Learning from Different Teachers

and Imperfect Queries

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
in Candidacy for the Degree of
Doctor of Philosophy

by
Martins Krikis

Dissertation Director: Dr. Dana Angluin

May 1998

Copyright (©) 1998 by Martins Krikis

All Rights Reserved

i

To my wife Liga

111

Acknowledgements

First and foremost I am very grateful to my advisor Dana Angluin for all the many
ways in which she has helped me finish this thesis. She has always been a great
source of inspiration, always known how to pull something useful out of the most
worthless looking result, and has always had numerous ideas for moving on with our
research. Her incredible competence in the field and permanent readyness to answer
all my questions have been undeserved luxuries to me. There have been many times
when her encouragement and admirable ability to raise the spirits of others have
put me back on the right track. She has viewed all my sudden shifts of interest as
necessary digressions, and her support has never depended on my progress. All the
work presented in this dissertation is the result of joint research with her. There are
simply not enough words to express my gratitude to the best advisor that a graduate

student could have.

Next, I wish to thank James Aspnes, Sally Goldman and Jeffery Westbrook for
serving on my thesis committee and providing me with valuable and detailed com-
ments that have helped improve this dissertation tremendously. James Aspnes and
Jeffery Westbrook have also been my favorite consultants in many areas of Com-
puter Science, no matter how unrelated to my research. I would also like to thank

Robert Sloan and Gyorgy Turan for their help with Part 2 of this dissertation and

v

for changing some of my writing habits.

Many people at Yale have expressed interest in my work, attended my talks,
suggested directions for improvement and read drafts of papers. I cannot thank
them all for there are too many to list, but am especially grateful to Michael Fischer,
Stanley Eisenstat, Richard Beigel, Laszlo Lovasz and Lenore Zuck. Michael Fischer

has also helped me with some of the mysteries of KTEX.

For some time during my studies I was supported by the National Science Foun-
dation grant CCR-9213881, for which I am very grateful. I am also indebted to my
undergraduate advisor Rusins Freivalds for introducing me to the exciting area of
Inductive Inference and Computational Learning Theory in general; without his help

and encouragement, my education at Yale would have never come about.

I have made many good friends during my years in New Haven and they have
helped me stay sane and finish this work, perhaps unknowingly. Special thanks go to
Imants and Vera Platais, John and Marti Peterson, and to Bommadevara Nagendra-
srinivas. I would also like to thank my new friends and colleagues at Kenan Systems

Corporation for their support and interest in my progress with this dissertation.

I wish to thank my parents, my brother and my grandmother for their love and
encouragement, and for never losing hope in me. I have not been fair to them by
going so far from home and visiting so seldomly. Finally, I would like to thank my
wife Liga, who has patiently endured my long hours in front of the computer, and put
up with everything in the best imaginable way. Her love and support have provided
me with the environment so important for this endeavor. I dedicate this thesis to

her as a small token of my love and gratitude.

Contents

Overview

I Learning from Teachers that are Different
1 Introduction

2 Definitions and Notation
2.1 Programming Systems and Complexity Measures
2.2 Black Boxes
2.3 brelatedness Lo
2.4 Learners and Teachers

2.5 Reliability and Proofness Properties
3 Teaching the Fast Learners

4 1Is the Teacher Important?

vi

16

16

19

23

28

32

39

48

5 Classifying the Successful Learners 54
6 Is Everything Easy? 64
7 Building More Powerful Teachers and Learners 82
8 Conclusion 100
Appendix to Part 1 106
Proof of Lemma 2. 106
Proof of Weakened Corollary 10 110
Constructive Proof of Corollary 10 115
II Learning with Malicious Errors in Queries 122
9 Introduction 123
9.1 Query Models 123
9.2 Previous Worko 127
10 Preliminaries 132
10.1 Concepts and Concept Classes 132
10.2 Queries 133
10.3 Monotone DNF Formulas 137

Vil

11 Malicious Membership Queries 140

11.1 The Algorithm 140
11.2 Analysis of LEARNMONDNFEo 143
12 Finite Exceptions 151
12.1 Exceptionso 151
12.2 Examples and Lemmas 153
12.3 The Learning Algorithm 157
12.4 Analysis of the Algorithm 161
13 Exceptions and Errors 165
14 Discussion and Open Problems 172
IIT Learning with Random Errors in Queries 175
15 Introduction and Definitions 176
16 The Algorithm and the Game 182
17 Probabilities Associated with the Game Events 189
18 Bounds on Probabilities 201

viil

18.1 Upper Bound 201

18.2 Lower Bound for Success 202
18.3 The New Game 207
18.4 Missing Thin Bottles oo 211
18.5 The New Game is Not Easier 216
18.6 Getting Through the Top Levels 220
18.7 Succeeding on Lower Levels 225
18.8 Lower Bound for Complete Success 226
19 Comparison to a Simpler Algorithm and Conclusions 228
Appendix 232
Bibliography 238

1X

List of Figures

2.1

3.1

5.1

6.1

6.2

6.3

6.4

7.1

7.2

7.3

7.4

8.1

Algorithm for the universal function 21
Learner’s algorithm 000 43
Algorithm for computing the bound b(z,s) 58
Subroutine TMDEFINE 66
Subroutine QUESTIONDEFINE 66
Algorithm DEFINEBB oo 67
Algorithm for the composition function 78
Algorithm UNIONLEARNER 84
Subroutine HYPODECIDE 85
Algorithm UNIONTEACHER 86
Subroutine HYPODECIDEPRIME 97
Algorithm UBB 107

8.2

8.3

10.1

10.2

11.1

11.2

11.3

12.1

12.2

12.3

12.4

12.5

13.1

13.2

16.1

16.2

17.1

Algorithm for constructing the bad Black Box 113

Algorithm that gives the values of the bad Black Box 116
Algorithm for learning monotone DNF from EQ’s and standard MQ’s 139
Subroutine REDUCE 139
Subroutine CHECKEDMQ 141
Subroutine REDUCE 141
Algorithm for learning monotone DNF from EQ’s and MMQ’s . . . 142
A decision tree corresponding to the formula f_ 156
Subroutine GETEXCEPTIONS 158
Subroutine THEFUNCTION 159
Subroutine REDUCE 159
Algorithm for learning monotone DNF with finite exceptions 160
Subroutine NEWMQo 167
The block of code replacing “x = EQ(h)” or “Output h” 168
Algorithm RANDOMREDUCE 183
States, transitions and their probabilities in the game 188
The states of level f and transitions between them 191

x1

18.1 States, transitions and their probabilities in the new game

xii

List of Tables

17.1 Probability of Complete Success in the Game for p = 0.001 .
17.2 Probability of Complete Success in the Game for p = 0.0001

17.3 Probability of Complete Success in the Game for p = 0.00001

xiil

Overview

This thesis belongs to the field of Computational Learning Theory, a part of Machine
Learning (and Artificial Intelligence) research that specializes in using mathematical
models to reason about such phenomena as learning, inference, induction, adaptation,
prediction, self-discovery and others. The ultimate goal of Machine Learning is to
build “intelligent” computer systems that “learn” from experience. These are systems
that can re-program themselves, are capable of continuously acquiring knowledge,
can change their behavior in order to better comply with a changing environment,
can analyze data patterns, predict future events, or possess some other skills that
are widespread among living beings but not machines. Such learning systems are
urgently needed for a variety of practical applications. They would be invaluable
in mobile robots, diagnostic equipment, text translation, language interpretation
or handwriting recognition systems, and would be of immense help in automatic
software development, various computer aided design tools and many other much
more widespread tools, for example, text editors. When artificial learning systems
become a reality they are going to find uses that are hard to imagine today. In
order to build these complex devices we need to have clear mathematical models
that specify how each system interacts with the world, what kind of knowledge it

accumulates, what constitutes adequate change in the systems’ behavior and many

other issues. It is very important to have at least a crude estimate as to how successful
a system can be before actually wasting time and resources on an idea that may have

a poor foundation.

Learning is a rather complicated process and up to this day no clear definition of
it exists. Consequently, it is very hard to model it formally and a great number of
assumptions and simplifications are to be expected. Computational Learning The-
ory research focuses on inventing and analyzing all kinds of models that demonstrate
how learning can be done. None of these models give details for building a thinking
machine, still a very distant goal. Instead they typically present some very concrete
learning problem and either give an algorithm that solves it or prove that it is not
solvable. There is no clear winner among the various models in existence, since many
are far too different to compare in any way and there is no measure of goodness for
these models. Each model seems to have its advantages and disadvantages and, not
surprisingly, new models get introduced all the time. Usually it happens with the
hope that they will better address a weakness of some other model or will overcome
a difficulty observed when applying a theoretically plausible algorithm to a real-life
problem. Other reasons for inventing a new model may range from simply exhibit-
ing other methods of algorithmic learning to imitating various interesting features
observed in human (or animal) learning and development. Every little peculiarity

has the potential to influence how intelligent machines are eventually built.

This dissertation focuses on what has been the main emphasis of the field, in-
ductive learning from examples. Such learning problems are in general modeled as
consisting of a learning algorithm, an environment that it interacts with, and of
success criteria for the algorithm. Typically, a learning algorithm is required to de-

termine some general rule, given some kind of examples of this rule. This framework

has a wealth of formal models that differ from each other in many ways. Quite ob-
viously there are many possible types of rules to infer: geometric objects, recursive
functions, boolean formulas, to mention just a few. The environment can be modeled
in many different ways, for example, it could be an adversarial process, a random
process, or a process specifically designed to make the task of the learning algorithm
simpler. There are many more variations in the success criteria or the environment

for the learner that make each model unique, for example:

e There may or may not be a limit on the time the algorithm may spend for

inferring the rule;

e The algorithm may be considered as reached its objective if it keeps outputting
rules that are logically equivalent to the original, or it may be required to start
outputting the same rule, or it may be required to stop in order to signify that

the final answer has been produced;

e The output of the algorithm may or may not have to be in the same represen-

tation as the original rule was envisioned in;

e The algorithm may be required to output a rule logically equivalent to the
original one, or it could be allowed to output any rule that is similar “enough”

to it;

e The algorithm may or may not influence what examples of the rule it is given;

e The examples the algorithm sees may or may not be absolutely correct;

e The algorithm may or may not have prior knowledge of how the examples are

distributed or what broader class of rules the unknown rule belongs to;

e The algorithm may or may not have access to other sources of input, such as,

for example, a procedure for testing intermediate hypothesis.

Models where the environment of the learning algorithm is modeled by a random
or adversarial process are customarily called learning models. They tend to focus
mostly on studying the learning algorithm itself. Such models are good for studying
the average or worst-case behavior of the algorithm. There are other models where
the environment is specifically designed to help the algorithm. These are usually
called teaching models, especially if there is another nontrivial algorithm generating
examples for the learning algorithm or interacting with it in some way. In this case
both the learning and the teaching algorithms are studied as well as the interaction
between them. The advantage of teaching models is that they allow harder target
rules to be learned or let the learning algorithm be more efficient in its use of re-
sources, such as time or memory space. Some models cannot be easily classified one
way or another, and both names seem to apply to them. This thesis considers several
well known learning and teaching models. These models are extended to form new
ones that either better represent certain trends observable in human learning or that
overcome certain problems associated with applying in practice learning algorithms

developed for other models.

