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1 Introduction

It is of great interest in statistics to make inference about two sample problems. Consider the
two sample case, where X1, . . . , Xn and Y1, . . . , Ym are independent samples, with distribution
functions F1 and F2 respectively. It may be of interest to check whether the two distribution
functions are similar, that can be done visually by graphical inspection. However, statisticians
use the goodness-of-fit tests to deal with this problem in a more formal way. For such purpose,
the most famous tests are Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling tests.

The topic of this thesis does not concern the problem of goodness-of-fit itself. For example,
our goal is not to detect whether F1 or F2 can be approximated by some parametric class of
distributions, say Normal distribution, which in literature is called composite hypothesis. The
simple hypothesis would deal with comparison of F1 or F2 with some concrete distribution with
known parameters, e.g. Normal distribution with mean zero and variance one.

However, sometimes it is more interesting to check whether the two distribution functions
differ from each another by a shift, i.e. we are interested in whether

F1(t) = F2(t− µ) (1.1)

holds for all t ∈ R, where µ is some positive constant, usually called a shift or location parameter.
This question arises naturally in medicine, when the impact of a new drug is studied. The

positive effect (it means that (1.1) holds for some µ > 0) is welcomed. Usually, there are two
groups of patients, X’s are control responses and Y ’s are treatment responses. The parameter
µ can be regarded as the amount the treatment adds to the potential control response. This sit-
uation also concerns the Sono-Histo data analyzed in Section 8.2, where different measurements
of the size of pigmented skin tumors are compared. The control response, here, is a histological
measurement (also denoted as a gold standard) and the treatments are the 20-MHz-Sonometric
and the 50-MHz-Sonometric measurement methods.

Another example considers the relationship between hospitalization, as a measure of mor-
bidity, and mortality (cf. Section 8.2). In this case, the prior interest is whether the distribution
of age at hospitalization may be described by the distribution of age at death, or a simple
transformation of that distribution.

Although relationship (1.1) is a very simple one, it is mostly of interest in application. Further
we may be interested to test whether two samples differ by location and scale parameters, i.e.,
whether the relationship

F1(t) = F2

(
t− µ

σ

)
, t ∈ R (1.2)

holds, where µ, σ are some positive constants.
The last model that we will mention is the Lehmann’s alternative model, where, for the

distribution functions F1 and F2, the structural relationship

F1(t) = 1− (1− F2(t))(1/h), t ∈ R (1.3)

holds with some parameter h > 0. If F1 and F2 are from a family of Lehmann’s alternative model
(1.3) then the respective hazard functions are proportional. This means that λ2(t) = hλ1(t),
where for i = 1, 2, λi(t) = fi(t)/(1 − Fi(t)) and fi(t) = F ′

i (t) is a density function. Under
the assumption of Lehmann’s alternative for censored data, several equivalence tests have been
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derived in Com-Nougue et al. (1993) and Wellek (1993) (see also Munk, 1996 for the case of
uncensored data).

The importance of structural models such as (1.1)-(1.3) has been emphasized by Freitag et

al. (2003). They explain that the ranking methods, which are well used in practice, essentially
require semiparametric assumptions (such as shift or location model in (1.1)) in order to be
consistent and powerful (which is highlighted in Proposition 2.1 in Brunner and Puri (1996)).
Therefore, a proper ’model check’, e.g. whether the distribution functions F1 and F2 comes from
location model (1.1), is advisable when using ranking methods. Statistics based on ranks are
attractive, because they possess several robustness and invariance properties. For the two-sample
case different rank tests for the location model are discussed in Chapter 3, Hettmansperger
(1991). Among other literature on nonparametric statistics based on ranks and some structural
models see Compagnone and Denker (1996), Hettmansperger (1991) and Manoukian (1986).

To unify the three above mentioned examples, (1.1), (1.2) and (1.3), Freitag (2000), Freitag
and Munk (2005) have introduced the notion of a structural relationship models, which has the
following general form

F1(t) = φ−2 (F2(φ−1 (t, h)), h), t ∈ R, (1.4)

where φ1, φ2 are some functions defined later, φ−i denotes the inverse function with respect to
the first argument, h ∈ H ⊆ Rl is some parameter, l is an integer. Freitag (2000) has derived
several goodness-of-fit tests for models of form (1.4) for the precise neighborhood hypothesis. It
means that tests are made on the two distribution functions F1 and F2 in the following way:

H : d(F1, F2) > ∆0 vs K : d(F1, F2) ≤ ∆0, (1.5)

where ∆0 > 0 and d is some appropriate metric, e.g. Mallows distance (cf. Mallows, 1972). For
constructing the precise neighborhood hypothesis (1.5), the Mallow’s distance was first used in
Czado and Munk (1998), and further analyzed in Czado and Munk (2000).

Let F1n and F2m denote the cumulative empirical distribution functions of F1 and F2 re-
spectively. In (1.4) the unknown parameter h is estimated semiparametrically through Mallow’s
distance, i.e.

ĥ = argminh∈H0

{
1

b− a

∫ b

a
(F−1

1n (u)− φ1(F−1
2m(φ2(u, h)), h))2du

}
, (1.6)

where h, φ1, φ2 are as defined in (1.4), 0 ≤ a < b ≤ 1 are the trimming bounds, and F−1 is a
left inverse of function F . The test is performed with the plugged-in semiparametric estimator
ĥ in the test statistic.

We have introduced general structural relationship models and described also the corre-
sponding testing procedure. However, the first step for comparing two distribution functions is
a graphical inspection of the data. This is done by means of the P-P (probability-probability)
and Q-Q (quantile-quantile) plot, which can be identified with the graphs of the functions
{F1(F−1

2 (y)) : y ∈ (0, 1)} and {F−1
1 (F2(x)) : x ∈ R} respectively. From data we plot such

graphs using the cumulative empirical distribution functions F1n and F2m instead of F1 and F2.
Figure 1 shows the empirical P-P and Q-Q plot for simulated Xi ∼ N(0, 1), i = 1, . . . , n and

Yj ∼ N(1, 1), j = 1, . . . ,m with n = m = 100, where ∼ denotes ’distributed as’ and N(0,1) is
the Normal distribution with mean 0 and variance 1.
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Figure 1: P-P and Q-Q plots for N(0,1) and N(1,1) with n = m = 100.

The Q-Q plot indicates that both distributions most likely come from one family of distri-
butions, because the graph can be quite well approximated by a straight line. On the other
hand, the P-P plot suggests that there is a positive shift for location model (1.1), because the
curve is above the diagonal. See more description in Section 3. For the location model (1.1)
P-P plots are clearly more useful than Q-Q plots, because Q-Q plots which are almost identical
for both negative and positive shifts. P-P plots are also to be preferred over Q-Q plots when
outliers might be present. Finally, P-P plots allow for scale invariant treatment comparisons (cf.
Holmgren, 1995).

Both P-P and Q-Q plots only indicate for one or another property. To perform a two
sample test we need to add simultaneous confidence bands. Most literature deals with pointwise
confidence bands, but this allows only to perform a test in some fixed point of functions defined
via P-P or Q-Q plots. To construct simultaneous bands one possibility is to use asymptotic
theory of P-P and Q-Q plot processes developed by Beirlant and Deheuvels (1990) among others
(further on denoted as empirical bands). Alternatively, one can use the well-known Bonferroni’s
method. From the considerations above we choose P-P plots to construct the bands. For an
illustration, see Figure 2 for X’s and Y ’s distributed again as N(0,1) and N(1,1) respectively.
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Bonferroni bands
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Bonferroni bands
Empirical estimator of P−P plot
Emprical bands

Figure 2: P-P empirical plots of simulated N(0, 1) against N(1, 1) with simultaneous
confidence bands added for several sample sizes n = m = 100, 500.
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Empirical bands obtained from asymptotic theory are narrower, thus they are better than
the Bonferroni’s bands. Now, if the diagonal connecting the points (0,0) and (1,1) would fit into
the bands, then we would not reject the hypothesis that the two distributions F1 and F2 are the
same with confidence 1− α, where e.g. α = 0.05.

The goal of this thesis is to construct such simultaneous confidence bands for a general P-P
plot for the structural relationship model (1.4). The idea is to estimate the unknown parameter
h semiparametrically through the Mallow’s distance as in (1.6). Then to transform the second
sample in such a way that we would expect the diagonal to fit in the bands if the distributions
F1, F2 were the same. For example, the confidence bands for the location model (1.1) shall be
constructed for the P-P plot of F1(t) and F2(t− ĥ).

Now we list the most well known methods in statistics literature for the construction of
simultaneous confidence bands for P-P or Q-Q plots. Apart from bands obtained from asymp-
totic theory and Bonferroni’s method, there are two main approaches. First, it is possible to
construct bands for the parameter itself, if we consider the general shift function introduced by
Doksum (1974, 1977), Doksum and Sievers (1976),

∆s(t) = F−1
2 (F1(t))− t, t ∈ R. (1.7)

We can recognize from (1.7) that ∆s is the Q-Q plot F−1
2 (F1(t)) minus the argument t itself.

Kolmogorov-Smirnov two sample statistic and its weighted version are proper tools for derivation
of confidence bands. For the location model a horizontal line should fit in the bands. This method
allows us to construct the bands for general shift function with X + ∆s(X) ∼ Y . Thus, ∆s(·)
can be regarded as the amount of ’shift’ needed to bring the X’s up to the Y ’s in distribution.
For structural relationship models this method can not be extended in a general way. However,
the method is often used when the location model (1.1) is under consideration (see e.g. Aaberge
et al., 1985). See Figure 3 for the illustration.
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Doksum bands

Figure 3: Simultaneous confidence bands for general shift function ∆s constructed for
simulated N(0,1) and N(1,4) samples, α = 0.05, n = m = 100.

If no diagonal fitted in the bands, with confidence of 1− α, where α = 0.05, we could reject
the hypothesis that the location-scale model holds. If no horizontal line fits in the bands we can
reject the hypothesis of the location model (for explanation, see Section 4).
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Now we turn again to the idea of first estimating the parameter h and then constructing
the confidence bands. The nonparametric maximum likelihood method, also called empirical
likelihood (cf. Owen, 1988; 1990), has become surprisingly popular for constructing confidence
regions. It appears to have advantages almost above all other existing estimation methods, in-
cluding the bootstrap. Empirical likelihood methods are very appealing, because they require no
pre-specified assumptions about the shape of confidence regions, which is determined automat-
ically by the sample, as pointed out by Owen (1990). Empirical likelihood regions are Bartlett
correctable in most cases (cf. Hall and La Scala, 1990; DiCiccio et al., 1991). This means that
a simple correction for the mean of the empirical log-likelihood ratio reduces the coverage error
from order n−1 to order n−2, where n denotes the sample size.

The empirical likelihood method is an interesting alternative to the Normal distribution
based symmetric confidence regions, because it avoids the need to estimate the variance term (cf.
Claeskens et al., 2003). Confidence intervals based on likelihood ratios also have the additional
advantage of respecting the range of the parameter (see Owen, 2001 for a summary of literature
on this topic).

Using the empirical likelihood method Einmahl and McKeague (1999) constructed simulta-
neous confidence bands for multiple quantile-quantile plots from censored samples. For inde-
pendent samples using empirical likelihood Claeskens et al. (2003) obtained a nonparametric
estimator of the P-P plot process and constructed the simultaneous bands using the method in-
troduced by Hall and Owen (1993). Hall and Owen’s (1993) method allows empirical likelihood
to set the shape of the confidence bands and uses bootstrap to set the level. Thus, the pointwise
confidence bands are constructed using a level obtained from bootstrapping method. Moreover,
Claeskens et al. (2003) use the smoothed empirical likelihood method, which amazingly provides
some additional advantages in case of constructing the confidence intervals for sample quantiles
(cf. Chen and Hall, 1993). Note that P-P processes are closely related to Receiver Operating
Characteristic (ROC) curves, which are of great importance in medicine. Nowadays, a lot of
projects are connected with developing simultaneous bands for ROC curves (see, for example,
Macskassy and Provost, 2004 or Macskassy et al., 2005).

In this thesis we generalize the setup of Qin and Zhao (2000) and Hjort et al. (2004)
introducing plug-in empirical likelihood for the two sample case. A plug-in version of empirical
likelihood allows us to derive pointwise confidence bands for the P-P plot of general structural
relationship models. Claesken’s et al. (2003) results for constructing the confidence bands for
the P-P plot follow directly from our results. Although Claeskens et al. (2003) state that the
P-P and Q-Q plots require different techniques we show that for the independent samples they
can be treated in the same way. However, in our context we found P-P advantageous above Q-Q
plots. Thus, for the data examples we construct simultaneous bands for P-P plots only.

We complete our work with establishing a smoothed version of plug-in empirical likelihood
for the two sample case, thus extending the results of Chen and Hall (1993). Finally, the
simultaneous confidence bands have been obtained using the bootstrap method of Hall and
Owen (1993) as described before. Now consider the first sample X1, . . . , Xn. Our condition
nb3r

1 → 0, where r is the order of the kernel, as n →∞ on the speed of the smoothing parameter
b1 differs from Claesken’s et al. (2003) conditions. In Section 9 we comment on our conditions.

It is remarkable that for structural relationship models the usual chi-squared distribution
with one degree of freedom is the limiting distribution for the test statistic. Thus, we have no
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perturbation due to plug-in for structural relationships, that is different in general (cf. Theorems
21, 29).

For an illustration, in Figure 4 we have plotted the bootstrapped simultaneous bands ob-
tained from smoothed plug-in empirical likelihood method for the location model. The data have
been taken from previously discussed example with histological and sonometrical measurements
of pigmented skin tumors (cf. Section 8.2).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

EL simultaneous confidence bands
EL estimator of P−P plot
Empirical estimator of P−P plot
Diagonal y = x

Figure 4: EL simultaneous bands for P-P plot comparing Histological data with
50-MHz-Sonometrical data, α = 0.05.

Using the Hall and Owen’s (1993) method the simultaneous confidence bands are obtained
from constructing the pointwise confidence intervals with the bootstrapped critical value c∗ =
6.57. Note that the smoothed empirical likelihood estimator of P-P plot is much ”smoother”
than that of the empirical P-P plot, which is also to be expected. The range of the estimated
P-P plot and the confidence bands is always between 0 and 1, which is easy to interpret and
compare.

The bands in Figure 4 are only indirectly comparable with the bands for the general shift
function ∆s, which are shown in Figure 5.

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5
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1.5
∆

s
 estimator

K−S bands
K−S weighted bands

Figure 5: Doksum bands for ∆s for comparing Histological data with 50-MHz-Sonometrical
data, α = 0.05.

A horizontal line would fit into the bands in Figure 5. On the other hand the diagonal
clearly fits into the simultaneous empirical likelihood bands in Figure 4. We can make the same
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conclusion in both cases: for the particular data example we can not reject the hypothesis that
the location model holds.

This thesis is organized as follows. In Section 2 we introduce structural relationship models.
Sections 3 and 4 are devoted to the introduction of the known results in literature concerning
simultaneous confidence bands and structural relationships. As our main task is to construct
confidence bands around P-P or Q-Q plots, we introduce them in Section 3 as well as state some
theorems concerning asymptotic theory regarding confidence bands for P-P plots. In Section
4 we introduce simultaneous confidence bands for a general shift function. Section 5 defines
the empirical likelihood method for one and two sample cases. We establish plug-in empirical
likelihood for the two sample case in Section 6 and state our main assumptions and results
of the thesis. Confidence bands for structural relationship models follow as a consequence in
Section 6.3. Next, we continue with establishing smoothed plug-in empirical likelihood in the
two sample case and define the bootstrap confidence bands for structural relationship models.
This is completed in Section 7. Finally, in Section 8 we show how the bootstrap method works
for constructing simultaneous confidence bands by simulation study and two data examples. We
discuss our results in Section 9. The Appendix summarizes some results from empirical process
theory and introduces the smoothed empirical processes, which is needed for proofs.
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2 Structural relationship models

In nonparametric statistics often statistical tests or other methods of analysis are being per-
formed assuming that some semiparametric model holds. For example, comparing continuous
distribution functions often the assumption of location-scale alternative models has been made
(cf. e.g. Hettmansperger, 1991). In survival analysis the proportional Hazards model is well-
known and analysed (cf. Lehmann, 1953). In this case we have a situation of the Lehmann
alternative model. To assess the validity of such models some goodness-of-fit tests based on
Mallows-distance have been derived in Freitag (2000), Freitag and Munk (2005) for general
”structural semiparametric models”. For the two-sample case let us give first some important
examples.

Example 1. The classical location-scale model with two distribution functions F1 and F2 for
independent samples is defined as follows

F1(t) = F2

(
t− µ

σ

)
:= F2(t, h), t ∈ R (2.1)

for some parameter h = (µ, σ) with σ > 0. This relationship can be also expressed through
quantile functions

F−1
1 (u) = F−1

2 (u)σ + µ, u ∈ [0, 1], (2.2)

where F−1
1 (u) = inf{x : F (x) ≥ u}. If σ ≡ 1 in (2.1) we have the shift or location model. We

have the scale model if µ ≡ 0 in (2.1). In survival analysis the scale model is also denoted as an
acceleration model.

Example 2. We say that F1 and F2 belong to the family of Lehmann-alternatives if

F1(t) = 1− (1− F2(t))(1/h) =: F2(t, h), t ∈ R (2.3)

for some h > 0. Using again quantile functions this structural model can be rewritten as

F−1
1 (u) = F−1

2 (1− (1− u)h), u ∈ [0, 1]. (2.4)

If F1 and F2 belong to (2.3), then we have the situation of proportional hazard rates in the
two-sample case, where the relation

λ2(t) = hλ1(t), t ∈ R,

where for i = 1, 2, λi(t) = fi(t)/(1− Fi(t)) and fi(t) = F ′
i (t) is a density function with respect

to distribution function Fi.

Let i.i.d. r.v.’s X1, . . . , Xn and Y1, . . . Ym have unknown distribution functions F1 and F2

respectively which are elements of the set

F2 := {F : F is a c.d.f. and
∫

t2dF (t) < ∞}. (2.5)

Two-sample models, such as (2.2) or (2.4), which can be represented with quantile functions can
be formally written in a general form.



12 2 STRUCTURAL RELATIONSHIP MODELS

Definition 1 (Freitag and Munk (2005)). Let H ⊆ Rl, compact and φ1 : R×H → R, φ2 :
[0, 1]×H → [0, 1]. We say that F1 and F2 in F2 are related by a structural relationship induced
by φ1 and φ2, if (F1, F2) ∈ Uφ1,φ2 =: U , where the model class U is given by

U :=
{
(F1, F2) ∈ F2 ×F2|∃h ∈ H : F1(φ1(F−1

2 (φ2(u, h))), h), u ∈ [0, 1]
}

. (2.6)

Assumption 1. For F ∈ F and h ∈ H it holds that φ1(F−1(φ2(·, h)), h) ∈ F . For the trimming
bounds 0 ≤ a < b ≤ 1, let l(h) := φ2(a, h) and u(h) := φ2(b, h) for h ∈ H. It is assumed that
φ2(·, h) is strictly isotonic for all h ∈ H, i.e. there is a map φ−2 : [l(h), u(h)]×H → [a, b] with

φ2(φ−2 (v, h), h) = v, v ∈ [l(h), u(h)]. (2.7)

Likewise, there is an inverse φ−1 : R×H → R, i.e. for all h ∈ H,

φ1(φ−1 (t, h), h) = t, t ∈ R. (2.8)

The functions φ1 and φ2 are twice continuously differentiable with respect to both arguments
on R×H.

We can also express the structural relationships using distribution functions instead of quan-
tile functions in the definition of U ,

F1(t) = φ−2 (F2(φ−1 (t, h)), h) =: F2(t, h). (2.9)

Remark 1. After a general definition of structural relationships in (2.6) we immediately get
the previously described location-scale model (2.1) as a special case, if φ1(t, (h1, h2)T ) = h1 +h2t

and φ2(u, h) ≡ u. For φ1(t, h) ≡ t and φ2(u, h) = 1− (1− u)h we obtain the model of Lehmann
alternatives introduced in (2.3).

In this work the trimmed Mallows distance between two distribution functions has been used
as an appropriate discrepancy measure to estimate the difference between two samples. The
properties and asymptotic of Mallows distance have been nicely described in Freitag (2000),
Section 5; Czado and Munk (1998, 2001) and Munk and Czado (1998).

For two distribution functions F1, F2 ∈ F2 the trimmed Mallows distance is defined as

d[a,b](F1, F2) :=
{

1
b− a

∫ b

a
(F−1

1 (u)− F−1
2 (u))2du

} 1
2

, (2.10)

where [a, b] ⊆ [0, 1]. If [a, b] = [0, 1], we have exactly the L2 distance introduced by Mallows
(1972). Let us mention that the Mallows distance has not been much used in context of goodness-
of-fit testing. First in Czado and Munk (1998) Mallows distance has been used constructing tests
for the precise neighborhood hypotheses (H∆ : d(F, F0) > ∆0 vs K∆ : d(F, F0) ≤ ∆0, where
∆0 > 0 and d is some appropriate metric, e.g. Mallows distance). Recently, Freitag (2000)
and Freitag and Munk (2005) analyze asymptotic behavior of those tests in context of survival
analysis and censored data in detail.

