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Abstract

This dissertation tackles the problem of describing the complex phenomena
magnetic fluid droplets undergo under certain external magnetic field configurations,
which has proven to be elusive of a quantitative description, except in the simplest of
cases. To address this problem, a mathematical model of the full three-dimensional
free surface dynamics of magnetic fluid droplets in magnetic fields is required. A
particular model relying on solving boundary integral equations, as well as its algo-
rithmic implementation is presented in this work. The algorithm can handle arbitrary
droplet and carrier fluid viscosity ratios and can capture various shape instabilities
the droplet might undergo under the right magnetic field conditions, like sharp conical
tip development or transforming into a starfish-like form. It enables the evaluation of
various approximations often used to describe ellipsoidal droplets, by comparing the
droplet dynamics calculated from such approximations to the results achieved from
first principles with this numerical tool. The algorithm may also be used to explore
droplet configurations in arbitrary magnetic fields, as well as to indirectly calculate
the physical properties of magnetic fluid droplets and to predict the magnetic field
thresholds above which the droplet shape can develop surface instabilities.

Keywords: Stokes Flow, Boundary Integral, Magnetic Fluid, Instability, Equi-
librium Figures.
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Anotācija

Šī disertācija aplūko problēmu par magnētiska šķidruma piliena sarežģīto
uzvedību ārēju magnētisko lauku ietekmē, kas līdz šim ir bijusi kvantitatīvi risināma
tikai vienkāršākajos gadījumos. Problēmas risināšanai ir nepieciešams matemātisks
modelis, kas apraksta pilnu magnētiska šķidruma piliena brīvās virsmas dinamiku
ārējos magnētiskos laukos trijās dimensijās. Disertācijā prezentēts konkrēts modelis,
kas balstās uz robežintegrālvienādojumu risināšanu, kā arī tā algoritmiskā implemen-
tācija. Algoritms var veikt aprēķinus ar patvaļīgām piliena un apkārtesošā šķidruma
viskozitātēm, kā arī modelēt dažādas piliena virsmas nestabilitātes, kuras var iz-
pausties īpašos magnētiskā lauka apstākļos, piemēram, konisku asumu rašanos vai
transformēšanos jūraszvaigznei līdzīgā formā. Tas ļauj testēt dažādu pilienu aprakstā
izmantotu aproksimāciju pielietojamības robežas, salīdzinot to paredzētos rezultātus
ar skaitliskajiem rezultātiem, kas iegūti no pirmajiem principiem. Skaitlisko rīku var
izmantot, lai pētītu magnētisku pilienu konfigurācijas patvaļīgos magnētiskos laukos,
netieši noteiktu to fizikālos parametrus un īpašības un atrastu kritiskos magnētiskos
laukus, kādi ir nepieciešami dažādo virsmas nestabilitāšu novērošanai.

Atslēgvārdi: Stoksa plūsma, Robežintegrāļi, Magnētiski šķidrumi, Nestabil-
itātes, Līdzsvara figūras.
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Chapter 1

Introduction

Contents
1.1 General motivation . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Recent developments in the field . . . . . . . . . . . . . . . 11

1.3 Numerical Simulation Methods for Fluid Droplets . . . . 14

1.4 Magnetic Fluids . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Main objectives of this work . . . . . . . . . . . . . . . . . 16

1.6 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 General motivation

At microscopic length scales fluid systems often behave differently than we might
have grown accustomed to at our everyday dimensions. It is because at these small
lengths the fluid dynamics is mostly governed by the interfacial effects, that scale
with the square of the length, rather than the bulk effects that scale with the third
power. Introducing magnetic effects at these small scales, of course, makes these
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1.2. RECENT DEVELOPMENTS IN THE FIELD

systems even more complicated. A particularly complex and nonlinear behaviour
can be observed at the boundary between immiscible fluids, for example, if we con-
sider a magnetic fluid droplet suspended in a non-magnetic carrier liquid, where the
equilibriation of magnetic energy and surface tension might create unimaginably in-
tricate labyrinthine structures or develop instabilities of sharp interfaces, as well as
synchronized group dynamics of particles.

It is difficult to describe the highly nonlinear world of magnetic fluid droplets
analytically, so scientists must also rely on numerical tools in their exploration.
Sometimes numerical approaches can prove to be a more detailed method of in-
vestigation, as they are able to quantify otherwise difficult to measure quantities,
for example stresses or pressure fields inside the fluids. Numerical tools also allow
to explore specific physical effects with a great degree of accuracy of the relevant
parameter values.

The author finds the idea of trying to capture even a small part of the afore-
mentioned astonishing phenomena inspiring and so has dedicated his dissertation to
the subject of numerical investigation of magnetic fluid droplets.

1.2 Recent developments in the field

Mathematical physics has long been concerned with equilibrium figures various ob-
jects might assume in different external physical conditions. For example, the classi-
cal problem of self-gravitating masses [1] allowed for the exploration of many bifur-
cations of surface shapes. The seminal paper by G.I.Taylor [2] sparked vast research
into the the equilibrium shapes an electrically or magnetically responsive fluid might
take, as well as their dynamics under the action of external electromagnetic fields.
In particular, significant breakthrough in the research of droplets under the action of
electromagnetic field arose with the synthesis of magnetic liquids [3] allowing many

11



1.2. RECENT DEVELOPMENTS IN THE FIELD

interesting effects to be observed and described, such as the droplet deformation
and its dynamics under the action of static magnetic fields [4, 5, 6], rotating fields
[7, 8] and labyrinthine pattern formation in the Hele-Shaw cells [9, 10] or of systems
of vanishing interfacial tension [11]. For the description of these effects different
approximate methods [12, 13, 14] (assumption of ellipsoidal shape, satisfaction of
boundary conditions on average and others) were created which need to be con-
firmed. Even more different observed phenomena still are not described theoretically
or sufficiently explored numerically, – such as the dynamics of hysteresis of droplet
deformation [15], re-entrant transition of figures of equilibrium of magnetic droplets
in a high frequency rotating field [7], spike formation on the droplet’s poles [16] and
others. It should be noted that droplets under the action of electromagnetic field have
many uses such as investigation of mechanical properties of tissue [17], dynamic self
assembly [16], magnetohydrodynamic induction pumps [18], microfluidics [19, 20],
junction sealing [21], magnetic hyperthermia for cancer therapy [22], microrobotics
for cargo transportation [23, 24], programmable droplets for flow control [25] and
many others.

In parallel with the experimental investigation of magnetic droplets, signifi-
cant efforts in the development of the numerical methods for their simulation have
been undertaken. Efficient tools for the simulation of the free boundary phenomena
may be developed on the basis of the boundary integral equations [26, 27]; they have
recently been used to observe various “starfish” like droplet shape instabilities in
a two-dimensional Hele-Shaw cell model [28]. In axisymmetric case these methods
were developed in [29, 30]. Among the phenomena predicted is, for example, the
formation of the spikes on the droplet’s poles if the magnetic permeability is high
enough [30, 31, 32]. It may be noted that by using boundary integral equation tech-
nique the simulation of such complicated free boundary problem as the formation of
the labyrinthine patterns in the Hele-Shaw cells has been carried out [33]. The ap-
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1.2. RECENT DEVELOPMENTS IN THE FIELD

plication of the boundary integral equation algorithm for the real three dimensional
case is a real challenge since special care should be applied to keep the quality of
mesh on the the droplets surface [34, 35, 36]. Modelling such dynamics can also be
approached via the level-set method [37], the immersed boundary method [38] which
is sensitive to precise boundary description[39] or Lattice Boltzmann methods which
can handle complex fluid configurations and the coexistence of multiple fluid phases
well [40]. A further review of magnetic fluid modelling and simulations is also avail-
able [41]. In parallel to the development of the numerical tools for the simulation
of magnetic droplets, corresponding elaborations are taking place for simulation of
droplets in leaky dielectrics where besides the usual terms, the convective surface
charge transfer by the liquid motion should be taken into account [42].

One of the first undertakings to simulate magnetic droplets in the three di-
mensional case was undertaken in [43] under the condition of equal viscosities of
the droplet and surrounding fluid. Since the viscosities of the concentrated phase of
strongly magnetic droplets obtained by the demixing of magnetic colloids are signif-
icantly larger than the viscosity of the carrier liquid (usually water) [44] it is crucial
in the simulation of their dynamics to account for that in the numerical models.

At present there do not exist exact solutions of magnetic droplet behaviour
under the simultaneous action of viscous, magnetic and capillary forces which may be
used as benchmarks for validating numerical models. In this situation the validations
of the numerical models is carried out by the comparison of the numerical results
with some approximate solutions. It is our aim here to carry out these comparisons
using the simple model of a magnetic fluid droplet [3] using an extension of the
numerical algorithm of [43].

13



1.3. NUMERICAL SIMULATION METHODS FOR FLUID DROPLETS

1.3 Numerical Simulation Methods for Fluid Droplets

Magnetic fluid droplets can be investigated with optical methods, owing to their large
enough dimensions, but such approaches are not as viable to measure, for example,
the pressure or stress fields inside or around the droplet. In such cases numerical
methods can be of great help by solving mathematical models of the underlying
physical phenomena and comparing their results to experimental observations.

A review of common approaches to fluid droplets simulation are given in [45].
One of the most popular methods of fluid dynamics simulations is the Finite Element
method (FEM), that solves the governing equations in cells of a volumetric mesh of
the problem domain [46]. This approach often calls for a re-meshing in order to
more accurately track the evolving interfaces. A different group of algorithms is the
so called interface tracking methods, an example of which is the Volume of Fluid
(VOF) [47]. It allows for comparatively easy tracking of fluid interfaces and drop
coalescence or breakup, by assigning an occupancy fraction value to every mesh cell
that indicates whether a fluid is present in that particular cell. VOF does not require
regular re-meshing, as opposed to the FEM approach.

The methods outlined above posses a certain drawback regarding the sim-
ulation of magnetic fluid droplets, as they require a very fine mesh resolution to
accurately describe the intricacies of the droplet surfaces which may take on rather
complex shapes [7]. These mesh resolutions may be prohibitively expensive to obtain.

Another approach consists of the so called mesh-free methods, a popular ex-
ample of which is the Boundary Element method (BEM) [48]. These methods are
able to map the flow equations of the volume on to interfaces and surfaces of the
problem domain [27]. Such a mapping effectively reduces the dimensionality of the
problem from a three-dimensional interpretation throughout the whole domain, to a
two-dimensional problem on the interfaces.

14



1.4. MAGNETIC FLUIDS

Further, integral equations allow to take into account various boundary con-
ditions on these interfaces and provide a tool to relate the physical parameters like
pressure, velocity, and stresses at a certain point on a particular boundary to those
of all the other points on all boundaries. These boundary integral equations can be
recast in the form of a linear system of equations for the relevant physical quantities.

As in BEM only the interfaces are discretized, this method typically leads
to a relatively small degree of freedom of the meshes, whilst describing the relevant
interface shape intricacies accurately. However, this dimensionality reduction from
a bulk problem to a surface problem comes at the cost of dense linear systems, as
every point of the mesh has to be considered in relation to every other point of
the mesh. This method also requires particular care and re-meshing to describe
topological changes of the droplet configuration, for example droplet coalescence or
droplet breakup [36].

In this thesis we investigate the Boundary Element method, as we are partic-
ularly interested in the droplet interface dynamics and instabilities.

1.4 Magnetic Fluids

Having established the relevance and wide applications of magnetic fluids, we can
dive into what they actually are. They have been first synthesized in the USA in the
1960s [49], and they fundamentally are fluids that are responsive to magnetic forces
[50], for example, a magnetic fluid would climb the walls of a container, if a strong
enough magnet was placed on the side of the container.

Magnetic fluids are an organization of a liquid medium intertwined with tiny
solid, permanently magnetic particles, which are typically coated with a surfactant
layer to prevent coagulation [3, 51], for example, consisting of citrate ions [52]. Fur-
ther details about the synthesis and characterization of magnetic fluids can be found
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1.5. MAIN OBJECTIVES OF THIS WORK

in [53, 54].

An example of such a system is a water based colloid with magnetic particles
of nanometer size, also often referred to as a ferrofluid. Ferrofluids usually do not
settle out at room conditions due to Brownian motion.

The object and interest of this work, microscopic magnetic fluid droplets can
be obtained from forcing a water-based ferrofluid to demix into two phases – droplets
with a large concentration of magnetic particles and a carrier fluid with a negligible
magnetic particle concentration – by adding salt to the original colloid [52, 44].
Magnetic fluid droplets obtained in such way are said to be phase-separated. This
method allows for production of droplets with sizes at the scale of microns and with
particularly high magnetic susceptibilities.

1.5 Main objectives of this work

Since the simulation of magnetic fluid droplets in three dimensions is still a very
nascent field, especially in the case of arbitrary droplet and carrier fluid viscosity
ratios, the aim of this thesis is to develop a numerical simulation tool and with it an
understanding of their behaviour in various magnetic fields.

In order to pursue this objective, the following problems are tackled:

• Develop a three-dimensional numerical algorithm for calculation of magnetic
field and velocity field of fluids based on the boundary element method relying
on boundary integral equations.

• Validate the developed algorithm with known theoretical relationships.

• Use the algorithm to probe the limits of various approximations, often used in
this setting, e.g. the assumption of the elliptical form of the droplet.
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1.6. OUTLINE OF THESIS

• With the help of the algorithm, numerically explore full three-dimensional
dynamics of magnetic fluid droplets in various field configurations.

• Numerically analyze droplet shape instability onsets and evolution, e.g. the
“starfish” instability.

• Apply the algorithm to indirectly simultaneously obtain physical properties
(surface tension, magnetic permeability and viscosity) of magnetic fluid droplets
by fitting simulation results to experimental data.

• Numerically observe previously unseen effects, for example the back-and-forth
motion of magnetic liquid droplet in a rotating magnetic field.

1.6 Outline of thesis

This thesis is organized in the following way. A general overview and recent de-
velopments of the field are given in the Chapter 1. Then, Chapter 2 introduces the
relevant theoretical foundation of hydrodynamics and magnetostatics, and formulates
the mathematical model of the physical problem. Next, Chapter 3 introduces the
numerical algorithm and its intricacies, which is then validated with various known
theoretical relationships, as explained in Chapter 4. Finally, simulations of magnetic
fluid droplet behavior in various situations by the developed algorithm are explored
in Chapter 5, concluding with a discussion and summarizing the main theses of this
dissertation in Chapter 6.
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Chapter 2

Mathematical model

Contents
2.1 Equations governing the hydrodynamics . . . . . . . . . . 19

2.1.1 Fundamental solution of Stokes equations . . . . . . . . . 19

2.1.2 Boundary integral formulation of Stokes equations . . . . 21

2.2 Equations governing the magnetostatics . . . . . . . . . . 24

2.3 Equations of motion . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Equations of motion in integral form . . . . . . . . . . . . 29

2.4 Dimensionless variables and equations . . . . . . . . . . . 30

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

This chapter introduces the relevant mathematics and physical models that
govern the microscopic magnetic fluid droplet dynamics. We first introduce the hy-
drodynamical problem and the solutions of it in terms of boundary integral equations.
Then we introduce the magnetostatic problem and finally tie these topics together
to arrive the equations of motion of a magnetic droplet.
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2.1. EQUATIONS GOVERNING THE HYDRODYNAMICS

2.1 Equations governing the hydrodynamics

Magnetic fluid droplets that we have concerned ourselves with here, typically reside
in the microscopic domain, are assumed to be incompressible and to behave in New-
tonian way, as well as flowing very slowly. Such assumptions allow the fluid to be
described by the Stokes equations for incompressible fluids [27]:

−∇p+ η∆v + ρb = 0, ∇ · v = 0, (2.1)

where p is the pressure, η is the dynamic viscosity, v is the velocity, ρ is the density
and b describes mass density of a body force.

