ

2
1 +m1σ

2
2)

m1m2(n2τ 21 + n1τ 22 )
,

where (σ2
1 = σ2

αβ1, τ 21 = τ 2αβ1) and (σ2
2 = σ2

αβ2, τ 22 = τ 2αβ2) are the parameters defined in
(4.1) and (4.2), associated with the underlying distribution functions F1 and F2, respec-
tively.
Remark 4.2.2. A consistent estimator for the scaling constant a2 from Theorem 4.2.1 is
provided by

â2 =
n1n2(m2σ̂

2
1 +m1σ̂

2
2)

m1m2(n2τ̂ 21 + n1τ̂ 22 )
,

where the parameter estimators σ̂2
1, τ̂ 21 , and σ̂2

2, τ̂ 22 are defined as in the one-sample case
in (4.3) and (4.4) with the empirical distributions Fn1(x), Fn2(y), and the trimmed means
X̄αβ, Ȳαβ, respectively.
Remark 4.2.3. An approximate 1−p confidence interval for the true difference of trimmed
means ∆0 can be obtained by test inversion and has the form

{∆ : −2â2 logR(∆, µ̂t(∆)) ≤ χ2
1,1−p},

where χ2
1,1−p denotes the 1− p quantile of the χ2

1 distribution.
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4.3 Proofs
Lemma 4.3.1. Suppose 1/3 < η < 1/2 and the Assumption 4.2.1 conditions (A2) and
(A3) are satisfied. Then

λ1(µt) = Op(n
−η
1 ), λ2(µt) = Op(n

−η
2 )

uniformly around µt ∈ {µt : |µt − µαβ1|≤ bn−η
1 |}, where b is some positive constant.

Proof. For the proof of Lemma 4.3.1, see [35].

Lemma 4.3.2. Under the Assumption 4.2.1 condition (A1) the following holds as n1 → ∞
and n2 → ∞:

1

m1

s1∑
i=r1

w2
1(X(i), µαβ1,∆)

p−→ σ2
1,

1

m2

s2∑
j=r2

w2
2(Y(j), µαβ1,∆)

p−→ σ2
2, (4.8)

√
n1

(
1

m1

s1∑
i=r1

w1(X(i), µαβ1,∆)

)
d−→ N(0, τ 21 ), (4.9)

√
n2

(
1

m2

s2∑
j=r2

w2(Y(j), µαβ1,∆)

)
d−→ N(0, τ 22 ). (4.10)

Proof. We will prove the lemma for sample X, the proof for Y being equivalent. Note that
1/m1

a.s.−−→ 1/(1− α − β) as n1 → ∞, and µαβ1 is the mean of the truncated distribution
of F1 given by (2.21). Thus

1

m1

s1∑
i=r1

w2
1(X(i), µαβ1,∆) =

1

m1

s1∑
i=r1

(X(i) − µαβ1)
2

provides a consistent estimate for the dispersion σ2
1 of the truncated distribution of F1,

and we get (4.9). Next,

√
n1

(
1

m1

s1∑
i=r1

w1(X(i), µαβ1,∆)

)
=

√
n1(X̄αβ − µαβ)

d−→ W

and we can use the Theorem 2.2.1 to establish the asymptotic distribution of the trimmed
mean. The Assumptions of Theorem 4.1.1 ensure that

A = F−1
1 (α)− F−1

1 (α−) = 0 and B = F−1
1 (1− β)− F−1

1 ((1− β)−) = 0,

and the asymptotic distribution W is normal with variance

VarW =
1

1− α− β
((1− α− β)σ2

αβ1 + (ξα − µαβ1)
2α(1− α) + (ξ1−β − µαβ1)

2β(1− β)

− 2αβ(ξα − µαβ1)(ξ1−β − µαβ1)) = τ 2αβ1.
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Lemma 4.3.3. Denote λ̂1 = λ1(∆0, µ̂t), λ̂2 = λ2(∆0, µ̂t). With the root µ̂t = µt(∆0) of
(4.7) the following holds as n1, n2 → ∞:

√
n1(µ̂t − µαβ1)

d−→ − 1

σ2
2 + γσ2

1

(
σ2
2N
(
0, τ 21

)
+ γσ2

1N(0, κτ 22 )
)
,

c
√
n1

(
τ 21 +

n1

n2

τ 22

)−1/2

λ̂2
d−→ N (0, 1) ,

λ̂1 = −m2

m1

λ̂2 + op(n
−1/2
1 ),

where c = σ2
2 + σ2

1m2/m1 and γ = limn1,n2→∞m2/m1.
Proof. Denote

Q1(µt, λ1, λ2) =

s1∑
i=r1

w1(X(i), µt,∆)

1 + λ1w1(X(i), µt,∆)
, Q2(µt, λ1, λ2) =

s2∑
j=r2

w2(Y(j), µt,∆)

1 + λ2w2(Y(j), µt,∆)
,

Q3(µt, λ1, λ2) =

s1∑
i=r1

−λ1
1 + λ1w1(X(i), µt,∆)

+

s2∑
j=r2

−λ2
1 + λ2w2(Y(j), µt,∆)

.

Then
Qi(µ̂t, λ̂1, λ̂2) = 0 for i = 1, 2, 3.

By Taylor expansion around (µαβ1, 0, 0),

0 = Qi(µ̂t, λ̂1, λ̂2) = Qi(µαβ1, 0, 0) +
∂Qi(µαβ1, 0, 0)

∂µt

(µ̂t − µαβ1) +
∂Qi(µαβ1, 0, 0)

∂λ1
λ̂1

+
∂Qi(µαβ1, 0, 0)

∂λ2
λ̂2 +Op(n

−2η
1 ), i = 1, 2, 3.

calculating the partial derivatives and using equation (4.8) of Lemma 4.3.2 givesµ̂t − µαβ1

λ̂1
λ̂2

 = S−1

Q1(µαβ1, 0, 0)
Q2(µαβ1, 0, 0)

0

+ op(n
−1/2
1 ),

where

S =

−1 −σ2
1 0

−1 0 −σ2
2

0 −1 −m2/m1

 .

Thus we have

µ̂t − µαβ1 = −1

c
(σ2

2Q1(µαβ1, 0, 0) +
m2

m1

σ2
1Q2(µαβ1, 0, 0)) + op(n

−1/2
1 ),

λ̂1 =
m2

m1c
(Q2(µαβ1, 0, 0)−Q1(µαβ1, 0, 0)) + op(n

−1/2
1 ),

λ̂2 = −1

c
(Q2(µαβ1, 0, 0)−Q1(µαβ1, 0, 0)) + op(n

−1/2
1 ).

Using Lemma 4.3.2 equation (4.9), we have
√
n1

(
Q1(µαβ1, 0, 0)
Q2(µαβ1, 0, 0)

)
d−→ N

(
0,

(
τ 21 0
0 κτ 22

))
,

and we obtain the results of the Lemma 4.3.3.
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Proof of Theorem 4.2.1. Using a Taylor expansion for log(1 + λ̂iwi) in (4.6), we have

logR(∆0, µ̂t) = −λ̂1
s1∑

i=r1

w1(X(i), µ̂t,∆0) +
1

2
λ̂21

s1∑
i=r1

w2
1(X(i), µ̂t,∆0)

−λ̂2
s2∑

j=r2

w2(Y(j), µ̂t,∆0) +
1

2
λ̂22

s2∑
j=r2

w2
2(Y(j), µ̂t,∆0) + r1 + r2,

where

|r1|≤ C1

s1∑
i=r1

|λ̂1w1(X(i), µ̂t,∆)|3, |r2|≤ C2

s2∑
j=r2

|λ̂2w2(Y(j), µ̂t,∆)|3.

From Assumption 4.2.1 condition (A1) it follows (see, for example, [1]) that

max
r1≤i≤s1

|X(i)|= Op(1).

Thus

max
r1≤i≤s1

|w1(X(i), µ̂t,∆)|= max
r1≤i≤s1

|X(i) − µ̂t|≤ max
r1≤i≤s1

|X(i)|+|µ̂t|= Op(1). (4.11)

Using Lemma 4.3.1 with 1/2 < η < 1/3, (4.8) and (4.11),

|r1|≤ C1|λ1|3 max
r1≤i≤s1

|w1(X(i), µ̂t,∆)|
s1∑

i=r1

w1(X(i), µ̂t,∆)2

= Op(n
−3η
1 )Op(1)Op(n1) = Op(n

1−3η
1 ) = op(1),

and with the same arguments for r2, we have

|r2|= op(1).

From (4.2),

0 =

s1∑
i=r1

w1(X(i), µ̂t,∆0)

1 + λ̂1w1(X(i), µ̂t,∆0)

=

s1∑
i=r1

w1(X(i), µ̂t,∆0)

(
1− λ̂1w1(X(i), µ̂t,∆0) +

λ̂21w
2
1(X(i), µ̂t,∆0)

1 + λ̂1w1(X(i), µ̂t,∆0)

)
,

where the last term
s1∑

i=r1

λ̂21
w3

1(X(i), µ̂t,∆0)

1 + λ̂1w1(X(i), µ̂t,∆0)
≤ λ̂21 max

r1≤i≤s1
|w1(X(i), µ̂t,∆0)|

s1∑
i=r1

w2
1(X(i), µ̂t,∆0)

1 + λ̂1w1(X(i), µ̂t,∆0)

= Op(n
−2η
1 )Op(1)Op(n1) = Op(n

1−2η
1 ).

Using the same arguments for λ2, we have
s1∑

i=r1

w1(X(i), µ̂t,∆0) = λ̂1

s1∑
i=r1

w2
1(X(i), µ̂t,∆0) +Op(n

1−2η
1 ), (4.12)

s2∑
j=r2

w2(Y(j), µ̂t,∆0) = λ̂2

s2∑
j=r2

w2
2(Y(j), µ̂t,∆0) +Op(n

1−2η
1 ). (4.13)
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Multiplying the both sides of (4.12) and (4.13) with λ̂1 and λ̂2, respectively, by Lemma
4.3.1 we have

λ̂1

s1∑
i=r1

w1(X(i), µ̂t,∆0) = λ̂21

s1∑
i=r1

w2
1(X(i), µ̂t,∆0) + op(1),

λ̂2

s2∑
j=r2

w2(Y(j), µ̂t,∆0) = λ̂22

s2∑
j=r2

w2
2(Y(j), µ̂t,∆0) + op(1).

Hence,

−2 logR(∆0, µ̂t) = λ̂21

s1∑
i=r1

w2
1(X(i), µ̂t,∆0) + λ̂22

s2∑
j=r2

w2
2(Y(j), µ̂t,∆0) + op(1).

Recalling (4.8), (4.9), (4.10) and Lemma 4.3.3, we have

−2 logR(∆0, µ̂t) = m1λ̂
2
1σ

2
1 +m2λ̂

2
2σ

2
2 + op(1)

= m1

(
m2

m1

)2

λ̂22σ
2
1 +m2λ̂

2
2σ

2
2 + op(1)

= m2λ̂
2
2

(
σ2
2 +

m2

m1

σ2
1

)
+ op(1)

=
m2

cn1

(
√
n1cλ̂2)

2 + op(1).

Finally, using Lemma 4.3.3, we obtain as n1, n2 → ∞

−2
cn1

m2

(
τ 21 +

n1

n2

τ 22

)−1

R(∆0, µ̂t)
d−→ [N(0, 1)]2

and

−2
n1n2(m2σ

2
1 +m1σ

2
2)

m1m2(n2τ 21 + n1τ 22 )
logR(∆0, µ̂t) = −2a2 logR(∆0, µ̂t)

d−→ χ2
1.
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Chapter 5

Empirical likelihood-based ANOVA
method for the trimmed means

The goal of this chapter is to develop an empirical likelihood-based ANOVA method for
comparing multiple population trimmed means. The results described in this chapter
have been previously published in M. Delesa-Vēliņa et al. [51].

Consider the problem of comparing multiple populations: let Yi = (Yi1, Yi2, . . . , Yini
),

i = 1, 2, . . . , k, be independent random samples from k different distributions with popu-
lation means µi. The classical approach is to test the null hypothesis of equal population
means

H0 : µ1 = . . . = µk =: µ. (5.1)
Under the assumption of equal variances (homoscedasticity) and normally distributed

data in each group, i.e. Yij ∼ N(µi, σ), one can use the classical ANOVA F test

F =

∑k
i=1 ni(Ȳi· − Ȳ··)

2/(k − 1)∑k
i=1(ni − 1)s2i /(N − k)

,

where
Ȳi· =

1

ni

ni∑
j=1

Yij and s2i =
1

ni − 1

ni∑
j=1

(Yij − Ȳi·)
2

are the sample mean and the sample variance of the ith group, respectively, and

Ȳ·· =
k∑

i=1

ni∑
j=1

Yij/N

is the pooled sample mean. The null hypothesis in (5.1) is rejected at level c if F >
Fc,k−1,N−k, where Fc,k−1,N−k is the critical value based on the F distribution with k − 1
and N − k degrees of freedom.

It is well known that the classical ANOVA F -test can not handle the variance hetero-
geneity and problems of controlling the probability of type I error arise. Various methods
have been proposed to deal with the heterogeneity problem, for example, B. L. Welch [55]
proposed an approximate degrees of freedom (ADF) type procedure that can deal with
variance heterogeneity for normally distributed data. However, problems still arise when
the variance heterogeneity appears in combination with nonnormal data and unbalanced
sample designs (see, for example, [56]). K. Yuen [60] suggested a robust modification to
the Welch’s test, using trimmed means and Winsorized variances together with Welch
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ADF statistics. It was demonstrated in [23] that such approach offers a better control
over the probability of type I error of one-way ANOVA under distributions of various
degree of skewness and unbalanced sample sizes.

A. B. Owen [30] proposed an empirical likelihood-based ANOVA method for inde-
pendent groups to test the hypothesis of equality of means. Later, [45] considered an
EL-based estimator of the common mean stemming from the EL ANOVA method, and
showed in a simulation setting that it is more efficient than the parametric estimator
under the variance heterogeneity.

We take advantage of the good robustness properties of the trimmed means and pro-
pose an EL-based ANOVA type method to test the hypothesis of equality of the trimmed
means. We first present A. B. Owen’s EL ANOVA method [30] in Chapter 5.1. We then
proceed with the main result on comparing multiple population trimmed means in the
EL setting in Chapter 5.2.