To get an estimator for the parameter h ∈ H in (2.6) we define first general classes of distance
functionals, i.e.

T (F1, F2) := d2(F1, F2,U) := inf
h∈H

d2(F1, F2(·, h))

= inf
h∈H

{
1

b− a

∫ b

a
(F−1

1 (u)− φ1(F−1
2 (φ2(u, h)), h))2du

}
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with F2(·, h) from (2.9). Now we need the following assumption for the existence of minimum
of the functional d2(F1, F2(·, h)).

Assumption 2. A minimum h0 of d2(F1, F2(·, h)) exists inside H. For every minimum h0 there
exists neighborhood H0 ⊂ H for h0, so that h0 is a unique minimum for d2(F1, F2(·, h)) in H0,
i.e.

h0 = argminh∈H0

{
1

b− a

∫ b

a
(F−1

1 (u)− φ1(F−1
2 (φ2(u, h)), h))2du

}
. (2.11)

If (F1, F2) ∈ U , then there exists a unique parameter h0, so that the structural relationship
model is satisfied; this h0 is also the unique minimum of d2(F1, F2(·, h)).

For further purpose we need to analyze the behavior of the estimator ĥ. Let F1n and F2m

be the cumulative empirical distribution functions of F1 and F2 respectively.

Remark 2. From Freitag (2000) and Freitag and Munk (2005) follows that the semiparametric
estimator ĥ obtained as

ĥ = argminh∈H0

{
1

b− a

∫ b

a
(F−1

1n (u)− φ1(F−1
2m(φ2(u, h)), h))2du

}
(2.12)

is a consistent estimator, thus ĥ →p h0, where →p means the convergence in probability.

Actually a stronger result holds for the estimator ĥ than that stated in Remark 2. For this
reason we need a version of strong approximation theorems for the quantile processes, which
states that under some conditions

sup
0<y<1

|f(F−1(y))(F−1
1n (y)− F−1

1 (y))| = O(n−1/2(log log n)1/2) a.s. (2.13)

For the reference see, for example, Theorem 5.3.1. in Csörgő and Révész (1981).

Remark 3. The estimator ĥ can be obtained by letting the derivative of the expression (2.12)
equal to zero and finding the root for h. Thus, ĥ is in fact a functional of the functions F1n and
F2m. From the continuous mapping theorem in (2.12) and (2.13) it follows that ĥ → h0 almost
surely.

Let us shortly comment on almost sure rates of the estimator ĥ, needed for Theorems 29
and 37.

Freitag (2000) has shown that ĥ as a functional from the empirical distribution functions
F1n and F2m is compactly or Hadamard differentiable (see, for example, van der Vaart, 1998,
p. 296). Unfortunately from the rates of empirical quantile processes as in (2.13) we can not
deduce the rates for Hadamard differentiable functionals in general (for discussion see Dudley,
1994, pages 1-5). However, in the case of the location model we can deduce the almost sure
rates, which is highlighted in the next remark.

Remark 4. In the case of the location model an exact expression can been obtained (see also
Freitag et al., 2003) as follows. With trimming bounds 0 ≤ a < 1 − a ≤ 1 the minimizing
expression is

1
1− 2a

∫ 1−a

a
(F−1

1n (u)− F−1
2m(u)− h)2du (2.14)
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and we have

ĥ =
1

1− 2a

∫ 1−a

a
(F−1

1n (u)− F−1
2m(u))du. (2.15)

Now from (2.12) and continuous mapping theorem it follows that ĥ → h0 almost surely with the
rate O(n−1/2(log log n)1/2).



3 Probability plots, P-P and Q-Q plots

Our aim is to construct simultaneous confidence bands for the P-P plot of structural relationship
models. Other approach is to construct the bands for the general shift function ∆s, which
contains also the Q-Q plot process. Therefore in this Section we give a short introduction for
P-P and Q-Q plots, and define confidence bands from the asymptotic theory for P-P and Q-Q
plot processes.

3.1 Introduction

Graphical methods have always been an important tool for both formal and informal analysis
of the data. Due to highly developed computer science technologies, new statistical packages
are used in almost all scientific fields that deal with large quantities of raw, empirical data.
The simplest diagnostic plots as histograms, empirical distribution functions or box-plots are
used to explore location, scale, skewness, kurtosis or other differences in two-sample problems,
symmetry or goodness of fit-problems for one sample; analysis of covariance, k-sample or other
multivariate procedures. An extensive review and bibliography of graphical methods in non-
parametric statistics can be found in, e.g., Doksum (1977), Gnanadesikan (1977), Fisher (1983),
Sawitzki (1994).

An important role appertains to such graphical methods that are based on comparisons of the
sample distribution or quantile functions, especially in two-sample problems. Powerful statistical
techniques based on the sample distribution function have been developed analyzing underlying
models, see e.g. Gnanadesikan and Wilk (1968) or Doksum (1977) to elucidate the nature of
association between variables (Taguri et al., 1976), and to highlight the structure of multivariate
distributions (Tukey and Tukey, 1981). The classical methods include probability-probability
(P-P) plot, quantile-quantile (Q-Q) plot, pair charts, receiver operating characteristic (ROC)
curves, proportional hazard plots, etc.. Now we will introduce P-P and Q-Q plots, state their
main properties and derive simultaneous confidence bands for these plots.

The two random samples will be denoted by X1, . . . , Xn and Y1, . . . , Ym, drawn from under-
lying populations with univariate, continuous distribution functions F1 and F2

The classical P-P plot ({F1(x), F2(x)) : x ∈ R} and Q-Q plot {(F−1
1 (y), F−1

2 (y)) : y ∈ (0, 1)}
are based on univariate distribution functions F1 and F2 and are generally used to compare
them. The P-P plot can be identified with the graph of the function

{F1(F−1
2 (y)) : y ∈ (0, 1)}, (3.1)

and the Q-Q plot with the graph of the function

{F−1
1 (F2(x)) : x ∈ R}. (3.2)

To show the difference and specific of each of P-P and Q-Q plots, in Figure 6 we have displayed
several empirical plots based on Normal distribution with n = 100 using the empirical distribu-
tion functions F1n, F2m instead of F1 and F2. The P-P plots have been drawn from (3.1), but
for the presentation of the Q-Q plots we preferred to draw the quantiles of one sample against
the quantiles of another sample as usually done in literature.
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The P-P plot has been drawn according to the definition 3.1. However, we prefer to present
the Q-Q plot as it has been usually done in literature as a point plot, where the quantiles from
one sample have been drawn against the quantiles from another sample.

Although when F1 coincide with F2 both plots will be straight lines with slope one, thus
P-P and Q-Q plots seemingly have similar behavior, their properties are quite different which is
nicely attributed by Gnanadesikan and Wilk (1968), Holmgren (1995). An elementary property
of Q-Q plots is that if Y is a linear function of X then the corresponding Q-Q plot will still be
linear but with possibly changed location and slope. The P-P plot is not useful to reveal the
shift or scale differences of the same distributions, it does not have a linear invariance property.
On the other hand it can be easily recognized whether we have a tendency of positive shift
(tendency toward increased values on treatment relative to control) or negative only by P-P
plots, Q-Q plots are almost identical in these situations (cf. Figure 6).

Another property of Q-Q plots is their sensitivity to differences between F1 and F2 in the
tails, but P-P plots highlight more difference in the middle. So, Q-Q plot is advantageous, if one
is interested to recognize immediately the outliers, but can direct attention away from the vast
majority of data points. In this case P-P reveals more general tendency not taking into account
the outliers.

The last property to mention is the range of the P-P and Q-Q plots. Q-Q plots can vary
substantially in case of various control distributions, making comparisons of treatment effects
difficult (cf. Holmgren, 1995). The range of P-P plot is always maintained - it begins at (0, 0)
and ends at (1, 1) always, in this matter making them more attractive then Q-Q plots.

The Q-Q plots were first used by Lorenz (1905) for comparing two independent samples.
Since then Q-Q plots have been extensively examined, their asymptotic properties profoundly
investigated (cf. Gnanadesikan, 1977; Fisher, 1983; Aly, 1986b). The P-P plots became of great
interest mainly, because of their relation to Receiver Operating Characteristic (ROC) curves
defined as

{1− F1(F−1
2 (1− y)) : y ∈ (0, 1)}. (3.3)

ROC curves are of great importance and have been used in signal theory, psychology, radiology,
medicine, etc. (see, e.g. Li at al., 1996; Hsieh and Turnbull, 1996). Nonparametric statistics
based on P-P plots and modifications have been studied in Gnanadesikan (1977), Parzen (1993),
Beirlant and Deheuvels (1990), Sawitzki (1994), Deuheuvels and Einmahl (1992), Nair (1981,
1982), Aly (1986a), Girling (2000), etc.
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Figure 6: P-P and Q-Q empirical plots of simulated N(µ, σ) against N(0, 1) distribution with
sample size n = m = 100.



18 3 PROBABILITY PLOTS, P-P AND Q-Q PLOTS

3.2 Approximations of P-P and Q-Q processes

We maintain all the notation from introduction. For asymptotic results we assume that F1, F2

have continuous densities f1, f2. First already from the famous Glivenko-Cantelli theorem we
obtain that P-P and Q-Q plots converge pointwise to their theoretical counterparts with prob-
ability one.

Lemma 5. As n,m →∞, for each y ∈ (0, 1) we have

|F1n(F−1
2m(y))− F1(F−1

2 (y))| → 0 a.s., (3.4)

where a.s. denotes the almost sure convergence and F1n, F2m are defined in Remark 2. For each
x ∈ (a, b) with

a := inf{x : F2(x) > 0} and b := sup{x : F2(x) < 1},
we have that

|F−1
1n (F2m(x))− F−1

1 (F2(x))| → 0 a.s. (3.5)

Proof. By the Glivenko-Cantelli theorem when Fj and F−1
j , for j = 1, 2 are continuous we

obtain for any ε > 0 and m large enough

F2(x)− ε ≤ F2m(x) < F2(x) + ε for all x ∈ R a.s.

Since F−1
2m is the inverse of F2m we obtain that

F−1
2 (y − ε) ≤ F−1

2m(y) < F−1
2 (y + ε) for all y ∈ (0, 1) a.s.,

then for each y ∈ (0, 1) such δ > 0 exists, that

F−1
2 (y)− δ ≤ F−1

2 (y − ε) ≤ F−1
2m(y) < F−1

2 (y + ε) ≤ F−1
2 (y) + δ a.s.

Hence for each fixed y ∈ (0, 1),

|F1n(F−1
2m(y))− F1(F−1

2 (y))| ≤ |F1n(F2m(y))− F1(F−1
2m(y))|

+|F1(F−1
2 (y)− F1(F−1

2 )(y))| → 0, a.s. n, m →∞.

The second statement (3.5) follows similarly.

Beirlant and Deheuvels (1990) define P-P and Q-Q plot processes as follows

∆n,m(y) =
√

nm

n + m
(F1n(F−1

2m(y))− F1(F−1
2 (y))), y ∈ (0, 1). (3.6)

and

Γnm(x) =
√

nm

n + m
f1(F−1

1 (F2(x)))(F−1
1n (F2m(x))− F−1

1 (F2(x))), x ∈ (am, bm). (3.7)

At certain conditions, under the null hypothesis H0 : F1 ≡ F2, the P-P plot process ∆nm is
distribution free (i.e. independent of the common value of F1 = F2), while the empirical Q-Q
plot process is not. However, after the change of scale x = F−1

2 (y), it follows from Corrolary
3.1 in Beirlant and Deheuvels (1990) that also the Q-Q plot process is distribution free. They
showed that both processes converge in distribution to Brownian bridges with the approximation
rate n−1/4(log n)1/2(log log n)1/4, where m = m(n) →∞ such that n,m →∞, which is optimal
in the setting of Berilant and Deheuvels (1990).



3.3 Confidence bands for P-P plot via empirical processes 19

3.3 Confidence bands for P-P plot via empirical processes

In the literature the theoretical focus is mainly on obtaining consistency and asymptotic normal-
ity of various estimators of P-P and Q-Q plots, therefore offering the necessary tools to construct
pointwise confidence intervals. To get an impression of the whole curves or plots, one should
construct simultaneous confidence bands. For P-P plot this means we are looking for random
functions v1(X, Y, t) and v2(X, Y, t) such that as n,m →∞

P{v1(X,Y, t) ≤ F1(F−1
2 (t)) ≤ v2(X,Y, t) for all t ∈ [a, b]} = 1− α, (3.8)

where 0 ≤ α ≤ 1 is a given level, say 0.05 or 0.01.

Here we assume again that Fj and F−1
j for j = 1, 2 are continuous. For asymptotic results

assume that the sample sizes n,m are such that m/n → λ > 0 as n → ∞. Let us assume that
the slope of the curve F1(F−1

2 (t)), that is, f1(F−1
2 (t))/f2(F−1

2 (t)) is bounded on any subinterval
(a, b) of (0, 1), 0 < a < b < 1.

To construct the simultaneous confidence bands we will use the following general facts from
Hsieh and Turnbull (1996).

Lemma 6 (Hsieh and Turnbull (1996), Theorem 2.1). Under the above conditions we
have

sup
0≤t≤1

|F1n(F−1
2m(t))− F1(F−1

2 (t))| → 0 a.s. as n →∞. (3.9)

Proof. Consider the inequality

sup
t
|F1n(F−1

2m(t))− F1(F−1
2 (t))| ≤ sup

t
|F1n(F−1

2m(t))− F1(F−1
2m(t))|

+ sup
t
|F1(F2m)−1(t)− F1(F−1

2 (t))|. (3.10)

Applying now the Glivenko-Cantelli theorem for the first term on the RHS and the theorem of
Dvoretzky, Kiefer and Wolfowitz (1956) and then the Borel-Cantelli lemma for the second term,
the lemma is proved.

Theorem 7 (Hsieh and Turnbull (1996), Theorem 2.2). Under the above conditions,
there exists a probability space on which one can define sequences of two independent versions
of Brownian bridges {B(n)

1 (t), B(m)
2 (t), 0 ≤ t ≤ 1} such that

√
m(F1n(F−1

2m(t))− F1(F−1
2 (t))) =

√
λB

(n)
1 (F1(F−1

2 (t))) +
f1(F−1

2 (t))
f2(F−1

2 (t))
B

(m)
2 (t)

+ o(m−1/2(log m)2) a.s. (3.11)

uniformly on [a, b].

Proof. This theorem follows from Theorem 4.4.1 in Csörgő and Révész (1981) and Theorem
3.2.4. in Csörgő (1983). The details can be found in Hsieh and Turnbull (1992).

From Theorem 7 follows that for all points of continuity of H as n,m →∞ we have

P

{
sup

a≤t≤b
|√m(F1n(F−1

2m(t))− F1(F−1
2 (t)))| ≤ x

}
= H(x),
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where

H(x) = P

{
sup

a≤t≤b
|
√

λB
(n)
1 (F1(F−1

2 (t))) +
f1(F−1

2 (t))
f2(F−1

2 (t))
B

(m)
2 (t)| ≤ x

}
.

Corollary 8. Under the null Hypothesis F1 ≡ F2 we have

P

{
sup

a≤t≤b
|√m(F1n(F−1

2m(t))− F1(F−1
2 (t)))| ≤ x

}
= P ( sup

a≤t≤b
|
√

λB
(n)
1 (t)+B

(m)
2 (t)| ≤ x), (3.12)

where B
(n)
1 and B

(m)
2 are two independent versions of Brownian bridges on [0, 1].

Another method to construct the simultaneous band is to use Bonferroni’s method, which
is based on the following inequality

P

(
g⋃

i=1

Ai

)
≥ 1−

g∑

i=1

P [Āi],

where g ∈ N, which represents number of statements or comparisons, Ai and its complement
Āi are any event. In particular, if each Ai is the event that a calculated confidence interval
for a particular linear combination, then the left-hand side of the inequality is the probability
that all the confidence intervals simultaneously cover their respective values. The right-hand
side is one minus the sum of the probabilities of each of the intervals missing their true values.
Therefore, if simultaneous multiple interval estimates are desired with an overall confidence
coefficient 1− α, one can construct each interval with confidence coefficient (1− α/g), and the
Bonferroni inequality insures that the overall confidence coefficient is at least 1− α.

Now on the interval [ε, 1− ε], where ε → 0 for any αi ∈ (0, 1) we define ci as the solution of
the equation

P ( sup
0≤t≤1

|B(t)| ≤ ci) = 1− αi, i = 1, 2, (3.13)

where {B(t), 0 ≤ t ≤ 1} denotes a Brownian bridge. The maximum of |B(t)| turns out to be
closely allied with the Kolmogorov-Smirnov goodness-of-fit test. The behavior of sup0≤t≤1 |B(t)|
has been well investigated already by Smirnov (1939, 1948), Feller (1948), Kolmogorov (1941)
etc.. It has the distribution function of form

G(x) = 1 + 2
∞∑

k=1

(−1)k−1 exp(−k2x2) = (2π)1/2x−1
∞∑

k=1

exp(−(2k − 1)2π2/8x2).

The values c1, c2 in (3.13) can be found for example in Tables from Smirnov (1948).

Theorem 9. If F2 is continuous, εm → 0 and
√

mεm →∞ as m →∞, then

P
(
F1n(F−1

2m(t− c1m
−1/2))− c2n

−1/2 ≤ F1(F−1
2 (t)) ≤ F1n(F−1

2m(t + c1m
−1/2)) + c2n

−1/2

for all εm ≤ t ≤ 1− εm) ≥ (1− α1)(1− α2), (3.14)

where c1 = c1(α1) and c2 = c2(α2) are defined by (3.13).
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Proof. First the weak convergence of the empirical process gives

P
(
F1n(x)− c2n

−1/2 ≤ F1(x) ≤ F1n(x) + c2n
−1/2 for all x

)

= P

(
sup

−∞<x<∞
|B(F1(x))| ≤ c2

)
≥ P

(
sup

0≤t≤1
|B(t)| ≤ c2

)
.

Csörgő and Révész (1984) (cf. also Csörgő and Horváth (1985)) showed that

lim
n→∞P

(
F−1

2m(t + c1m
−1/2) ≤ F−1

2 (t) ≤ F−1
2m(t− c1m

−1/2)

for all εm ≤ t ≤ 1− εm) = P

(
sup

0≤t≤1
|B(t)| ≤ c1

)
.

We simulated some normally distributed random variables with different sample sizes n =
m = 100 and n = m = 500 (cf. Figure 7). We found by simulations that for α = 0.05 the critical
value cα = 1.8995 for the confidence bands derived in (3.12), i.e. P (supa≤t≤b |

√
λB

(n)
1 (t) +

B
(m)
2 (t)| ≤ cα) = 1− α. For Bonferroni confidence bands derived in Theorem 9 we have chosen

c1 = c2 = 1.48 from equation (3.13), which correspond to α1 = α2 = 0.025, thus we have at
least (1− α1)(1− α2) = 0.95 coverage.
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Figure 7: P-P empirical plots of simulated N(µ, σ) against N(0, 1) with simultaneous
confidence bands added for several sample sizes n = m = 100, 500. The Bonferroni bands
(3.14) are plotted with brighter dashed line than the empirical bands (3.12) in all cases.
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Bonferroni’s method obviously provides wider confidence bands than those obtained in (3.12).
It is remarkable that for P-P plots again it is easier to recognize whether there is a positive shift
of the underlying distributions in the two sample case. However, we can not decide whether both
samples come from the same family of distributions, which could have been recognized when
dealing with Q-Q plots. Still if we are interested in such structural relationships as location or
scale differences and not in underlying distributions, P-P plots might be more useful.



4 Confidence bands for general shift function ∆s

Let X1, . . . , Xn and Y1, . . . , Ym be two independent samples with distribution functions F1 and
F2. Comparing the distribution of two samples Doksum (1974, 1977) and Doksum and Sievers
(1976) have constructed simultaneous confidence bands for general shift function ∆s(x) such as
F1(x) = F2(x+∆s(x)) for some function ∆s(x). If the X’s are control responses and the Y ’s are
treatment responses Doksum and Sievers (1976) explains that ∆s(x) under certain conditions
can be regarded as the amount the treatment adds to a potential control response x (see also
Doksum, 1974). Under general conditions (∆s(x) + x should be nondecreasing) it is the only
function of x that satisfies X + ∆s(X) ∼ Y , where ∼ denotes distributed as. Thus, ∆s(·) can
be regarded as amount of ’shift’ needed to bring the X’s up to the Y ’s in distribution.

This structural ”general shift” model clearly is a special case of structural relationship models
described earlier. We shortly introduce now Doksum’s methods here.

