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Abstract: A promising phenomenon such as lossy-mode resonance (LMR) is of great interest in sensor
applications. Until now, this phenomenon has been shown only in fibers or planar waveguides;
however, given the rapid development of such an important technological area as photonic integrated
circuits (PICs), it is important to transfer LMR technology specifically to PICs. In this article, we
propose the theoretical development of an integrated polymer-based LMR sensor that will also
contribute to the development of hybrid organic–inorganic PICs. This work theoretically shows that
LMR can be achieved using polymer SU-8 waveguides on a glass substrate, on top of which TiO2 is
deposited. In addition, the paper shows that multiple resonances can be achieved in the developed
integrated sensor. The highest sensor sensitivity (about 1400 nm/RIU) was achieved with 40 nm of
TiO2. The effect of the waveguide and coating geometries, as well as the polarizations of propagating
modes, is studied in this paper.
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1. Introduction

In last few decades, sensors implementing optical resonance structures, such as ring
resonators, photonic crystals, etc., have been in high demand due to their high sensitivity
to external changes [1,2]. In recent years, there has been great interest in the phenomenon
of lossy-mode resonance (LMR) [3]. LMR can be observed when light is propagating
through an optical fiber or waveguide, and it interacts with thin films that have positive
real parts of permittivity higher in magnitude than both their own imaginary parts and the
permittivity of the fiber or waveguide materials [4]. Lossy coatings that are deposited on
optical fibers or waveguides induce attenuation bands in the transmission spectra, which
can be explained as a coupling between core and lossy modes of dielectric-cladding thin
film [5]. These attenuation bands are sensitive to a huge number of external parameters
(pH [6], humidity [7], etc.); therefore they can be used as sensors in various applications [5].

LMR has several advantages over other optical-fiber- and waveguide-based sensing
techniques. Compared to similar and more commonly used sensing methods, such as
surface plasmon resonance (SPR), LMR can generate multiple resonances. At the same
time, in comparison with SPR, LMR is observed using both TE- and TM-polarized light [8].
In addition, LMR is a more practical method due to the fact that this effect can be observed
for various cladding materials, such as polymer [6], semiconductor [9] and dielectric
coatings [10], providing flexibility and low-cost sensing-device fabrication.

Recently, polymers have become popular materials for waveguides fabrication [11].
Compared with inorganic materials, polymers are inexpensive, flexible, and can be func-
tionalized to achieve desired properties for specific photonic applications [12]. Photoresist
SU-8 is one of the most commonly used polymers in the field of integrated photonics due
its chemical stability and simple patterning with direct laser lithography. SU-8 is ideal for
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waveguide applications in visible and near-infrared ranges due to its high transparency [13].
In the literature, LMR is observed mostly in the visible and near-infrared regions, making
polymers a perfect candidate for the core material of LMR sensors [9]. However, it should
be noted that LMR is observed in the UV range for some materials, which can cause certain
difficulties when it is combined with polymer waveguides [14]. Among all materials,
TiO2 was chosen as a coating for two reasons. First, there are many ways to deposit it
over potential waveguides (magnetron sputtering [15], atomic-layer deposition [16], etc.).
Secondly, SU-8 does not guide UV radiation very well, while TiO2 provides LMR in the red
and near-infrared ranges, unlike some other dielectric coatings [14].

So far, the LMR effect has been shown in the literature only in fibers [9] or planar waveg-
uides [17]. The transfer of LMR sensor technology to photonic integrated circuits (PICs) will
gain huge interest from industry due to fabrication cheapness and scalability potential. This
would be essential for Point-of-Care (POC) applications and Lab-on-Chip development
where integrated sensors play a huge role. In addition to the above, the development of an
integrated polymer-based LMR could also be extended to hybrid organic–inorganic PICs
due to the simple integration of polymer with other photonic materials.

The aim of this work is to theoretically demonstrate for the first time the possibility
of achieving the LMR effect in a level of integrated chip. At the same time, we consider it
important to provide the simplest design so there will be no difficulties in the experimental
implementation. Considering the above, the paper will evaluate the influence of the
geometry of the SU-8 waveguide and lossy TiO2 coating thickness on the LMR signal, and
will also propose the optimal solution with the highest sensor sensitivity.