2.1.1 Fundamental solution of Stokes equations

Considering an arbitrary point force g acting at a point y, the Stokes equations
become

−∇p+ η∆v + gδ(x− y) = 0, (2.2)

with δ representing the three-dimensional Dirac delta function. Here the differentia-
tion is made with respect to the x variable. In such a case the pressure p, flow field
v and the stress tensor at the point of observation x is given by [27]:

p(x) =
1

8π
pj(x,y)gj, (2.3)

vi(x) =
1

8πη
Gij(x,y)gj, (2.4)

σik(x) =
1

8π
Tijk(x,y)gj, (2.5)

where the flow field v is called the fundamental solution of the 3D Stokes equation.
The fundamental solution and its corresponding pressure field is shown in Figure 2.1.
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2.1. EQUATIONS GOVERNING THE HYDRODYNAMICS

(a) Velocity field. The shading in back-
ground shows the magnitude of the veloc-
ity.

(b) Pressure field around the point force.
The lines are contours of equivalent pressure
values in arbitrary units.

Figure 2.1: Solutions to the Stokes equation with a point force g, indicated by the
red arrow.

Figure 2.2: Linearity of the Stokes equation allows us to construct an arbitrary
force distribution using a number of point forces (indicated by the red arrows). The
shading in background shows the magnitude of the velocity.
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2.1. EQUATIONS GOVERNING THE HYDRODYNAMICS

The solutions contain the so-called stokeslet, that describes the linear relation
between a point force g and the velocity v, given by

Gik(x,y) =
δij

|x− y|
+

(xi − yi)(xj − yj)

|x− y|3
, (2.6)

the so-called pressurelet, relating the point force to pressure, given by

pi(x,y) = 2
(xi − yi)

|x− y|3
(2.7)

and the so-called stresslet, relating the point force and the stress tensor, given by

Tijk(x,y) = −6
(xi − yi)(xj − yj)(xk − yk)

|x− y|5
. (2.8)

In further equations we will use r = y − x, in order to simplify the notation
a bit.

The linearity of Stokes equation allows us to represent any distribution of
body forces as a superposition of the point forces g we have introduced previously,
an example of which is illustrated in Figure 2.2. In certain cases it is possible to
uniquely determine the flow field inside a volume only in terms of the flows on its
boundaries. This approach can be tackled via the boundary integral equations.

2.1.2 Boundary integral formulation of Stokes equations

In order to derive this boundary integral representation, we can rely on the Lorentz
reciprocal identity [26] which states that in a fluid volume V for two regular flows
satisfying the Stokes equation v and v′ along with their respective stress tensors σ

and σ′ we have
∂

∂xk
(v′iσik − vkσ

′
ik) = 0. (2.9)

Setting the primed quantities to correspond to the fundamental solution of a point
force introduced above

v′i(x) =
1

8πη
Gij(x,y)gj, σ′

ik(x) =
1

8π
Tijk(x,y)gj, (2.10)
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2.1. EQUATIONS GOVERNING THE HYDRODYNAMICS

Figure 2.3: Integration over the droplet volume V , excluding a small spherical region
Vε of radius ϵ.

we arrive at

∂

∂xk

(
1

8πη
Gij(x,y)gj σik −

1

8π
viTijk(x,y)gj

)
= 0. (2.11)

Since g is a constant vector, it is possible to drop it from this equation.
Integrating (2.11) over the droplet volume V (i) bounded by S, except a small spherical
volume Vϵ bounded by Sϵ of radius ϵ around the point force source at y to avoid
running into singularities (shown in Figure 2.3), while remembering the divergence
theorem ∫

V

∇ ·A dV =

∫
S

A · n dS, (2.12)

which is correct for smooth vector fields A over a volume V and its smooth surface
∂V , we are able to arrive at∫

S,Sϵ

(
1

8πη(i)
Gij(x,y)σik −

1

8π
vi(x)Tijk(x,y)

)
nj(x) dSx = 0. (2.13)

Taking the radius of the excluded spherical region to zero ϵ→ 0, it is found [27] that

lim
ϵ→0

∫
Sϵ

1

8πη(i)
Gij(x,y)σiknj(x) dSx = 0. (2.14)
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2.1. EQUATIONS GOVERNING THE HYDRODYNAMICS

as well as for the second term

lim
ϵ→0

∫
Sϵ

1

8π
vi(x)Tijk(x,y)nj(x) dSx =


−vk(y), y ∈ V (i)

−1
2
vk(y), y ∈ S

0, y ̸∈ V (i)

(2.15)

Gathering these results together, we see that

∫
S

(
1

8πη(i)
Gik(x,y)σij −

1

8π
vi(x)Tijk(x,y)

)
nj(x) dSx


−vk(y), y ∈ V (i)

−1
2
vk(y), y ∈ S

0, y ̸∈ V (i)

(2.16)

We can perform a similar analysis when integrating (2.11) over the volume of
the surrounding carrier liquid V (e), which is bounded by the droplet surface denoted
by S and its own far away external boundary denoted by S∞:∫

S

(
1

8πη(e)
Gik(x,y)σij −

1

8π
vi(x)Tijk(x,y)

)
[−nj(x)] dSx +

+

∫
S∞

(
1

8πη(e)
Gik(x,y)σ

∞
ij − 1

8π
v∞i (x)Tijk(x,y)

)
n∞
j (x) dSx = (2.17)

=


−vk(y), y ∈ V (e)

−1
2
vk(y), y ∈ S

0, y ̸∈ V (e)

The first integral has a minus sign in front of its normal vector nj(x) to make
it point out of the region of integration, as it the represents the normal vector of the
droplet. The second integral in (2.17) is integrated over the far away boundary where
the impact of the droplet is no longer felt, and so is simply equal to the background
flow v0k(y).
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2.2. EQUATIONS GOVERNING THE MAGNETOSTATICS

We are, however, particularly interested in the velocity of the fluid interface,
or equivalently the surface of the droplet, so we take the observation point y to lie
on the interface y ∈ S. Adding (2.16) multiplied by η(i) and (2.17) multiplied by η(e)

we arrive at the boundary integral equation

vk(y) =
1

4π(η(e) + η(i))

∫
S

[σ
(e)
ij − σ

(i)
ij ] Gik(x,y)nj(x)dSx

+
1

4π

η(e) − η(i)

η(e) + η(i)

∫
S

vi(x)Tijk(x,y)nj(x)dSx

+
2η(e)

η(e) + η(i)
v0k(y),

(2.18)

In further sections we will explore how to replace the stress tensor disconti-
nuity of the first integral with the relevant boundary conditions in terms of surface
tension and magnetic effects. When y lies on the boundary the functions in the inte-
grands of (2.18) Gik and Tijk diverge as x → y. In Section 3.3 we will explore options
of regularizing these divergent integrands, so that they can be evaluated directly.

2.2 Equations governing the magnetostatics

In order to determine the behaviour of the magnetic fluid droplet, the magnetic
fields needs to be known on its surface. As the involved magnetic field reacts to the
changes of the droplet shape momentarily, the problem can be accurately assumed
to be governed by magnetostatics.

We investigate the physical problem of a magnetic fluid droplet of magnetic
permeability µ that is subjected to an external magnetic field H0.

Several assumptions are to be made in order to make the problem tractable.
The droplet is assumed to be linearly magnetizable

M = χH , (2.19)
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2.2. EQUATIONS GOVERNING THE MAGNETOSTATICS

where M is its magnetization, χ is the magnetic susceptibility and H is the magnetic
field intensity.

We can express the magnetic field induction B as follows

B = µ0(M +H) = µ0(χ+ 1)H = µH . (2.20)

We assume the involved fluids to be non-conductive and so their free current
densities J to be zero – the relevant Maxwell’s equation [55] then reads:

∇×H = J = 0. (2.21)

In this case the magnetic field can be expressed as a gradient of magnetic
scalar potential ψ:

H = ∇ψ. (2.22)

From the Maxwell’s equation

∇ ·B = 0 (2.23)

it follows that ∇ · H = 0 if we also assume a uniform magnetic susceptibility χ.
These assumptions of non-existent free currents and uniform susceptibility allow us
to conclude that the magnetic potential has to satisfy the Laplace equation

∇ ·∇ψ = ∆ψ = 0. (2.24)

Considering the boundary equations on the fluid interface, denoted by S,
it follows from the Maxwell’s equations (2.21) and (2.23) that the magnetic field
potential is continuous as is the normal component of the magnetic field induction
B [56]

ψ(i) = ψ(e) (2.25)

µ∇ψ(i) · n = ∇ψ(e) · n, (2.26)
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2.2. EQUATIONS GOVERNING THE MAGNETOSTATICS

where n represents the outward-pointing normal vector of the droplet surface. The
superscripts (e) and (i) here denote the parameters external and internal to the
droplet, respectively. Finally, we expect the background magnetic field H0 far from
the droplet to be unperturbed, H(r → ∞) = H0, so we have another boundary
condition on the magnetic scalar potential at infinity

ψ(r → ∞) = H0 · r. (2.27)

Taking these boundary conditions into account, the solution of the Laplace
equation can be rewritten in an integral equation form, similarly to how we found
the integral equation for velocity (2.18), [27]:

ψ(y) =
2H0 · y
µ+ 1

− 1

2π

µ− 1

µ+ 1

∫
S

ψ(x)∇x

(
1

r

)
· n(x) dSx, (2.28)

where the H0 term represents the undistorted background field and r = |r| = |y−x|.

As we will see in further chapters, the droplet surface is described by a mesh
of collocation points (nodes). The magnetic potential is calculated on the discrete
mesh nodes, which allows us to calculate the tangential field component at each node

Ht = (I − n⊗ n) · ∇ψ, (2.29)

where I is the identity matrix and (I − n ⊗ n) functions as a projection operator
along the surface.

Since by definition the nodes lie precisely the surface of the droplet, it is not
possible to directly obtain the normal component of the gradient of the magnetic
potential. Therefore, to calculate the normal component of the field, we use an
integral equation, where the normal field is expressed solely in terms of the tangential
field component [43]:

Hn(y) =
H0 · n(y)

µ
−µ− 1

4πµ
n(y)·P

∫
S

[(
n(x)×Ht(x)

)
×∇x

(
1

r

)]
dSx. (2.30)
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2.2. EQUATIONS GOVERNING THE MAGNETOSTATICS

The integrand in (2.30) has a singularity of O(1/r2) when x → y, so it should
be evaluated as a Cauchy principal value integral represented by P .

Solving this sequence of the boundary integrals yields the magnetic field in-
tensity H on the droplet surface, from which we can recover the magnetic field
induction B as well. This is useful, as the magnetizable droplet experiences a body
force fM due to being influenced by the magnetic field

fMi = ∂kTik, (2.31)

where Tik represents the Maxwell stress tensor [3, 57]

Tik = −1

2
µ0H

2δik +HiBk. (2.32)

We will rely on (2.32) to construct the equations of motion of the droplet.

Looking at the normal force fn acting on a surface element because of the
Maxwell stress tensor, we can find

fn = niTiknk (2.33)

= −µ0H
2
n

2
− µ0H

2
t

2
+HnBn (2.34)

= − B2
n

2µ0

− µ0H
2
t

2
− µ0M

2
n

2
(2.35)

where the subscripts t and n refer to the tangential or normal components of the
vectors respectively. In further sections we will rely on the normal force difference
on the droplet surface

f (e)
n − f (i)

n =
µ0M

(i)
n

2

2
, (2.36)

where have utilized the fact that on the surface the Bn and Ht are continuous, and
M

(e)
n is equal to zero.
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2.3. EQUATIONS OF MOTION

2.3 Equations of motion

We combine the hydrodynamic and magnetostatic models introduced in the previous
chapter, to obtain the equations of motion for a droplet of magnetic fluid immersed
in an infinite non-magnetic carrier fluid. Inertia of the fluids will be neglected and
the fluids are modelled as incompressible.

In microfluidics the Reynolds number is approximately zero due to the small
scales which allows to simplify the non-linear Navier-Stokes equation, so that the
motion of the droplet is described by the Stokes equation for a magnetic fluid [3, 54]:

−∇p+ η∆v + fM = 0, ∇ · v = 0, (2.37)

where p is the pressure, η is the dynamic viscosity, fMi = ∂kTik is the volume force
from the magnetic field introduced previously (2.31). It is possible to express this
magnetic volume force fM in terms of a gradient of a magnetic pressure pM

fM = −∇pM (2.38)

where pM can be found with some algebra, starting from the definition of the volume
force (fMi = ∂kTik):

pM = −µ0

2

(
µ

µ0

− 1

)
H2 (2.39)

This allows us to simplify the Stokes equations a bit

−∇p̃+ η∆v = 0, (2.40)

where p̃ = p+ pM is the effective pressure.

The force balance on the droplet boundary in the normal direction gives

ni(σ
(e)
ik − σ

(i)
ik )nk + ni(T

(e)
ik − T

(i)
ik )nk − γ(k1 + k2) = 0, (2.41)

ni(σ
(e)
ik − σ

(i)
ik )nk +

µ0M
(i)
n

2

2
− γ(k1 + k2) = 0, (2.42)
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2.3. EQUATIONS OF MOTION

where σik = −pδik + η (∂ivk + ∂kvi) is the stress tensor of the fluid, M (i)
n is the

magnetization of the droplet, γ(k1 + k2) is the capillary force due to the surface
tension, γ is the surface tension, k1, k2 are the principal surface curvatures, and n

again is the unit normal vector directed out of the droplet.

Having introduced an effective pressure p̃, we have also indirectly introduced a
modified effective stress tensor σ̃ik = −p̃δik+η (∂ivk + ∂kvi). To express the boundary
condition (2.42) in terms of σ̃ik, we add and subtract pM from it and collect the
remaining magnetic terms into a single effective magnetic surface force

fM =
µ0

2

(
µ

µ0

− 1

)
H

(i)
t

2
+
µ0M

(i)
n

2

2
=
µ0

2

(
µ

µ0

− 1

)(
µ

µ0

H(i)
n

2
+H

(i)
t

2
)

(2.43)

to finally arrive at the modified boundary condition in the normal direction

ni(σ̃
(e)
ik − σ̃

(i)
ik )nk + fM − γ(k1 + k2) = 0. (2.44)

In the tangential direction we expect both the hydrodynamic and magnetic
forces to be continuous across the droplet surface:

ti(σ̃
(e)
ik − σ̃

(i)
ik )nk = 0,

ti(T
(e)
ik − T

(i)
ik )nk = H

(e)
t B(e)

n −H
(i)
t B(i)

n = 0, (2.45)

where the second condition holds because both Ht and Bn are continuous across the
boundary.

2.3.1 Equations of motion in integral form

We now obtain a modification of the velocity boundary integral equation of a point
y on the droplet’s surface (2.18) that automatically satisfies the force boundary
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conditions (2.44) and (2.45):

vk(y) =
1

4π(η(e) + η(i))

∫
S

f(x)ni(x)Gik(x,y)dSx

+
1

4π

η(e) − η(i)

η(e) + η(i)

∫
S

vi(x)Tijk(x,y)nj(x)dSx

+
2η(e)

η(e) + η(i)
v0k(y),

(2.46)

where v0 is the background fluid flow and the integral is evaluated over the surface
of the droplet.

The normal force on the surface in (2.46) reads

f =

(
1

2
µ0µ(µ− 1)H(i)2

n +
1

2
µ0(µ− 1)H(i)2

t − γ(k1 + k2)

)
, (2.47)

where Ht and Hn are the tangential and normal components of the magnetic field
on the surface, and µ is the relative permeability of the droplet.

2.4 Dimensionless variables and equations

A dimensionless variable or a dimensionless quantity is a quantity without a physical
dimension ascribed to it, e.g. time or length, and its unit of measurement in the SI
system is unity, usually not explicitly shown. For example in a simple pendulum
system, we might measure the time in units of the oscillation periods of the system,
that is, by rescaling the physical time elapsed with the characteristic period t/T .