Let F−I = sup{x : F (x) ≤ u} be the right inverse of F . Then we can write

∆s(x) = F−1
2 (F1(x))− x. (4.1)

When ∆s(x) = h for some constant h ∈ R we have the classical shift or location model (cf.
Example 2.1). A natural estimate of F−1

2 (F1(x)) is F−1
2m(F1n(x)), where F1n and F2m denote the

empirical distribution functions based on X and Y samples. Doksum and Sievers (1976) state
several questions motivating their work which we will cite here: (i) Is the treatment beneficial
for all the members of the populations, i.e. is ∆s > 0 for all x; (ii) If not, for which part of the
population is the treatment beneficial, i.e. what is {x : ∆s(x) > 0}? (iii) Does a shift model
hold, i.e. is ∆s(x) = h, for some h and all x? (vi) If not, does a shift-scale model hold, i.e. is
∆s(x) = α + βx, for some α and β and for all x?

Giving now a confidence band [∆s∗(x), ∆∗
s(x)] for ∆s(x) simultaneously for all x these ques-

tions can be answered in the following way: (i) is answered in the affirmative if ∆s∗(x) > 0 for
all x; (ii) has solution {x : ∆s∗(x) > 0}; (iii) is rejected if no horizontal line fits in the confidence
band and (vi) has a negative response if no straight line fits in the band.

Remark 10. This remark is to explain the following: if no straight line fits in the simultaneous
bands for the function ∆s, then we can reject the hypothesis that ∆s(x) = α + βx for all x

with the confidence of 1− α, where α is the level of a test and α, β some constants. Under the
hypothesis H0 : F1(x) = F2(α + βx) we know that the Q-Q plot is a straight line. To see this let
for simplicity X ∼ N(µ, σ2). Now

P (X ≤ q) = P

(
X − µ

σ
≤ q − µ

σ

)
= P

(
Z ≤ q − µ

σ

)
, (4.2)

where Z ∼ N(0, 1). This means that the quantile point q of N(µ, σ2) corresponds to the quantile
point (q − µ)/σ of N(0, 1). Clearly under the hypothesis H0 also the function ∆s is a straight
line. Under H0 the simultaneous confidence band for the general shift function ∆s should contain
every point on this line with the confidence 1 − α. Therefore if there is no straight line which
would fit into the simultaneous bands, then with 1 − α confidence we can reject the hypothesis
H0.
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Let N = n + m, M = mn/N . Doksum and Sievers (1976) considered bands based on the
two sample Kolmogorov-Smirnov statistic

T (F1n, F2m) =
√

M sup
x
|F1n(x)− F2m(x)|. (4.3)

Lemma 11 (Doksum and Sievers (1976), Remark 1). A-level (1 − α) simultaneous
distribution-free confidence band for ∆s(x) (−∞ < x < ∞) is given by

[F−1
2m(F1n(x)−KS,α/M1/2)− x, F−I

2m(F1n(x) + KS,α/M1/2)− x), (4.4)

where KS,α has been chosen from the Kolmogorov-Smirnov tables, so that P (T (F1n, F2m) ≤
KS,α) = 1− α.

Proof. Let us give a sketch of the proof. The idea already comes from Switzer (1976), who
noted that any two-sample rank test may be inverted in principle to obtain distribution-free
confidence sets. Now if φ(F1n, F2m) is a distribution-free level α test function under H0 : F1 = F2,
then {∆s(·) : φ(F1n, F2m(∆s(y) + y)) = 0} is a distribution-free level (1− α) confidence region
for the response function ∆s(·). We get so-called simple bands if we consider distribution-free
test statistics T (F1n, F2m) with the property that the inequality T (F1n, F2m) ≤ K is equivalent
to

h∗(F1n(x)) ≤ F2m(x) ≤ h∗(F1n(x))

for all x, for some functions h∗ and h∗. Clearly for the two-sample Kolmogorov-Smirnov statistic
(4.3) we have h∗(x) = x−K/

√
M and h∗ = x + K/

√
M .

Corollary 12. Let [t] denote the greatest integer less than or equal to t; let 〈t〉 be the least integer
greater than or equal to t; let X(1) < . . . < X(n) and Y (1) < . . . < Y (m) denote the order
statistics of the X and Y samples, and define Y (j) = −∞(j < 0) and Y (j) = ∞(j ≥ m + 1).
Then the band (4.4) can be expressed by

[S∗(x), S∗(x)) =
[
Y

(〈
m

(
i

n
−KS,α/

√
M

)〉)
− x, Y

([
m

(
i

n
+ KS,α/

√
M

)]
+ 1

)
− x

)

(4.5)
for x ∈ [X(i), X(i + 1))(i = 0, 1, . . . , n) with X(0) = −∞ and X(n + 1) = ∞.

Doksum and Sievers (1976) also considered bands based on a weighted sup norm statistic (further
on denoted as weighted bands).

WN = WN (F1n, F2m) =
√

M sup
{x:a≤F1n(x)≤b}

|F1n(x)− F2m(x)|
Ψ{HN (x)} , (4.6)

where HN (x) = λF1n(x) + (1 − λ)F2m(x), λ = n/N and 0 ≤ a < b ≤ 1. Choosing Ψ(t) =
{t(1− t)}1/2 one can get additional advantages, which we do not discuss here (cf. Doksum and
Sievers, 1976; Borovkov and Sycheva, 1968).

Lemma 13 (Doksum and Sievers (1976), Remark 2). Let PF=G(WN ≤ K) = 1−α; then
the level (1−α) simultaneous confidence band for ∆s(x) based on WN with Ψ(t) = {t(1− t)}1/2

is
[F−1

2m [h−(F1n(x))]− x, F−I
2m [h+(F1n(x))]− x), x ∈ {x : a ≤ F1n(x) ≤ b}, (4.7)
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where

λ±(u) =
u + 0.5c(1− λ)(1− 2λu)± 0.5{c2(1− λ)2 + 4cu(1− u)}1/2

1 + c(1− λ)2

and c = K2/M .

When a = 1− b = 0 the values of K can be found in Canner (1975). In Figure 8 both bands
derived in (4.5) and in (4.7) are plotted for sample X and sample Y from N(0, 1) and N(0, 4)
distributions, respectively. Here n = m = 100, α = 0.05, and K = 3.02 is obtained from Canner
(1975). Both bands are quite similar in the middle, but in the tails weighted bands are better,
providing narrower confidence bands. In this case it is obvious that a straight line fits in the
bands. That means the question (vi) can not be answered negatively (cf. Remark 10) and this
is not surprising, because we have a location-scale difference between two Normal distributions.
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Figure 8: Simultaneous confidence bands for ∆s constructed for N(0,1) and N(1,4) samples,
α = 0.05, n = m = 100.



5 Empirical likelihood

Maximum likelihood is probably the most important concept for inference in parametric models.
For last decades it has been broadly extended to nonparametric and semi-parametric frameworks.
Motivated from the earlier work of Thomas and Grukemeier (1975) in the context of estimating
survival probabilities, Owen (1988, 1990, 1991) has introduced an ”empirical” likelihood ratio
statistic for nonparametric problems. The empirical likelihood method amounts to computing
the profile likelihood of a general multinomial distribution which has its atoms at data points.
Owen’s remarkable contribution was to show that the idea has very general applications.

The empirical likelihood method is similar to for the parametric models, although it is com-
putationally more complex. Owen has shown that usually the statistics have limiting chi-square
distributions, which is a nonparametric extension of Wilks’s (1938) theorem for parametric
likelihood ratios. He has also shown how to obtain tests and confidence limits for parameters,
expressed as functionals θ(F ) of an unknown distribution function F . Nice accounts of empirical
likelihood may be found in Hall and La Scala (1990) and Owen (2001)’s recent book, where one
can find also a huge bibliography. Let us shortly cite Hall and La Scala (1990): ”The advantages
of empirical likelihood over classical methods such as normal approximation are rather obvious;
for example, empirical likelihood regions are not shaped in a predetermined way which implies
a degree of nonexistent symmetry in the sampling distribution”.

Now we list the main advantages of empirical likelihood according to Hall and La Scala
(1990):
(i) Empirical likelihood methods are very appealing especially for construction of confidence
regions, since they involve no prespecified assumptions about the shape of the confidence regions
which is determined automatically by the sample;
(ii) Empirical likelihood regions are bartlett correctable. That is, a simple correction for the
mean of the empirical loglikelihood ratio reduces coverage error from order n−1 to order n−2,
where n denotes the sample size;
(iii) Empirical likelihood regions are range preserving and transformation respecting.

5.1 Nonparametric maximum likelihood

For this section let X1, . . . , Xn be a sample of i.i.d. random variables with distribution function
F . Our goal is to define the nonparametric maximum likelihood in one-sample case and show
that the empirical cumulative distribution function Fn maximizes it. We use F (x−) to denote
P (X < x) and so P (X = x) = F (x)− F (x−).

Definition 2. Let X1, . . . , Xn ∈ R be i.i.d. random variables. The nonparametric likelihood of
the cumulative distribution function F is

L(F ) =
n∏

i=1

(F (Xi)− F (Xi−)). (5.1)

Definition 2 reflects a very literal interpretation of the notion of likelihood. Practically it
means that the value L(F ) is the probability of getting exactly the observed sample values
X1, . . . , Xn from the distribution function F . One consequence is that L(F ) = 0 if F is a
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continuous distribution. To have a positive nonparametric likelihood, a distribution F must
place positive probability on every one of the observed data values.

The next theorem shows that the nonparametric likelihood is maximized by the empirical
distribution function Fn. Thus, Fn is a nonparametric maximum likelihood estimate of F .

Theorem 14 (Owen (2001), Theorem 2.1). Let X1, . . . , Xn ∈ R be i.i.d. r.v.’s with a
common distribution function G. Let Fn be their cumulative empirical distribution function and
let G 6= Fn, then L(G) < L(Fn).

Proof. Let z1 < z2 < . . . < zm be the distinct values in {X1, . . . , Xn}, and let nj ≥ 1 be the
number of Xi that are equal to zj . Let pj = G(zj) − G(zj−) and put p̂j = nj/n. If pj = 0 for
any j = 1, . . . ,m, then L(G) = 0 < L(Fn), so we suppose that all pj > 0, and that for at least
one j, pj 6= p̂j . Now log(x) ≤ x− 1 for all x > 0 with equality only when x = 1. Therefore

log
(

L(G)
L(Fn)

)
=

m∑

j=1

nj log
(

pj

p̂j

)
= n

m∑

j=1

p̂j log
(

pj

p̂j

)
< n

m∑

j=1

p̂j

(
pj

p̂j
− 1

)
≤ 0, (5.2)

and so L(G) < L(Fn).

In parametric inference we may base hypothesis tests and confidence regions on the likelihood
ratio. If L(η) is much smaller than L(η̂), then we reject the hypothesis that η0 = η, and exclude
η from our confidence region for η0. Under some regularity conditions, Wilks’s theorem provides
that −2 log(L(η0)/L(η̂)) tends to a chisquared distribution as n → ∞ (cf. Wilks, 1938). This
allows us to decide how small L(η) must be in order for η to get rejected. The degrees of freedom
in the chisquared distribution are usually equal to the dimension of the set of η values. When
we want a confidence region for θ we take the image of a confidence region for η. That is

{θ(η)|L(η) ≥ cL(η̂), (5.3)

where the threshold c is chosen using Wilk’s theorem, with degrees of freedom equal to the
dimension of the set of θ values. We may also use ratios of the nonparametric likelihood as a
basis for hypothesis tests and confidence intervals. For a distribution F , define

R(F ) =
L(F )
L(Fn)

, (5.4)

through the nonparametric likelihood L(F ) of Definition 2. We can proceed analogously as with
parametric likelihood. Suppose we are interested in parameter θ = T (F ) for some function T of
distribution. This F is a member of a set F of distributions. In some cases we may take F to
be the set of all distributions on R. More often a smaller set of distributions is used. Define the
profile likelihood ratio function:

R(θ) = sup{R(F )|T (F ) = θ, F ∈ F}. (5.5)

Now empirical likelihood hypothesis tests reject H0 : T (F0) = θ0, when R(θ0) < r0 for some
threshold value r0. Empirical likelihood confidence regions are of the form

{θ|R(θ) ≥ r0}. (5.6)
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In many settings, the threshold r0 may be chosen using an empirical likelihood theorem, a
nonparametric analogue of Wilk’s theorem.

Empirical likelihood inferences may be recognized as parametric likelihood inferences us-
ing a data-determined parametric family. The parametric family involved is the multinomial
distribution on the observed values of Xi.

5.2 EL in one sample case

To show the idea of the empirical likelihood method we first outline empirical likelihood as
discussed by Owen (1988, 1990) in one sample case. Let x1, . . . , xn be i.i.d. observations from
a d-variate distribution F having mean µ and nonsingular covariance matrix. The empirical
likelihood function is

L(F ) =
n∏

i=1

dF (xi) =
n∏

i=1

pi, (5.7)

where pi = dF (xi) = P (X = xi). Only distributions with an atom of probability on each xi

have nonzero likelihood. From Theorem 14 it follows that empirical likelihood function (5.7) is
maximized by the empirical distribution function Fn(x) = n−1

∑n
i=1 I(xi ≤ x). The empirical

likelihood ratio is then defined as R(F ) = L(F )/L(Fn), and clearly this may be written as

R(F ) =
n∏

i=1

npi.

Suppose we want to estimate a parameter θ = T (F ). For simplicity we consider the mean µ of
F . To obtain confidence regions for µ, we define the profile empirical likelihood ratio function

RE(µ) = sup

{
n∏

i=1

npi|pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pixi = µ

}
. (5.8)

As noted by Owen (1988, 1990), a unique value for the right-hand side of (5.8) exists, provided
that µ is inside the convex hull of the points x1, . . . , xn. An explicit expression for RE(µ) can be
derived by a Lagrange multiplier argument: the maximum of

∏n
i=1 npi subject to the constraints

pi ≥ 0,
∑n

i=1 = 1 and
∑n

i=1 pixi = µ is attained when

pi = pi(µ) =
1
n

1
1 + λτ (xi − µ)

,

where τ stands for the transpose for a vector and λ = λ(µ) is a d×1 vector given as the solution
to

n∑

i=1

xi − µ

1 + λτ (xi − µ)
= 0.

Since
∏n

i=1 pi is maximized unconditionally by Fn, it follows that RE(µ) is maximized with
respect to µ at µ̂ = x̄ and that

RE(µ) =
n∏

i=1

{1 + λτ (xi − µ)}−1.

The empirical likelihood ratio statistic is WE(µ) = −2 log RE(µ), that is,

WE(µ) = 2
n∑

i=1

log{1 + λτ (xi − µ)}. (5.9)
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Owen (1988, 1990) has proved under mild conditions that if µ = µ0, then WE(µ0) converges in
distribution to χ2

(d) as n → ∞. Approximate α-level confidence regions for µ may therefore be
obtained as the set of points µ such that WE(µ) ≤ cα, where cα satisfies P (χ2

(d) ≤ cα) = α.
Since then it has been proved that the empirical likelihood approach can be applied for quite

general parameters θ(F ), including multidimensional M -estimates, etc. (cf. Owen 2001). A
very important extension in the one sample case has been made by Qin and Lawless (1994),
which is certainly one of the most remarkable papers for the empirical likelihood method. We
shortly describe this general setup.

Consider d-variate i.i.d. random variables x1, . . . xn with unknown distribution function F ,
and a p-dimensional parameter θ associated with F . We assume that information about θ and F

is available in the form of r ≥ p functionally independent unbiased estimating functions, that is
functions gj(x, θ), j = 1, 2, . . . , r, such that EF {gj(x, θ)} = 0. Applying now empirical likelihood
method to this framework by maximizing (5.7) subject to restrictions

pi ≥ 0,
∑

i

pi = 1,
∑

i

pig(xi, θ) = 0, (5.10)

where g(x, θ) = (g1(x, θ), . . . , gr(x, θ))τ and EF {g(x, θ)} = 0.
Now for a given θ, a unique maximum exists, provided that 0 is inside the convex hull of the

points g(x1, θ), . . . , g(xn, θ). The maximum may be found via Lagrange multipliers. Let

H =
n∑

i=1

log pi + τ1(1−
n∑

i=1

pi)− nλτ
n∑

i=1

pig(xi, θ), (5.11)

where τ1 and λ = (λ1, λ2, . . . , λr)τ are Lagrange multipliers. Taking derivatives with respect to
pi, we have

∂H

∂pi
=

1
pi
− τ1 − nλτg(xi, θ) = 0,

n∑

i=1

pi
∂H

∂pi
= n− τ1 ⇒ τ1 = n

and

pi =
(

1
n

)
1

1 + λτg(xi, θ)
,

with the restriction from the third part of (5.10) that

0 =
n∑

i=1

pig(xi, θ) =
1
n

n∑

i=1

1
1 + λτg(xi, θ)

g(xi, θ),

from which (see below) λ can be determined in terms of θ.
It is necessary that 0 ≤ pi ≤ 1, which implies that λ and θ must satisfy 1 + λτg(xi, θ) ≥ 1/n

for each i. For fixed θ, let Dθ = {λ : 1 + λτg(xi, θ) ≥ 1/n}; Dθ is convex and closed, and it is
bounded if 0 is inside the convex hull of the g(xi, θ)’s. Moreover,

∂

∂λ

{
1
n

n∑

i=1

1
1 + λτg(xi, θ)

g(xi, θ)

}
= − 1

n

n∑

i=1

g(xi, θ)gτ (xi, θ)
{1 + λτg(xi, θ)}2

(5.12)
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is negative definite for λ in Dθ, provided that
∑n

i=1 g(xi, θ)gτ (xi, θ) is positive definite. By the
inverse theorem, λ = λ(θ) is a continuous differentiable function of θ.

Now again solving the maximization problem via Lagrange multipliers we obtain the empir-
ical likelihood ratio

lE(θ) =
n∑

i=1

log[1 + λτ (θ)g(xi, θ)]. (5.13)

Clearly choosing g(xi, µ) = xi − µ we have the case described before with 2lE(θ) = WE(µ),
where WE(µ) defined in (5.9).

Let θ̃ = arg minθ l(θ). Qin and Lawless (1994) have derived general conditions when the
maximization problem described above has a solution and when the ratio statistic 2lE(θ0)−2lE(θ̃)
has a limiting χ2

p distribution.

Lemma 15 (Qin and Lawless, 1994, Lemma 1). Assume that E{g(x, θ0)gτ (x, θ0)} is positive
definite, ∂g(x, θ)/∂θ is continuous in a neighborhood of the true value θ0, ‖∂g(x, θ)/∂θ‖ and
‖g(x, θ)‖3 are bounded by some integrable function G(x) in the neighborhood, and the rank of
E∂g(x, θ0)/∂θ is p. Then, as n → ∞, with probability 1 lE(θ) attains its minimum value at
some point θ̃ in the interior of the ball ‖θ − θ0‖ ≤ n−1/3.

Theorem 16 (Qin and Lawless, 1994, Theorem 2). In addition to the conditions of Lemma
15, assume that ∂2g(x, θ)/∂θ∂θτ is continuous in θ in a neighborhood of the true value θ0. Then
if ‖∂2g(x, θ)/∂θ∂θt‖ can be bounded by some integrable function G(x) in the neighborhood, then
the empirical likelihood ratio statistic for testing H0 : θ = θ0 is

WE(θ0) = 2lE(θ0)− 2lE(θ̃) →d χ2
(p)

as n →∞, when H0 is true, where lE(θ) is given by (5.13).

When r = p than the methods developed in Qin and Lawless (1994) are the same as those
of Owen (1988, 1990). However, in the case where r > p we can deal with the combination of
pieces of information about a distribution. For illustration we give some examples, which are
taken from Qin and Lawless (1994).

Example 3. There are situations when the information relating the first and second moments
of the variable is given. For example, let y1, . . . , ym be i.i.d., univariate observations with mean
θ, and suppose that it is known that E(y2) = m(θ), where m(·) is a known function. Our goal
is to estimate θ. The information about F can be expressed taking

g(y, θ) = (y − θ, y2 −m(θ))τ .

Example 4. A nonparametric estimation of a distribution F when information about certain
functions of F is available is commonly observed in the literature. For example, Haberman
(1984) and Sheehy (1988) consider estimation of F (x) based on i.i.d. sample x1, . . . , xn when it
is known that EF {T (x)} = a, for some specified function T (·). Now taking g(x) = T (x) = a;
that is, r = 1 and the dimension p of θ is 0.
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5.3 EL in two sample case

EL has been extended for two sample problems by Qin and Zhao (2000), Qin (1997), Jing (1995),
Claeskens et al. (2003), Jing and Zhou (2003) and others. We will follow closely the setup of
Qin and Zhao (2000), which is general enough for our purposes.