2. Materials and Methods
2.1. Materials Fabrication and Characterization

This section will describe the fabrication of SU-8 and TiO2 thin films for the subsequent
measurement of their optical properties, which will be necessary for simulations. We spin-
coated SU-8 on glass slides (75 × 25 × 1 mm) using Laurell WS650 system. We prepared
these glass slides before photoresist spin coating using acetone, detergent, deionized
water, and isopropanol in ultrasonic bath. We also performed photoresist oxygen plasma
ashing using GIGAbatch 360 M for better adhesion of SU-8. All critical photolithography
parameters are given in Table 1.

We sputtered TiO2 lossy thin film on glass slides (75 × 25 × 1 mm) using Sidrabe
G500M reactive DC magnetron sputtering system. We performed sputtering process in
Ar/O2 (Ar and O2 flow ratio was 3:1) plasma using Ti 100 × 200 × 9 mm target at 5 mTorr
pressure and 300 W power.

We determined SU-8 photoresist, TiO2 thin film, and SiO2 glass slide optical properties
using a Woollam RC2-XL spectral ellipsometer and CompleteEASE software. We carried out
measurements at angles of incidence from 45◦ to 80◦ in the visible and near-infrared ranges.
We found dispersion curves for SU-8 photoresist and SiO2 glass slide using Sellmeier
equation from CompleteEASE software manual:

n =

√
ε∞ +

Aλ2

λ2 − B2 − Eλ2, (1)

where A, B and E are fitted coefficients and λ is given in µm.
TiO2 is an absorbing thin film; therefore, we used Lorentz oscillator model to determine

optical properties. We determined TiO2 permittivity using equation from CompleteEASE
software manual:

ε = ε∞ +
Amp

En2 − E2 + ∑
AmpnBrnEnn

En2
n − E2 − iEBrn

, (2)

where all parameters except photon energy E are fitted parameters.
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Table 1. SU-8 thin film fabrication.

Process Steps Equipment and Materials Used Critical Parameters

Spin coating Laurell WS650, Gersteltec GM1060
photoresist

1. Acceleration for 30 s: 100 rpm/s
2. Constant rotation speed for 30 s: 1000 rpm
3. Acceleration for 30 s: −100 rpm/s

Soft bake Unitemp high-precision hot plates 1. Temperature ramp rate for 500 s: 6 ◦C/min
2. Holding temperature for 300 s: 95 ◦C

Exposure Mask aligner Suss MA6 1. Light source wavelength: 365 nm
2. Flood exposure dose: 300 mJ/cm2

Post bake Unitemp high-precision hot plates 1. Temperature rate for 270 s: 6 ◦C/min
2. Holding temperature for 300 s: 95 ◦C

Development mr-Dev 600 1. Development time: 120 s

Hard bake Unitemp high-precision hot plates 1. Temperature ramp rate for 1200 s: 6 ◦C/min
2. Holding temperature for 1800 s: 165 ◦C

2.2. LMR Device Simulations

The design of the developed LMR sensor is shown in Figure 1. We used COMSOL
Multiphysics and the finite element method (FEM) to simulate this problem. First, we
defined geometry. We used two-dimensional cross-sectional geometry to determine the
electromagnetic distribution of the guided mode. This approach characterizes the behavior
of the guided mode in an infinite homogeneous waveguide and ignores many parameters
that are unnecessary at this stage (e.g., the light input), which also increases the performance
of calculations. This geometry is shown in Figure 1b. The next step was materials definition.
At this stage, we defined four different environments (SiO2, SU-8, TiO2, and sensing media)
with experimentally determined optical properties. To solve posed problems, we used
“Electromagnetic Waves, Frequency Domain” physics. After choosing the physics, we
also chose the mesh. We meshed thin-film domain with physics-controlled element size
(element size of 200 nm). We meshed other domains with element sizes comparable to
wavelength. The last step was to find solutions. We performed a parametric sweep to test
various waveguide and coating geometries. WE carried out a mode analysis to determine
the distribution of the electromagnetic field in the waveguide for various wavelengths
from 400 to 1100 nm. From this, we evaluated electromagnetic field distribution effective
refractive index value ne f f , which can be used to simulate transmittance spectra from
equation in Ref. [18]:

T = exp
(
−4π

λ
imag

(
ne f f

)
L
)

, (3)

where T is transmittance, λ refers to light-source wavelength, and L corresponds to the
sensing region length of 1 cm, which is the same as in other literature sources [14].
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Figure 2. Dispersion curves: (a) transparent SU-8 and SiO2; (b) absorbing TiO2. 

