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Abstract: The study focused on a 21.99 at.%Ti–22.49 at.%Zr–20.35 at.%Hf–17.45 at.%Mo–17.73 at.%Cr).
Analytical techniques such as X-ray diffraction, scanning electron microscopy as well as X-ray
absorption spectroscopy were employed to investigate the alloy’s structure, phase transformations,
and properties. The alloy in the as-cast state contained three phases, namely the body-centred cubic
(A2) phase, hexagonal Laves phase (C14), and cubic Laves phase (C15). The alloy has been annealed
for a long time at different temperatures. It led to the disappearance of the hexagonal Laves phase,
leaving behind two primary phases, namely the cubic Laves phase (C15) and the body-centered cubic
phase (A2). At 1200 ◦C, the A2 phase almost disappeared, resulting in a practically single-phase
sample. After a high-pressure torsion (HPT) treatment, the hexagonal Laves phase disappeared
entirely, while the A2 and C15 phases remained. The grain size of the A2 and C15 phases was refined
after HPT and grains were elongated, and their configuration resembled a layered structure. The high
hardness of the A2 and C15 + C14 phases accounted for this behavior. The lattice parameters in the A2
and C15 phases after HPT treatment approached those observed after prolonged annealing at 1000 ◦C,
indicating that the composition of these phases after short-term high-pressure torsion at ambient
temperature is equivalent to the composition of these phases after long tempering at 1000 ◦C. The rate
of diffusion-like mass transfer during severe plastic deformation was estimated to be many orders
of magnitude higher than that for conventional bulk diffusion at the HPT treatment temperature
and similar to that at elevated temperatures above 1000 ◦C. X-ray absorption spectroscopy results
obtained at K-edges of Ti, Cr, Zr, and Mo as well as at the L3-edge of Hf indicated that the local
environment around metal atoms before HPT was similar to that after HPT. However, the static
disorder increased after HPT, which could be attributed to an increased specific amount of metal
atoms in the disordered grain boundary layers after HPT-driven grain refinement.

Keywords: high-entropy alloy; heat treatment; high-pressure torsion; Laves phases; solid solutions;
XANES; EXAFS

1. Introduction

Since the high-entropy alloys (HEAs) were originally proposed by Cantor et al. [1] and
Yeh et al. [2], there has been a growing interest in these multicomponent metallic materials.
With a wide range of chemical compositions available, HEAs exhibit a variety of phase
transformations, mechanical properties, and microstructural types, leading to a wealth of
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research publications, including numerous reviews [3–6]. Typically, HEAs consist of five
or more components, with proportions ranging from 5 to 35 at.%. Various methods were
used to produce the HEAs. Especially promising are the HEAs in the form of coatings.
Such HEA coatings were deposited with, for example, plasma cladding [7–14], plasma
spray [15,16], thermal spray [17], laser cladding [18–20], magnetron sputtering [21–25], and
vacuum arc deposition [26]. In many cases, HEAs exhibit a single-phase structure in a
wide interval of temperatures, which consists of a multicomponent solid solution [27]. A
key research goal is to clarify where are the borders of this single-phase region in terms of
temperature and composition, as well as to explore ways to modify these boundaries.

Severe plastic deformation (SPD), such as high-pressure torsion (HPT) [28], is an
important method for modifying the properties of HEAs. Several studies [29–35] have
already been done to study the HPT influence on HEAs. HPT is particularly advantageous
due to its ability to homogenize the sample processing, provided sufficient pressure and a
number of plunger revolutions are used, as well as its ability to refine the grain structure.
The grain refinement resulting from HPT can significantly increase the region of existence
of a solid solution due to the segregation of components at the grain boundaries [36–39].

Here, we studied the HEAs which are similar to the alloys studied by Nagase et al. [40–44].
These HEAs were based on Ti and Zr with the addition of various combinations of other
alloying elements: Ti–Zr–Hf–Cr–Mo and Ti–Zr–Hf–Co–Cr–Mo [40], Ti–Nb–Ta–Zr–Mo [41],
Ti–Nb–Ta–Zr–X (X = V, Mo, W) [42], Ti–Nb–Ta–Zr–Mo [43], and Ti–Nb–Ta–Zr–Mo [44].
The HEA developed by Nagase et al. is a promising biomaterial for medical applications,
including orthopedic implants [40]. This alloy showed good biocompatibility, comparable
to commercial-grade titanium, as well as high Vickers hardness. The Ti–Zr–Hf–Mo–Cr HEA
developed by Nagase et al. is a promising biomaterial for various medical applications, in-
cluding orthopedic implants [40]. This alloy exhibits excellent biocompatibility comparable
to that of commercially available titanium, in addition to a high Vickers hardness, making
it a promising candidate for implant materials.

In our study, we aimed to investigate the impact of annealings and HPT on the mi-
crostructure and phase transitions of the TiZrHfCrMo alloy, which holds great promise for
medical applications such as orthopedic implants. Given its potential use in medical de-
vices, it is essential to understand how to control its phase transformations and mechanical
properties under different heat treatment conditions. In contrast to the method employed
in Ref. [42], we used levitational melting in a pure argon atmosphere to manufacture the
TiZrHfCrMo alloy ingot.

X-ray absorption spectroscopy (XAS) was employed to study the local atomic structure
of the HEAs before and after HPT treatment. Due to its element selectivity, XAS is well-
suited for studying multicomponent compounds such as HEAs, as it delivers data on the
local environment surrounding an atom of a specific element [45]. However, the complex
configurational and chemical disorder inherent in HEAs poses a challenge in extracting
structural information, as it requires a model that depends on a multitude of parameters.

2. Experimental Section

The high-entropy alloy TiZrHfMoCr, consisting of 11.35 wt.%Ti, 22.09 wt.%Zr, 38.91 wt.%Hf,
17.80 wt.%Mo, and 9.85 wt.%Cr (or 21.99 at.%Ti, 22.49 at.%Zr, 20.35 at.%Hf, 17.45 at.%Mo,
and 17.73 at.%Cr), was prepared by melting pure metals in the atmosphere of pure argon
in the induction furnace. The alloy was then cast into a cylindrical ingot. It has a diameter
of 10 mm. Pure metals have been used such as titanium grade TI-1 (99.98 wt.% iodide
titanium), zirconium (99.98 wt.% iodide zirconium), hafnium (99.95 wt.% iodide hafnium),
molybdenum (99.97 wt.%), and chromium (99.99 wt.%). The ingot was cut into 0.8 mm
thick discs using spark erosion (Electroerosive Wire Machine with NPC System, Model:
DK7735, Suzhou LongkaiElectromechenical Technology CO, LTD., Suzhou, China). The
surface-hardened layer was removed using the grinding paper with a roughness of 68 µm.
Then the samples were put in the evacuated quartz ampoules and annealed in the resistance
furnace. The residual pressure in the ampoules was about 7.5 × 10−3 Pa.
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To investigate the influence of heat treatment on structure and properties, the discs
were annealed at different temperatures and durations: 600 ◦C for 480 h, 800 ◦C for 336 h,
1000 ◦C for 24 and 336 h, 1200 ◦C for 144 h, and in SNOL 6.7/1300 furnaces. Two discs of the
initial alloy were subjected to HPT in the installation with computer control (W. Klement
GmbH, Lang, Austria) at 7 GPa, with an anvil rotation speed of 1 rpm for 5 rotations. The
thickness of the samples after HPT treatment was reduced to 0.35 mm. After HPT, one of
the samples was annealed at 1000 ◦C (96 h). The samples were polished with diamond
paste before SEM studies (grain size of 1 µm).

Elemental analysis was conducted on an FEI Dual Beam Versa 3D HighVac scanning
electron microscope (SEM) manufactured by FEI (Hillsboro, OR, USA). X-ray diffraction
(XRD) patterns were collected using a Siemens D-500 X-ray diffractometer (Munich, Ger-
many) equipped with a copper anode (Cu-Kα radiation) tube to perform structural-phase
analysis of the samples. PowderCell 2.4 program (PowderCell for Windows. Version 2.4.
03.08.2000, Werner Kraus & Gert Nolze, BAM, Berlin, Germany) was utilized for phase
analysis and calculation of lattice parameters.

