• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B5 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
  •   DSpace Home
  • B5 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unveiling Molecular Changes in Water by Small Luminescent Nanoparticles

Thumbnail
View/Open
labrador_paez_2_2017.pdf (1.015Mb)
Author
Labrador-Páez, Lucía
Jovanović, Dragana J.
Marqués, Manuel I.
Šmits, Krišjānis
Dolić, Slobodan D.
Jaqué, Francisco H.
Stanley, H. Eugene
Dramićanin, Miroslav D.
García-Solé, José Antonio
Haro-González, Patricia
Jaque, Daniel
Date
2017
Metadata
Show full item record
Abstract
Nowadays a large variety of applications are based on solid nanoparticles dispersed in liquids—so called nanofluids. The interaction between the fluid and the nanoparticles plays a decisive role in the physical properties of the nanofluid. A novel approach based on the nonradiative energy transfer between two small luminescent nanocrystals (GdVO4:Nd3+ and GdVO4:Yb3+) dispersed in water is used in this work to investigate how temperature affects both the processes of interaction between nanoparticles and the effect of the fluid on the nanoparticles. From a systematic analysis of the effect of temperature on the GdVO4:Nd3+ → GdVO4:Yb3+ interparticle energy transfer, it can be concluded that a dramatic increase in the energy transfer efficiency occurs for temperatures above 45 °C. This change is properly explained by taking into account a crossover existing in diverse water properties that occurs at about this temperature. The obtained results allow elucidation on the molecular arrangement of water molecules below and above this crossover temperature. In addition, it is observed that an energy transfer process is produced as a result of interparticle collisions that induce irreversible ion exchange between the interacting nanoparticles.
URI
https://dspace.lu.lv/dspace/handle/7/52508
DOI
10.1002/smll.201700968
Collections
  • Zinātniskie raksti (CFI) / Scientific articles [604]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV