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Abstract: The aim of the research was to estimate the effect of core–shell rubber (CSR) nanoparticles
on the tensile properties, fracture toughness, and glass transition temperature of the epoxy and epoxy-
based carbon fiber reinforced polymer (CFRP). Three additives containing CSR nanoparticles were
used for the research resulting in a filler fraction of 2–6 wt.% in the epoxy resin. It was experimentally
confirmed that the effect of the CSR nanoparticles on the tensile properties of the epoxy resin was
notable, leading to a reduction of 10–20% in the tensile strength and elastic modulus and an increase of
60–108% in the fracture toughness for the highest filler fraction. The interlaminar fracture toughness
of CFRP was maximally improved by 53% for ACE MX 960 at CSR content 4 wt.%. The glass transition
temperature of the epoxy was gradually improved by 10–20 ◦C with the increase of CSR nanoparticles
for all of the additives. A combination of rigid and soft particles could simultaneously enhance
both the tensile properties and the fracture toughness, which cannot be achieved by the single-phase
particles independently.

Keywords: epoxy; CFRP; core–shell rubber nanoparticles; tensile properties; fracture toughness;
glass transition temperature

1. Introduction

Epoxy resins having relatively high tensile strength and modulus of elasticity, a low
creep, and a good stability at elevated temperatures are extensively used as matrices in
composite technology for different applications [1,2]. Nevertheless, due to high crosslink-
ing, they are characterized by a high degree of brittleness and a poor resistance to crack
initiation/propagation [3].

Their toughness could be improved by adding core–shell rubber (CSR) nanoparticles
that are made of a soft rubbery core and a rigid shell around it which are mainly manufac-
tured by emulsion polymerization and then added to the polymer resins. In comparison
with the phase-separating rubbers, this method allows the advantage of controlling the
particle size by changing the core and shell diameters [4]. The materials that are usually
used for the core are siloxane, butadiene, and acrylate polyurethane, while poly (methyl
methacrylate) (PMMA) is preferred to be used as the shell materials due to it having a good
compatibility with the epoxy polymers [5,6].

It was determined that the addition of CSR particles led to a significant reduction in
the tensile properties of the epoxy resin (DGEBA) and almost no effect on its glass transition
temperature (Tg) [3]. For the 15 wt.% content of CSR in the epoxy, the elastic modulus
and tensile strength of the epoxy were diminished by 27 and 36%, respectively. However,
for the same composition of CSR filler particles, the fracture energy was improved by
550%. Similar results were obtained for the epoxy that was filled with CSR particles from
0 to 38 vol.%, revealing a gradual increase in the Tg and Poisson’s ratio and a significant
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decrease in the tensile and compressive properties of the CSR-modified composites which
were explained by rubber having a lower Young’s modulus and a higher Poisson’s ratio in
comparison with the epoxy [7]. By using SEM of fracture surfaces and analytical models,
several toughening mechanisms (shear band yielding, core-to-shell debonding and plastic
void growth) were defined [3,7].

In general, the fracture toughness of epoxy was improved by adding both rigid and
soft particles [8,9]. The rigid particles toughen the epoxy through crack pinning and crack
deflection/bifurcation effects, while the toughening mechanisms of the soft particles are
filler-debonding, and the subsequent void grows as well as the matrix shear band.

The research aimed to estimate the effect of core–shell rubber (CSR) particles on the
tensile properties, fracture toughness and glass transition temperature of the epoxy and
epoxy-based CFRP. The novelty of this work is in the multi-step approach for the evaluation
of the toughening effects for both the epoxy and epoxy-based CFRP and considering their
mechanical properties. The application of the proposed solution with improved fracture
toughness both for the epoxy and epoxy-based CFRP could broaden their use in aerospace,
automotive, marine and sporting goods due to them having a longer lifetime and enhanced
safety features.