The X-ray absorption spectroscopy experiments were performed at the synchrotron
radiation facility DESY PETRA-III in Hamburg, Germany. The P65 Applied XAFS undulator
beamline’s experimental setup was used [46]. The setup included a fixed exit Si(111)
double-crystal monochromator and uncoated as well as Rh-coated silicon plane mirrors for
harmonic reduction. X-ray absorption spectra were measured at room temperature at the K-
edges of Ti, Cr, Zr, and Mo, as well as the L3-edge of Hf in fluorescence mode. Two detectors
were used: an ionization chamber (I0) to measure the incident radiation located before the
sample, and a passivated implanted planar silicon (PIPS) detector (If) positioned at 90◦ to
the incident beam to collect X-ray fluorescence from the sample. The size of the X-ray beam
at the sample was 2.5 × 0.3 mm2. X-ray absorption coefficients were obtained using the
formula µ(E) = If/I0, where If is the intensity of the fluorescence signal from the sample and
I0 is the intensity of the incident beam measured by an ionization chamber located before the
sample. The EXAFS (extended X-ray absorption fine structure) spectra and XANES (X-ray
absorption near-edge structure) spectra have been analyzed with the aid of the XAESA
code [47]. The required phase functions and backscattering amplitude were calculated. For
this purpose, the ab initio self-consistent real-space multiple-scattering FEFF8.50L code
was used [48,49]. The EXAFS contributions from the first coordination shells of the five
metals were analyzed using either the single-scattering cumulant approximation or the
regularization technique [50], following a conventional procedure.

3. Results Together with Discussion

The SEM (Figure 1a,b) and XRD analysis (Figure 1c) were carried out to characterize
the as-cast TiZrHfMoCr alloy ingot. Table 1 contains the results of the elemental analysis.
The alloy comprises five components, and its microstructure reveals three regions with
varying gray gradations attributed to the different chemical compositions (Figure 1b).

By establishing a correlation between the chemical composition, the color gradation
in the micrographs, and the phases identified from the XRD patterns, we were able to
determine that the light gray area (1) corresponds to the body-centered cubic (bcc) phase
(A2), which is rich in hafnium, molybdenum, and zirconium (Im-3m). The dark gray
region (2) corresponds to the cubic (C15) Laves phase (Fd-3m), while the gray region (3)
corresponds to the hexagonal (C14) Laves phase (P63/mmc).

Table 1. Composition of the TiZrHfMoCr sample measured in different points (see Figure 1b), wt.%.

Point Phase Ti Cr Zr Mo Hf

1 (Hf)cub (A2) 6.3 ± 0.1 12.8 ± 0.1 13.0 ± 0.2 29.4 ± 0.3 38.5 ± 0.3
2 (Mo,Cr)2Zr (C15) 12.4 ± 1.9 10.3 ± 1.1 24.9 ± 1.6 15.1 ± 2.1 38.6 ± 0.6
3 Cr2Zr (C14) 14.6 ± 0.9 7.9 ± 0.9 28.2 ± 1.2 11.1 ± 0.9 39.5 ± 0.6

Average composition 11.3 9.9 22.1 17.8 38.9
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Figure 1. SEM images of the initial microstructure of the TiZrHfMoCr alloy: (a) general view, (b) dots
mark the areas of component analysis: light gray (1), dark gray (2), and gray (3) colors. (c) X-ray
diffraction pattern of the as-cast TiZrHfMoCr alloy.

After annealing at 1000 ◦C for 24 h, the morphology of the structural components and
the phase composition changed significantly. It can be seen in Figure 2a,b, respectively.
Notably, one of the Laves phases (C14) vanished. The X-ray diffraction analysis of the
annealed sample revealed the presence of two phases: the C15 Laves phase and the A2 bcc
phase, with a phase ratio of approximately 70/30 (Figure 2a). Table 2 contains the results of
the XRD analysis.
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Figure 2. Characteristics of the TiZrHfMoCr alloy annealed at 1000 ◦C for 24 h. (a) SEM micrograph,
(b) XRD patterns of the TiZrHfMoCr alloy in the original as-cast state (black line, bottom) and after
annealing (pink line, top).

