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Abstract: Flexible antibacterial materials have gained utmost importance in protection from the distri-
bution of bacteria and viruses due to the exceptional variety of applications. Herein, we demonstrate
a readily scalable and rapid single-step approach for producing durable ZnO nanoparticle antibac-
terial coating on flexible polymer substrates at room temperature. Substrates used are polystyrene,
poly(ethylene-co-vinyl acetate) copolymer, poly(methyl methacrylate), polypropylene, high density
polyethylene and a commercial acrylate type adhesive tape. The deposition was achieved by a
spin-coating process using a slurry of ZnO nanoparticles in toluene. A stable modification layer
was obtained when toluene was a solvent for the polymer substrates, namely polystyrene and
poly(ethylene-co-vinyl acetate). These coatings show high antibacterial efficiency causing >5 log
decrease in the viable counts of Gram-negative bacteria Escherichia. coli and Gram-positive bacteria
Staphylococcus aureus in 120 min. Even after tapping these coated surfaces 500 times, the antibacterial
properties remained unchanged, showing that the coating obtained by the presented method is very
robust. In contrast to the above findings, the coatings are unstable when toluene is not a solvent for
the substrate.

Keywords: ZnO; nanoparticle; coating; flexible substrate; antibacterial; E. coli; S. aureus

1. Introduction

Nano-sized ZnO has been recognized as a promising antibacterial material, show-
ing significant elimination of activity for a wide spectrum of bacterial species [1–4]. The
antibacterial activity of ZnO nanoparticles is attributed to the release of Zn2+ ions, as
well as superoxide radicals in the dark [5–9]. The antibacterial activity of ZnO can
be further enhanced by UV light irradiation due to photocatalytic generation of reac-
tive oxygen species by reaction with water and oxygen [10,11]. ZnO is an inexpen-
sive material and nanoparticles can be synthesized using various chemical and physical
synthesis methods [9].

The most challenging task is obtaining durable ZnO nanoparticle coatings onto flexible
substrates to apply to surfaces with different shapes. Contrary to rigid inorganic substrates,
soft materials cannot tolerate high annealing temperatures, which are needed to transform
Zn precursors into crystalline and durable ZnO coatings. To prepare flexible antibacterial
material, commonly, ZnO nanoparticles are incorporated into a polymer matrix. However,
when nanoparticles are mixed into a polymer matrix, nanoparticle surfaces become passi-
vated by the polymer matrix, leading to significant reduction in antibacterial activity, as the
nanoparticles become isolated from microorganisms reaching the surface [12]. Furthermore,
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substantial amounts of nanoparticles must be used to have a sufficient number of particles
on the surface. Since a polymer skin covers the nanoparticles, this must be removed by a
post-treatment process, such as plasma etching [12].

In addition, other methods are used to obtain durable nanostructured ZnO coatings
on flexible substrates. ZnO coatings have been grown by physical and chemical vapor
deposition, as well as solution techniques [7,13–16]. Magnetron sputtering has been used
for depositing ZnO nanoparticles on polylactide [8,17]. ZnO nanostructures were deposited
on a polyethylene terephthalate sheet and cotton fabric by activated reactive evaporation,
where nanostructures are grown in the gas phase and deposited as a nanostructured film
at room temperature on the substrates placed above the plasma source [18]. The atomic
layer deposition process, which is based on the sequential use of a gas-phase chemical
reaction has been used for depositing ZnO on cellulose fibers [19] and silicone rubber [20].
Sol-gel solution approach has been used for coating ZnO films on different substrates at
room temperature [21,22]. For example, ZnO has been deposited on polystyrene by sol-gel
process [23]. Another effective approach for growing ZnO on flexible substrates is chemical
bath deposition, which has been used for depositing a ZnO coating on polypropylene [24].
However, the requirement for seed layers, long processing times, expensive and ener-
getically costly equipment, as well as limited scalability of the approach are the general
drawbacks of the proposed deposition techniques.