First we describe the general framework. Let i.i.d. r.v.’s X1, . . . , Xn and Y1, . . . Ym have
unknown distribution functions F1 and F2, which are elements of some class F . We are interested
in construction of confidence intervals for some function t → ∆(t) defined on an interval T
(further on we write only ∆). For that reason we will use empirical likelihood, which models F1

and F2 by multinomial distributions concentrated of the observations. Let θ0 be some univariate
parameter associated with one of the distributions F1 or F2. We assume that all information
about θ0,∆, F1 and F2 is available in the known form of unbiased estimating functions, i.e.

EF1w1(X, θ0,∆, t) = 0, (5.14)

EF2w2(Y, θ0, ∆, t) = 0. (5.15)

Remark 17. Let ∆ = θ1 − θ0, where θ0 and θ1 are univariate parameters associated with F1

and F2 respectively. Then we have exactly the setup of Qin and Zhao (2000). The reason of
our formulation of the problem is to have some flexibility in function ∆. This includes such an
important case as P-P plots (cf. Example 7) analyzed via empirical likelihood by Claeskens et

al. (2003) and also Q-Q plots (cf. Example 8). Therefore the results of Claeskens et al. (2003)
actually follow from the results of Qin and Zhao (2000).

Example 5. Denote θ0 =
∫

xdF1(x) and ∆ =
∫

ydF2(y)− ∫
xdF1(x). We can obtain the forms

(5.14) and (5.15) by taking

w1(X, θ0, ∆, t) = X − θ0, w2(Y, θ0, ∆, t) = Y − θ0 −∆.

Example 6. For a given t0, putting θ0 = F1(t0) and ∆ = F2(t0)− F1(t0) again we can obtain
the forms (5.14) and (5.15) by taking

w1(X, θ0, ∆, t) = I{X≤t0} − θ0, w2(Y, θ0, ∆, t) = I{Y≤t0} − θ0 −∆.

Example 7. Denote θ0 = F−1
2 (t) and ∆ = F1(F−1

2 (t)), which is the P-P plot of functions F1

and F2 (cf. Section 3). In this case

w1(X, θ0,∆, t) = I{X≤θ0} −∆, w2(Y, θ0,∆, t) = I{Y≤θ0} − t.

This setting also covers the case of ROC curves defined as ∆ = 1 − F1(F−1
2 (1 − t)), which is

important tool used to summarize the performance of a medical diagnostic test for determining
whether a patient has a disease or not.

Example 8. Denote θ0 = F2(t) and ∆ = F−1
1 (F2(t)), which is well known as a quantile-quantile

Q-Q plot (cf. Section 3). We have

w1(X, θ0, ∆, t) = I{X≤∆} − θ0, w2(Y, θ0, ∆, t) = I{Y≤t} − θ0.
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In the two sample case the empirical likelihood function is

L(F1, F2) =
n∏

i=1

dF1(Xi)
m∏

j=1

dF2(Yj) =
n∏

i=1

pi

m∏

j=1

qj , (5.16)

where pi = dF1(Xi) =Pr(X = Xi) and qj = dF2(Yj) =Pr(Y = Yj). It is easy to see that (5.16)
is maximized by

n∏

i=1

dF1n(Xi)
m∏

j=1

dF2m(Yj) = n−nm−m,

where F1n and F2m are the respective empirical distribution functions. The empirical likelihood
ratio is defined then as

R(F1, F2) = L(F1, F2)/L(F1n, F2m) =
n∏

i=1

npi

m∏

j=1

mqj .

For fixed t ∈ T to obtain confidence regions for the function ∆, we define the profile empirical
likelihood ratio function

R(∆, t) = sup
θ,p,q

n∏

i=1

(npi)
m∏

j=1

(mqj), (5.17)

where p = (p1, . . . , pn) and q = (q1, . . . , qm) are subject to restrictions

pi ≥ 0,

n∑

i=1

pi = 1,

n∑

i=1

piw1(Xi, θ,∆, t) = 0, (5.18)

qj ≥ 0,
m∑

j=1

qj = 1,
m∑

j=1

qjw2(Yj , θ,∆, t) = 0. (5.19)

Since

R(∆, t) = sup
θ

sup
p,q

n∏

i=1

(npi)
m∏

j=1

(mqj), (5.20)

we first investigate

R(∆, θ, t) = sup
p,q

n∏

i=1

(npi)
m∏

j=1

(mqj), (5.21)

where p = (p1, . . . , pn) and q = (q1, . . . , qm) are subject to restrictions (5.18) and (5.19). For
a given θ, a unique maximum exists, provided that 0 is inside the convex hull of the points
w1(Xi, θ,∆, t)’s and the convex hull of the w2(Yj , θ, ∆, t)’s. The maximum may be found via
Lagrange multipliers. Let

H =
n∑

i=1

log pi +
m∑

j=1

log qj + τ1

(
1−

n∑

i=1

pi

)
+ τ2


1−

m∑

j=1

qj




− nλ1

n∑

i=1

piw1(Xi, θ,∆, t)−mλ2

m∑

j=1

qjw2(Yj , θ,∆, t), (5.22)

where τ1, τ2, λ1 and λ2 are Lagrange multipliers. Taking derivatives with respect to pi and qi,
we have

∂H

∂pi
=

1
pi
− τ1 − nλ1w1(Xi, θ,∆, t) = 0,
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n∑

i=1

pi
∂H

∂pi
= n− τ1 ⇒ τ1 = n

thus
pi =

1
n(1 + λ1(θ)w1(Xi, θ, ∆, t))

, i = 1, . . . , n. (5.23)

In a similar way we get

qj =
1

m(1 + λ2(θ)w2(Yj , θ, ∆, t))
, j = 1, . . . ,m. (5.24)

From restrictions (5.18) and (5.19) Lagrange multipliers λ1 and λ2 can be determined in terms
of θ by the equations

1
n

n∑

i=1

w1(Xi, θ, ∆, t)
1 + λ1w1(Xi, θ, ∆, t)

= 0, (5.25)

1
m

m∑

j=1

w2(Yi, θ,∆, t)
1 + λ2w2(Yj , θ, ∆, t)

= 0. (5.26)

As in the one sample case λ1 and λ2 can be determined in terms of θ (cf. page 29).

The (profile) empirical likelihood function for ∆ is now defined as

RE(∆, θ, t) =
n∏

i=1

{
1

1 + λ1(θ)w1(Xi, θ, ∆, t)

} m∏

j=1

{
1

1 + λ2(θ)w2(Yj , θ, ∆, t)

}
,

By analogy with (5.9) we define the empirical log-likelihood ratio (multiplied by minus two) as

− 2 log RE(∆, θ, t) = 2
n∑

i=1

log(1 + λ1(θ)w1(Xi, θ, ∆, t)) + 2
m∑

j=1

log(1 + λ2(θ)w2(Yj , θ, ∆)).

(5.27)

To find θ = θ
(n,m)
E that maximizes R(∆, t) we set ∂{−2 log RE(∆, θ, t)}/∂θ = 0. We obtain the

empirical likelihood equation as follows:

1
n

λ1(θ)
n∑

i=1

α1(Xi, θ,∆, t)
1 + λ1(θ)w1(Xi, θ, ∆, t)

+
1
n

λ2(θ)
m∑

j=1

α2(Yj , θ,∆, t)
1 + λ2(θ)w2(Yj , θ, ∆, t)

= 0, (5.28)

where

α1(Xi, θ,∆, t) =
∂w1(Xi, θ,∆, t)

∂θ
and α2(Yi, θ,∆, t) =

∂w2(Yi, θ, ∆, t)
∂θ

.

Here we assume that ∂w1(Xi, θ,∆, t)/∂θ and ∂w2(Yi, θ, ∆, t)/∂θ exist.

The pointwise EL confidence interval for each fixed t ∈ T and for our function of interest ∆ has
the following form ∆ : {R(∆, θ

(n,m)
E , t) > c} for the true ∆0, where θ

(n,m)
E is a root of (5.28).

The constant c can be calibrated using the result of Qin and Zhao (2000).

They make the following assumptions:
(i) θ0 ∈ Θ and Θ is an open interval;
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(ii) EF1w
2
1(x, θ,∆) > 0 and EF2w

2
2(y, θ,∆) > 0, α1(x, θ,∆) and α2(y, θ, ∆) are continuous

in a neighborhood of θ0, α1(x, θ,∆) and w3
1(x, θ,∆) are bounded by some integrable function

G1(x) in this neighborhood, α2(y, θ, ∆) and w3
2(y, θ, ∆) are bounded by some integrable function

G2(y) in this neighborhood, and EF1α1(x, θ,∆) and EF2α2(y, θ,∆) are nonzero;
(iii) m/n → k (as n,m →∞) and 0 < k < ∞.

Theorem 18 (Qin and Zhao (2000), Theorem 1). If the assumptions (i) through (iii) are
satisfied, then there exists a root θ

(n,m)
E of (5.28) such that θ

(n,m)
E is a consistent estimate for θ0,

R(∆, θ) attains its local maximum value at θ
(n,m)
E , and

−2 log RE(∆, θ
(n,m)
E , t) →d χ2

1, (5.29)

as n →∞, for each fixed t ∈ T and →d means the convergence in distribution.



6 Plug-in empirical likelihood in two sample case

Here we establish a generalization of the basic theorem of EL to allow for plug-in estimates
of nuisance parameters in the estimating equations in the two sample case. In this context
we will closely follow the setup of the paper of Hjort et al. (2004), where plug-in empirical
likelihood has been derived in the one sample case. The method of profile EL for dealing with
nuisance parameters in estimating equations is often not applicable for infinite dimensional
nuisance parameters. The necessary smoothness conditions (cf. Owen, 2001, p.54) of estimating
functions are not fulfilled for example if we are interested in inference of sample quantiles. And
even when it is applicable, implementation can be computationally difficult.

The use of plug-in for nuisance parameters in EL confidence regions is not new. It has
been applied recently in various survival analysis contexts by Qin and Jing (2001a, 2001b),
Wang and Jing (2001), Li and Wang (2003) and Qin and Tsao (2003). Hjort et al. (2004)
have provided a wide applicable version of this approach, covering different examples for i.i.d
and censored random variables. They consider also slower than

√
n-rates of convergence and

allow the dimension of the parameter (or the number of estimating equations) to increase with
the sample size. Calibrating EL confidence regions with plug-in is sometimes intractable due
to the complexity of the asymptotics. For such situations Bootstrap approximation has been
established by Hjort et. al. (2004).

Now we are going to establish a similar version of plug-in empirical likelihood for the two
sample case. We will not go deep in possible extensions and many examples, instead of keeping
in mind our goal - constructing confidence intervals for structural relationship models.

Assume that we have the same setup as in Section 5.3. Here inference about the function
∆ is carried out using the estimating functions w1(X, θ0,∆, t, h) and w2(Y, θ0, ∆, t, h) in (5.14)
and (5.15), where h is a ’nuisance’ parameter (may be infinite) with unknown true value h0 =
h0(F1, F2) ∈ H. When h0 is known, it can replace h in the EL ratio function, for each fixed
t ∈ T leading to confidence interval {∆ : R(∆, θ

(n,m)
E , t, h0) > c} for true ∆0. Again the constant

c can be calibrated from the fact that

−2 log RE(∆, θ
(n,m)
E , t, h0) →d χ2

1 (6.1)

as n → ∞, for each fixed t ∈ T (cf. Theorem 18). Now we establish a plug-in version of
EL in which the unknown h0 is replaced by an estimator ĥ, leading to a calibration for {∆ :
R(∆, θ

(n,m)
E , t, ĥ) > c} as a confidence region for ∆0.

6.1 Assumptions and Notation

Now we will establish notation and state our assumptions for plug-in empirical likelihood in
the two sample case. Assume that h0 ∈ H, ĥ ∈ H̄ ⊂ H and t ∈ T , where T is some interval.
Remember that for structural relationships defined in (2.6) we have H ⊆ Rl, l > 0, compact.

For a sequence of random vectors Xn ∈ Rl and a sequence am we use the stochastic order
notation and write Xn = Op(am)

lim
C→∞

lim sup
m→∞

P (|Xn| > Cam) = 0,
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where →p denotes the convergence in probability. Similarly write Xn = op(am) if

a−1
m |Xn| →p 0.

Further on we will use the following notation: w1(X, θ0, h) := w1(X, θ0,∆, t, h), w2(Y, θ0, h) :=
w2(Y, θ0,∆, t, h) and α1(X, θ, h) := α1(X, θ,∆, t, h), α2(Y, θ, h) := α2(Y, θ,∆, t, h). Denote

M1n(θ, t, h) :=
1
n

n∑

i=1

w1(Xi, θ, h), S1n(θ, t, h) :=
1
n

n∑

i=1

w2
1(Xi, θ, h), (6.2)

M2m(θ, t, h) :=
1
m

m∑

j=1

w2(Yj , θ, h), S2m(θ, t, h) :=
1
m

m∑

j=1

w2
2(Yj , θ, h). (6.3)

Assumption 3. (a) θ0 ∈ Ω and Ω is an open interval; (b) m
n → k (as n, m → ∞) and

0 < k < ∞.

Assumption 4. (a) For the first sample X1, . . . , Xn we assume the following:
(A1) EF1w

2
1(X, θ, ĥ) > 0, α1(X, θ, ĥ) is continuous in a neighborhood of θ0, α1(X, θ, ĥ) and

w3
1(X, θ, ĥ) are bounded by some integrable function G1(X) in this neighborhood, EF1α1(X, θ, ĥ)

is nonzero.
(A2) For some subset H̄ of H such that P{ĥ ∈ H̄} → 1, and for some η ∈ (1/3; 1/2), the class
of functions F = {w1(·, θ, h) : |θ − θ0| ≤ cn−η, h ∈ H̄} with a positive constant c < ∞ has the
strong Glivenko-Cantelli property with the almost sure convergence rate

sup
|θ−θ0|≤cn−η ,h∈H̄

∣∣∣∣∣
1
n

n∑

i=1

{w1(Xi, θ, h)− Ew1(X, θ, h)}
∣∣∣∣∣ = O(β1) a.s., (6.4)

where β1 = o(n−η).
(A3) For the functions w2

1(X, θ, h), w3
1(X, θ, h), α1(X, θ, h) assume that also the strong Glivenko-

Cantelli property holds, i.e. (6.4) is true.
(A4) Assume that

Ew1(X, θ0, ĥ) = O(β2) a.s., (6.5)

where β2 = o(n−η).
(b) Assume for the second sample Y1, . . . , Ym that also (A1) - (A4) hold for the functions
w2(Y, θ, h), w2

2(Y, θ, h), w3
2(Y, θ, h), α2(Y, θ, h).

Assumption 5. (a) For the first sample X1, . . . , Xn we assume the following:
(B1) n1/2M1n(θ0, t, ĥ) →d U1(t), where U1(t) ∼ N(0, V1(t)).
(B2) supt∈T |S1n(θ0, t, ĥ)− V2(t)| →p 0.
(B3) supt∈T |n−1

∑n
i=1 α1(Xi, θ0, ĥ)− V3(t)| →p 0.

(B4) w3
1(X, θ0, ĥ) is bounded by some integrable function G11(X).

(B5) Assume for θ ∈ {θ : |θ − θ0| ≤ cn−η}, where c is some positive constant, that

1
n

n∑

i=1

∂S1n(θ, t, ĥ)
∂θ

= Op(1);
1
n

n∑

i=1

α1(Xi, θ, ĥ) = Op(1);
1
n

n∑

i=1

w3
1(Xi, θ, ĥ) = Op(1).

(b) Assume for the second sample Y1, . . . , Ym that also (B1) - (B5) also hold for the functions
w2(Y, θ, h), w2

2(Y, θ, h), w3
2(Y, θ, h), α2(Y, θ, h) and S2m(θ, t, h) with functions M1(t), M2(t) and

M3(t) instead of V1(t), V2(t) and V3(t).
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Assumption 6 (Technical assumption). For both samples X1, . . . , Xn and Y1, . . . , Ym for
λ′1 ∈ [0, λ1], λ′2 ∈ [0, λ2] and θ ∈ {θ : |θ − θ0| ≤ cn−η}, where c is some positive constant, we
assume that

∂2Q1n(θ, 0, 0)
∂θ2

= Op(1);
∂2Q2n(θ, 0, 0)

∂θ2
= Op(1);

∂2Q1n(θ0, λ
′
1, 0)

∂λ2
1

= Op(1)

and
∂2Q2n(θ0, 0, λ′2)

∂λ2
2

= Op(1);
∂2Q3n(θ0, λ

′
1, 0)

∂λ2
1

= Op(1);
∂2Q3n(θ0, 0, λ′2)

∂λ2
2

= Op(1),

where the functions Qin(θ, λ1, λ2) for i = 1, 2, 3 are defined later in (6.34), (6.35) and (6.36),
respectively.

Let us comment on our set of Assumptions. We analyze only the first sample X1, . . . , Xn

case, because for the second sample Y1, . . . , Ym the same considerations hold.

Comment on Assumption 3
Part (a) from the Assumption 3 states that the true parameter θ0 should be in an open interval.
In (b) it has been required that the sample sizes are asymptotically comparable in the sense
that m/n → k, where 0 < k < ∞ and of course n, m →∞. Both assumptions are very natural
(see Qin and Lawless, 1994; Qin and Zhao, 2000).

Comment on Assumption 4
The reason we need the Assumption 4, which contains a subset of the assumptions (A1)-(A4),
is to show that there exists a solution to the maximization problem, which has been described
in Section 5.3. For that reason we need that ĥ → h0 almost surely with some almost sure rate.

The Assumption (A1) has also been assumed by Qin and Lawless (1994) and Qin and Zhao
(2000). However, the assumptions (A2)-(A4) are quite strong and new in case of plug-in empirical
likelihood. Conceivably that might be the reason why Hjort et al. (2004) assumed the existence
of the solution of maximization problem implicitly.

Assumptions (A2) and (A3) mean that the strong law of large numbers holds with the al-
most sure convergence rate O(β1) for a class of empirical processes which are determined by the
parameter h ∈ H. For a known h0 the rate is well known and equal to O(n−1/2(log n)1/2) (see,
e.g. Serfling, 1980, p.95). It appears that also for quite a general class of empirical processes the
almost sure rate for the Glivenko-Cantelli property is the same, O(n−1/2(log n)1/2) (see Alexan-
der (1984) for Vapnik-Červonenkis (VC) classes of sets). Clearly this rate is of order o(n−η) as
required in Assumptions (A2), (A3).

Comment on Assumptions 5 and 6
Assuming an implicit existence of the solution to the maximization problem, we need much
weaker assumptions (Assumptions 5 and 6) to derive the limiting distribution of the test statistic.
In this case only a consistent estimator ĥ of h is required, i.e. we need ĥ →p h0.

Assumptions (B1)-(B3) are similar to ones in Hjort et al. (2004). They are not too restric-
tive, but should be checked in each application of interest, because the limiting distribution of
RE(∆, θ

(n,m)
E , t, ĥ) will depend on functions Vl(t) and Ml(t) for l = 1, 2, 3 (cf. Theorem 21).

Assumption (B5) is technical, we need it for proving Lemma 26. Actually we could have
assumed that the functions ∂S1n(θ′, t, ĥ)/∂θ, α1(X, θ, ĥ) and w3

1(X, θ, ĥ) have the weak Glivenko-
Cantelli property and are dominated by some integrable functions. Then the Assumption (B5)
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would consequently follow. The same concerns the technical Assumption 6.

Let us comment on the Assumption (B4). As already noted by Owen (1988) the existence of
E|w1(X, θ, ĥ)|3 is equivalent to

∑
P (|w1(Xn, θ, ĥ)|3 > n) < ∞. It follows by the Borel-Cantelli

lemma that |w1(Xn, θ, ĥ)| < n1/3 all but finitely often, with probability 1. This implies that

max
1≤i≤n

|w1(Xi, θ, ĥ)| ≤ n1/3 (6.6)

all but finitely often with probability 1, since n1/3 eventually exceeds the largest of the finite
collection of |Xk|’s that exceed k1/3. Therefore we assume that (6.6) holds. We end our discussion
for Assumption (B4) with the following lemma:

Lemma 19 (Owen (1990)). Let Xi ≥ 0 be i.i.d random variables and define Zn = maxi≤i≤n Xi.
If E(X2

1 ) < ∞, then
Zn = o(n1/2) (6.7)

and
1
n

n∑

i=1

X3
i = o(n1/2), (6.8)

both with probability 1 as n →∞.

Proof. See Owen (1990), p.98. It follows straight forward from Borel-Cantelli lemma and
law of large numbers applied to

∑
X2

i .

Remark 20. Hjort et al. (2004) required a weaker assumption, i.e. max1≤i≤n |w1(Xi, θ0, ĥ)| =
opr(n1/2) instead of (6.6), which naturally follows from Lemma 19. However, they assumed that
there exists a solution to the maximization problem described in Section 5.3. Proving Lemma 24
and Lemma 26 we can see that (6.6) is crucial in equations (6.22) and (6.30) for deriving rates
of λ1 and λ2.

Our discussion on assumptions we would like to complete with a note concerning consistent
and almost sure estimators ĥ of unknown h0.