Such dimensionless quantities are commonly used in science to clarify the
description of various complex systems, which often have many interactions.

Here we propose the length scale as the radius of a spherical droplet R0, time
scale defined by t0 = R0η

(e)/γ, a magnetic field scale given by the external field H0, a
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magnetic permeability scale given by the vacuum constant µ0, a viscosity parameter

λ = η(i)/η(e), (2.48)

and the Bond magnetic number

Bm = 4πµ0R0H
2
0/γ. (2.49)

The integral equation (2.46) can then be recast in a dimensionless form:

vk(y) =− 1

1 + λ

1

4π

∫
S

(k1(x) + k2(x))ni(x)Gik(x,y)dSx

+
1

1 + λ

1

4π

∫
S

fM(x)ni(x)Gik(x,y)dSx

+
1− λ

1 + λ

1

4π

∫
S

vi(x)Tijk(x,y)nj(x)dSx

+
2

1 + λ
v0k(y).

(2.50)

The magnetic part of the normal force f (2.47) can be isolated and in a
dimensionless form gives [58]

fM =
Bm

8π
(µ− 1)

(
µH(i)2

n +H(i)2

t

)
. (2.51)

2.5 Summary

This chapter has introduced the mathematical tools necessary to describe the hy-
drodynamic and magnetostatic problem of droplet dynamics. The essence of the
theory could be summarized as follows – the linearity of Stokes equations allows
us to construct a boundary integral equation for the surface velocity of the droplet
from a distribution of surface forces, which combine the surface tension and magnetic
forces.
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Chapter 3

Numerical Algorithm
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The numerical algorithm developed and utilized during this thesis is explained
in detail in this chapter. It is a generalization of [43] that limited their exploration
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3.1. MESH REPRESENTATION

of magnetic fluid droplets to their equilibrium configurations under the assumption
of equal viscosities of the droplet and the surrounding carrier fluid.

3.1 Mesh representation

The magnetic fluid droplet surface is tessellated by a mesh of triangular boundary el-
ements with collocation points (nodes) at their vertices. The integrals are calculated
using the trapezoid integration method using only the integrand function values at
the nodes. This approach allows us to conveniently recast the summation over the
flat triangles to a summation over nodes [34]∫

S

f(x)dS ≈
∑
i

f(xi)∆Si, (3.1)

where the summation is done over every node i, and ∆Si = 1/3
∑

∆S is the mean
area of the triangles adjacent to the i-th node. The division by 1/3 arises from the
fact that we evenly distribute one third of the contribution of each triangle to each
of its vertices. Using this reformulation, the integral equations become simply linear
systems of equations that can be solved with common numerical libraries. Solution
of the integral equations of §2 produces the velocities of each node and allows us to
calculate the dynamics of the droplet surface.

The original spherical mesh is obtained by iteratively “slicing” an icosahedron,
by adding more nodes on its faces and projecting the newly added nodes on a sphere,
as shown in Figure 3.1, and proposed in [59]. The simulations usually utilized two or
three slicing iterations, increasing the number of nodes up to 162 or 642 respectively.
The normals and the surface curvatures at each vertex are determined by fitting a
paraboloid on the relevant vertex and its immediate neighboring vertices [34].
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3.1. MESH REPRESENTATION

Figure 3.1: Mesh generation procedure. An icosahedron can be iteratively sliced to
produce a mesh of desired resolution. Our simulations typically started with two
(bottom left) or three (bottom right) slicings, yielding 162 or 642 nodes respectively.
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3.2 Mesh maintenance

In general, the droplet surface has a nonuniform velocity distribution, so just trans-
lating the initially uniformly distributed nodes would degrade the mesh quality rather
fast, as some triangles would become more deformed than others.

To diminish this unwanted effect, numerous mesh maintenance techniques are
used during the simulations, which are explained in this section.

3.2.1 Passive stabilization

Given that the dynamics of the droplet surface is determined solely by the normal
velocity component, the mesh degradation may be slowed by properly adjusting
the tangential velocity components. In the so called passive stabilization [35], the
tangential components can be adjusted in order to minimize a certain “kinetic energy”
function

F =
∑
xij

[
d

dt

(
|xij|2

h2ij
+

h2ij
|xij|2

)]2
+ 0.4

∑
∆

1

C2
∆

(
dC∆

dt

)2

, (3.2)

where the first sum pertains to edges between nodes i and j and tries to keep the
edges xij at some optimal length hij that is determined by the local curvatures of
each node [35], while the second sum pertains to the mesh surface triangles and
attempts to keep the triangles as regular as possible, by using the “compactness” of
a triangle

C∆ =
S∆

a2 + b2 + c2
, (3.3)

with a, b, c representing the triangle side lengths, as a guide [35].
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3.2.2 Active stabilization

The algorithm outlined above slows the mesh degradation but does not stop it en-
tirely. In addition the so called active stabilization [35] between the time-stepping of
nodes is necessary. In active stabilization the nodes are translated along the surface
of the droplet in order to attempt to minimize a “potential energy” function

E =
∑
xij

[
1

2

(
|xij|2

h2ij
+

h2ij
|xij|2

)]50
+
∑
∆

(
Creg

∆

C∆

)100

, (3.4)

where Creg
∆ =

√
3/12 is the compactness value of a regular triangle. This “potential

energy” function E takes on large values when an edge xij differs a lot from its
optimal length of hij and so it avoids both inappropriate crowding and scattering of
vertices, as well not allowing triangles to deviate a lot from the optimal compactness
value of a regular triangle. In order to move the node xi along the surface of the
droplet, we utilize the previously fitted paraboloid that was used in the normal
vector calculations with xi lying at the tip of the paraboloid. This paraboloid locally
approximately coincides with the droplet surface, as described by the nearby vertices.
The node xi is then translated along this surface so as to minimize the “potential
energy” E.

The above energy functions E and F have their gradients expressible in an
explicit analytical form, allowing for efficient calculations. To find the minimum of F
we rely on the conjugate gradient method [60]. To minimize E, we rely on a modified
gradient descent method, where after each step the points are projected back on the
paraboloid that approximately describes the local droplet surface [35].

3.2.3 Edge flipping

Edges between vertices can be reconnected. Consider a quadrilateral described by
vertices

[
xa,xb,xd,xc

]
with an additional edge, connecting the two diagonally op-
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posite vertices
[
xa,xd

]
.

Figure 3.2: Edges might be flipped to create more regular triangles.

This edge might be flipped to instead connect the vertices
[
xb,xc

]
, as shown

in Figure 3.2, given that∣∣xb − xc
∣∣2 < ∣∣(xb −Ob)(xc − xb)

∣∣+ ∣∣∣(xc −Oc)(xc − xb)
∣∣∣,

with Ok describing the circumcenter of the triangle
[
xa,xd,xk

]
, where k ∈ {b, c}

[35, 36]. These edge flips allow for increasingly regular triangles and they are applied
sequentially to all of the edges until no more flips are allowed. There are extra
rules, however — an edge will not be flipped, if it would result in a node with less
than five connected neighbouring nodes. This is enforced to ensure that a general
paraboloid, requiring five parameters describing its shape, can be fitted to every node
and its neighbors. The edge flipping algorithm is applied at every simulation step.
If any edge has been flipped, active stabilization will be applied again to ensure the
regularity of the mesh.

3.2.4 Node addition

It was found that to ensure accurate results, more nodes are needed in regions of high
curvature than can be supported with the techniques introduced above, therefore,
we also implement a node addition routine. At each vertex, we have to compute the
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magnitude of curvature
H =

√
k21 + k22, (3.5)

where k1, k2 are the principal curvatures, calculated from the previously fitted paraboloids.
The magnitude of the curvature is a better measure than the mean curvature, as in
the average approach the curvatures might cancel each other out in regions where
the droplet shape resembles a hyperbolic paraboloid.

Then for each triangle we calculate the mean curvature of its vertices H∆ =

1
3

∑
i∈∆

Hi as well as the square root of its area
√
S∆, signifying the characteristic

length scale of the triangle. Each triangle for which H∆

√
S∆ > ε is marked for

node addition, with ε being an empirically determined cut-off criteria. Moreover, if
a triangle has two or more neighboring triangles marked for splitting, it itself is also
marked.

To determine a sufficiently optimal ε value, a droplet was elongated in a
constant field with various ε values and the ratio of the droplet semi-axes evolution
compared (Figure 3.3). The semi-axes here refer to the longest and shortest axes of
an ellipsoid, fitted to the droplet shape. A threshold for cut-off value of 0.2 was found
to be sufficient for a precision of 10−3. The smaller the value of ε, the more quickly
the number of nodes is increased, as demonstrated in Figure 3.4. This significantly
increases the time of computation, which scales approximately as O(N2), where N
is the number of nodes. Unless stated otherwise, the cut-off of ε = 0.2 is used in
further simulations.

New nodes will be introduced at the middle of each edge of the marked tri-
angles [36]. These new nodes are then mutually connected so that each of them has
at least five neighbours. Again, this is to ensure that a general paraboloid will be
fittable upon every node.

To ensure the smoothness of the surface, every added node is projected on a
paraboloid of one the original vertices. The paraboloid chosen for projection is that
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Figure 3.3: The relative error of the axis ratio, as compared to the ε = 0.15 case.
Unless stated otherwise, in further simulations ε = 0.2 was used, as its relative error
of 10−3 (blue curve) was deemed to be acceptable. In these simulations, a droplet of
λ = 1 and µ = 22 was elongated in a magnetic field of Bm = 5.8. This figure has
been obtained in collaboration with A. P. Stikuts.

whose corresponding node is the closest to the newly added node.

Finally, the neighborhood of triangles affected by this new node addition is
also actively stabilized, similarly as in [36]. The node addition routine is shown in
Figure 3.5.

3.3 Regularization of the boundary integral equa-
tions

The integral equations introduced in 2 have their integrands often divergent as x → y

which poses difficulties to their numerical calculation at those points. This behaviour
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Figure 3.4: The number of nodes in time for various values of the cut-off criterion ε,
corresponding to the simulations shown in Fig. 3.3. This figure has been obtained
in collaboration with A. P. Stikuts.

can be handled by regularizing the integrands, so that they are no longer divergent
at all or they have been made weakly singular and can then be handled using some
simple approaches [61, 62]. These techniques are explained in this section.

3.3.1 Regularization of the velocity integral equation

Every integrand shown in (2.50) is weakly singular, meaning that their scaling follows
O(1/r), with r = x − y, as x → y and are thus convergent. This scaling behavior
can be determined by expanding the integrands in Taylor series for small r in a local
coordinate system centered at y. It may also be noted that r ·n = O(r2) as x → y.
These integrals can be handled numerically, for example, by integrating them on
the singular elements in polar coordinates (centered around the divergent node y),
where a factor of r arises from the differential area element (dS = rdrdθ), cancelling
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3.3. REGULARIZATION OF THE BOUNDARY INTEGRAL EQUATIONS

Figure 3.5: An illustrative example of the node addition routine. First, the triangles
marked for node addition are found, as shown in yellow. As the cyan triangle has at
least two neighboring triangles marked for splitting, it itself is also marked. The new
nodes are added in the middle of every edge of the marked triangles, remembering
to introduce extra edges to make sure every node has at least five neighbors. The
new edges are indicated by the dashed lines. Finally, the affected triangles as well as
their neighborhood, marked in orange, are actively stabilized to enhance the mesh
quality.

out the 1/r singularity discussed above [26]. However, an easier implementation
with a greater precision of the numerical scheme can be obtained by removing these
singularities altogether, which is possible for these integrals.

Since the first integral in (2.50) is calculated over a closed surface, it may be
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3.3. REGULARIZATION OF THE BOUNDARY INTEGRAL EQUATIONS

transformed in the following form [63]∫
S

(k1(x)+k2(x))ni(x)Gik(x,y)dSx =

−
∫
S

(
rini(x)nk(y) + rini(y)nk(x) + (1− ni(x)ni(y))rk

− 3rk(ni(x) + ni(y))rirjnj(x)

|r|2

)
dSx

|r|3
,

(3.6)

This transformation leads us to the term in the brackets scaling as |r|3 and making
the whole integrand scale as O(1), as x → y. Moreover, computing the sum of
principal curvatures (k1 + k2) = ∇ · n in the integral on the left hand side of (3.6)
famously introduces large errors due to the surface discretization [34, 63], which in
this new form is now avoided.

The singularity of the second integrand in (2.50) can be reduced by an order
using the method of singularity subtraction [27]. We use the identity [43]∫

S

ni(x)Gik(x,y)dSx = 0, (3.7)

which we multiply with the magnetic force fM(y) and subtract it from the second
integral in (2.50) to get∫

S

fM(x)ni(x)Gik(x,y)dSx =

∫
S

[fM(x)− fM(y)]ni(x)Gik(x,y)dSx, (3.8)

whereby now the integrand on the right hand side is no longer singular as x → y,
but rather O(1), if fM(x) is a smooth function.

Finally, the last integral in (2.50) can also be treated with singularity sub-
traction by making use of the identity [27]∫

S

Tijk(x,y)nj(x)dSx = −4πδik (3.9)

and is replaced by∫
S

vi(x)Tijk(x,y)nj(x)dSx =

∫
S

[vi(x)− vi(y)]Tijk(x,y)nj(x)dSx − 4πvk(y).

(3.10)
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3.3. REGULARIZATION OF THE BOUNDARY INTEGRAL EQUATIONS

As a result the order of the singularity has been reduced by one, and the integrand
stays bounded as x → y, if vi(x) is a smooth function.

We can rewrite the integral equation (2.50) for v in the form

vk(y) =
κ

4π

∫
S

vi(x)Tijk(x,y)nj(x)dSx + Fk(y), (3.11)

where F is a function independent of v and κ = 1−λ
1+λ

. It is known [64] that the
homogeneous part of this integral equation has eigensolutions with eigenvalues κ =

±1. The κ = 1 eigensolution corresponds to a uniform expansion of the droplet
and the κ = −1 eigensolution corresponds to an arbitrary rigid body motion of it.
Hence, in cases where λ ≫ 1 or λ ≪ 1 the integral equation is poorly determined.
Magnetic droplets produced by a demixing of magnetic colloids have been observed
to have large viscosities (λ ≈ 100 [7]). Therefore, we use Wielandt’s deflation [64], an
approach where we formulate an equivalent integral equation that has the unwanted
eigensolutions removed.

3.3.2 Regularization of the magnetostatic integral equations

Similarly as before with the velocity integral equations, singularity subtraction is
applied, making use of identities∫

S

1

4π
∇x

(
1

r

)
· n(x) dSx = −1

2
, (3.12)

∫
S

n(x)× r

r3
dSx = 0, (3.13)

where r = y − x and y is located on the boundary of the region of integration.

The equation of the magnetic potential can be also rewritten in a regularized
form by means of (3.12):

ψ(y) = H0(y) · y − µ− 1

4π

∫
S

[ψ(x)− ψ(y)]∇x

(
1

r

)
· n(x) dSx. (3.14)
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The relation for the normal field component is also regularized by using (3.12)
and (3.13) [43] (note: here the sign is opposite in front of the integral term as
compared to that in Eq. (3.9) of [43]):

Hn(y) =
H0 · n(y)

µ
− µ− 1

4πµ
n(y) ·

∫
S

[
[Ht(x)−Ht(y)] ∇x

(
1

r

)
· n(x)−

[Ht(x)−Ht(y)]×
(
n(x)×∇x

(
1

r

))]
dSx.

Analogously as was the approach of the velocity calculation, the integrands in
the regularized equations are now bounded as x → y, and can easily be integrated
using numerical methods. Here again singular integrands are calculated using local
polar coordinates centered at y for the singular elements [26, 43].

We have also derived an alternative approach for obtaining the normal and
tangential field components using the normal field differences on the surface, but it
was observed to be less accurate and slower than the approaches introduced above.
Consequently this alternative approach was not used in further calculations. For
details, refer to Appendices A.1 and A.2.

