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Abstract: This paper aimed to estimate the effect of post-printing cooling conditions on the tensile and
thermophysical properties of ULTEM® 9085 printed parts processed by fused deposition modeling
(FDM). Three different cooling conditions were applied after printing Ultem samples: from 180 ◦C to
room temperature (RT) for 4 h in the printer (P), rapid removal from the printer and cooling from
200 ◦C to RT for 4 h in the oven (O), and cooling at RT (R). Tensile tests and dynamic mechanical ther-
mal analysis (DMTA) were carried out on samples printed in three orthogonal planes to investigate
the effect of the post-printing cooling conditions on their mechanical and thermophysical properties.
Optical microscopy was employed to relate the corresponding macrostructure to the mechanical
performance of the material. The results obtained showed almost no difference between samples
cooled either in the printer or oven and a notable difference for samples cooled at room temperature.
Moreover, the lowest mechanical performance and sensitivity to the thermal cooling conditions were
defined for the Z printing direction due to anisotropic nature of FDM and debonding among layers.

Keywords: ULTEM; fused deposition modelling; thermal history; cooling conditions; mechanical
properties; thermophysical properties

1. Introduction

Additive manufacturing (AM) of both single- and multi-material structures has re-
cently been applied to efficiently produce complex structures, thus saving production time
and resources. AM offers unprecedented levels of freedom for the design and application
of 3D-printed polymer materials, e.g., in automotive, aerospace, biomedical, and dentistry
fields [1]. Currently, fused deposition modeling (FDM) is one of the AM technologies that
has been extensively applied in the manufacture of 3D-printed polymer parts [2,3]. During
this process, a polymer is extruded through a heated nozzle and deposited in a semi-molten
state to create the required shape via sequential build-up of layered depositions [4].

One of the main disadvantages of FDM-processed polymeric parts is their highly
anisotropic nature due to the intrinsic properties of the extruded filament, oriented build
process, and limited degree of fusion between the layers [5,6]. These issues lead to
anisotropy in the mechanical and thermophysical properties of 3D-printed polymer parts,
especially in the direction perpendicular to the construction layer (XZ) [2,4–7]. Further-
more, due to voids and porosity that are inherent to the FDM printing process, polymer
samples manufactured by FDM typically have lower mechanical strength and possess
lower apparent mechanical properties compared to parts manufactured using traditional
processing techniques, such as compression and injection moldings [8].

Furthermore, it is well known that the properties of 3D-printed parts processed by
FDM strongly depend on the building process parameters (e.g., infill percentage, build and
raster orientation, layer thickness and width, feed rate, printing speed, nozzle diameter,
etc.). The effect of the building process parameters on the mechanical (tensile, flexural,
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impact) [9–15], flame-retardant [2,12], and thermal properties [16,17] of 3D-printed parts
has been thoroughly discussed in the literature.

Additionally, 3D-printed polymer parts exhibit high sensitivity to thermal processing
conditions [8,18–22]. Both the temperature of the heating element (model build tempera-
ture) and temperature around the printed part (envelope temperature) have been shown
to affect the quality and mechanical performance of the printed parts [18]. The results of
fracture analysis also confirmed that an increase in the envelope temperature positively
contributes to neck (bond formation area) development between the layers [19].

An increase in the printing bed temperature above the filament’s glass transition
temperature was attributed to better adhesion between the printing bed and filament [18].
Considering inhomogeneity in the convective air flow field in the printer, the position
of the printed part on the build plate can result in different thermal histories, which
can affect the development of interlayer strength [20]. Moreover, the incorporation of
ultrasonic vibrations [7] and laser pre-deposition heating [23] in FDM have resulted in
better mechanical properties of 3D-printed parts.

For use in transportation and aerospace applications, ULTEM 9085® (Ultem), an
amorphous thermoplastic material, is particularly distinguished among similar materials
for its flame, smoke, and toxicity certification [24,25]. The effects of thermal annealing on
the glass transition temperature of FDM-processed Ultem parts were analyzed and found
to be crucial for both their flexural [21] and tensile [22] properties.

A robotic system fully controlled by automatic software was designed and developed
at AM Craft (Riga, Latvia) to produce 3D-printed parts day and night (Video S1). Fast
removal from the printer and cooling in an oven with a similar thermal cooling profile as
the printer could allow printing of more samples, thus improving the productivity of the
3D printing process.

