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Abstract: Dairy and plant-based proteins are widely utilized in various food applications. Several
techniques have been employed to improve the techno-functional properties of these proteins. Among
them, pulsed electric field (PEF) technology has recently attracted considerable attention as a green
technology to enhance the functional properties of food proteins. In this review, we briefly explain
the fundamentals of PEF devices, their components, and pulse generation and discuss the impacts of
PEF treatment on the structure of dairy and plant proteins. In addition, we cover the PEF-induced
changes in the techno-functional properties of proteins (including solubility, gelling, emulsifying, and
foaming properties). In this work, we also discuss the main challenges and the possible future trends
of PEF applications in the food proteins industry. PEF treatments at high strengths could change
the structure of proteins. The PEF treatment conditions markedly affect the treatment results with
respect to proteins’ structure and techno-functional properties. Moreover, increasing the electric field
strength could enhance the emulsifying properties of proteins and protein-polysaccharide complexes.
However, more research and academia–industry collaboration are recommended to build highly
effective PEF devices with controlled processing conditions.

Keywords: pulsed electric field; pulse generation; milk proteins; plant proteins; functional properties;
protein structure

1. Introduction

Food proteins play vital roles in human nutrition, food production, and nutraceuti-
cal industries. Dairy proteins have excellent functional properties and high nutritional
values [1,2]. The dairy industry also significantly contributes to the world economy, partic-
ularly in the European Union (EU). For example, according to the milk market observatory
of the European Commission, the EU exported more than 500 thousand tons of whey
powders in 2020 [3]. As a raw material in many food products, dairy proteins are required
to possess excellent functional properties, including high solubility and improved emulsi-
fying, foaming, and gelling properties [4]. To improve the functional properties of dairy
proteins, several changes in the structural and conformational state of such proteins are
needed. For instance, the solubility of proteins depends mainly on the hydrophilic and
hydrophobic residues on the proteins’ surfaces, as well as the content of hydrogen bonds.
Moreover, the gelling properties could be altered if the contents of sulfhydryl (SH) groups
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and disulfide bonds are changed. Additionally, the emulsifying properties are closely
related to the surface activity of proteins [5]. Plant proteins are increasingly being utilized
as alternative sources of animal proteins due to their importance in developing sustainable
food systems [6,7]. Moreover, plant proteins have been used as emulsifiers, foam stabilizers,
and for other applications in the food industry due to their affordable price and amphiphilic
structures [8,9]. The weak electrostatic repulsion, low solubility, and high molecular weight
of proteins can limit the applications of these proteins [10]. Therefore, emerging green
technologies are needed to alter the structural and techno-functional properties of plant
and dairy proteins with minimal effects on the nutritional value and flavor of these proteins
and their products.

Electric field devices are classified into two major categories based on the electric field
strength. Pulsed electric field (PEF) devices have electric field strengths of 20–100 kV/cm,
whereas moderate electric field (MEF) devices have electric field strengths of <1000 V/cm [11].
PEF, as an emerging ecofriendly technology, has been used in the food industry for the
inactivation of enzymes and microorganisms [12–16]. During PEF treatment, pulses of
high-voltage electric fields for a short time (from nanoseconds to milliseconds) were applied
to the material between two electrodes [17,18]. PEF technology offers several advantages
over traditional pasteurization methods in the food industry, such as shelf-life extension,
nutrient retention, quality preservation, and cost effectiveness [19,20]. Therefore, PEF is
being adopted increasing rapidly in many industrial sectors, including for the processing
of plant and dairy products [13,21]. Some studies have shown that PEF could be used to
alter the structural and techno-functional properties of food proteins [5,22–34].

The main mechanism behind the effects of electric fields on proteins is not very
clear. However, some researchers have proposed that polar groups of proteins absorb
energy during PEF treatment and generate free radicals. The produced free radicals can
affect intramolecular interactions within protein molecules, including hydrophobic and
electrostatic interactions, disulfide bridges, hydrogen bonds, salt bridges, and Van der Waals
forces [5]. Moreover, PEF treatments could change the apparent charge of proteins due
to the alteration of their ionic interactions [4,35]. Therefore, the structural and functional
properties of proteins can be altered. Several review articles have discussed the effects
and food applications of PEF technology [4,5,13,14,18,20,26,36–47]. However, there is a
lack of systematic reviews discussing PEF fundamentals and their applications in the food
industry. Moreover, to the best of our knowledge, few studies have been conducted on
the effects of PEF on the structure and techno-functional properties of food proteins; thus,
systematic reviews discussing this point are scarce. Therefore, a review of the fundamentals
of PEF and the effects of PEF treatments on the structural and techno-functional properties
of food proteins is needed. Accordingly, with this review, we aim to (1) briefly compare
PEF with other processing techniques; (2) discuss the theory and fundamentals of PEF
technology; and (3) discuss the effects of PEF treatments on the structural and techno-
functional properties (including solubility, gelling, emulsifying, and foaming properties) of
dairy and plant proteins. This review could guide both researchers and industry leaders to
develop new applications of PEF as a green and sustainable technology in the food industry.