Among the most common problem with implementations of learning algorithms is
the possibility of errors that are not accounted for in the model. Algorithms that are
designed for error-free models often cannot tolerate a single error. That is, instead
of “almost learning” the target rule or taking longer to do that, they may in fact
output a wrong rule, decide that there is no rule explaining all the examples, run
forever, crash, or exhibit some other kind of unwanted behavior. A related problem

with many algorithms is their high degree of specialization. That is, they are capable

of learning rules only from certain, often very narrow, classes of possible target rules.
If the rule to be learned is not exactly in the class that the algorithm is tuned to
work with, it need not do anything reasonable. Both these problems are considered

in this work and in some sense compared.

A different kind of weakness that often troubles teaching models is the “coding
issue”. It arises when the environment or the teaching algorithm is too helpful,
making learning trivial. For example, suppose that we have an algorithm that learns
some rule from the examples of that rule, but only because there is an example that
encodes the rule within itself. Or perhaps several examples together provide encoding
of a formal representation of the rule. Can we call this a learning algorithm and
present the model as a reasonable model exhibiting learning” The general feeling
among the researchers is that the situation above should be called “coding” (or
cheating) but not learning. Coding is the way we program our computers to do
something today. It is a good approach for many tasks that computer systems do,
but seems infeasible for certain things that we would like them to do, for example,
replacing human experts in medical diagnosis. There are many other problems that
we cannot imagine to have solutions that can be simply programmed. This in fact
is one of the reasons that researchers have started to analyze the phenomenon of

learning.

If we try to draw comparisons to human learning, it is also quite obvious that
coding has no place there. Why are textbooks so full of examples and exercises as
opposed to carefully thought out ready recipes for every skill that we may want to ac-
quire? Of course, many of our skills are such that no one can imagine them described
in any way on paper, but there are other skills that do have concise algorithms be-

hind them. Take, for example, elementary arithmetic. We could come up with a set

of algorithms that specify how to perform addition, subtraction, multiplication, and
division on decimal numbers. But we would not be comfortable learning these oper-
ations by memorizing the algorithms. We don’t learn well by being “programmed”

to do something and much rather prefer to “program” ourselves.

Now that we’ve concluded that coding is not learning, how does this affect a
teaching model in which coding is possible? Usually, it means that extra steps need
to be taken to eliminate coding as a way to find the target rule, or else the model will
not be considered interesting. Many originally simple models have been augmented
with various features that eliminate the possibility of coding. This may lessen the
overall appeal of a model, especially if the anti-coding measures seem artificial and
don’t resemble any difficulties encountered in real-life learning situations. This work
gives some reasons why coding is not a natural way of human learning and introduces
a new model where there are no precautions against coding—it simply does not
help. The new model reflects well another interesting characteristic of humans—the
uncertainty about one’s own capabilities. It is very hard to precisely define what
constitutes learning and there is no artificial learning to experiment with, therefore
it is very important and natural to build models that attempt to express what we

can observe.

This work is organized into three nearly independent parts. Each part contains
enough motivation, introduction and discussion of related previous work to be read
as a separate unit. The first part takes a recursion-theoretic approach to learning
and is concerned with issues such as coding and lack of knowledge about intrinsic
capabilities. The models introduced in this part also exhibit what impact a teacher
can have on learning. Parts 2 and 3 of this thesis belong to a different area of

Computational Learning Theory that studies “concept” learning and puts a lot of

emphasis on efficiency. Every learning algorithm is required to learn the target rule in
time that is polynomial in various parameters that depend on the concrete problem.
Besides time, it is similarly constrained in the amount of memory it may use and
the number of examples that it may consume. The focus in the second part of
this dissertation is mostly on the effect of errors in the examples to the target rule,
but the issue of designing algorithms that learn “broader than customary” classes of
target rules is also considered. A relation between overcoming errors in examples and
learning broader classes of rules is given. The third part is somewhat related to the
second, as it explores a particular learning algorithm from Part 2 in a slightly relaxed
model. The errors in examples as considered in the second part are “malicious”, i.e.,
spread across the examples in the worst possible way. In Part 3 they are “random”
and thus possibly easier to cope with. The goal of this part, however, is to determine
whether the concrete algorithm developed for malicious errors can be adapted to work
well with random errors and what would be its advantages over a trivial algorithm

that works only for the related error-free model.

Many of the results proved in this dissertation are based on algorithms given in
the accompanying figures. The algorithms are written in a syntax that resembles
the “C” programming language. It has convenient flow control statements and it
allows one to code very compactly. It may, however, look very obscure to somebody
who is not familiar with its syntax. Therefore, a reference to a “classic” C book and
explanations of most of the constructs used in this thesis are given in the Appendix,

page 232.

Part 1

Learning from Teachers that are

Different

Chapter 1

Introduction

One of the goals of Computational Learning Theory is to find new learning and
teaching models that better reflect different issues of human learning or help in
building “intelligent” computer systems. Despite the large number and variety of

existing models, the quest for better ones is far from over.

Learning Theory originally started with learning models (no teaching) but it
was soon discovered that in order to make broader classes of concepts learnable, we
need to help the learner somehow [38]. From then on both learning and teaching
models have been considered. Teaching models are those where the environment
is specifically designed to help the learning algorithm. Often it involves another
algorithm, called the teaching algorithm (or simply, teacher) that interacts with the

learning algorithm (or learner).

As soon as too much freedom is given to the teacher, a well known problem
arises—the possibility of “outright coding”. By this we mean a protocol where the

teacher transmits (using an encoding via examples or other information) a represen-

10

tation of the target concept to the learner. This, most authors agree, does not seem
to involve learning in an interesting sense, and is usually prevented by deliberately
chosen features of the model. Different models address the issue of outright coding in
different ways. Some require that the teacher be capable of teaching every consistent
learner (one that only outputs hypotheses consistent with the examples seen) [22, 35].
Others require the learner to learn from every teacher supplying correct examples [3].
Still others introduce adversaries that add other examples or misorder the existing
ones, before passing them from the teacher to the learner [21, 25]. Others require that
the learner is never fooled into converging to a wrong concept [26]. There are other

ways in which different authors deal with coding, but everybody tries to prevent it.

In short, it is a common belief that passing a description of the target concept
from the teacher to the learner does not reflect learning. It may be a good way
to program a computer, but there is more going on in the process that we call
“learning”. Unfortunately, many models need to include artificial features to cope
with the possibility of coding. Therefore, we introduce yet another model of teaching.
In this model we do not take any precautions to avoid coding. Both the teacher and
the learner are welcome to “cheat” all they want. The good thing is that it does not
help to do so. More precisely speaking, the negative results that we have for this
model discourage the idea that there could be coding going on. At the same time,
the positive ones are achieved in a straightforward way with no intention of outright

coding.

One of the main goals of our model is to try to reflect in a more direct way the
reasons why outright coding is not a common mode of human learning. Our analysis

of this issue involves two related ideas:

11

1. The “hardware and software environment” differs substantially from one person

to the next, and

2. In many human endeavors, simulation does not give a feasible solution.

In support of the first point, the interconnections of neurons in human neural
circuitry appears to involve a degree of randomness, as well as influence by external
stimuli, that suggests that a neuron-by-neuron isomorphism of two human nervous
systems is extremely unlikely. The fantasy of somehow transferring the patterns of
neural activation from one person to another thus allowing the latter to experience
exactly what the former is experiencing is, to put it mildly, improbable. Taking the
neural level as “hardware” and the pattern of activations as “software,” our hardware
and software are just different—one person cannot meaningfully run somebody else’s

program.

Of course, there are other, more abstract, levels of human cognitive function-
ing where we could make analogies to hardware and program, but it does not seem
plausible that there is any level for which the analogy of transferring a program
between two identical computers is very accurate. Interestingly, these observations
also apply to the problem of transferring a program between two real computers,
where differences of processors, buses, networks, peripherals, communications proto-
cols, programming languages, operating systems, and other installed software rather

complicate the process of porting a program.

This brings us to the second point, whether simulation can help. Simulation has
been a powerful tool in theoretical computer science, in a huge variety of settings.
Consequently, a theoretical computer scientist’s almost immediate reaction to the

situation of two different computational systems is to ask if they can efficiently

12

simulate each other. If so, then for most theoretical purposes they are equivalent.
So, even if we assume that the teacher and the learner are modeled by non-identical
computers, the learner can use the teacher’s program by simulating it, and a version

of outright coding is still possible.

Suppose we map the idea of simulation to the situation of someone trying to
teach another person to juggle; what problems arise? The behavior, juggling, is an
extended process that interacts physically with the world of muscles, juggling bags,
air, light, and so on, in a time-critical fashion. What must the learner do to simulate
the teacher’s juggling program? The perceptual signals of vision, touch, and pressure
from the learner must be translated into equivalent ones for the teacher’s program.
Motor signals generated by the teacher’s program for the teacher’s muscles must be
translated to equivalent motor signals for the learner’s muscles. And all this must be
done before the juggling bags hit the floor. It seems extremely unlikely that people

have the capacity to simulate one another in anything like this sense.

In addition to the obvious constraints on memory and speed, one major obstacle
to simulation in this sense for humans is the fact that many of a person’s capabilities
are only partly and poorly known to that person. This is most evident in embodied
capabilities, for example, the sequence of motor signals and responses that allow a
person’s hands to type a word, but it probably holds equally of more strictly cognitive
capabilities, like the ability to picture a friend’s face. Many of our capabilities are,
in effect, “black boxes” in the sense that we learn to produce appropriate control
signals to achieve certain effects, but the actual details of how the signals lead to the

effects are opaque to us.

We have attempted to reflect some of these considerations in the model we

present. We are aware that it is only a first approach to the issues, with many

13

drawbacks of its own, but we hope that it will inspire others to think more about

models of teaching.

Since we are considering issues that lie at the foundation of theoretical computer
science, we start from the theory of computable functions, complexity measures
and identification in the limit. Instead of the usual Turing machine model of the
learner, we assume that the learner is a Turing machine with “black box” access
to a programming system with a complexity measure. Thus, the learner is an or-
acle Turing machine, where the oracle is answering questions about an unknown
programming system. (Programming systems and complexity measures axiomat-
ically generalize the notion of enumerations of programs and their corresponding
step-counting functions.) Approximately speaking, the Turing machine component
represents the purely cognitive operations of the learner, and the programming sys-
tem in the black box represents the repertoire of possible actions of the learner, or,
more succinctly, “thinking” and “doing”. In this setting, the concept to be learned
is a partial recursive function, and the goal of the learner is to find a correct program
in the programming system of the black box for the target function. Again speaking
approximately, the learner must learn to “do” the exemplified thing, and not just
“imagine” doing it. That is, having a correct program for the target function in
the standard Turing machine system is not enough; the learner must find a correct

program in the black box system.

If the black box system is known to be the same as the standard Turing machine
system, or if the learner knows a program in the black box system to simulate
programs in the standard Turing machine system, then this distinction collapses.
Therefore we assume that the programming system in the black box is more or less

arbitrary and unknown to the learner, and require that a learning algorithm (for the

14

" component of the learner) work correctly for a whole

Turing machine, or “cognitive,’
class of possible programming systems in the black box. We can characterize this
aspect of the model as treating the action-space of the learner as part of the initially

unknown environment. A new-born animal may be in somewhat analogous situation,

having to discover how to focus its eyes or move its limbs partly by experiment.