2. Materials and Methods
2.1. Materials

CHS-Epoxy 582 (Spolchemie, Usti nad Labem, Czech Republic) [10] was used as matrix
material. It is a diglycidyl ether of bisphenol A (DGEBA) with a reactive diluent that has an
epoxide equivalent weight (EEW) of 165–173 g/mol. This epoxy resin is recommended for
different applications in composites, adhesives, wind energy, construction, electronics and
corrosive coatings. The hardener Telalit 0420 (Spolchemie, Usti nad Labem, Czech Republic)
which is a cycloaliphatic amine was mixed with epoxy resin at a ratio of 100:25 [11].

Three additives containing CSR nanoparticles which were dispersed in DGEBA with
different particle sizes and core material ACE MX 125, 156 and 960 were supplied by
Kaneka (Westerlo, Belgium). The information regarding core material and CSR size are
given in Table 1. For all of the additives that were studied, the concentration of CSR
nanoparticles in DGEBA was 25 wt.%, the shell material was PMMA, and the density was
1.1 g/cm3 [12]. Carbon fiber fabric KC (0/90) in plane weave and of a specific surface of
160 g/m2 was supplied by Havel Composites (Svésedlice, Czech Republic) [13] and used
for the manufacturing of CFRP laminates.

Table 1. CSR types dispersed in the epoxy [12].

Additive Name Core Material CSR Size, nm

ACE MX-125 Styrene butadiene 100
ACE MX-156 Polybutadiene 100
ACE MX-960 Siloxane 300

2.2. Manufacturing of the Test Samples

For pure epoxy samples, the epoxy resin was manually mixed with the hardener for
approx. 10 min and the mixture was further degassed by using the vacuum pump. For
CSR-modified epoxy resin, a certain content of CSR nanoparticles (2, 4, and 6 wt.%) was
added to the epoxy and manually mixed, degassed, and then mixed with the hardener for
approx. 10 min. After degassing, all of the mixtures were poured into silicon molds. The
curing and post-curing conditions were chosen based on supplier recommendations [10]:
overnight at room temperature (RT), 2 h at 60 ◦C, 1 h at 80 ◦C, and 1 h at 120 ◦C.

The silicon molds were used for the manufacturing of the test samples to determine the
tensile properties [14,15] and fracture toughness [16] of the epoxy and epoxy modified with
CSR particles. Thus, five dog-bone samples and five tapered double cantilever beam (TDCB)
samples were manufactured for each test and CSR particle type and each filler fraction.
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Double cantilever beam (DCB) CFRP samples were produced by lay-up technology
by using woven carbon fiber fabric (0/90)12, which was cured at RT, cut into samples and
post-cured as CSR-modified epoxy resin. The CSR nanoparticle fraction of 4 wt.% in the
epoxy resin was used for the manufacturing of all of the CFRP plates based on the highest
results of fracture toughness obtained for the modified epoxy in TDCB tests. At least five
DCB samples were manufactured and tested for each CSR nanoparticle additive.

2.3. Testing Methods
2.3.1. Morphology Analysis

The morphology of the fracture surfaces for CFRP samples was examined by using a
high-resolution SEM-FIB electron microscope Helios 5 UX (Thermo Scientific, Walthamm,
MA, USA), which was operated at 1 kV and 25 pA with scan interlacing and integration to
avoid charging.

2.3.2. Tensile Tests

For the test specimens of epoxy and epoxy that was modified with CSR nanoparticles,
quasi-static tensile tests were performed by using Zwick 2.5 universal testing machine with
a crosshead speed of 2 mm/min at RT. The tensile strength was defined as the maximal
achieved value of stress in the specimen, and the elastic modulus was calculated from the
slope of a secant line between 0.05 and 0.25% strain on a stress–strain plot. Five test samples
per each CSR type and fraction were tested, and the values that are provided correspond to
their arithmetic mean value.

2.3.3. Fracture Toughness Tests

A specimen with a sharp pre-crack is needed for the precise measurement of the stress
intensity factor (SIF). TDCB specimens produced in the silicone molds had an initial notch
with a 1 mm width and a round end, which may substantially increase the apparent fracture
toughness of the material. Therefore, the initial pre-crack of 2–5 mm length was made in
the specimen before testing by the sharp knife strike. Moreover, side grooves of a depth of
approx. 2 mm were produced to minimize the crack deflection and to keep the crack path
along the midplane of the specimens [16]. The tests were conducted on Zwick 2.5 universal
testing machine at RT with a constant displacement rate of 1 mm/min. SIF was calculated
using Mode I load for a crack length < 20 mm within a constant SIF region.