5.1 Empirical likelihood ANOVA
For an empirical likelihood approach to ANOVA, we follow the display in [30]. Let ob-
servations Yij ∈ R, where i = 1, . . . , k, j = 1, . . . , ni and N =

∑k
i=1 ni denotes the total

number of observations.
A. B. Owen [30] provides two alternative formulations for the empirical likelihood

ratio function in ANOVA context. Under the first, suppose Yij ∼ Fi0 are independent
samples from k different distributions. Let Fi denote a candidate for the true unknown
distribution Fi0, and vij = Fi({Yij}) denote the probability of Yij under Fi. The likelihood
ratio function is defined by

Rk(F1, . . . , Fk) =
k∏

i=1

ni∏
j=1

nivij. (5.2)

Under the second formulation, consider N random pairs (I, Y ), where I ∈ {1, . . . , k}
and Y ∈ Rd. The observation Yij is represented by a pair where I = i and Y = Yij. Let
F be a distribution on (I, Y ) pairs. The data are not i.i.d from F , because I in each pair
is a non-random categorical predictor. Define the likelihood

L(F ) =
n∏

i=1

ni∏
j=1

vij,

where vij = F{(i, Yij)}. The weights vij can be factorized into

vij = vj|ivi·,

where vi· =
∑ni

j=1 vij, and vj|i = vij/vi·. The empirical likelihood ratio function can be
then expressed as

R(F ) =
k∏

i=1

ni∏
j=1

Nvi·vj|i (5.3)

=

(
k∏

i=1

(
Nvi·
ni

)ni

)(
k∏

i=1

ni∏
j=1

nivj|i

)
.
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In ANOVA analysis, we are usually interested in F only through vj|i, thus we can take
vi· = ni/N . The first product in (5.3) becomes equal to one and the maximization of
R(F ) is only subject to constraints on vj|i. Thus the both approaches (5.2) and (5.3) lead
to the same likelihood ratio function,

R(F ) = Rk(F1, . . . Fk).

The advantage of the second approach is that a triangular version of the empirical likeli-
hood theorem can be used to establish the inference for ANOVA type hypotheses. Under
the triangular empirical likelihood theorem, we consider the mean of random variables that
are not necessarily i.i.d, but can be arranged into a triangular array structure Zin ∈ Rp,
i = 1, . . . , n.

Theorem 5.1.1. (Triangular array ELT) [31, Theorem 4.1.] Let Zin ∈ Rp, 1 ≤ i ≤ n,
n ≥ nmin be a triangular array of random vectors. For each n, suppose that Z1n, . . . , Znn

are independent and have common mean µn. Let Hn denote the convex hull of Z1n, . . . , Znn,
and Vn = (1/n)

∑n
i=1 Var(Zin). Put σ1n = maxeig(Vn), and σpn = mineig(Vn). Assume

that as n→ ∞

P (µn ∈ Hn) → 1

and
1

n2

n∑
i=1

E
(
||Zin − µn||4/σ2

1n

)
→ 0,

and that for some c > 0 and all n ≥ nmin,
σpn
σ1n

≥ c. (5.4)

Then, as n→ ∞,
−2 logR(µn)

d−→ χ2
p,

where

R(µn) = max
vi

{
n∏

i=1

nvi|
n∑

i=1

vi(Zin − µn) = 0, vi ≥ 0,
n∑

i=1

vi = 1

}
.

For the proof of Theorem 5.1.1, see [31, Chapter 11.3].
To apply Theorem 5.1.1 in ANOVA setting, suppose

µi0 =

∫
ydFi0(y) ∈ R

and define

R(µ1, . . . , µk) = sup
vij

{
k∏

i=1

ni∏
j=1

Nvij | vij ≥ 0,
k∑

i=1

nj∑
j=1

vij = 1,

ni∑
j=1

vij(Yij − µi) = 0, i = 1, . . . , k

}
.

Define the auxiliary variables ZijN ∈ Rk

ZijN = (0, . . . , 0, Y T
ij − µT

i , 0, . . . , 0)
T ,
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where Y T
ij − µT

i are preceded by (i − 1) and followed by (k − i) zeros. The matrix Vn in
Theorem 5.1.1 is then given by

VN =
1

N


n1Var(Y11) 0 . . . 0

0 n2Var(Y21) . . . 0
... ... . . . . . .
0 0 . . . nkVar(Yk1)

 .

If each Var(Yi1) is finite and non-singular, the condition (5.4) of Theorem 5.1.1 on eigen-
values holds as long as

lim
N→∞

mini ni

maxi ni

> 0.

The convex hull condition for ZijN unites k convex hull conditions: for each i = 1, . . . , k,
the convex hull of Yij needs to contain µi0. Thus, under mild conditions

−2 logR(µ1, . . . , µk)
d−→ χ2

k as n→ ∞.

The hypothesis (5.1) corresponds to k−1 constraints on vector µn instead of k. We arrive
to the following corollary of the triangular ELT for the null hypothesis (5.1).

Corollary 5.1.1. (EL ANOVA for the equality of means) [30, p. 1739] Suppose E(Yij) =
µ0. Let

R(µ) = max
vj|i

{ k∏
i=1

nk∏
j=1

nivj|i

∣∣∣ n1∑
j=1

vj|1Y1j = . . . =

nk∑
j=1

vj|kYkj = µ,

nk∑
j=1

vj|i = 1, vj|i ≥ 0, i = 1, . . . , k

}
(5.5)

and define n0 = min1≤i≤k ni. If µ = µ0 + O(n
−1/2
0 ) and for each i = 1, . . . k, VarYi1 is

finite and nonzero, then

−2 logmax
µ

R(µ) =
k∑

i=1

ni(Ȳi· − µ̂)2/s2i +Op(n
−1/2
0 )

d−→ χ2
k

as n0 → ∞, where Ȳi· = n−1
i

∑
j Yij, s2i = n−1

i

∑
j(Yij − Ȳi·)

2, and µ̂ is the EL estimator
of the common mean µ0 given by

µ̂ =

∑k
i=1 niȲi·/s

2
i∑k

i=1 ni/s2i
.

Note that µ̂, the EL estimator of the common mean µ0, is not the mean of all Yij as
in the classical ANOVA case. Instead, µ̂ weights the group means inversely to the group
variances. The convex hull condition from Theorem 5.1.1 becomes

min
j
Yij ≤ µi ≤ max

j
Yij, i = 1, . . . , k.
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5.2 Main results
Now we present the empirical likelihood ANOVA-type method for the trimmed means.

We are interested in the null hypothesis

HT
0 : µαβ1 = µαβ2 = . . . = µαβk =: µαβ, (5.6)

where
µαβi =

1

1− α− β

∫ ξ1−β

ξα

xdFi0,

and µαβ represents the common population trimmed mean.
Let Yi(1), Yi(2), . . . , Yi(ni) denote the order statistics of the ith sample, i = 1, . . . , k. Set

ri = ⌊niα⌋ + 1 and si = ni − ⌊niβ⌋, where 0 < α < 1/2 and 0 < β < 1/2 represent
the proportion of the observations trimmed from the left and the right tails, respectively.
Then mi = ni−⌊niα⌋−⌊niβ⌋ is the effective sample size after trimming of the ith group.
The group-specific sample trimmed means and trimmed variances are given by

Ȳαβi =
1

mi

si∑
j=ri

Yi(j),

S2
αβi =

1

mi

si∑
j=ri

(Yi(j) − Ȳαβi)
2.

Analogically to the EL ANOVA setting in (5.5), we are only interested in the weights
conditioned on the ith sample, vj|i. For the sake of simplicity, we will write vij instead
of vj|i from now on. Next, we use the same idea as developed in Chapter 4, defining
the EL ratio function directly over the trimmed samples, forcing weights vij = 0 for all
i = 1, . . . , k and j < ri, j > si. Thus define the EL ratio as

R(µαβ) = sup
vij

{
k∏

i=1

si∏
j=ri

mivij,

si∑
j=ri

vij = 1,

si∑
j=ri

vij(Yi(j) − µαβ) = 0, i = 1, . . . , k

}
.

Theorem 5.2.1. (M. Delesa-Vēliņa et al. [51]) Let µαβ0 be the common population
trimmed mean. Assume that Fi0 is continuous, F ′

i0(ξα) > 0 and F ′
i0(ξ1−β) > 0 for each

i = 1, . . . , k. If µαβi = µαβ0 +O(n
−1/2
0 ), i = 1, . . . , k, where n0 = min1≤i≤k ni, then under

HT
0 (5.6),

k∑
i=1

aili :=
k∑

i=1

aimi(Ȳαβi − Ȳαβ)
2/S2

αβi +Op(n
−1/2
0 )

d−→ χ2
(k−1)

as n0 → ∞, where Ȳαβ is the EL estimator of the common trimmed mean,

Ȳαβ =

∑k
i=1 Ȳαβimi/S

2
αβi∑k

i=1mi/S2
αβi

+ op(n
−1/2
0 ),

and the scaling factors are given by

ai = σ2
αβi/((1− α− β)τ 2αβi) . (5.7)

The quantities σ2
αβi and τ 2αβi for the ith trimmed sample are given by (4.1) and (4.2).
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Proof. Let

G =
k∑

i=1

si∑
j=ri

log vij +
k∑

i=1

γi(1−
si∑

j=ri

vij) +
k∑

i=1

miλi

(
µαβ −

si∑
j=ri

vijYi(j)

)
.

We maximize G over the choice of vij, the Lagrange multipliers γi, λi, and the common
trimmed mean µαβ. First, note that

miλi

(
µαβ −

si∑
j=ri

vijYi(j)

)
= miλi

si∑
j=ri

vij
(
µαβ − Yi(j)

)
.

Consider the derivatives
∂

∂vij
G =

1

vij
− γi +miλi(µαβ − Yi(j)) = 0. (5.8)

Multiplying (5.8) by vij and summing over j, we get

0 =

si∑
j=ri

{
∂

∂vij
G · vij

}
=

si∑
j=ri

1−
si∑

j=ri

vijγi +miλi

si∑
j=ri

vij(µαβ − Yi(j)),

and since the last sum is zero by our constraint condition, we get γi = mi. Inserting γi in
(5.8), we have

v−1
ij = mi(1 + λi(Yi(j) − µαβ)).

Thus, the weights vij, i = 1, . . . , k, that maximize R(µαβ) are given by

vij =
1

mi(1 + λi(Yi(j) − µαβ))
, j = ri, . . . , si. (5.9)

Now, using the constraint
∑si

j=ri
(vij − 1/mi) = 0, we get that the Lagrange multiplier λi,

i = 1, . . . k, is the solution to
si∑

j=ri

Yi(j) − µαβ

1 + λi(Yi(j) − µαβ)
= 0. (5.10)

The resulting EL log likelihood function is given by

logR(µαβ) = −
k∑

i=1

si∑
j=ri

log
(
1 + λi(Yi(j) − µαβ)

)
,

and the maximum empirical likelihood estimator of the common trimmed mean µαβ is
given by (∂/∂µαβ) logR(µαβ) = 0. Solve

0 =
∂

∂µαβ

{
−

k∑
i=1

si∑
j=ri

log
(
1 + λi(Yi(j) − µαβ)

)}

= −
k∑

i=1

si∑
j=ri

(
∂λi
∂µαβ

(Yi(j) − µαβ)− λi

)(
1 + λi(Yi(j) − µαβ)

)−1

= −
k∑

i=1

si∑
j=ri

∂λi
∂µαβ

(
Yi(j) − µαβ

1 + λi(Yi(j) − µαβ)

)
+

k∑
i=1

si∑
j=ri

λi
1 + λi(Yi(j) − µαβ)

. (5.11)
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The first sum in (5.11) is equal to zero due to (5.10), and using (5.9), we have
k∑

i=1

λimi

si∑
j=ri

vij =
k∑

i=1

miλi = 0. (5.12)

It can be shown (see, for example, [31], Chapter 11.2), that under HT
0 ,

λi = (Ȳαβi − µαβ0)/S
2
αβi + op(n

−1/2
i ).

Substituting this into (5.12), we have
k∑

i=1

mi(Ȳαβi − µαβ0)

S2
αβi

= op(
√
n0),

which in turn gives the maximum empirical likelihood estimator of µαβ0 as

Ȳαβ =

∑k
i=1miȲαβi/S

2
αβi∑k

i=1mi/S2
αβi

+ op(n
−1/2
0 ).

Now, under HT
0 ,

−2 logR(µαβ0) = 2
k∑

i=1

si∑
j=ri

log(1 + λi(Yi(j) − µαβ0)).

Denoting Ỹi(j) = λi(Yi(j) − µαβ0) and considering the Taylor expansion

log(1 + Ỹi(j)) = Ỹi(j) − Ỹ 2
i(j)/2 + ηi(j),

we have by standard EL arguments (see, for example, [31, Chapter 11.2]),

−2 logR(µαβ0) = 2
k∑

i=1

si∑
j=ri

Ỹi(j) −
k∑

i=1

si∑
j=ri

Ỹ 2
i(j) + 2

k∑
i=1

si∑
j=ri

ηi(j)

= 2
k∑

i=1

miλi(Ȳαβi − µαβ0)−
k∑

i=1

si∑
j=ri

λ2i (Yi(j) − µαβ0)
2 + op(1)

= 2
k∑

i=1

miλi(Ȳαβi − µαβ0)−
k∑

i=1

miλ
2
iS

2
αβi

+ op(1)

= 2
k∑

i=1

mi(Ȳαβi − µαβ0)
2/S2

αβi −
k∑

i=1

mi(Ȳαβi − µαβ0)
2/S2

αβi +Op(n
−1/2
0 )

=
k∑

i=1

mi(Ȳαβi − µαβ0)
2/S2

αβi +Op(n
−1/2
0 ). (5.13)

Now, consider
li = mi(Ȳαβi − µαβ0)

2/S2
αβi.

For each i, given Fi0 continuous, F ′
i0(ξα) > 0 and F ′

i0(ξ1−β) > 0, we have by Lemma 4.3.2
√
ni(Ȳαβi − µαβ0)

2 d−→ N(0, τ 2αβi)
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and
S2
αβi

p−→ σ2
αβi.

Using mi/ni
a.s.−−→ (1− α− β), we have for each li, i = 1, . . . , k,

σ2
αβi

(1− α− β)τ 2αβi
li = aili

d−→ χ2
1

as n0 → ∞. Finally, consider
∑k

i=1 aili and note that under HT
0 (5.6) there are (k − 1)

constraints on the trimmed means instead of k (cf. Corollary 5.1.1). Thus we acquire

k∑
i=1

aili
d−→ χ2

k−1

as n0 → ∞, which proves the theorem.
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Chapter 6

Simulation and data analysis results

The aim of this chapter is to analyse the performance of the newly-established empirical
likelihood methods for robust location estimators presented in Chapters 3 - 5. In particu-
lar, we are interested in exploring the performance of the methods in situations where the
classical assumptions regarding the normality and variance homogeneity do not hold. The
effects of the shape of the distribution (skewness, heavy tails or outliers with or without
variance heterogeneity) will be investigated in a simulation setting regarding the ability
to control the type I error and the power of the tests. Examples of applications to real
data sets will be provided as well. The newly-established methods will be compared to
well-known methods of classical and robust statistics.