Modeling lack of self-knowledge in this way has some fairly strong consequences.
For example, suppose that the black box may contain an arbitrary acceptable pro-
gramming system (i.e., some “fairly natural” programming system; see the formal
definitions in Section 2.1), and suppose that the task of the learner is to find in the
limit a program in the black box system for the constant all-zero function, intuitively
a very simple function. Theorems 2 and 4 below show this to be impossible. The
explanation for this is that there are acceptable programming systems in which the

constant all-zero function is not at all simple to compute.

We also model the teacher, who attempts to help the learner learn an arbitrary
partial recursive function in the limit. We could model the teacher by a standard
Turing machine, with no lack of self-knowledge, but we choose to model the teacher
similarly by a pair consisting of a Turing machine and a black box containing a
programming system. This assumption is made partly for uniformity, so that teacher
and learner are agents of the same kind. (For example, extensions of the theory
might naturally permit the learner to go on to become a teacher.) This assumption
also strengthens our positive results, since if a teacher with a black box is able to
teach effectively, then so also can a simple Turing machine teacher. By the same
argument, the assumption would seem to weaken our negative results, since perhaps
any difficulty comes from the teacher’s lack of self-knowledge. However, as we note,

all of our negative results actually hold also in the case in which the teacher is a

15
simple Turing machine.

Non-standard programming systems have seldom been brought up since the fa-
mous Rogers’ Isomorphism Theorem [30]. This is no surprise, since all the non-
awkward ones (i.e., all acceptable programming systems) are closely related to each
other (both literally and nonliterally speaking, see Machtey and Young [30] and
Chapter 2). Despite this, the main idea of our model is using different programming
systems for the teacher and the learner. The objectives of this dissertation are to
discover what relations between the teacher’s and learner’s programming systems
allow certain classes of functions to be learned. In addition to that, we would like
to know when these classes can be learned in a more robust way. For example, we

prefer learners that can fail gracefully in cases such as:

1. The target function is not from the designated class;
2. The learner’s black box is not from the designated class;

3. The teacher maliciously tries to mislead the learner.

We would also like to discover classes of functions that cannot be learned under
certain circumstances, or that cannot be learned due to the possible problems men-
tioned above. Other questions that we could ask are about the usefulness of the
teacher and the reasonableness of the model itself. For example, does knowledge of
the teacher’s programming system make learning any easier for the learner? Some

answers to these and other questions are given in this part of the thesis.

Chapter 2

Definitions and Notation

In this chapter we give definitions for the concepts used extensively throughout Part 1
of the thesis. Some more specific definitions appear in the chapters where they are
relevant. We assume that the reader is familiar with basic recursion theory and
do not give definitions of, say, Turing machines. A good book to consult is “An
Introduction to the General Theory of Algorithms” by Machtey and Young [30], in
fact, many of the definitions below are taken from it. A more recent text covering

the same concepts is “A Recursive Introduction to the Theory of Computation” by

Carl Smith [37].

2.1 Programming Systems and Complexity Mea-

sures

All our functions work from subsets of the set of natural numbers to the set of natural

numbers (denoted by N), unless otherwise specified. By natural numbers we mean

16

17

all non-negative integers, i.e., 0 € N. We consider only functions of one argument
because all other functions can be “coded” into them by composing with appropriate
projection functions. In particular, for situations in which we need two-argument

functions, we use the following kind of encoding.

We fix some total recursive bijection between pairs of natural numbers and natural
numbers. By (-, -) we denote the function that maps pairs to numbers and by 7 (-)
and m(-) we denote the two functions that map natural numbers to the first and
second components of their corresponding pairs, respectively. That is, 1 ({z,y)) =«
and mo((x,y)) = y. Now, when we wish to define a function f of two arguments, we
simply define f((z,y)) to have the value we would like to assign to f(z,y). Having
said this, we will sometimes omit the angle braces around arguments when it will
create no confusion. When we need to encode a three-argument function as a one-

argument function, we define f(((x,y), z)) to have the value f(z,y, 2).

We denote the class of all partial recursive functions by P. We start our definitions

by recalling some facts about programming systems and complexity measures.

Definition 1 A programming system is a listing ¢q, ¢1, ... which includes all partial

recursive functions (of one argument, from N to N).

Definition 2 Function Uy is called the universal function for the programming sys-
tem ¢o, ¢1, ..., if Uy(i,z) = ¢;(x) for all 7 and z. Note that the universal function

itself need not be partial recursive and thus may not belong to the listing ¢, ¢1,

Definition 3 A programming system ¢g, ¢1, ... is universal if the universal function

Uy for it is partial recursive. This means that the listing ¢o, ¢1, ... includes Uy. In

18

this case we denote the universal function by ¢, rather than Uy, and treat univ

as an index of the universal function in the listing.

Definition 4 Function Cy is called a composition function for the programming
system ¢, ¢1, ..., if it is total and if ¢¢, (i j) = @i 0 ¢; for all ¢ and j. That is, for all

1, 7, and x,

di(dj(x)), if ¢;(x) and ¢;(¢;(z)) are defined;
¢C¢(i7j)(x) =

undefined, otherwise.

Note that a composition function need not be recursive.

Definition 5 A programming system ¢q, ¢1, ... is acceptable if it is universal and

if there exists a (total) recursive composition function for it.

Programming systems are often referred to elsewhere in the literature as indezxings
or Gddel numberings of the partial recursive functions. Some of the most frequently
used indexings are obtained by fixing a particular encoding of Turing machine pro-
grams and ordering all valid programs based on some fixed total order on their
encodings. In this thesis we often refer to the “Turing machine with index ¢”. By

this we mean the following.

We fix an encoding of Turing machine programs by strings over {0, 1}*. (There are
a number of ways to do this, we just assume that we have decided on one particular
encoding F, which is the one we always use and refer to.) Then we fix the total order
on the encodings of programs to be the lexicographical one. The Turing machine

with indez i is the one with program p, where p encodes to string e (i.e., E(p) = e),

19

and e is the string with number 7 in the lexicographical order of all strings that are

valid F-encodings of Turing machine programs.

Definition 6 The Turing Machine Programming System is the listing TM,, TM,
TM, ..., where each TM; is the function computed by the Turing machine with

index 7. It is a widely used acceptable programming system.

Definition 7 Let ¢g, ¢1, ... be any acceptable programming system. A listing
g, ®q, ... of partial recursive functions is a computational complezxity measure (for

the given acceptable programming system) if it satisfies the following conditions:

1. For all ¢ and z, ®;(z) is defined if and only if ¢;(z) is defined.

2. Inequality ®;(z) < s is a recursive predicate of i, z, and s.
Definition 8 The Turing Machine Complexity Measure is the listing TM,, TM;, . . .,
where each TM;(x) is defined to be the number of steps in which the Turing machine

with index ¢ stops on input x after writing output. 7'M;(z) is undefined if the machine

never stops on x or does not produce output before stopping.

2.2 Black Boxes

Now we introduce some concepts and notation more specific to this thesis.

Definition 9 A Black Box is any total recursive three-argument function from N x
Nx N to NU{?}. (We could recode NU{?} as natural numbers in a straightforward

way, but we prefer human intelligibility.)

20

We often consider restricted classes of Black Boxes. For example, the primitive
recursive Black Bozes are the the ones defined by primitive recursive three-argument
functions. When such classes of Black Boxes are recursively enumerable (e.g., the
class of primitive recursive three-argument functions), we sometimes use notation
BB to refer to the Black Box with index bb in the recursive enumeration of class
BB. This superscript notation should not be confused with the subscript notation

introduced in the next definition.

Definition 10 If BB is a Black Box, and ¢« € N then by BB; we denote the function
defined as follows:
BB(i,x,s), if BB(i,x,s0) # 7 and BB(i,z,s) = ? for all s < s0;

def

undefined, if BB(i,z,s) = 7 for all s.

We say that BB contains the functions BB;, i.e., we think of BB as of a listing of

functions BBy, BBy,

Definition 11 A Black Box BB is full if it contains every partial recursive function.

That is, BB is full if the listing BBy, BB, ... is a programming system.

Note that since a Black Box itself is a total recursive function, it cannot contain

any uncomputable functions.

Definition 12 A Black Box BB is universal if the listing BBy, BBj, ... is a universal
programming system. That is, BB is universal if it contains a universal programming
system, i.e., a programming system such that its universal function is itself partial

recursive.

21

UN1v(n)
{
i =m(n);
xr = ma(n);
For (s =0;; s++) /* Infinite Loop */

{

v = DEFINEBB(, z, s);

If (v#7) /* BB;(z) defined */
Return v;

Figure 2.1 Algorithm for the universal function

Lemma 1 Every full Black Box is universal.

Proof: The universal function for a Black Box BB is a function U such that for all ¢
and x, U((i,z)) = BB;(x). It can be computed by the algorithm given in Figure 2.1,

which just scans the values of BB(i,x,s) for s =0, 1,

It is obvious that this algorithm can be implemented on a Turing machine that
has access to a program DEFINEBB that gives the values of BB. There must be
such a program, since every Black Box is a total recursive function. Therefore, this
algorithm defines a partial recursive function, and since BB is full this function is

contained in BB. Hence, BB is a universal Black Box. [|

From Definition 12 it follows that every universal Black Box is full, hence “full
Black Box” and “universal Black Box” are synonyms. We use the term “universal
Black Box” rather than “full” throughout the rest of Part 1 of the thesis. We hope
that this will remind the reader about the existence of the universal function in the

Black Box and will provide greater compatibility with the terminology of Machtey

22

and Young [30].

Definition 13 A Black Box BB is acceptable if the listing BBy, BBy, ... is an ac-
ceptable programming system. That is, BB is acceptable if it contains an acceptable
programming system, which is one that is universal and for which there is a total

recursive composition function.

Lemma 2 There is a universal Black Box UBB which is not acceptable.

The proof of Lemma 2 is given in the Appendix to Part 1, page 106. It is not
hard but long enough to interfere with the focus of this chapter, which is definitions.
It is not necessary to understand the proof before reading further, one should just

keep in mind that there exist universal Black Boxes that are not acceptable.

Definition 14 If BB is a Black Box, and i € N then by BB; we denote the function

defined as follows:

if BB(i,x,s9) # 7 and BB(i,x,s) = 7 for all s < sp;

undefined, if BB(i,z,s) = 7 for all s.

We think of each BB; as the complexity function corresponding to BB; and call

it the measure (of BB;). We say that measures BBy, BB, ... are contained in BB.

Note that since every Black Box BB is recursive by definition, the listing of
measures BBy, BB, ... satisfies both conditions of Definition 7 and is therefore a
valid computational complexity measure for the functions contained in BB (assuming

that BB is acceptable).

23

There is one particular acceptable Black Box which is of special interest to us.
In addition to being acceptable, it is also primitive recursive, showing that there are

very natural primitive recursive and acceptable Black Boxes.

Definition 15 The Turing Machine Black Boz is denoted by TMBB and defined
as follows:
y, if TM;(z) < s and TM;(z) = y;

def

TMBB(i,z,s) =

7, otherwise.