Consistent estimator
Having ”only” a consistent estimator ĥ we can derive the asymptotic limit distribution of the
test statistic, but we can not show that the maximization problem has a solution. Following
the main technique of Qin and Lawless (1994), in order to show the maximization problem we
need that ĥ → h0 almost surely with some rate. However, for consistent estimators under the
Assumptions 3, 5 and 6 the limiting distribution follows actually from Lemma 27 (see also the
proof of Theorem 21 on page 44).

Almost sure estimator
Assume that we have

ĥ = h0 + O(β) a.s., (6.9)

where β = o(n−η) is an almost sure convergence rate. As Ew1(X, θ0, h0) = 0 from the definition
of the estimating equations (cf. (5.14) and (5.15)) it follows that Ew1(X, θ0, ĥ) = O(β) almost
surely. Thus, the condition (A4) is verified. Therefore having the almost sure convergence of
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an estimator ĥ with some rate as in (6.9) under the Assumptions 3 and 4 we can show that the
maximization problem has a solution (cf. Lemma 25).

6.2 Main results

Here we state the main results of the work. We divide the results into two parts. In the first
part we analyze the maximization problem and show under which conditions it has a solution.
The second part is devoted for the limiting distribution of the test statistic. At the beginning
we state the main theorem.

Theorem 21. Assume that Assumptions 3-6 are satisfied, then there exists a root θ
(n,m)
E of

(5.28) such that θ
(n,m)
E is a consistent estimate for θ0, the function RE(∆, θ, t, ĥ) attains its local

maximum value at θ
(n,m)
E and

√
n(θ(n,m)

E − θ0) →d N

(
0,

M1V1

V 2
3 (t)M1(t) + kM2

3 (t)V1(t)

)
, (6.10)

−2 log R(∆, θ
(n,m)
E , t, ĥ) →d

V 2
3 (t)M2(t) + kM2

3 (t)V2(t)
M1(t)V 2

3 (t) + kV1(t)M2
3 (t)

χ2
1 (6.11)

for t ∈ T as n →∞.

Proof. For the proof see page 44.

Remark 22. When V1(t) = V2(t) and M1(t) = M2(t) we have the standard χ2
1 limit distribution

and there is no perturbation due to plug-in. When it is not the case, the functions can be
estimated via consistent estimators. As already noted by Hjort et al. (2004) it is not possible
to say anything in general about the estimation of V1(t), which will depend on the structure of
the specific application. They examine bootstrap approach which can be applied when V1(t) is
difficult to estimate by other means and show that V̂2(t) = S1n(θ̂, t, ĥ) consistently estimates
V2(t) under some additional assumptions. We have even more difficult situation, because V3(t)
and M3(t) should be estimated in general as well.

6.2.1 Maximization problem

Corollary 23. From Assumptions (A2)-(A4) it follows that for θ ∈ {θ : |θ−θ0| ≤ cn−η}, where
c > 0 is some constant

S1n(θ, t, ĥ) = O(1);
1
n

n∑

i=1

w3
1(Xi, θ, ĥ) = O(1);

1
n

n∑

i=1

α1(Xi, θ, ĥ) = O(1) a.s. (6.12)

M1n(θ, t, ĥ) = O(n−η) a.s. (6.13)

Proof. The statement (6.12) follow directly from Assumptions (A2) and (A3). From Taylor
expansion with θ′ ∈ [θ0, θ − θ0] we have

M1n(θ, t, ĥ) = M1n(θ0, t, ĥ) +
1
n

n∑

i=1

α1(Xi, θ
′, ĥ)(θ − θ0), (6.14)
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On the other hand due to Assumption (A4)

M1n(θ0, t, ĥ) = Ew1(X, θ0, ĥ) + O(β1) = o(n−η) a.s. (6.15)

Thus,
M1n(θ, t, ĥ) = o(n−η) + O(1)O(n−η) = O(n−η) a.s. (6.16)

Lemma 24. Suppose that 1/3 < η < 1/2 and the Assumption 4 is satisfied. Then

λ1(θ) = O(n−η), λ2(θ) = O(m−η) a.s. (6.17)

uniformly about θ ∈ {θ : |θ − θ0| ≤ cn−η}, where c is some positive constant. Consequently, we
also have

λ1(θ0) = O(β1), λ2(θ0) = O(β1) a.s. (6.18)

Proof. It is similar to the proof of Owen (1990), when E|w1(X, θ, ĥ)|3 < ∞ and |θ − θ0| ≤
cn−η. The probabilities pi appearing in the definition of RE(∆, θ, t) in (5.17) are given by
pi = n−1(1 + λ1w1(Xi, θ, ĥ))−1. Therefore, 1 + λ1w1(Xi, θ, ĥ) ≥ 0, and so

|1 + λ1w1(Xi, θ, ĥ)|−1 ≥ (1 + |λ1| max
1≤i≤n

|w1(Xi, θ, ĥ)|)−1. (6.19)

By definition of λ1 and using (6.19) we have,

0 = n−1

∣∣∣∣∣
n∑

i=1

{λ1(θ)w2
1(Xi, θ, ĥ)(1 + λ1(θ)w1(Xi, θ, ĥ))−1 − w1(Xi, θ, ĥ)}

∣∣∣∣∣
≥ |λ1(θ)|(1 + |λ1(θ)| max

1≤i≤n
|w1(Xi, θ, ĥ)|)−1S1n(θ, t, ĥ)−M1n(θ, t, ĥ). (6.20)

Therefore, |λ1(θ)|S1n(θ, t, ĥ) ≤ (1 + |λ1(θ)|max1≤i≤n |w1(Xi, θ, ĥ)|)M1n(θ, t, ĥ), or, equivalently,

|λ1(θ)|(S1n(θ, t, ĥ)− max
1≤i≤n

|w1(Xi, θ, ĥ)|M1n(θ, t, ĥ)) ≤ M1n(θ, t, ĥ). (6.21)

This is an important equation, from which we can derive different rates of λ1(θ) and λ1(θ0). It
follows directly from Corrolary 23 and (6.6) that

|λ1|(O(1)− o(n1/3)O(n−η)) ≤ O(n−η) a.s. (6.22)

So, λ1 = O(n−η) almost surely.

Lemma 25. Assume that the Assumption 4 is satisfied with η as in Lemma 24. Then with
probability tending to 1, there exists a root θ

(n,m)
E of (5.28) such that

|θ(n,m)
E − θ0| = O(n−η), (6.23)

and −2 log RE(∆, θ, t, ĥ) attains its local maximum value at θ
(n,m)
E .

Proof. The idea is similar to Qin and Lawless (1994). Put λ1 = λ1(θ). From (5.25) we have

0 =
1
n

n∑

i=1

w1(Xi, θ, ĥ)

(
1− λ1(θ)w1(Xi, θ, ĥ) +

λ2
1(θ)w

2
1(Xi, θ, ĥ)

1 + λ1(θ)w1(Xi, θ, ĥ)

)

= M1n(θ, t, ĥ)− λ1(θ)S1n(θ, t, ĥ) +
1
n

n∑

i=1

λ2
1(θ)w

3
1(Xi, θ, ĥ)

1 + λ1(θ)w1(Xi, θ, ĥ)
. (6.24)
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The modulo from the last term is bounded by

1
n

n∑

i=1

|w3
1(Xi, θ, ĥ)||λ1(θ)|2|1 + λ1(θ)w1(Xi, θ, ĥ)|−1 = O(1)O(n−2η)O(1) = O(n−2η) a.s.

which follows from Assumption 4 and the fact that max1≤i≤n |λ1(θ)w1(Xi, θ, ĥ)| = O(n−η)o(n1/3) =
o(1). So,

λ1(θ) =
M1n(θ, t, ĥ)

S1n(θ, t, ĥ)
+ O(n−2η) = O(n−η). (6.25)

uniformly about θ ∈ {θ : |θ − θ0| ≤ cn−η}. Put

H1E(∆, θ, t, ĥ) =
n∑

i=1

log(1 + λ1(θ)w1(Xi, θ, ĥ)), (6.26)

H2E(∆, θ, t, ĥ) =
m∑

j=1

log(1 + λ2(θ)w2(Yj , θ, ĥ)). (6.27)

Hence, since we can write

log(1 + x) = x− 1
2
x2 +

1
3

x3

(1 + ξ)3
,

where ξ lies between 0 and x, by (6.25) and Taylor expansion for ξn,i ∈ [0, λ1(θ)w1(Xi, θ, ĥ)],
where max1≤i≤n |λ1(θ)w1(Xi, θ, ĥ)| = O(n−η)o(n1/3) = o(1) we have

H1E(∆, θ, t, ĥ)

=
n∑

i=1

λ1(θ)w1(Xi, θ, ĥ)− 1
2

n∑

i=1

λ2
1(θ)w

2
1(Xi, θ, ĥ) + nλ3

1(θ)
1
n

n∑

i=1

w3
1(Xi, θ, ĥ)

(1 + ξn,i)3
a.s.

=
n

2

(
1
n

n∑

i=1

w1(Xi, θ, ĥ)

)2 (
1
n

n∑

i=1

w2
1(Xi, θ, ĥ)

)−1

+ O(n)O(n−3η)O(1) a.s.

=
n

2

(
1
n

n∑

i=1

w1(Xi, θ0, ĥ) +
1
n

n∑

i=1

α1(Xi, θ
′, ĥ)(θ − θ0)2

)2

O(1) + o(n1−2η) a.s.

=
n

2
(
O(β2) + O(β1) + O(1)O(n−η)

)2 + o(n1−2η) a.s.

= O(n1−2η) a.s..

Similarly,

H1E(∆, θ0, t, ĥ) =
n

2

(
1
n

n∑

i=1

w1(Xi, θ0, ĥ)

)2 (
1
n

n∑

i=1

w2
1(Xi, θ0, ĥ)

)−1

+ o(1)

= O(n)(O(β2) + O(β1))2 a.s.

From Assumptions (A2)-(A4) we have O(n)(O(β2) + O(β1))2 = o(n1−2η). Since H1E(∆, θ, t, ĥ)
is a continuous function about θ as θ belongs to the ball |θ − θ0| ≤ cn−η, H1E(∆, θ, t, ĥ) has
minimum value in the interior of this ball. The same holds for H2E(∆, θ, t, ĥ). Therefore, when
|θ − θ0| = n−η, with probability tending to one

H1E(∆, θ, t, ĥ) > H1E(∆, θ0, t, ĥ),
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H2E(∆, θ, t, ĥ) > H2E(∆, θ0, t, ĥ).

Hence when |θ − θ0| = n−η, with probability tending to one

−2 log RE(∆, θ, t, ĥ) > −2 log RE(∆, θ0, t, ĥ).

So, there exists a root θ
(n,m)
E of (5.28) such that |θ(n,m)

E − θ0| = O(n−η) and −2 log RE(∆, θ, t, ĥ)
attains its local minimum value at θ

(n,m)
E .

6.2.2 Limiting distribution

Lemma 26. Suppose that 1/3 < η < 1/2 and Assumption 5 holds. Then

λ1(θ) = Op(n−η), λ2(θ) = Op(m−η) (6.28)

uniformly about θ ∈ {θ : |θ − θ0| ≤ cn−η}, where c is some positive constant.

Proof. Similarly as in proof of Lemma 24 (cf. inequality (6.21)) we get

|λ1(θ)|(S1n(θ, t, ĥ)− max
1≤i≤n

|w1(Xi, θ, ĥ)|M1n(θ, t, ĥ)) ≤ M1n(θ, t, ĥ). (6.29)

From Taylor expansion we get for θ′ ∈ [θ, θ − θ0]

S1n(θ, t, ĥ) = S1n(θ0, t, ĥ) +
1
n

n∑

i=1

∂S1n(θ′, t, ĥ)
∂θ

(θ − θ0)2 = Op(1) + Op(1)Op(n−η) = Op(1)

and

M1n(θ, t, ĥ) = M1n(θ0, t, ĥ) +
1
n

n∑

i=1

α1(Xi, θ
′, ĥ)(θ − θ0)2

= Op(n−1/2) + Op(1)Op(n−η) = Op(n−η).

Now from Assumptions 5 follows

|λ1|(Op(1)− op(n1/3)Op(n−η)) ≤ Op(n−η). (6.30)

So, λ1 = Op(n−η).

Lemma 27. Assume that Assumptions 3, 5 and 6 hold and assume that the maximization
problem is solved implicitly, i.e. Lemma 25 is true. Then with θ

(n,m)
E as in Lemma 25 we have

√
n(θ(n,m)

E − θ0) →d N

(
0,

M1V1

M1(t)V 2
3 (t) + kV1(t)M2

3 (t)

)
, (6.31)

λ1(θ
(n,m)
E ) = −k

M3(t)
V3(t)

λ2(θ
(n,m)
E ) + op(n−1/2), (6.32)

√
nλ2(θ

(n,m)
E ) →d N

(
0,

V 2
3 (t)

k(M1(t)V 2
3 (t) + kV1(t)M2

3 (t))

)
. (6.33)
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Proof. Put λi = λi(θ), λiE = λi(θ
(n,m)
E ) for i = 1, 2, and

Q1n(θ, λ1, λ2) =
1
n

n∑

i=1

w1(Xi, θ, h)
1 + λ1w1(Xi, θ, h)

, (6.34)

Q2n(θ, λ1, λ2) =
1
m

m∑

j=1

w2(Yj , θ, h)
1 + λ2w2(Yj , θ, h)

, (6.35)

Q3n(θ, λ1, λ2) =
1
n

λ1

n∑

i=1

α1(Xi, θ, h)
1 + λ1w1(Xi, θ, h)

+
1
n

λ2

m∑

j=1

α2(Yj , θ, h)
1 + λ2w2(Yj , θ, h)

. (6.36)

From Lemma 25, we have

Qin(θ(n,m)
E , λ1E , λ2E) = 0 for i = 1, 2, 3. (6.37)

First note that for λ′1 ∈ [0, λ1], λ′2 ∈ [0, λ2] and θ′ ∈ [θ, θ − θ0]

∂2Q3n(θ′, 0, 0)
∂θ2

= 0;
∂2Q1n(θ0, 0, λ′2)

∂λ2
2

= 0;
∂2Q2n(θ0, λ

′
1, 0)

∂λ2
1

= 0.

From Assumption 6 it follows

∂2Q1n(θ′, 0, 0)
∂θ2

=
1
n

n∑

i=1

∂2w1(Xi, θ
′, ĥ)

∂θ2
= Op(1);

∂2Q2n(θ′, 0, 0)
∂θ2

=
1
m

m∑

j=1

∂2w2(Yi, θ
′, ĥ)

∂θ2
= Op(1);

∂2Q1n(θ0, λ
′
1, 0)

∂λ2
1

=
2
n

n∑

i=1

w3
1(Xi, θ0, ĥ)

(1 + λ′1w1(Xi, θ0, ĥ))3
= Op(1);

∂2Q2n(θ0, 0, λ′2)
∂λ2

2

=
2
m

m∑

j=1

w3
2(Yj , θ0, ĥ)

(1 + λ′2w2(Yj , θ0, ĥ))3
= Op(1);

∂2Q3n(θ0, λ
′
1, 0)

∂λ2
1

=
2
n

λ′1
n∑

i=1

α1(Xi, θ0, ĥ)w2
1(Xi, θ0, ĥ)

1 + λ′1w1(Xi, θ0, ĥ)
− 2

n

n∑

i=1

α1(Xi, θ0, ĥ)w1(Xi, θ0, ĥ)

(1 + λ′1w1(Xi, θ0, ĥ))2
= Op(1);

∂2Q3n(θ0, 0, λ′2)
∂λ2

2

=
2
m

λ′2
m∑

j=1

α2(Yj , θ0, ĥ)w2
2(Yj , θ0, ĥ)

1 + λ′2w2(Yj , θ0, ĥ)
− 2

m

m∑

i=1

α2(Yj , θ0, ĥ)w2(Yj , θ0, ĥ)

(1 + λ′2w2(Yj , θ0, ĥ))2
= Op(1).

Therefore by Taylor expansion, Lemma 25 and Lemma 26, we have

0 = Qin(θ(n,m)
E , λ1E , λ2E) = Qin(θ0, 0, 0) +

∂Qin(θ0, 0, 0)
∂θ

(θ(n,m)
E − θ0)

+
∂Qin(θ0, 0, 0)

∂λ1
λ1E +

∂Qin(θ0, 0, 0)
∂λ2

λ2E + Op(n−2η), i = 1, 2, 3. (6.38)

Hence

Qin(θ0, 0, 0) +
∂Qin(θ0, 0, 0)

∂θ
(θ(n,m)

E − θ0) +
∂Qin(θ0, 0, 0)

∂λ1
λ1E +

∂Qin(θ0, 0, 0)
∂λ2

λ2E

= op(n−1/2), i = 1, 2, 3. (6.39)
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We have from Assumptions (B1)-(B3)

∂Q1n(θ0, 0, 0)
∂θ

→p V3(t),
∂Q1n(θ0, 0, 0)

∂λ1
→p −V1(t),

∂Q1n(θ0, 0, 0)
∂λ2

= 0,

∂Q2n(θ0, 0, 0)
∂θ

→p M3(t),
∂Q2n(θ0, 0, 0)

∂λ1
= 0,

∂Q2n(θ0, 0, 0)
∂λ2

→p −M1(t),

∂Q3n(θ0, 0, 0)
∂θ

= 0,
∂Q3n(θ0, 0, 0)

∂λ1
→p V3(t),

∂Q3n(θ0, 0, 0)
∂λ2

→p kM3(t).

So 


θ
(n,m)
E − θ0

λ1E

λ2E


 = −S−1




Q1n(θ0, 0, 0)
Q2n(θ0, 0, 0)

0


 + op(n−1/2),

where

S =




V3(t) −V1(t) 0
M3(t) 0 −M1(t)

0 V3(t) kM3(t)


 .

Because

S−1 =
1
c1




M1(t)V3(t) kV1(t)M3(t) V1(t)M1(t)
−kM2

3 (t) kV3(t)M3(t) M1(t)V3(t)
V3(t)M3(t) −V 2

3 (t) V1(t)M3(t)




we have

θ
(n,m)
E − θ0 = − 1

c1
(M1(t)V3(t)Q1n(θ0, 0, 0) + kV1(t)M3(t)Q2n(θ0, 0, 0)) + op(n−1/2),

λ1 =
(

kM3(t)
c1

)
(M3Q1n(θ0, 0, 0)− V3(t)Q2n(θ0, 0, 0)) + op(n−1/2),

λ2 = −
(

V3(t)
c1

)
(M3Q1n(θ0, 0, 0)− V3(t)Q2n(θ0, 0, 0)) + op(n−1/2).

The proof of the Lemma 27 follows from the fact that

√
n

(
Q1n(θ0, 0, 0)
Q2n(θ0, 0, 0)

)
→d N

(
V1(t) 0

0 k−1M1(t)

)
.

Proof of Theorem 21. From Assumption (B4) with ξn,i ∈ [0, λ1(θ
(n,m)
E )w1(Xi, θ

(n,m)
E , ĥ)],

where max1≤i≤n |λ1(θ
(n,m)
E )w1(Xi, θ

(n,m)
E , ĥ)| = Op(n−η)op(n1/3) = op(1) and η ∈ (1/3; 1/2) we

have

n

3
λ3

1(θ
(n,m)
E )

1
n

n∑

i=1

w3
1(Xi, θ

(n,m)
E , ĥ)

(1 + ξn,i)3
= O(n)Op(n−3η)Op(1) = Op(n−3η+1) = op(1). (6.40)

From Taylor expansion,

log R(∆, θ
(n,m)
E , t, ĥ) = −nλ1(θ

(n,m)
E )M1n(θ(n,m)

E , t, ĥ) +
n

2
λ2

1(θ
(n,m)
E )S1n(θ(n,m)

E , t, ĥ)

−mλ2(θ
(n,m)
E )M2m(θ(n,m)

E , t, ĥ) +
m

2
λ2

2(θ
(n,m)
E )S2m(θ(n,m)

E , t, ĥ) + op(1), (6.41)
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Now from (5.25) and (5.26) similarly as in (6.24), we have

M1n(θ(n,m)
E , t, ĥ) = λ1(θ

(n,m)
E )S1n(θ(n,m)

E , t, ĥ) + Op(n−2η).

Similarly
M2m(θ(n,m)

E , t, ĥ) = λ2(θ
(n,m)
E )S2m(θ(n,m)

E , t, ĥ) + Op(n−2η).

From Assumption (B2) we have

S1n(θ(n,m)
E , t, ĥ) = V2(t) + op(1), S2m(θ(n,m)

E , t, ĥ) = M2(t) + op(1)

and from Lemma 27 it follows

−2 log R(∆, θ
(n,m)
E , t, ĥ) = nλ2

1(θ
(n,m)
E )S1n(θ(n,m)

E , t, ĥ) + mλ2
2(θ

(n,m)
E )S2m(θ(n,m)

E , t, ĥ) + op(1)

= nk2 M2
3 (t)

V 2
3 (t)

λ2
2(θ

(n,m)
E )V2(t) + mλ2

2(θ
(n,m)
E )M2(t) + op(1)

= (
√

nλ2(θ
(n,m)
E ))2

k(V 2
3 (t)M2(t) + kM2

3 (t)V2(t))
V 2

3 (t)
+ op(1)

→ V 2
3 (t)M2(t) + kM2

3 (t)V2(t)
M1(t)V 2

3 (t) + kV1(t)M2
3 (t)

χ2
1.