The results are organized as follows: Chapter 6.1 deals with the performance of the
two-sample methods presented in Chapters 3 - 4. Chapter 6.2 considers the performance
of the EL ANOVA method for the trimmed means presented in Chapter 5. Chapter 6.3
shows the application of the methods to some real data sets. Chapter 6.4 presents an
overall discussion on the simulation and data analysis results.

The performance of the newly-established EL methods has been analysed before in
M. Delesa-Vēliņa et al. [51, 52, 8]. In this chapter the conclusions drawn before are
recapitulated and some further comparative analysis is carried out.

6.1 Simulation study for comparing two populations
In this chapter we are interested in the hypotheses

H0 : ∆0 = 0, H1 : ∆0 ̸= 0,

where ∆0 is the difference of two unknown location parameters of interest associated
with populations F1 and F2, respectively. We consider (i) the difference of two trimmed
means, (ii) the difference of two smoothed Huber estimators and, for comparison, (iii) the
difference of two means. When comparing the performance of the tests based on these
three estimators, it is important to be aware that different hypotheses are considered.
Comparison of the tests in known simulation conditions and a careful interpretation of
the results is essential to choose an appropriate method in a real-world situation involving
data from unknown underlying populations.

The performance of methods (i), (ii) and (iii) has been analysed in detail in the author’s
publications [52] and [8]. However, it did not include a comparison between the methods
based on (i) and (ii), which will be done in this chapter.
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6.1.1 EL method for the difference of two smoothed Huber es-
timators

In M. Delesa-Vēliņa et al. [52], the EL method for the difference of two smoothed Huber
estimators was analysed. For the simulation study symmetric double exponential and
Huber’s least favourable distributions were considered. Note that Lemma 3.2.2 stipulates
that the asymptotic results of Theorem 3.2.1 hold for the smoothed Huber estimator if
the underlying distributions F1 and F2 are symmetric. However, we were interested to
evaluate the effects of departure from the symmetry assumption empirically, since skewed
distributions are common in practical settings, thus asymmetric gamma distribution with
and without uniformly distributed contamination was considered as well.

Data sets of equal sample size (two cases: 50 and 100) both with and without vari-
ance heterogeneity were considered. The focus of the simulation study was the empirical
coverage of 95% confidence intervals and the power of the tests under the departure from
H0. The results of the study are presented in Tables 6.1 - 6.6.

The estimation of the smoothed Huber estimator (2.18) requires an estimate of the
asymptotic variance V of the initial non-smooth M-estimator. According to [13], V should
behave as a tuning parameter, since it is closely related to k through the equation (2.10).
Using simulation analysis, we discovered that this is true for symmetric distributions.
However, for asymmetric distributions, we have found that the value of V significantly
influences the results.

Thus, regarding the variance V , two situations were distinguished in [52]: first, V was
set equal to 2.046 as recommended in [13] (panel ELHubVF), and second, V was estimated
for the particular distribution using Monte Carlo simulations (panel ELHubVE). The
asymptotic variances of the non-smoothed Huber estimator under F1 and F2 are reported
in tables as V1 and V2, respectively. MAD was used as a preliminary estimator of the scale
parameter σ of the underlying distribution, as required by Lemma 3.2.2. For comparison,
hypothesis tests regarding the difference of means were included, namely, Student’s t-test
(panel t) and the empirical likelihood test for the difference of means of Example 1.4.1
(panel EL Means). The results for the EL-based methods were computed using R package
EL [6], functions EL.means and EL.Huber.

Table 6.1: Simulated 95% quantiles of the test statistic −2 logR(∆0, θ̂, σ̂1, σ̂2) under H0 for
various distributions: F1 = Gamma(a = 5; s = 1), F2 = Gamma(a = 1; s = 1/5)
(Gamma model); F1 = F2 = doublexp(0; 1) (doublexp model); F1 = F2 = Hlf(0; 1)
(Hlf model) using 10,000 replications

Gamma doublexp Hlf
n EL EL EL EL EL EL EL EL EL

Means HubVF HubVE Means HubVF HubVE Means HubVF HubVE
50 4.176 5.832 4.169 4.085 4.014 3.965 3.890 3.841 3.870
100 3.952 6.464 3.998 3.951 3.925 3.936 3.861 3.895 3.874
500 3.875 10.676 3.895 3.837 3.853 3.853 3.770 3.764 3.813
1000 3.897 14.766 3.948 3.725 3.696 3.706 3.766 3.794 3.807

In Table 6.1, the simulated 95% quantile of the test statistic −2 logR(∆0, θ̂, σ̂1, σ̂2)
under H0 for various distributions for the three EL-based methods under H0 : ∆0 = 0
is reported. The simulated 95% quantile should converge to the respective χ2

1 quantile,
which is approximately equal to 3.841. We can see that for the double exponential, and
Huber’s least favourable distributions, the simulated quantile is close to the theoretical
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one. Regarding the gamma distribution, the quantile diverges rapidly for the smoothed
Huber estimator with fixed V .
Table 6.2: Empirical coverage of 95% confidence intervals for ∆0 = 0. F1 = doublexp(0, σ);

F2 = doublexp(0, 1), n = 100. The asymptotic variance of the non-smooth Huber
estimator under F1 and F2 simulated using 10, 000 replications is reported as V1 and
V2, respectively. The tests considered are Student’s t-test (t), EL test for the difference
of means (EL Means), EL test for the difference of two smoothed Huber estimators
with V1, V2 set to constant 2.046 (ELHubVF), and EL test for the difference of
two smoothed Huber estimators with V1, V2 estimated by Monte Carlo simulations
(ELHubVE). The scale estimator of Huber estimators is MAD.

σ V1 V2 t EL Means ELHubVF ELHubVE

0.1 0.01 1.29 0.951 0.945 0.947 0.947
0.2 0.05 1.29 0.952 0.947 0.949 0.948
0.5 0.33 1.29 0.953 0.949 0.950 0.950
1 1.31 1.29 0.951 0.948 0.949 0.948
2 5.25 1.29 0.950 0.947 0.948 0.948
5 32.8 1.29 0.952 0.947 0.946 0.947

Table 6.3: Empirical coverage of 95% confidence intervals for ∆0 = 0. F1 = Hlf(0, σ),
F2 = Hlf(0, 1), n = 100. The asymptotic variance of the non-smooth Huber esti-
mator under F1 and F2 simulated using 10, 000 replications is reported as V1 and V2,
respectively. The tests considered are Student’s t-test (t), EL test for the difference
of means (EL Means), EL test for the difference of two smoothed Huber estima-
tors with V1, V2 set to constant 2.046 (ELHubVF), and EL test for the difference of
two smoothed Huber estimators with V1, V2 estimated by Monte Carlo simulations
(ELHubVE). The scale estimator of Huber estimators is MAD.

σ V1 V2 t EL Means ELHubVF EL HubVE

0.1 0.02 2.07 0.949 0.943 0.946 0.946
0.2 0.08 2.07 0.950 0.945 0.948 0.948
0.5 0.52 2.07 0.949 0.947 0.948 0.948
1 2.06 2.07 0.952 0.948 0.951 0.951
2 8.25 2.07 0.949 0.945 0.949 0.948
5 51.6 2.07 0.951 0.945 0.949 0.946

The results on the empirical coverage in [52] were as follows.:
1. For the symmetrical distributions, double exponential and Huber’s least favourable

distribution from Tables 6.2 and 6.3, respectively, all methods give similar results, the
empirical coverage being close to the nominal 95%. This holds regardless of the degree of
the variance heterogeneity.

2. Regarding the uncontaminated gamma distribution from Table 6.4), the empirical
coverage of the methods based on the means and the method based on the smoothed
Huber estimator with V estimated was again close to the nominal 95%. However, for the
method based on the smoothed Huber estimator with V = 2.046, the empirical coverage
was lower, being only 0.879 for moderate shape difference (σ = 3) and 0.832 for large
shape difference (σ = 20) when n = 100.

3. For gamma distributions with 6% or 20% of contamination, see Tables 6.5 and 6.6,
respectively, the new EL method based on the V estimated has overall better empirical
coverage than Student’s t-test and EL test for the difference of means.

63



Table 6.4: Empirical coverage of 95% confidence intervals for ∆0 = 0 when F1 = Gamma(a =
σ, s = 1); F2 = Gamma(a = 1, s = 1/σ). The asymptotic variance of the non-smooth
Huber estimator under F1 and F2 simulated using 10, 000 replications is reported
as V1 and V2, respectively. The tests considered are Student’s t-test (t), EL test
for the difference of means (EL Means), EL test for the difference of two smoothed
Huber estimators with V1, V2 set to constant 2.046 (ELHubVF), and EL test for the
difference of two smoothed Huber estimators with V1, V2 estimated by Monte Carlo
simulations (ELHubVE). The scale estimator of Huber estimators is MAD.

σ n V1 V2 t EL Means ELHubVF ELHubVE

3 50 3.3 7.3 0.942 0.938 0.894 0.935
100 0.946 0.944 0.879 0.941

4 50 4.1 12.7 0.945 0.938 0.894 0.938
100 0.946 0.945 0.867 0.943

5 50 5.8 20.2 0.944 0.941 0.887 0.941
100 0.945 0.946 0.862 0.946

6 50 6.8 28.9 0.941 0.935 0.883 0.936
100 0.944 0.944 0.858 0.944

7 50 8.2 39.2 0.941 0.938 0.881 0.938
100 0.948 0.950 0.851 0.949

10 50 11.8 81.1 0.939 0.937 0.877 0.937
100 0.943 0.944 0.840 0.944

20 50 24.6 318.3 0.936 0.935 0.866 0.935
100 0.945 0.945 0.832 0.945

Table 6.5: Empirical coverage of 95% confidence intervals when F1 = (1− ϵ)Gamma(a = σ, s =
1) + ϵUnif[0, 50]; F2 = Gamma(a = 1, s = 1/σ) with ϵ = 0.06. The asymptotic
variance of the non-smooth Huber estimator under F1 and F2 simulated using 10, 000
replications is reported as V1 and V2, respectively. The tests considered are Student’s
t-test (t), EL test for the difference of means (EL Means), EL test for the difference
of two smoothed Huber estimators with V1, V2 set to constant 2.046 (ELHubVF), and
EL test for the difference of two smoothed Huber estimators with V1, V2 estimated
by Monte Carlo simulations (ELHubVE). The scale estimator of Huber estimators is
MAD.

σ n V1 V2 t EL Means ELHubVF ELHubVE

3 50 4.2 8.6 0.839 0.646 0.781 0.842
100 0.564 0.405 0.668 0.757

4 50 5.7 14.9 0.845 0.723 0.779 0.841
100 0.632 0.534 0.649 0.757

5 50 7.0 23.4 0.852 0.780 0.776 0.845
100 0.695 0.644 0.657 0.768

6 50 8.3 34.5 0.859 0.818 0.773 0.856
100 0.742 0.714 0.659 0.787

7 50 9.7 46.6 0.871 0.853 0.782 0.870
100 0.787 0.781 0.663 0.820

10 50 13.0 93.5 0.893 0.901 0.785 0.904
100 0.854 0.869 0.666 0.876

20 50 24.9 375.1 0.927 0.930 0.803 0.930
100 0.935 0.942 0.709 0.942

4. The method based on V = 2.046 gives inconsistent results for the skewed gamma
distribution with or without contamination (see Tables 6.4 - 6.6).
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Table 6.6: Empirical coverage of 95% confidence intervals for ∆0 = 0 when F1 = (1 −
ϵ)Gamma(a = σ, s = 1) + ϵUnif[0, 50]; F2 = Gamma(a = 1, s = 1/σ) with ϵ = 0.2.
The asymptotic variance of the non-smooth Huber estimator under F1 and F2 sim-
ulated using 10, 000 replications is reported as V1 and V2, respectively. The tests
considered are Student’s t-test (t), EL test for the difference of means (EL Means),
EL test for the difference of two smoothed Huber estimators with V1, V2 set to
constant 2.046 (ELHubVF), and EL test for the difference of two smoothed Huber
estimators with V1, V2 estimated by Monte Carlo simulations (ELHubVE). The scale
estimator of Huber estimators is MAD.

σ n V1 V2 t EL Means ELHubVF ELHubVE

3 50 8.7 8.0 0.146 0.056 0.353 0.108
100 0.005 0.002 0.109 0.007

4 50 10.2 13.5 0.211 0.119 0.405 0.162
100 0.016 0.010 0.156 0.017

5 50 13.4 21.3 0.285 0.199 0.459 0.232
100 0.037 0.026 0.206 0.037

6 50 16.0 31.2 0.373 0.307 0.511 0.328
100 0.076 0.065 0.253 0.078

7 50 16.8 42.0 0.448 0.404 0.556 0.420
100 0.136 0.125 0.299 0.140

10 50 22.0 82.6 0.653 0.655 0.659 0.660
100 0.401 0.417 0.450 0.424

20 50 36.8 344.3 0.911 0.924 0.834 0.924
100 0.908 0.924 0.760 0.925

Table 6.7: Simulated empirical power for H0: ∆0 = 0 when F1 = (1-ϵ)Gamma(a = 5; s =1)+
ϵ Unif [0, 50]; F2 = Gamma(a = 1; s = 1/σ), ϵ = 0 and ϵ = 0.06. MAD is used
as the scale parameter for the smoothed Huber M-estimator. For Huber variance
estimation, k = 1.35 and V = 2.046 are used with 10, 000 replications.

ϵ = 0 ϵ = 0.06
σ n t EL EL EL t EL EL EL

Means HubVF HubVE Means HubVF HubVE
5 50 0.055 0.049 0.048 0.049 0.160 0.203 0.102 0.143

100 0.057 0.057 0.051 0.056 0.309 0.354 0.131 0.227
6 50 0.155 0.206 0.075 0.211 0.049 0.068 0.038 0.063

100 0.314 0.375 0.097 0.379 0.049 0.061 0.033 0.062
7 50 0.466 0.551 0.296 0.559 0.113 0.117 0.162 0.183

100 0.809 0.855 0.521 0.857 0.151 0.138 0.267 0.315
8 50 0.769 0.835 0.603 0.839 0.264 0.249 0.414 0.422

100 0.980 0.987 0.875 0.988 0.436 0.397 0.682 0.699
9 50 0.923 0.956 0.828 0.957 0.457 0.416 0.658 0.642

100 0.999 0.999 0.982 0.999 0.725 0.692 0.916 0.908

Finally, we performed an empirical power analysis similar to [25]. We generated 10,000
samples from F1 = (1 − ϵ)Gamma(a = 5; s = 1) + ϵUnif[0, 50] and F2 = Gamma(a =
1; s = 1/σ) distributions. For the approximation of the null distribution, ϵ = 0 and σ = 5
were chosen. Thus, for the power analysis, we used the simulated critical values from
Table 6.7 (panel Gamma) along with the different values of the parameters ϵ ∈ {0, 0.06}
and σ ∈ {5, 6, 7, 8, 9}.