Note that the listing TMBB,, TMBB,, TMBB, ... is just the Turing Machine

Programming System (also denoted by TM,, TM;, TM, ...), and that the listing

TMBB,y, TMBB;, TMBBs ... is the Turing Machine Complexity Measure (also de-

noted by TMy, TM;, TM, ...). Another interesting property of the Turing Machine
Black Box is that TMBB(i,z,s) = ? implies that TMBB;(x) > s, which is not

necessarily true for arbitrary Black Boxes.

2.3 b-relatedness

In this section we explore some relationships between Black Boxes.

Definition 16 Let f be any partial function from N to N. The domain of f is the

set of all points in N where f is defined. We denote this set by Dom(f).

Definition 17 Function f extends function g if f(z) = g(x) for all z € Dom(g) (i.e.,
f agrees with g on all points = where ¢ is defined). We denote this fact by f = g

and sometimes say that f is an extension of g.

24

Note that extending is a transitive relation, i.e., if f 2 g and g = h then f = h.
Also note that if f =2 g and ¢ = f then f = g. Let us now introduce two symbols

that are sometimes used to save space in formulas.

Definition 18 The phrase for all but finitely many is denoted by OV? This is very
similar to saying for all (V), except that a finite number of exceptions is allowed.
Similarly, the phrase exist infinitely many is denoted by <>EIO This is like ezists (3),
except that not just one but infinitely many objects exist that satisfy the required

condition.

We now proceed to the most important definition of this section. We define a

relation of being “not more than b slower” between Black Boxes.

Definition 19 A Black Box BB’ is b-related to the Black Box BB if there exists
a total recursive two-argument function b(x, s) such that for all i there exists a j

satisfying the following properties:

1. BB, = BB;

2. BB(x) < b(x, BBi(x)), for all but finitely many x € Dom(BB;).

It is easy to see that b-relatedness is essentially analogous to the bounding re-
lationship between two acceptable programming systems with complexity measures,
as given by the Rogers’ Isomorphism Theorem and the theorem about recursive re-
latedness of complexity measures. The two relationships differ in that we do not
require the Black Boxes to be universal or acceptable, we do not assume a recursive

translation function ¢ between them, and we allow the function in one Black Box

25

to extend the corresponding function in the other. We now develop some further
properties of b-relatedness and find some cases when it provably exists. Most of the
time we will need plain b-relatedness, but on some occasions we will use the extra

features proved below.

Rogers’ Isomorphism Theorem together with the theorem about recursive relat-
edness of complexity measures [30] imply that every two acceptable Black Boxes are
b-related for some total recursive function b. Indeed, if the translation function be-
tween the two systems is known (intuitively, a function that will find a j for every i
such that they satisfy property 1 above), it is easy to construct the necessary total
recursive function b. Furthermore, b can be made such that not only BB’ is b-related
to BB but also BB is b-related to BB’ and, in addition, b is monotone in its second

argument.

In our model the recursive translation between the two Black Boxes is usually
not known. Therefore, the total recursive function b(-,) cannot be constructed in a

straightforward way, but we can still prove that it exists.

If the two Black Boxes are not acceptable, then the situation becomes even less
promising, since then it is not known whether the translation function exists. The

following lemma proves that it does exist between a universal and an acceptable

Black Box.

Lemma 3 Let BB’ be an acceptable Black Box. Let BB be a universal Black Box.

Then there exists a total recursive function t such that BB; = BB;(Z-), for all i € N.

Proof: Theorem 3.1.5 from Machtey and Young [30] proves that a translation func-

tion exists from any universal programming system into any programming system

26

with a total recursive s-1-1 function. By Theorem 3.1.2 from Machtey and Young [30]
(the s-m-n Theorem), every acceptable programming system has a total recursive

s-m-n function, so our lemma follows immediately from these two theorems. [|

Knowing that some translation function ¢ exists from a universal into an accept-
able Black Box, we can now prove that they are b-related for some total recursive
two-argument function b. The construction is a little simpler than the one used in
the theorem about recursive relatedness of complexity measures because we require

less of b.

Lemma 4 Let BB’ be an acceptable Black Box. Let BB be a universal Black Box.
Then there exists a total recursive two-argument function b(x,s) such that BB' is

b-related to BB.

Proof: By Lemma 3 there is a total recursive function ¢ such that BB; = BBy,
for all « € N. We use a typical “maximizing” construction to prove the lemma. First

we define an auxiliary three-argument function ¥'(7, z, s) as follows:

B_B;(i) (z), if BBi(z) = s;
0, otherwise.
Now we define b(z, s) o max{V'(i,x,s) i < x }.

It is easy to see that when we fix any ¢, there exists j = ¢(4), such that:

1. BB; = BB; and thus BB;- > BB;;

2. For all x > i, if v € Dom(BB;) then BB;(x) = s, for some s € N and therefore,

B_B;(x) =V (i,z,s) < b(x,s) = b(z, BB;(x));

27

Hence, Black Box BB’ is b-related to Black Box BB. [|

We now continue by proving that b-relatedness can be made monotone in the

second argument.

Lemma 5 Let BB and BB’ be two Black Boxes. If BB’ is b-related to BB for some
total recursive two-argument function b(x,s), then BB’ is also b'-related to BB by a
total recursive two-argument function b'(z,s) which is monotonically nondecreasing

in its second argument.

Proof: Define V/(x,s) to be max{b(z,z) : z < s}. Since b is total recursive, so is
b', and from the definition it follows that (s’ > s) = (V/(z,s") = V/(x, s)). Obviously,

b(z,s) <V(x,s) for all z and s, so BB’ is b'-related to BB. |
Using this simple construction, we can now prove the transitivity of b-relatedness.

Lemma 6 Let BB, BB and BB" be three Black Boxes. If BB’ is by-related to
BB for some total recursive two-argument function by(x,s) and BB" is by-related to
BB’ for some total recursive two-argument function by(x,s), then there exists a total

recursive two-arqument function b(x,s), such that BB" is b-related to BB.

Proof: By Lemma 5 we know that BB" is by-related to BB’ for some total recursive
two-argument function b, (x, s) which is nondecreasing in its second argument. Thus,

we have that for all ¢ there exists a j and a k such that:

1. BB} 2 BB’ = BB;

2. BBj(z) < b’Q(x,B_B;(a:)), for all but finitely many = € Dom(BBY);

28

3. BBj(z) < by(x, BB;(x)), for all but finitely many = € Dom(BB;).

Since bly(x, s) is nondecreasing in its second argument, BB (x) < by(x, by (x, BBi(z)),
for all but finitely many 2 € Dom(BB}). We can now define b(z, s) o by (z, b1 (z, s)),
which is obviously a total recursive two-argument function. Since BB; > BB;, we
have that Dom(BB;) € Dom(BBj), and therefore BB](x) < b(z, BB(x)), for all but

finitely many « € Dom(BB;). This concludes the proof of the lemma. |

2.4 Learners and Teachers

Here we describe in detail our model of learning (and teaching). We have two agents,
the learner and the teacher, usually denoted by L and T, respectively. Each of the
agents is an oracle Turing machine, equipped with the usual Work Tape and a few
special tapes. Both the teacher and the learner share a common Input Tape. We

need another definition to describe the contents of this tape.

Definition 20 An arbitrary enumeration of a function f (also called simply an
enumeration) is an infinite listing of elements ag, aq, ..., that satisfies the following

two conditions:

1. Each a; is either the symbol ‘*’ or an ordered pair (z, f(x)), for some point

x € Dom(f);
2. Each point x from the domain of f appears as the first component of some pair

in the listing.

Note that from this definition it follows that if (z,y) and (z,z) are two pairs in

the listing, then y = z.

29

The Input Tape (of the teacher and the learner) contains an arbitrary enumeration
of the target function, i.e., it contains distinct elements each of which is the symbol
‘*” or an ordered pair. Both agents can only read this tape and they can do it
independently of each other. That is, they each have a tape-head on this tape, and

the tape is read-only.

The teacher and the learner also share a common Message Tape. This tape is
for their communication and they both can read and write it. It is assumed that
this communication happens using some known alphabet and encodings for whatever
messages they would like to exchange. More specifically, we assume that the learner
has exclusive access to the Message Tape until it enters a special send state, at
which time its computation is suspended. At this point, the teacher’s (initially
or previously) suspended computation is resumed and it has exclusive access to the
Message Tape until the teacher enters its send state. Then the teacher’s computation

is suspended again and the learner’s is resumed, and so it goes on forever.

Both the teacher and the learner have their private Work Tape and Box Tape,
where they perform computations and communicate with their oracles, respectively.
The teacher’s oracle holds the teacher’s Black Box, which we denote by TBB most
of the time. The learner’s oracle holds the learner’s Black Box, which we usually
denote by BB. The teacher and the learner can encode the question “Does program ¢
on input x stop in s or less steps, and if so, what is the output?” on their Box Tapes
and their oracles encode the appropriate answer, which is TBB (i, z, s) for the teacher
and BB(i,x, s) for the learner. We don’t describe the details of this mechanism, just
say that the agents “find out” the respective values of their Black Boxes. We also say
that the teacher T is equipped with a Black Box TBB and denote this by T'(TBB).

Similarly, for the learner L with a Black Box BB we write L(BB) and say that L is

30
equipped with a Black Box BB.

The teacher has one more tape, which is the Answer Tape. It is read only and
contains an index ¢ such that TBB; extends the target function. The learner has no
access to this tape, but the teacher is allowed to pass this index to the learner with

the help of the Message Tape.

The learner also has one more tape, which is the Qutput Tape. From time to time
it writes a number on this tape and puts a special marker at the end of the number
to indicate that a new hypothesis has been output. For simplicity we assume that it
moves to the right after each index (with marker) written and does not destroy the

previous ones. The teacher cannot access this tape.

Definition 21 The learner converges to hypothesis h if after a finite number of
steps it outputs (writes) the number h to the Output Tape and never again outputs

a different number.

Note that the learner may converge to h in two ways: either by outputting A
after some finite number of steps and never outputting any hypothesis again, or by
beginning to systematically output i from some point on. That is, eventually A must
become the last number written or the only number that will ever subsequently be

written.

Definition 22 Given a learner L, a teacher T', a Black Box BB for the learner,
a Black Box TBB for the teacher, a partial recursive function f, and an arbitrary
enumeration of f on the Input Tape, and an arbitrary index 7 on the Answer Tape

such that TBB; extends f, we say that the learner L(BB) converges correctly if

31

L(BB) converges to h and BB), extends the function f. We say that L(BB) converges

incorrectly if L(BB) converges to h and BBy, does not extend the function f.

If there is no index h such that L(BB) converges to h, then it must be that L(BB)
either does not output any hypothesis, or that it outputs infinitely many hypotheses
on the Output Tape, and for each hypothesis output, there is a later time at which
a different hypothesis is output. In the latter situation, we say that L(BB) changes

its mind infinitely often.

Definition 23 The learner L, equipped with a Black Box BB, learns the target
function f from the teacher T' equipped with a Black Box TBB, if TBB contains a
function extending f, and for every enumeration of f given on the Input Tape and
every index i such that TBB; extends f on the Answer Tape, L(BB) communicating

with T'(TBB) converges correctly.

We extend this definition to the case of learning a class C' of partial recursive

functions in the following way.