Remark 28. Qin and Zhao (2000) analyzed only Op(·) behavior of λ1 and λ2 for the max-
imization problem (instead of almost sure behavior). Proving the results they mostly refer to
Qin and Lawless (1994) for the details. However, Qin and Lawless (1994) in their basic and
marvelous work in the area of empirical likelihood proved the maximization problem using almost
sure behavior, which is essential here (see also Lemma 24 and Lemma 25).

6.3 Confidence bands for structural relationship models

Here we give an important application for plug-in EL established in Section 6 in the two sample
case for structural relationship models defined in Section 2, page 12. More specifically, we
construct confidence intervals for the function

∆ := ∆(t) = F1(φ1(F−1
2 (φ2(t, h)), h)), (6.42)

where t ∈ T , F1, F2 ∈ F , h ∈ H ⊆ Rl with l > 0 and functions φ1, φ2 such that in Assumption
1. Actually (6.42) can be seen as a generalization of a P-P plot introduced in Section 3 (see also
Example 7, page 31). In this case the estimating functions have the following form:

w1(X, θ0, ∆, t, ĥ) = 1{X≤θ0} −∆, (6.43)

w2(Y, θ0,∆, t, ĥ) = 1{Y≤φ−1 (θ0,ĥ)} − φ2(t, ĥ), (6.44)

where θ0 = φ1(F−1
2 (φ2(t, ĥ)), ĥ) and 1{·} is the indicator function. From the estimating equations

(5.14) and (5.15) the system of equations
{

F1(θ0) = ∆,

F2(φ−1 (θ0, ĥ)) = φ2(t, ĥ)
(6.45)

follows.

We have the following result.
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Theorem 29. For structural relationship models assume that ĥ = h0 + O(β) almost surely,
where β = o(n−η). Then Assumptions 4, 5 and 6 hold with the functions

V1(t) = V2(t) = ∆(1−∆), (6.46)

M1(t) = M2(t) = φ2(t, h0)(1− φ2(t, h0)) (6.47)

and there exists a root θ
(n,m)
E of (5.28) such that θ

(n,m)
E is a consistent estimate for θ0, the

function R(∆, θ, t, ĥ) attains its local maximum value at θ
(n,m)
E and we have no perturbation due

to plug-in, i.e.,
−2 log R(∆, θ

(n,m)
E , t, ĥ) →d χ2

1 (6.48)

for t ∈ T as n →∞.

Proof. First of all note that the class of functions {1X≤t, t ∈ R} has a strong Glivenko-
Cantelli property (cf. Example 9, page 67 in the Appendix). For both samples X1, . . . , Xn and
Y1, . . . , Ym the Assumptions 4, 5 and 6 hold, which follows from almost sure convergence of ĥ

and Lemma 42, page 68 in the Appendix.
To apply Theorem 21 we need to verify the functions V1(t), V2(t), V3(t) and M1(t), M2(t),

M3(t). We start with the first sample X1, . . . , Xn. It is much easier to check the Assumptions
(B1) and (B2), because the function w1(X, θ0,∆, t, ĥ) does not contain the estimator ĥ. We
easily obtain that

V1(t) = V2(t) = ∆(1−∆).

For the second sample the situation is a bit more difficult. We have

1
m

m∑

j=1

w2
2(Yj , θ0,∆, t, ĥ)

=
1
m

m∑

j=1

12
{Yj≤φ−1 (θ0,ĥ)} − 2

1
m

m∑

j=1

φ2(t, ĥ)1{Yj≤φ−1 (θ0,ĥ)} + φ2
2(t, ĥ)

= F2m(φ−1 (θ0, ĥ))− 2F2m(φ−1 (θ0, ĥ))φ2(t, ĥ) + φ2
2(t, ĥ),

where F2m(·) is the empirical distribution function. Due to the equation system (6.45) it follows
that F2m(φ−1 (θ0, ĥ)) → F2(φ−1 (θ0, h0)) = φ2(t, h0) almost surely (cf. Lemma 42, page 68 in the
Appendix). Thus, M2(t) = φ2(t, h0)(1− φ2(t, h0)).

For the matrix M1(t) note that

√
mM2m(θ0, t, ĥ) =

√
mM2m(θ0, t, h0) +

√
m(M2m(θ0, t, ĥ)−M2m(θ0, t, h0)). (6.49)

The first term
√

mM2m(θ0, t, h0) →d N(0, F2(φ−1 (θ0, h0))(1−F2(φ−1 (θ0, h0)))). To show that the
second term in (6.49) converges in probability to zero we can use Skorohod construction (cf. Li
and Doss, 1993, p. 788).

Remark 30. Other way to show that
√

mM2m(θ0, t, ĥ) →d N(0, F2(φ−1 (θ0, h0))(1−F2(φ−1 (θ0, h0))))
is to use Lemma 43, page 68 in the Appendix. However, the direct Skorohod construction is plau-
sible here, when considering empirical processes involving the empirical distribution function
itself.
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We obtain that
M1(t) = M2(t) = φ2(t, h0)(1− φ2(t, h0)).

Now we apply Theorem 21. By Remark 22 we known that in the case when V1(t) = V2(t) and
M1(t) = M3(t) we do not have to calculate the functions V3(t) and M3(t). It follows that we
have no perturbation due to plug-in and

−2 log R(∆, θ
(n,m)
E , t, ĥ) →d χ2

1

for t ∈ T as n,m →∞.



7 Smoothed plug-in EL for Structural relationships

Now we are going to introduce the smoothed plug-in empirical likelihood method which we will
use later for simulations in the context of structural relationship models. Amazingly it provides
some additional advantages in case of construction of confidence intervals for sample quantiles.
Owen (1988) remarked that, when applied to the problem of constructed confidence intervals
for a population quantile, the empirical likelihood reproduces precisely the so-called sign-test
or binomial-method interval. However, by appropriate smoothing of the empirical likelihood
method Chen and Hall (1993) showed that the coverage accuracy may be improved from order
n−1/2 to n−1. Moreover the smoothed empirical likelihood appears to be Bartlett-correctable.
Thus, an empirical correction for scale can reduce the size of coverage error from order n−1 to
n−2.

Chen and Hall (1993) introduced smoothed empirical likelihood for construction of confidence
intervals for quantiles in one population. For constructing confidence bands for P-P plots in the
two sample case Claeskens et al. (2003) also have used the smoothed version of empirical
likelihood.

Now let us introduce the smoothed empirical likelihood for structural relationship model.
This can be viewed as an extension of the results of Claeskens et al (2003).

For j = 1, 2 let Hj denote a smoothed version of the degenerate distribution function H0

defined by H0(x) = 1 for x ≥ 0, 0 otherwise. Define Hj(t) =
∫
u≤t Kj(u)du, where Kj is

a compactly supported r-th order kernel which is commonly used in nonparametric density
estimation. That is, for some integer r ≥ 2 and constant κ 6= 0, Kj is a function satisfying

∫
ukKj(u)du =





1, if k = 0,

0, if 1 ≤ k ≤ r − 1,

κ, if k = r.

(7.1)

For further use we also define Hbj
(t) = Hj(t/bj), where b1 = b1(n) and b2 = b2(m) are band-

width sequences, converging to zero as n,m grows to infinity.

Consider the problem of constructing confidence bands for the function ∆ defined in (6.42).
Let p = (p1, . . . , pn1) and q = (q1, . . . , qn2) be two vectors consisting of nonnegative numbers

adding to one. Define further the estimators

F̂b1,p(θ0) =
n∑

i=1

piHb1(θ0 −Xi) and F̂b2,q(φ−1 (θ0, ĥ)) =
m∑

j=1

qjHb2(φ
−
1 (θ0, ĥ)− Yj).

For this setting we define the profile smoothed empirical likelihood ratio function for ∆ as

R(sm)(∆, θ0, t, ĥ) = sup
p,q

n∏

i=i

npi

m∏

j=1

mqj , (7.2)

where the latter supremum is subject to the following constraints:
{

F̂b1,p(θ0) = ∆,

F̂b2,q(φ−1 (θ0, ĥ)) = φ2(t, ĥ).
(7.3)
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The estimating equations have the following form:

w1(Xi, θ0, ĥ) = Hb1(θ0 −Xi)−∆, (7.4)

w2(Yj , θ0, ĥ) = Hb2(φ
−
1 (θ0, ĥ)− Yj)− φ2(t, ĥ). (7.5)

Although it is a special case of the main Theorem 21, still we need to review all Lemmas 24,
26, 25, 27 and also main Theorem 21 itself. The reason is that we have the additional smoothing
parameters b1 and b2 tending to zero as n,m → ∞ and we need conditions on the rates of the
speed. The results of the following lemma will be useful to clarify more on this situation.

Let fj = F ′
j denote the first derivative of Fj , where defined and f (r) be the r-th derivative

of the function f .

Assumption 7. For j = 1, 2 assume that Kj satisfies (7.1), and is bounded and compactly
supported; that fj and f r−1

j exist in a neighborhood of θ0 and are continuous at θ0, f r−1
j and

f r
j are bounded and fj(θ0) > 0.

Assumption 8. For both samples X1, . . . , Xn and Y1, . . . , Ym assume that nb3r
1 → 0 and mb3r

2 →
0 respectively.

Lemma 31. If Assumption 7 is satisfied we have

E{w1(X, θ, h0)} = F1(θ)− F1(θ0) + O(br
1),

E{w2(Y, θ, h0)} = F2(φ−1 (θ, h0))− F2(φ−1 (θ0, h0)) + O(br
2),

var{w1(X, θ, h0)} = F1(θ)(1− F1(θ)) + O(b1),

var{w2(Y, θ, h0)} = F2(φ−1 (θ, h0))(1− F2(φ−1 (θ, h0))) + O(b2),

E{α1(X, θ, h0)} = f1(θ) + O(br
1),

E{α2(Y, θ, h0)} = f2(φ−1 (θ, h0))φ−1 (θ0, h0)′θ + O(br
2).

Proof. Let us do some simple calculations involving Taylor expansions. We will do it only for
the function w2(Y, θ0, h0). For the function w1(X, θ0, h0) similar considerations hold. Integration
by parts and variable transformation gives

E
{

H2

(
φ−1 (θ, h0)− Y

b2

)}
− F2(φ−1 (θ, h0))

=
∫ +∞

−∞
H2

(
φ−1 (θ, h0)− y

b2

)
dF2(y)− F2(φ−1 (θ, h0))

=
∫ ∞

−∞
{F2(φ−1 (θ, h0)− b2u)− F2(φ−1 (θ, h0))}K2(u)du

=
∫ ∞

−∞

{
f2(φ−1 (θ, h0))(−b2u) + . . . +

1
r!

f
(r−1)
2 ((φ−1 (θ, h0))(−b2u)r + o(br

2)
}

K2(u)du

= O(br
2).

Again by integration by parts and variable change for µ ∈ [φ−1 (θ, h0)− b2u, φ−1 (θ, h0)] we have

E
{

H2
2

(
φ−1 (θ, h0)− Y

b2

)}
=

∫ +∞

−∞
H2

2

(
φ−1 (θ, h0)− y

b2

)
dF2(y)

= 2
∫ ∞

−∞
{F2(φ−1 (θ, h0)− b2u)}H2(u)dH2(u)

= F2(φ−1 (θ, h0))
∫ ∞

−∞
dH2

2 (u)−
∫ ∞

−∞
b2uf2(µ)H2(u)dH2(u)

= F2(φ−1 (θ, h0)) + O(b2).
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At last we have

E{α2(Y, θ, h0)} =
∫ +∞

−∞

∂Hb1(θ − x)
∂θ

dF (x)

=
1
b1

∫ +∞

−∞
K2

(
φ−1 (θ, h0)− x

b1

)
φ−1 (θ, h0)′θdF (x)

= φ−1 (θ, h0)′θ

∫ +∞

−∞
f2(φ−1 (θ, h0)− b1y)K2(y)dy

= f2(φ−1 (θ, h0))φ−1 (θ, h0)′θ + O(br
2).

Remember that in case of empirical likelihood in the two sample case without smoothing
we have Ew1(X, θ0, h0) = 0. From Lemma 31 it follows that Ew1(X, θ0, h0) = O(br

1). Therefore
we have to review our results in order to find at what speed b1 and b2 should converge to zero
asymptotically when the sample sizes n,m →∞.

We assume again the set of Assumptions 3 - 6 in case of smoothed empirical likelihood for
structural relationships, except the Assumption (A4). From Lemma 31 it follows that we need a
slight change due to the smoothing parameters b1 and b2 in our Assumption (A4), i.e. we need
to assume the following:

(A4′) For the functions w1(X, θ0, ĥ) and w2(X, θ0, ĥ) assume that

Ew1(X, θ0, ĥ) = O(β2) + O(br
1), (7.6)

Ew2(Y, θ0, ĥ) = O(β2) + O(br
2), (7.7)

where β2 = o(n−η).
Later we will verify on which conditions Assumptions 3 - 6 with the modified assumption

(A4′) hold. But now let us review all lemmas and theorems derived in Section 6.2 in order to
find out what convergence rates of the smoothing parameters b1 and b2 we need to require. We
will not rewrite all proofs, but still indicate the difference due to smoothing, when needed.

7.1 Main results

We separate again the maximization problem and the limiting distribution of the test statistic.

7.1.1 Maximization problem

Corollary 32. From Assumptions (A2),(A4) it follows that for θ ∈ {θ : |θ−θ0| ≤ cn−η}, where
c > 0 is some constant

S1n(θ, t, ĥ) = O(1);
1
n

n∑

i=1

w3
1(Xi, θ, ĥ) = O(1);

1
n

n∑

i=1

α1(Xi, θ, ĥ) = O(1) a.s. (7.8)

M1n(θ, t, ĥ) = O(br
1) + O(n−η) a.s. (7.9)

Proof. The statement (7.8) follows directly from Lemma 31 and Assumptions (A3),(A4).
For example

1
n

n∑

i=1

α1(Xi, θ, ĥ) = Eα1(X, θ, ĥ) + O(β1) a.s. (7.10)

= f1(θ) + O(br
1) + O(β2) + O(β1) = O(1) a.s. (7.11)
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Lemma 33. Let 1/3 < η < 1/2. Suppose that Assumption 7 and Assumption 4 with modified
condition (A4′) are satisfied. Then

λ1(θ) = O(br
1) + O(n−η), λ2(θ) = O(br

2) + O(m−η) a.s. (7.12)

uniformly about θ ∈ {θ : |θ − θ0| ≤ cn−η}, where c is some positive constant. Consequently, we
also have

λ1(θ0) = O(br
1) + O(β2), λ2(θ0) = O(br

2) + O(β2) a.s. (7.13)

Proof. Similarly as in (6.21) we have

|λ1(θ)|(S1n(θ, t, ĥ)− max
1≤i≤n

|w1(Xi, θ, ĥ)|M1n(θ, t, ĥ)) ≤ M1n(θ, t, ĥ).

Let C1 denote an upper bound to |H|. Then C2 = C1 + ∆ is an upper bound to |w1(Xi, θ, ĥ)|
for all i and b1. It follows directly from Corrolary 32 that

|λ1|(O(1)− C2(O(br
1) + O(n−η))) ≤ O(br

1) + O(n−η) a.s. (7.14)

So, λ1 = O(br
1) + O(n−η) almost surely.

Lemma 34. Assume that Assumption 7 and Assumption 4 with the modified condition (A4′)
are satisfied and η is as in Lemma 33. Then with probability tending to 1, there exists a root
θ
(n,m)
E of (5.28) such that

|θ(n,m)
E − θ0| = O(n−η), (7.15)

and − log R
(sm)
E (∆, θ, t, ĥ) attains its local maximum value at θ

(n,m)
E .

Proof. Similarly as (6.25) we get

λ1(θ) =
M1n(θ, t, ĥ)

S1n(θ, t, ĥ)
+ O(br

1 + n−η)2 = O(br
1 + n−η) (7.16)

uniformly about θ ∈ {θ : |θ− θ0| ≤ cn−η}. By (7.16) and Taylor expansion with θ′ ∈ [θ0, θ− θ0]
we have similarly as in proof of Lemma 25

H1E(∆, θ, t, ĥ)

=
n

2

(
1
n

n∑

i=1

w1(Xi, θ, ĥ)

)2 (
1
n

n∑

i=1

w2
1(Xi, θ, ĥ)

)−1

+ O(n)O(br
1 + n−η)3 a.s.

=
n

2

(
1
n

n∑

i=1

w1(Xi, θ0, ĥ) +
1
n

n∑

i=1

α1(Xi, θ
′, ĥ)(θ − θ0)2

)2

O(1) + O(n)O(br
1 + n−η)3 a.s.

=
n

2

(
E(w1(X, θ0, ĥ)) + O(β1) + O(1)O(n−η)

)2
+ O(n)O(br

1 + n−η)3 a.s.

=
n

2
(O(br

1) + O(β2) + O(β1) + O(n−η))2 + O(n)O(br
1 + n−η)3 a.s.

Similarly,

H1E(∆, θ0, t, ĥ)

=
n

2

(
1
n

n∑

i=1

w1(Xi, θ0, ĥ)

)2 (
1
n

n∑

i=1

w2
1(Xi, θ0, ĥ)

)−1

+ O(n)O(br
1 + O(β2) + O(β1))3 a.s.

=
n

2
(O(br

1) + O(β2) + O(β1))2 + O(n)O(br
1 + O(β2) + O(β1))3 a.s.
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From the proof of Lemma 25 we can conclude for |θ − θ0| = n−η, with probability tending to
one

−2 log R
(sm)
E (∆, θ, t, ĥ) > −2 log R

(sm)
E (∆, θ0, t, ĥ).

So, there exists a root θ
(n,m)
E of (5.28) such that |θ(n,m)

E −θ0| = O(n−η) and −2 log R
(sm)
E (∆, θ, t, ĥ)

attains its local minimum value at θ
(n,m)
E .

7.1.2 Limiting distribution

Lemma 35. Suppose that 1/3 < η < 1/2 and Assumptions 5 and 7 are satisfied. Then

λ1(θ) = Op(br
1) + Op(n−η), λ2(θ) = Op(br

2) + Op(m−η) (7.17)

uniformly about θ ∈ {θ : |θ − θ0| ≤ cn−η}, where c is some positive constant.

Proof. Similarly as in proof of Lemma 33 (cf. inequality (6.21)) we have

|λ1(θ)|(S1n(θ, t, ĥ)− max
1≤i≤n

|w1(Xi, θ, ĥ)|M1n(θ, t, ĥ)) ≤ M1n(θ, t, ĥ). (7.18)

From Taylor expansion we get for θ′ ∈ [θ, θ − θ0]

M1n(θ, t, ĥ) = M1n(θ0, t, ĥ) +
1
n

n∑

i=1

α1(Xi, θ
′, ĥ)(θ − θ0)2

= O(br
1) + Op(n−1/2) + Op(1)Op(n−η) = Op(br

1) + Op(n−η).

Thus, from Corollary 32 it follows

|λ1|(Op(1)− C2Op(br
1 + n−η)) ≤ Op(br

2 + n−η),

So, λ1 = Op(br
1 + n−η).

Lemma 36. Assume that Assumptions 3, 5, 6, 7 and 8 hold. Assume additionally that the
maximization problem has a solution, i.e. lemma 34 is true. Then with θ

(n,m)
E such as in

Lemma 34 we have

√
n(θ(n,m)

E − θ0) →d N

(
0,

M1V1

M1(t)V 2
3 (t) + kV1(t)M2

3 (t)

)
, (7.19)

λ1(θ
(n,m)
E ) = −k

M3(t)
V3(t)

λ2(θ
(n,m)
E ) + op(n−1/2), (7.20)

√
nλ2(θ

(n,m)
E ) →d N

(
0,

V 2
3 (t)

k(M1(t)V 2
3 (t) + kV1(t)M2

3 (t))

)
. (7.21)

Proof. The proof is the same as the proof of Lemma 27. By Taylor expansion, Lemma 34
and Lemma 35, we have

0 = Qin(θ(n,m)
E , λ1E , λ2E) = Qin(θ0, 0, 0) +

∂Qin(θ0, 0, 0)
∂θ

(θ(n,m)
E − θ0)

+
∂Qin(θ0, 0, 0)

∂λ1
λ1E +

∂Qin(θ0, 0, 0)
∂λ2

λ2E + Op(br
1 + n−η)2, i = 1, 2, 3. (7.22)
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Due to Assumption 8 on bandwidths b1 and b2 we have

Qin(θ0, 0, 0) +
∂Qin(θ0, 0, 0)

∂θ
(θ(n,m)

E − θ0) +
∂Qin(θ0, 0, 0)

∂λ1
λ1E +

∂Qin(θ0, 0, 0)
∂λ2

λ2E

= op(n−1/2), i = 1, 2, 3. (7.23)

We have again

θ
(n,m)
E − θ0 = − 1

c1
(M1(t)V3(t)Q1n(θ0, 0, 0) + kV1(t)M3(t)Q2n(θ0, 0, 0)) + op(n−1/2),

λ1 =
(

kM3(t)
c1

)
(M3Q1n(θ0, 0, 0)− V3(t)Q2n(θ0, 0, 0)) + op(n−1/2),

λ2 = −
(

V3(t)
c1

)
(M3Q1n(θ0, 0, 0)− V3(t)Q2n(θ0, 0, 0)) + op(n−1/2).

and the lemma follows from the fact that

√
n

(
Q1n(θ0, 0, 0)
Q2n(θ0, 0, 0)

)
→d N

(
V1(t) 0

0 k−1M1(t)

)
.