However, rapid cooling of the printed parts can lead to inhomogeneous temperature
distribution in the printed parts and, as a result, in volumetric shrinkage that generates
residual stresses, pre-existing cracks, and preliminary failure of the part during service [21].
Therefore, the effect of thermal (cooling) conditions on the mechanical properties of 3D-
printed polymer parts should be studied thoroughly. Three different cooling conditions
were applied to Ultem samples: in the printer (P), rapid removal from the printer and
cooling under similar thermal conditions in the oven (O), and cooling at room temperature
conditions (R). Thus, for samples having different post-printing cooling histories, equal-
ity/similarity of mechanical and thermophysical properties could be a scientifically based
justification that the different thermal histories of the printed parts will not have significant
consequences on these properties, and such cooling conditions could be applied without
risk to the products’ quality and performance.

This work aimed to estimate the effect of post-printing cooling conditions on the
tensile and thermophysical properties of Ultem processed by FDM. Further results on
fatigue testing at different stress levels (75%, 50%, and 25% of the ultimate strength) will be
summarized and published in the following paper. Hopefully, these results will positively
contribute to improving the productivity and efficiency of 3D printer machines.

2. Materials and Methods
2.1. Materials and Manufacturing of the Test Samples

The investigated material was ULTEM® 9085, which is a blend of polyetherimide and
polycarbonate, provided by Stratasys (Eden Prairie, MN, USA). It was used at Baltic3D.eu
(Riga, Latvia) to produce samples for tensile and dynamic mechanical analysis (DMTA)
from the same batch. The test samples were printed using a Stratasys F900 machine (Eden
Prairie, MN, USA) in directions X, Y, and Z, as reported in ref. [2] and shown in Figure 1.
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Figure 1. The orientation of manufactured tensile test specimens during the 3D printing process.

The printing parameters of all samples are provided in Table 1. Apart from the
variation in printing direction, the rest of the printing parameters were kept the same. The
infill density was set to 100% (solid) for all samples and the samples were printed without
a border. The dimensions of the test specimens for the tensile tests were 100 × 10 × 3 mm3

according to the standard [26]. Five samples for each printing direction and cooling regime
were manufactured. The dimensions of the samples for dynamic mechanical testing were
30 × 3 × 1 mm3. Three replicants were tested to obtain statistically confident values.
Thus, the values provided on the graphs correspond to the mean value together with the
standard deviation.

Table 1. Printing parameters.

Parameter Value

Raster width 0.508 mm
Contour width 0 mm

Slice height 0.254 mm
Contour to raster air gap 0 mm
Raster to raster air gap 0 mm

Raster angle 0◦

Infill density 100%

2.2. Methods
2.2.1. Cooling of the Test Samples

Immediately after printing, the samples were subjected to three different cooling
conditions: cooling in the printer from 180 to 45 ◦C for 4 h (P), rapid removal from the
printer and cooling in the oven from 200 to 45 ◦C during 4 h (O), and removal from the
printer and cooling at room temperature (R). The internal dimensions of the printer and
oven were 1.6 × 1.2 × 1 m3 and 1.14 × 0.8 × 0.94 m3, respectfully. The kinetics of the
sample cooling within these regimes were registered using a digital multimeter Düwi 07975
(Bieruń, Poland) with a thermocouple. Thus, the samples were subjected to free cooling in
the printer and at room temperature, while cooling in the oven was simulated according
to printer’s thermal conditions. The samples were stored in these conditions until they
reached room temperature.

The thermocouple was embedded in a freshly printed dog-bone sample with a cylin-
drical hole of a diameter of approx. 2 mm. The temperature was recorded every minute for
4 h. The temperatures inside the printer and oven were recorded near the sample using
built-in sensors. Thus, the effect of the thermal cooling conditions was established for these
three sets of samples denoted as P (cooled in the printer), O (cooled in the oven), and R
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(cooled at RT) for samples printed in the X, Y, and Z directions. The Ultem samples during
post-printing cooling in the printer, oven, and at room temperature are shown in Figure 2.
The sample in the oven was in a similar position (next to the door) as in the printer.
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temperature conditions (b), and in fully automatized oven with the sample inside it (c).

