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Abstract: Ceramic Nanostructured Superlattice Coatings (NSC) have broad applicability to improve
the parts’ and assemblies’ tribological and mechanical properties for the needs of the automotive
and aerospace industries. Improving the material properties using nanocoatings for such a widely
used material as, for example, bearing steel 100Cr6 makes it possible to improve the service life
of machine parts. In this paper, the correlation dependence between tribological and mechanical
properties of the NSC and its surface texture are considered to determine how much surface texture
will affect the tribological performance of the coated workpieces, as well as the measuring and
evaluation procedure of the nanocoatings, are presented. Three different NSC described by a general
empirical formula {TiMe1Me2-CN/TiAlSi-N}n and based on the modified carbonitride/nitride non-
stoichiometric chemical composition were created, and their tribological and mechanical properties
measured and analyzed in the context with surface texture. NSC deposited by the advanced PVD
(Physical vapor deposition) technique demonstrated significantly higher wear resistance (up to
28 times), reasonably lower friction coefficient (CoF) (up to 4 times), and significantly higher hardness
of the coated workpieces (up to 7 times) versus substrate material. A strong correlation between the
steady-state dry sliding friction, CoF, and the amplitude and functional surface texture parameters of
tribo-track were observed. The first results of the initiated research regarding the correlation analysis
of the tribological and mechanical properties, on the one hand, and surface texture, on the other hand,
of the NSC are reported here.

Keywords: surface texture; nanostructured carbonitride coatings; microhardness; wear; friction
coefficient; tribology

1. Introduction

Solutions have long been sought to improve material properties such as abrasion
resistance, hardness, and friction. Improved material properties extend the service life
of specific units and, consequently, the whole machine, reducing the need for new parts,
repairs, and thus unnecessary energy consumption. Methods to improve machine parts
and assemblies have varied from different heat treatments [1–4] to applying coatings with
different complicities [5–8].

Different nanocoatings are used to improve the base material’s characteristics of tra-
ditional bulk materials in such sectors as electronic components, aeronautics, medical
equipment, industrial manufacturing, transportation, and others. It is well known that
nanocoatings can be deposited by different methods [9]. Among them, PVD technolo-
gies are one of the most promising methods because they allow obtaining highly dense
nanostructured ceramic coatings with smooth surfaces, i.e., low RMS (Root mean square)
value, thus increasing the tribological properties of the material. The advanced PVD tech-
nique has been used in this research work, denoted here as the High-Power Ion-Plasma
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Magnetron Sputtering (HiPIPMS). To overcome multiple tribological and mechanical limita-
tions mentioned by a few researchers [10–14], a novel approach based on modified 3-phase
non-stoichiometric carbonitride/nitride films in this study will be used. NSC based on
carbonitride/nitride constituents (denoted here {-CN/-N}) would theoretically be harder
even than diamond-type coatings if they could be deposited in the same structure as Si3N4,
i.e., C3N4. Some specific carbonitride/nitride coatings produced and reported up to now
have shown extreme elastic and tribological properties [15,16] combined with relatively
high hardness values in the range of about 20–60 GPa. Therefore, the research strategy was
based on modified non-stoichiometric NSC based on {TiMe1Me2-CN/TiAlSi-N}n where
‘Me1 and Me2

′ denote alloying metallic additives as Cr, Nb, W, and Zr, but subscript ‘n’
indicates a number of periods within the NSC containing alternating {carbonitride/nitride}
sublayers. Thus, the goal was to achieve a novel solution to sufficiently reduce or even elim-
inate well-known disadvantages of the hard pure carbon-based or nitride-based coatings,
i.e., inherent compressive macro-stresses, not-good-enough adhesion to steel workpieces,
and reduced thermal stability due to the denitrification of coatings.

Another aspect is the quality of the working surface of the parts, its complete charac-
terization, and its impact on the tribological and mechanical properties. Given the current
state of technology, it is already known that 3D texture measurements should be used
instead of 2D for more accurate surface characterization. Wang et al. [17] presented a study
on surface roughness, which was evaluated using a 2D and 3D profiling approach. These
results proved that 3D surface texture parameters such as Sa (Arithmetical mean height)
and Sq (Root mean square height) are more accurate in describing the surface quality than
the corresponding 2D parameters—Ra (Arithmetical mean height of the profile) and Rz
(Maximum height of profile). Additionally, the standard error of 3D surface texture parame-
ters is lower than that of 2D parameters. Similar results were obtained by Deleanu et al. [18]
by analyzing 2D and 3D surface texture parameters for both metal and polymer blocks.
The standard error for 2D surface texture parameters was more significant than for 3D
parameters in all cases. Moreover, the use of focus-variation microscopy [19] to acquire 3D
surface characteristics and evaluate the surface quality of laser cut edges using areal surface
roughness parameters (parameters Sa and S10z (height of the 10 points of the surface)) has
shown the reliability of the standard 2D texture parameters is low. In one more paper [20],
it was stated that the 3D approach choosing five 3D surface texture parameters, such as
Sds (Density of peaks), Sdq (Root mean square gradient), Ssc (Arithmetic mean summit
curvature), and Sdr (Developed interfacial area ratio), describes operational surfaces more
precisely than the 2D approach.

Several studies are known to investigate a correlation between surface texture and
friction-wear characteristics. Menezes et al. [21] analyzed the effect of surface texture on
hardness and friction during unidirectional sliding, concluding that the friction coefficient
(CoF) predominantly depends on the hardest surface texture. It was pointed out [22] that
the basic amplitude parameters commonly used to describe tribological characteristics
are insufficient to determine the tribological properties of contact surfaces. Therefore,
other surface topography parameters should be used to describe the tribological properties
of the friction pairs. Pawlus et al. [23] performed a pervasive analysis of the functional
importance of surface texture parameters, taking into account the parameters listed in
ISO 25178. Pawlus concluded that most surface texture parameters are related to friction
and wear; however, it is vital to know the application of friction pair. Amplitude parameters
are most commonly used and are related to friction, lubrication, and wear. Skewness Ssk
and kurtosis Sku characterizes the shape of the height distribution. Negative skewness
typically improves the contact of rough surfaces. The hybrid parameters are more related
to the rough surfaces of the contacts. Correspondingly, the parameters related to the
material ratio curve or functional parameters are also related to friction and wear, but
the main problem is the selection of groups of parameters that describe the material ratio
curve. Surface texture parameters to describe surfaces obtained by grinding, lapping, and
electrochemical machining processes were, by importance, classified by Kacalak et al. [24].
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Both the parameters listed in the standard ISO 25178 and the feature parameters introduced
by the author were used, obtaining that the feature parameters S5p (Five-point peak height),
S10z, and height parameters (Sp (Maximum peak height), Sv (Maximum pit height), Sa,
Sq) indicate a high ability to distinguish characteristic surface features. In Zak et al. [25],
the surface textures produced by different machining operations were analyzed regarding
their potential functionality: the parameters Sa, Ssk (Skewness), Spk (Reduced peak height),
Vmp (Peak material volume), and Vvv (Pit void volume) showed a strong correlation with
fluid retention abilities and tribological properties. Jansons et al. [17] concluded that from
four surface 3D surface texture parameters (Sa, Ssk, Sds, Sdq), the Sa is the most useful for
ice friction surface characterization. Das et al. [26] analyzed a systematic and appropriate
selection of surface roughness parameters for extruded and ground surfaces that could act
as process monitoring indices. It was obtained that the 3D parameter ratio Spk/Sk can
be used to define the surface lay. Another option may be a combination of skewness and
kurtosis to define the shape of the profile to determine the oil retention capacity. Ratios
Spk/Sk, Svk/Sk, and Spk/Svk can be used to measure load-carrying capacity.