Figure 1. Integrated LMR sensor design: (a) top view, (b) cross-sectional view.

2.3. LMR Device Fabrication Guidelines

This section will describe the theoretical stages of fabrication for the developed LMR
sensor, according to which we will later fabricate it ourselves. Before photolithography,
glass slides should be scribed using diamond tool in order to cleave them with fabricated
waveguides after photolithography procedure later for efficient fiber attachment.

SU-8 waveguide fabrication can be performed using the same photolithography pro-
cedure described in Section 2.1, excepting exposure step. Exposure should be performed
using tool that provides possibility to selectively expose spin-coated photoresist.

After waveguide fabrication, TiO2 thin film should be sputtered over it through a
shadow mask for cladding patterning using magnetron sputtering procedure described in
Section 2.1. This approach will provide sufficient waveguide coverage with lossy coating.

Glass slides then should be cleaved along scribed lines, thus creating access to waveg-
uide ends from the substrate-edge sides for edge-coupling light into photonic chip. Sub-
strate edges with SU-8-waveguide ends should be flattened and smoothened by using
grinder–polisher machine. MM fiber should be positioned carefully and permanently
bonded to chip using rigid UV adhesive.

3. Results

The dispersion curves experimentally obtained after ellipsometry measurements for
SiO2, SU-8, and TiO2 are given in Figure 2. The dispersions curves gave possibility to fit
parameters from Equations (1) and (2). These parameters are summarized in Table 2.
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Table 2. Materials’ fitted parameters.

Material Equation Used Fitted Parameters

SU-8 (1) ε∞ = 1, A = 1.389, B = 0.15083 µm2, E = 0.0184 µm−2

SiO2 (1) ε∞ = 1, A = 1.168, B = 0.09091 µm2, E = 0.0100 µm−2

TiO2 (2) ε∞ = 1, Amp = 106.9 eV2, En = 5.9 eV, Amp1 = 24.0,
Br1 = 1.4 eV, En1 = 4.1 eV, Amp2 = −19.9, Br2 = 1.4 eV, En2 = 4.0 eV.

Various square-type waveguides with side lengths from 4 to 40 µm were tested. To
compare optical properties of these waveguides, extinction ratio spectra was used. First
of all, it is clearly seen from Figure 3a that a higher extinction ratio is achieved for smaller
waveguides, which is explained by the stronger interaction of the guided modes with the
waveguide facets. In addition, from Figure 3a, it is clearly seen that the LMR absorbance
depends on these dimensions—it shifts to near-infrared range with increasing waveguide
dimensions. In this case, it is clearly seen that the resonance line tends to a critical value
(λcrit = 830 nm) and, upon reaching certain dimensions of the waveguide, it almost does
not shift (see Figure 3b). The effect of the optical fiber size on the LMR effect has been
previously studied in the literature [14]; however, no shift has been observed there. Most
likely, in this work, the authors have already reached a critical value at the smallest fiber
diameter because the dependence of the LMR signal on the diameter was studied in the
range from 50 to 800 µm. This critical wavelength corresponds to the LMR that should be
observed when using multimode fiber. The dependence of the optical fiber diameter on
the value of the effective refractive index has been studied in the literature [19]. This can
explain the shift of the resonance line with a change in the dimensions of the waveguide
due to changes in the resonance conditions. Another interesting effect worth noting is the
relative change in transmittance when resonance is reached—it decreases with increasing
waveguide dimensions.
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In addition to the waveguide geometry, the thickness of the lossy coating also signifi-
cantly affects the behavior of the LMR (see Figure 4). The resonance line shifts towards the
near-infrared region when the lossy coating thickness increases. In addition, it is clearly
seen that multiple resonances appear at a certain thickness of a thin film. Figure 4a is
visually similar to the graph given in Ref. [20], where the optical fiber is coated with TiO2;
however, some differences are also observed. First, in our particular case, LMR began to
appear at thinner coatings, which is explained by a rather large difference in the refractive
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indices of the polymer waveguide and optical fiber silica. Secondly, it can be noted that in
our case the difference in wavelength between the second and third LMR is much greater
than between other LMRs.
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As mentioned earlier, the LMR effect is used for sensing applications, so in addition to
the simulations shown above, the sensitivity of the developed sensor was evaluated (see
Figure 5). The sensitivity S of the LMR sensor is defined as the following formula [21]:

S =
∆λ

∆n
, (4)

where ∆λ is the resonance wavelength shift and ∆n is the variation in the analyte refrac-
tive index.
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Waveguide-based sensors are mainly used to detect analytical biomarkers in aqueous
solutions; therefore, the sensor must provide high sensitivity in the refractive index range
of 1.3–1.4 [21]. In this range for 40 nm, TiO2 lossy cladding simulations showed the highest
sensitivity around 1400 nm/RIU. This sensitivity is significantly higher than that reported
in the literature for a TiO2-coated LMR sensor (634 nm/RIU) [22]. Comparing the obtained
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results with other coatings (e.g., ZnO), the results are also encouraging. It was shown
in the literature that in the considered range of refractive indices, the authors achieved a
sensitivity of 500 nm/RIU [14].

The detection accuracy is related to the FWHM, which depends on the width of the
LMR resonance dip. Q-factor is a parameter that characterizes the overall performance of
the LMR sensor, which is defined as the following formula [23]:

Q =
S

FWHM
. (5)

The Q-factor in the dependence of TiO2 thickness is shown in Figure 6. The highest
Q-factor was achieved with a TiO2 coating thickness of 40 nm (28 RIU−1). This value is
lower than for the LMR sensor mentioned in Ref. [23]; however, it is worth noting that
this sensor is not based on fibers or waveguides. It is possible that the use of waveguides
significantly reduces the quality factor.
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The effect of light polarization on the behavior of the LMR was also studied. It can
be seen from Figure 7 that the TE and TM modes have a small shift in the resonance line
relative to each other. This is very important from the point of view that when unpolarized
light is introduced, the resulting resonance line will be wider than in simulations. It is
also worth noting that the FWHM is larger for TE-polarized light, which is most likely
due to the fact that the guided mode interacts with the side facets of the waveguide, while
TM-polarized light interacts with only one top facet.
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4. Discussion

In this paper, we studied the LMR effect in the SU-8 waveguide with TiO2 cladding and
the influence of the waveguide and coating geometries on the LMR effect. In cases where
it is necessary to adjust the LMR wavelength, smaller waveguides can be used because
this wavelength is sensitive to small waveguide dimensions. If this wavelength is not so
important, then from a practical point of view, it is advisable to use larger waveguides—it
is easier to introduce light into such waveguides.

We have shown that multiple resonances can also be observed in coated polymer
waveguides; however, some differences have also been observed compared with inorganic
silica optical fibers [20]. In the SU-8 waveguide, in order to achieve a similar LMR as in
optical fiber [4], it is necessary to use thinner TiO2 coating, which is explained by a rather
large difference in the refractive indices of the polymer waveguide and optical fiber silica.

The highest sensitivity of the developed sensor was 1400 nm/RIU, which is higher
than that indicated in the literature for a similar coating [22]. This sensitivity was achieved
at 40 nm TiO2 for a square-type waveguide with a side length of 30 µm. However, it is
worth noting that some applications may require additional resonance lines, in which case
a thicker lossy coating will be required.

The highest Q-factor of the developed sensor was 28 RIU−1. This Q-factor was
achieved at 40 nm TiO2 for a square-type waveguide with a side length of 30 µm. This
Q-factor is lower than for the Kretschmann configuration-based LMR sensor mentioned in
Ref. [23] and for the waveguide-based ring resonator sensors mentioned in Refs. [24–26].

The effect of polarization on the LMR was also considered. TE and TM polarizations
give different FWHMs in the LMR peak. In addition, TE and TM polarizations generate
LMR at slightly different wavelengths; however, this shift is less than those found in the
literature [3].

The next step in this study will be the actual fabrication of the sensor, as well as
its testing. In the future, this developed sensor will be used to analyze such biological
entities as the extracellular vesicles of cancer cells. So far, the literature has not shown the
possibility of analyzing EVs using the LMR technique; therefore, it makes sense to compare
the sensitivity of the designed sensor with other optical waveguide-based sensors for EVs
analysis. For example, the sensitivity of a refractive index sensor based on polymer Bragg
grating for EVs detection is only 408–861 nm/RIU, which is almost twice worse compared
with our suggested solution [27].
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