The results of the power analysis are presented in Table 6.7. In the case with no
contamination (panel ϵ = 0), the EL method for the difference of the means and the EL
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method for the difference of two smoothed Huber estimators (with V simulated) have
similar power and outperform the t-test. When the parameter V = 2.046, the EL method
for the difference of smoothed Huber estimators has substantially lower power.

In the case involving uniform contamination (panel ϵ = 0.06), we see that the EL
method for the difference of two means is not very robust and has power similar to t test.
The EL method for two smoothed Huber estimators with simulated V has the highest
power, slightly outperforming the EL method when V is fixed. However, these results
have to be viewed in light of Table 6.1, where the 5% critical values diverge for larger
sample sizes when V is fixed.

Based on these findings, it was concluded that for symmetrical distributions, the
asymptotic variance V of the initial non-smooth Huber estimator can be considered a
tuning parameter, and can be fixed to a constant as recommended in [13]. However, for
skewed distributions it is not the case and estimating V should be preferable. In practical
situations V could be estimated using the nonparametric bootstrap method.

6.1.2 EL method for the difference of two trimmed means
The EL-based method for the comparison of two trimmed means was considered in detail
in M. Delesa-Vēliņa et al. [8]. The simulation study involved the following various aspects
of violation of the classical assumptions: underlying distributions of various shapes (heavy
tails, outliers, skewness), as well as unbalanced sample sizes and variance heterogeneity
combined. A simulation study was designed to evaluate the performance of the method
in terms of the empirical level and power under various sample sizes.

First, the empirical level (empirical probability of a type I error) of the test was ex-
plored as a function of the sample size for two equal underlying distributions. N = 5, 000
data sets of sample sizes n1 ∈ {9, 12, 15, . . . , 75} were generated and the results of
empirical rejection rates at α = 0.05 nominal significance level were considered. Six
types of distributions were considered: the standard normal distribution, heavy-tailed
t2-distribution, skewed χ2

3 and χ2
1 distributions, as well as two contaminated normal dis-

tributions, 0.95N(0; 1)+0.05N(0; 25) and 0.9N(0; 1)+0.05N(0; 100). A similar approach
was used in [9]. Two sample size scenarios were considered: equal sample sizes n1 = n2

and the case where the second sample size is double the first, n2 = 2n1.
Next, the power of the asymptotic tests under various location differences ∆0 was

investigated, where ∆0 = j · 0.04 · δ, j = 1, . . . , 25. The value δ = F−1(0.841)− F−1(0.5)
was chosen as the difference between the 84.13% and 50% percentile of the underlying
distribution F being considered, thus allowing to compare power analysis results between
different types of distributions. Such an approach has been previously used in [9]. Note
that in the case of the standard normal distribution, δ is equal to 1. For the power
analysis, the same distributions were considered as for the empirical level analysis. Both
balanced sample size n1 = n2 = 50 and unbalanced sample size n1 = 50, n2 = 100
scenarios were considered. Finally, the robustness of the tests under the normal and the
skewed χ2

3 distribution with various degrees of variance heterogeneity and unbalanced
sample sizes was explored, similarly as in [23] and [21].

Methods included for the comparison were: Student’s t-test, Welch’s test [54] and EL
test (Example 1.4.1) – for the comparison of means; Yuen’s test [60] with bootstrap-t
approximation [57, Table 5.6] – for the comparison of the trimmed means, as well as
the EL ANOVA method for comparing trimmed means described in Chapter 5. The test
statistics of the alternative methods considered in the simulation study can be found in the
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references given. Regarding the tests for the trimmed means, two trimming versions were
considered: 10% and 20% trimming. The EL test for the difference of two smoothed Huber
estimators was not included in the study [8], but is added to the results below. Regarding
the smoothed Huber estimators, two versions of the test – with the asymptotic variance
V of the initial non-smoothed Huber estimator fixed to 2.046 (panel ELHubVF) and V
estimated by 10,000 Monte Carlo simulations (panel ELHubVE) – will be considered. We
exclude the comparison with the EL ANOVA method for the trimmed means from the
results below and comment on it in Chapter 6.2.

The results for the EL-based methods were computed using R package EL [6], functions
EL.means and EL.Huber. For the Yuen’s test, the R package WRS2 [24] function yuenbt
was used.

Simulations of the empirical level
Consider the results of the empirical level simulations in Figures 6.1 - 6.2. Hori-

zontal dotted lines have been added to indicate the simulation error as two standard
deviation intervals around the nominal level, the standard deviation being calculated as√
α(1− α)/5000 yielding the interval (0.047, 0.053).
For the standard normal distribution, Student’s t-test, Welch’s test and Yuen’s test

simulated level are close to the nominal already for very small samples (n = 9). The EL-
based tests converge (i.e., reach the nominal test level) for the total sample size n1+n2 >
40. Note, that the two versions of the test for the difference of two smoothed Huber
estimators yield identical results.

For the heavy-tailed t2-distribution, EL tests for the trimmed means converge approx-
imately for n1 + n2 > 70. Tests for the difference of two smoothed Huber estimators
converge slightly faster, at n1 + n2 > 50. The EL tests based on the trimmed means con-
verge faster with 10% than with 20% trimming. The EL test for the means is oversized
even for large samples. Student’s t-test and Welch’s test are somewhat undersized even
for large samples, and Yuen’s test is slightly undersized for very small samples.

Regarding the 5% contaminated normal distribution, all the tests converge for n1 +
n2 > 60, except the EL test for the means which is oversized. Similarly, as for the N(0, 1)
distribution, the EL test for 10% trimmed means converges faster than the EL test for
the 20% trimmed means. For small samples, the test for two smoothed Huber estimators
is slightly oversized, while the Student’s t-test and Welch’s tests are undersized.

Regarding the 10% contaminated normal distribution, the pattern is somewhat similar
to that of the t2 distribution. However, Student’s t and Welch’s test are considerably
undersized for small sample sizes. The test for the difference of smoothed Huber estimators
is slightly oversized and converges only for n1 + n2 > 100.

For the skewed χ2
3 distribution, the EL tests for 10% trimmed means converge for

n1+n2 > 40, while the EL test for the 20% trimmed means and the EL test for the means
converge for n1+n2 > 80. The test for smoothed Huber estimators with V estimated acts
similarly to EL test for the means, both being slightly oversized even for large sample
sizes. However, the version with V fixed does not converge to the nominal level and
is considerably oversized. Yuen’s test is slightly undersized for very small samples and
converges for n1 + n2 > 40.

Finally, for the very skewed χ2
1 distribution, tests require larger sample sizes to con-

verge, most tests converging for n1 + n2 > 80. The EL test is slightly oversized even for
large samples, but tests based on Huber estimators have a wrong empirical level fluctu-
ating around 0.15 for any sample size. Interestingly, the level of EL test for the trimmed
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Figure 6.1: Empirical level of the tests as a function of the total sample size n1 + n2 for various
distributions, balanced sample sizes. Top: N(0, 1) distribution (left), t2-distribution
(right). Middle: 5% contaminated normal distribution 0.95N(0, 1) + 0.05N(0, 25)
(left), 10% contaminated normal distribution 0.9N(0, 1)+0.1N(0, 100) (right). Bot-
tom: χ2

3 distribution (left), χ2
1 distribution (right). Tests considered: Student’s t-test

(t), Welch’s test (Welch), Yuen’s test for the trimmed means with bootstrap-t ap-
proximation (Yuen), EL test for the means (EL Means), EL test for the difference of
trimmed means (ELTM), EL test for the difference of smoothed Huber estimators,
with V = 2.046 fixed (ELHubVF) and V simulated (ELHubVE). Colour indicates
the relevant hypothesis tested – violet for methods comparing means, blue and green
for 10% and 20% trimmed means, respectively, yellow for smoothed Huber estima-
tors.
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Figure 6.2: Empirical level of the tests as a function of the total sample size n1 + n2 for
various distributions, unbalanced sample sizes n2 = 2n1. Top: N(0, 1) distri-
bution (left), t2-distribution (right). Middle: 5% contaminated normal distri-
bution 0.95N(0, 1) + 0.05N(0, 25) (left), 10% contaminated normal distribution
0.9N(0, 1) + 0.1N(0, 100) (right). Bottom: χ2

3 distribution (left), χ2
1 distribution

(right). Tests considered: Student’s t-test (t), Welch’s test (Welch), Yuen’s test for
the trimmed means with bootstrap-t approximation (Yuen), EL test for the means
(EL Means), EL test for the difference of trimmed means (ELTM), EL test for the
difference of smoothed Huber estimators, with V = 2.046 fixed (ELHubVF) and
V simulated (ELHubVE). Colour indicates the relevant hypothesis tested – violet
for methods comparing means, blue and green for 10% and 20% trimmed means,
respectively, yellow for smoothed Huber estimators.
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means converges to the nominal 0.05 level from above, while the levels of the rest of the
tests converge from below. The 10% trimmed means seem to converge slightly faster than
their 20% trimmed counterpart. Yuen’s test is undersized for n1 + n2 < 80.

The empirical level simulation results for the unbalanced sample size n2 = 2n1 were
very similar to the balanced sample case, see Figure 6.2. In this scenario, some difference
between t-test and Welch’s test results appear. In general, we may observe that the
test convergence to the empirical level is not seriously impacted by the differences in the
sample sizes, but rather depends on the total sample size under homogeneous variance
condition.

Power simulations
Next, consider the power simulation results in Figures 6.3 - 6.4. The same distri-

butions as for the empirical level simulations are considered. Sample size n1 = 50 was
chosen as being sufficient for most of the tests to control the empirical type I error for the
distributions considered. The exceptions are the EL test for the means, that has the em-
pirical type I error higher than the nominal level for the heavy-tailed t2 and contaminated
normal distributions, and the test for two smoothed Huber estimators that has a wrong
level at χ2

1 distribution. The corresponding power results should be interpreted carefully.
For the standard normal distribution, all the tests have similar performance, tests

based on the trimmed means having a slightly lower power. Note that the t-test and
Welch’s test have practically the same power for this sample size for all distributions
considered. Regarding the t2-distribution, tests based on the trimmed means outperform
the tests based on the means considerably, moreover, the 20% trimming performs better
than the 10% trimming, where EL test based on the trimmed means performs slightly
better than Yuen’s test. The test for the difference of two smoothed Huber estimators
has similar power to the test based on 10% trimmed means.

Regarding the contaminated normal distributions, the tests based on the means lose
power substantially, especially in the more severe contamination setting. For the less se-
vere contamination setting, the EL test for the trimmed means has slightly larger power
than Yuen’s test, and the 20% trimming performs somewhat better than the 10% trim-
ming. For the more severe contamination setting, the EL test for 10% trimmed means
seems to perform slightly better than Yuen’s test with 20% trimming, while there seem
to be no differences between the tests at the 10% trimming level.

Regarding the χ2
3 distribution, all tests based on the trimmed means have similar

power, slightly larger than the power of the tests based on the means. The test for
smoothed Huber estimators with V fixed has a wrong level at H0, while the test with V
estimated performs similarly to the tests based on the means.

Finally, for the very skewed χ2
1 distribution, the tests for the means have substantially

lower power than the tests based on the trimmed means. The tests for the 20% trimmed
means perform slightly better than the tests for the 10% trimmed means, and the method
based on the Yuen’s test for the trimmed means performs slightly better than the EL tests
based on the trimmed means. The tests based on Huber estimators have a wrong level at
H0, resulting in considerably higher power than other tests at small location differences.

The results for the unbalanced sample sizes scenario in Figure 6.4 are very similar.
We can observe that the power becomes essentially 1 for a somewhat smaller location
difference ∆0 when compared to the scenario of equal sample sizes, most probably due to
a larger total sample size in this case. Some differences can be observed between Student’s
t-test and Welch’s test, especially, for χ2

1 distribution. The power curves of the t-test and
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Figure 6.3: Power of the tests as a function of location difference ∆0 for various distributions,
balanced sample sizes n1 = n2 = 50. Top: N(0, 1) distribution (left), t2-distribution
(right). Middle: 5% contaminated normal distribution 0.95N(0, 1) + 0.05N(0, 25)
(left), 10% contaminated normal distribution 0.9N(0, 1)+0.1N(0, 100) (right). Bot-
tom: χ2

3 distribution (left), χ2
1 distribution (right). Tests considered: Student’s t-test

(t), Welch’s test (Welch), Yuen’s test for the trimmed means with bootstrap-t ap-
proximation (Yuen), EL test for the means (EL Means), EL test for the difference of
trimmed means (ELTM), EL test for the difference of smoothed Huber estimators,
with V = 2.046 fixed (ELHubVF) and V simulated (ELHubVE). Colour indicates
the relevant hypothesis tested – violet for methods comparing means, blue and green
for 10% and 20% trimmed means, respectively, yellow for smoothed Huber estima-
tors.
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Figure 6.4: Power of the tests as a function of location difference ∆0 for various distri-
butions, unbalanced sample sizes n1 = 50, n2 = 100. Top: N(0, 1) distri-
bution (left), t2-distribution (right). Middle: 5% contaminated normal distri-
bution 0.95N(0, 1) + 0.05N(0, 25) (left), 10% contaminated normal distribution
0.9N(0, 1) + 0.1N(0, 100) (right). Bottom: χ2

3 distribution (left), χ2
1 distribution

(right). Tests considered: Student’s t-test (t), Welch’s test (Welch), Yuen’s test for
the trimmed means with bootstrap-t approximation (Yuen), EL test for the means
(EL Means), EL test for the difference of trimmed means (ELTM), EL test for the
difference of smoothed Huber estimators, with V = 2.046 fixed (ELHubVF) and
V simulated (ELHubVE). Colour indicates the relevant hypothesis tested – violet
for methods comparing means, blue and green for 10% and 20% trimmed means,
respectively, yellow for smoothed Huber estimators.
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Welch’s test are very close to the methods based on the trimmed means in χ2
1 case, and

Welch’s test outperforms Student’s t-test for small location differences. As in the balanced
sample size case, tests based on Huber estimators have higher power for small ∆0 than
other methods due to the wrong test level at ∆0 = 0.