In light of the known literature, it can be concluded that extensive work has been
undertaken in recent years to find the correlation dependence between the 3D surface
texture parameters and the tribological properties of the material. However, surfaces
with treatment traces from machining and relatively high surface roughness are primarily
analyzed (see Table 1). However, no correlation between surface texture and tribological
properties has been sought for coatings with relatively small surface roughness (Sa below
0.015 µm).

Table 1. Sa values measured by different authors.

Author Machining Process Sa, µm

Zeng et al. [27] Grinding, turning 0.3
Dzierwa et al. [22] Sand blasting 3.6–4.2

Zak et al. [25] Turning 0.2
Jansons et al. [28] Polishing, scratching 0.015–0.2

Das et al. [26] Extrusion, grinding 1.5–6.5
Shi et al. [29] Grinding 0.9–3.8

The Table lists the literature sources where the Sa value could be determined.

If the correlation between the surface texture parameters of different friction pairs and
the friction properties has been studied in the works of several authors, then the correlation
between hardness and surface texture is considered less frequently. That may be related
to the technological provision, i.e., when measuring the hardness of the material with a
sufficiently high load (using the most popular methods of measuring the hardness of the
material, for example, Brinell, Vickers, Rockwell), surface irregularities do not noticeably
affect the measurement result. Hardness measurement methods such as microhardness
and nanohardness should be used to analyze surface texture’s effect on hardness.

When measuring microhardness or nanohardness, the effect of surface texture can
be significant to the measurement result. Bohme et al. [30] studied microhardness mea-
surements of stainless steel samples on a milled (Ra 125–240 nm) and polished surface
(Ra 2–3 nm). Indentation measurements for the milled samples indicated a scatter of
the measurement results, although the hardness should not change. If the indentation is
made in a valley, the material appears harder, but if the indentation is made on a peak,
it appears softer. Therefore, in order to be able to analyze the microhardness results, the
surface texture must be measured at the point of indentation. The sample’s surface must
also be prepared as smoothly as possible for qualitative microhardness measurements.
Microhardness measurements on a milled surface indicated an error of at least 40%, while
the error did not exceed 8% on a polished surface.

The surface must be even smoother if the nano-indentation method is used. The thin
film was deposited on a silicon wafer substrate, and cyclic nano-indentation to deter-
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mine the mechanical properties of the coating on the surface (RMS 0.5 nm) was used in
Plichta et al. [31] work. The surface texture significantly affected the near-surface mechani-
cal properties, and the measured values varied up to 100% compared to the actual value
depending on the surface at the measurement position. Analyzing the nanohardness of
Cu/Ni multilayer structures, Kulej et al. [32] concluded that the hardness measurements
results are related to the surface texture, i.e., a smoother surface provides higher nanohard-
ness. Although some investigations concerning surface texture and micro or nanohardness
have been done, the correlation between several 3D surface texture parameters and hard-
ness measurements has not been reported yet in the known literature.

This work aims to analyze the correlation dependence between tribological and me-
chanical properties of the NSC and their surface texture parameters to determine how much
surface texture will affect the tribological performance of the coated workpieces. This work
stresses the measuring methods of the NSC and evaluation procedures of the obtained data
rather than the coatings’ microstructure, morphology, and other physiochemical properties.

2. Materials and Methods
2.1. Preparation of the Samples

The NSC samples were deposited onto bearing steel disk-shaped substrates (∅30× 4 mm)
made of 100Cr6 using the HiPIPMS technique. The HiPIPMS was implemented on the Thin
Film Modular Deposition System (TF-MDS) [33,34]. The TF-MDS had four cross-configured
workstations equipped with magnetron sputtering devices (MSD), up to 8 MSDs altogether
(Figure 1). The cross-configuration of the workstations on the circumference inside the vacuum
chamber allows numerous specific combinations of monolithic and mosaic-type magnetron
sputtering targets (MST) mounted onto MDSs depending on the requested chemical composition
of the NSC. MSDs were operated in the effective crossed-field unbalanced magnetron sputtering
ion-plasma mode, providing a highly ionized plasma environment in the whole space between
the MST and substrate-holder. Thus, immersed sputtering plasma mode was realized nearby of
both surfaces of the MST and Substrate. The plasma environment within the MST-substrate
space enhanced the chemical reactivity of the sputtered particles condensed on the substrate and
activated carbonitride/nitride film growth. Sputter cleaning of the substrates was performed
prior to film deposition by a collimated linear ion beam device which was also used for
film growing activation and resputtering weakly accommodated particles during the film
deposition process.
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Figure 1. Schematic of the Thin Film Modular Deposition System (TF-MDS) with four workstations
equipped with up to 8×MSDs. Variations for the specific PVD process, for instance, (a) 4×mosaic-type
MST of Cu-C and 1×monolithic MST of Ti; (b) 4×mosaic-type MST of Cu-C; (c) 4×mosaic-type MST
of Cu-C and 2×mosaic-type MST of Cu-C; (d) 4×mosaic-type MST of Cu-C and 1× + 2×monolithic
MST of Ti.

The PVD technologies applied for obtaining NSC samples and their modification
are based on the modern design and engineering capabilities of the deposition system
TF-MDS. The modular design of TF-MDS provides the possibility of simultaneous use of
up to 8×MSDs where, in principle, each MSD can be mounted with the MST of a different
material [35,36]. Therefore, the TF-MDS design allows flexibly modifying the technological
parameters of the PVD process, the chemical composition of the obtained nanocomposite
coating, and its physical-mechanical and electrophysical properties. For example, the
material of which the MST is made and MSTs configuration in the vacuum chamber
determine the structure of the coating layers and their chemical composition. In addition,
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the 1D and/or 2D rotation of the sample holder carousel determines the coating density
and thickness uniformity. In turn, ion-plasma discharge power on the MSDs determines
the film deposition rate and nanostructure at the atomic level (see Figure 1).

The morphology of the coating structures was investigated using a scanning elec-
tron microscope (SEM) Tescan Lyra3 (Tescan, Brno, Czechia), equipped with an energy-
dispersive X-ray spectrometer (EDS) Oxford Aztec (Oxford Instruments, Abingdon, UK).
SEM and EDS measurements were performed using a beam-accelerating voltage of up to
30 kV and a beam current of 500 pA.

2.2. Tribology Tests

The tribology tests were performed to analyze the wear and friction coefficient using a
ball-on-disc tribometer TRB3 (CSM Instruments, Needham Heights, MA, USA) under dry
friction conditions. Samples were tested using a 100Cr6 (EN 683-17) steel ball (Ø6 mm). All
tests were performed at room temperature 21 ± 1 ◦C. Experimental settings for friction and
wear tests were based on recommendations in standard ISO 18535 (Diamond-like carbon
films—Determination of friction and wear characteristics of Diamond-like carbon films by
ball-on-disc method).

Friction tests were performed for 5000 cycles at a 3 mm tribo-track radius (100 m total
distance) and 0.15 m/s linear speed. The normal load was set to 3 N.

For wear tests, the total number of cycles was increased to 1000 m total distance and
0.1 m/s linear speed. The normal load was set to 5 N. The wear track was measured in
8 positions at a constant angular distance using a Surftest SJ-500 (Mitutoyo, Kawasaki,
Japan) surface roughness tester. Wear cross-sectional area was calculated using Talymap
Gold analysis software, version 4.1.1.

2.3. Surface Texture Measurements

A Talysurf Intra 50 (Taylor Hobson, Leicester, UK) profilometer with a 112/2009 stylus
(2 µm tip diameter) was used to characterize surface texture. The total area measured was
2× 2 mm, including both the smooth part of the surface and the tribo-track part. The texture
was measured from 300 profiles, with each profile line consisting of 10,000 points, for a
total of 3,000,000 points per measurement.