2. PEF vs. Other Processing Technologies

Besides PEF, some other emerging technologies have been used to alter the structure
and techno-functional properties of food proteins, such as ultrasound [48–51], high-pressure
processing [52–55], microwave treatment [56–59], and cold plasma processing [60–62]. The
main mechanisms, processing parameters, and effects of these technologies on proteins
are summarized in Table 1. However, there is currently a growing interest in PEF because
of its sustainable approach and wide range of applications in the food and biotechnology
sectors [63]. For example, PEF can be used for:
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- Microbial inactivation [64];
- Enhancing the quality of freeze-dried fruits [65] and improving the quality of potato

chip products [66];
- Improving drying and extraction kinetics [67];
- Winemaking, biogas production, and extraction of protein from algae [63]; and
- Improving the functional properties of proteins [5].

Moreover, PEF offers many advantages over other techniques [47], including:

- Short processing times;
- Waste-free process;
- Low energy consumption;
- Environmentally-friendly technique;
- Better retention of nutrients, flavors, and colors; and
- Suitability for processing heat-sensitive foods.

The main disadvantage of PEF technology is the existence of bubbles during treatment,
which could result in operational problems and non-uniform treatment. Additionally,
commercial PEF units not widely available in many regions worldwide [47].

Table 1. Brief comparison of different emerging processing techniques and their effects on protein
structure and techno-functional properties.

Processing
Technology

Processing
Parameters Mechanism Effects on Protein Structure

Effects on Proteins’
Techno-Functional

Properties

PEF

Pulse-wave shape,
pulse duration,
electric field
strength, frequency,
temperature, and
treatment
duration [68].

Polarization of protein
molecules and release of free
radicals can induce changes in
protein structures and
functionalities [4].

Depends on the electric field
strength and the type of
proteins.
Main changes occurred in the
secondary structure and
exposure of hydrophobic
groups to the surface of protein
molecules [33].

Different waveforms
and protein types can
have different effects on
protein solubility.
Emulsifying and
foaming properties
improved [69].

Ultrasound

Amplitude,
frequency, acoustic
energy, intensity,
energy density
(J/mL), time, and
temperature [70].

Acoustic cavitation (the
formation and collapse of air
bubbles) induces chemical
reactions and physical effects,
which influence the structure
and techno-functional
properties of proteins [71].

Changes in the secondary and
tertiary structures.
Increases in surface
hydrophobicity and free
sulfhydryl groups [51]

Ultrasound improved
the emulsifying and
gelling properties of
proteins [72].

High pressure
processing

Pressure,
temperature, and
time [53]

Protein unfolding can occur
due to the penetration of
water into the protein
matrix [38].

Depends on the applied
conditions and protein system.
Mainly protein denaturation
and aggregation occurred [73].

Depends on the applied
pressure.
Emulsifying and
foaming capabilities
enhanced.
Solubility of proteins
improved [74].

Microwave
Power, frequency,
time, and
temperature [56].

At the molecular level,
exposed proteins interact with
electromagnetic energy. Then,
heat is generated from the
electromagnetic energy
through the motion of
molecules during
treatment [71].

Changes in the secondary
structure.
Protein aggregation [75].

Gelling properties
improved [76].

Cold-plasma
processing

Voltage, frequency,
time, and
temperature [77].

Several high-energy radicals,
such as nitric oxide, atomic
oxygen, superoxide, and
hydroxyl radicals to break the
covalent bonds and promote
several chemical
reactions [78].

The high-energy reaction could
break peptide bonds and
oxidize the side chains of amino
acids.
They may also facilitate the
formation of protein–protein
interactions.
Changes in the secondary
structures were observed [61].

Water- and oil-holding
capacities enhanced,
reflecting the
improvement of
emulsifying and gelling
properties of
proteins [62].
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3. Fundamentals of PEF Technology: Device Components and Pulse Generation

An electric circuit simply means a closed-loop that carries electricity. The electric
current (I) is the flow of electrons in the circuit, measured in amperes (A) and can be
calculated according to Equation (1). The voltage (V, in volts) is the electric pressure or
source that causes the flow of the current. The resistance (R, in ohms) in the electric circuit
opposes the current flow [79].

I =
V
R

(1)

Contemporary PEF is based on a direct application of power pulses to the food
material placed between two electrodes for micro- to nanoseconds at an intensity range of
10–80 kV/cm [80]. The PEF processing time can be calculated by multiplying the effective
pulse duration by the number of pulses. The magnitude and time course of PEF are
controlled by a voltage generator and electrode geometry.

PEF devices basically consist of a treatment chamber with a suitable cuvette, a high-
voltage pulse generator, and necessary controlling and monitoring devices. Figure 1 shows
a diagram of a continuous PEF device used to treat food samples. The electric field depends
on the applied electric voltage, the distance between the two electrodes, and pulse width
and waveform (Equation (2)). E represents the electric field strength (V/m), u(t) represents
the applied voltage over time (V), and d represents the distance between electrodes (m) [81].

E(t) =
1
d
∗

t∫
0

u(t) dt (2)
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Figure 1. Diagram of a possible continuous PEF device used to treat food samples. Figure 1. Diagram of a possible continuous PEF device used to treat food samples.

Many types of circuits (pulse generators) in PEF devices have different circuit compo-
nents to fulfill the required functions. Figure 2 is a schematic diagram that represents an
example of an electric circuit in a PEF device used for food processing. Electrical pulses are
acquired by charging a capacitor, and the discharging of the capacitor is controlled by a
trigger or switcher that controls the decay in an electronic circuit [82]. Table 2 summarizes
the components of PEF systems and their functions. As shown in Table 2, the electric circuit
of PEF devices employed for food processing has several electric elements. A high-voltage
pulse generator is used to charge the capacitors and can be a direct current (DC) or alternat-
ing current (AC) switched to DC using a rectifier. The high-voltage pulse generator is also
used to discharge the high voltage from capacitors in the form of a pulse with a specific
pulse shape and width through a pulse-forming network (PFN) (Figure 2).