Results on robustness to variance heterogeneity
Simulation results regarding the robustness of the tests under the normal and χ2

3

distribution with various degrees of heterogeneity and unbalanced sample sizes is pre-
sented here. The following unbalanced designs were considered: two small sample
designs, (n1, n2) = (15, 25) and (n1, n2) = (25, 35), and two large-sample designs,
(n1, n2) = (80, 120) and (n1, n2) = (160, 240). For the degree of heterogeneity, the ratio
of the variances of the two populations were chosen 1:16 and 1:36, and the equal case 1:1
for comparison.

Three possible unbalanced design and variance pairing conditions were considered:
positive, where the largest variance is associated with the largest sample size, negative,
where the smallest variance is associated with the largest sample size, and equal variances
for the comparison. Each data set was generated N = 5, 000 times and the empirical type
I error at 0.05 significance level was recorded.

To ensure that the null hypothesis remains true for all settings of variance heterogene-
ity being considered, χ2

3 variates were standardized to have the theoretical location pa-
rameter 0 and standard deviation 1 prior to scaling to the desired variance ratio. Namely,
the real population value of the mean (for the tests involving means), of the trimmed
mean (for the tests involving trimmed means) or of Huber estimator (for the test for two
smoothed Huber estimators) under χ2

3 distribution was subtracted from the data, and
then it was multiplied by

√
1/6.

Instead of reporting the result of each simulation experiment, the results are grouped
over (i) small and large sample designs, and (ii) variance pairing conditions (positive,
negative and equal). The average type I error for each group is reported in Tables 6.8
and 6.9, as well as visually in Figures 6.5 and 6.6. We were able to do the grouping as
the pattern of results was the same in each of the groups, the deviations from the level
(where such occurred) being more extreme for the larger degree of variance heterogeneity.

Finally, we evaluate the test performance by the Bradley’s liberal criterion for robust-
ness [4]. Namely, the test is considered robust if its empirical type I error α̂ falls into the
interval 0.5α ≤ α̂ ≤ 1.5α. The interval is depicted by the dotted lines in the Figures 6.5
and 6.6. We count the number of designs where each test passes the robustness condition,
i.e., where it yields an empirical type I error in the interval [0.025, 0.075] (Tables 6.8 and
6.9).

First, consider the results regarding the standard normal distribution in Table 6.8
and Figure 6.5. For large sample designs, all tests, except Student’s t-test, are robust by
Bradley’s liberal criterion. For small sample designs, the EL test for the means fails to
be robust for one design (with negative variance pairing), while the classical t-test and
EL test for 20% trimmed means fail to be robust for most of the settings. The rest of
the tests are robust in all the situations by Bradley’s criterion. Analysing the results
in more detail, Student’s t-test is undersized for positive variance pairings and oversized
for negative variance pairings, regardless of the sample size. Welch’s test overcomes the
negative effects of variance heterogeneity and shows results close to the nominal level in
all the settings. The EL test for the means is oversized for small samples, but close to the
nominal level for large samples. The results of EL test for the difference of two smoothed
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Figure 6.5: Empirical level of tests under unbalanced and heterogeneous designs for standard
normal distribution. The results are grouped by the design types. Labels l and
s indicate large and small sample designs, respectively, label pos indicates positive
variance and sample size pairings, label neg indicates negative variance and sample
size pairings, and label equal refers to equal variances. The dotted horizontal lines
indicate the Bradley’s criterion of robustness at 0.05 level, the interval [0.025, 0.075].
Tests considered are: Student’s t-test (t), Welch’s test (Welch), Yuen’s test for
the trimmed means with bootstrap-t approximation (Yuen), EL test for the means
(EL Means), EL test for the difference of trimmed means (ELTM), EL test for the
difference of smoothed Huber estimators, with V = 2.046 fixed (ELHubVF) and
V simulated (ELHubVE). Colour indicates the relevant hypothesis tested – violet
for methods comparing means, blue and green for 10% and 20% trimmed means,
respectively, yellow for smoothed Huber estimators.
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Table 6.8: Empirical level of tests under unbalanced and heterogeneous designs for the N(0, 1)
distribution. Small sample designs (panel small) and large sample designs (panel
large) are presented separately. pos indicates positive variance and sample size pair-
ings, neg indicates negative pairings, and equal refers to equal variances. Tests con-
sidered are: Student’s t-test (t), Welch’s test (Welch), Yuen’s test for the trimmed
means with bootstrap-t approximation (Yuen), EL test for the means (EL Means),
EL test for the difference of trimmed means (ELTM), EL test for the difference of
smoothed Huber estimators, with V = 2.046 fixed (ELHubVF) and V simulated
(ELHubVE).

Empirical level of tests No. robust conditions
sample size small large small large
variance pairings equal pos neg equal pos neg
t 0.049 0.020 0.113 0.049 0.019 0.107 4 2
Welch t 0.050 0.050 0.049 0.049 0.050 0.051 10 10
EL Means 0.060 0.061 0.068 0.050 0.051 0.054 9 10
ELTM 10% 0.047 0.050 0.054 0.052 0.052 0.055 10 10
ELTM 20% 0.077 0.077 0.102 0.053 0.054 0.057 2 10
Yuen 10% 0.050 0.051 0.047 0.049 0.050 0.051 10 10
Yuen 20% 0.050 0.050 0.049 0.049 0.050 0.051 10 10
ELHubVF 0.061 0.060 0.063 0.052 0.051 0.053 10 10
ELHubVE 0.060 0.058 0.062 0.051 0.051 0.053 10 10

Huber estimators, regardless of estimating V or not, are similar to that of the EL test
for the means. Regarding the EL test for the difference of trimmed means, the test with
20% trimming is very oversized for small samples, while being close tot he level for large
samples. The test with 10% trimming is close to the nominal level for both small and
large samples. Yuen’s test results are close to the nominal level in all settings.

Consider the results for χ2
3 distribution in Table 6.9 and Figure 6.6. As expected,

Student’s t-test is again undersized for positive variance pairings and oversized for the
negative pairings. Welch’s test fails to control the probability of a type I error for small-
sample heterogeneous settings, but performs quite well for the large sample settings. The
EL test for the means fails to be robust for most of the heterogeneous small sample
designs, and is also slightly oversized for the large sample designs. The EL test for the
difference of 10% trimmed means is robust for all the settings, while the EL test for the
difference of 20% trimmed means is seriously oversized for the small sample settings.

Considering the EL test for the difference of two smoothed Huber estimators, the
version with V fails to be robust for small sample sizes, and performs worse than the
EL method for the means for large sample sizes. The version with V estimated has
the empirical level close to the nominal for large sample sizes, but is still oversized for
small sample sizes. Finally, Yuen’s test controls the rate of a type I error well both for
small and large sample heterogeneous settings. For small samples, Yuen’s test with the
20% trimming seems to yield better results than with the 10% trimming, while for large
samples, 10% trimming performs slightly better.
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Figure 6.6: Empirical level of tests under unbalanced and heterogeneous designs for χ2
3 distri-

bution. The results are grouped by the design types. Labels l and s indicate large
and small sample designs, respectively, label pos indicates positive variance and
sample size pairings, label neg indicates negative variance and sample size pairings,
and label equal refers to equal variances. The dotted horizontal lines indicate the
Bradley’s criterion of robustness at 0.05 level, the interval [0.025, 0.075]. Tests con-
sidered are: Student’s t-test (t), Welch’s test (Welch), Yuen’s test for the trimmed
means with bootstrap-t approximation (Yuen), EL test for the means (EL Means),
EL test for the difference of trimmed means (ELTM), EL test for the difference of
smoothed Huber estimators, with V = 2.046 fixed (ELHubVF) and V simulated
(ELHubVE). Colour indicates the relevant hypothesis tested – violet for methods
comparing means, blue and green for 10% and 20% trimmed means, respectively,
yellow for smoothed Huber estimators.
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Table 6.9: Empirical level of tests and robustness by Bradley’s criterion under unbalanced and
heterogeneous designs for the χ2

3 distribution. Small sample designs (panel small)
and large sample designs (panel large) are presented separately. pos indicates pos-
itive variance and sample size pairings, neg indicates negative pairings, and equal
refers to equal variances. Tests considered are: Student’s t-test (t), Welch’s test
(Welch), Yuen’s test for the trimmed means with bootstrap-t approximation (Yuen),
EL test for the means (EL Means), EL test for the difference of trimmed means
(ELTM), EL test for the difference of smoothed Huber estimators, with V = 2.046
fixed (ELHubVF) and V simulated (ELHubVE).

Empirical level of tests No. robust conditions
sample size small large small large
variance pairings equal pos neg equal pos neg
t 0.048 0.035 0.129 0.052 0.022 0.110 6 2
Welch 0.049 0.064 0.069 0.052 0.051 0.055 9 10
EL Means 0.070 0.071 0.082 0.054 0.051 0.054 6 10
ELTM 10% 0.051 0.054 0.058 0.053 0.052 0.053 10 10
ELTM 20% 0.078 0.078 0.105 0.055 0.052 0.056 3 10
Yuen 10% 0.047 0.052 0.048 0.050 0.049 0.050 10 10
Yuen 20% 0.048 0.051 0.052 0.051 0.048 0.050 10 10
ELHubVF 0.084 0.080 0.079 0.070 0.071 0.071 1 9
ELHubVE 0.075 0.071 0.070 0.057 0.057 0.057 6 10

6.2 Simulation study for EL-based ANOVA method
for the trimmed means

The performance of the empirical likelihood-based ANOVAmethod for the trimmed means
described in Chapter 5 has been analysed in M. Delesa-Vēliņa et al. [51, 52] in detail, the
results of the studies are described below.

The study in [51] explored the properties of EL ANOVAmethod for the trimmed means
with 5%, 10% and 20% symmetric trimming. The empirical level (empirical probability
of a type I error) of the method under various skewed distributions was considered. For
comparison, tests for the difference of means were included in the study, specifically the
classical ANOVA F -test (panel F-test), Welch heteroscedastic ANOVA F -test [55] (panel
Welch), and EL ANOVA test for the means [30] (panel EL). Finally, Yuen’s test, which
is a Welch-type procedure based on the trimmed means and Winsorized variances (panel
Yuen, see [57, Table 7.1] for details), was performed. It was shown in [23] that Yuen’s
test provides a better control of the probability of the type I error for one-way ANOVA
situations involving unbalanced designs and skewed distributions. For Welch’s test and
Yuen’s test, the R function t1way from R package WRS2 [24] was used. For the EL
related methods, the author’s custom-made R functions were used.

The study in [51] involved a comparison of three groups, k = 3, of equal size, n ∈
{20, 30, 40, 50, 100, 200, 500}. The potential effect of the shape of the distributions on the
empirical probability of type I error was explored. Several skewed distributions with and
without variance heterogeneity were considered.

For the scenario with homogeneous variances, we considered χ2
3 distribution, the log-

normal distribution with normal mean µ = 0 and normal scale σ = 1, gamma distribution
with shape parameter a = 2 and scale parameter σ = 1, and the skew-normal distribution
with location parameter ξ = 0, scale parameter ω = 1, and slant parameter α = 1 (see [2]
for details on skew-normal distribution).
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For the scenario with heterogeneous variances, we further transform the data simulated
from the three independent skewed distributions as to have the ratios between variances to
be either 1:4:9 or 1:1:36. To ensure that the relevant HT

0 (5.6) of equal trimmed means or
H0 (5.1) of equal means is true, before altering the variances, we centre the data using the
theoretically determined trimmed means (when using tests for the comparison of trimmed
means) or means (when using tests for the comparison of means). A similar approach
was used in [20], where (trimmed) means of two independent skewed populations were
compared. We use 10,000 Monte Carlo simulations to calculate the empirical level of the
tests performed at the nominal 0.05 significance level.

The results of the study are presented in Tables 6.10 - 6.12. Table 6.10 presents the
empirical level of the tests for the homogeneous variances scenario. We can see that for
all distributions the empirical rejection rates of EL ANOVA test for the trimmed means
converge to the nominal level 0.05. For small samples, the rejection rates are closer to the
nominal level when the trimming proportion is lower. Note that EL ANOVA test for 5%
and 10% trimmed means has rejection rates similar to or closer to nominal than Welch’s
test in all settings. However, the rates of EL ANOVA test for the trimmed means are
further from the nominal than those of Yuen’s test for all trimming proportions. Among
the tests for the means, the results of the EL ANOVA test for means are the closest to
the nominal significance level.

Regarding the heterogeneous scenarios in Tables 6.11 and 6.12, we can observe that
the empirical level of the EL ANOVA test for the trimmed means converges to the nominal
level when n is large. The rejection rates of EL ANOVA test for 5% and 10% trimmed
means are always closer to nominal than those of F -test. They are similar and, in many
cases, closer to the nominal rate than those of Welch’s test for χ2

3, Gamma and lognormal
distributions. For small samples, the EL ANOVA test is considerably oversized, especially
with 20% trimmed means. For the skew-normal distribution (which is the least skewed
from all the distributions considered), EL ANOVA for the means performs the best from
all the methods considered.

The results for the heterogeneous variances scenario suggest that Yuen’s test performs
best among the tests for the comparison of the trimmed means, while the EL ANOVA
test performs best among the tests for the comparison of means. Among EL methods, the
EL method for the means performs better than the EL method for the trimmed means for
small sample sizes, except for the lognormal distribution, where the EL ANOVA method
with 10% trimmed means performs better.

The study in [8] provided an additional insight in the performance of the EL ANOVA
method for the trimmed means in case of comparing two groups. The design of the
study is described in Chapter 6.1.2 and for the results see [8]. Considering the empirical
level simulations in [8, Figure 1 – Figure 2], the EL ANOVA test for the trimmed means
converges to the nominal level under H0 of equal trimmed means for all the distributions
considered. The convergence pattern was similar, although not identical, to that of the
EL method for the difference of two trimmed means. For small samples, the method based
on 10% trimmed means has the empirical rates closer to the nominal than the method
based on 20% trimmed means, which is consistent with the results for three groups in
[51]. For all nonnormal cases the EL ANOVA method based on the trimmed means is
closer to the nominal level than the EL method for the means, except for the moderately
skewed χ2

3 distribution under the balanced sample design (see [8, Figure 1 bottom left]),
where the two methods are very close for large sample sizes.
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Table 6.10: Empirical level of various tests for the equality of means and trimmed means of
three independent skewed distributions with homogeneous variances. For methods
involving trimmed means, symmetric trimming proportions α = β = c are used.