Data post-processing was performed with Talymap Expert software, version 3.2.0.
Initially, the primary surface was leveled, followed by the separation of the surface rough-
ness and the waviness portion (see Figure 2). Smooth surface part and tribo-track part
measurements were performed with a different cut-off based on the recommendations of
standard ISO 25178-3. The cut-off value of 0.08 was used for the smooth surface part and
0.25 for the tribo-track surface part for all measured samples. The separated roughness was
then zoomed in to the surface from the smooth or tribo-track area (200 × 500 µm), and 3D
surface texture parameters were obtained.

The surface texture was measured for a total of 9 coated and for the reference sample.
In total, 31 surface texture parameters (ISO 25178-2) and ratios [23,28] were considered in
this work (see Table 2). Three-dimensional surface texture parameters, for various reasons,
do not indicate a significant difference between the measuring sample surfaces in the given
case; for example, spatial parameter Std, which depends on the surface orientation during
a measurement, was not considered. Moreover, the 3D surface texture parameters that
require additional necessary information for performing a correct analysis, for example, the
parameter Smr, or areal material ratio, which directly depends on the level from the highest
peak, and related parameters such as Smc (inverse material ratio) were not considered.
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Table 2. Surface texture parameters considered.

Parameters Group Symbol Unit Description

Amplitude parameters

Sa µm Arithmetical mean height
Sq µm Root mean square height
Sp µm Maximum peak height
Sv µm Maximum pit height
Ssk S kewness
Sku Kurtosis
Sz µm Maximum height

Rsm mm Mean profile spacing
Rsm/Sa Ratio of mean profile spacing to the arithmetical mean height
Sq/Sa Ratio of root mean square height to arithmetical mean height
Sp/Sz Ratio of maximum peak height to the maximum height

Spatial parameters

Sds pks/mm2 Density of peaks
Str Texture aspect ratio
Sal mm Autocorrelation length
Sfd Fractal dimension of the surface

Hybrid parameters
Sdq Root mean square gradient
Ssc 1/µm Arithmetic mean summit curvature
Sdr % Developed interfacial area ratio

Functional parameters

Sk µm Core height
Spk µm Reduced peak height
Svk µm Reduced valley depth
Sr1 % Material ratio for peaks
Vv mm3/mm2 Void volume
Vm mm3/mm2 Material volume

Vmp mm3/mm2 Peak material volume
Vmc mm3/mm2 Core material volume
Vvc mm3/mm2 Core void volume
Vvv mm3/mm2 Valley void volume

Spk/Sk Ratio of reduced peak height to core height
Svk/Sk Ratio of reduced valley depth to core height

Spk/Svk Ratio of reduced peak height to reduced valley depth

In this analysis, parameters can be classified into four groups—Amplitude, Spatial,
Hybrid, and Functional.
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The most typical amplitude parameters which are used in surface characterization
were considered. According to the literature [23,24,26,29,37,38], it is known that Sa, Sq,
Sz, Sp, Sv affect surface contact, lubrication, friction, wear, as well as such parameters
as Ssk, Sku, and ratios Sp/Sz, Sq/Sa, which characterize the shape of the height distri-
bution. Sa and Sq parameters, usually used to characterize the surface texture, are not
sufficient to characterize the tribological process of contacting surfaces. It was obtained
that Sku and Ssk parameters showed a higher correlation with the wear process than Sa
and Sq [22]. In the boundary and mixed lubrication friction regimes, parameters Ssk and
Sku impact friction [39]. The pitch parameter Rsm and Rsm/Sa are included in the wear
calculations [40], and it has also been observed that the friction properties on the ice can
be estimated [28]. Rsm for each sample was calculated as an average from five separate
profiles extracted from the measured 3D surface.

Spatial parameters Sal (Autocorrelation length) and Str (Texture aspect ratio) affect
lubrication and friction [23]. The Sds parameter is an important parameter used in bearings
and seals because it is related to how surfaces deform elastically and plastically under
load [41]. The Sfd (Fractal dimension of the surface) parameter describes the complexity of
the surface using the fractal dimension theory, thus indicating whether the surface is flat or
complex, and Sfd correlates with Sds for the honed surfaces [25].

The hybrid parameters, which combine information on height and spatial parameters,
Sdq and Sdr, affect surface contact, friction, and wear properties. Sdq is highly dependent
on Sq; accordingly, Sdr is dependent on Sdq. The Ssc parameter is used in contact mechanics
to characterize the plastic deformation affecting the wear [23].

The functional group of parameters related to the material ratio curve affects wear
and friction [23]. For example, Vmc (Core material volume) is the most relevant parameter
to characterize the rolling process [38], or Vvv and Vvc (Core void volume) parameters are
related to valleys of the surface, which reflect lubricant storage performance [23,42]. More-
over, Vvv and Vvc correlated with the friction coefficient of a rough contact interface [29].
Parameters related to the material ratio curve were calculated using default material ratios
of 10 and 80%.

2.4. Microhardness Measurements

Microindentation provided information about the integrated coating hardness, in-
cluding the hardness of both Coating and the Substrate. Micro-Vickers indenter HM210D
(Mitutoyo, Kawasaki, Japan) with complete CNC XY sample holding stage was used for the
tests. Lenses with 50× and 100×magnification were used for indentation diagonals mea-
surements. Complete CNC control over the sample holding stage provided semi-automatic
sample testing with various indentation forces and a test matrix with evenly distributed
distances between indentations.

Twelve different test forces were used for each sample from 0.1–6.0 N. Information
about the integrated hardness is essential to understand the whole system (Coating +
Substrate) usability in tribological applications because both components play a significant
role in the final performance, i.e., hard coating on too soft substrate might fracture if the
substrate surface bends. Thus, finding optimal combinations of coating hardness and
substrate hardness is essential.

3. Results and Discussion
3.1. NSC Samples

All substrates are unique, as it is impossible to prepare them with identically polished
surfaces. Therefore, ten samples are considered in the study—9 of them are coated with
the NSC, and one is uncoated (see Table 3). Each sample was studied tribologically
and mechanically, as well as using electron microscopy and profilometry. Correlation
dependence between the mechanical and tribological properties of the samples and the
surface texture parameters was sought.
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Table 3. Micromechanical parameters of the superlattice-type NSC samples based on the alternating
carbonitride/nitride {TiMe-CN/TiAlSi-N} 2-sublayers spatial period.

PVD Process Sample Label Coating’s Laminated Structure Thickness,
(nm)

NSC 1 NSC 1.1; NSC 1.2;
NSC 1.3 {TiWZr-CN/TiAlSi-N}270|Ti|Substrate ~6500

NSC 2 NSC 2.1; NSC 2.2;
NSC 2.3

{TiCrNb-CN/TiAlSi-
N}300|Ti|Substrate ~5200

NSC 3 NSC 3.1; NSC 3.2;
NSC 3.3 {Si-CN/Cr-N}230|Ti|Substrate ~5500

Substrate Bulk bearing steel 100Cr6, ∅30 × 4 mm

The Calo tester (CSM Instruments, Needham, MA, USA) and KH7700 optical micro-
scope (Hirox, Tokyo, Japan) were used to measure the thickness of the coatings. The coating
thickness was measured to be greater than 5200 nm for all samples.