Table 2. Phases, lattice parameters a, c of phases, the volume fraction of phases V in the TiZrHfMoCr
alloy in the initial as-cast state and annealed state (1000 ◦C, 24 h).

Phase
Initial Alloy 1000 ◦C 24 h

a, c, nm V, % a, nm V, %

(A2) 0.3435 35 0.3452 30
(C15) 0.7451 45 0.7436 70
(C14) 0.5249; 0.8656 20 - -

We conducted a series of annealing treatments for a prolonged duration (144–480 h)
at various temperatures ranging from 600 to 1200 ◦C, to achieve an equilibrium state (as
depicted in Figure 3a–d). The corresponding XRD patterns are illustrated in Figure 3e,
and their analysis is presented in Table 3. The phase nomenclature in Table 3 uses (B1)
for the face-centered cubic (fcc) phase, (HfC)cub, and (C36) for the phase (Cr2Hf)hex. With
increasing annealing temperature, the microstructure of the annealed alloys (Figure 3a–d)
exhibited a significant change, and the size of the individual grains of all phases increased
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with increasing annealing temperature. It is worth mentioning that at 1200 ◦C about 6%
of the volume consisted of a combination of oxides, nitrides, and carbides (Ti2O3, Cr2N,
HfC). The sample after annealing was heavily deformed and oxidized. In Figure 3d, three
distinct regions with different shades are visible and labeled as (1), (2), and (3).

It has to be underlined that the prolonged heat treatment at 1000 ◦C (24 to 336 h)
brought about significant changes in the volume fraction of the phases. As shown in
Figures 2b and 3e, the (A2) phase nearly disappeared, and the sample became almost
single-phase, comprising mainly the Laves phase (C15). After annealing at 1200 ◦C, the
XRD peak of the bcc A2 phase was slightly higher than that at 1000 ◦C, indicating a volume
fraction of approximately 5% for the A2 phase. Additionally, small amounts of the fcc
phase (B1) and the Laves phase (C15-2) with increased lattice parameter a = 0.7416 nm also
emerged, as revealed by the XRD patterns.
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Table 3. Phases, lattice parameters a, c of phases, and the volume fraction V of phases in the
TiZrHfMoCr alloy after annealings at different temperatures.

Phase
600 ◦C 480 h 800 ◦C 336 h 1000 ◦C 336 h 1200 ◦C 144 h

a, c, нм V, % a, нм V, % a, нм V, % a, нм V, %

(A2) 0.3417 45 0.3445 25 0.3464 2 0.3429 5
(C15) 0.7424 45 0.7431 70 0.7453 98 0.7416 90

(C15-2) - - - - - - 0.7621 3
(B1) - - 0.4642 5 - - 0.4656 2

(C36) 0.5021; 0.6438 10 - - - -

Between 600 to 1000 ◦C, there is a slight increase in the lattice parameters of phases
(C15) and (A2), followed by a subsequent decrease when the temperature is increased from
1000 to 1200 ◦C (Figure 4). It is noteworthy that the lattice parameters of the (C15) and
(A2) phases in the as-cast sample approximately align with the lattice parameters of these
phases at annealing temperatures between 800 and 1000 ◦C (Figure 4).
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Figure 4. Changes in (a) lattice parameters and (b) the volume fraction of phases (A2) and (C15)
in the original sample, after anneals at 600, 800, 1000, and 1200 ◦C, after HPT, and after HPT with
additional annealing at 1000 ◦C.

We conducted a chemical analysis of three regions (labeled as 1, 2, and 3 in Figure 5a)
in a sample annealed at 1200 ◦C and determined their composition. Region 1 exhibited
an enrichment of zirconium, molybdenum, and chromium in the ratio of Zr14-Mo24-
Cr19 (wt.%). Region 2 showed the enrichment of titanium, zirconium, molybdenum, and
chromium in the ratio of Ti13-Zr20-Mo20-Cr12. Region 3 displayed the enrichment of
titanium and zirconium in the ratio of Ti18-Zr37. The hafnium was found to be uniformly
distributed throughout the sample, with a concentration of 35 ± 3 wt.% in all structural
components. Additionally, the sample was found to contain approximately 2 wt.% of
oxygen, although the impact of oxygen on phase transformations was not studied in
this work.