Definition 24 The learner L, equipped with a Black Box BB, learns the class of
partial recursive functions C' from the teacher T', equipped with a Black Box TBB, if
for each function f € C', TBB contains a function extending f, and for every f € C,
every enumeration of f on the Input Tape, and every index ¢ on the Answer Tape

such that TBB; extends f, L(BB) communicating with T'(TBB) converges correctly.

In this thesis we primarily consider two cases: the learnability of a single function,
or the learnability of P, the class of all partial recursive functions. In the second

case, we generally assume that the teacher’s Black Box is at least universal.

32

We also consider independent learners, that is, learners that have no send state.
In this case, we can delete the teacher and the Answer Tape, and regard the Mes-
sage Tape as just another work tape, since there can be no interaction with the
teacher. Independent learners are analogous to inductive inference machines, except
that inductive inference machines have a fixed, known programming system, while

independent learners must work with an unknown Black Box.

2.5 Reliability and Proofness Properties

Motivated by the work of Minicozzi [31] and Blum and Blum [15] on reliable (or
strong) identification, we are interested in designing learning protocols that “fail
gracefully” in certain situations other than those for which the protocol is specifically
intended. In particular, we would like the learner to avoid converging incorrectly.
That is, if it does not converge correctly, then it should either not output any hy-
pothesis or change its mind infinitely often. The possible “unanticipated situations”

that a teacher and a learner might have to cope with are:

1. A function from outside the intended target class,

2. A Black Box from outside the intended class for the learner, or

3. A Black Box from outside the intended class for the teacher.

The first situation is considered both by Blum and Blum [15] and by Mini-
cozzi [31], and the inductive learners that can overcome this difficulty are called

reliable (or strong). We have extended the notion of reliability to cover all three

situations mentioned above.

33

Definition 25 Let BBC and TBBC be two classes of Black Boxes. Let C' be
a class of partial recursive functions. A learner L and a teacher T are called
(C, BBC, TBBC)-reliable if for any learner’s Black Box BB € BBC, any teacher’s
Black Box TBB € TBBC, any target function f € C, any enumeration of f on
the Input Tape and all indices i such that TBB; = f on the Answer Tape, L(BB)

communicating with 7'(TBB) does not converge incorrectly.

In this dissertation we frequently focus on specialized cases of (C, BBC, TBBC)-
reliability, where only some parameters are considered “truly variable”, while the
rest are varying within their “acceptable”, “designated” classes. For example, we
may design the teacher and the learner to correctly learn some class of functions
provided that their Black Boxes come from two fixed classes; then we may investigate
what happens if, say, learner’s Black Box does not conform to this requirement,
while everything else does. We introduce a set of definitions that describe such

specializations.

Definition 26 Let BBC, BBC', TBBC and TBBC' be classes of Black Boxes. Let
C and C' be two classes of partial recursive functions. Let 7" and L be a teacher and

a learner, respectively. Let the class of all Black Boxes be denoted by ABBC.
1. We say that L and T are target-proof on C' for BBC and TBBC if L and T
are (C', BBC, TBB(C')-reliable.

2. We say that L and T are learner-box-proof on BBC' for C' and TBBC' if L and
T are (C, BBC', TBBC)-reliable.

3. We say that L and T are teacher-boz-proof on TBBC' for C' and BBC' if L and
T are (C, BBC, TBBC')-reliable.

34

4. We say that L and T are target-proof for BBC and TBBC if L and T are
(P, BBC, TBB(C')-reliable.

5. We say that L and T are learner-boz-proof for C' and TBBC' if L and T are
(C,ABBC, TBBC)-reliable.

6. We say that L and T are teacher-box-proof for C and BBC if L and T are
(C, BBC, ABBC)-reliable.

7. We say that L and T are learner-box-and-teacher-box-proof for C' if L and T
are (C, ABBC, ABBC)-reliable.

8. We say that L and T are target-learner-boz-and-teacher-boz-proof if L and T
are (P, ABBC, ABBC')-reliable.

The definitions above are meant to highlight the parameters of the generalized
reliability that do not comply with the requirements of some learning protocol. Al-
though no learning protocol is explicitly mentioned in these definitions, they become
more useful and convenient when used in the context of some teacher and learner
learning a class of concepts. Unless L and T are required to be able to learn some
class of concepts, it is extremely easy to make them target-learner-box-and-teacher-
box-proof. It suffices for this that the learner either never outputs a hypothesis or

that it alternates between two different ones.

Note that (X', Y’, Z’)-reliability implies (X, Y, Z)-reliability for all X C X’ Y C
Y and Z C Z'. It is an open question, however, whether (X' Y’ Z)-reliability
together with (X')Y, Z’)-reliability imply (X', Y’, Z’)-reliability, for any X C X',
Y CY’ and Z C Z'. Similar questions applied to the other pairs of parameters to

reliability are also open.

35

Target-proofness is meant to be analogous to reliable (or strong) learning, ex-
plored by Minicozzi [31] and Blum and Blum [15]. Learner-box-proofness and tea-
cher-box-proofness are introduced specifically for our model. Target-proofness is
considered very briefly in this thesis since (nearly) all our learning results hold for
P, the class of all partial recursive functions. Learner-box-proofness, however, is
very important for some of our results. So is teacher-box-proofness, although for
different reasons. It is the “dual” property of learner-box-proofness and is related to

two properties of the learner and the teacher which we now describe.

If both the learner and the teacher are the (correctly functioning) agents designed
for a specific learning problem, then there can be only the three above mentioned
unanticipated situations that may prohibit them from performing the learning task
successfully. From the learner’s point of view, however, there is another, potentially
more serious source of trouble—the teacher. We would like to build learners that
do not converge incorrectly even when coupled with adversarial teachers. When
considering teachers other than the intended ones, we permit any infinite sequence of
messages for the Message Tape, say m1, ms, ..., which is used in place of the teacher
as follows. When the learner enters its send state for the i-th time, the message m;

is placed on the Message Tape and the learner’s computation is resumed.

Definition 27 Let C' be a class of functions and BBC be a class of Black Boxes. We
say that a learner L is non-gullible for C' and BBC, if for all f € (', any enumeration
of f on the Input Tape, all Black Boxes BB € BB(C and any infinite sequence
of messages my, mo, ... used as responses on the Message Tape, L(BB) does not

converge incorrectly.

36

This definition models a large class of possible behaviors for teachers. It does
not model the situation of the teacher causing the learner’s computation to remain
indefinitely suspended, however. Unfortunately, such an outcome cannot be ruled
out easily, since many good teachers can fail to respond as a result of either of the

three problems mentioned before:

1. The target function may not be from the designated class, causing the teacher

to attempt some infinite computation, for example;

2. The learner’s Black Box may not be from the intended class, causing the learner
to ask an unexpected query to the teacher, which results in some infinite com-

putation, for example;

3. The teacher’s Black Box may not be from the intended class, causing an infinite

search for a value, for example.

Therefore, we introduce a special responsiveness property for teachers that requires
them to give a response despite any or all of the difficulties given above, and even
in cases when the learner is adversarial. For this we need to consider a wide range
of learner behaviors, which, as above, can be best accomplished by using an infinite
sequence of messages my, mao, ... for the Message Tape. Initially m; is placed on the
Message Tape and the teacher’s computation is started, and when the teacher enters
its send state for the i-th time, the message m;; is placed on the Message Tape and

the teacher’s computation is resumed.

Definition 28 Let C be a class of functions and TBBC be a class of Black Boxes.
We say that a teacher T is responsive for C' and TBBC, if for all Black Boxes

TBB € TBBC, all f € C, any enumeration of f on the Input Tape, any index ¢

37

such that TBB; = f on the Answer Tape, and any infinite sequence of messages
mi, Mg, ... used as responses on the Message Tape, T(TBB) enters its send state

infinitely many times.

The following lemma follows directly from the definitions of (C, BBC, TBBC)-

reliability, non-gullible learners and responsive teachers.

Lemma 7 Let C' be a class of partial recursive functions. Let BBC' and TBBC' be
two classes of Black Bozes. Let L be a non-gullible learner for C' and BBC. Let T be

a responsive teacher for C and TBBC. Then L and T are (C, BBC, TBBC)-reliable.

Proof: For any message that the learner may write on the Message tape, the teacher
is required to provide a response. For whatever responses the teacher may provide,
they can be modeled by some sequence of messages mq, mo, Therefore, the

learner may not converge incorrectly. []

Corollary 1 Let L be a non-gullible learner for P and the class of all Black Bozes
ABBC. Let T be a responsive teacher for P and ABBC. Then L and T are target-

learner-box-and-teacher-box-proof.

Proof: Follows immediately by replacing C' with P, BBC' with ABBC and TBBC

with ABBC in Lemma 7. []

To put the results of Minicozzi [31], Blum and Blum [15] and our results in
perspective, we now mention a few important results from their work and compare
them with related results found in this dissertation. Blum and Blum introduce the

notion of a function being h-honest and prove that for machines that are reliable on

38

the set of all partial recursive functions P, all the functions that a machine M can
identify are h-honest for some total recursive function h (which can be uniformly
constructed using M), and that all the functions that are h-honest can be identified
by some inductive inference machine M (which can be uniformly constructed from
h). Theorems 1 and 3 below give a somewhat similar result for learner-box-proof
learning. Minicozzi proves the Union Theorem, which states that given two inductive
inference machines that are reliable on some set of partial recursive functions .S, one
can construct another machine, reliable on S which is as powerful (on S) as both
the two given machines. It is easy to see that if the set S in Minicozzi’s Union
Theorem is replaced by the set of all partial recursive functions P (thus weakening
the theorem, of course), then it follows from the above-mentioned result by Blum and
Blum. Similarly, Corollary 6, a result about unions of primitive recursive learner’s
Black Boxes, follows from Theorems 1 and 3. Minicozzi’s Union Theorem in its
stronger form is related to three theorems of Chapter 7, especially to Theorem 7.
All these theorems have generalizations which are related to the generalization of

Minicozzi’s Union Theorem.

Chapter 3

Teaching the Fast Learners

Since we began with the issue of outright coding, it is instructive to examine a
protocol for outright coding in this new setting. Consider the teacher Tj that copies
the contents of the Answer Tape to the Message Tape each time control is passed
to Tp. Consider the learner Lo that initially passes control to the teacher, and,
when control returns to Ly, copies the contents of the Message Tape to the Output
Tape and halts. Clearly, for every universal Black Box BB, Lo(BB) learns every
partial recursive function from Ty(BB). That is, in case the Black Boxes of learner
and teacher are the same, this setting permits a straightforward version of outright
coding. Note that the agents are far from being learner-box-proof or teacher-box-
proof and the learner is definitely not non-gullible; a different teacher or a slight
difference between the teacher’s and learner’s Black Boxes suffice to make Ly converge

incorrectly.

To create an example of a teacher and a learner that are learner-box-proof and
teacher-box-proof, and where the learner is non-gullible, we appeal to the well-known

idea of using a computational complexity bound to guide learning. We describe a

39

40

teacher 77 that supplies information about the computational complexity of the

target function, obtained as follows.

Suppose TBB is the teacher’s Black Box. The teacher has an index ¢ on the
Answer Tape such that TBB; extends the target function f. Thus, for any x in the
domain of f, the teacher can make oracle calls to find out TBB(i,z,s) for s =0, 1,
2, ... until it determines the minimum s for which TBB(i,z,s) # 7, i.e., until it
determines the value of the measure TBB;(x). For any entry (x, f(z)) on the Input
Tape, the teacher T} supplies (on request) the value of TBB;(z) on the Message Tape,

where 7 is the index on the Answer Tape, and TBB is the teacher’s Black Box.