Four characteristic spots on the sample surface were chosen to analyze the coating‘s
chemical composition (see Figure 3). Spot-1 is a sample surface without coating, i.e., a
substrate; spot-2 as a nearby smooth surface region of the coating; spot-3 as a coating’s
deeper sublayers as worn tribo-tracks and/or flaked or detached coating’s pieces; and
finally, spot-4 as a nearby surface region of the coating having some irregularity, unlike
the spot-2.
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The elements observed in the EDS spectra exhibiting their weight and atomic content
within the coating are summarized in Table 4. It is seemingly that the chemical composition
of the coating affects its micromechanical and tribological properties, i.e., the overall
tribological performance.
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Table 4. Summary table of the chemical elements observed in the EDS spectrum of the NSC 1.1, NSC
2.1, NSC 3.1 samples taken from the spot-‘2′ on the coating’s surface. The content of elements is
exhibited in their atomic-%.

Sample C N Al Ti Fe Zr Ag W Si Cr Nb Hf

NSC 1.1 20.83 17.86 15.82 16.55 1.91 9.53 1.44 16.07 - - - -
NSC 2.1 13.86 29.65 14.62 25.42 0.26 - - - 2.21 8.64 5.35 -
NSC 3.1 16.50 16.19 0.29 0.66 0.86 - - - 12.92 52.51 - 0.08

3.2. Wear and Friction Coefficient

Two different tribological experiments were performed. One characterized the wear
of the Coatings, and the other the friction properties.

3.2.1. Wear

The wear tests were conducted according to standard ISO 18535 as described in the
materials and methods section. The wear track was measured in eight positions at a
constant angular distance, and the average value of the cross-sectional area was calculated
for each coating. Examples of wear profiles for three coatings are shown in Figure 4.
NSC 1.1 is represented in red, and NSC 2.1 and NSC 3.1 are in green and blue colors,
respectively. The gray area represents the substrate material. From the measured coating
thicknesses (see Table 3), NSC 3.1 is worn to the substrate material. NSC 1.1 and 1.2 are
worn to a depth of approximately 3 µm, but NSC 2.1 is slightly wider.
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The wear cross-sectional area was calculated for each profile using the Talymap Gold
analysis software, and the average value was calculated for each Coating and Substrate
(see Table 5). The average cross-sectional area was used as the wear-describing parameter
in this case. The obtained data shows that the best wear-resistant Coating is NSC 1.1,
improving the wear properties about 28 times against the substrate material. The worst
wear resistance was observed in NSC 3.1, with approximately three times better wear
properties against the substrate material. As the wear increases, the numerical value of the
standard deviation of the measurements increases. That can be explained by the fact that as
the total worn area increases, the numerical value of the standard deviation also increases
proportionally, as well as for a material or coating with low wear resistance, wear debris
impact and separation of layers is possible in specific places, which accordingly affects the
size of the wear cross-sectional area and standard deviation.



Lubricants 2022, 10, 285 10 of 27

Table 5. Average wear cross-sectional area (Ball material—100Cr6, Total distance 1000 m, Linear
velocity 0.1 m/s, Test force—5 N).

Avg. Cross-Sectional Area, µm2

NSC 1.1 385 ± 40
NSC 2.1 541 ± 90
NSC 3.1 3232 ± 420

Substrate 10,665 ± 1400

3.2.2. Friction Coefficient

The friction coefficient was measured according to the settings described in materials
and methods to characterize the friction properties of the coatings. Measurements were
performed on three samples for each coating and the substrate material. The initial and
steady-state friction coefficients and the maximum and minimum values for each sample
were determined and averaged to characterize the friction properties of the coatings (see
Table 6).

Table 6. Overview of the friction tests (Ball material—100Cr6, Total distance 5000 cycles or 100 m,
Linear velocity 0.15 m/s, Test force—3 N).

Friction Coefficient

NSC 1.1 NSC 1.2 NSC 1.3 Average (NSC 1)

Initial 0.15 0.2 0.17
Steady-state 0.17 0.2 0.16 0.18

max 0.25 0.61 0.3
min 0.12 0.08 0.08

NSC 2.1 NSC 2.2 NSC 2.3 Average (NSC 2)

Initial 0.32 0.33 0.43
Steady-state 0.72 0.78 0.64 0.72

max 0.93 1.11 1.04
min 0.24 0.15 0.16

NSC 3.1 NSC 3.2 NSC 3.3 Average (NSC 3)

Initial 0.23 0.26 0.27
Steady-state 0.34 0.38 0.33 0.35

max 0.85 0.78 1.07
min 0.1 0.14 0.12

Substrate

Initial 0.56
Steady-state 0.75

max 1.01
min 0.46

Steady-state coefficients of friction are further used to compare the friction properties
of the Coatings. They were calculated from the data obtained in sections of stable value
curves containing at least 1000 cycles or 20 m. Examples of friction coefficient curves
from each coating and substrate material are summarized in Figure 5. Data were recorded
every 0.012 s, and exponential smoothening of the data with a damping factor of 0.8
were performed.
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According to Table 6, the lowest value of the average steady-state friction coefficient
was reached for the NSC 1—0.18. Compared to the average steady-state friction coefficient
of the substrate material of 0.75, NSC 1 has a reduction in friction of at least four times.
The value of the steady-state friction coefficient for NSC 3 is about two times lower than for
the substrate material, but more significant curve fluctuations are observed, which could be
due to the relatively large wear of this coating. Although the wear is greater than the other
two coatings, it did not wear to the substrate material as observed in the wear experiments
(see Figure 4). NSC 2 has no friction improvement over the substrate coating.

3.3. Surface Texture Measurements

The surface 3D texture parameters were measured for the smooth surface part, or the
surface before the tribology experiments and the surface part after the tribology experiments
(tribo-tracks from friction experiments (3 N load and 100 m distance) according to the
described methodology above (see Figure 2). The surface texture results of different
samples in this paragraph are described only by the parameter Sa (see Table 7 and Figure 6)
for visibility and simplicity purposes. All used 31 surface texture values are summarized in
Tables A1 and A2 in the Appendix A.

Table 7. Sa values for the smooth and tribo-track surface parts of three coatings.

Sa Smooth
(nm)

Sa
Tribo-Track

(nm)

Sa Smooth
(nm)

Sa
Tribo-Track

(nm)

Sa Smooth
(nm)

Sa
Tribo-Track

(nm)

Sa Smooth
(nm)

Sa
Tribo-Track

(nm)

NSC 1.1 NSC 1.2 NSC 1.3 Average (NSC 1)
11.3 84.1 8.5 102 10.3 70.2 10 ± 1.2 85 ± 13

NSC 2.1 NSC 2.2 NSC 2.3 Average (NSC 2)
8 64.4 8.8 77.2 6.4 39.7 7.7 ± 1 60.4 ± 16

NSC 3.1 NSC 3.2 NSC 3.3 Average (NSC 3)
8.8 80.3 11.9 251 11.1 95.6 10.6 ± 1.3 142.3 ± 77
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If Sa values are compared for the smooth surface, then for the comparison of different
coatings, it can be seen that the NSC 1 and NSC 3 coatings have an average Sa value
above 10 nm, but the NSC 2 is slightly smoother with an average Sa value around 8 nm.
Respectively, for the tribo-track surface, the moderately rougher surface is observed for
the NSC 3 coating (Sa 142 nm), the smoothest—for the NSC 2 (Sa 60.4 nm). It should be
noted that a significantly rougher surface was observed for NSC 3.2. Therefore, the average
value of the Sa tribo-track is also significantly higher. The standard deviation also indicates
differences between samples.

Figure 6 represents visual information about the different coating surface textures for
the smooth and tribo-track surfaces. The scale values for all three coatings are the same but
different for a smooth surface part and tribo-track surface part. For the roughest samples
(NSC 3.1) on the tribo-track surface, the roughness has a larger amplitude, which forms
a more considerable Sa value. NSC 2.1 has several minor irregularities in amplitude and
width compared to NSC 1.1.