The alternative, and more straightforward strategy, is to deposit films from nanoparti-
cle powders by using a small addition of organic binders. ZnO nanoparticle powders can
be produced on a large scale by numerous synthesis approaches, thus making this way
especially attractive. Agrawal et al. [25] prepared ZnO coated robust antibacterial cotton
fabrics by using aminopropyltriethoxysilane to anchor ZnO nanoparticles on the surface
of a cotton fabric, followed by modification with a hexadecyltrimethoxysilane as a top
protecting hydrophobic layer. This dual-silanization approach resulted in highly durable
coatings, presenting good antibacterial properties [25]. ZnO nanoparticles adhered by
double silanization remained on the surface at the same level after 2 h of ultrasonic wash-
ing. In another study, multilayer nanocomposite films with a high content of ZnO were
fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly
technique [26]. Functional antibacterial properties of ZnO nanoparticles were achieved
by depositing 10 layers. However, both approaches require sequential immersion into
the different processing solutions (deposition and washing), thus making production
time consuming.

Herein we report a one-cycle rapid deposition of durable ZnO nanoparticle coatings on
flexible polymer substrate from ZnO nanoparticle slurries. We show that ZnO nanoparticles
from slurries based on organic solvents adhere strongly to polymer substrates, as the
polymer is soluble in the chosen solvent. In our approach, antibacterial ZnO nanoparticles
are adhered to the polymer surface and are not covered by the polymer matrix, thus
providing high antibacterial activity. Coatings show good stability and high antibacterial
activity. Among other substrates, we have used the proposed approach to deposit ZnO
nanoparticles on flexible commercial adhesive tape, which can be applied to any surface
with different shapes and thus has immense potential for a wide range of applications.

2. Results and Discussion
2.1. Characterization of ZnO Nanoparticles and ZnO Nanoparticle Coatings

XRD and SEM were used to characterize the ZnO nanoparticles. The powder diffrac-
togram of the ZnO particles (Figure 1A) shows the typical pattern for a wurtzite-like
(hexagonal) crystal structure and is in good agreement with PDF#04-005-5076. Further-
more, the intense narrow diffraction peaks indicate a high crystallinity.
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Figure 1. (A) XRD pattern of commercial ZnO nanoparticles, (B) SEM image of commercial ZnO
nanoparticles used in the preparation of coatings, and (C) the ZnO nanoparticle size distribution
histogram, with normal distribution curve, the mean value and standard deviation (SD) are reported.

The ZnO particles predominantly have a spherical shape with a diameter of roughly
40 nm, as observed in the SEM image (Figure 1B). However, there are also some particles
with a plate-like structure and a much larger size. A nanoparticle size distribution histogram
determined from the SEM images by measuring the diameter of 100 random nanoparticles
using ImageJ software showed a significant variation in size ranging from ~20 to ~110 nm,
with an average size of ~40 nm (Figure 1C).

ZnO nanoparticles in a toluene dispersion were deposited by spin-coating onto
the polymer substrates having different solubility in toluene. The substrates chosen
were polystyrene (PS), poly(ethylene-co-vinyl acetate) (EVA), poly(methyl methacrylate)
(PMMA), polyethylene (PE), polypropylene (PP) and a commercial acrylate adhesive tape.
Stable ZnO nanoparticle coatings were obtained when the polymer substrate was soluble
in toluene, namely PS, EVA and the acrylate adhesive tape. In contrast, the particles were
easily washed off the substrates that were not soluble in toluene (PMMA, PE, PP; see
Table 1).

Table 1. Properties of ZnO nanoparticle coatings deposited on different polymeric substrates.

Polymer Substrate Solubility in Toluene Coating Properties

PS + durable
EVA + durable

PMMA − easy to remove
PP − easy to remove

HDPE − easy to remove
Acrylate tape + durable

This result can be attributed to the fact that the surface of PS, EVA and acrylate
adhesive tape is partly dissolved by the toluene during the spin-coating process and thus
becomes soft and sticky. This allows the nanoparticles to adhere to the surface better than
in the case of toluene-insoluble polymers (PE, PP, PMMA), where the surface properties of
the substrates are much less affected by the toluene.