Based on the chemical analysis data, we were able to identify the region (1) as the (A2)
phase, region (2) as the (C15) phase, and region (3) as the (B1) phase (Table 4). It is apparent
that the (A2) phase partially or completely encloses the grains of the C15 phase, suggesting
that the second solid phase (A2) is “wetting” the C15/C15 grain boundaries.

In the subsequent step, we subjected the initial cast sample to HPT deformation. A
comparison of diffraction patterns between the as-cast sample before HPT and the sample
after HPT (Figure 6a) reveals a significant broadening of the diffraction peaks, similar
to what we have previously observed for various binary titanium alloys [51–54]. This
broadening suggests a reduction in grain size to the range of 150–200 nm. Upon comparing
the SEM micrographs of the sample before and after HPT (Figures 1a,b and 6a, Table 5), we
observed that the sample still exhibited alternating light and dark areas that corresponded to
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phases (A2) and (C15). These regions only slightly stretched in the direction of deformation.
The width and length of these regions were approximately 2–3 µm and 10 µm, respectively.
This suggests that grain refinement occurred within the regions (A2) and (C15) while
maintaining their original shape, and the mixing of the phases (A2) and (C15) did not occur.
We observed this phenomenon in the systems where the hardness of constituent phases is
high [55–57]. In such cases, the areas occupied by the phases remained almost unchanged
in shape during HPT, and grain refinement occurred separately within each phase.

Before undergoing HPT treatment, the sample consisted of three phases: the (C14)
Laves phase, the (C15) Laves phase, and the (A2) bcc phase. Following HPT, the Laves
phase (C14) disappeared, while the volume fraction of the (C15) Laves phase remained
almost unchanged. The volume fraction of the (A2) bcc phase, however, increased to
60% from 45% (Table 4). Additionally, there was an important lattice parameter change
of the (A2) and (C15) phases compared to the initial as-cast state before HPT (Figure 4,
Tables 2 and 4). After HPT, the lattice parameters of the (A2) and (C15) phases were similar
to the lattice parameters of these phases in the sample annealed at 1000 ◦C for a long
time. This similarity in lattice parameters between the sample after HPT and the sample
annealed at 1000 ◦C allows us to compare these findings with HPT experiments where
the decomposition of a solid solution was in competition with its formation [57,58]. These
results allowed us to determine the value of Teff called effective temperature. In these
experiments, a certain concentration of the diluted component in the solid solution was
established after HPT, which was equal to its solubility at some elevated temperature.
We refer to this temperature as the effective temperature Teff. Therefore, HPT at room
temperature and short treatment time resulted in the dilution of a second component,
which can be reached by long-term annealing at an elevated temperature Teff. Thus, we
can cautiously conclude that the HPT of the TiZrHfMoCr high-entropy alloy is equivalent
to its long-term annealing at an (effective) temperature of 1000 ◦C.
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Figure 5. Chart of the chemical analysis of the sample shown in Figure 3d (after annealing at 1200 ◦C,
144 h). (a) General view with the main three regions differing in composition. Region 1 is enriched on
Zr, Mo, Cr. Region 2 is enriched on Ti, Zr, Mo, Cr. Region 3 is enriched on Ti, Zr (see more detailed
explanations in text). (b–g) Element distribution map.
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Table 4. Composition of individual regions (1–3) of the TiZrHfMoCr alloy, presented in wt.%.

Point Phase Ti Cr Zr Mo Hf

1 (A2) 8.18 19.15 14.16 24.73 33.78
2 (C15) 12.70 12.03 20.77 20.08 34.42
3 (B1) 18.35 1.26 37.95 5.15 37.29
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Figure 6. SEM micrographs of the TiZrHfMoCr alloy after high-pressure torsion: (a) the as-cast
sample subjected to high-pressure torsion, (b) high-pressure torsion and additional annealing at
1000 ◦C, 96 h. (c) Diffraction patterns of the initial sample (black line), after HPT (green line) and after
high-pressure torsion plus annealing at 1000 ◦C, 96 h. (red line).