Theorem 37. Assume that ĥ = h0 + O(β) almost surely, where β = o(n−1/3). For structural
relationship models with estimating equations (7.4) and (7.5) let Assumptions 3, 7 and 8 hold.
Then Assumption 4 holds with the modified condition (A4′), Assumptions 5 and 6 hold. More-
over, there exists a root θ

(n,m)
E of (5.28) such that θ

(n,m)
E is a consistent estimate for θ0, the

function R
(sm)
E (∆, θ, t, ĥ) attains its local maximum value at θ

(n,m)
E ,

V1(t) = V2(t) = ∆(1−∆); (7.24)

M1(t) = M2(t) = φ2(t, h0)(1− φ2(t, h0)); (7.25)

V3(t) = f1(θ0); M3(t) = f2(φ−1 (θ, h0))φ−1 (θ0, h0)′θ (7.26)

and there is no perturbation due to plug-in, that means

−2 log R
(sm)
E (∆, θ

(n,m)
E , t, ĥ) →d χ2

1 (7.27)

for t ∈ T as n →∞.

Proof. Is similar to the proof of Theorem 29. From Corollary 45, page 70 in the Appendix we
know that the class of functions {Hb2(t− y), t ∈ R} has the Glivenko-Cantelli property. Clearly
Assumptions 5 and 6 hold (see also the proof of Theorem 29).

Now let us verify the functions V1(t), V2(t), V3(t) and M1(t),M2(t),M3(t). It is easy to check
that

V1(t) = V2(t) = ∆(1−∆),

because the first estimating equation (7.4) involves only the function w1, which for structural
relationship models does not involve nuisance parameters. The situation with functions M1(t)
and M2(t) is more difficult. Corollary 45, page 70 in the Appendix and Lemma 48, page 71
in the Appendix state that smoothed empirical processes have Glivenko-Cantelli and Donsker
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properties. Heuristically this combined with Lemma 42 and Lemma 43 on the page 68 in
the Appendix gives us the desired result, but let us make it more precise. Let us check now
Assumption (B2) for S2m(θ0, t, ĥ):

S2m(θ0, t, ĥ) =
1
m

m∑

j=1

w2
2(Yj , θ0, ∆, t, ĥ)

=
1
m

m∑

j=1

H2
b2(φ

−
1 (θ0, ĥ)− Yj)− 2φ2(t, ĥ)

1
m

m∑

j=1

Hb2(φ
−
1 (θ0, ĥ)− Yj) + φ2

2(t, ĥ)

= F̃ ′
2m(φ−1 (θ0, ĥ))− 2F̃2m(φ−1 (θ0, ĥ))φ2(t, ĥ) + φ2

2(t, ĥ),

where F̃ ′ and F̃ are some perturbed empirical distribution functions defined in (10.3), page
69 in the Appendix. From Corollary 45 and Lemma 42 it follows that F̃ ′

2m(φ−1 (θ0, ĥ)) →
F2(φ−1 (θ0, h0)) = φ2(t, h0) and F̃2m(φ−1 (θ0, ĥ)) → φ2(t, h0) almost surely. This leads to the
conclusion that M2(t) = φ2(t, h0)(1− φ2(t, h0)).

Now we need to treat Assumption (B1), i.e. we have to analyze the behavior of
√

mM2m(θ0, t, ĥ)
defined in (6.3). Note that the class {Hb2(t − y), t ∈ R} is Donsker (cf. Lemma 48). Applying
now Lemma 43 we get that

√
mM2m(θ0, t, ĥ) →d

√
mM2m(θ0, t, h0)

which is distributed as N(0, φ2(t, h0)(1 − φ2(t, h0))). It is easy to see from Lemma 31 that
V3 = f1(θ0), M3 = φ−1 (θ0, h0)f2(φ−1 (θ0, h0)).

Regarding the limiting distribution we have V1(t) = V2(t) and M1(t) = M2(t) again. Thus,
the limiting test statistic has asymptotically the chi-square distribution with one degree of free-
dom. Still we need to check out which conditions on the bandwidths b1 and b2 we need.

First note that from Lemma 35 and Assumption 8 with η ∈ (1/3; 1/2) we have

n

3
λ3

1(θ
(n,m)
E )

1
n

n∑

i=1

w3
1(Xi, θ

(n,m)
E , ĥ) = O(n)Op(br

1 + n−η)3Op(1) = op(1). (7.28)

Using Taylor expansion, we have

log R(∆, θ
(n,m)
E , t, ĥ) = −nλ1(θ

(n,m)
E )M1n(θ(n,m)

E , t, ĥ) +
n

2
λ2

1(θ
(n,m)
E )S1n(θ(n,m)

E , t, ĥ)

−mλ2(θ
(n,m)
E )M2m(θ(n,m)

E , t, ĥ) +
m

2
λ2

2(θ
(n,m)
E )S2m(θ(n,m)

E , t, ĥ) + op(1). (7.29)

Now from (5.25) and (5.26) similarly as in (6.24), we have

M1n(θ(n,m)
E , t, ĥ) = λ1(θ

(n,m)
E )S1n(θ(n,m)

E , t, ĥ) + Op(br
1 + n−η)2

and
M2m(θ(n,m)

E , t, ĥ) = λ2(θ
(n,m)
E )S2m(θ(n,m)

E , t, ĥ) + Op(br
1 + n−η)2.

We have
S1n(θ(n,m)

E , t, ĥ) = V2(t) + op(1) = V1(t) + op(1),

S2m(θ(n,m)
E , t, ĥ) = M2(t) + op(1) = M1(t) + op(1).

and using Assumption 8 from Lemma 36 similarly as in the proof of Theorem 21 it follows

−2 log R(∆, θ
(n,m)
E , t, ĥ) →d χ2

1.
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Remark 38. We need Assumption 8 for the equation (7.28) to hold. For deriving the test
statistic this is crucial.

7.2 Bootstrap confidence bands

It is well known that pointwise confidence intervals are not optimal in the sense that one can not
judge about behavior of the whole curve or function of interest. Nevertheless for the i.i.d case
empirical likelihood has been constructed in literature mostly in the context of pointwise inter-
vals. See for example Owen (1988, 1990, 1992), Qin and Lawless (1994), Chen and Hall (1993),
etc. If data are censored, a simultaneous inference is done usually in a natural way, because
in survival analysis a supremum over the Brownian bridges usually is involved in asymptotic of
test statistics (cf. Einmahl and Mckeague,1999; McKeague and Zhao, 2002, etc.).

To construct a simultaneous confidence region for ∆ over the interval (a, b), we will use the
bootstrap confidence region without losing advantages of the automated shape-determination
by empirical likelihood method. It means that we use empirical likelihood to set the shape of
the confidence bands and use the bootstrap to set the level. This method is introduced by Hall
and Owen (1993) and has been also used by Claeskens et al. (2003). Let us shortly present it
here.

First we nonparametrically draw a resample from each of the two samples separately to
obtain {X∗

1 , . . . , X∗
n} and {Y ∗

1 , . . . , Y ∗
m}. Then we form the bootstrap smoothed empirical log-

likelihood ratio

− 2 log R
∗(sm)
E (∆, θ

∗(n,m)
E , t, ĥ) = 2

n∑

i=1

log(1 + λ∗1(θ
(n,m)
E )w1(X∗

i , θ
∗(n,m)
E , ĥ))

+ 2
m∑

j=1

log(1 + λ∗2(θ
∗(m,m)
E )w2(Y ∗

j , θ
∗(n,m)
E , ĥ)), (7.30)

where, for the structural relationships

w1(X∗
i , θ

∗(n,m)
E , ĥ) = Hb1(θ

∗(n,m)
E −X∗

i )−∆, (7.31)

w2(Y ∗
j , θ

∗(n,m)
E , ĥ) = Hb2(φ

−
1 (θ∗(n,m)

E , ĥ)− Y ∗
j )− φ2(t, ĥ). (7.32)

The bootstrap values of λ∗1(θ
∗(n,m)
E ), λ∗2(θ

∗(n,m)
E ) and θ

∗(n,m)
E are the solutions to the equations

(5.25), (5.26) and (5.28).
To proceed we need to give a remark concerning the smoothed empirical likelihood estimator

of P-P plot itself.

Remark 39. The maximum smoothed empirical likelihood estimator is that value of ∆̂ for which
the smoothed empirical likelihood function is maximized,

∆̂ = arg max
∆

R
(sm)
E (∆, θ

(n,m)
E , t, ĥ). (7.33)

Theorem 40. [Claeskens et al. (2003), Theorem 1]. If φ1(θ, ĥ) = θ, φ2(t, ĥ) = t in (6.42)
and we have the setup of Claeskens et al (2003), then assuming some regularity conditions
(similar to those in our Assumption 7), if nb2r

1 → 0, the smoothed likelihood estimator ∆̂(t)
satisfies √

n(∆̂(t)−∆(t)) →d N(0, ∆(t)(1−∆(t)) + (∆′(t))2t(1− t)n/m).
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Proof. Claeskens et al. (2003) heuristically shows that the result follows from Lloyd and
Yong (1999).

To construct a simultaneous confidence band for the P-P plot process ∆ defined in (6.42)
from structural relationships over the interval (a, b), we first construct an appropriate bootstrap
critical value c∗ such that

P (−2 log R
∗(sm)
E (∆̂, θ

(n,m)
E , t, ĥ)) ≤ c∗ for a ≤ t ≤ b|X,Y } = 1− α,

where ∆̂ = ∆̂(t) is the smoothed empirical likelihood estimator defined in (7.33). And then
apply it for the pointwise confidence bands. Hence the bootstrap confidence band C consists of
those curves R

(sm)
E (·, θ(n,m)

E , t, ĥ) such that the corresponding log likelihood ratio statistic stays
below c∗ over the interval (a, b), that is,

C = {−2 log R
(sm)
E (·, θ(n,m)

E , t, ĥ) : −2 log R
(sm)
E (∆, θ

(n,m)
E , t, ĥ) ≤ c∗ for a ≤ t ≤ b}.

Note that both estimators ∆̂ and ĥ are based on the initial samples X1, . . . , Xn and Y1, . . . , Ym.
For constructing empirical likelihood confidence bands such bootstrap methods have been intro-
duced first by Hall and Owen (1993) and after applied also by Claeskens et al. (2003).



8 Implementation

In this Section we show the implementation of the theory developed using the location model.
First applying the smoothed empirical likelihood method we simulate pointwise coverage prob-
abilities. Further we analyze the two data examples, construct and compare the bands for the
general shift function ∆s (further on denoted as Doksum’s bands) and the smoothed empirical
likelihood bands.

8.1 Simulation study

We provide here simulations for the location model from structural relationships defined in (2.6).
We generated 1, 000 pseudorandom samples from F1 = N(0, 1) and F2 = N(1, 1). Thus, we have
a location model with functions φ1(θ, h) = θ + h, φ2(t, h) = t and

w1(Xi, θ, ĥ) = Hb1(θ −Xi)−∆, (8.1)

w2(Yj , θ, ĥ) = Hb2(θ − ĥ− Yj)− t, (8.2)

where ĥ is a minimizer of Mallows distance functional T (F1n, F2m) defined in (2.11) with trim-
ming bounds a = 0.05, b = 1− a = 0.95 and H ⊆ R, i.e.

ĥ = argminh∈H

{∫ 0.95

0.05
(F−1

1n (u)− F−1
2m(u)− h)2du

}
.

For the location model we know that ĥ = h0 + O(n−1/2(log log n)1/2) almost surely (cf. Remark
3, p. 3). Thus, Theorem 37 is justified.

Throughout we smooth using a biquadratic kernel

Kj(t) =
15
16

(1− t2)21{|t|≤1}, (8.3)

and we employ bandwidths b1 = n−3/20 and b2 = m−3/20 which also have been analyzed in
Claeskens et al. (2003).

For the construction of smoothed empirical likelihood ratio confidence interval, the explicit
maximization of the likelihood function can be avoided. To construct the empirical likelihood
function as described in Section 5.3, equations (5.25), (5.26) and (5.28) need to be solved, which
is however not an easy task, because of complexity of these equations. We act here similarly
as Claeskens et al. (2003) solving these equations in two stages. In the first stage, we fix θ

and solve for λ1 = λ1(θ) and λ2 = λ2(θ) from equations (5.25), (5.26). In the second stage, we
obtain θ̂ as a solution to equation (5.28), where now λj = λj(θ). This method provides identical
solutions to a direct ”one-stage” solution to equations (5.25), (5.26) and (5.28).

In order to solve say equation (5.25) for λ1(θ) we use the following considerations. The value
of λ1(θ) may be found by numerical search. We know that λ1(θ) solves

1
n

n∑

i=1

w1(Xi, θ, ĥ)

1 + λ1(θ)w1(Xi, θ, ĥ)
= 0. (8.4)

The left side of (8.4) equals w1(Xi, θ, ĥ) at λ1(θ) = 0. It is strictly decreasing in λ1(θ), as
may be found by differentiation (cf. (5.12)). The question is which interval should be taken
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to search for λ1(θ)? Monotonicity of (8.4) makes a bisection approach workable, but it is
slow. Owen (2001) suggests to use safeguard methods, like Brent’s method or some versions of
Newton’s method, with a superlinear rate of convergence to the solution. But in which interval
to look for λ1(θ)? We know that every pi > 0, and of course every pi < 1. Assume now that
w1(X1, θ, ĥ) ≤ w1(X2, θ, ĥ) ≤ . . . ≤ w1(Xn, θ, ĥ). From (5.23) a bracketing interval may be
found by alternately setting to 1 the weight on the minimum and maximum observations. Thus,
we may start the search knowing that

1− n−1

w1(Xn, θ, ĥ)
< λ1(θ) <

1− n−1

wi(X1, θ, ĥ)
.

Using the consideration above for location model confidence intervals are calculated for values
of t equal to 0.1, 0.3, 0.5, 0.7 and 0.9 (cf. Tables 1, 2).

Table 1. Coverage accuracy of confidence intervals with nominal level 0.95
(location estimated each time).

t = 0.1 t=0.3 t=0.5 t=0.7 t=0.9
n=m=50 0.9670 0.9770 0.9780 0.9840 0.9710
n=m=70 0.9780 0.9790 0.9800 0.9790 0.9760
n=m=100 0.9690 0.9760 0.9790 0.9740 0.9770
n=m=200 0.9590 0.9610 0.9510 0.9530 0.9650

Table 2. Coverage accuracy of confidence intervals with nominal level 0.95
(location = 1, known).

t = 0.1 t=0.3 t=0.5 t=0.7 t=0.9
n=m=50 0.9370 0.9380 0.9360 0.9320 0.9300
n=m=70 0.9390 0.9370 0.9390 0.9500 0.9480
n=m=100 0.9400 0.9259 0.9330 0.9260 0.9400
n=m=200 0.9130 0.8980 0.9110 0.9120 0.9160

8.2 Data examples

Here we analyze the location model with φ1, φ2 and w1, w2 as in the simulation study (see
(8.1) and (8.2)). The same kernels and bandwidths have been used as well. The level is always
α = 0.05. For construction of the bootstrap simultaneous confidence bands (cf. Section 7.2)
we always use 200 bootstrap resamples. The trimming bounds are a = 0.05 and b = 1−a = 0.95.

Data example I: Morbidity-Mortality data

For an illustration we use some data from Aaberge et al. (1985), where the relationship
between hospitalization, as a measure of morbidity, and mortality is examined. The data have
been taken from a general medical department in Oslo, Norway. The use of health and social
services increases with age, therefore the interest of this two sample problem is to check whether
the morbidity and mortality are related.
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To compare hospitalization and mortality a comparison has been made between the attained
age of the patients at the time of admission and attained age at death in the general population.
Let Xi be the attained age of hospitalized person i and let Yj be attained age at death of person
j in the general population. Independent samples X1, . . . , Xn and Y1, . . . , Ym are obtained with
cumulative distribution functions F1 and F2. Let us cite now Aaberge et al. (1985):

”In the first step of the analysis of hospitalization, we are not willing to be specific about
the distribution functions F1 and F2. We were interested primarily in whether the distribution
of age at hospitalization may be described by the distribution of age at death or by a simple
transformation of that distribution. If that is the case, results from the theory of life tables may
be applied in the next step of the analysis of hospitalization; for instance, well-known parametric
distribution functions may be fitted to data on hospitalization”.

The patient material in this study consisted of 367 consecutive admissions, 176 males and 191
females for 1980. Data on mortality in Oslo were provided by the Central Bureau of Statistics
of Norway and consisted of 6140 deaths, 2989 males and 3151 females. Frequency distributions
for data on admissions and deaths are given in Table 3.

Table 3. Number of hopitalized and number of deaths by age and sex.

Females Males
Age Hospitalized Dead Hospitalized Dead
-29 3 25 5 49

30-34 3 15 5 20
35-39 0 16 4 22
40-44 2 20 8 23
45-49 6 31 6 57
50-54 12 63 5 111
55-59 17 98 14 215
60-64 11 170 28 293
65-69 26 277 35 423
70-74 32 403 27 509
75-79 32 546 21 513
80+ 47 1487 18 754
Total 191 3151 176 2989

We did not have an access to the original data. Therefore having only the Table 3 we
simulated the data uniformly in each interval. First we construct Doksum’s simultaneous bands
(4.5) and (4.7) for function ∆s (cf. Figure 9).
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Figure 9: Doksum’s bands for ∆s for mortality data, males and females in upper and lower
graph respectively.

We can conclude that for most t the function ∆s(t) = h, where h is some constant. Thus, the
location model holds because we can draw a horizontal line, which ”almost” fits into the bands.
Only in the right tail the confidence bands become pretty narrow not allowing a horizontal line
to fit.

Now we apply the bootstrap method and construct simultaneous confidence bands as de-
scribed in Section 7.2 to the Mortality data set. We obtained the bootstrapped critical value
c∗ = 7.95 for the male and c∗ = 6.28 for the female mortality data. The estimated location
parameter was ĥ = 6.05 for males and ĥ = 5.52 for females. The confidence bands are shown in
Figure 10.

The confidence bands for males and females have the same tendency. Mostly the diagonal
fits into the bands, thus we can not reject the location model. However, in the tails (mostly in
the right tail) the confidence bands are below the diagonal (especially for the female data).

Although both methods provide similar results, we find the empirical likelihood bands prefer-
able. First, the Doksum’s bands for males and females seem to be quite similar. The empirical
likelihood method reveals that the situation is quite different (see Figure 10). Second, it is easier
to find the region, where the location model holds from the bands in Figure 10 than from those
in Figure 9.
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Figure 10: EL simultaneous bands for P-P plot comparing mortality data, males and females
in the upper and lower graph respectively.
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Data Example II: Sono-Histo data

This statistical analysis concerns a study on 20-MHz-Sonometric and 50-MHz-Sonometric
measurements of the size of pigmented skin tumors in 94 patients. For a short illustration of
the data see Figure 11.
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Figure 11: Box plots and histograms of the Sono-Histo data in the upper and lower graph
respectively.

For comparing the effectiveness of these two measurement methods with respect to the
gold standard (histological measurement) we will draw both simultaneous confidence bands for
function ∆s and the bootstrapped empirical likelihood confidence bands obtained in Section 7.2.
We start with Doksum’s bands for function ∆s, which are shown in Figure 12.
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Figure 12: Doksum’s bands for ∆s for comparing Histological data with 20-MHz-Sonometrical
and 50-MHz-Sonometrical data in the upper and lower graph respectively.

We see that the weighted Kolmogorov-Smirnov bands are better than the unweighted ones,
especially in tails. A horizontal line would fit into the bands, thus with the confidence of 1− α

we can not reject the hypothesis that there exists such h with ∆s(t) = h for all t.
In Figure 13 the simultaneous confidence bands are constructed for the P-P plot using

smoothed two sample plug-in empirical likelihood method. As we could already expect from
the Doksum’s bands a diagonal fits into the bands. Comparing the histological and 20-MHz-
Sonometrical measurements we obtain that the bootstrapped critical value c∗ = 7.38. For
histological and 50-MHz-Sonometrical measurements we got c∗ = 6.57.