We describe a learner L, that makes use of this complexity information. The
learner L; initially outputs index 0 on the Output Tape, and sets its current hypoth-
esis 7 to 0. For each new entry (z, f(x)) on the Input Tape, L; makes a request to the
teacher, and then uses the number z returned on the Message Tape as a running-time
bound, checking whether BB;(z) = f(z) or BB;(z) > z, where BB is the learner’s
Black Box. If BB;(x) = f(z), Ly retains the hypothesis j and searches for the next
entry (z, f(x)) to check on the Input Tape. Otherwise, L; writes j+ 1 on the Output
Tape, sets j to j + 1, and restarts the process of checking values (z, f(x)) on the

Input Tape from the beginning.

Then for every universal Black Box BB, Li(BB) learns all the partial recursive
functions from 77(BB) and T; and L; are learner-box-proof and teacher-box-proof.
(Recall that by the definition of teacher-box-proofness we still require that TBB; = f,
even though TBB can be any Black Box. Therefore, it is safe for the teacher to
compute TBB;(z) for all € Dom(f) even though TBB may be a Black Box that
was not intended for 7).) Furthermore, L; is non-gullible and 77 with L; together

are actually (P, ABBC, ABBC')-reliable, where ABBC' is the class of all Black Boxes.

41

In other words, they are target-learner-box-and-teacher-box-proof. This protocol no
longer involves outright coding; 77 does not send ¢ to the learner, but rather uses ¢
and access to its Black Box to provide information to guide the learner’s own search.
In fact, the Black Boxes of the teacher and learner need not be identical; as long as
the learner’s Black Box has a program that computes an extension of f and runs at
least as fast on every input as program ¢ in the teacher’s Black Box, the learner will

converge correctly.

Unless we specify in greater detail how L; and T} communicate, we cannot assert
that T} is responsive. For example, the simplest way for a learner to specify that
it needs to know complexity information for the pair (z, f(x)) would be to write x
on the Message Tape before entering its send state. The teacher could then take
the value z found on the Message Tape and determine the measure TBB;(z) as
described above. Unfortunately, if the learner for some reason writes x ¢ Dom(f) on
the Message Tape, there is no guarantee that = € Dom(TBB;) and the teacher may
become stuck trying to find the measure TBB;(z). If, however, we require the learner
to just specify which element of the Input Tape it is seeking information about, this
problem disappears, since the teacher can find the respective element on the Input
Tape and then safely determine TBB;(z), if this element is a pair. Or, if the element
is a ‘*’ then the learner has made a mistake in its request and the teacher can return
some special value indicating this. When the latter specification is used, we can not
only say that 77 and L; are target-learner-box-and-teacher-box-proof and that the

learner is non-gullible but also that the teacher is responsive.

By extending the above ideas somewhat more, we prove the following positive

result.

42

Theorem 1 There exists a learner L* such that for every total recursive two-arqgu-
ment function b(x, s) there is a teacher T, such that for every universal Black Box
TBB and for every Black Box BB that is b-related to TBB, L*(BB) learns P from
T (TBB). Furthermore, L* is non-gullible, T} is responsive and both agents together

are target-learner-box-and-teacher-box-proof.

Proof: Every time the teacher’s computation is resumed, it reads the number k
written by the learner from the Message Tape. It then finds the k-th element on the
Input Tape. If this element is a ‘*’, it clears the Message Tape, writes 0 on it and
enters its send state. Otherwise, the k-th element is a pair (x, f(x)) and the teacher
Ty computes s = TBB;(z) as described above for teacher Tj, clears the Message
Tape and writes z on it, where z = b(x,s). The learner L* is similar to L;, with
the addition of dovetailing to re-try previously discarded hypotheses, which allows
for finitely many exceptions to the bounds supplied by the teacher. Intuitively, the
teacher supplies information of the form: “it shouldn’t take you longer than z steps
to compute the result y from z,” and the learner uses that information to prune
fruitless searches for a satisfactory program in its Black Box. The algorithm for L*

is given in Figure 3.1.

In the Main Loop the learner picks a new hypothesis j, which selects a “hypothe-
sis-function” BB; from its Black Box. It also picks a new “testing parameter” m and
enters the Testing Loop. There it tests whether BB; agrees with the target function
given on the Input Tape and whether its complexity is within the bound supplied by
the teacher on the Message Tape. When a function fails this test, the learner breaks
out of the Testing Loop and reiterates the Main Loop, i.e., picks another index, and
repeats everything. This computation is “dovetailed”, meaning that if no function

meets the test requirements then the learner will return to each formerly abandoned

43

L*()

For (n =0;; n++) /* The Main Loop */

{

Jj=m(n);

m = my(n);
Output j + 1;
Output j;

For (k=0;; k++) /* The Testing Loop */
Read k-th element e from the Input Tape;

If (e is a pair (z,y))

{

Clear the Message Tape and write k on it;
Enter the send state; /* Get Suspended */
Read z from the Message Tape; /* On Resuming Computation */

For (s = 0; s < max(m, 2); s++) /* The Bounded Loop */
v = BB(j,z,s);
If (v #7)
Break; /* Out of the Bounded Loop */

}

If (v #y) or (s > max(m, 2)))
Break; /* Out of the Testing Loop */

Figure 3.1 Learner’s algorithm

44

index infinitely often. Every time the learner returns to the same index 7, the testing
parameter m is different, and thus the test will eventually be made with arbitrarily

large values of m.

The test itself is inside the Testing Loop and consists of comparing each pair (z, y)
found on the Input Tape against the value of the current hypothesis-function on .
However, the hypothesis-function need not be defined on z at all, so the learner
uses a bound on the complexity of this function. This bound is chosen to be the
maximum of the teacher-supplied bound from the Message Tape and the parameter
m, which is different for each return to the same hypothesis. The actual search for
the value BB;(x) is in the Bounded Loop, which is controlled by the bound. As soon
as the hypothesis-function fails to comply with the test being performed, the learner

abandons this hypothesis, outputs a new one and starts testing it.

Now we prove that this learner is capable of learning every partial recursive target

function f if its Black Box BB is b-related to the teacher’s Black Box TBB.

Claim 1 There exists a natural number n such that:

1. BBT('l(’rL) 2 f;

2. BBy, (n) (%) < max(ma(n), b(z, TBB;())), for all points x € Dom(f).

Proof: Recall that the teacher is given an index ¢ such that TBB; = f. Since BB

is b-related to T'BB, there exists a j such that

2. BBj(z) < b(z, TBB;(x)), for all but finitely many = € Dom(TBB;).

45

Since TBB; = f we have that Dom(f) C Dom(7TBB;) and from item 2 above
we now have that BB;(z) < b(x, TBB;(x)), for all but finitely many z € Dom(f).
Let X be the set of points in Dom(f) where BBj(x) > b(z, TBB;(x)). Let m o
max{ BB;(x) : € X }. Then it must be that BB;(z) < max(m, b(z, TBB;(x))), for

all z € Dom(f). Now, if we take n = (j,m), the claim follows. []

Let ng be the least n that satisfies Claim 1. Once variable n in the Main Loop
of the algorithm reaches ng, the learner will output a correct hypothesis j and will
never change it. For all those n that are less than ng, however, the hypothesis will
eventually be changed, because of our choice of ny and because the learner always
outputs a hypothesis 7 + 1 just before outputting j—this introduces at least one

hypothesis change between these hypotheses.

What remains to be proved is that the agents are target-learner-box-and-teacher-
box-proof and that L* is non-gullible and 7} is responsive. Notice that the learner
can converge to an index only if the algorithm stays in the Testing Loop forever,
either suspended or reiterating the loop. It cannot be suspended forever, since the
teacher T} is clearly responsive. Thus, the learner can converge to an index only
by reiterating the Testing Loop forever. This can happen only if the hypothesis-
function BB; agrees with the target function f on all points x that appear (as the
first components) in the pairs in its enumeration. But all points x € Dom(f) will
appear eventually, and thus 7 must be an index for an extension of the target function
f. In other words, L* cannot converge incorrectly. Even when the target function
is not partial recursive, which implies that learning in this model is impossible, the
learner still cannot converge incorrectly as long as the teacher responds to every

query, but must change its mind infinitely often. [

46

In this chapter we showed how to construct a special teacher 7}, which depends
on a total recursive two-argument function b, and a special learner L*, such that
they are target-learner-box-and-teacher-box-proof, the teacher is responsive and the
learner is non-gullible and they learn the class of all partial recursive functions P if
the learner’s Black Box is b-related to the teacher’s. From now on we refer to the
teacher given in the proof of Theorem 1 as the Standard Teacher (with bound b) and
we always denote it (and no other teacher) by 7. Likewise, we call the learner given

in this proof the Standard Learner, and we denote it (and no other learner) by L*.

Theorem 1 has a simple non-constructive corollary.

Corollary 2 Let BB be an acceptable Black Box and TBB be a universal Black Boz.
Then there exists a total recursive two-argument function b(-,-), such that L*(BB)
(i.e., the Standard Learner, equipped with the Black Box BB) learns P from T (TBB)

(i.e., the Standard Teacher with bound b, equipped with the Black Box TBB).

Proof: By Lemma 4 from Chapter 2, every acceptable Black Box is b-related to
every universal Black Box, for some total recursive function b(-,-). Thus, although
we do not know how to construct the function b or the Standard Teacher T, that

depends on it, we still know that it exists, which suffices to prove the corollary. m

Theorem 1 seems in some respects fairly modest; L* is able to learn all the partial
recursive functions from 7}, but only when its Black Box is “not too much slower”
(as measured by b) than the teacher’s. However, it may be that a much stronger
positive result is provable in this model, possibly by using a more elaborate version

of outright coding. We address the following question:

Is there a learner L, a teacher T, and a Black Box TBB such that L(BB)

47

learns all the partial recursive functions from T(TBB) for all acceptable

Black Bozxes BB?

An affirmative answer to this question would cast serious doubt on the model we
have defined. In the next chapter we present a basic theorem, one corollary of which

is a negative answer to this question.

Chapter 4

Is the Teacher Important?

In the previous chapter we proved a relatively simple theorem exhibiting successful
learning. Here we present a basic negative result, which seems to point to the ne-
cessity of the teacher or at least the necessity of some knowledge about the learner’s
Black Box. It is implied by Theorem 4 from Chapter 6, but we present it here for

its simple and interesting proof.

Definition 29 Let Z be the constant all-zero function, defined by Z(x) oo 0, for all

z € N.

The following theorem indicates how difficult it is to deal with all acceptable
Black Boxes. In particular, there are acceptable programming systems in which an
intuitively simple function like the constant all-zero function is not at all “simple”
to compute. In particular, without additional information, no independent learner is
capable of finding in the limit a program that computes the constant all-zero function

Z for every acceptable Black Box.

48

49

Theorem 2 There is no independent learner L such that L(BB) learns the constant

all-zero function Z for all acceptable Black Boxes BB.