For the specimen without side grooves, the SIF can be evaluated as follows [16]:

Kng = 2Pc

√
m

b
, (1)

where Pc is the critical load, b is the width of the specimen, and m is a geometrical parameter,
which for the specimen of the considered geometry equals 0.6 mm−1. For the specimen
with side grooves, Equation (2) should be modified as

Kg = Kng

(
b
bn

)0.56
, (2)

where bn is the reduced width of the specimen at the grooves’ location, and the exponent
value was determined from a series of 3D finite element simulations with grooves of
different depths (see Appendix A).

2.3.4. Interlaminar Fracture Toughness Tests

The Mode I interlaminar fracture toughness tests of carbon 0/90 woven fabric lami-
nates were carried out according to ASTM: D5528 [17] using specimens with dimensions
of 25 × 3 × 125 mm3. Though this standard was specified for unidirectional laminates,
it has been successfully applied for laminates with different lay-up configurations [18].
According to this standard, a linear elastic behavior is assumed in the calculation of strain
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energy release rate, which is reasonable when the zone of damage at the delamination front
is small relative to the thickness of the DCB sample. Opening Mode I interlaminar fracture
toughness, GIC, was evaluated from the load–deflection curve at the point of deviation
from linearity (NL). The NL calculation of GIC considers that the delamination starts to
grow from the insert in the interior of the specimen at this point. The tests were performed
by using Zwick 2.5 testing machine with a crosshead speed of 1 mm/min at RT and Canon
EOS40D to record photos every 3 s for the analysis of the crack propagation until a failure
occurred. ImageJ 1.38x software [19] was used to estimate the delamination length in DCB
samples. At least five DCB samples per each CSR type at 4 wt.% in the epoxy resin used for
the impregnation of cross-ply CFRP laminates were tested.

The Modified Beam Theory [17] method was used for the calculation of Mode I
interlaminar fracture toughness assuming the correction for the rotation at the delamination
front (∆):

GI =
3Pδ

2b(a + |∆|) , (3)

where P is the load, δ is the load point displacement, a is the delamination length, and
∆ is determined experimentally by generating the least squares plot of the cube root of
compliance as a function of delamination length.

Moreover, for the specimens with loading blocks, two correction parameters—a pa-
rameter F accounting for the shortening of the moment arm and the tilting of the end
blocks and a displacement parameter N accounting for the stiffening of the specimen by
the blocks—are recommended [17]:

F = 1− 3
10

(
δ

a

)2
− 3

2

(
δt
a2

)
, (4)

N = 1−
(

L′

a

)3

− 9
8

[
1−

(
L′

a

)2
](

δt
a2

)
− 9

35

(
δt
a2

)2
, (5)

where L′ and t are the geometrical parameters of the blocks.
Then, the corrected formula for interlaminar fracture toughness by using the Modified

Beam Theory method takes the form:

GI =
3Pδ

2b(a + |∆|) ·
(

F
N

)
. (6)

2.3.5. Density Measurements

The density of the epoxy and epoxy that was modified with CSR particles was defined
at RT by using hydrostatic weighing in isopropyl alcohol and Mettler Toledo XS205DU
balance with a precision of±0.05 mg. First, the density of isopropyl alcohol was determined
by using a sinker of a known volume of 10 cm3. Then, the mass of the samples was
registered in the air (ma) and the liquid of known density (ml). The density of the samples
was determined by the formula:

ρ =
ma

ma −ml
(ρl − ρa) + ρa, (7)

where ρl and ρa are the densities of the liquid (0.785 g/cm3 for isopropyl alcohol) and air
(0.0012 g/cm3), respectively.