We recognize from the Section 3 that the range of P-P plots and the confidence bands is
always between 0 and 1. The function ∆s with added confidence bands for mortality data
ranges approximately from -10 to 30 units and for the Sono-histo data approximately from -2
to 2. Indeed, it is easier to interpret and compare confidence bands in Figure 13 than those in
Figure 12. We mentioned already the range preserving property of empirical likelihood. This
can be seen if we compare the confidence bands derived from asymptotic theory and Bonferroni’s
method (cf. Figure 7) with the empirical likelihood bands (cf. Figure 13).

Note that the smoothed empirical likelihood estimator of P-P plot really is much ”smoother”
than that of the empirical P-P plot, which is also to be expected. We can conclude that both
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measurement methods do well in comparison with the histological measurement. They differ
only by a small constant (ĥ ≈ 0.02 in case of the Sono20-Histo data and ĥ ≈ 0.01 in case of the
Sono50-Histo data).
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Figure 13: EL simultaneous bands for P-P plot comparing Histological data with
20-MHz-Sonometrical and 50-MHz-Sonometrical data in the upper and lower graph

respectively.



9 Discussion

Description of the results

In this thesis we establish smoothed plug-in empirical likelihood for the two-sample case. This
is a generalization of several papers: Chen and Hall (1993), Qin and Lawless (1994), Qin and
Zhao (2000) and Hjort et al. (2004). We have derived the conditions on which the maximization
problem has a solution, which is new in the case of two sample plug-in empirical likelihood. Our
conditions are slightly better than those in case of known h0, i.e. for the strong Glivenko Cantelli
property we require the almost sure convergence rate of order O(β1) (cf. Assumption 4), where
β1 = o(n−η) with η ∈ (1/3, 1/2). For a known h0 the convergence rate is O(n−1/2(log n)1/2) (see
e.g. Serfling, 1980, p.95). Thus, we allow slightly slower rates for the Glivenko Cantelli property
of empirical processes indexed in h ∈ H, where h is the unknown parameter for structural
relationship models.

Based on our established version of smoothed plug-in empirical likelihood for the two-sample
case, we were able to construct the confidence intervals for the structural relationship models
introduced by Freitag (2000), Freitag and Munk (2005). More specifically we construct the
confidence bands for the general P-P plot for structural relationships. These models generalize
the famous location, location-scale models, which are often met in different context in statistical
problems. Our regularity conditions are the usual ones, mostly considered in literature. How-
ever, our conditions nb3r

1 → 0 and mb3r
2 → 0 on the speed of the smoothing parameters b1, b2,

where n,m are the sample sizes and r is the order of the kernel, differ from the results known
in literature. This we discuss in detail further.

Comparison of our results with the results in literature

The results of Claeskens et al. (2003), where smoothed empirical likelihood is introduced for
derivation of the confidence bands for P-P plot, follow directly from the thesis. To see this, let
us rewrite Lemma 36 with V1,M1 and V3,M3 as in Lemma 37.

Lemma 41. Assume that the conditions of Theorem 37 are satisfied, and θ
(n,m)
E is as that in

Lemma 34. Then

√
n(θ(n,m)

E − θ0) →d N

(
0,

∆(1−∆)φ2(t, h0)(1− φ2(t, h0))
c1

)
, (9.1)

λ1(θ
(n,m)
E ) = −k

φ−1 (θ0, h0)′θf2(φ−1 (θ0, h0))
f1(θ0)

λ2(θ
(n,m)
E ) + op(n−1/2), (9.2)

√
nλ2(θ

(n,m)
E ) →d N

(
0,

f2
1 (θ0)
kc1

)
, (9.3)

where c1 = φ2(t, h0)(1− φ2(t, h0))f2
1 (θ0) + k∆(1−∆)(φ−1 (θ0, h0)

′
θf2(φ−1 (θ0, h0)))2.

In case of a known h = h0 and φ1(θ, h0) = θ, φ2(t, h0) = t the central Lemma 2 in Claeskens
et al. (2003) follows from the Lemma 41 in the thesis and also the limit distribution for the test
statistic is the same. Note that Claeskens et al. (2003) use different normalization factor, i.e.
instead of

√
n they use

√
n + m.
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There are several points we would like to mention regarding the papers of Claeskens et al.

(2003) and Jing and Zhou (2003), which have similar problematic, conditions and technique
of proving the results. Both of them used smoothed EL constructing the confidence intervals
for P-P plots in the two sample case and for the difference of quantiles in the one sample case
respectively.

Claeskens et al. (2003) require that in our notation (for simplicity, we consider conditions
for one sample X1, . . . , Xn only)

nb4r
1 → 0 and nb2r

1 / ln n →∞ as n →∞. (9.4)

On the other hand Jing and Zhou (2003) require that

nb4r
1 → 0, n4s−1b4

1 →∞ as n →∞, 1/3 < s < 1/2. (9.5)

Chen and Hall (1993) besides some regularity conditions (smoothness of the underlying distribu-
tion function) require only that nb2r

1 → 0 for test statistic to have an asymptotic χ2
1 distribution.

This condition on bandwidth b1 even does not intersect with the conditions in (9.4) or (9.5).
Moreover, for the point estimator itself, Theorem 1 in Claeskens et al. (2003) is based under the
condition nb2r

1 → 0 (cf. Theorem 40). Important is that on the conditions (9.4) the equation
(7.28) in this thesis may not hold, which is essential for deriving the limiting distribution.

Mostly in literature the maximization problem has been analyzed with θ such that {θ ∈
|θ − θ0| ≤ cn−η} for some 1/3 < η < 1/2 (cf. Qin and Zhao, 2000 or Qin and Lawless, 1994).
However, Claeskens et al. (2003) analyze the maximization problem for θ such that |θ− θ0| < δ,
where δ := O(br

1 + br
2). Jing and Zhou (2003) consider δ := br

1 + n−s for 1/3 < s < 1/2. This
notation can lead to other conditions for the bandwidth b1 and b2, which actually should not be
required.

Possible extensions

• The simultaneous confidence bands obtained from the asymptotic theory of P-P and Q-Q
plots (cf. Figure 7) could be extended for plug-in estimates. Burke et al. (1978) derive the
asymptotic for the Kolmogorov-Smirnov test statistic in the one sample when parameters
are estimated.

• We constructed the confidence bands for P-P plots. As explained in Section 5.3 it is
possible to construct the confidence bands for Q-Q plots in a similar way. This can be
further compared with the bands derived by Einmahl and McKeague (1999).



10 Technical tools: Empirical processes

10.1 Definitions and notation

A stochastic process is a collection of random variables Xt, t ∈ T on the same probability space,
indexed by an arbitrary index set T . An empirical process is a stochastic process based on
a random sample. For example consider a random sample X1, . . . , Xn of i.i.d. real random
variables with distribution F . The empirical distribution function is

Fn(t) = n−1
n∑

i=1

1{Xi≤t}, (10.1)

where the index t is allowed to vary over T = R, the real line.
More generally consider a random sample X1, . . . , Xn from a probability distribution P on

a measurable space (X , A). The empirical distribution is the discrete uniform measure on the
observations. We denote it by Pn = n−1

∑n
i=1 δXi , where δx is the measure which assigns mass 1

at x and zero elsewhere. For a measurable function f : X → R, we write Pnf for the expectation
of f under the empirical measure, and Pf for the expectation under P . Thus,

Pnf =
1
n

n∑

i=1

f(Xi), Pf =
∫

X
f(x)dP (x).

By the law of large numbers, the sequence Pn converges almost surely to Pf , for every f such
that Pf is defined. The abstract Glivenko-Cantelli theorems make this result uniform in f

ranging over a class of functions. A class F of measurable functions f : X → R is called
P-Glivenko Cantelli if

|Pnf − Pf |F = sup
f∈F

|Pnf − Pf | → 0 a.s.,

The empirical process evaluated at f is defined as Gnf =
√

n(Pnf − Pf). By the multivariate
central limit theorem, given any set of measurable functions fi with Pf2

i < ∞,

(Gnf1, . . . ,Gnfk) →d (GP f1, . . . ,GP fk),

where the vector on the right possesses a multivariate normal distribution with mean zero and
covariances

EGP fGP g = Pfg − PfPg. (10.2)

The abstract Donsker theorems make this result ”uniform” in classes of functions. A class F of
measurable functions f : X → R is called P-Donsker if the sequence of processes {Gnf : f ∈ F}
converges in distribution to a tight limit process in the space l∞(F) (the space of bounded
functions with f ∈ F). Then the limit process is a Gaussian process GP with zero mean and
covariance function as given in the preceding display and is known as a P-Brownian Bridge.
The Donsker property includes the requirement that the sample paths f → Gnf are uniformly
bounded for every n and every realization of X1, . . . , Xn. This is the case, for instance, if the
class F has a finite and integrable envelope function F : a function such that |f(x)| ≤ F (x) < ∞.

Example 9. Empirical distribution function. Setting X = R, we can now re-express Fn defined
in (10.1) as the empirical process {Pnf, f ∈ F}, where F = {1{x≤t}, t ∈ R}. Thus, one can view
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the stochastic process Fn as indexed by either t ∈ R or f ∈ F . Glivenko (1933) and Cantelli
(1993) showed that

sup
t∈R

|Fn(t)− F (t)| → 0 a.s.

Another way of saying this is that the sample paths of Fn get uniformly closer to F as n →∞.
Donsker’s (1952) theorem tells us that F = {1{x≤t}, t ∈ R} is Donsker for all probability

measures which are based on some real distribution function F . With f(x) = 1{x≤t} and
g(x) = 1{x≤s},

E[f(X)g(X)]− Ef(X)Eg(X) = F (s ∧ t)− F (s)F (t).

The language of Glivenko-Cantelli classes and Donsker classes appears to be convenient to
state the ”regularity conditions” needed in the asymptotic analysis of many statistical proce-
dures. In the following we state some results from van der Vaart (1998), Section 19.

Lemma 42. If a class F of functions is a P-Glivenko Cantelli class of measurable functions
and a sequence f̂n → f0 almost surely, where f̂n ∈ F and f̂n is dominated (i.e. there exists an
integrable function, say g(x) with |f̂n(x)| ≤ g(x) for each n and almost every x). Then

Pnf̂n → Pf0 a.s.

Proof. As the class F is Glivenko Cantelli, then |Pnf̂n − P f̂n| → 0 almost surely for every
sequence f̂n that are contained in F . If f̂n converges almost surely to a function f0 and the
sequence is dominated (or uniformly integrable), so that P f̂n → Pf0 almost surely, then it
follows that Pnf̂n → Pf0 almost surely.

Lemma 42 covers an important case of controlling random sequences of the form
∑n

i=1 fn,θ̂n
(Xi)

for functions fn,θ that change with n and depend on an estimated parameter. Similar principle
applies to Donsker classes of functions.

Lemma 43 (van der Vaart 1998, Lemma 19.24). Suppose that F is a P-Donsker class of
measurable functions and f̂n is a sequence of random functions that take values in F such that∫

(f̂n(x)−f0(x))2dP (x) converges in probability to 0 for some f0 ∈ L2(P ). Then Gn(f̂n−f0) →p 0
and hence

Gnf̂n →d GP f0.

Proof. For a Donsker class F , the empirical process Gnf converges in distribution to a
P-Brownian bridge process Gpf uniformly in f ∈ F . One can show that the limiting process has
uniformly continuous sample paths with respect to the variance semimetric (cf. van der Vaart
1998, Lemma 18.15, p.262). The uniform convergence combined with the continuity yield the
weak convergence Gnf̂n →d GP f0 for every sequence f̂n of random functions that are contained
in F and converges in the variance semimetric to a function f0.

10.2 Smoothed empirical process

Let X1, . . . , Xn be a sequence of random variables with common law P . P is assumed to be a
probability measure on B, the usual Borel σ-algebra. The n-th empirical measure is

Pn = n−1
n∑

i=1

δXi ,
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where δx denotes the unit mass at x. It is a discrete measure putting mass 1/n at each of the
observations. It is also the non-parametric maximum likelihood estimator for the common law
P of the observations. If the underlying measure P is smooth it is natural to use a smoothed
version of the empirical measure as an estimator of P , rather than the empirical measure itself.

Let F be a class of real-valued measurable functions on R. Let us remind that the empirical
process indexed by F is denoted by

(Pn − P )f :=
∫

f(dPn − dP ), f ∈ F .

Let now Hn, n ≥ 1, be a sequence of distribution functions; assume that Hn →p H0 (i.e.,∫
fdHn → f(0) whenever f : R → R is continuous and bounded), where H0 is the distribution

for δ0. Define now the perturbed empirical distribution function

F̃n(x) := n−1
n∑

i=1

Hn(x−Xi). (10.3)

The estimator F̃n differs from the usual empirical distribution function Fn(x) = n−1
∑n

i=1 H0(x−
Xi) in that the mass n−1 is no longer concentrated at Xi, but is distributed around Xi according
to Hn. The assumption Hn →d H0 helps insure that the asymptotic behavior of F̃ − F will be
close of that of Fn − F , where F is the distribution function of X.

Winter (1973) and Yamato (1973) have shown that if P is continuous then F̃n has the
Glivenko Cantelli property, that is,

sup
t∈R

|F̃n(t)− F (t)| → 0 a.s., (10.4)

which is a clear consequence of Glivenko-Cantelli theorem (see e.g. Tucker (1967), p.127-128).
Now consider a general perturbed empirical process

(P̃n − P )f :=
∫

f(dP̃n − dP ), f ∈ F ,

where P̃n denotes the perturbed probability measure associated with F̃n and F a general class
of measurable functions not necessarily of the form {1(−∞,x), x ∈ R} as required in (10.4).

It is natural to consider perturbed empirical measure P̃ as a convolution by P̃ := µn ∗ Pn,
where µn is a sequence of probability measures on R converging weakly to zero (µn →d δ0).
Note that this includes kernel smoothing, by choosing µn so that the densities dF̃n/dλ take the
form

dF̃n

dλ
= n−1

n∑

i=1

b−1
n K

(
x−Xi

bn

)
, (10.5)

where K is some fixed kernel and bn is a sequence of positive reals tending to zero.

Theorem 44 (Yukich (1989)). Let F be a Glivenko-Cantelli class of measurable functions
that is closed under translation. Then
∣∣∣∣
∫

f(dP̃n − dP )
∣∣∣∣
F
→ 0 a.s. ⇔ |B(n)|F :=

∣∣∣∣
∫ ∫

f(x + y)− f(y)dP (y)µn(x)
∣∣∣∣
F
→ 0 a.s.

From this general Theorem we now can deduce the Winter-Yamato version of the Glivenko-
Cantelli theorem for perturbed empirical measures.
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Corollary 45 (Winter (1973); Yamato (1973)). Let F := {1(−∞,t] : t ∈ R}. Then
∣∣∣∣
∫

f(dP̃− dP )
∣∣∣∣
F

= sup
t∈R

|Fn(t)− F (t)| → 0 a.s.

Proof. Clearly F is closed under translation. By continuity of P , ∀ε > 0 ∃δ > 0 such that
P{[a, b]} < 1

2ε whenever b − a < δ. Find n0 := n0(δ) such that ∀n ≥ n0, µn{x : |x| > δ} < 1
2ε.

Then ∀n ≥ n0,

|B(n)|F = sup
y

∫
P{(y, x + y)}dµn(x) ≤

∫ δ

−δ
sup

y
P{(y, x + y]}dµn(x) +

1
2
ε ≤ ε.

This result implies that if F has a density and f̂n is a ”typical” non-parametric density estimator
and F̂n(x) :=

∫ x
−∞ f̂n(t)dt, then F̂n converges uniformly to F almost surely.

Among others weak invariance principles for perturbed processes has been discussed in Yu-
kich (1989, 1992), van der Vaart (1994) and Radulovic and Wegkamp (2000). We will need a
result proved by van der Vaart (1994).

Theorem 46 (van der Vaart (1994)). Let F be a Donsker class of measurable functions that
is closed under translation. Let µn be random, signed measures of uniformly bounded variation
that converge weakly in probability to the Dirac measure at zero. If

sup
f

P

(∫
(f(X + y)− f(X))dµn(y)

)2

→p 0, (10.6)

and

sup
f

√
n

∣∣∣∣P
∫

(f(X + y)− f(X))dµn(y)
∣∣∣∣ →p 0, (10.7)

then
√

n(P̃−Pn) = op(1) and the sequence
√

n(P̃−P ) converges weakly in distribution in l∞(F)
to a tight Brownian bridge process. If the measures µn are non-random, then the two conditions
are necessary.

Remark 47. The main improvements over Theorm 3.1 by Yukich (1992) are that the class F
is not assumed uniformly bounded, that the smoothing measures are allowed to be random and
have negative mass. Elimination of the boundedness condition ensures that the theorem also
applies to, for instance, moments of the smoothed empirical. Random µn would occur in the
case of kernel smoothing with bandwidth bn chosen dependent on X1, . . . , Xn, for instance by
cross-validation.

10.3 Smoothed empirical distribution function

Let X1, . . . , Xn be i.i.d random sample having distribution function F . Similarly as in the
Section 10.2 let H denote a smoothed version of the degenerate distribution function H0 defined
by H0(x) = 1 for x ≥ 0, 0 otherwise. Define H(t) =

∫
u≤t K(u)du, where K is a compactly

supported r-th order kernel which is commonly used in nonparametric density estimation. That
is, for some integer r ≥ 2 and constant κ 6= 0, K is a function satisfying

∫
ukK(u)du =





1, if k = 0,

0, if 1 ≤ k ≤ r − 1,

κ, if k = r

(10.8)
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For further use we also define Hn(t) = H(t/bn), where bn is a bandwidth sequence, converging
to zero as n grows to infinity. Now the smoothed empirical distribution function F̂n is defined
by

F̂n(t) =
1
n

n∑

i=1

Hn(t−Xi).

For small enough bandwidths bn, the empirical cdf. Fn defined in (10.1) and the smoothed cdf.
F̂n are almost indistinguishable. Now let f = F ′ denote the first derivative of F , where defined.

Lemma 48. Assume that K satisfies (10.8), and is bounded and compactly supported; that
f (r−1) is bounded; bn → 0 and

sup
t

√
n|EF̂n(t)− F (t)| →p 0, (10.9)

then √
n sup

t
|F̂n(t)− F (t)| →p 0,

and in particular, the smoothed empirical process {√n(F̂n − F )(t), t ∈ R} converges weakly to a
tight Brownian bridge in D(R).

Proof. According to Theorem 46, we only have to check that

sup
t

∫ [∫
(1{x+ε≤t} − 1{x≤t})dHn(ε)

]2

dF (x) → 0.

After applications of Jensen’s inequality and Fubini’s theorem, we can bound the term on the
left in the preceding display by

sup
t

∫
(F (t)− F (t− bnx))dH(x)

= sup
t

∫ {
f(t)(bnx) +

1
2
f ′(t)(bnx)2 + . . . +

1
r!

f (r−1)(t)(bnx)r + o(br
n)

}
K(x)dx

= O(br
n),

which tends to zero as bn → 0.

Remark 49. Considering weak convergence of empirical copula processes Fermanian et al.

(2004), p.11. proved Lemma 48 on conditions that F is Lipschitz, bn → ∞ and (10.9) holds.
We do not see reason to assume that F is Lipschitz.

The assumption on the bias term (10.9) in the statement of the preceding lemma can be handled
by means of some smoothness assumptions on F and regularity of K and bn:

Lemma 50. Assume that K as in (10.8), f (r−1) is bounded, limn→∞
√

nbr−1
n = 0. Then we

have
sup

t

√
n|EF̂n(t)− F (t)| →p 0.

Proof. The result follows readily after a Taylor expansion.



72 10 TECHNICAL TOOLS: EMPIRICAL PROCESSES

List of symbols

→p Convergence in probability, page 13
→d Convergence in distribution, page 34
a.s. Almost sure convergence, page 18
Op(·) Stochastic order symbol, page 35
op(·) Stochastic order symbol, page 36
[t] Greatest integer less than or equal to t, page 24
〈t〉 Least integer greater than or equal to t, page 24
∼ Distributed as, page 5
a ∧ b min(a, b), page 68
U Class of structural relationship models, page 12
F Set of distribution functions, page 11
H Set of structural parameter, page 12
d(F1, F2) Mallows distance metric, page 12
φ1, φ2, φ

−
1 , φ−2 Functions for structural relationships, page 12

Bn
1 (t), Bm

2 (t) Sequences of Brownian bridges, page 19
l∞(F) Space of bounded functions with f ∈ F , page 67
K1, K2 Kernels, page 48
b1, b2 Smoothing parameters, page 48
T Open interval, page 31
δx Dirac measure, page 67
f (m) m-th derivative of f , page 49
1{cond} Indicator for some expression {cond}, page 45
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