3.4. Microhardness

Microhardness was measured for each sample in the force range from 0.1 to 6 N (see
Table A3 in Appendix A). Each measurement point for each sample consists of 10 mea-
surements, and the average value to represent the hardness of the coating was calculated
accordingly. Figure 7 shows the dependence of microhardness values on the applied force
when measuring three coatings and substrate material. Examples of visual microscopic
images for microhardness measurements at a force of 0.3 N are shown in the second part of
the image—a more significant imprint refers to lower hardness.

From Figure 7, it can be concluded that by reducing the applied measurement force, the
hardness values increase, but as the load increases, the measured hardness values converge
with the hardness of the substrate. As the load decreases, the hardness of the coating
directly approaches the hardness of the coating, not the integrated hardness (Coating +
Substrate). The indentation depth at 0.1 N was measured to be approximately 0.5 µm,
which does not exceed the recommended 10% of coating thickness (ranging from 5.2 to
6.5 µm) [43]; thus, the microhardness values at 0.1 N force should be close to actual coating
hardness. If the coatings are thinner or softer actual coating hardness using Micro-indenter
might be problematic to measure. In this case, either mathematical calculations [44] or
equipment that provides lower measurement force, such as nano-indenter, should be used.

The highest coating hardness at 0.1 N was obtained for NSC 2 (HV 1710) and NSC 3
(HV 1658), and the lowest for NSC 1 (HV 1507). Compared to the substrate material (HV
967), the hardness increased from 1.6 to 1.8 times.
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3.5. Correlation Dependence between Surface Texture and Coating Tribological,
Mechanical Properties

As shown by several authors, there is a correlation between the parameters charac-
terizing the surface texture of the sample and the friction coefficient [21,23,24], as well as
the coating’s hardness [21–23]. Therefore, the correlation between surface texture, friction
coefficient, and microhardness was considered for the experimental samples. It has been
proven in the known literature [22] that there is a correlation between surface texture pa-
rameters and wear; however, with the samples used in the experiments, which have a low
surface roughness (Sa below 12 nm), it was not possible to obtain reliable data confirming
the correlation between surface texture and wear. For example, in Dzierwa et al. [22], it
was obtained that the surface texture parameter Ssk affects the wear volume. The value of
Sa for all samples was 4 µm. Shi et al. [29], studying how surface texture parameters affect
wear, already in the title, emphasizes that the research was carried out on rough surfaces
(Sa from 0.9 to 3.8 µm). It was found that the void volume parameters affect the wear
under hydrodynamic friction conditions; as they increase, the lubricant can penetrate more
easily, and thus the surface wear decreases. Perhaps if the surface were rougher, as in other
experiments of a similar type, it would be possible to identify the correlation, although, in
tests by Sedlacek et al. [39], it was stated that under dry fiction regime because of completely
changed surface roughness parameters, it is hard to conclude tribological behaviour.

The surface texture measurements and friction coefficient and hardness measurements
indicated differences between theoretically three identical samples for each coating; thus,
the correlation between the tribological and mechanical properties of the samples and the
3D parameters characterizing the surface texture was considered. The correlation was
determined using a correlation coefficient. An example of how the correlation coefficient
was determined for each coating is shown in Figure 8. The example uses the correlation of
the surface texture parameter Sa for three samples with a friction coefficient of NSC 1.
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The steady-state friction coefficient was used to characterize friction tests and to
identify correlation with surface texture parameters. Microhardness measurements at
0.1 N force (the lowest possible load of the equipment) were used to find the correlation
between the surface texture parameters and the microhardness. Therefore, there is reason
to believe that surface texture’s effect on the coating’s hardness under this force would be
most probable.

3.5.1. Correlation Dependence between Friction Coefficient and Surface Texture

The correlation between friction properties and 3D surface texture parameters was
initially sought using the initial friction coefficient and sample surface parameters from
smooth surface measurements. However, the results obtained were considered inconsistent,
i.e., opposite correlations were observed between the three samples for different coating
types. Sedlacek et al. [39] mentioned that under dry sliding, a high degree of wear and
changes in surface texture limits a proper comparison and correlation between surface
texture and tribological properties; thus alternative method was sought.

Considering the results of inconsistent measurements between the initial friction
coefficient and the surface texture of the samples, the correlation between the steady-state
friction coefficient and the surface texture parameters of the tribo-track was determined
to obtain consistent results. Each sample’s steady-state friction coefficient values are
represented in Table 6, and considered 3D surface texture parameters are compiled in
Table A2 in the Appendix A.

Figure 9 summarizes the TOP 10 highest correlation coefficients for the surface texture
parameters of the samples against the steady-state friction coefficient for each Coating
(NSC 1—red, NSC 2—green, NSC 3—blue), where each coating includes three samples.
A complete graph of the correlation coefficients (including all 31 parameters used) is shown
in Figure A1 in Appendix A. Filled bars represent positive correlations, and strikethrough
bars—are negative.
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sonable to assume that even in the case of nanostructured superlattice coatings, these pa-
rameters can be considered primarily. However, it should be noted that the surface texture 
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Two 3D surface texture parameter groups crystallize—Amplitude and Functional.

It can be seen from Figure 9 that two groups of surface texture parameters crystallize—
amplitude and functional parameters, which are related to the material ratio curve. Am-
plitude parameters such as Sa, Sq, Sz, Sp, and Sv have been reported in previous stud-
ies [23,24,26,29,38] as parameters affecting surface contact and friction. Therefore, it is
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reasonable to assume that even in the case of nanostructured superlattice coatings, these
parameters can be considered primarily. However, it should be noted that the surface
texture was measured at the tribo-track location and not on the smooth surface. Ssk (Skew-
ness) is the ratio of the average cube value of the surface ordinates to the cube of the Sq
parameter [23]. Therefore, considering that the parameter Ssk is directly dependent on the
parameter Sq, the correlation coefficients were also high. In most cases, parameter Ssk was
negative, pointing to the surface with the predominance of valley structures. Moreover,
Ssk helps monitor different types of wear conditions [41]; therefore, it is logical that this
parameter can be successfully used to analyze the correlation with the friction coefficient
using surface texture measurements in the tribo-track location. Sedlacek et al. [39] indicated
that Ssk is the most dominant parameter affecting friction at the boundary or lubricated con-
ditions, experimenting with ground and polished samples of different surface roughness.

Parameters such as Vmp, Vmc, and Sk have been described in previous studies as
parameters affecting wear and friction [23]. Vmp is the peak material volume, representing
the volume of material comprising the surface from the height corresponding to a material
ratio level p to the highest peak [41]. In this case, the default p-value of 10% of the
highest point was used in the measurements. The surface’s core height characterizes Sk
or core roughness with the predominant peaks and valleys removed. In the future, these
correlations should be considered cautious when analyzing the surface at different levels.
In this case, the functional parameters were calculated using default material ratios of 10
and 80%. Moreover, compared with the amplitude parameter group, the correlations of
functional parameters are not so unambiguous; for example, in the case of Vmp, Vm, and
Vmc, correlations below 0.5 were observed for the NSC 2 sample.

Hybrid and spatial surface texture parameter groups showed low correlations for dif-
ferent coatings observed in opposite directions. Considering that isotropic surfaces with the
same character were studied, it is impossible to observe sufficient spatial parameter changes
between the samples, resulting in correlations in opposite directions. In future studies, the
number of samples will be increased; therefore, it is possible that a high correlation could
be observed for other 3D surface parameters as well, such as the hybrid parameters Sdr
and Sdq, which are affected by both surface texture amplitude and spacing, and can also be
successfully used in surface contact, friction and wear characterization [23,25].