After solving these boundary integral equations for the magnetic field, the
forces acting of the droplet surface (2.47) can be obtained and afterwards the velocity
of each mesh node can be found.

3.4 Time integration scheme

It was found that space–discretization has a larger impact on convergence of the
simulations rather than time–discretization.

Consequently, a classic first-order Euler method for time integration is uti-
lized. Nonetheless, this method does not preserve the droplet volume – it accumu-
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lates small volume changes at each time step. This can be remedied by rescaling the
droplet volume after every iteration. Our algorithm relies on an adaptive time step
∆t inspired by [65]

∆τ = 7.4 min
{(

∆xmin

|k|max

)
i

}

∆t = min
{
∆τ, 0.05

2π

ω
, 0.07

}, (3.15)

where ∆xmin is the shortest edge length connected to the i-th node, and |k|max

is the largest absolute value of principal curvature at the i-th node, and ω is the
dimensionless rotation frequency of the magnetic field.

3.5 Summary

The numerical algorithm can be briefly summarized as follows:

• For a particular external magnetic field, solve the boundary integral equation
for the magnetic potential ψ on the droplet surface (3.14).

• Find the tangential field component Ht = (I − n⊗ n) ∇ψ.

• Determine the normal field component Hn in a regularized form in terms of
the tangential component using (2.30).

• Calculate the normal magnetic surface forces fM (2.51).

• Obtain the velocities of each node from the integral equation (2.50) and trans-
late them accordingly with the first-order Euler method, after adjusting for the
optimal tangential velocity component via passive stabilization.

• Rescale the droplet volume, to compensate the discrepancies introduced by the
Euler method.
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• Apply mesh maintenance by node addition and flipping of edges at every sim-
ulation step, as well as the active stabilization every hundred simulation steps.
However, if any nodes have been added or any edges have been flipped, perform
active stabilization immediately.

In the integral equation formulation the magnetic quantities and the velocity
at each mesh node depend on contributions from all the other nodes. This means that
the time required to determine the effects of every node scales as O(N2), where N
is the number of mesh nodes. Populating the matrices corresponding to the integral
operators takes up most of the time at every simulation step. Nonetheless, this can
be sped up by using parallel computation methods.

46



Chapter 4

Algorithm validation
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Having introduced the algorithm itself and its mesh stabilization techniques,
we now turn to validating its outputs with multiple known theoretical relationships
for magnetic fluid droplet equilibrium configurations and dynamics. The situation
we look at in the hydrodynamical case concerns the relaxation to a sphere of an
initially elongated droplet without a background magnetic field. The cases with a
magnetic field present will consist of the comparison of droplet elongation versus the
expected deformation in an external magnetic field, as well as the test of whether
the algorithm is able to capture the hysteresis behaviour of the droplet in increasing
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4.1. RELAXATION TO A SPHERE

and later decreasing magnetic field. Moreover, we will also check if the algorithm
correctly estimates the characteristic time scaling that is spent in the quasi-stable
bottleneck region before undergoing a sudden elongation as is expected from the
theoretical considerations.

A challenging aspect of this validation part is the limited availability of theo-
retical relationships, as the magnetic fluid droplet problem is rather difficult and is
not easily tractable with analytical tools.

Discrepancies between these theoretical relations and our numerical simula-
tion results might hint at the limits of applicability of the relations themselves or
the limits of the assumptions underlying their derivations. An example of a notable
assumption to be tested is the assumption of the ellipsoidal shape of the droplet, as
we will see below.

4.1 Relaxation to a sphere

A stretched droplet approximated with an ellipsoid of rotation can be described by
the Taylor deformation parameter parameter

D =
a− b

a+ b
, (4.1)

where a and b represent its major and minor semi-axis respectively. In the absence
of an external magnetic field, small elongations should decay exponentially under
the action of capillary forces D ∝ e−t/τ , where the characteristic relaxation time τ ,
rescaled by the time scale of the system, reads [66]:

τ

η(e)R0/γ
=

(16 + 19λ)(3 + 2λ)

40(1 + λ)
. (4.2)

A comparison with the numerically determined relaxation times is presented
in Figure 4.1.
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Figure 4.1: Characteristic dimensionless relaxation time τ of an elongated droplet as
a function of the droplet-fluid viscosity ratio λ. The points are the numerical results
that closely follow the analytical curve (4.2). The magnetic effects are not relevant
in this simple relaxation case. This figure has been obtained in collaboration with
A. P. Stikuts.

4.2 Equilibrium elongation in constant field

We can further compare the equilibrium configurations determined by the algorithm
against relations given below. Figure 4.2 exhibits the comparison between the nu-
merically obtained equilibrium shapes of the droplet in a given magnetic field Bm

with the theoretical relationship from [5, 13]

Bm =

[
4π

µ− 1
+N

]2
1

2π

(
3−2e2

e2
− (3−4e2) arcsin e

e3(1−e2)1/2

)
(1− e2)2/3

(
(3−e2)

e5
log

(
1+e
1−e

)
− 6

e4

) , (4.3)
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Figure 4.2: Evolution of the droplet through the hysteresis region. The blue (red)
points indicate the calculated trajectory with increasing (decreasing) magnetic field
once the droplet has equilibriated. The simulation utilized µ = 30 and λ = 7.6.

where e symbolizes the eccentricity of the fitted ellipsoid e =
√
1− b2/a2 with a, b

being its long and short semi-axis, respectively, and N is the demagnetizing factor
that for prolate ellipsoids reads [54]

N =
4π(1− e2)

2e3

(
log 1 + e

1− e
− 2e

)
. (4.4)

The derivation of the equilibrium formula (4.3) relies on an assumption of an
axisymmetric ellipsoidal droplet, an approximation which works well until the axial
ratio of about 7 [6]. This limit can also be observed in Fig. 4.2 where the simulated
result deviates for highly elongated droplets, an effect explained by the droplet de-
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4.2. EQUILIBRIUM ELONGATION IN CONSTANT FIELD

veloping more conical tips than a fitted ellipsoid would possess at the corresponding
elongation, and thus no longer obeying to the ellipsoidal approximation.

When the simulation approaches the equilibrium, the collocation nodes are
translated by increasingly smaller displacements. In order to achieve the t → ∞
behaviour of the axis ratio a/b, the equilibriated points shown in Figure 4.2 are
found by the Shanks transformation [67].

There is a bifurcation in the equilibrium curve (4.3) that appears with larger
permeability µ values. At a permeability value µ ≳ 21 the equilibrium curve becomes
multivalued with respect to magnetic field, indicating an instability onset (Figure
4.2). Instability here refers to the situation where for a single magnetic field value
there are multiple axis ratio values, indicating multiple simultaneous available equi-
libria. For example, if in this case with µ = 30, the magnetic field Bm is increased
past the critical value, Bmc ≈ 3.68, the droplet configuration becomes unstable (as
it no longer stays “on” the equilibrium curve) and has to “jump” to another stable
configuration, on the right side of Figure 4.2, i.e. suddenly stretch.

After the droplet has reached this new stable configuration, the field can be
lowered below the critical value now, however the droplet will not “jump” back (con-
tract) to its previously stable configuration, but rather trace the equilibrium curve.
This phenomenon is called hysteresis, whereby the system returns to a different state
other than its original, when external perturbing forces have returned to their initial
pre-perturbation values.

With lower magnetic field values, the droplet shape would trace the curve until
a second critical magnetic field value of around Bm ≈ 3.32 (for µ = 30) is achieved.
With even lower fields, the droplet would once again suddenly “jump” back (contract)
to return to a stable configuration again. Figure 4.2 displays the path of hysteresis
calculated by the algorithm. In these simulations the node addition technique was
deactivated since accurate description of such highly stretched droplets would require
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4.3. ELONGATION OF QUASI-STABLE DROPLETS

exceedingly many points. Nonetheless, other mesh stabilization techniques were still
employed, and so the simulation results here allow only for qualitative interpretation.

4.3 Elongation of quasi-stable droplets

4.3.1 Elongation bottleneck

The smaller the amount the magnetic field is over the critical value, the longer the
droplet will stay in this quasi-stable state, before it “jumps” over to a truly stable
configuration, indicating a time bottleneck region.

a)

b)

Figure 4.3: The evolution (indicated by arrows) of a dynamical system described
by some parameter x near an equilibrium point. As the system evolves through the
equilibrium neighbourhood shown in Fig. a), its velocity is almost zero, as it has
almost reached a fixed point. Therefore, the system will take a long time to get
through this region, creating the time bottleneck τ , shown in Fig. b), that usually
scales as τ ∼ d−1/2, where d is the distance to the fixed point [68].

52



4.3. ELONGATION OF QUASI-STABLE DROPLETS

An illustration and explanation of this bottleneck behaviour in terms of an
abstract dynamical system describing the evolution of some parameter x is given in
Figure 4.3. The dynamics of this instability “jump” are governed by a hyperbolic
differential equation shown by [15] for small t

a

b
−

(a
b

)
c
= S τ tan t

τ
, (4.5)

where a/b is semi-axial length ratio, here τ is the characteristic time spent in the
bottleneck region before the “jump”, t represents time, S is a numerical constant,
and the subscript c indicates critical value, i.e. the one at the extremum of the
equilibrium curve (4.3).
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Figure 4.4: Elongations of the droplet during “jumping over” the hysteresis region
at various external magnetic field h values, with an overlay of dashed tangential
fits, according to (4.5). The originally accelerated dynamics saturate as the droplet
reaches its new equilibrium elongation. Droplet parameter values used in simulations
here were µ = 30, λ = 7.6.
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4.3. ELONGATION OF QUASI-STABLE DROPLETS

An example of multiple droplet stretching trajectories at different magnetic
fields h = H/Hc − 1 is shown in Figure 4.4, with the corresponding tangential fits
of Eq. (4.5) of τ and S overlayed with the dashed lines. These trajectories were
obtained by subjecting an ellipsoidal droplet (µ = 30, λ = 7.6) stretched to the
corresponding critical (pre-hysteresis “jump”) axis ratio of a/b = 2.21 and letting it
evolve in various field strengths. It can be seen that the initially slow dynamics of
the “bottleneck” region are followed by a relatively fast stretching – the “jump” –
and is finally saturating into a new equilibrium position (most noticeably exemplified
by the dark blue curve in Figure 4.4).
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Figure 4.5: The characteristic time τ spent in the bottleneck region before a hysteresis
jump with respect to different magnetic field strengths h = H

Hc
− 1. The τ values

are acquired from fitting (4.5) to the droplet elongation trajectories shown in Figure
4.4. The blue line is the linear fit with a slope of k = −0.534, closely matching the
theoretically expected slope of −0.5 [15].

Figure 4.5 shows the numerically determined bottleneck behaviour of the
droplet close to the critical field parameter Bmc before “jumping” over the insta-
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4.3. ELONGATION OF QUASI-STABLE DROPLETS

ble region to a stable configuration. The τ values are acquired from fitting (4.5)
to the droplet elongation trajectories shown in Figure 4.4. The time spent in the
“bottleneck” is expected to follow [15]

τ ∼ 1√
h
, (4.6)

where h = H
Hc

− 1 =
√

Bm
Bmc

− 1, or log τ ∼ −0.5 logh in logarithmic terms, which
as shown in Fig. 4.5 is in good agreement with the value of k = −0.534 determined
from the numerical simulations.

4.3.2 Virial method and Rayleigh’s dissipation function ap-
proach

Investigation of the elongation of quasi-stable droplet dynamics permits us to ex-
plore the usefulness of another method used in theoretical description of magnetic
fluid droplets which relies on the virial theorem [1, 13] and the Rayleigh dissipation
function [69, 70].

The bottleneck neighbourhood has a stationary point of inflection of the
droplet’s energy, with respect to its eccentricity ∂eE = ∂2eeE = 0 [5]. This energy is
the sum of the droplet’s surface and magnetic energies.

The presence of this stationary inflection point allows for an approximation
of the bottleneck dynamics around it in terms of unspecified constants [15]:

Dė = Ah+B(e− ec)
2, (4.7)

with the constants evaluated at the critical point e = ec and H = Hc:

D = −ηR3
0f(ec), A = Hc

∂2E

∂H∂e
, B =

1

2

∂3E

∂e3
, (4.8)

where η is again the viscosity of the droplet viscosity and f(e) is some unknown
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function of the droplet shape. This function will be determined using the virial
method and the Rayleigh dissipation function.

Using the boundary conditions, it is now possible to express the constants of
(4.7) explicitly, as shown in Appendix A.3:

D =
8ec

9(1− e2c)
1/2
, A =

8π

3
Bmc

6ec + (e2c − 3) log
[
1+ec
1−ec

]
2e4c

B = −1

2

∂3E

∂e3
(1− e2c)

3

e2c
.

We are able to compare the accuracy of these expressions to the values of the
constants determined from the simulations. That is achieved by fitting the hyperbolic
equation (4.5) to the numerical dynamics calculated around the bottleneck region,
which provides the value of the constant S = A/(2D)(H2/H2

c − 1) [15]. Using a
linear fit to the determined S values versus the relevant H2 values gives the slope
that is an estimate of the A/2D ratio.

Moreover, characteristic times spent in the bottleneck neighbourhood τ (Fig-
ure 4.5) can also be fit with the relation τ = τ0/

√
h [15] to obtain estimates of the

capillary time τ0 =
√
AB/D.

The values of the constants found by the different approaches are shown in
Table 4.1, where Bacri83 refers to the experimental results obtained in [15]:

Bacri83 Virial th. Numerical

A / 2D 0.73 1.18 0.98
√
AB / D 0.9 0.6 1.0

Table 4.1: Comparison of the determined values using various approaches.
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4.4. SUMMARY

4.4 Summary

This chapter shows multiple examples of the algorithm being validated with some
theoretical relationships. The validation tests covered both purely hydrodynamical
settings, as well as non-trivial magnetic phenomena as well. The algorithm is able to
qualitatively capture the hysteresis behaviour of highly magnetic droplets, an effect
previously unseen in three-dimensional and non-axisymmetric simulations. It is also
able to quantitatively reproduce the critical exponents of the instability bifurcations.

All these tests hint at the algorithm being able to stand on its own and
possibly being useful in exploring situations where no theoretical relations exist at
the time of writing this thesis. We will explore these cases in the next chapter.
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Simulations
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This chapter surveys the various simulations performed by the newly devel-
oped algorithm that, to our best knowledge, have not been done before. Multiple
simulations were performed both in constant and rotating magnetic fields to better
explore the applicability and limits of the algorithm.

The simulations of a droplet in a constant field yield two important results.
First, the algorithm is able to capture the conical tip development of highly magnetic
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droplets, as has been predicted [30, 71] previously with droplets of strong dielectric
and magnetic properties.

And second, the simulated droplet shapes in increasing magnetic field strengths
once the droplets have equilibriated are comparable with the shape evolution that has
been observed experimentally. This comparability with experimental results allows
for indirect inference of droplet parameters like viscosity, permeability and surface
tension, which has previously been rather difficult for microscopic magnetic fluid
droplets. This inference can be performed by fitting the simulation parameters so
that the calculated evolution most closely matches the experimentally observed evo-
lution. However, this approach is more a proof of concept rather than a practically
usable approach, as the simulations take a prohibitively long time.

In the case of a rotating field, three notable results have been achieved. First,
back-and-forth motion of a liquid object – magnetic fluid droplet – has been simulated
in three dimensions. This effect has been previously observed in solid magnetic rods
and elastic magnetic filaments.

Second, the development of the starfish instability has been numerically cap-
tured and the critical field at which this instability arises has been determined from
the droplet shape evolution as well.