Foods 2022, 11, 1556 5 of 20

Foods 2022, 11, x FOR PEER REVIEW 5 of 21 
 

 

𝐸(𝑡) = 1
𝑑⁄ ∗ ∫ 𝑢(𝑡)

𝑡

0

 𝑑𝑡 (2) 

Many types of circuits (pulse generators) in PEF devices have different circuit com-

ponents to fulfill the required functions. Figure 2 is a schematic diagram that represents 

an example of an electric circuit in a PEF device used for food processing. Electrical pulses 

are acquired by charging a capacitor, and the discharging of the capacitor is controlled by 

a trigger or switcher that controls the decay in an electronic circuit [82]. Table 2 summa-

rizes the components of PEF systems and their functions. As shown in Table 2, the electric 

circuit of PEF devices employed for food processing has several electric elements. A high-

voltage pulse generator is used to charge the capacitors and can be a direct current (DC) 

or alternating current (AC) switched to DC using a rectifier. The high-voltage pulse gen-

erator is also used to discharge the high voltage from capacitors in the form of a pulse 

with a specific pulse shape and width through a pulse-forming network (PFN) (Figure 2). 

Table 2. Functions of main PEF devices components. 

Component Description and Function(s) References 

High-voltage pulse generator 

• To generate high-voltage direct current 

(DC) at a specific intensity by a power 

supply. 

• To discharge high voltage in the form of 

pulses with specific shapes and widths 

through a pulse-forming network (PFN).  

[80] 

Resistors 
Delay the current flow and impose a voltage 

reduction. 
[83] 

Capacitors Energy (voltage) storage.  [84] 

Switchers 
Connect or disconnect the electric current and 

control the discharge of the stored energy. 
[20] 

Treatment chambers 
Specific containers are used to carry food sam-

ples during exposure to PEF. 
[81,85] 

 

Figure 2. Schematic diagram of an electric circuit in a PEF device used for food processing. 

A capacitor is an electrical device used to store energy that used to generate electric 

pulses in an electric circuit (PEF systems). Several types of capacitors are available in the 

market, such as electrolytic, ceramic, paper, film, mica, and non-polarized capacitors [86]. 

Electrochemical capacitors (ECs), also known as supercapacitors or electrochemical 

Figure 2. Schematic diagram of an electric circuit in a PEF device used for food processing.

Table 2. Functions of main PEF devices components.

Component Description and Function(s) References

High-voltage pulse generator

• To generate high-voltage direct current (DC) at a specific intensity by a
power supply.

• To discharge high voltage in the form of pulses with specific shapes and
widths through a pulse-forming network (PFN).

[80]

Resistors Delay the current flow and impose a voltage reduction. [83]
Capacitors Energy (voltage) storage. [84]

Switchers Connect or disconnect the electric current and control the discharge of the
stored energy. [20]

Treatment chambers Specific containers are used to carry food samples during exposure to PEF. [81,85]

A capacitor is an electrical device used to store energy that used to generate electric
pulses in an electric circuit (PEF systems). Several types of capacitors are available in the
market, such as electrolytic, ceramic, paper, film, mica, and non-polarized capacitors [86].
Electrochemical capacitors (ECs), also known as supercapacitors or electrochemical double-
layer capacitors (EDLC), have recently been used in many electronic applications on a
large scale [84]. Generally, capacitors consist of two parallel conductive (metal) electrodes
isolated using non-conducting materials (dielectrics), such as ceramic, waxed paper, plastic,
mica, or a liquid gel, as utilized in electrolytic capacitors. Due to the presence of dielectric
materials between two conductive materials, the direct current cannot flow through the
capacitor. Thus, a voltage is stored in the conductive metal plates as an electrical charge [84].
Several factors determine the power needed to charge the capacitor, such as the size and
number of capacitors, as well as the resistance of the charging resistor [87]. It has been
concluded that a larger capacitor requires more power and time to be charged than a
smaller one. The capacitance, C0 (F), of a capacitor can be calculated with Equation (3),
where R (Ω) is the resistance, A (m2) is the area of the electrode surface, σ (S/m) is the
conductivity of the food, τ (s) is the pulse duration, and d (m) is the distance between
electrodes [80].

C0 =
τ

R
=

τσA
d

(3)

The energy stored (Q) in a capacitor is calculated based on the values of capacitance
(C0) and charge voltage (V), as shown in Equation (4) [80].