Table 5. Phases, lattice parameters a, c of phases, the volume fraction V for the phases in TiZrHfMoCr
alloy in the initial state, after high-pressure torsion and after high-pressure torsion with additional
annealing at 1000 ◦C.

Phase
As-Cast Alloy High-Pressure Torsion High Pressure Torsion + 1000 ◦C 96 h

a, c, nm V, % a, нм V, % a, нм V, %

(A2) 0.3435 35 0.3460 60 0.3461 40
(C15) 0.7451 45 0.7451 40 0.7435 60
(C14) 0.5249; 0.8656 20 - - - -

The changes in the composition of the constituent phases during HPT occur due to
diffusion-like mass transfer. One can estimate the rate of mass transfer using the relation
L = (Dt)0.5, which relates the length of the diffusion path L, bulk diffusion coefficient
D, and the HPT treatment time t. In this study, the treatment time was t = 300 s and
L can be estimated as grain size after HPT L = 200 nm. This yields a bulk self-diffusion
coefficient for mass transfer which is diffusion-like and driven by the HPT as D~10−16 m2/s.
Comparatively, the bulk self-diffusion coefficients for the constituent elements in our HEA
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at room temperature range from 10−30–10−40 m/s for Ti [59,60], Zr [61–66], Hf [67–69],
Mo [70,71], and Cr [72,73]. Therefore, HPT significantly increases the rate of diffusion-
like mass transfer, consistent with our observations in Cu- and Al-based alloys [58,74].
It contradicts the fact that high pressure alone (beyond shear strain) decreases the rate
of diffusion-controlled processes [75–77]. Moreover, the value of D ~ 10−16 m2/s for the
bulk self-diffusion coefficient is comparable to that observed at elevated temperatures
of 900–2000 ◦C for Ti [59,60], Zr [61–66], Hf [67–69], Mo [70,71], and Cr [72,73]. In other
words, the D value for the diffusion-like mass transfer driven by the high-pressure torsion
is comparable to the bulk self-diffusion coefficient in constituent elements of our HEA at
the increased temperature of 900–2000 ◦C. Here we can remember that the phases after HPT
are as if the sample was annealed at Teff of 1000 ◦C. This means that the phase composition
and the mass transfer rate indicate that the structure and properties of HEA at steady-state
HPT are similar to those at elevated temperatures.

However, we have to underline that the volume fractions of phases (A2) and (C15)
after HPT show significant differences compared to those after annealing at 1000 ◦C.
While the sample becomes almost single-phase and consists mainly of one Laves phase
(C15) after annealing at 1000 ◦C, the volume fractions of the (A2) and (C15) phases are
comparable to each other after HPT (Table 4). Further annealing of the HPT-treated sample
at 1000 ◦C reduces the width of the XRD diffraction peaks (Figure 6c), indicating grain
growth. However, the grain size does not reach that of the as-cast sample. Additionally,
the volume fraction of the (A2) phase slightly goes down after the additional annealing,
suggesting that the sample is gradually approaching the state of the original cast sample
after long-term annealing (Table 3).

As we have shown above, the shape of the regions where the (A2) and (C15) phases are
located undergoes little change after HPT, as seen in Figures 1a,b and 6a. This is attributed
to the hardness of the phases (A2) and (C15), which maintain their shapes during the HPT
process. To confirm this hypothesis, we measured the value (E) being the Young’s modulus
and (H) being the nanohardness across the original as-cast sample, as shown in Figure 7.
Although only two phases, namely light and dark ones, were visually distinguished in an
optical microscope, we designated them as (A2) and (C15 + C14) based on the P-h diagrams
in Figure 7a. The average H and E values were calculated for each phase. The results
indicate that there is an insignificant difference in both H and E between the (A2) and
(C15 + C14) phases, with Hmiddle values of 8.2 ± 1.4 GPa and 8.0 ± 1.9 GPa, and Emiddle
values of 123 ± 5 GPa and 122 ± 10 GPa, respectively.
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width of the 1s core level for heavier elements [80]. At the Hf L3-edge, the strong reso-
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Figure 7. Measurements of nanohardness H and Young’s modulus E for the original as-cast
TiZrHfMoCr alloy. (a) P-h diagrams taken from (A2) area (red symbols) and (C15 + C14) area
(black symbols). (b) Dependences of H and E measured across the initial alloy sample.