Finally, the simulations qualitatively point to a re-entrant transition whereby
a droplet that has undergone an oblate-prolate transition in increasing magnetic field
strengths will revert back to an oblate shape in even higher fields.
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5.1. CONSTANT FIELD

5.1 Constant field

5.1.1 Conical tip development

t = 0.6 t = 47 t = 72 t = 81

Figure 5.1: Droplet elongation in a constant magnetic field with Bm = 5, µ =

30, λ = 10. Development of sharp tips can be seen, as well as addition of nodes in
regions of high surface curvature. This simulation was halted at t = 80.96 before it
had reached an equilibrium, as the droplet had developed prohibitively many points
near its tips. This figure has been obtained in collaboration with A. P. Stikuts.

60



5.1. CONSTANT FIELD

An initially spherical magnetic fluid droplet is subjected to a constant homogeneous
magnetic field and it stretches at a some rate until it reaches an equilibrium elon-
gation, where the magnetic forces balance the surface tension force. For droplets of
high magnetic permeability µ at high enough magnetic fields, it is possible for them
to even grow sharp conical tips. A similar effect has been predicted [30] and observed
[5] before. Here we are able to recapture this phenomenon numerically, as shown by
simulation results in Figure 5.1.
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Figure 5.2: Droplet shape outlines during elongation at different µ values in a con-
stant magnetic field, acquired via projection of the complete three-dimensional simu-
lation in a plane. All elongation simulations were performed in a magnetic field that
for the particular value would yield an equilibrium elongation axis ratio of a/b = 13.
The plot displays a snapshot of the moment the droplet tips stretched to z = 3.
Larger values of µ seem to be developing sharper tips even before attaining the equi-
librium. The x, z axes have been scaled to highlight the outline differences. The
right figure shows a zoomed-in red region of the left figure around the droplet tips.

The Figure 5.2 shows qualitatively distinct behaviour when droplets elongate
in a constant magnetic field for different values of magnetic permeability µ. This
particular range of µ values was explored, as it includes the critical value of µc ≃ 21

at which hysteresis becomes possible. At larger values of µ during the stretching
of the droplet, it may develop sharp cone-like tips, a phenomenon not observed at
smaller µ values [30].
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This effect of conical tip development has been observed before in axi-symmetric
two-dimensional simulations [31].

5.1.2 Comparison with droplet elongation in experiments
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Figure 5.3: Stretching of a magnetic fluid droplet in a magnetic field, increasing from
zero in a stepwise manner, indicated by the dotted lines. In black – experimental
results with µ = 34± 1.5, γ = (8.2± 0.4) · 10−7J/m2, λ = 10.1± 2.5) in an external
magnetic field. The blue and green curves are obtained numerically with (µ = 34,
γ = 7.7 ·10−7J/m2, λ = 7.6) and (µ = 34, γ = 8.2 ·10−7J/m2, λ = 7.6), respectively.
The numerically calculated curves allow to indirectly find the bounds of the droplet
parameter values. Experimental data supplied by A.P. Stikuts.

This algorithm allows to capture of the droplet stretching rate. An example of a
magnetic fluid droplet elongation measured experimentally is shown in Figure 5.3,
where an initially spherical droplet is subjected to homogeneous magnetic fields of
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increasing magnitude. The fields strengths start at zero and are increased in a
stepwise manner once the droplet elongation has equilibriated. The procedure of this
experiment follows the protocol explained in [43] and the parameters of the droplet
are shown in Figure 5.3. Variation of droplet parameters allows us to best match
the simulation results to the experimentally observed results. This approach is able
to produce parameter bounds, so that their corresponding simulation results enclose
the experimental elongation curve from below and above – this would indirectly hint
at the underlying bounds of droplet parameters like their surface tension γ, magnetic
permeability µ and the ratio of viscosities λ. Estimating these parameters is usually
a challenge for microscopic droplets.

Nonetheless, we should mention that these calculations require large compu-
tational resources and since there are three parameters to be estimated, this approach
of droplet parameter estimation does not seem practical at the moment.

A step towards application in practice, however, might be observing only
slightly deformed droplet elongation–relaxation, where the simulations would require
less nodes to describe the droplet shape accurately.
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5.2 Rotating field

5.2.1 Back–and–forth motion
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Figure 5.4: Back–and–forth motion of a droplet (shown in the inset), that has
been first elongated in a constant magnetic field, in moderately fast rotating fields
of different dimensionless frequencies ω. The curves represent the angle between
longest droplet axis and the stationary z axis. Parameters used in simulations:
µ = 30, Bm = 10, λ = 1. Here node addition was disabled, to speed up the
simulations.

Another phenomenon of droplet behaviour in a rotating field was explored. Droplets
that were initially elongated in a constant field were then exposed to a rotating
magnetic field of various dimensionless frequencies ω.

At small rotation frequencies, the droplet follows the external magnetic field,
as expected. However, at larger frequencies, a back-and-forth motion of the liquid
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droplet was observed, as seen in Figure 5.4 where the angle of the longest droplet axis
is shown to be oscillating around an averaged uniform rotation with respect to the z
axis. There are hints of rotational modes being present as well, as indicated by the
almost perfect matching up of the two evolution curves of the rotational frequencies
that are almost a multiple of one another.

Similar effects have been observed with solid elongated paramagnetic particles
[72], self–propelling magnetic particles [73], as well as magnetotactic bacteria [74].
To our knowledge, liquid particle back-and-forth motion has not been previously
simulated.

These simulations did not employ the node addition stabilization technique,
as the accurate description of such really deformed droplets would require too many
mesh nodes. All the other mesh stabilization algorithms were still used. Therefore
these results are qualitative.
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5.2.2 The “starfish” instability

Figure 5.5: Example of the starfish instability developing in a rotating magnetic field,
using Bm = 35, µ = 10, ω = 10, λ = 7.6 and the node addition cut-off criteria of
0.4.

The algorithm gives us the ability to explore the beginning of the starfish instability,
exemplified in Figure 5.5. It is known to occur at fast enough and strong enough
rotating magnetic fields, when the oblate magnetic fluid droplet “grows” finger–like
structures around its perimeter [7].

We also managed to observe competition of these instability modes (arrange-
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ments of a different number of these “fingers”), as can be seen in Figure 5.6 where
at the beginning the droplet seems to growing the mode of n = 6 which is eventually
beat by the very pronounced n = 4 mode.

These instability “fingers” seem to have arisen from some mesh asymmetries,
that may arise during the stabilization of the mesh, whereby one region of the surface
might have new nodes added to it or some edge flips happen there, while another
region might have avoided such maintenance.

Figure 5.6: Starfish instability mode competition using Bm = 30, µ =

10, ω = 10, λ = 7.6 and the node addition cut-off criteria of 0.4. Initially, the
n = 6 mode seems to be developing, but eventually only the n = 4 mode has re-
mained.
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5.2.2.1 Field threshold determination

In order to thoroughly investigate the nature of the onset and evolution of these
modes, we performed the following procedure. Initially, we start with an axially
symmetric oblate ellipsoid, the axis ratios of which have been calculated to corre-
spond to a minimal energy shape in an infinitely fast rotating magnetic field [7, 8].
Then, a tiny sinusoidal perturbation, with its period corresponding to the particular
mode n, is added along the perimeter of the droplet in the plane of rotating field:

δr(θ) = ε cos (ωnθ), (5.1)

where ε = 0.01 is an arbitrary number to make the perturbation small and ωn scales
the perturbation profile to create the desired number of instability “fingers”. We
apply this perturbation in the plane of rotation of the magnetic field (here the XZ
plane) to the position of every node i:

x(i) = x
(i)
0 + δr · cos θ(i) · r(i), (5.2)

z(i) = z
(i)
0 + δr · sin θ(i) · r(i), (5.3)

where the zero subscript indicates the unperturbed coordinate, θ(i) is the angle the
i-th node makes with the x axis after being projected into the XZ plane and r(i)

is its distance to the origin in this plane. After this perturbation is applied, the
droplet volume is rescaled and it is then evolved in a period-averaged high frequency
magnetic field of various strengths. This approach allows us to explore whether each
mode would grow or decay at the particular field strength.
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Figure 5.7: The droplet mesh is projected onto to the plane of the rotating magnetic
field in order to find its hull (red). The figure on the right shows a zoomed in region
of one of the six starfish “fingers”, bounded by the green square in the left figure.

To tackle this problem quantitatively, we need to project the droplet mesh
onto the plane of rotating field, where we can then find the outline (hull) of the droplet
perimeter, as shown in Figure 5.7. Once that is done, it is possible to “unroll” the
hull in terms of plane polar coordinates r(θ) on which it is then easy to apply Fourier
mode analysis.

Since the droplet is perturbed near its equilibrium, linear response of the
perturbation can be assumed ε̇ = βε, and with it, an exponential evolution of the
perturbation ε(t) ∝ eβt, where β is the so called logarithmic increment. In further
analysis, we consider the pertinent Fourier mode An to represent the surface per-
turbation ε = An and βn to represent its corresponding logarithmic increment. An
example of this exponential Fourier amplitude evolution is shown in Figure 5.8.
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Figure 5.8: Evolution of logarithm of the Fourier mode A3 at various magnetic
field strengths, µ = 10. Two things can be observed: the amplitude evolution is
exponential, as expected from the linear response assumption, here evidenced by the
straight lines; and the slope of curves, represented by β3, changes from negative to
positive with increasing magnetic fields, indicating a critical field, above which the
perturbation no longer decays. In this case of the n = 3 mode, we find this critical
field to be 21 ≤ Bmc ≤ 22.

This Fourier amplitude analysis can be used to determine the value of the
critical magnetic at which a certain mode would develop. To determine this critical
field Bmc, one has to find the magnetic field value at which the slope (logarithmic
increment) β of the log-amplitude evolution (shown in Figure 5.8) changes sign. A
particular example of this β sign change is shown in Figure 5.9 in the case of β3, as
obtained from the evolution curves in Figure 5.8.
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Figure 5.9: Logarithmic increment β3 at various field values, obtained from analysis
of Figure 5.8. The sign change indicates a critical field, above which the perturbation
no longer decays. In this case of the n = 3 mode, we find this critical field to be
21 ≤ Bmc ≤ 22.

A particularly interesting mode to investigate is the n = 2 mode, whose
growth would indicate the oblate-prolate transition, or, in possibly more relatable
terms, pancake-like shape to rugby-ball-like shape transition.
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Figure 5.10: The vertical red line on the left side of figure shows the critical field
determined via the logarithmic increment β2 changing sign. It matches perfectly
with the value calculated via droplet energy minimization (blue). The square area
on the right side of the figure shows the droplet becoming oblate (pancake-like) again
at larger magnetic fields. Simulated using µ = 10.

This transition is indicated by the sharp drop of the blue curve in Figure
5.10. The blue curve been calculated numerically by minimizing the energy of a
droplet, presumed to be ellipsoidal [8, 43]. The critical field of the transition found
by analyzing the behaviour of β2 with increasing magnetic fields (shown in dashed
red in Figure 5.10) matches very closely to the energy minimization prediction.
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Figure 5.11: Logarithmic increments βn of various instability “finger” modes at dif-
ferent magnetic fields Bm. Mode competition can be noticed as the βn’s close in on
one another at larger magnetic fields. Simulated using µ = 10.

Figure 5.11 displays a multitude of βn values and their behaviour with in-
creasing magnetic fields, there are multiple things to deduce from this figure. First,
the β values seem to be increasing with larger magnetic fields, however, β2 seems to
have peaked at Bm = 22. This non-monotonicity will be explored shortly. Second,
the ordering of the critical fields seems to be consistent – larger critical fields for
larger modes. Third, at larger magnetic fields we can observe the relative order of
the β’s changing: at Bm = 25 the β2 becomes smaller than β3, indicating a kind
of competition between modes we have observed previously in Figure 5.6. It is not
evident that the mode n = 3 would overtake the mode n = 2 at Bm = 25, if the
n = 2 mode had already established itself. However, starting from small random
perturbation along a spherical droplet surface at Bm = 25 the n = 3 mode would
probably emerge as the dominant one.
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Figure 5.12: “Starfish” instability modes n and their corresponding minimal criti-
cal magnetic fields Bmc above which they could manifest themselves, at µ = 10.
However, having the field above this threshold value is not sufficient to observe the
particular mode, as other modes might be more pronounced. Comparison with the
theoretical prediction [75] in red. Both results show a linear relationship. The high
theoretical Bmc estimates (red) might be explained by an underestimate of capillary
effects.

Looking at the critical magnetic fields as determined by analysing the βn sign
changes in Figure 5.11, we can display their evolution with respect to their mode
number n, as shown in Figure 5.12.

The linear relationship of increasing critical fields with mode number corrob-
orates the theoretical predictions of Cēbers et al. [75], made under the assumption
of an infinitely long cylindrical magnetic fluid droplet, shown with a solid red line in
Figure 5.12. This linear relation has also been observed experimentally [7].

The theoretical overestimate of the critical Bm value might be explained by
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the assumption of the infinitely long cylinder. In such a case, the principal curvature
describing the deformation along the long axis of the cylinder is identically zero, thus
lowering the effective capillary force γ(k1 + k2) due to surface tension, where k1, k2
are the principal curvatures of the surface. In three dimensions both of the principal
curvatures would be nonzero around a surface instability. Since the Bond magnetic
number Bm represents the ratio of magnetic to capillary forces, an underestimate of
the latter would overestimate the critical Bm value.

5.2.3 Re-entrant transition
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Figure 5.13: The logarithmic increment of the starfish mode n = 2 of a droplet with
µ = 10 becomes positive at Bm ≈ 18, indicating a transition to a prolate shape,
which can be reversed at large fields, when the droplet becomes oblate again – this
reentrant transition was predicted and observed in [7].

The droplet energy minimization approach [8, 43] shown in blue in Figure 5.10,
as well as experimental observations [7] at large enough magnetic fields (Bm ≳ 70)
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predict the droplet undergoing a prolate-oblate transition – reverting back to its
pancake-like shape seen previously at lower magnetic fields.

We observe a qualitatively similar result in the analysis of Fourier modes A2

of slightly perturbed ellipsoidal droplets, where in stronger magnetic fields Bm ≳ 50

the growth increment β2 becomes negative again, indicating the decay of the n = 2

mode and thus allowing the droplet to re-enter its oblate form again.

There seems to be a discrepancy in the prediction of the critical field values
of the re-entrant transition between the energy minimization approach and our nu-
merical perturbation analysis. This difference might have hint at the limits of the
ellipsoidal approximation used in deriving the critical field in the energy minimiza-
tion approach. However, in order to increase confidence in the numerical result, we
would need to begin our perturbation analysis from the prolate shape, rather than
indirectly predicting it from the perturbation behaviour of the oblate droplet shape.
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Conclusion
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6.1 Discussion

The development of the boundary element method algorithm for three-dimensional
magnetic fluid free interface dynamics allows to validate various relations describing
their behavior and may be compared with experimental data, thus providing insight
regarding the physical properties of the concentrated phase of magnetic colloids.
These colloids can have many interesting properties due to their highly magnetic na-
ture – such as dependence of rheological properties or surface tension on the magnetic
field.

The newly created numerical tool has been tested against some theoretical

78



6.1. DISCUSSION

solutions where possible – equilibrium curves of droplet elongation in constant mag-
netic fields with various relative magnetic permeability µ values, the exponential
decay of small elongations under surface tension without external magnetic fields,
the dynamical behaviour around the hysteresis bottleneck instability regions, as well
as droplet dynamics in various rotating field configurations and the critical fields for
oblate–prolate transition. These tests allow to probe the limits of various theoretical
approximations and assumptions often used in description of magnetic fluid droplets,
for a notable example, the assumption of ellipsoidal shape.

The correspondence of theoretical predictions with numerical results also ex-
tends the application limits of the simple magnetic fluid model description of these
droplets, which seem to be a rather new kind of soft magnetic matter with a priori
nontrivial physical properties.

