Dažu automodeļu diferenciālvienādojumu robežproblēmu izpēte
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
N/A
Abstract
Bakalaura darbs veltīts dažu automodeļu diferenciālvienādojumu robežproblēmu skaitliskai izpētei. Darbā pirmajā nodaļā tiek iegūtas un skaitliski risinātas robežproblēmas Blaziusa un Foknera-Skeinas vienādojumiem, kuri rodas pārveidojot Navjē-Stoksa diferenciālvienādojumu sistēmu, kas apraksta viskoza šķidruma plūsmu gar pusbezgalīgu plāksni Blaziusa vienādojuma gadījumā, vai gar ķīli Foknera-Skeinas vienādojuma gadījumā. Darba otrajā nodaļā tiek apskatīts dabiskās siltuma konvekcijas uzdevums ap porainā vidē vertikāli ievietotu sakarsētu plāksnīti. Tiek iegūta un skaitliski risināta attiecīgā robežproblēma Foknera-Skeinas tipa vienādojumam un apskatīta atrisinājuma atkarība no vienādojumā ietilpstošā parametra vērtībām.
Bachelor thesis "Investigation of some boundary value problems of self-similar differential equations" is devoted to numerical investigation of some boundary value problems of self-similar differential equations. The first chapter considers the numerical solving of boundary value problems of Blasius and Falkner-Skan differential equations. These problems are obtained by modifying Navier-Stocks equations which describe viscous fluid flow over a semi-infinite plate in case of Blasius equation and over a wedge in cases of Falkner-Skan equation. A free convection about a vertical heated plate embedded in a porous medium is considered in the second chapter. The boundary value problem of a Falkner-Skan type equation is obtained and solved numerically. The solution dependence on a parameter is considered.
Bachelor thesis "Investigation of some boundary value problems of self-similar differential equations" is devoted to numerical investigation of some boundary value problems of self-similar differential equations. The first chapter considers the numerical solving of boundary value problems of Blasius and Falkner-Skan differential equations. These problems are obtained by modifying Navier-Stocks equations which describe viscous fluid flow over a semi-infinite plate in case of Blasius equation and over a wedge in cases of Falkner-Skan equation. A free convection about a vertical heated plate embedded in a porous medium is considered in the second chapter. The boundary value problem of a Falkner-Skan type equation is obtained and solved numerically. The solution dependence on a parameter is considered.