Using the X-ray absorption spectroscopy at the K-edges of Ti, Cr, Zr, Mo, and L3-edge
of Hf, we analyzed the local atomic structure of TiZrHfMoCr HEAs in both the as-cast (AC)
and high-pressure torsion treated (HPT) samples. The normalized X-ray absorption near-
edge structure (XANES) spectra of the HEAs are presented in Figure 8, which demonstrate
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the similarity of the local environment around metal atoms before and after HPT. The
K-edge XANES spectra display a pre-edge peak/shoulder A arising from the 1s → nd
(n = 3 for Ti and Cr, n = 4 for Zr and Mo) transition [78,79], which becomes less prominent at
higher excitation energies due to an increase in the natural line width of the 1s core level for
heavier elements [80]. At the Hf L3-edge, the strong resonance just above the edge, known
as the white line (WL), is produced by the dipole-allowed transition 2p3/2(Hf)→ 5d [81].

Metals 2023, 13, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 8. XANES spectra of the original as-cast (AC) TiZrHfMoCr HEA sample and sample after 
HPT at the Ti, Cr, Zr, and Mo K-edges and Hf L3-edge. The insets show an enlarged view around 
the edge. The pre-edge A and the white line WL are indicated. 

The experimental extended X-ray absorption fine structure (EXAFS) spectra χ(k)k2 
(where k is the photoelectron wavenumber [48]), are depicted in Figure 9. Notably, the 
shape of the EXAFS spectra remains largely unchanged after HPT, indicating that the 
local environment around metal atoms is generally preserved. However, at large 
k-values, the EXAFS oscillations for the Cr, Zr, Mo, and Hf absorption edges become 
dampened, indicating an increase in static disorder. This increase in static disorder can be 
attributed to the higher specific area of grain boundaries resulting from strong grain re-
finement during HPT. 

Figure 8. XANES spectra of the original as-cast (AC) TiZrHfMoCr HEA sample and sample after
HPT at the Ti, Cr, Zr, and Mo K-edges and Hf L3-edge. The insets show an enlarged view around the
edge. The pre-edge A and the white line WL are indicated.

The experimental extended X-ray absorption fine structure (EXAFS) spectra χ(k)k2

(where k is the photoelectron wavenumber [48]), are depicted in Figure 9. Notably, the
shape of the EXAFS spectra remains largely unchanged after HPT, indicating that the
local environment around metal atoms is generally preserved. However, at large k-values,
the EXAFS oscillations for the Cr, Zr, Mo, and Hf absorption edges become dampened,
indicating an increase in static disorder. This increase in static disorder can be attributed
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to the higher specific area of grain boundaries resulting from strong grain refinement
during HPT.
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Figure 9. EXAFS spectra of as-cast TiZrHfMoCr HEA sample (AC) and sample after HPT at the Ti,
Cr, Zr, and Mo K-edges and Hf L3-edge.

The Fourier transforms (FTs) of the EXAFS spectra are presented in Figure 10 and
indicate that the most significant alterations due to high-pressure torsion are observed
around Zr and Mo atoms. We have to underline that the peaks in the FTs are shifted
approximately 0.5 Å to smaller distances relative to their crystallographic values, which is
due to the shift of the backscattering phase in the formula for EXAFS [48].