The algorithm has also been shown to be appropriate in prediction of full
three-dimensional droplet dynamics with arbitrary droplet-fluid viscosity ratios in
uniform fields, both static and rotating up to moderately large droplet deformations.
This is important, as experimentally magnetic fluid droplets are not usually axisym-
metric and so have to be described carefully in 3D, and can reach viscosity ratios of
λ ≈ 100. The algorithm also allows to explore droplet dynamics in rotating magnetic
fields of moderate frequencies, where the fast–rotating field averaging approximation
does not hold, which has not been previously possible.

In addition, the algorithm can capture the expected characteristic behaviour
of magnetic fluid droplets in rotating magnetic fields, in particular, following the
external field at low rotation frequencies and exhibiting a back-and-forth motion
at moderately fast fields, similarly to solid magnetic rods or particles, as well as
the droplet undergoing the oblate–prolate–oblate transition at fast rotating fields of
increasing strength.

However, the algorithm is currently limited in its ability to simulate large
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deformations of the droplet. It also is unable to simulate a symmetrical appearance
of the starfish instability modes without an artificial perturbation of the droplet’s
shape. The unperturbed starfish instability modes possessed a certain asymmetry
both in their angular position and their length as well. In order to speed up the sim-
ulation times, the node removal routine in regions of small surface curvature should
be implemented, as has been demonstrated previously [36]. Moreover, the existing
algorithm version relies on assumptions of uniform surface tension and linear magne-
tization of the droplet. And finally, the present algorithm cannot handle topological
changes of droplets like coalescence or breakup, as well as multiple drops interacting.
It is, however, possible to extend the BEM algorithm to these cases[35].

A notable contribution of this work is the numerical confirmation of the main
characteristics of magnetic fluid droplet behavior in static and rotating fields. This
allows for the study of droplet dynamics in highly non–equilibrium situations not
tractable at present by any theoretical approach, as well as exploring various phe-
nomena that may be sensitive to the precise values of multiple physical parameters
of either the droplet or its surroundings.

6.2 Main conclusions

• When the “starfish” instability modes of a droplet in a rotating field compete,
the mode appearing first may not turn out to be the dominant one.

• Analysis of droplet surface perturbation evolution allows to precisely deter-
mine the magnetic field thresholds above which the manisfestation of particular
“starfish” instability modes is possible.

• Higher “starfish” instability modes require stronger magnetic fields to appear.

• Fluid magnetic objects can exhibit back-and-forth motion in rotating magnetic
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fields, similarly to their solid counterparts.

• The model of an infinitely long cylindrical magnetic fluid droplet [75] overesti-
mates the critical field at which the “starfish” instability occurs, possibly due
to an underestimate of the capillary forces.

• The simple model of a magnetic fluid droplet is sufficient to capture the vari-
ous complex surface dynamics of the droplet in external fields, in spite of the
additional assumptions of linear magnetic susceptibility and uniform surface
tension.

6.3 Thesis

Using simulations of boundary integral equations it is possible to fully describe the
three-dimensional free interface dynamics of magnetic fluid droplets.
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Appendix A

Derivations

A.1 Normal field calculation without the tangen-
tial components

Adapting the approach taken in [42] we have an integral equation of the normal
differences on the droplet surface

JHn(y)K( µ

µ− 1
− L(y)

)
= H0n(y)−

∫
S

(JHn(x)K − JHn(y)K)n(y) ·∇y
1

4πr
dSx,

(A.1)
where JHn(y)K = H

(e)
n (y)−H

(i)
n (y), and we have

H(e)
n =

JHnK
µ− 1

µ (A.2)

H(i)
n =

JHnK
µ− 1

. (A.3)

The function L(y) is determined solely by the shape of the droplet [76]

L(y) =
n(y)

4π
·
∫
S

{
[n(x) ·∇

(
1

r

)
] [n(y)− n(x)] +

∇ · n(x)
r

n(x)
}
dSx. (A.4)
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A.2 Magnetic field tangential component

We begin with an equation from [42] where we put the magnetic field H in place of
the electric field E:

H(y) = H0(y)−
∫
S

JHn(x)K∇y
1

4πr
dSx −

1

2
JHn(x)Kn(y). (A.5)

To extract the tangential component, we apply a cross product with n(y):

n(y)×Ht(y) = n(y)×H0(y) +
1

4π

∫
S

JHn(x)K(n(y)× r)
dSx

r3
(A.6)

where we note that only the tangential component of the field give a contribution to
the cross product.

However, this integrand is strongly singular as x → y, the it scales as O(1/r2)

Nonetheless, we can regularize this equation by multiplying JHn(y)K with the
identity∫

S

n(x)× r

4πr3
dSx =

∫
V

∇×
(

r⃗

4πr3

)
dV =

∫
V

∇×
(
∇ 1

4πr

)
dV = 0 (A.7)

and subtracting it from (A.6) to arrive at

n(y)×Ht(y) = n(y)×H0(y) +
1

4π

∫
S

dSx

r3

([JHn(x)Kn(y)− JHn(y)Kn(x)]× r

)
(A.8)

This integrand now scales as O(1/r) as x → y and can now be tackled using, for
example, local polar coordinates as we have seen before.

The left hand side of (A.8) simplifies to Ht(y), as the normal is of unit length
and is at a a right angle with the tangential component. Therefore, we are able to
obtain the magnitude of tangential component of the magnetic field. This proce-
dure is more numerically stable than the method of numerical differentiation of the
magnetic potential ψ on the droplet surface outlined in the main text.
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A.3 The virial theorem approach

The dynamics of the droplet in the neighbourhood of the “hysteresis jump” can be
described by the Rayleigh dissipation function R the change of the total droplet
energy is expressed by dE/dt = −2R and R is given as a quadratic function in terms
of the generalized velocity of the system – in this case de/dt or d(a/b)/dt:

R =
Dė2

2
. (A.9)

Merging the above relations in an Euler–Lagrange equation gives

∂E

∂e
= −Dė. (A.10)

Around the threshold of the instability ∂eE = ∂2eeE = 0 the energy derivative
can be expressed as

∂E

∂e
≃ 1

2

∂3E

∂e3
(e− ec)

2 +Hc
∂2E

∂e∂H

H −Hc

Hc

, (A.11)

or, making use of the constants A,B,D:

Dė = Ah+B(e− ec)
2. (A.12)

As the viscosity of the surrounding liquid is much smaller than that of the
magnetic droplet, it can be ignored.

In that case the force balance on the droplet surface becomes

− p+ σv
nn = −γ

(
1

R1

+
1

R2

)
+
µ0

2
M2

n, (A.13)

where σv is the viscous stress tensor and M is the magnetization. Assuming an
ellipsoidal shape of the droplet, the equation of motion of the magnetic fluid reads

− ∂ip+ ∂mσ
v
im = 0. (A.14)
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Multiplying (A.14) by xk and integrating it over the droplet volume, and
relying on the boundary condition (A.13), we arrive at the virial coefficients

Vik = δik

∫
pdV −

∫
γxkni ∇ · n⃗ dS +

∫
xknk

µ0

2
M2

ndS −
∫
σv
ikdV = 0 (A.15)

With help of
∫
xkni ∇ · n⃗ dS = −

∫
(δik − nink) dS as well as other relations

[13] it can be shown that V33 − 1
2
(V11 + V22) = 0 may be recast as

−
∫ [

σv
33 −

1

2
(σv

11 + σv
22)

]
dV+

+2πγR2
0

{
µ0

2
Bm

[
(1− e2)

2

(
(3− e2)

e5
log

(
1 + e

1− e

)
− 6

e4

)]
+

+
(3−4e2) arcsin e

e3
− (3−2e2)(1−e2)1/2

e2

2(1− e2)1/6

}
= 0,

(A.16)

where we note that Bm here is M2R0

γ
rather than the usual H2R0

γ
.

Making use of the fact that droplet energy can be found by

E = −1

2

χH2

1 + χN/4π

R3
0

3
+

2πγR2
0

(1− e2)1/6

[
arcsin e

e
+ (1− e2)1/2

]
, (A.17)

where χ is again the magnetic susceptibility and N is the demagnetization coefficient,
and a some algebraic manipulations, it is possible to identify the second term in
(A.16) to be equal to

− ∂E

∂e

3(1− e2)

2e
. (A.18)

Furthermore, using the Lagrangian displacement ξ3 = L33x3, the first term in
(A.16) can be rewritten as

− 3ηL̇33
4π

3
R3

0. (A.19)

Finally, using the relation [54]

L̇33 =
2eė

3(1− e2)
, (A.20)
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we arrive at
4πηR3

0ė+
∂E

∂e

(
3(1− e2)

2e

)2

= 0. (A.21)

Rewriting this equation as well as the energy of the droplet in terms of an
experimentally more convenient parameter – the axis ratio a/b = 1/

√
1− e2 (we will

further denote droplet energy by Ẽ and the axis ratio by e), allows us to recognize
the capillary relaxation time τc = ηR0/γ in the dynamical equation

d

dt

(a
b

)
= − 1

τc

9(1− e2)1/2

8e

∂Ẽ

∂e
. (A.22)

Calculation of the series expansion of ∂Ẽ
∂e

at either ec or Hc gives relations
of the constants A or B accordingly. The D constant can be easily found after
integrating (A.22) and reproducing (4.5) for small t:(a

b

)
−

(a
b

)
c
= − A

2D

t

τc

(
H2

H2
c

− 1

)
. (A.23)

The constants determined using this approach yield (4.3.2):

A =
8π

3
Bmc

6ec + (e2c − 3) log
[
1+ec
1−ec

]
2e4c

, B = −1

2

∂3Ẽ

∂e3
(1− e2c)

3

e2c
, D =

8ec
9(1− e2c)

1/2
.

86



Appendix B

Bibliography

[1] S. Chandrasekhar, Ellipsoidal Figures of Equilibrium, Yale University Press,
Dover, 1969.

[2] G. Taylor, Disintegration of water drops in an electric field, Proceedings of
the Royal Society of London. Series A. Mathematical and Physical Sciences
280 (1382) (1964) 383–397. doi:10.1098/rspa.1964.0151.
URL https://royalsocietypublishing.org/doi/10.1098/rspa.1964.0151

[3] R. Rosensweig, Ferrohydrodynamics, Dover Books on Physics, Dover Publica-
tions, 1985.
URL https://books.google.fr/books?id=ng_DAgAAQBAJ

[4] V. Drozdova, T. Skrobotova, V. Chekanov, Experimental study of the hydro-
statics characterizing the interphase boundary in a ferrofluid, Magnetohydrody-
namics 15 (1979) 12–14.

[5] J. Bacri, D. Salin, Instability of ferrofluid magnetic drops under mag-
netic field, Journal de Physique Lettres 43 (17) (1982) 649–654.
doi:10.1051/jphyslet:019820043017064900.

87

https://royalsocietypublishing.org/doi/10.1098/rspa.1964.0151
http://dx.doi.org/10.1098/rspa.1964.0151
https://royalsocietypublishing.org/doi/10.1098/rspa.1964.0151
https://books.google.fr/books?id=ng_DAgAAQBAJ
https://books.google.fr/books?id=ng_DAgAAQBAJ
http://www.edpsciences.org/10.1051/jphyslet:019820043017064900
http://www.edpsciences.org/10.1051/jphyslet:019820043017064900
http://dx.doi.org/10.1051/jphyslet:019820043017064900


URL http://www.edpsciences.org/10.1051/jphyslet:

019820043017064900

[6] V. G. Bashtovoi, S. G. Pogirnitskaya, A. G. Reks, Determination of the shape of
a free drop of magnetic fluid in a uniform magnetic field, Magnetohydrodynamics
(Engl. Transl.); (United States) 23:3.
URL https://www.osti.gov/biblio/6426307

[7] J.-C. Bacri, A. O. Cebers, R. Perzynski, Behavior of a magnetic fluid microdrop
in a rotating magnetic field, Physical Review Letters 72 (17) (1994) 2705–2708.
doi:10.1103/PhysRevLett.72.2705.
URL https://link.aps.org/doi/10.1103/PhysRevLett.72.2705

[8] K. I. Morozov, A. V. Lebedev, Bifurcations of the shape of a magnetic fluid
droplet in a rotating magnetic field, Journal of Experimental and Theoretical
Physics 91 (5) (2000) 1029–1032. doi:10.1134/1.1334993.
URL http://link.springer.com/10.1134/1.1334993

[9] A. Cebers, M. Mayorov, Structures of interface a bubble and magnetic fluid in
a field, Magnetohydrodynamics 16 (1980) 231–235.

[10] A. O. Tsebers, M. M. Maiorov, Magnetostatic instabilities in plane layers of
magnetizable liquids, Magnetohydrodynamics 16 (1) (1980) 21–28.

[11] C. Rigoni, G. Beaune, B. Harnist, F. Sohrabi, J. V. I. Timonen, Ferroflu-
idic aqueous two-phase system with ultralow interfacial tension and micro-
pattern formation, Communications Materials 3 (1) (2022) 26. doi:10.1038/

s43246-022-00249-z.
URL https://www.nature.com/articles/s43246-022-00249-z

88

http://www.edpsciences.org/10.1051/jphyslet:019820043017064900
http://www.edpsciences.org/10.1051/jphyslet:019820043017064900
https://www.osti.gov/biblio/6426307
https://www.osti.gov/biblio/6426307
https://www.osti.gov/biblio/6426307
https://link.aps.org/doi/10.1103/PhysRevLett.72.2705
https://link.aps.org/doi/10.1103/PhysRevLett.72.2705
http://dx.doi.org/10.1103/PhysRevLett.72.2705
https://link.aps.org/doi/10.1103/PhysRevLett.72.2705
http://link.springer.com/10.1134/1.1334993
http://link.springer.com/10.1134/1.1334993
http://dx.doi.org/10.1134/1.1334993
http://link.springer.com/10.1134/1.1334993
https://www.nature.com/articles/s43246-022-00249-z
https://www.nature.com/articles/s43246-022-00249-z
https://www.nature.com/articles/s43246-022-00249-z
http://dx.doi.org/10.1038/s43246-022-00249-z
http://dx.doi.org/10.1038/s43246-022-00249-z
https://www.nature.com/articles/s43246-022-00249-z


[12] J.-C. Bacri, D. Salin, Bistability of ferrofluid magnetic drops under magnetic
field, 39 (1) 48–50. doi:10.1016/0304-8853(83)90395-5.
URL https://linkinghub.elsevier.com/retrieve/pii/0304885383903955

[13] A. Cebers, Virial method of investigation of statics and dynamics of drops of
magnetizable liquids, Magnetohydrodynamics (Engl. Transl.); (United States)
21.