2.3.6. Thermal Mechanical Analysis

The glass transition temperature (Tg) of the epoxy and epoxy modified by CSR
particles was estimated by conducting thermomechanical analysis (TMA) tests using
TMA/SDTA841e (Mettler Toledo, Greifensee, Switzerland). The samples were heated
from 30 to 150 ◦C at a heating rate of 3 ◦C/min and a force of 0.02 N, and then, they were
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subsequently cooled. According to ASTM standard E1545 [20], the glass transition corre-
sponds to the inflection in the dimensional change when plotted against the temperature
upon which the material changes from a hard (brittle) state into a soft (rubbery) state. The
glass transition temperature was evaluated as the extrapolated onset of the kink in the
experimental TMA curve, which was displayed as a function of temperature. At least three
tests were conducted for each CSR type and fraction, and the values that are provided
correspond to their arithmetic mean value.

3. Results and Discussion
3.1. Morphology of the Fracture Surface

The microscopy analysis of the fracture surfaces of the pure epoxy-based CFRP shown
in Figure 1a revealed smooth and glassy surfaces with straight and sharp crack paths, which
are characteristic of a brittle damage property and a weak resistance to crack initiation and
propagation [8]. No delamination on the interface between the carbon fibers and the epoxy
resin was noticed. The fracture surfaces of all four wt.% CSR-modified compositions that
are provided in Figure 1b–d proved that the dispersion of CSR nanoparticles was good,
and no significant agglomeration of CSR nanoparticles was found. The diameter of the CSR
nanoparticles which were evaluated using ImageJ software was slightly higher than the
data that are provided in Table 1 by the manufacturer. For the additives ACE MX-125 and
ACE-MX-156, the diameter was very similar, 126 ± 28 nm and 126 ± 26 nm, accordingly.
In comparison with these two additives, the ACE MX-960 CSR particles were much larger
and had a wide diameter scatter—440 ± 248 nm. It could be an indication that most of the
CSR nanoparticles were debonded as particles’ debonding and subsequent plastic void
growth is considered one of the most important toughening mechanisms for CSR/epoxy
composites [3,8,9,21].

Figure 1. SEM images of fracture surface for the CFRP impregnated with the neat epoxy (a) and
epoxy/CSR particles (4 wt.%) for the additives: ACE MX-125 (b), ACE MX-156 (c), and ACE MX-960
(d) (scale—2 µm, magnification—×25000).

For all of the CSR nanoparticle additives (Figure 1b,c), it can be noticed that the
fracture surface was much rougher, and the crack paths became more curved following
the CSR-particle circular shape. It could be also observed that in comparison with the
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undamaged CSR nanoparticles, the ones on the crack path were not perfectly spherical,
thereby revealing their valuable contribution to the crack propagation process [8].

3.2. Density and Porosity

The results that were obtained for the density of epoxy/CSR nanoparticle composites
are shown in Figure 2. According to Figure 2, the addition of all of the additives containing
CSR nanoparticles led to a decrease in the density of CSR-modified epoxy. By using the
mixture rule, the density of the composite material could be estimated:

ρc = ρ f × v f + ρm ×
(

1− v f

)
, (8)

where ρf and ρm are the density of the filler (CSR nanoparticles) and polymer matrix (epoxy),
respectively, and while vf is the volume fraction of the filler, accordingly. The density of
the epoxy was experimentally found to be 1.159 ± 0.002 g/cm3. Considering the known
density of the 25%-CSR-modified epoxy of 1.1 g/cm3 [12], the density of the CSR particles
was found to be 0.91 g/cm3 [3]. Therefore, the addition of the filler particles of a lower
density to the epoxy resin has resulted in a slight decrease (by approx. 2%) of the density
for the composite. The higher the filler content was, then the lower that the density of the
composite was.

Figure 2. The density of the epoxy modified with different additives containing CSR nanoparticles
(indicated on the graph) as a function of filler volume fraction (symbols—experimental data, dashed
and solid lines—estimation by Equations (8) and (10), respectively.