χ2
3

Trimming level
c = 5% c = 10% c = 20%

n F -test Welch EL Yuen ELT Yuen ELT Yuen ELT
20 0.047 0.076 0.052 0.050 0.079 0.050 0.080 0.049 0.090
30 0.048 0.070 0.054 0.054 0.055 0.053 0.075 0.054 0.079
40 0.044 0.062 0.052 0.049 0.063 0.048 0.063 0.050 0.069
50 0.048 0.058 0.049 0.046 0.047 0.047 0.060 0.049 0.067
100 0.049 0.055 0.051 0.050 0.056 0.050 0.056 0.049 0.056
200 0.051 0.055 0.053 0.050 0.053 0.051 0.053 0.051 0.056
500 0.051 0.049 0.049 0.048 0.050 0.050 0.051 0.051 0.052

Lognormal (µ = 0, σ = 1)
Trimming level

c = 5% c = 10% c = 20%
n F test Welch EL Yuen ELT Yuen ELT Yuen ELT
20 0.044 0.073 0.047 0.040 0.069 0.040 0.070 0.040 0.081
30 0.045 0.069 0.050 0.048 0.049 0.046 0.068 0.046 0.072
40 0.044 0.063 0.049 0.046 0.062 0.046 0.062 0.045 0.066
50 0.045 0.065 0.054 0.049 0.048 0.047 0.059 0.046 0.062
100 0.049 0.059 0.055 0.049 0.055 0.049 0.057 0.049 0.057
200 0.050 0.053 0.050 0.045 0.048 0.046 0.049 0.048 0.052
500 0.051 0.053 0.052 0.051 0.052 0.050 0.050 0.052 0.054

Gamma (α = 2, σ = 1)
Trimming level

c = 5% c = 10% c = 20%
n F test Welch EL Yuen ELT Yuen ELT Yuen ELT
20 0.052 0.078 0.050 0.050 0.077 0.052 0.079 0.052 0.096
30 0.049 0.069 0.053 0.052 0.053 0.050 0.070 0.052 0.080
40 0.050 0.062 0.052 0.052 0.064 0.052 0.067 0.053 0.074
50 0.050 0.060 0.051 0.048 0.048 0.050 0.062 0.052 0.069
100 0.052 0.057 0.052 0.051 0.057 0.050 0.056 0.048 0.056
200 0.052 0.056 0.053 0.052 0.055 0.053 0.055 0.052 0.055
500 0.049 0.052 0.051 0.050 0.051 0.049 0.051 0.051 0.052

Skew-normal (ξ = 0, ω = 1, α = 1)
Trimming level

c = 5% c = 10% c = 20%
n F -test Welch EL Yuen ELT Yuen ELT Yuen ELT
20 0.055 0.077 0.049 0.049 0.077 0.051 0.083 0.054 0.099
30 0.048 0.065 0.050 0.051 0.051 0.050 0.068 0.051 0.078
40 0.049 0.061 0.049 0.049 0.062 0.051 0.065 0.051 0.073
50 0.051 0.058 0.049 0.049 0.050 0.050 0.061 0.052 0.071
100 0.055 0.055 0.052 0.051 0.056 0.050 0.056 0.052 0.060
200 0.052 0.051 0.049 0.050 0.052 0.051 0.054 0.052 0.056
500 0.046 0.048 0.047 0.047 0.048 0.048 0.049 0.048 0.049

Regarding the power analysis in [8, Figure 3 – Figure 4], the EL ANOVA test for
the trimmed means has power comparable to that of the classical methods based on the
means when the distribution is normal, and higher power for all the other distributions,
except the moderately skewed χ2

3 distribution where the powers are similar. Regarding the
robustness of the test level to the variance heterogeneity and unbalanced sample sizes, see
[8, Table 1 – 2], EL ANOVA method is robust for the large sample cases both in skewed
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Table 6.11: Empirical level of various tests for the equality of means and trimmed means of three
independent skewed distributions with the ratios between variances being 1:4:9.
For methods involving trimmed means, symmetric trimming proportions α = β = c
are used.

χ2
3

Trimming level
c = 5% c = 10% c = 20%

n F -test Welch EL Yuen ELT Yuen ELT Yuen ELT
20 0.086 0.101 0.071 0.064 0.096 0.061 0.094 0.062 0.109
30 0.083 0.088 0.071 0.060 0.062 0.064 0.084 0.064 0.091
40 0.080 0.075 0.062 0.060 0.072 0.055 0.072 0.054 0.078
50 0.079 0.067 0.057 0.050 0.051 0.051 0.066 0.052 0.071
100 0.079 0.063 0.058 0.055 0.060 0.055 0.060 0.054 0.062
200 0.085 0.060 0.057 0.057 0.059 0.054 0.058 0.054 0.058
500 0.073 0.052 0.051 0.053 0.054 0.052 0.054 0.051 0.053

Lognormal (µ = 0, σ = 1)
Trimming level

c = 5% c = 10% c = 20%
n F test Welch EL Yuen ELT Yuen ELT Yuen ELT
20 0.110 0.146 0.113 0.078 0.106 0.070 0.106 0.066 0.114
30 0.109 0.131 0.111 0.063 0.064 0.065 0.088 0.063 0.090
40 0.100 0.115 0.100 0.066 0.081 0.062 0.083 0.059 0.084
50 0.098 0.110 0.099 0.060 0.060 0.060 0.074 0.059 0.077
100 0.097 0.090 0.083 0.058 0.063 0.055 0.062 0.055 0.063
200 0.082 0.071 0.069 0.051 0.055 0.052 0.055 0.054 0.058
500 0.077 0.061 0.060 0.051 0.053 0.052 0.053 0.051 0.054

Gamma (α = 2, σ = 1)
Trimming level

c = 5% c = 10% c = 20%
n F test Welch EL Yuen ELT Yuen ELT Yuen ELT
20 0.086 0.099 0.070 0.061 0.093 0.062 0.097 0.065 0.111
30 0.083 0.080 0.063 0.058 0.062 0.056 0.079 0.060 0.090
40 0.079 0.074 0.061 0.058 0.073 0.056 0.073 0.059 0.083
50 0.079 0.068 0.057 0.049 0.050 0.053 0.066 0.058 0.075
100 0.078 0.059 0.055 0.053 0.060 0.053 0.060 0.053 0.061
200 0.078 0.057 0.054 0.053 0.055 0.053 0.057 0.053 0.057
500 0.079 0.052 0.050 0.049 0.051 0.050 0.050 0.052 0.053

Skew-normal (ξ = 0, ω = 1, α = 1)
Trimming level

c = 5% c = 10% c = 20%

n F -test Welch EL Yuen ELT Yuen ELT Yuen ELT
20 0.080 0.079 0.048 0.048 0.081 0.052 0.085 0.054 0.106
30 0.075 0.069 0.050 0.051 0.054 0.053 0.073 0.057 0.085
40 0.080 0.060 0.049 0.050 0.064 0.050 0.069 0.053 0.075
50 0.076 0.060 0.050 0.050 0.051 0.051 0.064 0.053 0.073
100 0.079 0.053 0.049 0.048 0.054 0.048 0.055 0.051 0.059
200 0.078 0.054 0.051 0.051 0.054 0.051 0.054 0.052 0.056
500 0.075 0.049 0.047 0.048 0.049 0.048 0.049 0.048 0.049

χ2
3 and normal distribution setting. However, for the small sample cases, only the EL

ANOVA method with 10% trimmed means appears to be robust.
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Table 6.12: Empirical level of various tests for the equality of means and trimmed means of three
independent skewed distributions with the ratios between variances being 1:1:36.
For methods involving trimmed means, symmetric trimming proportions α = β = c
are used.

χ2
3

Trimming level
c = 5% c = 10% c = 20%

n F -test Welch EL Yuen ELT Yuen ELT Yuen ELT
20 0.124 0.090 0.067 0.059 0.087 0.056 0.088 0.056 0.102
30 0.119 0.080 0.064 0.056 0.058 0.058 0.078 0.058 0.086
40 0.116 0.070 0.058 0.055 0.067 0.053 0.067 0.052 0.072
50 0.112 0.063 0.052 0.048 0.049 0.051 0.063 0.052 0.069
100 0.111 0.061 0.055 0.053 0.059 0.051 0.058 0.050 0.058
200 0.113 0.059 0.056 0.054 0.057 0.053 0.056 0.052 0.056
500 0.102 0.053 0.053 0.053 0.054 0.050 0.052 0.050 0.052

Lognormal (µ = 0, σ = 1)
Trimming level

c = 5% c = 10% c = 20%
n F test Welch EL Yuen ELT Yuen ELT Yuen ELT
20 0.168 0.126 0.101 0.071 0.095 0.062 0.095 0.058 0.103
30 0.166 0.118 0.098 0.055 0.056 0.060 0.081 0.057 0.084
40 0.153 0.104 0.089 0.060 0.076 0.061 0.077 0.057 0.080
50 0.148 0.095 0.086 0.052 0.053 0.056 0.068 0.055 0.072
100 0.136 0.080 0.075 0.054 0.061 0.053 0.062 0.054 0.061
200 0.119 0.064 0.062 0.050 0.054 0.049 0.052 0.051 0.055
500 0.112 0.056 0.055 0.052 0.053 0.050 0.051 0.052 0.054

Gamma (α = 2, σ = 1)
Trimming level

c = 5% c = 10% c = 20%
n F test Welch EL Yuen ELT Yuen ELT Yuen ELT
20 0.123 0.089 0.064 0.058 0.089 0.059 0.093 0.060 0.107
30 0.122 0.079 0.061 0.057 0.059 0.055 0.077 0.058 0.086
40 0.116 0.071 0.057 0.056 0.069 0.054 0.070 0.055 0.077
50 0.113 0.066 0.055 0.051 0.052 0.051 0.064 0.053 0.070
100 0.110 0.059 0.053 0.053 0.058 0.052 0.057 0.051 0.060
200 0.109 0.054 0.051 0.051 0.054 0.050 0.054 0.051 0.055
500 0.108 0.052 0.051 0.049 0.050 0.050 0.051 0.050 0.051

Skew-normal (ξ = 0, ω = 1, α = 1)
Trimming level

c = 5% c = 10% c = 20%
n F -test Welch EL Yuen ELT Yuen ELT Yuen ELT
20 0.113 0.077 0.050 0.047 0.080 0.049 0.083 0.054 0.103
30 0.107 0.067 0.051 0.050 0.052 0.052 0.074 0.054 0.083
40 0.112 0.060 0.049 0.049 0.063 0.051 0.067 0.054 0.074
50 0.107 0.058 0.048 0.049 0.050 0.051 0.064 0.055 0.074
100 0.107 0.054 0.048 0.048 0.054 0.049 0.056 0.052 0.060
200 0.106 0.053 0.051 0.052 0.054 0.051 0.054 0.053 0.057
500 0.106 0.048 0.048 0.050 0.051 0.050 0.051 0.049 0.051

6.3 Analysis of data sets
We explore a number of real data sets exhibiting various departures from normality. We
are interested in testing the null hypothesis of equal location parameters of two or more
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populations, using the newly-established EL-based methods as well as some well known
classical and robust methods for the comparison. Chapter 6.3.1 deals with the two-sample
case, while Chapter 6.3.2 treats the ANOVA case.

6.3.1 Comparing two populations
We consider the EL test for the difference of two trimmed means with 10%, 15% and
20% trimming, panel EL TM, and the EL test for the difference of two smoothed Huber
estimators with V = 2.046 in (2.16) fixed as suggested in [13], panel ELHubVF, and V
estimated for each sample separately by the nonparametric bootstrap method with 10,000
resamples (see, for example, [53] for the reference), panel ELHubVE. For computation of
the smoothed Huber estimator, MAD was used as a preliminary robust estimator of the
scale parameter σ of the underlying distribution as required by Lemma 3.2.2. In [52],
we noted that the choice of the scale estimator is important: choosing SD as the scale
estimator yielded p-values closer to the methods based on the means.

For the comparison, we report the results of Student’s t-test, Welch’s test [54],
Wilcoxon rank sum test (see, for example, [32]), EL test for the means from Example
1.4.1 (panel EL Means), and Yuen’s test for the trimmed means [60] with 10%, 15%
and 20% symmetric trimming (panel Yuen). We give a short description of each of the
datasets along with the descriptive statistics in Table 6.13 and visual representation in
Figure 6.7. The p-values of the tests are given in Table 6.14, the confidence intervals for
the difference of the location parameters in Table 6.15 and the respective interval lengths
in Table 6.16.

Table 6.13: Descriptive statistics for the data sets considered in Chapter 6.3. n denotes sample
size, κ denotes the estimate of the coefficient of skewness, SHub denotes smoothed
Huber estimate with k = 0.862 and TM denotes sample trimmed mean with the
given trimming rate.

data set group n x̄ SD Med MAD κ SHub TM10 TM15 TM20
IQ Group0 79 112.8 14.3 116.0 11.9 -1.2 116.0 113.6 113.8 114.1

Group1 15 101.1 27.0 101.0 14.8 -1.5 101.3 104.2 104.1 104.2
LOS Belgium 315 7.9 13.4 4.0 3.0 5.1 3.9 5.0 4.7 4.4

Switzerland 32 25.5 74.6 4.0 3.0 3.8 4.1 4.8 4.4 4.2
ozone Control 23 22.4 10.8 22.7 6.5 -1.9 23.0 23.1 23.2 23.3

Ozone 22 11.0 19.0 11.1 11.9 0.5 11.1 9.7 9.2 9.2
NMA high 18 46.3 7.7 48.1 7.0 -0.9 48.0 46.9 47.2 47.5

low 21 49.4 6.9 51.0 5.9 -0.6 50.6 49.9 50.1 50.4
alcohol Group1 20 7.4 11.3 2.5 3.7 1.9 2.5 4.8 4.1 3.9

Group2 20 2.9 7.5 0.0 0.0 3.2 0.4 0.9 0.4 0.2
cotton millA 22 0.5 1.0 0.2 0.2 2.8 0.3 0.2 0.2 0.2

millB 22 0.9 1.5 0.6 0.4 3.0 0.7 0.7 0.7 0.6

IQ data set This data set was analysed in [15] and the author’s publication [52]. The
IQ scores of 94 children aged 5 years are provided. Fifteen children have mothers suffering
from postnatal depression (group 1), whereas 79 children have healthy mothers (group
0). The null hypothesis of interest is that there is no difference between the locations of
the IQ distributions of the two groups of children. Most of the IQ values are between 80
and 144, except two small values, 22 and 48, corresponding to one child in each group,
respectively. The standard deviation (SD) in group 1 is almost twice of that of group 0,
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Figure 6.7: Grouped boxplots for the two-sample data sets analyzed in the chapter. The blue
dots represent the sample mean of the group.
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Table 6.14: p-values of the two-sample tests for the difference of two location parameters for the
data sets considered in Chapter 6.3.