[14] S. Afkhami, A. J. Tyler, Y. Renardy, M. Renardy, T. G. St. Pierre, R. C.
Woodward, J. S. Riffle, Deformation of a hydrophobic ferrofluid droplet
suspended in a viscous medium under uniform magnetic fields, Journal of Fluid
Mechanics 663 (2010) 358–384. doi:10.1017/S0022112010003551.
URL https://www.cambridge.org/core/product/identifier/

S0022112010003551/type/journal_article

[15] J.-C. Bacri, D. Salin, Dynamics of the shape transition of a magnetic
ferrofluid drop, Journal de Physique Lettres 44 (11) (1983) 415–420.
doi:10.1051/jphyslet:019830044011041500.
URL http://www.edpsciences.org/10.1051/jphyslet:

019830044011041500

[16] J. V. I. Timonen, M. Latikka, L. Leibler, R. H. A. Ras, O. Ikkala, Switchable
Static and Dynamic Self-Assembly of Magnetic Droplets on Superhydrophobic
Surfaces, Science 341 (6143) (2013) 253–257. doi:10.1126/science.1233775.
URL https://www.science.org/doi/10.1126/science.1233775

[17] F. Serwane, A. Mongera, P. Rowghanian, D. A. Kealhofer, A. A. Lucio, Z. M.
Hockenbery, O. Campàs, In vivo quantification of spatially varying mechanical
properties in developing tissues, Nature Methods 14 (2) (2017) 181–186. doi:

89

https://linkinghub.elsevier.com/retrieve/pii/0304885383903955
https://linkinghub.elsevier.com/retrieve/pii/0304885383903955
http://dx.doi.org/10.1016/0304-8853(83)90395-5
https://linkinghub.elsevier.com/retrieve/pii/0304885383903955
https://www.cambridge.org/core/product/identifier/S0022112010003551/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112010003551/type/journal_article
http://dx.doi.org/10.1017/S0022112010003551
https://www.cambridge.org/core/product/identifier/S0022112010003551/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112010003551/type/journal_article
http://www.edpsciences.org/10.1051/jphyslet:019830044011041500
http://www.edpsciences.org/10.1051/jphyslet:019830044011041500
http://dx.doi.org/10.1051/jphyslet:019830044011041500
http://www.edpsciences.org/10.1051/jphyslet:019830044011041500
http://www.edpsciences.org/10.1051/jphyslet:019830044011041500
https://www.science.org/doi/10.1126/science.1233775
https://www.science.org/doi/10.1126/science.1233775
https://www.science.org/doi/10.1126/science.1233775
http://dx.doi.org/10.1126/science.1233775
https://www.science.org/doi/10.1126/science.1233775
http://www.nature.com/articles/nmeth.4101
http://www.nature.com/articles/nmeth.4101
http://dx.doi.org/10.1038/nmeth.4101
http://dx.doi.org/10.1038/nmeth.4101


10.1038/nmeth.4101.
URL http://www.nature.com/articles/nmeth.4101

[18] R. Zhao, X. Dou, D. Zhang, J. Huang, Numerical study of the magneto-
hydrodynamic flow instability and its effect on energy conversion in the an-
nular linear induction pump, Physics of Fluids 33 (6) (2021) 067125. doi:

10.1063/5.0052564.
URL https://aip.scitation.org/doi/10.1063/5.0052564

[19] S. Zhang, J. Zhou, C. Shao, Numerical investigation on yielding phenomena
of magnetorheological fluid flowing through microchannel governed by trans-
verse magnetic field, Physics of Fluids 31 (2) (2019) 022005. doi:10.1063/1.

5079624.
URL http://aip.scitation.org/doi/10.1063/1.5079624

[20] E. Al-Hetlani, M. O. Amin, Continuous magnetic droplets and microfluidics:
generation, manipulation, synthesis and detection, Microchimica Acta 186 (2)
(2019) 55. doi:10.1007/s00604-018-3118-6.
URL http://link.springer.com/10.1007/s00604-018-3118-6

[21] Y. S. Kim, Y. H. Kim, Application of ferro-cobalt magnetic fluid for oil sealing,
Journal of Magnetism and Magnetic Materials 267 (1) (2003) 105–110.

[22] P. Das, M. Colombo, D. Prosperi, Recent advances in magnetic fluid hyper-
thermia for cancer therapy, Colloids and Surfaces B: Biointerfaces 174 (2019)
42–55.

[23] X. Fan, M. Sun, L. Sun, H. Xie, Ferrofluid Droplets as Liquid Microrobots
with Multiple Deformabilities, Advanced Functional Materials 30 (24) (2020)
2000138. doi:10.1002/adfm.202000138.
URL https://onlinelibrary.wiley.com/doi/10.1002/adfm.202000138

90

http://dx.doi.org/10.1038/nmeth.4101
http://www.nature.com/articles/nmeth.4101
https://aip.scitation.org/doi/10.1063/5.0052564
https://aip.scitation.org/doi/10.1063/5.0052564
https://aip.scitation.org/doi/10.1063/5.0052564
http://dx.doi.org/10.1063/5.0052564
http://dx.doi.org/10.1063/5.0052564
https://aip.scitation.org/doi/10.1063/5.0052564
http://aip.scitation.org/doi/10.1063/1.5079624
http://aip.scitation.org/doi/10.1063/1.5079624
http://aip.scitation.org/doi/10.1063/1.5079624
http://dx.doi.org/10.1063/1.5079624
http://dx.doi.org/10.1063/1.5079624
http://aip.scitation.org/doi/10.1063/1.5079624
http://link.springer.com/10.1007/s00604-018-3118-6
http://link.springer.com/10.1007/s00604-018-3118-6
http://dx.doi.org/10.1007/s00604-018-3118-6
http://link.springer.com/10.1007/s00604-018-3118-6
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202000138
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202000138
http://dx.doi.org/10.1002/adfm.202000138
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202000138


[24] X. Fan, X. Dong, A. C. Karacakol, H. Xie, M. Sitti, Reconfigurable multifunc-
tional ferrofluid droplet robots, Proceedings of the National Academy of Sciences
117 (45) (2020) 27916–27926. doi:10.1073/pnas.2016388117.
URL http://www.pnas.org/lookup/doi/10.1073/pnas.2016388117

[25] R. Kay, C. Katrycz, E. J. Heimlich, B. D. Hatton, Programmable droplets:
Leveraging digitally-responsive flow fields to actively tune liquid morphologies,
PLoS ONE 17.

[26] C. Pozrikidis, A practical guide to boundary element methods with the software
library BEMLIB, Chapman & Hall/CRC, 2002.

[27] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Vis-
cous Flow, Cambridge University Press, Cambridge, 1992. doi:10.1017/

CBO9780511624124.
URL http://ebooks.cambridge.org/ref/id/CBO9780511624124

[28] R. M. Oliveira, J. A. Miranda, Fully nonlinear simulations of ferrofluid patterns
in a radial magnetic field, Phys. Rev. Fluids 5 (2020) 124003. doi:10.1103/

PhysRevFluids.5.124003.
URL https://link.aps.org/doi/10.1103/PhysRevFluids.5.124003

[29] J. D. Sherwood, Breakup of fluid droplets in electric and magnetic fields, Jour-
nal of Fluid Mechanics 188 (1988) 133–146. doi:10.1017/S0022112088000667.
URL https://www.cambridge.org/core/product/identifier/

S0022112088000667/type/journal_article

[30] H. A. Stone, J. R. Lister, M. P. Brenner, Drops with conical ends in electric
and magnetic fields, Proceedings of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences 455 (1981) (1999) 329–347.

91

http://www.pnas.org/lookup/doi/10.1073/pnas.2016388117
http://www.pnas.org/lookup/doi/10.1073/pnas.2016388117
http://dx.doi.org/10.1073/pnas.2016388117
http://www.pnas.org/lookup/doi/10.1073/pnas.2016388117
http://ebooks.cambridge.org/ref/id/CBO9780511624124
http://ebooks.cambridge.org/ref/id/CBO9780511624124
http://dx.doi.org/10.1017/CBO9780511624124
http://dx.doi.org/10.1017/CBO9780511624124
http://ebooks.cambridge.org/ref/id/CBO9780511624124
https://link.aps.org/doi/10.1103/PhysRevFluids.5.124003
https://link.aps.org/doi/10.1103/PhysRevFluids.5.124003
http://dx.doi.org/10.1103/PhysRevFluids.5.124003
http://dx.doi.org/10.1103/PhysRevFluids.5.124003
https://link.aps.org/doi/10.1103/PhysRevFluids.5.124003
https://www.cambridge.org/core/product/identifier/S0022112088000667/type/journal_article
http://dx.doi.org/10.1017/S0022112088000667
https://www.cambridge.org/core/product/identifier/S0022112088000667/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112088000667/type/journal_article
https://royalsocietypublishing.org/doi/10.1098/rspa.1999.0316
https://royalsocietypublishing.org/doi/10.1098/rspa.1999.0316


doi:10.1098/rspa.1999.0316.
URL https://royalsocietypublishing.org/doi/10.1098/rspa.1999.0316

[31] O. Lavrova, G. Matthies, T. Mitkova, V. Polevikov, L. Tobiska, Nu-
merical treatment of free surface problems in ferrohydrodynamics,
Journal of Physics: Condensed Matter 18 (38) (2006) S2657–S2669.
doi:10.1088/0953-8984/18/38/S09.
URL https://iopscience.iop.org/article/10.1088/0953-8984/18/38/

S09

[32] Í. M. Coutinho, J. A. Miranda, Peak instability in an elastic interface ferrofluid,
Physics of Fluids 32 (5) (2020) 052104. doi:10.1063/5.0007381.
URL https://doi.org/10.1063/5.0007381

[33] I. Drikis, J.-C. Bacri, A. Cebers, Labyrinthine pattern formation in disordered
system of the magnetic fluid drops: Numerical simulation, Magnetohydrody-
namics 35 (1999) 157–169.

[34] A. Z. Zinchenko, M. A. Rother, R. H. Davis, A novel boundary-integral algo-
rithm for viscous interaction of deformable drops, Physics of Fluids 9 (6) (1997)
1493–1511. doi:10.1063/1.869275.
URL http://aip.scitation.org/doi/10.1063/1.869275

[35] A. Z. Zinchenko, R. H. Davis, Emulsion flow through a packed bed with
multiple drop breakup, Journal of Fluid Mechanics 725 (2013) 611–663.
doi:10.1017/jfm.2013.197.
URL https://www.cambridge.org/core/product/identifier/

S0022112013001973/type/journal_article

[36] V. Cristini, J. Bławzdziewicz, M. Loewenberg, An Adaptive Mesh Algorithm for
Evolving Surfaces: Simulations of Drop Breakup and Coalescence, Journal of

92

http://dx.doi.org/10.1098/rspa.1999.0316
https://royalsocietypublishing.org/doi/10.1098/rspa.1999.0316
https://iopscience.iop.org/article/10.1088/0953-8984/18/38/S09
https://iopscience.iop.org/article/10.1088/0953-8984/18/38/S09
http://dx.doi.org/10.1088/0953-8984/18/38/S09
https://iopscience.iop.org/article/10.1088/0953-8984/18/38/S09
https://iopscience.iop.org/article/10.1088/0953-8984/18/38/S09
https://doi.org/10.1063/5.0007381
http://dx.doi.org/10.1063/5.0007381
https://doi.org/10.1063/5.0007381
http://aip.scitation.org/doi/10.1063/1.869275
http://aip.scitation.org/doi/10.1063/1.869275
http://dx.doi.org/10.1063/1.869275
http://aip.scitation.org/doi/10.1063/1.869275
https://www.cambridge.org/core/product/identifier/S0022112013001973/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112013001973/type/journal_article
http://dx.doi.org/10.1017/jfm.2013.197
https://www.cambridge.org/core/product/identifier/S0022112013001973/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112013001973/type/journal_article
https://linkinghub.elsevier.com/retrieve/pii/S0021999101967130
https://linkinghub.elsevier.com/retrieve/pii/S0021999101967130


Computational Physics 168 (2) (2001) 445–463. doi:10.1006/jcph.2001.6713.
URL https://linkinghub.elsevier.com/retrieve/pii/

S0021999101967130

[37] X. Ni, B. Zhu, B. Wang, B. Chen, A level-set method for magnetic substance
simulation, ACM Transactions on Graphics 39 (4). doi:10.1145/3386569.

3392445.
URL https://doi.org/10.1145/3386569.3392445

[38] W. C. Jesus, A. M. Roma, H. D. Ceniceros, Deformation of a sheared magnetic
droplet in a viscous fluid, Commun. Comput. Phys 24 (2018) 332–355.

[39] C. S. Peskin, Flow patterns around heart valves: A numerical
method, Journal of Computational Physics 10 (2) (1972) 252–271.
doi:https://doi.org/10.1016/0021-9991(72)90065-4.
URL https://www.sciencedirect.com/science/article/pii/

0021999172900654

[40] X. Li, Z.-Q. Dong, P. Yu, X.-D. Niu, L.-P. Wang, D.-C. Li, H. Yamaguchi,
Numerical investigation of magnetic multiphase flows by the fractional-step-
based multiphase lattice Boltzmann method, Physics of Fluids 32 (8) (2020)
083309. doi:10.1063/5.0020903.
URL http://aip.scitation.org/doi/10.1063/5.0020903

[41] S. Afkhami, Y. Renardy, Ferrofluids and magnetically guided superpara-
magnetic particles in flows: a review of simulations and modeling, Jour-
nal of Engineering Mathematics 107 (1) (2017) 231–251. doi:10.1007/

s10665-017-9931-9.
URL http://link.springer.com/10.1007/s10665-017-9931-9

93

http://dx.doi.org/10.1006/jcph.2001.6713
https://linkinghub.elsevier.com/retrieve/pii/S0021999101967130
https://linkinghub.elsevier.com/retrieve/pii/S0021999101967130
https://doi.org/10.1145/3386569.3392445
https://doi.org/10.1145/3386569.3392445
http://dx.doi.org/10.1145/3386569.3392445
http://dx.doi.org/10.1145/3386569.3392445
https://doi.org/10.1145/3386569.3392445
https://www.sciencedirect.com/science/article/pii/0021999172900654
https://www.sciencedirect.com/science/article/pii/0021999172900654
http://dx.doi.org/https://doi.org/10.1016/0021-9991(72)90065-4
https://www.sciencedirect.com/science/article/pii/0021999172900654
https://www.sciencedirect.com/science/article/pii/0021999172900654
http://aip.scitation.org/doi/10.1063/5.0020903
http://aip.scitation.org/doi/10.1063/5.0020903
http://dx.doi.org/10.1063/5.0020903
http://aip.scitation.org/doi/10.1063/5.0020903
http://link.springer.com/10.1007/s10665-017-9931-9
http://link.springer.com/10.1007/s10665-017-9931-9
http://dx.doi.org/10.1007/s10665-017-9931-9
http://dx.doi.org/10.1007/s10665-017-9931-9
http://link.springer.com/10.1007/s10665-017-9931-9


[42] D. Das, D. Saintillan, Electrohydrodynamics of viscous drops in strong electric
fields: Numerical simulations, Journal of Fluid Mechanics 829 (2017) 127–152,
arXiv: 1612.02070. doi:10.1017/jfm.2017.560.
URL http://arxiv.org/abs/1612.02070

[43] J. Erdmanis, G. Kitenbergs, R. Perzynski, A. Cēbers, Magnetic micro-droplet
in rotating field: numerical simulation and comparison with experiment,
Journal of Fluid Mechanics 821 (2017) 266–295. doi:10.1017/jfm.2017.238.
URL https://www.cambridge.org/core/product/identifier/

S0022112017002385/type/journal_article

[44] A. Stikuts, R. Perzynski, A. Cēbers, Spontaneous order in ensembles of rotating
magnetic droplets, Journal of Magnetism and Magnetic Materials 500 (2020)
166304. doi:10.1016/j.jmmm.2019.166304.
URL https://linkinghub.elsevier.com/retrieve/pii/

S030488531932726X

[45] V. Cristini, Y.-C. Tan, Theory and numerical simulation of droplet dynamics
in complex flows—a review, Lab Chip 4 (4) (2004) 257–264. doi:10.1039/

B403226H.
URL http://xlink.rsc.org/?DOI=B403226H

[46] L. Sabat, C. K. Kundu, History of finite element method: A review, in: Recent
Developments in Sustainable Infrastructure, Springer Singapore, 2020, pp. 395–
404. doi:10.1007/978-981-15-4577-1_32.
URL https://doi.org/10.1007/978-981-15-4577-1_32

[47] T. Marić, D. B. Kothe, D. Bothe, Unstructured un-split geometrical volume-of-
fluid methods – a review, Journal of Computational Physics 420 (2020) 109695.