Q = 0.5 C0 V2 (4)
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The switching device (switcher) is a critical device for the efficiency of PEF systems. It
is needed to connect or disconnect the electric current and discharge the stored energy in a
capacitor through the PFN. There are two main types of switchers: ON (semi-controlled)
and ON/OFF (fully controlled) switchers. The suitable switcher in a circuit is selected
based on its repetition rate and potential to operate at high voltage. Capacitors should be
fully discharged to turn the switcher off in semi-controlled switches (including thyratron,
trigatron, gas spark gap, and ignitron). These switches can control high voltages at a
lower cost. However, low repetition rate and short life are the main disadvantages of such
switches. Fully controlled switches (including symmetrical gate commutated thyristors
(SGCT), insulated gate bipolar transistors (IGBT), and the gate turn-off (GTO) thyristors)
can control the pulse generation process and can be switched on and off with full or partial
discharge of the capacitors. The development of fully controlled semiconductor switches
increased life spans and improved switch performance [20,80]. The relative electrical
value of each component of PFN systems influences the pulse shape. For instance, an
exponentially decaying pulse shape is formed in a simple resistance–capacitance (RC)
circuit. On the other hand, complex PFN systems can produce instantaneously reversal,
as well as bipolar and square pulses (Figure 3). To generate exponential decay pules, the
generation of an exponential decay pulse only needs semi-controlled (ON) switchers in
which the capacitor is completely discharged. Square wave pulses can be generated by the
partial discharge of a capacitor with fully controlled (ON/OFF) switchers [85].
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Resistors are one of the main components of electric circuits. They are used to regulate
the current flow and force voltage reduction. The theory of electric resistance is similar to
the water flow in pipes; the resistor can be considered a thin pipe (wire in the case of an
electric circuit) that reduces the water flow [83]. In reducing the current flow, the electrical
energy is absorbed by the resistor and dissipated as heat. Capacitors are classified based on
their production materials: wire-wound, film, or cermet (made of metal or metal-oxide);
carbon composition; and semiconductor capacitors. Ohm’s law of resistance specifies the
relationship between the resistance (R), voltage (V), and current (I) (Equation (1)); an ohm
(Ω) equals a volt per ampere [83,88].

Various treatment chambers are designed to expose food samples to the electric
field. Static chambers are used in batch processing and laboratories, whereas continuous
chambers can meet the requirements of industrial-scale applications. Batch chambers
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offer several advantages at a laboratory scale, such as treating small-volume samples,
efficiently controlling temperature by cooling the electrodes, and slowing the repetition
rates. However, continuous chambers are essential to reach high-volume capacity; they
are also easily integrated into existing food processing lines [81,85]. The material used
for building treatment chambers should be washable or autoclavable. Currently, three
main types of treatment chambers are designed based on the arrangement of electrodes in
different geometric configurations, including parallel plates, as well as coaxial and colinear
chambers [41,85]. Parallel and coaxial plates are commonly used for batch processing,
whereas colinear chambers are utilized in continuous processing devices (Figure 4).
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Recently, several companies have developed emerging PEF systems for industrial
applications. Current large-scale PEF devices are based on Marx generators or transformers,
and electric pulses are applied continuously. In Marx generators, a stack of capacitors is
used, charged in parallel, and discharged in a sequence, providing a high-power conversion
rate. For transformers, a pulse transformer is used with a low-voltage switch. Most PEF
units have an average power ranging from 20 to 400 kW [89]. Treatment chambers are
designed based on the scope of application. Two major types of treatment chamber are belt
systems, which are used for processing of solid products, such as potatoes or seafood, and
pipe systems are used for processing of liquid products [90].

The outcome of PEF treatment is influenced by many product and process factors.
Product factors include chemical composition, pH, rheological properties, temperature, and
electrical conductivity. Process parameters include electric field strength, pulse number,
pulse frequency, the shape of the pulse wave, pulse width, type of treatment chamber, flow
conditions, and flow rate [91]. It is worth mentioning that it is difficult to compare the data
from different research groups due to many factors that affect PEF treatment results, which
will be discussed in this review. In the following sections, we will discuss the effects of PEF
on the structural and techno-functional properties of milk proteins.

4. Effects of PEF on the Structure of Dairy and Plant Proteins

As shown in Figure 5, caseins consist of four major subunits, including αs1, αs2, β,
and kappa caseins. Whey proteins have several subunits, including β-lactoglobulin (β-LG),
α-lactalbumin (α-LA), bovine serum albumin (BSA), lactoferrin, and traces of some other
components, such as immunoglobulins and glycomacropeptide [92,93]. In general, upon
thermal treatment of milk proteins, proteins unfold because of covalent bonds breaking, and
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sulfhydryl (-SH) groups are exposed to the protein surface; then, aggregates are produced
due to the formation of disulfide bonds.
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Moreover, as free thiol groups are not available in α-LA, it is less sensitive to thermal
treatment than β-LG [4]. Studies have shown that PEF can change the structure of dairy
proteins, especially at higher electric strengths at a wide range of temperatures [18]. The
energy generated by PEF devices could expose amino acid and/or free-SH groups to the
protein molecules’ surface. Moreover, non-covalent interactions, such as hydrophobic and
hydrogen bonds, may be disrupted [4]. Furthermore, it was found that PEF can change the
charge density around amino acids (at the -COOH and -NH3+ moieties), influencing the
catalytic activity of peptides [94]. Whey proteins have recently attracted attention due to
their nutritional benefits and industrial applications.