2.2.2. Morphological Analysis

The morphology of the fracture surfaces for the transverse cross-sections of the Ultem
samples printed in the X, Y, and Z directions was examined using a conventional comple-
mentary metal–oxide–semiconductor (CMOS) camera with a built-in 5× zoom lens and
by high-resolution SEM-FIB electron microscope (Helios 5 UX; Thermo Fisher Scientific,
Waltham, MA, USA) operated at 0.5 kV and 25 pA with scan interlacing and integration
to avoid charging. Optical microscopy and scanning electron microscopy (SEM) were
employed to relate the corresponding macrostructure to the mechanical performance of the
material along the printing directions. The specimens were used after testing their tensile
properties without further modification.

2.2.3. Tensile Tests

Quasi-static tensile tests were performed according to the standard described in
ref. [26] for all test specimens using a Zwick 2.5 testing machine (Zwick Roell Group,
Ulm, Germany) with a crosshead speed of 2 mm/min at RT until failure. Tensile strength
was defined as the maximum achieved value of stress in the specimen, and the elastic
modulus was calculated from the slope of a secant line between 0.05% and 0.25% strain on
a stress-strain plot.

2.2.4. Dynamic Mechanical Thermal Analysis

DMTA of the samples was performed using a Mettler Toledo DMA/SDTA 861
(Greifensee, Switzerland) for the evaluation of the effect of cooling conditions on the
thermomechanical properties of Ultem. The testing procedure was a temperature scan
from 30 to 230 ◦C, at a heating rate of 3 ◦C/min, with an applied tensile force of 0.9 N, at a
frequency of 1 Hz.

3. Results and Discussion
3.1. Morphology of the Fracture Surface

The morphology of the fracture surface for transverse cross-sections of Ultem samples
printed in the X, Y, and Z directions was analyzed by optical microscopy and SEM, and the
results are provided in Figures 3 and 4, respectfully. It should be noted that no meaningful
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differences were observed between samples under different thermal cooling conditions.
Thus, the micrographs shown in Figures 3 and 4 correspond to samples after cooling at
room temperature conditions. The horizontal samples shown in Figures 3a and 4a (X) and
Figures 3b and 4b (Y) exhibited large plastic deformations during tensile loading. Since the
loading direction was the same as the direction of filament alignment, fracture occurred
due to breakage of the filaments, leading to a smooth fracture surface. Moreover, both
microscopic analyses revealed that the void distribution in the transverse cross-sections of
samples printed in the X and Y directions was almost the same, indicating a similar degree
of fiber-to-fiber fusion.
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(c) directions and studied by optical microscopy.

In contrast with samples printed in the X and Y directions, the examination of the
morphology of samples printed in the Z direction (Figures 3c and 4c) showed that the
transverse cross-sections were completely different, revealing rough structures of extruded
filaments [4,19]. Thus, for vertical samples (Z), mechanical failure occurred along the
interlayer interface and the rough fracture surface revealed peeling and pull-out of the
filaments [23]. Obviously, adhesion between the layers dominated in the fracture process,
resulting in the lowest tensile strength and elastic and storage moduli observed for the sam-
ples printed in the Z direction for all cooling conditions (see Section 3.3 Tensile Properties
and 3.4 Thermophysical Properties).
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Similar results were obtained for the fracture behavior of samples as a function of the
different building orientations [3,27]. Samples printed in the X and Y directions revealed the
best tensile properties since the filament was extruded parallel to the sample axes and in the
same direction as the load application. Therefore, samples printed in these two directions
strongly opposed the load application. Meanwhile, the fracture surface of samples printed
in the Z direction was different from that of the samples printed in the X and Y directions,
indicating debonding between layers and adhesion that could not withstand high load
application [1]. Thus, debonding at interfaces placed perpendicular to the tensile load was
attributed to lower tensile properties (strength and elongation at break) [3,27].

3.2. Cooling Kinetics of the Test Samples

The temperature evolution was recorded in the printer and oven, as well as in the
Ultem freshly printed dog-bone sample with an embedded thermocouple, during cooling
in the printer, oven, and at RT (see Figure 2) and is shown in Figure 5. It is interesting to note
that the rate of cooling of the Ultem sample was different in all three environments. Cooling
was very fast at room temperature conditions and lasted only 5 min. Obviously, the cooling
duration of the sample was much longer in the printer and oven, while the temperature
values were higher for the same period in the oven than in the printer, indicating different
cooling regimes for the oven and printer.
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Since the temperatures in the printer and oven were also recorded, it was possible
to compare them and describe the cooling kinetics of the sample using Newton’s law of
cooling [27]:

T(t) = (T0 − T1) · e−rt + T1 (1)

where t is time, T(t) is the time-varying temperature of the sample, T0 is the temperature
of the sample when t = 0, T1 is the final temperature of the environment, and r is a heat
transfer coefficient that depends on the surface area (dimensions of the sample), material
properties, and thermal cooling conditions.