method IQ LOS LOS* ozone NMA alcohol cotton
Student’s t 0.016 <0.001 0.933 0.017 0.194 0.142 0.277
Welch 0.122 0.192 0.953 0.019 0.198 0.143 0.278
Wilcoxon 0.058 0.632 0.912 0.003 0.190 0.047 0.010
EL Means 0.052 0.023 0.951 0.025 0.170 0.131 0.243
ELHubVF 0.068 0.792 0.252 0.009 0.183 0.192 0.029
ELHubVE 0.052 0.449 0.210 0.024 0.170 0.130 0.003
ELTM 10% 0.093 0.816 0.141 0.011 0.239 0.034 0.046
Yuen 10% 0.082 0.808 0.135 0.008 0.229 0.073 0.034
ELTM 15% 0.080 0.688 0.266 0.001 0.295 0.002 0.031
Yuen 15% 0.087 0.669 0.250 0.004 0.290 0.038 0.019
ELTM 20% 0.082 0.782 0.391 <0.001 0.263 0.003 <0.001
Yuen 20% 0.065 0.779 0.405 0.004 0.287 0.076 0.001

Table 6.15: Two-tailed 95% confidence intervals for the difference of two location estimators
stemming from the two-sample tests considered in Chapter 6.3.

method IQ LOS LOS* ozone NMA alcohol cotton
Student’s t (2.3, 21.2) (-27, -8.2) (-5.5, 5.1) (2.2, 20.6) (-1.6, 7.8) (-1.6, 10.7) (-1.2, 0.4)
Welch (-3.5, 26.9) (-44.5, 9.3) (-8, 7.5) (2, 20.8) (-1.7, 7.9) (-1.6, 10.7) (-1.2, 0.4)
Wilcoxon (0, 18) (-1, 1) (-1, 1) (5.9, 20.6) (-1.7, 7.5) (0, 6) (-0.7, -0.1)
EL Means (-0.1, 29.4) (-55.2, -1.3) (-12, 4.2) (1.6, 19.8) (-1.3, 7.8) (-1.5, 11.2) (-1.4, 0.3)
ELHubVF (-0.8, 24.4) (-1.9, 1.6) (-0.8, 2.0) (3.5, 20.9) (-1.4, 7.8) (-1.8, 7.7) (-0.8, -0.1)
ELHubVE (-0.1, 29.4) (-13.0, 2.6) (-1.9, 4.7) (1.6, 19.8) (-1.3, 7.8) (-1.5, 11.2) (-0.8, -0.2)
ELTM 10% (-1.6, 19.8) (-2.8, 1.9) (-0.3, 2) (3.5, 22.6) (-2, 8.2) (0.3, 8.4) (-0.9, 0)
Yuen 10% (-1.3, 20) (-1.8, 2.3) (-0.3, 2.1) (3.9, 23.1) (-2, 8) (-0.4, 8.2) (-0.8, 0)
ELTM 15% (-1.1, 20.5) (-1.3, 1.6) (-0.5, 1.8) (5.8, 23.1) (-2.6, 8.6) (1.1, 6.9) (-0.9, 0)
Yuen 15% (-1.7, 21.2) (-1.1, 1.6) (-0.5, 1.8) (5.1, 22.9) (-2.6, 8.3) (0.2, 7.2) (-0.8, -0.1)
ELTM 20% (-1.2, 16.6) (-1.1, 1.4) (-0.6, 1.6) (7.2, 24) (-1.9, 9.2) (0.9, 7.5) (-0.7, -0.2)
Yuen 20% (-0.8, 20.6) (-1.1, 1.5) (-0.7, 1.7) (5.3, 22.9) (-2.6, 8.3) (-0.5, 7.8) (-0.7, -0.2)

Table 6.16: The lengths of the confidence intervals for the difference of two location estimators
stemming from the two-sample tests considered in Chapter 6.3.

method IQ LOS LOS* ozone NMA alcohol cotton
Student’s t 18.89 18.78 10.59 18.48 9.46 12.29 1.58
Welch 30.42 53.84 15.50 18.86 9.56 12.35 1.59
Wilcoxon 18.00 2.00 2.00 14.70 9.20 6.00 0.58
EL Means 29.46 53.87 16.18 18.15 9.13 12.74 1.73
ELHubVF 25.14 3.41 2.72 17.40 9.28 9.49 0.77
ELHubVE 29.47 15.51 6.60 18.14 9.13 12.73 0.59
ELTM 10% 21.38 4.64 2.30 19.10 10.20 8.13 0.84
Yuen 10% 21.36 4.17 2.37 19.21 9.94 8.55 0.80
ELTM 15% 21.63 2.82 2.28 17.31 11.19 5.82 0.87
Yuen 15% 22.81 2.71 2.28 17.77 10.90 6.97 0.76
ELTM 20% 17.84 2.53 2.21 16.82 11.06 6.56 0.45
Yuen 20% 21.37 2.57 2.34 17.57 10.95 8.24 0.48

27.0 and 14.3, respectively. The data sets are of similar skewness. The presence of outliers
and heterogeneous variances suggests using hypotheses tests for robust estimators.

Student’s t-test rejects the H0 with p = 0.016, while Welch’s test does not, having
p = 0.12. The EL test for the means, Wilcoxon test and the EL test for the smoothed
Huber estimators with V estimated have p-values just above 0.05. Tests based on trimmed
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means do not reject the H0 at 0.05 level, the results given by the EL method and Yuen’s
test are similar. The EL method gives slightly shorter confidence intervals for 15% and
20% trimming.

Length of stay (LOS) data set This data set was analysed previously in [25] and
author’s publication [52]. The first sample contains 315 lengths of stay (LOS) in days for
patients hospitalized in Belgium during 1988 for certain disorders of the nervous system.
The second sample contains 32 LOS of patients hospitalized during the same year in
Switzerland for the same types of illnesses. The Switzerland sample contains two extreme
values: 374 and 198 days, respectively. A derived data set, called LOS*, was obtained
by removing the two extreme Switzerland sample LOS values. We consider the null
hypothesis H0 that there is no difference between the location of the LOS distributions in
Belgium and Switzerland. Both data sets are very skewed, the skewness coefficient being
5.1 and 3.8 for Belgium and Switzerland, respectively, and the SD is almost six times
larger in the smallest group, Switzerland. This suggests that tests for the trimmed means
are preferable. The use of the EL Huber test with V fixed should not be advised, as our
simulation study showed that for skewed data sets it is oversized.

Student’s t-test and the EL test for the means reject H0 at 0.05 level, while none of
the tests based on robust estimators reject H0 and have much larger p-values. Neither
does Welch’s test reject H0, however, its confidence interval is much larger than those
associated with the tests based on robust estimators. Yuen’s test and the EL test for
the trimmed means yield similar p-values for the same trimming proportion, also the
confidence intervals are of similar length. We can see that the p-values for the two versions
of Huber test are quite different, version with V estimated yielding a smaller value and a
larger confidence interval.

After removing the two extreme observations from the Switzerland data sample (LOS*
data set), none of the tests reject H0 at 0.05 level, yielding the same conclusion as the
tests based on the robust estimators with the raw data. However, removing observations
manually involves subjective judgement, thus doing tests on the raw data are preferable.

Ozone data set The experimental group consisted of 22 rats kept in an ozone environ-
ment for 7 days, while a control group of 23 rats were kept in an ozone-free environment.
The weight gains of the rats, in grams, were registered. We are interested in H0 that
there were no differences in weight gain between the experimental and control groups.
The data set was used in [57]. The data sets are of similar size, while the standard devi-
ations differ almost two times, SD=19.8 in the experimental group and SD=10.8 in the
control group. The control group is negatively skewed (mainly due to one small outlier),
while the experimental group is positively skewed (one large outlier).

The tests based on means (Student’s t-test, EL means test, Welch’s test) reject the H0

at 0.05 level. ELHubVE gives a result similar to the EL test for the means. The rest of
the tests based on robust location measures (except the EL test for 10% trimmed means)
and Wilcoxon’s test reject the H0 at 0.01 level. Interestingly, also Wilcoxon sum of ranks
test rejects at 0.01 level, although this test is not recommended in the cases where groups
differ in skewness. EL tests for trimmed means have slightly shorter confidence intervals
than Yuen’s test for the trimmed means. The test for the smoothed Huber estimator
with V estimated has larger confidence intervals than those of the tests for the trimmed
means, but shorter than those of the tests based on the means.
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Normalized mental-age (NMA) scores data set This data set was considered
in [32]. The data reports the normalized mental age scores of children suffering from
phenylketonuria (PKU), i.e., a genetic condition of not being able to metabolize the
protein phenylalanine. It has been suggested that an elevated level of serum phenylalanine
increases a child’s likelihood of mental deficiency, however, early dietary treatment can be
efficient in normalizing the serum phenylalanine levels. 39 children with PKU condition
who had received an early treatment were included in the data set: 21 children having a
low average daily serum phenylalanine levels at the age of two (group low), and 18 children
having a high exposure (group high). The mental age scores normalized to 48 months
are reported, the mean scores being 46.3 months for the low group, and 49.4 months
for the high group. We are interested in H0 that the NMA scores are equal for the two
groups. The data sets are of similar size, have similar standard deviations and both are
mildly negatively skewed. The results show that none of the tests reject H0 at 0.05 level,
however, the p-values of the tests based on trimmed means are slightly higher. The test
for the smoothed Huber estimators yields p-values closer to that of the methods based on
the means, p = 0.183 and p = 0.170 for the fixed and estimated variance, respectively.
All the tests yield similar confidence interval lengths,the EL test for the trimmed means
being comparatively the largest.

Alcohol data set This data set was analysed in [57] and reports the hangover symp-
toms the morning after consuming equal amounts of alcohol in a laboratory. Group 1 was
a control group and group 2 was formed of sons of alcoholic fathers. Both data sets have
equal size (20 participants) and both are severely positively skewed. Group 2 contains
many zero values resulting in a median value of zero, consequently, MAD being zero as
well. Thus it is possible to compute the smoothed Huber estimates only using the SD as
the preliminary estimator of variance, in which case it is not considered robust.

None of the tests for means reject the H0 at 0.1 level, neither the test based on the
smoothed Huber estimators. In contrary, the EL test for trimmed means rejects the score
equality at 0.05 level with 10% trimming, and at 0.01 level for 15% and 20% trimming.
Also, Wilcoxon test rejects H0 at 0.05 level. Interestingly, Yuen’s test for the trimmed
means fail to reject H0 with 10% and 20% trimming even at 0.05 level. Moreover, the
confidence intervals for the EL test for the trimmed means are narrower when compared
to those of Yuen’s test. Wilcox [57, p. 164] notes, that the shapes of the distribution are
similar to exponential, and even with 20% trimming, Yuen’s test might yield inaccurate
probability coverage.

Cotton data set The example has been used in [38] and contains data on wastage
due to defects in cloth in two Levi Strauss garment factories. The measure is expressed
in the percentage with respect to the wastage calculated by the computerized layouts of
patterns on the cloth. The measure can be negative since the workers can do better than
the computer by laying out the patterns by hand. The data sets (labelled millA and
millB) are of equal size (22 observations) and have similar standard deviations. Both
data sets contain several outliers and are considerably positively skewed (2.8 and 3.0,
respectively), suggesting that the tests based on the means will lack power.

In fact, none of the tests based on the means reject H0 at 0.05 level, the p-values being
0.28 for Student’s t-test and Welch’s test, and 0.24 for the EL means test. The tests for
10% and 15% trimmed means reject H0 at 0.05 level, while the Wilcoxon test, the test
for 20% trimmed means and the test for smoothed Huber estimator with V estimated
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reject the H0 at 0.01 level. When comparing Yuen’s method with the EL based test
for the trimmed means, the length of the confidence intervals are similar. The shortest
confidence intervals are given by the tests for 20% trimmed mean, followed by the tests
for the smoothed Huber estimator with V estimated.

6.3.2 EL-based ANOVA method for the trimmed means
To illustrate the use of the EL ANOVA method for the trimmed means, we consider Oslo
transect data set [37]. This data set includes 360 observations corresponding to different
plants collected along a 120 km transect running through the city of Oslo, Norway, and
was previously analysed in [42] and the author’s publication [51]. The concentrations of
25 chemical elements found in the plants were recorded together with factors that may
influence the mineral concentration. Except for not including two chemical elements, Au
and Na, this data is available within R package rrcov [41] as OsloTransect data set.

We analyse the remaining 23 concentrations of chemical elements as the response vari-
ables, and the lithology as a group variable with four levels, see Table 6.17 for the details.
After removing the observations with missing values, we are left with 332 observations.
The box plots of the data are given in Figures 6.8 - 6.9. We can see that for most of the
element concentrations data sets are skewed and contain outliers. Moreover, the sample
sizes are not balanced.

Table 6.17: Names of the lithology groups in Oslo Transect data

Key Lithological group No. observations
CAMSED Cambro-Silurian sedimentary rocks 98
GNEISS_O Precambrian gneisses – Oslo 89
GNEISS_R Precambrian gneisses – Randsfjord 32
MAGM Magmatic rocks of the Oslo Rift 113

We consider the EL ANOVA method for the trimmed means with 10%, 15% and 20%
symmetrical trimming (panel ELT). For comparison, we provide the classical ANOVA
F -test, Welch’s heteroscedastic ANOVA F -test [55] (panel Welch), EL ANOVA test for
the means [30] (panel EL), and Yuen’s test [57, Table 7.1] (panel Yuen) for 10%, 15% and
20% symmetrically trimmed means.

We report the respective p-values of the tests in Table 6.18. We note that, for each
trimming strategy, the p-values from the EL ANOVA for trimmed means and Yuen’s test
are very similar. In addition, the p-values from the EL ANOVA for means and Welch’s
heteroscedastic F -test are also very similar.

We comment on some of the chemical elements for which the tests based on the means
and the tests based on the trimmed means give different conclusions. For Cr, La and Pb,
the F -test gives large p-values not rejecting H0 at 0.05 significance level. Welch’s test
and EL test for the mean, as well as the tests based on trimmed means all reject at 0.01
level (except for La, where tests based on 10% trimmed means have p > 0.1). Cr, La
and Pb concentrations are quite skewed in some of the groups, thus inflating individual
group standard deviations and leading to non-significant F -test. Welch’s and EL test
can deal with the skewness quite well, just as the tests based on the trimmed means.
Ti is significant according to F -test at 0.01 level, but not significant according to tests
based on the trimmed means. Concentrations of Ti data contain outliers but are not very
skewed. Thus the tests based on the trimmed means mitigate the outlier effect. Sb is is
an interesting case where Welch’s test and EL tests reject H0 at 0.01 level, while other
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Figure 6.8: Box plots of the Oslo transect data [37] chemical elements (macronutrients and
essential micronutrients) grouped by lithology type . Concentration units are mg/kg.
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Figure 6.9: Box plots of the Oslo transect data [37] chemical elements (trace elements) grouped
by lithology type. Concentrations units are mg/kg, except for Ag and Hg, for which
the units are µg/kg.
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Table 6.18: p-values from tests of equality of means and trimmed means of 23 chemical element
concentrations in plants collected along the Oslo Transect [37]. Symmetric trimming,
αi = βi = c, i = 1, . . . , 4.