As summarized in Table 3, the available results in the literature about PEF effects on
the structure of whey proteins are somehow contradictory. Sui et al. [95] investigated the
effects of PEF and heat treatments (30–35 kV/cm, 19.2–211 µs, 30–75 ◦C) on the physico-
chemical and functional properties of whey protein isolates (WPI). They concluded that
PEF treatment did not influence protein unfolding, surface hydrophobicity, of free-SH
group content [95]. Using a different treatment chamber with a different distance between
electrodes, Xiang et al. [22] found that PEF increased the surface hydrophobicity and
the extrinsic fluorescence intensity of WPI. Similarly, Perez et al. [31] noticed that PEF
treatment (12.5 kV/cm) with up to 10 pulses changed the native structure of β-LG and
induced protein aggregation. The differences between the results may occur due to the
use of various experimental conditions, such as treatment chamber, electric field intensity,
frequency, and temperature [20]. Bovine lactoferrin was treated using PEF at different
temperatures (30–70 ◦C) and compared with non-PEF-treated samples at the same temper-
atures [24]. The results showed that the lactoferrin concentration was not changed by the
PEF treatment (35 kV/cm, 19.2 µs, 30–70 ◦C). Moreover, SDS-PAGE results indicated no
significant difference in the gel profile of PEF and non-PEF-treated lactoferrin. The surface
hydrophobicity increased with increased temperature. There were no significant differ-
ences in surface hydrophobicity values between PEF- and non-PEF-treated lactoferrin [24].
Bekard et al. [96] studied the effects of a low-intensity electric field on the conformational
state of BSA using circular dichroism (CD) spectroscopy. They concluded that a low-
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intensity electric field (500 V/m, 3 h at 22.7–24.2 ◦C) changed the tertiary structure of BSA,
probably due to perturbation in the hydrogen bonds that stabilized the native structure
of BSA [96]. Sharma et al. [97] preheated milk samples to 55 ◦C for 24 s and then applied
PEF at 20–26 kV/cm for 34 µs. The results indicated that the surface hydrophobicity of
milk proteins considerably increased with increased electric field intensity. Thermal treat-
ment at 30–55 ◦C can dissociate β-LG dimers into monomers [98]. Thermal pre-treatment
associated with PEF might facilitate the dissociation of β-LG dimers of milk samples and
expose hydrophobic groups and free-SH groups to the protein molecules’ surfaces [97].
Rodrigues et al. [99] compared conventional heat treatment with moderate electric field
(MEF, 20–80 V/cm) heating at 50–90 ◦C. They found that with 70 ◦C and 80 ◦C treatments,
moderate electric field treatment exhibited higher content of α-helix and random coils and
lower content of β-sheet compared to conventional heat treatment at the same temperature.
These structural changes probably occurred due to the effects of both heat treatment and
electric field on the conformational state of β-LG.

Table 3. Effects of pulsed electric field (PEF) on the structure of dairy proteins.

Dairy Protein PEF Conditions Structural Changes References

Whey protein
35.5 kV/cm for 300 or 1000 µs, pulse
duration of 7 µs, and pulse repetition

rate set at 111 Hz.

Significant differences in the concentration of
α-LA, β-LG, and serum albumin between
PEF-treated samples for 300 µs and 1000 µs.

[100]

Whey protein isolate
(WPI)

12, 16, and 20 kV/cm; number of
pulses (10, 20, and 30)

• More hydrophobic groups exposed.
• Partial denaturation of WPI fractions.

[22]

WPI 30–35 kV/cm, 19.2–211 µs, 30–75 ◦C,
flow rate of 60 mL/min

• No obvious changes in the gel pattern
of SDS-PAGE analysis between PEF and
non-PEF control samples.

• No significant change in surface
hydrophobicity after PEF treatment.

[95]

Lactoferrin
Intensity of 35 kV/cm, pulse width of

2 µs, and pulse frequency of 200 or
100 Hz.; flow rate of 60 mL/min.

• No significant differences in surface
hydrophobicity values between PEF-
and non-PEF-treated lactoferrin.

• No significant change in surface
hydrophobicity.

[24]

β-lactoglobulin
Intensity of 12.5 kV/cm with 40 µF of

capacitance. 1–10 pulses, with 15 s
between pulses.

PEF partially denatured β-lactoglobulin. [31]

Whole milk
Intensity of 20 or 26 kV/cm for 34 µs,

bipolar square wave pulses, pulse
width of 20 µs for 34 µs.

The surface hydrophobicity of milk proteins
increased with increased electric field
intensity.

[97]

Sodium caseinate 10–150 V/cm for 5 s—2 h using a
60 Hz sine wave alternating current.

Moderate electric field altered the secondary
structure of sodium caseinate and unfolded
the protein molecules.

[33]

β-lactoglobulin
20 V/cm during holding and
80 V/cm during heating at a

frequency of 20 kHz for 5–7 min.

Changes in the secondary structure of
β-lactoglobulin. [99]

Bovine serum albumin
(BSA)

Strengths of 78, 150, 300, and
500 V/m for 3 h.

Low-intensity electric field changed the
tertiary structure of BSA. [96]

Caseins are the major proteins in milk (80% of total milk protein) and one of the
main protein sources in human nutrition. Studies on the effects of PEF on the structure of
caseins are scarce. Subaşı et al. [33] studied the impact of MEF (230 V/cm) on the structural
changes of sodium caseinate compared to sunflower protein. FTIR data revealed that MEF
can change the secondary structure of sodium caseinate and unfold the protein molecules.
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This is probably because MEF treatment can polarize the surface of protein molecules,
facilitating the exposure of hydrophobic regions to the surface of protein molecules [31,33].

The mechanism of PEF effects on milk protein structures can be proposed based on
the available information in the literature. Generally, PEF treatments at low electric field
intensities have no apparent effects on the structure of milk proteins. In contrast, PEF
treatments at high electric field intensities can considerably change protein structures,
especially in whey proteins.