According to Newton’s law of cooling, the rate of cooling or the rate of loss of heat
of an object is directly proportional to the temperature difference between the object and
the environment. The heat transfer coefficients depend on the cooling conditions and were
evaluated to be 0.006, 0.01, and 0.4 min−1 for cooling in the oven, printer, and at room
temperature conditions, respectfully. These values were found by the minimization of the
aim function, which was the sum of the difference between the experimental data and
evaluation results given by Equation (1).

As seen in Figure 5, Newton’s law of cooling described well the kinetics of the cooling
processes for the printer and at room temperature conditions. Moreover, it was obvious
that the temperature evolution vs. time was slower in the oven than in the printer. It should
be emphasized that the oven was intentionally heated to a higher temperature (200 ◦C)
due to the thermal loss that potentially could occur during the opening of the door when
the sample was removed from the printer and put into the oven. Otherwise, the cooling
conditions of the printer, oven, and samples contained within were successfully reached
and the temperature values coincided after 4 h of cooling.

3.3. Tensile Properties

The analysis of the stress-strain curves revealed that samples subjected to cooling in
different environments had almost the same stress-strain behavior, whereas the effect of
the printing direction on the mechanical behavior was substantial. For samples printed in
the Y direction, relatively large plastic deformation and the formation of “necking” were
observed. The tensile strength, elastic modulus, and maximal deformation of samples were
determined and analyzed for each printing direction and cooling condition. The results ob-
tained are provided in Figure 6. According to the results, it should be noted that regardless
of the cooling conditions, the highest tensile strength and elastic modulus corresponded to
samples printed in the X and Y directions, whereas the lowest tensile strength and elastic
modulus corresponded to the sample printed in the Z direction (approximately 3 times
lower for tensile strength and 1.3 times lower for elastic modulus). This can be explained
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by the longitudinal filament orientation (along the sample length) in the case of the X and Y
printing directions, which was also parallel to the tensile load application direction [1,6,28].
The transverse cross-sections analyzed by optical microscopy also revealed very similar
macrostructures of the printed strands for the samples printed in the X and Y directions.
However, the transverse cross-section was different for samples printed in the Z direction,
displaying brittle structures of extruded filaments that could be an indication of internal
defects, such as voids and uneven diameters of the strips, due to the anisotropic nature of
the fused deposition modelling [4,29].

Polymers 2023, 15, x FOR PEER REVIEW 8 of 14 
 

 

results obtained are provided in Figure 6. According to the results, it should be noted that 

regardless of the cooling conditions, the highest tensile strength and elastic modulus 

corresponded to samples printed in the X and Y directions, whereas the lowest tensile 

strength and elastic modulus corresponded to the sample printed in the Z direction 

(approximately 3 times lower for tensile strength and 1.3 times lower for elastic 

modulus). This can be explained by the longitudinal filament orientation (along the 

sample length) in the case of the X and Y printing directions, which was also parallel to 

the tensile load application direction [1,6,28]. The transverse cross-sections analyzed by 

optical microscopy also revealed very similar macrostructures of the printed strands for 

the samples printed in the X and Y directions. However, the transverse cross-section was 

different for samples printed in the Z direction, displaying brittle structures of extruded 

filaments that could be an indication of internal defects, such as voids and uneven 

diameters of the strips, due to the anisotropic nature of the fused deposition modelling 

[4,29]. 

  
(a) (b) 

 
(c) 

Figure 6. Tensile strength (a), elastic modulus (b), and maximal deformation (c) of Ultem in relation 

to printing direction (the cooling conditions are indicated on the graph as P, O, and R). 

According to the material datasheet (printed with T16 tip) provided for ULTEM 

9085 by Stratasys (Eden Prairie, MN, USA) [8], the tensile strength is 68.1 ± 5.7 MPa in the 

X and Y directions and 39.4 ± 3.1 MPa in the Z direction, while the elastic modulus is 2.52 

± 0.06 GPa in the X and Y directions and 2.41 ± 0.06 GPa in the Z direction. Therefore, it 

could be concluded that for the X and Y directions, the tensile strength and elastic 

modulus correlated well with the values of the material datasheet, but they were 

significantly lower for the Z direction. Similar results for the tensile strength and 

modulus of Ultem printed in different directions were found in the literature [1,6,29,30]. 