The volume fraction of filler could be evaluated as follows [22]:

v f =
ρm × c f

ρm × c f + ρ f ×
(

1− c f

) , (9)

where cf is the weight fraction of the filler.
As seen in Figure 2, by using the mixture rule (Equation (8)), an overestimated value

for the density of all of the CSR-modified epoxy materials was obtained. Therefore, efforts
were made to evaluate the density of the composites having additional phase, air-filled
pores, which could exist in the composites, and as a result, could lead to them having a
lower density:

ρc = ρ f × v f + ρp × vp + ρm ×
(

1− v f − vp

)
, (10)

where ρp is the density of the air and vp is the volume fraction of pores in the composites,
respectively.
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The volume fraction of the pores can be derived from Equation (10):

vp =
v f ×

(
ρ f − ρm

)
+ ρm − ρc

ρm − ρp
. (11)

According to Figure 2, it is obvious that though the estimated volume fraction of
the pores was only 0.8–2% by using the modified mixture rule (Equation (10)), a better
correlation with the experimental data was obtained. It was used in the calculation of the
elastic modulus of the epoxy that was filled with the CSR nanoparticles.

3.3. Tensile Properties and Glass Transition Temperature

The stress–strain curves for the epoxy and epoxy that was filled with the ACE MX-156
CSR particles are given in Figure 3a. Analogous results were obtained for the other addi-
tives. According to Figure 3b, the elastic modulus of all of the studied materials significantly
decreased with the increasing CSR content. The elastic modulus of 1.99 ± 0.04 GPa was
found for the unmodified epoxy. For the modified epoxy, it had the lowest value for
ACE MX-960 at all of the filler fractions, which could be attributed to the lower effective
stiffness of the particles due to the highest CSR size in comparison with the other additives
(see Table 1) [2]. The tensile strength of the epoxy (73 ± 3 MPa) decreased by approx.
10–20% with the addition of the CSR particles. Again, slightly lower tensile strengths were
found for ACE MX-960 in comparison to the other CSR nanoparticles. Moreover, it could be
noted from Figure 3a that the maximal deformation increased (from 4.9 ± 0.6% to 7.2 ± 0.5%)
with the increase of the CSR content, thereby revealing the plasticization/softening effect
resulting from the inclusion of softer filler particles in a brittle matrix.

Figure 3. Stress–strain curves for the epoxy and epoxy filled with ACE MX-156 at different filler
fractions indicated on the graph (a) and elastic modulus vs. filler volume fraction (dots -experimental
results for different CSR nanoparticles, dashed and solid lines—evaluation by Equation (14) and by
Equation (12), respectively (b).

Several analytical models, e.g., the Halpin–Tsai [3], Lewis–Nielsen [3,7] and Mori–Tanaka
ones [7], were used to predict the significant reduction of the elastic modulus for the epoxy that
was filled with the CSR nanoparticles. Most models epitomize an ideal composite by making
several assumptions, e.g., that the polymer matrix and the filler particles are linear-elastic
and isotropic, thereby having a perfect bond between them [23–25]. Moreover, the porosity
and agglomeration of the filler particles negatively affecting the mechanical properties
are usually neglected. In this work, the Hansen model [26,27] considering the spherical
particles that are embedded in spherical shells of the matrix was used. It was applied
in two steps: 1. to estimate the elastic modulus of the epoxy matrix containing a certain
volume fraction of the pores from Equation (8), and 2. to determine the elastic modulus of
the epoxy (with the pores) that was filled with the CSR nanoparticles.
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According to the Hansen model, the elastic modulus of the matrix that was filled with
spherical particles was estimated by using the following formula:

Ec =

(
1− v f

)
+
(

1 + v f

)
E f /Em(

1 + v f

)
+
(

1− v f

)
E f /Em

× Em, (12)

where Ef and Em are the elastic moduli of the filler and the matrix, respectively.
For the first step considering the epoxy matrix that was filled with the pores (air

bubbles), Equation (12) becomes simplified since E f /Em � 1, and it takes the form

EI
c =

(
1− vp

)(
1 + vp

) × Em. (13)

For the second step considering the epoxy matrix (with pores) that was filled with the
CSR nanoparticles, Equation (12) was modified to include both pores and CSR nanoparticles

EI I
c =

(
1− v f

)
+
(

1 + v f

)
E f /EI

c(
1 + v f

)
+
(

1− v f

)
E f /EI

c

× EI
c , (14)

where the elastic modulus of the CSR particles Ef = 4 MPa [2], and volume fraction of the
filler and pores, vf and vp, were evaluated from Equations (9) and (11), respectively.