Proof: Assume to the contrary that such an independent learner L exists. For
every acceptable Black Box BB given, and for every enumeration of the all-zero
function Z on the Input Tape, L(BB) correctly converges to an index for Z (that is,
an index j such that BB;(x) = 0, for all x € N). We show how to use L to construct
an inductive inference machine M that identifies in the limit every total recursive

function, which is known to be impossible [15].

M gets the values of a total recursive target function f on its input tape. That
is, it gets pairs (z, f(z)) (intermixed with *’s; possibly). Every x € N appears at
least once on the tape as the first component of a pair. Let ¢q, ¢1, ¢o, ... denote a
standard Turing machine programming system (i.e., ¢; = TM;, for all i € N), with
a step-counting complexity measure ®g, ®1, ®,, ... (i.e., ®; = TM;, for all i € N).
The goal of the inductive inference machine M is to converge correctly to an index

1 for f in the Turing Machine Programming System, that is, an index ¢ such that

o = f.

The inductive inference machine M “builds” another acceptable programming
system 1 (i.e., a listing of partial recursive functions vy, 11, ¥9, ...) using ¢ (i.e.,
the listing ¢, ¢1, ¢2, ...) and the values of f on the input tape. In the new system 1),
the constant all-zero function Z has the same indices as the total recursive function f
has in ¢. That is, ¢; = f if and only if ¢); = Z. M simulates the independent learner
L with some enumeration of the constant all-zero function on its Input Tape and a
Black Box BB containing the programming system @ with complexity measure ®.

According to our assumption, L(BB) converges to an index for Z in the programming

50

system ¢, which is an index for f in the Turing Machine Programming System ¢.

We now describe the construction of).

Definition 30 Let © be a binary operator on natural numbers defined by z &y o
|z —yl.

The new programming system 1) is defined by v;(z) o oi(z) © f(x). If ¢;(x) is
undefined, so is ¥;(x). The complexity measure for 1 is defined to be the Turing
Machine Complexity Measure ® (i.e., the listing &g, &1, P, ...). It is clear that i

is an index of f in ¢ if and only if ¢ is an index of Z in .

In order to simulate L, the inductive inference machine M must supply the an-
swers to L’s queries to the Black Box BB containing ¢. In order to compute the
value of BB(i,x,s), M reads its own input tape with the enumeration of f until it
finds the pair (z, f(x)). We are only concerned with learning all the total recursive
functions, so this value will be found. M also simulates the Turing machine with
index ¢ on input x for s steps. If the machine stops, it answers the query with the
value ¢;(x) © f(z). Otherwise, the answer is a ?, meaning that BB;(x) > s. (Recall
that in general BB(i,r,s) = ? does not imply that BB;(z) > s, but it does in this

case, due to the Turing machine simulation that takes place.)

When M simulates L as described above, it appears to L that it is equipped with
a Black Box BB, containing the programming system) with the complexity measure
® and that its Input Tape contains an enumeration of the constant all-zero function
Z. When L outputs a hypothesis, M outputs the same hypothesis and after L has
converged to an index for Z, M will have converged to an index for f in the Turing

Machine Programming System ¢.

ol

One thing remains to be proved, namely, that v is an acceptable programming

system. We show this with three claims.

Claim 2 Listing g, Y1, ... 1S a programming system, that is, it contains all the

partial recursive functions.

Proof: Suppose, by way of contradiction, that ¢g is a partial recursive function
missing in the listing g, 11, Then there is a partial recursive function h(x) def
f(x)+ g(z), which is missing in the programming system ¢. This is a contradiction,

because a programming system by definition contains all the partial recursive func-

tions. [|

Claim 3 The programming system 1 is universal, that is, the universal function U,

for this system s itself partial recursive and thus belongs to 1.

Proof: We need to prove that there exists an index univy, such that ¥, ((i, 7)) =
¥i(x). We can take univy to be an index for the Turing machine that takes input
(4,2) and outputs (¢;(x) © f(x)) + f((i,x)), assuming that it has access to a pro-
gram computing the values of the total recursive function f. Then we will have that
Guniv, ({1, 7)) © f((i,7)) = ¢s(x) © f(x), from which it follows that Vi, ((i, 7)) =
¥;(z). Thus, we have shown that knowing the Turing machine program that com-

putes f, it is straightforward to find an index univy such that ¥y, s = Uy. []

Claim 4 The programming system 1 is acceptable, that s, there exists a total re-

cursiwe composition function Cy, for it.

Proof: We need to show that there exists a total recursive two-argument function

Cy(+,+) such that ¥, i) (x) = ¥i(¢;(z)), for all indices 7 and j. Using the definition

52

of the programming system ¢, we know that 1c, 5 (7) = ¢c,) () © f(x). We also

know that ¢;(v;(z)) = ¢:(¢;(x)) © f(¢;(x)), which can be expanded farther into

Vi (1j(x)) = ¢i(p;(x) & fx)) & f(d(x) & f(x)).

Therefore, we can take Cy(7,j) to be an index for the Turing machine that takes
input = and outputs ¢;(¢;(x) © f(x)) © f(¢;(z) © f(x)) + f(x), assuming again that
it has access to a program computing the values of the total recursive function f.
Then we will have that ¢c, 5 (2) © f(x) = ¢s(9;(7) © f(x)) © f(¢;(x) © f(7)), from
which it follows that ¢, 5 (7) = ¥i(¥;(r)). Thus, knowing the Turing machine
program that computes f, we can construct a total recursive two-argument function

Cy(i,7) which is a composition function for the programming system . [|

Claims 2, 3 and 4 show that ¢ is an acceptable programming system, and therefore

the simulated Black Box BB is an acceptable Black Box. Theorem 2 is proved. ®

Corollary 3 There is no learner L, no teacher T and no Black Box TBB for the
teacher, such that the learner L(BB) learns the constant all-zero function Z from the

teacher T(TBB) for all acceptable Black Boxes BB.

Proof: If for some teacher T and some teacher’s Black Box T'BB there exists such

a learner L, then there exists an independent learner L'(BB) which simulates both

T(TBB) and L(BB) and thus learns Z for all Black Boxes BB. |

Corollary 4 There is no learner L, no teacher T and no Black Box TBB for the
teacher, such that the learner L(BB) learns all the partial recursive functions from

the teacher T(TBB) for all acceptable Black Boxes BB.

53

Proof: Since there is no learner, teacher and Black Box such that the learner can
learn the constant all-zero function Z from the teacher, there cannot be one that can

learn all partial recursive functions. [|

This answers the question raised above of whether there might exist a teacher and
a learner such that the learner can learn all the partial recursive functions using any
acceptable Black Box, and shows that the issue of outright coding does not trivialize
the model. It is important to note that these negative results do not depend on the
teacher having only black box access to its programming system; the teacher and
its Black Box can be chosen arbitrarily (e.g., the programming system can be the
standard Turing Machine Programming System), and still there is no learner that

can cope with all acceptable Black Boxes.

Chapter 5

Classitying the Successful Learners

Our definition permits a Black Box to be any total recursive function of three ar-
guments; this parallels the generality of Blum’s definition of an abstract complexity
measure for a programming system, and allows any programming system with a
complexity measure to be represented as a Black Box. However, one cost of this
generality is that the class of all Black Boxes is not recursively enumerable. Be-
cause our motivation is ultimately to gain insight into practical situations involving
teaching and learning, we now move away from this generality and restrict our at-
tention to the class of Black Boxes that are not only recursive, but also primitive
recursive. In the general case, we are interested in recursively enumerable classes of
Black Boxes that have certain additional properties; however, for concreteness we
consider the specific class of primitive recursive Black Boxes. Black Boxes derived
from many natural programming systems (for example, Turing machines measured
by step-counting functions) are very easy to compute; primitive recursive is more
than sufficient. In a practical setting, a particular kind of robot might have an

action space drawn from a rather limited set of possibilities.

54

95

One interesting consequence of restricting the class of Black Boxes for the learner
to be primitive recursive is that the learner is able to find, in the limit, a primitive
recursive program that is equivalent to its Black Box. This follows from the well-
known result that any recursively enumerable class of total recursive functions can be
identified in the limit by an inductive inference machine. In particular, the learner
enumerates the primitive recursive Black Boxes and compares their values on all
triples of inputs with the values returned by its calls to its own Black Box, rejecting
any Black Box that does not agree with its own. This ability to gain a certain kind
of “self-knowledge” in the limit suggests that the restriction to primitive recursive
Black Boxes might make the learner’s job considerably easier in general. However,

in Chapter 6 we see that this optimism is not borne out.

The restriction to primitive recursive Black Boxes does allow us to prove an
approximate converse of Theorem 1, showing that in this case, for each teacher—
learner pair such that they are learner-box-proof on the class of all primitive recursive
Black Boxes (for P and {TBB}), there is a partial recursive function b such that
the standard teacher 7; (equipped with TBB) and the standard learner L* are as
powerful as the given pair, in terms of the class of primitive recursive learner’s Black

Boxes for which they can learn P.

We define a notation to represent the class of primitive recursive Black Boxes on
which a given teacher and a learner “succeed” in this sense. We fix a teacher T,
a learner L and a teacher’s Black Box TBB and we focus on class G of primitive
recursive Black Boxes for L which contains all Black Boxes BB such that the learner
L(BB) learns P from the teacher T'(TBB). We show that if 7" and L are learner-box-
proof on the class of all primitive recursive Black Boxes for P and { TBB} then there

exists a total recursive function b such that every Black Box in class G is b-related to

o6

the teacher’s Black Box T'BB. Intuitively, this result says that if the teacher and the
learner can learn all the partial recursive functions and be learner-box-proof, then
the learner’s Black Box must not be too much slower (as measured by b) than the
teacher’s. Together with Theorem 1 this result nicely characterizes the relationship
between the programming system complexities of a successful teacher—learner pair.

Now we present the results and their consequences in a more formal way:.

Definition 31 Let T be a teacher, L be a learner, and TBB be a universal Black
Box for the teacher. The set of good Black Boxes with respect to T, TBB and L is
denoted by G(T, TBB, L) and defined to be the set of all those primitive recursive

Black Boxes BB for which L(BB) learns P from T'(TBB).

As mentioned above, for the sake of the following theorem it is not at all important
that G(T, TBB, L) is defined as a class of primitive recursive Black Boxes. It could
equally well be any recursively enumerable set of Black Boxes and the theorem would
still hold provided that 7" and L are learner-box-proof on this set. We chose to avoid
overgeneralization of the result in order to provide greater compatibility with the rest
of the Part 1 of the thesis, where being primitive recursive is an important property
of a Black Box, as it can be easily verified given a primitive recursive program that

defines it.

Theorem 3 Let PBBC' be the class of all primitive recursive Black Boxes. Let T
be a teacher, L be a learner and TBB be a universal Black Box for the teacher such
that T and L are learner-boz-proof on PBBC' for P and { TBB}. Then there exists
a total recursive function b(x,s), such that every Black Box BB in G(T, TBB, L) is

b-related to TBB.

57

The theorem says that there must be a way to construct a bound b from all
the good Black Boxes so that they all are b-related to the teacher’s Black Box.
By Lemma 4 of Chapter 2, we know that every acceptable Black Box is b-related to
every universal Black Box for some total recursive two-argument function b. However,
when the translation between the programming systems in these Black Boxes is not
known, we do not know how to construct this function b. Here we use the fact
that the learner learns all the partial recursive functions from the teacher and that
the agents are learner-box-proof on the class of all primitive recursive Black Boxes,
and we construct one b which works with all the Black Boxes that are good. The

algorithm to compute the bound is given in Figure 5.1.