As summarized in Figure 6, some polar groups of milk proteins absorb energy and
produce free radicals when exposed to intensive electric fields. These free radicals can
disrupt the several interactions among protein molecules, including disulfide and hydrogen
bonds, as well as hydrophobic, electrostatic, and Van der Waals interactions. Moreover,
the electric field can affect the strong dipole moment of the polypeptide chains, increasing
the dielectric constant of proteins. These changes may facilitate the unfolding of protein
molecules and the exposure of hydrophobic and -SH groups to the surface of protein
molecules. Increasing the duration of PEF treatment could result in the formation of
aggregates, as covalent and hydrophobic interaction may occur to crosslink unfolded
protein molecules [4,5,31]. It is worth mentioning that an increase in temperature during
PEF treatment could facilitate the denaturation of protein molecules. Thus, further study of
the effects of PEF on protein structures under controlled temperatures is recommended.
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As shown in Table 4, PEF treatment changed the structures of plant proteins. The sec-
ondary structure of soy protein isolate (SPI) changed after PEF treatment at 30–50 kV/cm.
PEF caused denaturation and aggregation to SPI, probably due to the formation of hy-
drophobic interactions and S–S bonds [29,101]. Exposure of sunflower protein to moderate
electric field strength (150 V for 20 s at a temperature < 45 ◦C) resulted in secondary and
tertiary structural changes. PEF treatment broke the hydrophobic bonds and facilitated the
crosslinking of amino acid side chains [33]. Similar results were also reported with pea
and canola proteins [69,102]. Generally, PEF treatment is able to alter the structure of plant
proteins. These changes could also affect the techno-functional properties of such proteins.
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Table 4. Effects of pulsed electric field (PEF) on the structure of plant proteins.

Plant Protein PEF Conditions Structural Changes References

Soy protein isolate (SPI)
0–40 kV/cm for 0–547 µs, 2 ms pulse

width, and 500 pulse per second (pps)
pulse frequency.

- PEF caused slight changes in the
secondary structures.

- PEF treatment caused
denaturation and aggregation of
SPI.

[29]

SPI
0 to 50 kV/cm, 40 µs pulse width,

1.0 kHz frequency, and 10 mL/min flow
speed.

- PEF changed the vibration of
polar groups and reduced the
strength of hydrogen bonding,
leading to a decrease in the
β-turns and an increase in the
antiparallel β-sheets.

[101]

Sunflower protein 10–150 V/cm for 5 s-2 h at 25–45 ◦C.

- Moderate electric field at 150 V
for 20 s altered the secondary and
tertiary structures of sunflower
protein.

[33]

Canola protein 10 to 35 kV, pulse frequency of 600 Hz,
and pulse width of 8 µs.

- PEF caused protein molecule
aggregation.

- PEF reduced β-turns and random
coils and increased α-helices and
β-sheets.

[69]

Pea protein isolate 5, 10, and 20 V/cm and frequencies of
50 Hz and 20 kHz.

- Moderate electric field treatment
(50 Hz and 20 V/cm) unfolded
the α-helix into a β-sheet
structure.

- Aromatic amino acids were
exposed to the solvent.

[102]

5. Effects of PEF on the Techno-Functional Properties of Dairy and Plant Proteins

The functionality of milk proteins is determined by physicochemical properties that
affect the behavior of proteins during their utilization in food systems [103]. The modifi-
cations of protein structures can alter their functional properties [10]. Techno-functional
properties, including solubility, gelling, emulsifying, and foaming properties, are of con-
siderable interest in the food industry [104]. Therefore, in this section, we will discuss
the effects of electric field treatment on the techno-functional properties of milk proteins.
Table 5 presents the main studies on the effects of PEF on the techno-functional proper-
ties of dairy proteins, whereas Table 6 summarizes studies on the effects of PEF on the
techno-functional properties of plant proteins.

Table 5. Effects of pulsed electric field (PEF) on the techno-functional properties of dairy proteins.

Dairy Protein PEF Conditions Changes in Protein Functionality References

Raw milk

Intensity of 30 kV/cm, outlet
temperature of 50 ± 1 ◦C; pulse number
of 80 and 120 pulses, pulse width of 2 µs,

and pulse frequency of 2 Hz.

Rennet coagulation time (RCT) higher than
that of raw milk but lower than that of

pasteurized milk.
[105]

Whey protein isolate
(WPI)

15–22 V/cm heating phase and 4 to
8 V/cm holding phase, frequency of

25 kHz.

Moderate electric field treatment resulted in
a weaker gel structure than conventional

heat treatment.
[106]
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Table 5. Cont.

Dairy Protein PEF Conditions Changes in Protein Functionality References

β-lactoglobulin 20 V/cm during holding, 80 V/cm
during heating, and frequency of 20 kHz.

At pH 7, moderate electric field and thermal
treatment (up to 60 ◦C) had similar effects on

the free SH group relativity. At higher
temperatures, conventional heat-treated

samples had higher free-SH-group relativity
than moderate electric field-treated samples.

[99]

WPI 30–35 kV/cm, 19.2–211 µs, 30–75 ◦C.

• Emulsions stabilized by PEF-treated
and heat-treated (72 ◦C for 15 s) WPI
showed similar droplet sizes and
similar emulsifying properties.
Increasing the duration of heat
treatment to 10 min caused a significant
increase in the droplet size of emulsions
stabilized by heat-treated WPI.