SEM images of toluene soluble polymer substrates coated with ZnO nanoparticles after
one cycle are presented in Figure 2C. Spin-coated nanoparticles are uniformly distributed
and form an almost continuous film on the polymer substrate with some pores and cracks.
These defects are only in the coating layer and not in the polymer substrate itself and might
be a result of the drying process. Furthermore, it is worth noting that a much less quantity
of nanoparticles is needed for nearly complete surface coverage as compared to other
modification techniques such as the preparation of polymer nanoparticle composites [12].
The ZnO nanoparticles are not covered by the polymer matrix (Figure 2D) and are readily
accessible to the ambient environment without any post-treatment, which is vital for
providing high antibacterial activity.
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Figure 2. ZnO nanoparticles coating scheme: (A) ZnO nanoparticles slurry spin-coated onto the
polymer surface, (B) obtained ZnO nanoparticles coating, (C) SEM images of ZnO nanoparticles
coatings on polystyrene (PS), commercial acrylate tape and poly(ethylene-co-vinyl acetate) (EVA).
(D) Cross-sectional SEM images of ZnO nanoparticles coatings on PS and EVA.

2.2. Antibacterial Efficacy of ZnO Nanoparticle Coatings

The antibacterial efficacy of the ZnO coated samples was investigated with E. coli
(Gram-negative) and S. aureus (Gram-positive) bacteria. It is assumed that the polymer
substrates have no effect on cell viability. Therefore, the studies listed below were performed
using only coated tape samples.

The Gram-negative bacteria E. coli was more resistant to the ZnO coating than the
Gram-positive bacteria S. aureus. After 15 min of treatment, a reduction of >3 log was
observed, which did not increase significantly in the following 45 min. After 2 h of
incubation, the reduction increased >5 log (Figure 3A). For S. aureus, a reduction of >4 log
was achieved after only 1 min of contact, which further increased to >5 log after 30 min of
contact time (Figure 3B). The observed differences in efficacy are consistent with previously
reported observations with ZnO nanoparticles [27–29] and can be explained by differences
in the cell membrane and accessibility to proteins and DNA [29,30]. Comparative tests with
uncoated polymer surfaces showed no antibacterial efficacy for both E. coli and S. aureus
(<0.5 log cell reduction over 2 h), indicating an evident impact of ZnO coating on cell
viability. The antibacterial activity of ZnO nanoparticles has been explained in the literature
by different mechanisms of action. It has been suggested that Zn2+ ions, either released
into the cell culture or upon contact of the cells on the ZnO nanoparticle surface, act as
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a cytotoxin. Mechanical destruction or damage of the cell membrane upon contact of
the bacteria with the ZnO nanoparticles has been proposed as another mechanism for
antibacterial activity. The generation of reactive oxygen species (ROS), even in the dark, is
discussed as a third mechanism [8,9,31].
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Figure 3. Effect of contact time to ZnO nanoparticle coated adhesive tape surfaces (single ZnO layer)
on log reduction of (A) E. coli and (B) S. aureus. Standard deviation represents the average from three
separate experiments.