To overcome FDM-associated anisotropy leading to large differences in tensile 

properties, particularly in the Z-build orientation (vertical), optimal combinations of 

Figure 6. Tensile strength (a), elastic modulus (b), and maximal deformation (c) of Ultem in relation
to printing direction (the cooling conditions are indicated on the graph as P, O, and R).

According to the material datasheet (printed with T16 tip) provided for ULTEM 9085
by Stratasys (Eden Prairie, MN, USA) [8], the tensile strength is 68.1 ± 5.7 MPa in the
X and Y directions and 39.4 ± 3.1 MPa in the Z direction, while the elastic modulus is
2.52 ± 0.06 GPa in the X and Y directions and 2.41 ± 0.06 GPa in the Z direction. Therefore,
it could be concluded that for the X and Y directions, the tensile strength and elastic modulus
correlated well with the values of the material datasheet, but they were significantly lower
for the Z direction. Similar results for the tensile strength and modulus of Ultem printed in
different directions were found in the literature [1,6,29,30]. To overcome FDM-associated
anisotropy leading to large differences in tensile properties, particularly in the Z-build
orientation (vertical), optimal combinations of building process parameters (e.g., layer
thickness, air gaps, infill percentages, feed rate, printing speeds, and raster angles) could
be considered [9,31–33].

Moreover, Figure 6c demonstrates that the maximal deformation of the test samples
was highest for the Y printing direction and samples cooled at RT revealed high values
of plastic deformation. However, considering the large data scattering observed in the
results, which is usually a characteristic issue for maximal deformation, the results for the
oven and printer could be regarded as very close. According to the material datasheet, the
maximal deformations are 5.4% (X, Y) and 1.9% (Z). All experimentally obtained results
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revealed much higher values (8.51 ± 1.43% for X and 2.59 ± 0.31% for Z), especially for the
Y printing direction (20.73 ± 4.53%).

Finally, focusing on the effect of cooling conditions on the tensile characteristics of
Ultem, one may note that cooling in the printer or oven did not have significant conse-
quences for all printing directions and the presence of a negative effect could be attributed
to data scattering within the set of specimens. Nevertheless, cooling of the specimens at
RT resulted in a more significant reduction in tensile strength (by 10%) for the Y printing
direction and elastic modulus (by 12–15%) for all printing directions.

3.4. Thermophysical Properties

Dynamic thermal mechanical analysis provides important information to identify
changes in the chain mobility restriction of the polymer network, which can be analyzed
regarding different cooling conditions. Figure 7 summarizes the data for Ultem studied
for the storage modulus (E’) as a function of temperature for different cooling conditions:
cooled in the printer (P), oven (O), and at room temperature (R). The representative curves
are provided for each set of test samples. According to Figure 6, the test samples were char-
acterized by a similar small decrease in the storage modulus in the glassy region, a sudden
reduction in the glass-rubbery transition zone, and almost the same value in the rubbery
region. The glass transition temperature (Tg) was evaluated according to the standard
described in ref. [34,35] from the storage modulus dependence on the temperature (Figure 6)
at the inflection point and is shown in Figure 6 as a function of the printing direction.
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Figure 7. The storage modulus of ULTEM 9085 CG samples vs. temperature when cooled in the
printer (a), oven (b), and at room temperature (c) and printed in X, Y, and Z directions.
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Figure 8 shows that the glass transition temperature was not affected by the printing
direction (X, Y, Z) and was approx. 186 ± 4 ◦C. Similar results were reported with minimal
difference in Tg for Ultem samples printed in different directions [4,33]. Moreover, no
differences were observed among curves for Ultem filaments and specimens printed in
different directions obtained by thermal gravimetric analysis in both air and argon atmo-
spheres [3]. Therefore, it was concluded that the FDM process did not affect the thermal
and thermo-oxidative degradation processes in the investigated material. Additionally, the
effect of the cooling conditions on the glass transition temperature was negligible.
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Figure 8. The glass transition temperature of Ultem samples cooled in the printer (P), oven (O), and
at room temperature (R) and printed in X, Y and Z directions.