The results of the evaluation by Equations (12) and (14) are shown in Figure 3b.
Generally, it could be concluded that at the higher filler contents, the Hansen model
allowed us to predict the reduction of the elastic modulus by approx. 20% due to the
addition of the soft CSR particles in the epoxy resin. It could be either noticed that the
consideration of the pores (0.8–2.0 vol.%) improves the description of the experimental
results. In general, the addition of ACE MX-960 to the epoxy resin led to marginally lower
values of elastic modulus than those of the two other CSR-containing additives. It could
indicate a higher volume of the softcore when it is compared to the total particle (core plus
shell) volume since the size of these particles is the greatest when it is compared to the
other ones (see Table 1).

The results that were obtained for the glass transition temperature as evaluated using
the TMA diagrams are provided in Figure 4. The glass transition temperature of the
epoxy was approx. 78.1 ± 2.2 ◦C which was within the range (70–140 ◦C) of the reported
values of Tg for DGEBA type epoxy [3,8,28]. Contradictory results are provided in the
literature revealing the occurrence of an improvement [7], a reduction [8] or almost no
effect [3,4,21,28] on Tg for the epoxy with the addition of the CSR nanoparticles. According
to Figure 4, a gradual increase of 10–20 ◦C was obtained for the epoxy that was filled with
all of the additives containing the CSR nanoparticles, which could be attributed to the
high crosslink density and toughening effect of rubber modifiers, thereby testifying to their
dissolution in the epoxy continuous phase.

3.4. Fracture Toughness

The representative load–displacement curves for TDCB tests are provided in Figure 5a.
Obviously, the soft CSR nanoparticles were effective as tougheners for the epoxy resin.
According to Figure 5a, the critical load of the epoxy was significantly improved with the
increase of CSR nanoparticles of ACE MX-960. Similar results were obtained for the rest of
the additives containing the CSR nanoparticles.
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Figure 4. The glass transition temperature of the epoxy modified with different additives containing
CSR nanoparticles (indicated on the graph) as a function of filler weight fraction.

Figure 5. Load–displacement curves for TDCB tests of the epoxy and epoxy filled with ACE MX-960
at different filler weight fractions indicated on the graph (a) and fracture toughness for the epoxy and
epoxy modified with ACE MX-125, 156 and 960 at different weight filler fractions (indicated on the
graph) (b).

The fracture toughness of the epoxy which was evaluated by Equation (2) was
0.83 ± 0.07 MPa·m1/2 which is slightly lower than the values that are reported in the
literature for the epoxy resins [7,8]. As seen in Figure 5b, the addition of the CSR nanoparti-
cles led to a gradual improvement in the fracture toughness for all of the types of additives.
No considerable distinction in the fracture toughness among the additives was detected,
thereby proving that small (100 nm) and large (300 nm) CSR particles were equally efficient.
Though generally, ACE MX-156 showed the greatest enhancement in the fracture tough-
ness value which was approx. 108% at the CSR content of 4 wt.%. The optimum rubber
content beyond which the fracture toughness did not improve was reported [7,28]. In this
work, according to Figure 5b, the optimum CSR nanoparticle content could be estimated as
4 wt.% for all of the additives. Of course, this result is only relevant for certain dispersion
conditions of the CSR particles in the epoxy. Nevertheless, the manual mixing of the CSR
nanoparticles in the epoxy resulted in a good dispersion of the CSR nanoparticles as seen
by the SEM and a considerable improvement in the fracture toughness. Additionally, a low
fraction of pores that was indirectly estimated from the density measurements revealed the
sufficient quality of the manufactured samples.