3.5.2. Correlation Dependence between Microhardness and Surface Texture

The correlation between the microhardness of the coated samples and the surface
texture parameters for the smooth surface (see Table A1 in the Appendix A) was determined
at a force of 0.1 N (see the microhardness values in Table A3 in the Appendix A). The force
was chosen as the lowest technologically possible for the particular equipment Micro-
Vickers indenter HM210D (Mitutoyo, Kawasaki, Japan). The penetration depth of the
indenter was measured up to approximately 0.5 µm, which exceeds the maximum surface
height Sz of the studied samples; therefore, the surface irregularities affect the measurement
results indirectly.

Figure 10 summarizes the TOP 10 highest correlation coefficients for the surface texture
parameters of the samples against the microhardness values at 0.1 N for each Coating
(NSC 1—red, NSC 2—green, NSC 3—blue), where each coating includes three samples.
A complete graph of the correlation coefficients is shown in Figure A2 in Appendix A.
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From the Figure 10 data, it can be concluded that, similarly to the friction coefficient,
high correlations have been obtained with the parameters related to the material ratio curve
and amplitude parameters Sa, Sq, Sp. It was observed that the hybrid parameters Sdr and
Sdq also correlate well. The surface texture parameter Sdq is highly dependent on the
Sq parameter, while the Sdr parameter is dependent on the Sdq parameter [23]; thus, the
correlations for the hybrid parameters are also high.

However, the correlation bars indicate that a rougher surface results in higher micro-
hardness, which contradicts previous studies such as Kulej et al. [32] work which described
the surface texture and nanohardness of Cu/Ni multilayer structures and obtained that
lower Ra (profile roughness height) provides higher hardness. Opposite results were ob-
tained by Bohme et al. [30], where polished surfaces (Ra 2–3 nm) and milled surfaces with
traces of machining (Ra 126–240 nm) were produced. The hardness reached 5.7 GPa for
the post-polished surface and 7.2 GPa for the machined surface. The error of measurement
results for machined surfaces was observed above 40%. Bohme emphasized that it is essen-
tial to characterize the surface directly at the indentation point because when indenting at
the peak, the material appears softer; when measured in the valley, it appears harder.

Considering obtained results, an additional experiment was performed, creating three
surfaces of different roughness on one rectangular sample with dimensions—
30 × 9 × 7.5 mm and material—100Cr6. The sample was polished to Sa 0.04 µm, part of
the sample was scratched with 1500 grit sandpaper to Sa 0.06 µm, and another part of the
sample was scratched with 600 grit sandpaper to Sa 0.1 µm (see Figure 11). Surface texture
measurements were made with the same 3D profilometer and settings as for the samples
discussed above.

Microhardness measurements were performed with a Micro-Vickers indenter HM210D
(Mitutoyo, Kawasaki, Japan), using 0.2, 0.3, and 0.5 N indentation force. A higher measure-
ment force than in previous experiments was used because the surface roughness is higher
than the investigated nano-coated samples, and so the indentations can be analyzed with a
contact type 3D profilometer Talysurf Intra 50 (Taylor Hobson, Leicester, UK).
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Figure 11. 100Cr6 sample with different surface roughness. The green area represents the polished
part (Sa 0.04 µm), the blue—semi-scratched (Sa 0.06 µm), red—scratched part (Sa 0.1 µm). The scale
bar used is the same for all three surfaces.

The obtained microhardness measurement results can be seen in Figure 12. Each
measurement point is calculated as the average of 15 measurements. Unexpectedly, the
lowest hardness values were obtained for the polished sample, reaching a difference
with the scratched ones of about 40 HV. Moreover, the standard deviations for scratched
and semi-scratched surface parts are higher than for polished. That indicates that the
measurement error for rougher surfaces tends to be higher, as observed by Bohme [30].
The result agrees with Bohme et al. but is the opposite of what Kulej et al. observed.
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Figure 12. Microhardness measurements for three 100Cr6 surface textures. Polished (Sa 0.04 µm)—
green, Semi-scratched—blue (Sa 0.06 µm), Scratched—red (Sa 0.1 µm).

After the microhardness measurements, a 3D measurement of the surface texture of
the indentations was performed (see Figure 13). A 2D profile was cut from the surface
measurement midway through the indentation and perpendicular to the machining marks
for all three surfaces. In the graph, the left measurement limit (measurement start position)
for all three surfaces is defined as the reference limit, and the profiles are arranged ac-
cordingly. The arrows indicate the approximate length of measured indentation diagonals.
According to the profile data, it can be seen that the limits of indentation measurements
can be clearly defined for a polished surface (green profile), but for the scratched and
also semi-scratched sample, the measurement limit is more challenging to define because
surface roughness prevents it from being accurately determined. It can even be seen that,
most likely, the measurement limits for the scratched and semi-scratched surfaces indicate a
smaller length of the indentation profile along the X-axis than it is for the polished surface.
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Considering the obtained information, it can be concluded that surface texture quality
is critically important when performing hardness measurements with a visual reading
of measurements.
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green, Semi-scratched—blue (Sa 0.06 µm), Scratched—red (Sa 0.1 µm).

In the case of Nano-coated samples, although seemingly logical parameters related to
surface volume and amplitude correlate with surface hardness, the differences in surface
roughness are too small to find a reliable relationship between hardness and surface
texture. Such a study could be developed with surfaces of markedly different roughness,
as demonstrated in an additional study above. However, if the hardness is measured by a
visual measurement method, the subjective assumption of the operator when determining
the indentation limits has a significant impact on the processing of the measurement data,
especially if the surface roughness is high. Similar to the classic hardness indentation,
where the hardness is measured depending on the displacement [45], the impact of the
surface texture on the hardness measurement results can be observed using the visual
microhardness measurement method. As the surface roughness increases, the accuracy of
microhardness measurements decreases.

3.6. Procedure for Measuring and Evaluating the Surface Texture, Tribological and Mechanical
Properties of Deposited Nanocoating

The proposed measurement procedure is intended to analyze nanocoatings and is
created based on a holistic approach using three different coatings deposited on a 100Cr6
substrate. The schematic representation of the measurement procedure in Figure 14 and the
description below contain the proposed main steps to measure and evaluate nanocoatings.
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The principles for developing the surface texture measurement procedure were based on
the ISO 10012 standard recommendations. A clause 7.2.2 (Measurement process design)
provides the set of guidelines that were taken into account when specifying the measure-
ment processes. Before the measurement procedure was designed, the following elements
were considered—necessary measurements, the methods of measurement, and the required
equipment for measurements. All three essential elements have been incorporated into the
scheme as horizontal dimensions covering the entire measurement process. More specific
and detailed information on applied methods is described in the relevant paragraphs of
this paper.
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Figure 14. Scheme for measuring and evaluating deposited nanocoatings’ surface texture, tribological
and mechanical properties.

Initially, it is necessary to determine the thickness of the coating, which can be per-
formed with the standard Calo-tester and an optical microscope. Knowing the thickness
of the coating can then evaluate the wear properties of the coating, as well as analyze the
microhardness measurements.

Tribology experiments are performed for friction coefficient and wear measurements
according to the settings recommended in the ISO 18535 standard. The friction coeffi-
cient measurements determine friction properties; the wear measurements determine the
coating’s durability. Wear can be measured using a 2D profilometer, obtaining the cross-
sectional area or/and calculating the total wear. The recommended number of profiles
starts from four at a constant angular distance.

The 3D surface texture measurement is performed for the smooth surface part and the
tribo-track part of the friction coefficient. Three-dimensional surface texture measurement
provides more accurate and complete information about the surface. The measurement
of the smooth part allows to estimate of the surface texture of the coating and can also
be used for further analysis of the surface microhardness. The tribo-track surface texture
measurement of the friction coefficient showed a high correlation with the steady-state
friction coefficient values, which makes it possible to analyze the relationship between the
friction coefficient and the surface texture. In this case, the texture of the smooth surface
did not show significant differences between the different samples, so no correlation was
established.