The FTs were subjected to a more detailed comparison in Figure 11, allowing us to
discern three distinct local environments in the HEAs. The FT maximum corresponding to
the nearest group of atoms is located at about 0.4 Å shorter distances for Mo and Cr than for
Zr and Hf. However, no well-defined peak was found in the FT at the K-edge of titanium,
indicating that Ti atoms occupy a strongly broadened or multi-site environment. The
analysis of the EXAFS spectra obtained using a beam spot size of 0.75 mm2 was challenging
due to the multi-phase nature of the samples (Table 1). Nonetheless, we roughly estimated
the effective radius of the first coordination shell of metal atoms from the frequency of the
EXAFS component responsible for the main peak in the FTs. To ensure the credibility of
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our estimate, we employed two simulation methods, namely the cumulant approach and
the regularization technique [48]. It should be noted that due to the possibility of atoms of
different types being present in the first coordination shell of a particular metal and the
potential for metal atoms to occupy crystallographically distinct sites with varying degrees
of distortion, only estimates for the values of interatomic distances can be made.
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We discovered that the first shell radius was approximately 2.6–2.7 Å for Mo and
Cr, and around 3.0–3.1 Å for Zr and Hf. In contrast, the distribution of the nearest atoms
around Ti was much wider, ranging from 2.5 to 3.1 Å. These values can be compared to the
crystallographic distances in the as-cast HEA, which were calculated based on the lattice
parameters in Table 2 for the three phases reported in Table 1. The first shell radius in the
two Laves phases, C14 and C15, was around 2.6–2.7 Å for Cr and roughly 3.1 Å for Zr,
which agrees with our expectations from the EXAFS results. Similarly, the first shell radius
for Hf in the A2 phase was approximately 3.0 Å, and its value should be about 3.1 Å when
Hf substitutes Zr in Laves phases, which is also in agreement with the EXAFS findings. The
first shell radius for Mo corresponded to its preferred location at the Cr sites, as observed
in the C15 phase. Finally, the metallic radius of titanium atoms (1.47 Å) was higher than the
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radii of Cr (1.28 Å) as well as Mo (1.39 Å) but smaller than the radii of Hf (1.59 Å) and Zr
(1.60 Å). Therefore, when Ti atoms were present at both positions, it should be accompanied
by local structural relaxation, which was indeed observed in the EXAFS.
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4. Conclusions

The structure, phase transformations, and properties of the 21.99 at.%Ti–22.49 at.%Zr–
20.35 at.%Hf–17.45 at.%Mo–17.73 at.%Cr high-entropy alloy were investigated in various
states, including the initial as-cast state, after annealing, after high-pressure torsion (HPT)
treatment, and after additional annealing. The investigation employed various methods,
such as X-ray diffraction, scanning electron microscopy, and X-ray absorption spectroscopy.

In its initial as-cast state, the HEA comprised three phases: the body-centered cubic
phase A2, the cubic C15 Laves phase, and the hexagonal C14 Laves phase. Upon annealing
between 600 and 1200 ◦C, only the (A2) and (C15) phases remained in the samples. After
subsequent HPT treatment, the significant grain refinement of the (A2) and (C15) phases
took place, and the (C14) phase completely disappeared. Nevertheless, the shape of the
initial regions occupied by the (A2) and (C15) phases remained mostly intact during HPT,
indicating that these phases were not intermixed, and the grains were refined and elongated
separately within each phase.

HPT changed the lattice parameters of the (A2) and (C15) phases, bringing them closer
to the values observed after prolonged anneal at 1000 ◦C. Therefore, the composition of the
(A2) and (C15) phases after short-term HPT deformation at room temperature is similar to
the composition in the sample annealed a long time at 1000 ◦C. The rate of diffusion-like
mass transfer estimated during severe plastic deformation is many orders of magnitude
higher than that observed for usual diffusion in the volume at the temperature of HPT
treatment. It is comparable to that observed at elevated temperatures above 1000 ◦C.

An intriguing phenomenon was observed when HPT was followed by short annealing
at 1000 ◦C: while the lattice parameters did not change and no additional phases appeared
(as was in the case with annealing alone), the ratio of the (A2) and (C15) phase fractions
changed in a mirrored fashion. This suggests that it is possible to manipulate the phase
ratio by using a combination of HPT and annealing of different durations.

Finally, the X-ray absorption spectroscopy results obtained at the K-edges of Ti, Cr, Zr,
Mo, and L3-edge of Hf demonstrate that the local arrangement of metal atoms is preserved
after HPT treatment, except for some increased static disorder, presumably in the grain
boundary region. Nonetheless, distinct local environments around Mo/Cr, Zr/Hf, and
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Ti atoms were identified. These metal atom sites, obtained from EXAFS analysis, are
consistent with the crystallographic phases identified by X-ray diffraction.
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enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation. J. Alloys Compd. 2018, 768, 924–937. [CrossRef]
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