Since SEM of single layer coated polymer substrates showed some imperfections in the
coating layer (see Figure 2), the effect of deposited ZnO layer number on the antibacterial
activity was investigated in the second series of experiments. The tests were again carried
out with adhesive tape as substrate. The results are shown in Figure 4. While the control
samples (bacterial culture only (Control) and uncoated polymer substrate (Polymer)) did
not show any effect on bacterial growth, significant antibacterial activity was registered for
the coated samples. However, the activity is independent of the number of ZnO layers for
both E. coli and S. aureus (p > 0.05). On the one hand, the results can be explained by the
fact that the polymer surface is already highly covered with ZnO nanoparticles after one
coating step and this coverage is sufficient for the high antibacterial activity. On the other
hand, it has to be considered that the high coverage of the first layer makes further stable
deposition of ZnO nanoparticles on the polymer surface difficult. Consequently, only a
small amount of ZnO nanoparticles can be deposited during the further coating steps. In
any case, the experiments showed that already a single coating step is sufficient to obtain
polymer surfaces with high antibacterial activity.
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The long-term stability (mechanical) and long-lasting antibacterial effect of the coatings
(wear resistance) are essential prerequisites for the practical application of the coated
polymer substrates. For an initial assessment of these properties, a ZnO coated substrate
(adhesive tape) was touched 100, 250 and 500 times with a rubber-gloved hand. Since,
when we need feedback from a surface, we always perform a sliding motion by touching a
surface. Subsequently, the antibacterial properties of these samples were determined with
E. coli and S. aureus. The results are summarized in Figure 5. As noted in the previous
experiments, the antibacterial efficacy, expressed in log reduction, is lower against E. coli
(initial: 3.21) than against S. aureus (start: 4.89). However, the antibacterial efficacy of
the ZnO particle-coated samples against both E. coli and S. aureus is still present after
500 contacts. This long-term efficacy is more pronounced for S. aureus than for E. coli. For
S. aureus, in contrast to E. coli (start: 3.21; final 2.22), no significant change in log reduction
(start: 4.89; final 4.94) was observed. In any case, these experiments confirm the robustness
of the prepared coatings.
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(B) S. aureus. Standard deviation represents the average of three individual experiments.

3. Materials and Methods
3.1. Materials

Zinc oxide nanoparticles (ZnO, 20 nm) are a product of GetNanoMaterials (France).
Toluene (C6H5CH3, 99.8%), dodecylbenzenesulfonic acid (DBSA, 95%), polystyrene (PS),
poly(ethylene-co-vinyl acetate) (EVA, vinyl acetate content 40 wt.%), poly(methyl methacry-
late) (PMMA) and 4′,6-diamidino-2-phenylindole (DAPI) were obtained from Sigma Aldrich
(Schnelldorf, Germany). Tryptone soy broth and peptone were obtained from Oxoid Ltd.,
(Basingstoke, UK). All chemicals were used as received. Polypropylene (PP), high density
polyethylene (HDPE, HTA108) and a commercial acrylate tape (Tesa) are products from
Plastika 1 (Riga, Latvia), Exxon Mobil (Machelen, Belgium) and Beiersdorf (Hamburg,
Germany), respectively.

3.2. Samples Preparation

Along with the commercial acrylate adhesive tape, various polymer substrates with
different solubilities in toluene, such as polystyrene (PS), poly(ethylene-co-vinyl acetate)
(EVA), polypropylene (PP), high density polyethylene (HDPE) and poly(methyl methacry-
late) (PMMA) were prepared by hot pressing and used for deposition of ZnO nanoparticles.
For the preparation of flexible polymer substrates by hot pressing, the appropriate amount
of polymer was weighed to allow the preparation of 70 × 100 mm polymer films. A metal
frame was used to ensure a uniform thickness of 100 µm. The temperature in the press
was set according to the melting temperature of the respective polymer. The polymer was
pre-heated for one minute at atmospheric pressure prior to pressing at 5 MPa pressure for
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3 min. After pressing, the polymer substrates were removed from the hot press and cooled
to room temperature.

For deposition, commercial ZnO nanoparticles were suspended in toluene at a con-
centration of 0.3 g/mL (the highest concentration we could apply for obtaining uniform
coatings by spin-coating) by using an ultrasonic probe for 2 min (200 W, Hielcher UPS200).
DBSA surfactant (30 µL/mL) was added to the ZnO nanoparticles slurry to increase the
suspension stability. 200 µL of ZnO nanoparticle slurry was deposited on a 5 × 5 cm2 poly-
mer substrate and distributed over the surface using the spin-coating technique (rotating
speed 1000 rpm). The resulting samples were heated at 40 ◦C for 30 min.