• PEF-treated WPI showed lower gel
strength than untreated samples.
Increasing the duration of PEF further
decreased the gel strength.

[95]

β-lactoglobulin Intensity of 12.5 kV/cm with 40 µF of
capacitance.

PEF improved the gelling rate of
β-lactoglobulin (at 72 ◦C) when the number

of pulses was less than six.
[31]

WPI 15 to 55 kV/cm, 2 to 8 and 50 to 90 ◦C.
The gelling properties of WPI increased

when treated at 35 kV/cm but decreased
after treatment at 45 kV/cm.

[107]

Table 6. Effects of pulsed electric field (PEF) on the techno-functional properties of plant proteins.

Plant Protein PEF Conditions Changes in Protein Functionality References

Soy protein isolate (SPI)
0–40 kV/cm for 0–547 µs, 2 ms pulse
width, and 500 pulse per second (pps)

pulse frequency.

- PEF decreased the solubility and
surface hydrophobicity.

[29]

Canola protein 10 to 35 kV, pulse frequency of
600 Hz, and pulse width of 8 µs.

- PEF treatment improved several
functional properties of canola protein,
including solubility, foaming, and
emulsifying properties.

[69]

Sunflower protein 10–150 V/cm for 5 s–2 h at 25–45 ◦C.

- Moderate electric field treatment at
20 V reduced the interfacial tension at
the sunflower protein solution/water
interface.

[33]

Pea protein isolate 5, 10, and 20 V/cm and frequencies of
50 Hz and 20 kHz.

- Moderate electric field treatment (50 Hz
and 20 V/cm) increased the surface
hydrophobicity and improved the
gelling properties of pea protein.

[102]

5.1. Protein Solubility

Protein solubility is commonly determined by measuring the concentration of soluble
proteins after the centrifugation of protein samples and relating it to the total protein
concentration before centrifugation [108]. Protein solubility is influenced by several in-
trinsic factors, such as amino acid composition, protein molecular weight, the content of
hydrophilic and hydrophobic groups on proteins molecules’ surfaces, and the content of
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hydrogen bonds [53,109]. Several extrinsic factors can also affect the protein solubility,
including temperature, ionic strength, pH, and the presence of solvents [110]. Protein solu-
bility is important for several protein applications, such as emulsions and foams. Therefore,
it is recommended to use highly soluble proteins to form well-dispersed colloidal sys-
tems [111]. The effects of electric field treatments on the solubility of several proteins were
investigated. There was a decrease in the solubility of pea (from 23.2 to 17.2%), rice (from
16.4 to 9.2%), and gluten (from 25 to 22.4%) concentrates after treatment with moderate
electric field strength (1.65 kV/cm, square pulse system) [112]. Similarly, the content of
soluble egg white proteins decreased (7.84%) after PEF treatment using a PEF system with
square-wave pulses (at 25 kV/cm) [113]. The authors also observed that the average particle
size of egg white proteins increased (36.9%) after PEF treatment. PEF unfolded protein
molecules and formed insoluble protein molecules. Moreover, intermolecular interactions,
such as S-S bonds could occur, resulting in reduced protein solubility. However, with soy
protein isolates, Li et al. [29] found that PEF treatment of up to 30 kV/cm using a PEF
system with bipolar waveforms improved solubility, whereas PEF at strengths higher than
30 kV/cm resulted in a slight decrease in protein solubility. Additionally, PEF treatment
(35 kV/cm for 8 µs) increased the solubility (50.07%) of canola protein compared to that
of control samples (43.25%) [69]. Therefore, we conclude that different waveforms and
protein types can affect protein solubility differently. However, there is a lack of available
knowledge about factors behind the desired solubility of milk proteins after PEF treatment,
probably due to the confirmed higher solubility of milk proteins.

5.2. Gelling Properties

The gelling properties of proteins are closely associated with the content of -SH groups
and disulfide bonds. In the dairy industry, the gelation of milk proteins is an essential factor
influencing the quality of many dairy products, including cheese, yogurt, and dairy-based
desserts [114]. Perez et al. [31] found that PEF improved the gelling rate of β-lactoglobulin
(at 72 ◦C) when samples were exposed to fewer than six pulses. Yu et al. [105] studied the
effects of PEF (20 and 30 kV/cm) at different outlet temperatures on the rennet coagulation
characteristics of raw milk. They found that PEF (at 20 ◦C)-treated milk had higher curd
firmness than pasteurized milk samples. Moreover, PEF-treated milk samples had a lower
rennet coagulation time (RCT) than pasteurized milk samples. It is known that lower
RCT values result in better gelling properties [105]. Jin et al. [107] concluded that the
gelling properties of WPI increased when treated at 35 kV/cm but decreased after PEF
treatment at 45 kV/cm. As proposed in Figure 7, during PEF treatment, the unfolding of
milk proteins and the exposure of -SH groups, followed by the formation of S-S bonds,
could be the reason behind the improved gelling properties of milk. Another reason for
the improved gelling properties reported in these studies could be the polarization of
protein molecules during treatment. Polarized molecules can attract each other through
electrostatic forces [31]. However, Sui et al. [24] found that PEF (30 kV/cm)-treated WPI
showed lower gel strength than untreated samples; increasing the PEF duration decreased
the gel strength of WPI samples. Rodrigues et al. [106] concluded that conventional heat-
treated WPI samples had higher gel strength than those subjected to moderate electric
field treatment (15–22 V/cm). At pH 7, electrostatic repulsion among protein molecules
may reduce the size of protein aggregates [115]. Moreover, applying an electric field could
destroy some of the non-covalent bonds between proteins [106]. The water-holding capacity
of PEF-treated canola protein increased at lower electric field strength (25 kV/cm) and
decreased at higher electric field strength (35 kV/cm) [69]. For pea protein isolate, lower
electric field treatment resulted in cohesive, more elastic, and weaker gels with higher
water-holding capacity [102]. The inconsistency of gelling properties reported in different
studies could be due to the use of different PEF conditions, such as voltage, the shape of
the pulse wave, and the type of treatment chamber used.
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5.3. Emulsifying and Foaming Properties