The algorithm is based on simulations of the teacher and the learner on target
functions taken from the teacher’s Black Box and using different primitive recursive
Black Boxes for the learner. These simulations are done in the subroutine RUNTHEM.
When called with parameters T', TBB, enum(TBB;), L, BB" and steps, this sub-
routine performs a simulation of the teacher T and the learner L for steps steps.
RUNTHEM returns the last hypothesis output by the learner, or 7, if the learner
does not output one in steps steps. The teacher’s Black Box used in the simulation is
TBB and the learner’s Black Box is BB®. That is, it is the Black Box defined by the
primitive recursive function with index bb in some fixed recursive enumeration of all
primitive recursive functions. Both 7" and L share access to the common Input Tape,
containing an enumeration of TBB;. It is not crucial what particular enumeration of
TBB; is used, as long as it is the same whenever we need an enumeration of TBB;,
even for different values of x and s, that is, even in different runs of the algorithm
B(z,s). Therefore, for simplicity, we decide on one particular enumeration, and we

use this enumeration for all functions T'BB; in the teacher’s Black Box TBB and at

o8

B(z, s)
{
b=0;
For (i =0;1i < z; i++) /* The Outer Loop */
If (TBB;(z) == s)
For (bb = 0; bb < x; bb++) /* The Middle Loop */

{
h = RUNTHEM(T, TBB, enum(TBB;), L, BB* x);

If (h=="7)
Continue; /* Reiterate the Middle Loop */
For (z = 0; BBY(h,z,2) == 7; 24++) /* The Inner Loop */

{
h' = RUNTHEM(T, TBB, enum(TBB;), L, BB" x + 2);

If (W #h)
Break; /* Out of the Inner Loop */

}

b = max(b, z);

Figure 5.1 Algorithm for computing the bound b(z, s)

all times. This is the enumeration that we denote by enum(-). For example, it could

be the enumeration defined as follows (for every function TBB; contained in TBB).

Example 1 Enumeration enumPP(TBB;) is a listing e, €1, ... of elements, where

each e, is defined by

o def (Wl(n)vTBBi(Wl(”)Da if TBB;(m1(n)) = ma(n);

x, otherwise.

29

In particular, enum™BB(TMBB;) gives what is called elsewhere in the literature

a primitive recursive enumeration of some partial recursive function TM;.

Intuitively, the algorithm for computing the bound b(x,s) does the following.
Inside the Outer Loop, an “implicit bound” ¥'(i, z, s) is computed as if the target
function TBB; were fixed. Then with the help of the Outer Loop, it maximizes
over the first x i’s. The best way to compute the implicit bound would be to take
all the good Black Boxes, run the learner with each one of them, wait for the last
(and therefore correct) hypotheses, and then maximize over the number of steps the
corresponding hypothesis-functions take on input z. Unfortunately, there is no way
to take exactly all the good Black Boxes, so we have to consider them all. Maximizing
over an infinite set also poses a problem, so in reality the algorithm only considers
the first x Black Boxes for L, which it does inside the Middle Loop. Since it cannot
tell which hypothesis is right and which is not, and whether there will be a right one
at all, the algorithm only simulates 7" and L for x steps and uses whatever hypothesis
was produced by L, if any. In the Inner Loop it waits for the value of the hypothesis-
functions on z and at the same time continues simulating 7" and L. If a different
hypothesis is produced, the algorithm abandons the current one. Here we use the
assumption that the agents are learner-box-proof, which guarantees that for no Black
Box that we try will L converge incorrectly. In other words, every hypothesis will

get changed eventually, unless it is a correct one.

Now we present the proof in a more formal way.

Proof: We begin the proof by showing that the function b(x, s), as computed by

the algorithm B(z, s), is a total recursive function.

Claim 5 b(z, s) is total recursive.

60

Proof: Obviously, this algorithm can be implemented on a Turing machine, having
access to the programs of 7" and L and to a program returning the values TBB (i, z, s).

Thus, the bound is partial recursive.

It is not as obvious that it is total. Both the Outer and the Middle Loops
are clearly bounded, but the situation with the Inner Loop is unclear and, in fact,
suspicious. All the non-loop statements, however, are either simple and doable in
constant time, or they involve bounded loops (the first If statement or simulations in
RUNTHEM). Therefore, we only need to show that the Inner Loop terminates. This
loop continues as long as BB"(h,z, z) is equal to ?, and z gets incremented with
every iteration. First, let us observe that we only get to this loop if the target function
TBB; is defined on z (and, in fact, has complexity s there). Thus, if BB (h,z, 2)
gives ? forever, then h is not the right hypothesis for the target function. Regardless
of whether or not the Black Box BB® is good (with respect to T', TBB and L), we
know that L will eventually change h to a different hypothesis because the agents are
learner-box-proof on the class of all primitive recursive Black Boxes. But a change
of hypothesis causes the algorithm to leave the Inner Loop. Therefore the algorithm

necessarily terminates and thus, b(z, s) is total recursive. |

Now we can prove that b(z,s) satisfies the other requirements of the theorem,
namely that every Black Box BB" ¢ G(T, TBB,L) is b-related to the teacher’s
Black Box TBB. Note that bb is an index in some fixed recursive enumeration of all

primitive recursive functions for the function that defines BB®.

Fix an arbitrary bb such that BB* € G(T, TBB, L). Fix an arbitrary i and place
it on the Answer Tape. Simulate the teacher T with its universal Black Box TBB and

the learner L with BB on a common Input Tape containing enum(TBB;). Since

61

BB is good, L will eventually converge to a hypothesis j such that BB;-’b > TBB;.

Suppose that this happens in steps steps.

Clearly, for all x > max(i, bb, steps), if TBB;(x) = s then the algorithm simulates
the learner L(BB") with the teacher T(TBB) on the enumeration of the target
function TBB; for enough steps for L to produce the final (and correct) hypothesis
7. This implies that property 1 of b-relatedness is satisfied. Having a correct and
final hypothesis j, however, causes the algorithm to reiterate the Inner Loop until
the complexity of BB;?I’ on input z is determined. Therefore, the algorithm sets
the bound b(x, s) to at least the value of ﬁ;’b(x), which implies that property 2 of

b-relatedness is satisfied as well. This concludes the proof of the theorem. [|

As mentioned above, without knowing a translation function between a universal
and an acceptable programming system, we do not know how to construct the total
recursive function b that b-relates them. It is known, however, that such a function
exists. The achievement of Theorem 3 is the actual construction of the total recursive
bound for all good (with respect to 7', TBB and L) primitive recursive Black Boxes

(even those that are not acceptable).

We now present some important corollaries. Theorem 1 from Chapter 3 showed
that for each total recursive two-argument function b(z,s), we can construct the
Standard Teacher (with bound b) and the Standard Learner, such that the learner
learns all the partial recursive functions for all Black Boxes that are b-related to
the teacher’s Black Box, and that the agents are target-learner-box-and-teacher-box-
proof. If we combine Theorem 1 with Theorem 3, we have that teacher—learner pairs
in the form 7} and L* are as powerful in this setting as any pair 7" and L that are

learner-box-proof on the class of all primitive recursive Black Boxes (for P and some

62

class { TBB}).

Corollary 5 Let PBBC be the class of all primitive recursive Black Boxes. Let L be
a learner, T be a teacher and TBB be a universal Black Box for the teacher such that
T and L are learner-box-proof on PBBC' for P and { TBB}. Then there exists a total

recursive two-argument function b(x, s) such that G(T, TBB, L) C G(T;;, TBB, L*).

Proof: Theorem 3 allows us to construct a bound b(z, s), which is exactly what is

needed to apply Theorem 1. The result follows immediately. [|

We can derive a type of closure result using Corollary 5. (A variety of interesting
closure results are given by Minicozzi for the case of target-proof (i.e., reliable)

learning [31].)

Corollary 6 Let PBBC be the class of all primitive recursive Black Boxes. Let L,
and Lo be learners and let T7 and Ty be teachers. Let TBB be an arbitrary universal
Black Bozx for both Ty and Ty such that both T1 with Ly and Ty with Ly are learner-boz-
proof on PBBC' for P and { TBB}. Then there exists a total recursive two-argument

function b(x, s) such that G(Ty, TBB, L) U G(Ty, TBB, L) C G(T}}, TBB, L*).

Proof: Corollary 5 implies that there is a total recursive two-argument function
bi(z,s), such that G(Ty, TBB, L;) € G(T;, TBB,L*), and a total recursive two-
argument function by(x,s), such that G(T3, TBB, L) € G(1y;,, TBB,L*). Let us
define b to be the greater of b; and by, i.e., b(x,s) o max (b (z, s),bz(x,s)). Then
we have that all Black Boxes BB that are b;-related or bs-related to T'BB, are also

b-related to it. The result follows. []

63

Corollary 6 is analogous to a weakened version of Minicozzi’s [31] Union Theorem.

We now explain why.

In full generality this theorem asserts that given two inductive inference machines
that are reliable (or strong) on some class of partial recursive functions S, one can
construct a new machine that is also reliable on S and as powerful (on S) as both
of its predecessors combined. If, however, S is replaced with the set of all partial
recursive functions P (weakening the theorem), then this theorem follows from the
theorem about “A Priori Inference” by Blum and Blum [15]. In our work Theorems
1 and 3 together form a characterization result somewhat similar to that by Blum
and Blum. Corollary 6 follows from these theorems, just as the weakened Union
Theorem follows from the result of Blum and Blum. Theorem 3 has the obvious
disadvantage of working with a restricted class of Black Boxes, namely, the primitive
recursive ones. Similarly, the result by Blum and Blum requires reliability on P;
reliability on any smaller set does not suffice. These peculiarities suggest there may
be other closure results that are stronger than Corollary 6 (i.e., are not restricted to
primitive recursive Black Boxes) and that can be proved directly, not via Theorems
1 and 3. We focus on such closure results in the Chapter 7, after we have developed

some important negative results.

Chapter 6

Is Everything Easy?

Recall that the restriction to primitive recursive Black Boxes allows the learner to
find in the limit a primitive recursive program for its own Black Box. This, and the
fact that the counterexample Black Box constructed in the proof of Theorem 2 is

not necessarily primitive recursive, make it imperative to address the question:

Does there exist a learner L, a teacher T', and a Black Box TBB for the
teacher such that L(BB) learns all the partial recursive functions from

T(TBB) for all primitive recursive acceptable Black Boxes BB?

Corollary 4 answered this question in the negative without the restriction to
primitive recursive Black Boxes, since it was proved using Theorem 2. However,
even with the restriction to primitive recursive Black Boxes, the answer is still “no.”
Despite knowing (in the limit) how to build the Black Box on its own, the learner
still cannot do much without the help of a teacher (or without some more knowledge
about the Black Box). In particular, if asked to find the index for the constant all-

zero function Z, it cannot do it. The following theorem strengthens Theorem 2 for

64

65

the case of primitive recursive Black Boxes.

Theorem 4 There is no independent learner L such that the learner L(BB) learns

the constant all-zero function Z for all primitive recursive acceptable Black Boxes

BB.

Proof: Suppose such a learner L exists. We describe the algorithm DEFINEBB
which, given a program for any inde