Microhardness measurements are recommended to be performed in the broadest
possible indentation force range, thereby determining the integrated hardness (Coating +
Substrate) for each sample.

The developed procedure for measuring and evaluating nanocoatings systematically
collects the most important information about the surface, tribological, and mechanical
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properties. The procedure will be further improved and refined by performing more
measurements with different nanocoatings. One of the recommended measures to improve
the procedure would be to define what skills are required for the personnel performing the
measurements, as defined in the ISO 10012 standard. As the measurements for this study
were carried out in a scientific laboratory by qualified scientific personnel, the skills set for
the personnel were not included in this procedure.

4. Conclusions

The above-noted general empirical formula for modified non-stoichiometric NSC
based on {TiMe1Me2-CN/TiAlSi-N}n where ‘Me1 and Me2

′ denote alloying metallic addi-
tives as, e.g., Cr, Nb, W, and Zr but subscript ‘n’ indicates a number of periods within the
NSC containing alternating {carbonitride/nitride} sublayers includes numerous modifica-
tions of metal-based carbonitride/nitride multilayered ceramic coatings manifesting high
wear resistance (up to 28 times against substrate material), low friction coefficient (up to
four times against substrate material) and high surface hardness (up to 1.6 times against
substrate material).

Microhardness measurements in the applied force range from 0.1 to 6.0 N allow the
integrated hardness changes to be evaluated depending on the applied force. As the applied
indentation force increases, the impact of the coating on the result of the microhardness
measurement decreases. At 6.0 N applied force, the measured microhardness values of
the coated samples start to converge with the microhardness value of the substrate (the
difference is less than 8%).

The surface roughness significantly impacts the results using the visual microhardness
measurement method. As the roughness increases, the accuracy of microhardness measure-
ments decreases. The standard deviation decreased approximately two times as applied
force increased from 0.2 to 0.5 N, and the standard deviation was almost three times higher
for the rougher surface (Sa 0.1 µm) compared to the polished one (Sa 0.04 µm).

High correlation dependence between the steady-state friction coefficient and the
amplitude (correlation coefficient above 0.8 in 94% of cases) and functional (correlation
coefficient above 0.8 in 67% of cases) surface texture parameters of the tribo-track surface
were obtained.

Based on a holistic approach, a procedure for measuring and evaluating nanocoatings
was developed at the initial stage, allowing systematic coatings analysis.
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Appendix A

Table A1. Surface Texture measurements (smooth part).

Parameter
NSC 1 NSC 2 NSC 3

NSC 1.1 NSC 1.2 NSC 1.3 Avg. NSC 2.1 NSC 2.2 NSC 2.3 Avg. NSC 3.1 NSC 3.2 NSC 3.3 Avg.

Sa (nm) 11.3 8.5 10.3 10.0 8.8 11.9 11.1 10.6 8 8.8 6.4 7.7
Sq (nm) 16.9 12.1 15.6 14.9 14.2 22.5 19.2 18.6 11.1 11.9 8.4 10.5
Sp (nm) 120 80.7 118 106 109 208 164 160.3 66.9 68.7 38.3 58.0
Sv (nm) 46.2 34.4 34.5 38.4 26.8 36.7 52.9 38.8 29.9 25.7 21.7 25.8

Ssk 1.9 1.5 2.4 1.9 3.4 5.1 3.7 4.1 1.2 0.9 0.4 0.8
Sku 15.5 12.9 19.0 15.8 24.4 42.7 31.2 32.8 9.8 7.2 4.5 7.2

Sz (nm) 164 114 151 143 135 242 214 197 96 93 59 83
RSm (mm) 0.008 0.007 0.008 0.008 0.009 0.019 0.011 0.013 0.006 0.006 0.007 0.006

RSm/Sa 699 825 748 757 994 1580 991 1188 780 722 1059 854
Sq/Sa 1.5 1.4 1.5 1.5 1.6 1.9 1.7 1.7 1.4 1.4 1.3 1.4
Sp/Sz 0.73 0.71 0.78 0.74 0.81 0.86 0.77 0.81 0.70 0.74 0.65 0.70

Sds
(pks/mm2) 9621 10,171 10,312 10,035 11,233 9230 10,369 10,277 11,657 10,173 11,473 11,101

Str 0.44 0.44 0.41 0.43 0.30 0.50 0.39 0.40 0.55 0.67 0.36 0.53
Sal (mm) 4.10 × 10−4 4.10 × 10−4 3.90 × 10−4 4.03 × 10−4 2.80 × 10−4 4.70 × 10−4 3.70 × 10−4 3.73 × 10−4 3.90 × 10−4 4.70 × 10−4 2.60 × 10−4 3.73 × 10−4

Sfd 2.44 2.48 2.44 2.45 2.38 2.30 2.30 2.33 2.54 2.58 2.62 2.58
Sdq 0.015 0.014 0.016 0.015 0.015 0.018 0.017 0.017 0.013 0.014 0.011 0.013

Ssc (1/µm) 0.033 0.034 0.035 0.034 0.029 0.041 0.036 0.035 0.030 0.037 0.027 0.031
Sdr (%) 0.012 0.010 0.012 0.011 0.011 0.016 0.014 0.014 0.009 0.010 0.006 0.008
Sk (nm) 25.3 20.4 22.6 22.8 19.7 24.4 22.8 22.3 19.2 21.9 15.8 19.0

Spk 24.1 15.9 23.1 21.0 25.4 41.6 33.1 33.4 14.3 14.6 8.5 12.5
Svk 15.6 10.5 13.0 13.0 9.0 14.5 15.6 13.0 10.1 9.3 6.5 8.6
Sr1 12.1 10.4 11.8 11.4 11.4 11.9 11.4 11.6 10.8 10.6 10.5 10.6
Vv 1.20 × 10−4 8.08 × 10−5 1.18 × 10−4 1.06 × 10−4 1.09 × 10−4 2.08 × 10−4 1.64 × 10−4 1.60 × 10−4 6.69 × 10−5 6.87 × 10−5 3.84 × 10−5 5.80 × 10−5

Vm 4.60 × 10−5 3.38 × 10−5 3.41 × 10−5 3.80 × 10−5 2.60 × 10−5 3.60 × 10−5 5.20 × 10−5 3.80 × 10−5 2.95 × 10−5 2.53 × 10−5 2.14 × 10−5 2.54 × 10−5

Vmp 7.00 × 10−6 5.29 × 10−6 5.75 × 10−6 6.01 × 10−6 5.00 × 10−6 7.07 × 10−6 8.16 × 10−6 6.74 × 10−6 4.60 × 10−6 4.54 × 10−6 3.50 × 10−6 4.21 × 10−6

Vmc 3.30 × 10−5 2.47 × 10−5 2.51 × 10−5 2.76 × 10−5 1.90 × 10−5 2.56 × 10−5 3.75 × 10−5 2.74 × 10−5 2.18 × 10−5 1.87 × 10−5 1.58 × 10−5 1.88 × 10−5

Vvc 1.60 × 10−5 1.20 × 10−5 1.45 × 10−5 1.42 × 10−5 1.20 × 10−5 1.50 × 10−5 1.44 × 10−5 1.38 × 10−5 1.15 × 10−5 1.31 × 10−5 9.59 × 10−6 1.14 × 10−5

Vvv 2.00 × 10−5 1.32 × 10−6 1.62 × 10−6 1.65 × 10−6 1.00 × 10−6 1.70 × 10−6 1.75 × 10−6 1.48 × 10−6 1.30 × 10−6 1.31 × 10−6 9.41 × 10−7 1.18 × 10−6

Spk/Sk 0.95 0.78 1.02 0.92 1.29 1.7 1.45 1.48 0.74 0.67 0.54 0.65
Svk/Sk 0.62 0.51 0.58 0.57 0.46 0.59 0.68 0.58 0.53 0.42 0.41 0.45

Spk/Svk 1.54 1.51 1.78 1.61 2.81 2.87 2.12 2.60 1.42 1.57 1.31 1.43
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Table A2. Surface Texture measurements (tribo-track part).