3.5. Interlaminar Fracture Toughness

The typical DCB load vs. displacement curves of the unmodified and CSR-modified
CFRP laminate specimens are shown in Figure 6a. The saw-like drops on the load–
displacement diagrams after the critical load was achieved were obviously caused by
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the woven 0/90 lay-up configuration of the carbon fabric that was used to produce the
composite laminate. According to Figure 6a, the effect of all of the additives containing
the CSR nanoparticles was substantial, thereby leading to the improvement of the critical
load of the CFRP by 32–70%. The Mode I interlaminar fracture toughness of CFRP which
was evaluated by Equation (6) was enhanced from 390 ± 50 J/m2 to a maximal value of
599 ± 13 J/m2 as shown in Figure 6b for the CFRP with 4 wt.% of ACE MX-960.

Figure 6. Typical load-crack opening displacement curves for CFRP and CFRP modified with ACE MX
(indicated on the graph) at 4 wt.% (a) and interlaminar fracture toughness evaluated by Equation (6)
for different materials studied (indicated on the graph) (b).

However, the toughening effect of the CSR nanoparticles in the epoxy did not fully
transfer to the epoxy-based CFRP composite laminates. E.g., the use of an epoxy that
was modified with 4 wt.% of ACE-MX 156 having the maximal improvement of fracture
toughness by 108% as a matrix for CFRP laminates resulted in the improvement to the
interlaminar fracture toughness by only 32%. The interlaminar fracture toughness was
maximally improved by 53% for ACE MX-960 at CSR content 4 wt.%. A further increase in
the CSR fraction could result in greater improvement of the interlaminar fracture toughness
of the CFRP, though, it should be emphasized that rubber toughening has also the side
effect of increasing the viscosity of the epoxy resin, thereby negatively contributing to the
fabrication of composite laminates [8,9,18,28]. Additionally, at higher values of the filler
fraction, a significant agglomeration can occur, thereby causing a local stress concentration
and a detrimental effect on the toughening performance of the filler particles [29,30].

4. Conclusions

The epoxy resin was modified by the addition of three types of CSR nanoparticles of
different contents. On the one hand, the addition of all of the additives containing the soft
CSR nanoparticles resulted in a minor decrease in the density, and a substantial reduction
in the elastic modulus and tensile strength of the epoxy resin. The Hansen model was
applied to describe the elastic modulus of the epoxy having a certain fraction of the CSR
nanoparticles and pores, and a good agreement with the experimental results was found at
the high CSR contents.

On the other hand, it was testified that the fracture toughness of the epoxy was signifi-
cantly improved by the addition of all of the investigated types of CSR. The optimum CSR
nanoparticle content was found to be 4 wt.% for all of the CSR nanoparticle types, thereby
resulting in the improvement of the fracture toughness of the epoxy by 60–108%. No consider-
able distinction in the fracture toughness among the additives was detected, thereby proving
that the small (100 nm) and large (300 nm) CSR nanoparticles were equally efficient.

Moreover, the effect of all of the additives containing the CSR nanoparticles was
substantial, leading to the improvement in the interlaminar fracture toughness of the CFRP
by 32–53%. Although, the toughening effect of the CSR nanoparticles in the epoxy was two
times higher than it was in the epoxy-based CFRP composite laminates.

Additionally, a gradual increase of the glass transition temperature was obtained for
the epoxy that was filled with all of the additives containing CSR nanoparticles, which
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could be attributed to the high crosslink density and toughening effect of rubber modifiers,
thereby testifying to their dissolution in the epoxy continuous phase.

The possible combination of rigid and soft particles could be a compromise to simulta-
neously improve both the tensile properties and the fracture toughness, which cannot be
achieved by the single-phase particles independently.
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Appendix A

This Appendix presents the results of a three-dimensional finite element analysis
of the grooved and flat TDCB specimens to investigate the influence of the geometrical
parameters of the grooves on the stress intensity factor at the crack tip. The geometry of
the TDCB sample that was used in this work was proposed in [16], and it is presented in
Figure A1a. Grooves of different depths and shapes were analyzed by changing the angle γ
of the grooves (45 and 90 degrees were used for simulations) and the internal radius R of
the grooves, as shown in Figure A1b.

Figure A1. The geometry of the TDCB specimen with dimensions in millimeters (a) and a detailed
view of the grooved section of the specimen (b).