3.3. Characterization

The morphology of ZnO nanoparticles and coatings was characterized by scan-
ning electron microscopy (SEM, Hitachi TM3000, Japan) and a high-resolution FEI Nova
NanoSEM 650 field emission scanning electron microscope (FESEM, The Netherlands).
The crystalline phase composition of the commercial ZnO nanoparticles was analyzed
by powder X-ray diffraction (XRD, Rigaku Ultima+ diffractometer, Japan) with Cu-Kα

radiation.

3.4. Antibacterial Efficacy Assay

Gram-positive and Gram-negative model organisms commonly used in standard
protocols were selected for evaluation of the antibacterial efficacy of ZnO nanoparticle
coatings. Bacterial suspensions of Escherichia coli ATCC 8739 and Staphylococcus aureus
ATCC 6538 (~107 cells/mL) were prepared by overnight cultivation in tryptone-soy broth.
Cell numbers were estimated by direct microscopic counting. For this purpose, cells were
immobilized on membranes with a pore size of 0.2 µm (Whatmann, Cytiva, Tokyo, Japan),
stained with DAPI and visualized/counted by epifluorescence microscopy (excitation:
365 nm, emission > 397 nm, Axioscope 5, Zeiss).

To determine the antibacterial properties, all samples (uncoated controls and ZnO
coated) were placed in sterile containers with the treated surface facing up. A total of
200 µL of each bacterial suspension was applied to the surfaces of the samples, which were
then covered with a sterile glass slide to ensure uniform and thin coverage of the bacterial
suspension with good contact between the bacteria and the tested surface. After incubation
periods of 1, 15, 30, 60 and 120 min in the dark, cells were detached from the surface by
adding 9800 µL of 0.1% peptone, followed by vortexing for 30 s. A total of 0.1 mL of the
sample was collected in at least 2 replicates, and 10-fold serial dilutions of each replicate
were prepared. The respective samples were inoculated onto tryptone-soy agar plates and
incubated at 37 ◦C for 24 h. Finally, colonies were counted and the number was estimated
as CFU per ml taking the dilution steps into account.

The effects of intensive use on the antibacterial properties of the ZnO coated samples
were simulated by tapping the samples 100, 250 and 500 times with sterile powder-free ni-
trile gloved hands. Afterwards, the antibacterial properties were tested as described above.

All tests were performed in triplicates, each time including two technical repetitions.
To exclude the influence of the natural death of the bacteria as well as of the polymer sub-
strate itself on the antibacterial properties of the ZnO coated samples, the bacterial cultures
were characterized before and after the experiments and uncoated polymer substrates
(surface controls) were included in the investigations.

4. Conclusions

Antibacterial coatings were deposited on polymer substrates using a rapid one-step
process (spin-coating at room temperature) from highly concentrated nanoparticle slurries.
Robust coatings with a high coverage rate were obtained when the polymer substrate was
soluble in the solvent used for slurry preparation. If this is not the case, the nanoparticles
can be easily washed off the substrate surface. The ZnO nanoparticle coatings show high
antibacterial activity without post-treatment of the coated substrates with a reduction of
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E. coli and S. aureus by more than 5 log in 120 min. High antibacterial activity was also
observed after mechanical stress, highlighting the stability of the coating. Thus, using
a suitable substrate solvent combination, the proposed approach can be used to apply
coatings of different particles on different polymer substrates, which has not been possible
so far.
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26. Uğur, S.S.; Sarıışık, M.; Aktaş, A.H.; Çiğdem Uçar, M.; Erden, E. Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer
Films by Layer-by-Layer Deposition Method. Nanoscale Res. Lett. 2010, 5, 1204. [CrossRef]

27. Hammad, S.M.; El-Wassefy, N.A.; Shamaa, M.S.; Fathy, A. Evaluation of zinc-oxide nanocoating on the characteristics and
antibacterial behaviour of nickel-titanium alloy. Dent. Press J. Orthod. 2020, 25, 51–58. [CrossRef]

28. Emami-Karvani, Z.; Chehrazi, P. Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. Afr. J.
Microbiol. Res. 2012, 5, 1368–1373.
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