Modeling of Turbulence Properties and Particle Transport in Recirculated Flows
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
eng
Abstract
Šis darbs ir veltīts turbulentās plūsmas īpašību un daļiņu dinamikas pētīšanai
EM un gravitācijas spēku ietekmē indukcijas tīģeļa krāsnīs un kanālkrāsnīs.
Attīstītā turbulentā plūsma ($\mathrm{Re} > 10^4$) šajās krāsnīs parasti
tiek formēta ar diviem vai vairākiem vidējotiem recirkulatīviem virpuļiem
un siltuma un vielas apmaiņa šādās plūsmās ir ļoti svarīga tehnoloģiskos
procesos.
Šis darbs izmanto pieejamus eksperimentālus rezultātus par Vuda metāla
plūsmu indukcijas tīģeļkrāsnīs un kanālkrāsnīs, lai uzbūvētu un noverificētu
3D lielo virpuļu modelēšānas (LES) skaitliskos modeļus siltuma un vielas
apmaiņas aprēķiniem. Darba autors ir veicis papildus eksperimentālos
plūsmas ātruma mērījumus tīģeļkrāsnī Elektrotehnoloģiju Institūtā,
Hannoveres Leibnica Universitātē, kas ļāva pētīt plūsmas nestacionāros un
enerģētiskos parametrus salīdzinot gan eksperimentālus, gan skaitliskus
rezultātus. Zemu frekvenču ātruma oscilācijas, kuru raksturīgais mērogs ir
salīdzināms ar lielu virpuļu izmēriem, tika apstiprināti indukcijas tīģelkrāsns
plūsmā. Turbulentās plūsmas analizētie, izmērītie un izrēķinātie parametri
saskan ar turbulences teoriju, t.sk. ar Kolmogorova spektriem.
Verificēts LES modelis tika izmantots, lai izpētītu daļiņu nestacionāro
uzvedību turbulentajā plūsmā atkarībā no daļiņu blīvuma, izmēra,
robežnosacījumiem un tilpumspēku iedarbības. Ir parādīts, ka EM spēks un
pielīpšanas robežnosacījumi var būtiski palielināt daļiņu koncentrāciju pie
tīģeļa sieniņas.
LES pielietošana siltuma apmaiņas aprakstam kompleksās 3D turbulentās
plūsmās tika verificēta ar pieejamiem eksperimentāliem datiem par Vuda
metāla plūsmu indukcijas kanālkrāsnī. Šis modelis arī tika pielietots siltuma
un vielas apmaiņas izpētei dzelzs kausējuma plūsmai industriālā kanālkrāsnī
un TiAl kausējuma plūsmai indukcijas krāsnī ar auksto tīģeļi.
Datormodelēšana ļāva novērtēt kausējuma pārkarsumu un temperatūra
nehomogenitātes kausējuma iekšienē.
This work is intended to the investigation of the turbulent flow properties and particle dynamics under the influence of EM and gravitational forces in induction crucible furnaces (ICF) and channel induction furnaces (CIF). The highly turbulent flow (Re > 104) is usually formed by two or more averaged recirculated vortices in these furnaces and heat and mass exchange in such flows is very significant for technological processes. This work uses available experimental data about the Wood's metal flow in ICF and CIF to build and verify 3D large eddy simulation (LES) numerical models for heat and mass transport calculations. Additionally experimental flow velocity measurements were performed by the author in ICF in Institute of Electrotechnology, Leibniz University Hannover, which allowed to study transient and energy turbulent flow characteristics comparing both experimental and LES numerical results. Low frequency velocity oscillations, which characteristic length scale is comparable with the size of large vortices, were confirmed in the ICF melt flow. Analyzed measured and calculated turbulent flow parameters are in accordance with the turbulence theory including Kolmogorov's spectra. The verified LES model was used to investigate transient particle behavior in the turbulent flow depending on particle density, size, boundary conditions and action of volumetric forces. It was shown that EM force and no-slip boundary conditions can dramatically improve particle accumulation in the near wall region of the crucible. LES possibility to correctly describe heat transport in a complex 3D turbulent flow was verified using available experimental data on Wood's melt flow in CIF. This model was also applied to heat and mass transport investigation for cast iron melt flow in industrial CIF and for TiAl melt flow in induction furnace with cold crucible (IFCC). Simulation allowed to estimate melt overheat and temperature inhomogeneities inside the melt.
This work is intended to the investigation of the turbulent flow properties and particle dynamics under the influence of EM and gravitational forces in induction crucible furnaces (ICF) and channel induction furnaces (CIF). The highly turbulent flow (Re > 104) is usually formed by two or more averaged recirculated vortices in these furnaces and heat and mass exchange in such flows is very significant for technological processes. This work uses available experimental data about the Wood's metal flow in ICF and CIF to build and verify 3D large eddy simulation (LES) numerical models for heat and mass transport calculations. Additionally experimental flow velocity measurements were performed by the author in ICF in Institute of Electrotechnology, Leibniz University Hannover, which allowed to study transient and energy turbulent flow characteristics comparing both experimental and LES numerical results. Low frequency velocity oscillations, which characteristic length scale is comparable with the size of large vortices, were confirmed in the ICF melt flow. Analyzed measured and calculated turbulent flow parameters are in accordance with the turbulence theory including Kolmogorov's spectra. The verified LES model was used to investigate transient particle behavior in the turbulent flow depending on particle density, size, boundary conditions and action of volumetric forces. It was shown that EM force and no-slip boundary conditions can dramatically improve particle accumulation in the near wall region of the crucible. LES possibility to correctly describe heat transport in a complex 3D turbulent flow was verified using available experimental data on Wood's melt flow in CIF. This model was also applied to heat and mass transport investigation for cast iron melt flow in industrial CIF and for TiAl melt flow in induction furnace with cold crucible (IFCC). Simulation allowed to estimate melt overheat and temperature inhomogeneities inside the melt.