Nevertheless, according to Figure 7, for all cooling conditions, samples printed in the
Z direction were characterized by much lower values of the storage modulus in the glassy
region. For samples cooled in the printer, oven, and at room temperature, the reductions
were 13%, 108%, and 39%, respectfully. For printing directions X and Y, the deviation
was not so prominent and could be neglected. Therefore, the most critical loads upon
application should not coincide with the Z printing direction because interlayer adhesion is
critical for Z-oriented parts, as under loading of the interlayer bonds in these parts will bear
the applied load and as a result, Z-oriented parts possess considerably weaker mechanical
properties than parts in X (flat) or Y (on-edge) orientations [3,4,7,36,37].

For further comparison of the different cooling conditions, the results obtained for the
storage modulus of Ultem samples printed in the same X, Y, and Z directions are shown in
Figure 9. Obviously, samples printed in the X and Y directions and cooled under different
conditions were characterized by almost the same dependence of the storage modulus
on the temperature. However, samples printed in the Z direction displayed a different
behavior of the storage modulus as a function of temperature. Interestingly, samples cooled
in the oven had the lowest storage modulus in the glassy region, which was 91% lower
than that of samples cooled in the printer.

According to the material datasheet [8], the glass transition temperature of ULTEM
9085 (Stratasys, Eden Prairie, MN, USA) evaluated by differential scanning calorimetry and
thermal-mechanical analysis is 177 ◦C. In this work, dynamic thermal mechanical analysis
was used, and the glass transition temperature was evaluated as 186 ± 4 ◦C regardless of the
cooling conditions. This value was 5–13 ◦C higher than that in the datasheet. Considering
data scattering and the different methods employed, this deviation is acceptable.
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Finally, focusing on the effect of the cooling conditions on the thermophysical charac-
teristics of Ultem, one may note that the cooling conditions had no significant consequences
for the X and Y printing directions. The storage modulus and loss factor for samples printed
in these directions almost coincided with the temperature range of 30–230 ◦C. Nevertheless,
for all cooling conditions, the Z printing direction and cooling in the oven and at room
temperature resulted in a more significant reduction of the storage modulus though having
almost no effect on the glass transition temperature. Therefore, applying critical loads on
parts printed in this direction is not recommended since the consequences of the thermal
cooling history were notable.

4. Conclusions

It was experimentally confirmed that the effect of post-printing cooling conditions on
the tensile and thermophysical properties of ULTEM 9085 printed parts was almost the same
when cooled in the printer or oven but more notable when cooled at room temperature.

The cooling of the specimens at RT resulted in a more significant reduction in the
tensile strength (by 10%) and elastic modulus (by 12–15%) for all printing directions, while
the results could be regarded as very close for cooling in the printer or oven, considering the
observed data scattering. Due to the anisotropic nature of FDM, the tensile characteristics
of Ultem 3D-printed samples were shown to significantly vary as a function of build
orientation. For all cooling conditions, the highest tensile strength and elastic modulus
corresponded to samples printed in the X and Y directions but were lowest for samples
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printed in the Z direction (approximately 3 times lower for tensile strength and 1.3 times
lower for elastic modulus). Therefore, regardless of the post-printing thermal history, the
most critical loads upon application should not coincide with the Z printing orientation
because interlayer adhesion is critical for Z-oriented parts.

Similar results were obtained for the storage modulus of Ultem samples having
different thermal histories. Samples printed in the X and Y directions and cooled under
different conditions were characterized by almost the same dependence of the storage
modulus on the temperature. However, for samples printed in the Z direction and cooled
in the printer, oven, and at room temperature, the reductions in the storage modulus in the
glassy region were 13%, 108%, and 39%, respectfully, if compared with the results obtained
for cooling in the printer. The glass transition temperature, a physical characteristic of
Ultem material but not of a printed structure, was not affected by the printing direction (X,
Y, Z) and was approx. 186 ± 4 ◦C.

Optical microscopy and SEM revealed that the void distribution in the transverse
cross-sections of samples printed in the X and Y directions was the same, indicating a
similar degree of fiber-to-fiber fusion, and completely different for samples printed in the
Z direction, which displayed rough structures of extruded filaments. Different thermal
histories did not significantly affect Ultem samples.

Thus, based on the results obtained for the tensile and thermophysical properties of
Ultem printed parts, it can be concluded that removal from the printer and cooling in an
oven with similar post-printing cooling conditions did not have significant consequences
on these properties. Thus, it is possible to improve the productivity and efficiency of 3D
printer machines by applying such a modified cooling procedure.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym15020324/s1; Video S1: Automatized robotic system for
removing samples from Stratasys F900 printer (Eden Prairie, MN, USA) and putting them in the oven.
The speed of the original video was 8 times slower.
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