Trimming level
c = 5% c = 10% c = 20%

Element F -test Welch EL Yuen ELT Yuen ELT Yuen ELT
Ag 0.260 0.102 0.088 0.220 0.228 0.421 0.405 0.739 0.731
B 0.077 0.085 0.073 0.095 0.092 0.121 0.112 0.179 0.161
Ba 0.015 0.009 0.006 0.030 0.031 0.019 0.017 0.003 0.002
Ca 0.149 0.192 0.177 0.218 0.223 0.315 0.311 0.423 0.410
Cd 0.081 0.046 0.038 0.094 0.095 0.054 0.048 0.031 0.023
Co <0.001 0.011 0.008 0.001 0.001 <0.001 <0.001 <0.001 <0.001
Cr 0.167 0.001 <0.001 0.001 0.001 0.001 0.001 0.005 0.002
Cu 0.440 0.264 0.244 0.664 0.672 0.768 0.762 0.756 0.750
Fe 0.026 0.017 0.013 0.035 0.036 0.022 0.019 0.043 0.034
Hg 0.308 0.287 0.268 0.351 0.373 0.191 0.184 0.397 0.383
K 0.473 0.279 0.259 0.500 0.515 0.531 0.523 0.583 0.567
La 0.275 <0.001 <0.001 0.005 0.005 0.134 0.101 0.008 0.005
Mg 0.241 0.228 0.213 0.279 0.276 0.379 0.374 0.573 0.562
Mn <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Mo 0.017 0.002 0.001 0.017 0.016 0.035 0.029 0.166 0.151
Ni <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 0.017 0.012
P 0.284 0.252 0.236 0.395 0.398 0.435 0.428 0.584 0.571
Pb 0.524 <0.001 <0.001 0.008 0.009 0.007 0.005 0.001 0.001
S 0.584 0.550 0.535 0.701 0.719 0.779 0.778 0.811 0.807
Sb 0.164 0.007 0.005 0.211 0.223 0.189 0.186 0.246 0.204
Sr 0.139 0.073 0.064 0.179 0.187 0.222 0.218 0.101 0.088
Ti 0.005 0.007 0.005 0.057 0.055 0.092 0.085 0.084 0.069
Zn 0.884 0.800 0.792 0.966 0.968 0.973 0.972 0.965 0.965

tests yield p > 0.1. The concentrations for this element are extremely skewed, around
one third of the observations taking the smallest possible concentration value 0.01mg/kg
and containing some extreme outliers. The tests based on the trimmed means mitigate
the outlier effect and are not significant.

These various situations show again that for each particular situation the researcher
needs to be clear about the aims – what hypothesis needs to be tested and whether the
related assumptions hold.

6.4 Discussion
For both newly-established EL two-sample methods, the simulation results confirm the
convergence of empirical level to the nominal under the null hypothesis for symmetrical
N(0, 1) and t2 distributions, as well as for contaminated normal distributions. For heavy-
tailed distributions, such as contaminated normal and t2-distribution, the convergence
of the EL tests for the trimmed means and smoothed Huber estimators is considerably
faster than that of the tests based on the means. In some settings, the EL test for the
difference of 10% trimmed means converges faster to the empirical level than the test for
the 20% trimmed means, and thus it would be preferable to use 10% trimming in small
samples (under 30). It should be remarked that the EL-based methods for the comparison
of the trimmed means converge to the nominal level more slowly than Yuen’s test with a
bootstrap-t approximation.
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For skewed distributions, the results depend on the test used. The EL method for the
trimmed means converge to the nominal level, although more slowly than Yuen’s test.
For the moderately skewed χ2

3 distribution, the Huber test version with V estimated by
simulations converged to the nominal less quickly than the tests based on the trimmed
means, while the version with V fixed did not converge to the nominal level at all. This
result is concordant with findings in [52], where it was concluded that fixing V = 2.046
yields empirical coverage lower than the nominal when the underlying distributions are
skewed and of differing shapes. For the very skewed χ2

1 distribution, the empirical level of
the tests based on Huber estimators did not converge to the nominal at all. This might
seem in contrast to the results of [52], however, the interpretation of this result may lay
in the degree of skewness of the distributions analysed. Consider the estimate of the
population skewness parameter κ̂ for some of the distributions considered, obtained by
N = 1, 000, 000 Monte Carlo simulations: for χ2

1 distribution κ̂ = 2.83, for χ2
3, κ̂ = 1.61,

while for Gamma(a = 1, s = 1/20), the most skewed setting considered in [52], κ̂ = 2.01.
In general, the empirical level of the EL test for the trimmed means for very small

samples (under 20) fluctuates greatly (consider, for example, the empirical levels for con-
taminated normal distribution in Figure 6.1). There might be two reasons for these
fluctuations. First, the way the constant a2 in Theorem 4.2.1 is estimated, see Remark
4.2.2. It is clear that for small samples, the changes in the estimate of a2 are sensitive
to small changes in the sample sizes n1, n2. Second, it has been pointed out by Owen
[31] that for small samples, an approximation of the limiting law for the empirical log
likelihood ratio by F distribution can be more precise than an approximation by the
chi-square distribution. Namely, if the limiting distribution is χ2

k, then the confidence
intervals and p-values for a sample of size n can be calculated, using the Fk,n−1 distri-
bution. F -distribution approximation, however, was not considered by Qin and Tsao for
their EL method for the trimmed means [33]. The tests based on the Huber estimators
are more stable for small sample sizes, nevertheless, their accuracy could probably still
be improved by using the F -approximation.

Regarding the power of the tests, the power of the EL test for the difference of trimmed
means is close to the power of Student’s t-test under the standard normal distribution,
while exceeding it considerably for nonnormal distribution settings, except for the mod-
erately skewed χ2

3 distribution. Moreover, the new test has a comparable power to that
of Yuen’s test, in some cases even exceeding it. The power of the test of two smoothed
Huber estimators is similar to that of the test of the trimmed means, in case of the N(0, 1)
and 5% contaminated normal distribution exceeds most of the tests based on the trimmed
means. The power of the test at the very skewed χ2

1 distribution is higher than the rest
of the tests, but this is a consequence of an incorrect test level at H0.

The robustness by Bradley’s criterion of the new test for the difference of 10% trimmed
means was confirmed for all unbalanced and variance heterogeneity designs both for the
normal and the χ2

3 distribution. However, the EL test for 20% trimmed means failed to
be robust for most of the small sample settings, despite showing good results for the large
sample settings. Regarding the tests based on the smoothed Huber estimators, they were
robust to heterogeneity and unbalanced sample sizes under the normal distribution. For
the skewed χ2

3 distribution, the test was robust only for large sample sizes.
It should also be remarked that despite the data-adaptive nature of the EL method,

the EL test for the difference of the means is not robust for most nonnormal distributions
and samples of small to moderate size (this was also noted in [57]). Moreover, it has much
lower power. Also for the real data sets considered, EL means test mostly yields p-value
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closer to Student’s t and Welch’s test than to the tests based on robust estimators.
Based on these observations, the new EL-based test for the difference of trimmed

means can be recommended for use in moderate and large sample settings under depar-
tures from normality, such as heavy tails, presence of outliers and variance heterogeneity.
For small samples, 10% trimming should be preferred to 20% trimming, or Yuen’s test for
the trimmed means should be used. In case there are heavy tails or outliers in the data, for
small samples, EL test for the Huber’s estimator with V estimated can be recommended
for use in preference to the EL test for the trimmed means as it is less sensitive to actual
sample size value. However, it is not recommended to use Huber’s test in case of very
skewed data sets or situations when skewness is combined with variance heterogeneity in
small samples.

In practice, considering the data examples of Chapter 6.3, the EL test for the difference
of trimmed means yields p-values similar to the robust Yuen’s test for the trimmed means.
As expected, the tests based on the trimmed means can lead to the opposite conclusion
about H0 than the tests based on the means. We observe that the p-values of the EL
test and Yuen’s test for the difference of trimmed means are quite close, and this is
true also for small sized samples (such as cotton, ozone, or nma) and 20% trimming.
The confidence intervals of the EL-based tests are somewhat shorter. Regarding the
test for the difference of two Huber estimators, we note that the p-values can be quite
different depending on the value of the asymptotic variance V , especially if the underlying
distribution is substantially skewed. This is in line with our simulation results. In cases
of moderate skewness (such as NMA, ozone, IQ), the Huber test with V estimated yields
p-values close to the EL test for the means.

Finally, regarding the newly-established EL ANOVA test for the trimmed means, the
simulations with k = 3 groups sampled from skewed distributions with equal variances
show that the test converges to the empirical level for all distributions. Scenario with
heterogeneous variances suggests that the test is rather oversized for small sample sizes
(below 100). For large sample sizes, the test converges to the empirical level. For all
heterogeneous settings, the EL-based ANOVA for the trimmed means is more robust
than the classical F -test, having the empirical rejection rates closer to the nominal level.
Similarly, as in the two-sample case, the EL ANOVA results for the trimmed means for
small samples could probably be improved by using an appropriate F -approximation of
the limiting law.

Simulations with k = 2 suggest that the ANOVA-like EL test for the trimmed means
converges to the empirical level also when data is sampled from heavy tailed distributions
or distributions containing outliers. In addition, it has good power properties, exceeding
the power of the methods based on the means when the data distributions are not normal.
Similarly, as in k = 3 case, the k = 2 case reveals that EL ANOVA test is not robust to
the combination of variance heterogeneity and skewness for small sample sizes. It should
be noted, however, that the simulation results with k = 2 give only a limited view on the
behaviour of ANOVA-like methods. The data of Oslo transect [37] analysed in Chapter
6.3 shows that in practical situations the p-values given by the EL based test for the
trimmed means are quite close to Yuen-Welch test. It should be noted, however, that the
Oslo data set fits rather in a large-sample setting, the total number of observations for
the four groups being 332.
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Conclusions

The main aims of the thesis research have been achieved. New empirical likelihood-based
methods for comparing two and more independent populations based on robust location
parameter estimators were developed:

1. An EL-based method for comparing two location M-estimators;

2. An EL-based method for comparing two population trimmed means;

3. An EL-based ANOVA-like method for comparing more than two population
trimmed means.

The conditions for the use of the methods were established and the asymptotic results
were proven. Using the approach of Y. Qin and L. Zhao [35], it was shown that under
particular conditions the limiting law of the EL log likelihood ratio for the difference of two
M-estimators is the χ2

1 distribution, similarly as in the case of the difference of the means.
It was shown that the smoothed Huber’s estimator fits under the established conditions.
The smoothing principle established by F. Hampel et al. [12] is important, since it allows
for constructing smooth EL estimating functions essential for the conditions to hold.

We generalized the one-sample EL for the trimmed means by G. Qin and M. Tsao
[33] to the two-sample and ANOVA case. The limiting law of the EL log likelihood ratio
for the difference of the trimmed means is a scaled χ2

1, and is essentially related to the
asymptotic distribution of the trimmed mean established by S. Stigler [39]. In the case of
the EL ANOVA-like method for the trimmed means, it was demonstrated that there are
scaling constants involved for each of the k populations, and the resulting limiting law is
χ2
k−1. This result is related to EL ANOVA for the equality of means established by A. B.

Owen in [30].
A large simulation study was realized to explore the behaviour of the methods when

sampling from various types of probability distributions, especially when the classical as-
sumptions of normality and variance heterogeneity do not hold. It can be said that the
EL methods based on the trimmed means are robust to distributional skewness, heavy
tails, outliers and variance heterogeneity combined with unbalanced sample sizes, in a
sense that the empirical type I error converges to the nominal level. For the difference of
smoothed Huber estimators, however, the robustness was not confirmed for very skewed
distributions, but held for distributions with moderate skewness, heavy tails and outliers.
Some improvement for small-sample cases could probably be gained, using an F approxi-
mation for the limiting chi-square laws, see discussion in Chapter 6.4. It should be noted
that the power of the methods considerably exceeds that of the methods based on the
means for the most of the distributional settings considered.

As an extension of the thesis research, one might consider the difference of other M-
estimators than the smoothed Huber estimator, for example, the bi-square M-estimator
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that was demonstrated to have good robustness properties in [13]. Note, that EL-based
methods considered in this thesis research are based on smoothed estimating functions. An
alternative EL approach exists that is based on non-smooth criterion functions developed
by [27]. Their approach has the potential of wider application, however, it has a slower
theoretical convergence rate. To the best of our knowledge, the comparison of the smooth
and the non-smooth approaches for the two-sample and ANOVA problems has not been
done and would be of interest in the future.
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Theses

1. Empirical likelihood method for comparing two location M-estimators
was developed, conditions for the application of the method were estab-
lished and the asymptotic results were proven. It was shown that the
conditions hold for the difference of two smoothed Huber estimators.
Simulation study showed that the method has good robustness proper-
ties when sampling from distributions containing outliers or heavy tails.
Simulation study showed that the method version with asymptotic variance param-
eter V confirms the robustness of the level of the test (i.e., the empirical level of
the test is close to the nominal) when sampling from symmetric, heavy tailed and
moderately skewed distributions. This method has a higher power than the meth-
ods based on the means when normality does not hold. This method is robust to
the combination of variance heterogeneity and unbalanced sample design for normal
distribution settings, and for large sample settings also for chi squared distribution
settings. [52]

2. Empirical likelihood method for comparing two trimmed means was de-
veloped and the asymptotic results were proven. Simulation study when
sampling from symmetric, heavy tailed and skewed distributions con-
firmed the good robustness properties of the method.
The empirical level of the new test is robust and, moreover, it has higher power
than the classical tests when sampling from skewed or heavy-tailed distributions.
EL test for the difference of 10% trimmed means was robust to the combination of
variance heterogeneity and unbalanced sample sizes both for normal and chi squared
distribution settings. [8]

3. Empirical likelihood-based ANOVA method for comparing more than
two population trimmed means was developed and the asymptotic results
were proven. Simulation study involving skewed distributions demon-
strated the good robustness properties of the method in comparison to
the classical F -test.
Simulation study with three groups involving skewed distributions confirmed that
the test level was robust. The test empirical level is closer to the nominal than that
of the classical F -test when the variances are not equal.
Simulation study with two groups showed that the new method has higher power
than the ANOVA methods based on the means when the underlying distribution
is severely skewed, contains outliers or is heavy-tailed. The EL ANOVA method
for 10% trimmed means is robust to combination of unbalanced sample sizes and
variance heterogeneity both in normal and chi squared distribution settings when
the sample size is large. [51], [8]
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