94

http://arxiv.org/abs/1612.02070
http://arxiv.org/abs/1612.02070
http://dx.doi.org/10.1017/jfm.2017.560
http://arxiv.org/abs/1612.02070
https://www.cambridge.org/core/product/identifier/S0022112017002385/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112017002385/type/journal_article
http://dx.doi.org/10.1017/jfm.2017.238
https://www.cambridge.org/core/product/identifier/S0022112017002385/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112017002385/type/journal_article
https://linkinghub.elsevier.com/retrieve/pii/S030488531932726X
https://linkinghub.elsevier.com/retrieve/pii/S030488531932726X
http://dx.doi.org/10.1016/j.jmmm.2019.166304
https://linkinghub.elsevier.com/retrieve/pii/S030488531932726X
https://linkinghub.elsevier.com/retrieve/pii/S030488531932726X
http://xlink.rsc.org/?DOI=B403226H
http://xlink.rsc.org/?DOI=B403226H
http://dx.doi.org/10.1039/B403226H
http://dx.doi.org/10.1039/B403226H
http://xlink.rsc.org/?DOI=B403226H
https://doi.org/10.1007/978-981-15-4577-1_32
http://dx.doi.org/10.1007/978-981-15-4577-1_32
https://doi.org/10.1007/978-981-15-4577-1_32
https://doi.org/10.1016/j.jcp.2020.109695
https://doi.org/10.1016/j.jcp.2020.109695


doi:10.1016/j.jcp.2020.109695.
URL https://doi.org/10.1016/j.jcp.2020.109695

[48] L. Papillon, R. Costello, J. V. Ringwood, Boundary element and integral meth-
ods in potential flow theory: a review with a focus on wave energy applica-
tions, Journal of Ocean Engineering and Marine Energy 6 (3) (2020) 303–337.
doi:10.1007/s40722-020-00175-7.
URL https://doi.org/10.1007/s40722-020-00175-7

[49] Papell Solomon Stephen, Low viscosity magnetic fluid obtained by the colloidal
suspension of magnetic particles (Nov. 1965).

[50] J.-C. Bacri, R. Perzynski, D. Salin, Magnetic liquids, Endeavour 12 (2) (1988)
76–83. doi:10.1016/0160-9327(88)90085-3.
URL https://linkinghub.elsevier.com/retrieve/pii/0160932788900853

[51] R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic me-
dia, IEEE Transactions on Magnetics 17 (2) (1981) 1247–1248. doi:10.1109/

TMAG.1981.1061188.
URL http://ieeexplore.ieee.org/document/1061188/

[52] E. Dubois, V. Cabuil, F. Boué, R. Perzynski, Structural analogy between aque-
ous and oily magnetic fluids, The Journal of Chemical Physics 111 (15) (1999)
7147–7160. doi:10.1063/1.480007.
URL https://doi.org/10.1063/1.480007

[53] S. Odenbach (Ed.), Colloidal Magnetic Fluids, Springer Berlin Heidelberg, 2008.
doi:10.1007/978-3-540-85387-9.
URL https://doi.org/10.1007/978-3-540-85387-9

[54] E. Blūms, A. O. Cebers, M. M. Maĭorov, Magnetic fluids, Walter de Gruyter,
Berlin ; New York, 1997.

95

http://dx.doi.org/10.1016/j.jcp.2020.109695
https://doi.org/10.1016/j.jcp.2020.109695
https://doi.org/10.1007/s40722-020-00175-7
https://doi.org/10.1007/s40722-020-00175-7
https://doi.org/10.1007/s40722-020-00175-7
http://dx.doi.org/10.1007/s40722-020-00175-7
https://doi.org/10.1007/s40722-020-00175-7
https://linkinghub.elsevier.com/retrieve/pii/0160932788900853
http://dx.doi.org/10.1016/0160-9327(88)90085-3
https://linkinghub.elsevier.com/retrieve/pii/0160932788900853
http://ieeexplore.ieee.org/document/1061188/
http://ieeexplore.ieee.org/document/1061188/
http://dx.doi.org/10.1109/TMAG.1981.1061188
http://dx.doi.org/10.1109/TMAG.1981.1061188
http://ieeexplore.ieee.org/document/1061188/
https://doi.org/10.1063/1.480007
https://doi.org/10.1063/1.480007
http://dx.doi.org/10.1063/1.480007
https://doi.org/10.1063/1.480007
https://doi.org/10.1007/978-3-540-85387-9
http://dx.doi.org/10.1007/978-3-540-85387-9
https://doi.org/10.1007/978-3-540-85387-9


[55] J. A. Stratton, Electromagnetic Theory, 1st Edition, McGraw-Hill Companies
(New York), 1941, the URL and misc. info are for a re-issue published in 2007
by Wiley-IEEE Press.
URL http://www.amazon.com/Electromagnetic-Theory-IEEE-Press-Wave/

dp/0470131535%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%

3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%

26creativeASIN%3D0470131535

[56] D. J. Griffiths, Introduction to electrodynamics, Pearson, 2013.

[57] J. D. Jackson, Classical electrodynamics, 3rd Edition, Wiley, New York, NY,
1999.
URL http://cdsweb.cern.ch/record/490457

[58] A. Langins, A. P. Stikuts, A. Cēbers, A three-dimensional boundary element
method algorithm for simulations of magnetic fluid droplet dynamics, Physics
of Fluids 34 (6) (2022) 062105. doi:10.1063/5.0092532.
URL https://aip.scitation.org/doi/10.1063/5.0092532

[59] I. R. Siqueira, R. B. Rebouças, T. F. Oliveira, F. R. Cunha, A new mesh relax-
ation approach and automatic time-step control method for boundary integral
simulations of a viscous drop, International Journal for Numerical Methods in
Fluids 84 (4) (2017) 221–238. doi:10.1002/fld.4346.
URL http://doi.wiley.com/10.1002/fld.4346

[60] A. V. Knyazev, I. Lashuk, Steepest descent and conjugate gradient methods with
variable preconditioning, SIAM Journal on Matrix Analysis and Applications
29 (4) (2008) 1267–1280. arXiv:https://doi.org/10.1137/060675290, doi:

10.1137/060675290.
URL https://doi.org/10.1137/060675290

96

http://www.amazon.com/Electromagnetic-Theory-IEEE-Press-Wave/dp/0470131535%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0470131535
http://www.amazon.com/Electromagnetic-Theory-IEEE-Press-Wave/dp/0470131535%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0470131535
http://www.amazon.com/Electromagnetic-Theory-IEEE-Press-Wave/dp/0470131535%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0470131535
http://www.amazon.com/Electromagnetic-Theory-IEEE-Press-Wave/dp/0470131535%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0470131535
http://www.amazon.com/Electromagnetic-Theory-IEEE-Press-Wave/dp/0470131535%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0470131535
http://cdsweb.cern.ch/record/490457
http://cdsweb.cern.ch/record/490457
https://aip.scitation.org/doi/10.1063/5.0092532
https://aip.scitation.org/doi/10.1063/5.0092532
http://dx.doi.org/10.1063/5.0092532
https://aip.scitation.org/doi/10.1063/5.0092532
http://doi.wiley.com/10.1002/fld.4346
http://doi.wiley.com/10.1002/fld.4346
http://doi.wiley.com/10.1002/fld.4346
http://dx.doi.org/10.1002/fld.4346
http://doi.wiley.com/10.1002/fld.4346
https://doi.org/10.1137/060675290
https://doi.org/10.1137/060675290
http://arxiv.org/abs/https://doi.org/10.1137/060675290
http://dx.doi.org/10.1137/060675290
http://dx.doi.org/10.1137/060675290
https://doi.org/10.1137/060675290


[61] M. Loewenberg, E. J. Hinch, Numerical simulation of a concentrated
emulsion in shear flow, Journal of Fluid Mechanics 321 (1996) 395–419.
doi:10.1017/S002211209600777X.
URL https://www.cambridge.org/core/product/identifier/

S002211209600777X/type/journal_article

[62] C. Pozrikidis, Interfacial Dynamics for Stokes Flow, Journal of Computational
Physics 169 (2) (2001) 250–301. doi:10.1006/jcph.2000.6582.
URL https://linkinghub.elsevier.com/retrieve/pii/

S0021999100965823

[63] A. Z. Zinchenko, M. A. Rother, R. H. Davis, Cusping, capture, and breakup
of interacting drops by a curvatureless boundary-integral algorithm, J. Fluid
Mech. 391 (1999) 249–292.

[64] S. Kim, S. J. Karrila, Microhydrodynamics: principles and selected appli-
cations, Butterworth-Heinemann series in chemical engineering, Butterworth-
Heinemann, Boston, 1991.

[65] A. Z. Zinchenko, R. H. Davis, Algorithm for direct numerical simula-
tion of emulsion flow through a granular material 227 (16) 7841–7888.
doi:10.1016/j.jcp.2008.05.004.
URL https://linkinghub.elsevier.com/retrieve/pii/

S0021999108002660

[66] Y. Dikansky, A. Cebers, V.P. Shatsky, Magnetic emulsion properties in electric
and magnetic fields, Magnetohydrodynamics 26 (1990) 25–30.

[67] J. M. Rallison, A numerical study of the deformation and burst of a viscous
drop in general shear flows, Journal of Fluid Mechanics 109 (1981) 465–482.
doi:10.1017/S002211208100116X.

97

https://www.cambridge.org/core/product/identifier/S002211209600777X/type/journal_article
https://www.cambridge.org/core/product/identifier/S002211209600777X/type/journal_article
http://dx.doi.org/10.1017/S002211209600777X
https://www.cambridge.org/core/product/identifier/S002211209600777X/type/journal_article
https://www.cambridge.org/core/product/identifier/S002211209600777X/type/journal_article
https://linkinghub.elsevier.com/retrieve/pii/S0021999100965823
http://dx.doi.org/10.1006/jcph.2000.6582
https://linkinghub.elsevier.com/retrieve/pii/S0021999100965823
https://linkinghub.elsevier.com/retrieve/pii/S0021999100965823
https://linkinghub.elsevier.com/retrieve/pii/S0021999108002660
https://linkinghub.elsevier.com/retrieve/pii/S0021999108002660
http://dx.doi.org/10.1016/j.jcp.2008.05.004
https://linkinghub.elsevier.com/retrieve/pii/S0021999108002660
https://linkinghub.elsevier.com/retrieve/pii/S0021999108002660
https://www.cambridge.org/core/product/identifier/S002211208100116X/type/journal_article
https://www.cambridge.org/core/product/identifier/S002211208100116X/type/journal_article
http://dx.doi.org/10.1017/S002211208100116X


URL https://www.cambridge.org/core/product/identifier/

S002211208100116X/type/journal_article

[68] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics,
Biology, Chemistry and Engineering, Westview Press, 2000.

[69] J. W. Strutt, Some general theorems relating to vibrations, Proceedings of the
London Mathematical Society 1 (1) (1871) 357–368.

[70] L. D. Landau, E. M. Lifshitz, Mechanics, Third Edition: Volume 1 (Course of
Theoretical Physics), 3rd Edition, Butterworth-Heinemann, 1976.
URL http://www.worldcat.org/isbn/0750628960

[71] H. Li, T. C. Halsey, A. Lobkovsky, Singular Shape of a Fluid Drop in an Electric
or Magnetic Field, Europhysics Letters (EPL) 27 (8) (1994) 575–580. doi:

10.1209/0295-5075/27/8/004.
URL https://iopscience.iop.org/article/10.1209/0295-5075/27/8/004

[72] J. Cīmurs, A. Brasovs, K. Ērglis, Stability analysis of a paramagnetic spheroid
in a precessing field, Journal of Magnetism and Magnetic Materials 491 (2019)
165630. doi:10.1016/j.jmmm.2019.165630.
URL https://linkinghub.elsevier.com/retrieve/pii/

S0304885318339155

[73] A. Cēbers, M. Ozols, Dynamics of an active magnetic particle in a rotating mag-
netic field, Physical Review E 73 (2) (2006) 021505. doi:10.1103/PhysRevE.

73.021505.
URL https://link.aps.org/doi/10.1103/PhysRevE.73.021505

[74] K. Ērglis, Q. Wen, V. Ose, A. Zeltins, A. Sharipo, P. A. Janmey, A. Cēbers,
Dynamics of Magnetotactic Bacteria in a Rotating Magnetic Field, Biophysical

98

https://www.cambridge.org/core/product/identifier/S002211208100116X/type/journal_article
https://www.cambridge.org/core/product/identifier/S002211208100116X/type/journal_article
http://www.worldcat.org/isbn/0750628960
http://www.worldcat.org/isbn/0750628960
http://www.worldcat.org/isbn/0750628960
https://iopscience.iop.org/article/10.1209/0295-5075/27/8/004
https://iopscience.iop.org/article/10.1209/0295-5075/27/8/004
http://dx.doi.org/10.1209/0295-5075/27/8/004
http://dx.doi.org/10.1209/0295-5075/27/8/004
https://iopscience.iop.org/article/10.1209/0295-5075/27/8/004
https://linkinghub.elsevier.com/retrieve/pii/S0304885318339155
https://linkinghub.elsevier.com/retrieve/pii/S0304885318339155
http://dx.doi.org/10.1016/j.jmmm.2019.165630
https://linkinghub.elsevier.com/retrieve/pii/S0304885318339155
https://linkinghub.elsevier.com/retrieve/pii/S0304885318339155
https://link.aps.org/doi/10.1103/PhysRevE.73.021505
https://link.aps.org/doi/10.1103/PhysRevE.73.021505
http://dx.doi.org/10.1103/PhysRevE.73.021505
http://dx.doi.org/10.1103/PhysRevE.73.021505
https://link.aps.org/doi/10.1103/PhysRevE.73.021505
https://linkinghub.elsevier.com/retrieve/pii/S000634950771398X


Journal 93 (4) (2007) 1402–1412. doi:10.1529/biophysj.107.107474.
URL https://linkinghub.elsevier.com/retrieve/pii/

S000634950771398X

[75] S. Lācis, A. Cēbers, Magnetic fluid free surface instabilities in high frequency
rotating magnetic fields, Brazilian Journal of Physics 25 (1995) 101–111.

[76] A. Sellier, On the computation of the derivatives of potentials on a boundary by
using boundary-integral equations, Computer Methods in Applied Mechanics
and Engineering 196 (40969) (2006) 489–501. doi:10.1016/j.cma.2006.05.

003.
URL https://hal-polytechnique.archives-ouvertes.fr/hal-01023365

99

http://dx.doi.org/10.1529/biophysj.107.107474
https://linkinghub.elsevier.com/retrieve/pii/S000634950771398X
https://linkinghub.elsevier.com/retrieve/pii/S000634950771398X
https://hal-polytechnique.archives-ouvertes.fr/hal-01023365
https://hal-polytechnique.archives-ouvertes.fr/hal-01023365
http://dx.doi.org/10.1016/j.cma.2006.05.003
http://dx.doi.org/10.1016/j.cma.2006.05.003
https://hal-polytechnique.archives-ouvertes.fr/hal-01023365

	List of Figures
	Introduction
	General motivation
	Recent developments in the field
	Numerical Simulation Methods for Fluid Droplets
	Magnetic Fluids
	Main objectives of this work
	Outline of thesis

	Mathematical model
	Equations governing the hydrodynamics
	Fundamental solution of Stokes equations
	Boundary integral formulation of Stokes equations

	Equations governing the magnetostatics
	Equations of motion
	Equations of motion in integral form

	Dimensionless variables and equations
	Summary

	Numerical Algorithm
	Mesh representation
	Mesh maintenance
	Passive stabilization
	Active stabilization
	Edge flipping
	Node addition

	Regularization of the boundary integral equations
	Regularization of the velocity integral equation
	Regularization of the magnetostatic integral equations

	Time integration scheme
	Summary

	Algorithm validation
	Relaxation to a sphere
	Equilibrium elongation in constant field
	Elongation of quasi-stable droplets
	Elongation bottleneck
	Virial method and Rayleigh's dissipation function approach

	Summary

	Simulations
	Constant field
	Conical tip development
	Comparison with droplet elongation in experiments

	Rotating field
	Back–and–forth motion
	The ``starfish'' instability
	Field threshold determination

	Re-entrant transition


	Conclusion
	Discussion
	Main conclusions
	Thesis

	Derivations
	Normal field calculation without the tangential components
	Magnetic field tangential component
	The virial theorem approach

	Bibliography