Parameter
NSC 1 NSC 2 NSC 3

NSC 1.1 NSC 1.2 NSC 1.3 NSC 1.1 NSC 1.2 NSC 1.3 NSC 1.1 NSC 1.2 NSC 1.3 NSC 1.1 NSC 1.2 NSC 1.3

Sa (nm) 84 102 70 85 80 251 96 142 64 77 40 60
Sq (nm) 100 117 82 100 99 326 124 183 87 108 54 83
Sp (nm) 221 262 156 213 241 1114 359 571 256 351 188 265
Sv (nm) 254 325 143 241 255 1860 260 792 345 482 252 360

Ssk −0.6 −0.6 0.0 −0.4 −0.1 −1.3 1.2 −0.1 −0.4 −0.6 0.3 −0.2
Sku 2.7 2.0 2.0 2.2 2.8 5.9 3.8 4.2 4.7 5.1 4.9 4.9

Sz (nm) 460 500 297 419 493 2600 620 1238 600 813 424 612
RSm (mm) 0.009 0.016 0.015 0.013 0.014 0.020 0.013 0.016 0.011 0.011 0.009 0.010

RSm/Sa 107 157 214 159 174 80 136 130 171 143 227 180
Sq/Sa 1.2 1.1 1.2 1.2 1.2 1.3 1.3 1.3 1.4 1.4 1.4 1.4
Sp/Sz 0.5 0.5 0.5 0.5 0.5 0.4 0.6 0.5 0.4 0.4 0.4 0.4

Sds
(pks/mm2) 5526 10,559 4409 6831 10,682 5898 6870 7817 9623 8486 8616 8908

Str 0.04 0.08 0.03 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.15 0.07
Sal (mm) 4.57 × 10−4 7.39 × 10−4 3.25 × 10−4 5.07 × 10−4 5.53 × 10−4 4.73 × 10−4 3.59 × 10−1 1.20 × 10−1 1.75 × 10−4 2.82 × 10−4 3.20 × 10−4 2.59 × 10−4

Sfd 2.08 2.20 2.11 2.13 2.18 2.12 2.10 2.13 2.15 2.16 2.16 2.16
Sdq 0.03 0.03 0.02 0.03 0.05 0.09 0.04 0.06 0.06 0.06 0.03 0.05

Ssc (1/µm) 0.29 0.23 0.22 0.25 0.22 0.38 0.36 0.32 0.31 0.23 0.14 0.23
Sdr (%) 0.05 0.03 0.03 0.04 0.12 0.42 0.08 0.21 0.16 0.16 0.06 0.13
Sk (nm) 226 204 127 186 218 443 171 277 227 222 101 183

Spk 72 128 119 106 82 145 232 153 76 117 65 86
Svk 63 31 48 47 93 599 95 262 122 196 59 126
Sr1 17.2 21.6 17.9 18.9 10.1 5.4 18.9 11.5 7.0 9.9 8.7 8.5
Vv 2.21 × 10−7 2.01 × 10−7 1.56 × 10−7 1.93 × 10−7 2.41 × 10−4 8.05 × 10−4 3.60 × 10−4 4.69 × 10−4 2.57 × 10−7 3.51 × 10−4 1.88 × 10−4 1.80 × 10−4

Vm 2.52 × 10−7 3.24 × 10−7 1.41 × 10−7 2.39 × 10−7 2.54 × 10−4 1.86 × 10−3 2.57 × 10−4 7.90 × 10−4 3.43 × 10−7 4.80 × 10−4 2.49 × 10−4 2.43 × 10−4

Vmp 3.67 × 10−8 4.70 × 10−8 2.52 × 10−8 3.63 × 10−8 4.10 × 10−5 2.23 × 10−4 5.02 × 10−5 1.05 × 10−4 4.69 × 10−8 6.38 × 10−5 3.22 × 10−5 3.20 × 10−5

Vmc 1.96 × 10−7 2.51 × 10−7 1.10 × 10−7 1.86 × 10−7 1.90 × 10−4 1.35 × 10−3 1.79 × 10−4 5.73 × 10−4 2.52 × 10−7 3.51 × 10−4 1.81 × 10−4 1.77 × 10−4

Vvc 1.01 × 10−7 1.16 × 10−7 1.03 × 10−7 1.07 × 10−7 1.15 × 10−4 3.04 × 10−4 2.02 × 10−4 2.07 × 10−4 8.91 × 10−8 1.01 × 10−4 5.41 × 10−5 5.17 × 10−5

Vvv 1.30 × 10−8 9.91 × 10−9 7.86 × 10−9 1.03 × 10−8 1.12 × 10−5 4.98 × 10−5 7.04 × 10−6 2.27 × 10−5 1.32 × 10−8 1.82 × 10−5 6.76 × 10−6 8.32 × 10−6

Spk/Sk 0.32 0.63 0.94 0.63 0.38 0.33 1.36 0.69 0.33 0.53 0.64 0.50
Svk/Sk 0.28 0.15 0.38 0.27 0.43 1.35 0.56 0.78 0.54 0.88 0.59 0.67

Spk/Svk 1.15 4.08 2.48 2.57 0.88 0.24 2.44 1.19 0.62 0.60 1.10 0.77
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Table A3. Microhardness measurement values.

Test
Force
(N)

NSC
1.1

(HV)

NSC
1.2

(HV)

NSC
1.3

(HV)

Average
(HV)

Test
Force
(N)

NSC
3.1

(HV)

NSC
3.2

(HV)

NSC
3.3

(HV)

Average
(HV)

N
SC

1

6 854 837 831 841

N
SC

3

6 842 843 819 835
5 883 866 860 870 5 871 884 852 869
4 935 916 897 916 4 904 932 876 904
3 1000 986 951 979 3 963 1013 941 972
2 1118 1094 1002 1071 2 1075 1257 1025 1119
1 1189 1255 1245 1230 1 1210 1292 1204 1235

0.8 1244 1315 1321 1293 0.8 1294 1378 1334 1335
0.6 1338 1345 1405 1363 0.6 1402 1455 1425 1427
0.4 1406 1356 1483 1415 0.4 1519 1546 1472 1512
0.3 1448 1366 1514 1443 0.3 1575 1608 1515 1566
0.2 1491 1366 1564 1474 0.2 1618 1660 1562 1613
0.1 1550 1370 1602 1507 0.1 1658 1715 1602 1658

Test
Force
(N)

NSC
2.1

(HV)

NSC
2.2

(HV)

NSC
2.3

(HV)

Average
(HV)

Test
force
(N)

Substr.
(HV)

Average
(HV)

N
SC

2

6 882 898 835 872
Su

bs
tr

at
e

6 800 800
5 931 927 881 913 5 794 794
4 967 965 920 951 4 809 809
3 1055 1028 977 1020 3 828 828
2 1191 1188 1116 1165 2 833 833
1 1278 1289 1300 1289 1 861 861

0.8 1379 1356 1401 1379 0.8 862 862
0.6 1424 1413 1470 1436 0.6 872 872
0.4 1515 1510 1583 1536 0.4 883 883
0.3 1584 1574 1636 1598 0.3 898 898
0.2 1632 1625 1664 1640 0.2 931 931
0.1 1667 1708 1756 1710 0.1 967 967
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