The influence of the depth of the grooves on the SIF can be estimated using simple
energy considerations and the known relation between the stress intensity factor and the
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energy release rate. Assuming, that energy that is stored in the loaded arms of flat and
grooved TDCB specimen is the same, the SIF of the grooved specimen can be written as

Kg = Kng

(
b
bn

)0.5
, (A1)

where Kng is the SIF for a flat specimen defined in Equation (1). However, this simple
analysis does not take into account the stress concentration at the bottom of the grooves.
Freed and Craft [31] suggested an alternative form of Equation (A1):

Kg = Kng

(
b
bn

)n
, (A2)

where the value of exponent n is in the range 0.5− 1 and should be estimated through
numerical analysis or by fitting the experimental data. The value n = 1 corresponds to the
limiting case of a flat specimen with groves angle γ = 180◦.

Lemmens et al. [32] used a 3D finite element simulation of grooved specimens and
obtained the value of the exponent n in Equation (A2) to be equal 0.51 and 0.6 for the center
and edge of the crack front, respectively. Gómez et al. [33] used a more complex model with
a curved crack front and concluded that the best fit n value is close to 0.5. However, both
of these works used grooves with an angle equal to 45◦ and no influence of the groove’s
sharpness was investigated.

In this work, finite element code ABAQUS was used to calculate the distribution of a
stress intensity factor along the front of the initial pre-crack using the standard procedure
that is available in ABAQUS. The finite element mesh of the grooved sample near the
crack tip is shown in Figure A2a. Quadratic 15-node wedge elements were used for the
whole model, except for the zone around the crack tip, where 20-node brick elements were
generated in a circular manner with one-side-collapsed quarter point elements for the inner
circle, as shown in Figure A2b. The calculations with different mesh densities showed that
15 elements through the specimen’s width gave sufficient accuracy in the middle section of
the crack, except for the small zones near the crack edges.

Figure A2. Finite element mesh of a specimen with grooves (a) and arrangement of elements along
the crack front for the calculation of stress intensity factors (b).

Several finite element models with a width of the specimen b that is equal to 6, 12 and
24 mm and different grooves geometries were analyzed. The SIF distribution along the
crack front for a specimen with a width that is equal to 6 mm is presented in Figure A3,
where the results are normalized with respect to the 2D plane strain solution in Equation (1).
The results show that the SIF values gradually increase as the reduced width of the grooved
specimen decreases. The side grooves also influence the SIF distribution along the crack
front, making the SIF higher near the surface of the specimen, which is contrary to the flat
specimen (b/bn = 1), where the SIF is slightly higher at the center point of the crack front.
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Figure A3a presents the results of the calculations for the specimens with different
grooves angles, 45 and 90 degrees, respectively. The results show that the SIF is slightly
higher for the grooves of 90◦, which can be explained by the fact that more material is
removed from the specimen in this case, thereby resulting in a higher compliance of the
arms of a specimen under the same load. The influence of the sharpness of the grooves
on the distribution of the SIF along the crack front is presented in Figure A3b, where the
grooves with inner radii of 0.5, 0.25 and 0.15 mm were used for the calculations. As could
be expected, the smaller that the inner radius of the grooves was, then the higher the SIF
near the surface of the specimen was, however, at the same time, in the middle section of
the specimen, the SIF is lower for the sharp grooves, resulting in almost the same average
SIF for all three radii of the grooves.

Figure A3. Stress intensity factor distribution along the crack front for grooves of different depths
and two angles (a) and different radii at the tip of the groove (b). Numerical results are normalized
by a two-dimensional solution.

The average values of the SIF along the crack front for different geometries of the
grooves were approximated by a power function, and the results for the TDCB specimens
with the width b that was equal to 6 mm and groove’s angle that was equal to 45◦ and 90◦

are presented in Figure A4.

Figure A4. Approximation of the numerical data for the normalized average stress intensity factor by
a power function.

The best fit values of the exponent n are listed in Table A1 for different geometries of
the TDCB specimen and grooves.
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Table A1. Exponent n value determined by fitting of simulations data for different grooves angles
and specimen widths.

Grooves Angle γ
Specimen Width b, mm

6 12 24

45◦ 0.54 0.55 0.59
90◦ 0.56 0.59 0.65
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