The stability of emulsions is vital for improving the shelf life of emulsion-based food
products, such as mayonnaise, ice cream, butter, milk, and margarine. Therefore, several
emulsifiers are used to reduce interfacial tension, improving the stability of emulsions [70].
Among them, proteins are widely used as natural emulsifiers due to their surface-active
properties [116,117]. Several processing technologies, such as high-pressure treatment [53],
ultrasound [70,118], cold plasma treatment [61], and microwaves [56], have been used
to improve the emulsifying properties of proteins. Studies on the effects of PEF on the
emulsifying foaming properties of milk proteins are scarce. Sui et al. [95] compared the
effects of heat treatment and PEF on the emulsifying properties of WPI. They observed that
emulsions stabilized by PEF-treated (30 kV/cm) and heat-treated (72 ◦C for 15 s) samples
had similar droplet sizes (~4 µm), whereas emulsions stabilized by WPI heated for 10 min
had significantly larger droplet sizes (18.3 µm). Sun et al. [119] studied the effects of PEF
treatment (15 and 30 kV/cm) on the emulsifying properties of a WPI–dextran mixture.
They found that the PEF-treated mixture had a higher emulsifying activity index (EAI) than
the untreated mixture [119]. PEF could facilitate the glycosylation reaction between WPI
and dextran. The combination of protein and polysaccharides was confirmed to improve
the stability of emulsions. This could be because the hydrophobic regions of proteins can
be adsorbed at the surface of oil droplets, and the hydrophilic part of polysaccharides can
be oriented towards the water phase, preventing the coalescence of oil droplets through
steric stabilization [70]. Zhang et al. [69] found that PEF pre-treatment of canola seeds
prior oil and protein extraction improved the emulsifying and foaming properties of the
resulting canola proteins. PEF could improve the solubility of plant proteins and promote
the exposure of their hydrophobic groups to the surface, thus improving their emulsifying
and foaming properties. More studies are needed to understand the effects of PEF treatment
on the emulsifying and foaming properties of plant and milk proteins. The changes in
the protein structures induced by PEF treatment could improve the techno-functional
properties of proteins. As proposed in Figure 7, PEF could polarize and unfold protein
molecules, exposing the hydrophobic groups to the surface of molecules [5]. Additionally,
PEF can increase solubility and reduce the particle size of protein molecules at a certain
electric field strength. These changes could reduce the interfacial tension at the oil/water
interface, improve the emulsifying properties of food proteins, and enhance the stability of
protein-stabilized emulsions [11]. However, there is still a lack of detailed information on
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the mechanism of action of PEF and its effects on protein functionality due to the limited
number of studies conducted in this area. Thus, more fundamental research at the molecular
scale is required to establish a clear mechanism of PEF effects on protein functionality.

6. Conclusions and Future Perspectives

Pulsed electric field is a promising green technology that can be utilized in many food
applications. With an increase in sustainable development needs, the utilization of PEF
in the food industry is expected to increase in the coming years. The conclusions of the
available studies that investigated the effects of PEF on the structure and techno-functional
properties of milk and plant proteins can be summarized in the following points:

• In general, PEF treatment at low electric strength (<10 kV/cm) cannot change the
structure of proteins;

• PEF treatment conditions, such as electric strength, pulse shape, pulse duration, and
the type of treatment chamber, have a significant impact on the effects of PEF on the
structure and techno-functional properties of proteins’

• The effects of PEF on structure and techno-functional properties are vary from one
protein type to another.

As a limited number of studies have been conducted to investigate the effects of PEF on
food proteins, several aspects need to be investigated in the future. The impact of different
electric field strengths on the structure and techno-functional properties of proteins must be
studied to define the optimum PEF conditions to improve the techno-functional properties
of such proteins. Investigation of the impacts of using nanosecond PEF treatment on the
structure and techno-functional properties of food proteins is recommended. Moreover,
PEF, as a promising green technology, can be introduced at a large scale to produce highly
effective emulsifiers. Research could be conducted to determine the possibility of using
PEF technology as an emulsification technique to produce food-based stable emulsions.
The main challenge of PEF applications is that many factors (such as PEF device parameters
and external factors, such as conductivity, pH, and concentration of treated solutions) can
affect the treatment results. Consequently, studies focusing on thermal, chemical, and
biophysical components of PEF effects on protein structures should be conducted until
clear mechanisms are elucidated. It is also extremely important that authors provide all the
necessary details about treatment conditions so the analog studies can be implemented,
and results can be compared between those studies. We recommend referring to the
guidelines and recommendations proposed by Cemazar et al. [68] for reporting on PEF
applications. Moreover, collaborations between the food industry and academic institutions
are needed to design and build more effective and energy-efficient PEF devices with
controlled treatment conditions.
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