• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B4 – LU fakultātes / Faculties of the UL
  • A -- Eksakto zinātņu un tehnoloģiju fakultāte / Faculty of Science and Technology
  • Bakalaura un maģistra darbi (EZTF) / Bachelor's and Master's theses
  • View Item
  •   DSpace Home
  • B4 – LU fakultātes / Faculties of the UL
  • A -- Eksakto zinātņu un tehnoloģiju fakultāte / Faculty of Science and Technology
  • Bakalaura un maģistra darbi (EZTF) / Bachelor's and Master's theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stikla pakešu konstruktīvo parametru automatizēta noteikšana

Thumbnail
View/Open
302-81854-Luksevics_Marcis_ml19033.pdf (2.480Mb)
Author
Lukšēvics, Mārcis
Co-author
Latvijas Universitāte. Datorikas fakultāte
Advisor
Freivalds, Kārlis
Date
2021
Metadata
Show full item record
Abstract
Maģistra darba mērķis ir izstrādāt programmatūru, kas pēc ievades datiem spēj būvinženierim parādīt vairākus iespējamos stikla paketes uzbūves variantus, kas atbilst konstruktīvajām prasībām normatīvos. Darbā implementēti vadlīnijās aprakstīti vienkāršojumi, lai izveidotu ātri aprēķināmus galīgo elementu modeļus. Uz ~2 miljonu galīgo elementu modeļu aprēķinu bāzes ir trenēti neironu tīklu “surogāta modeļi”. Iegūta >98% precizitāte, izmantojot Google piedāvātu automatizētu mašīnmācīšanās risinājumu. Izveidotie neironu tīklu modeļi sasniedz ~160-kārtīgu ātruma palielinājumu salīdzinot ar galīgo elementu aprēķiniem, vienu pilnu stiklu paketes izvērtējumu paātrinot līdz ~300 milisekundēm. Šāds ātrums atļauj lietot optimizācijas algoritmus – ir pielāgota esoša ģenētiskās optimizācijas bibliotēka “GeneticSharp”, kas izmanto mašīnmācīšanās modeļus, lai atrastu vairākus ekonomiskus, normatīviem atbilstošus stikla paketes uzbūves variantus.
 
Title of master’s thesis: Automated selection of structural parameters for insulated glass units. This master's thesis aims to develop software that can find several code-compliant options of insulated glass unit build-ups using the input data given by civil engineer. The simplifications described in the guidelines are implemented to create quickly computable finite element models. Neural network "surrogate models" have been trained using the results data from ~2 million finite element model calculations. Over 98% accuracy was achieved using an automated machine learning solution provided by Google. The trained neural network models achieve a ~160-times increase in speed compared to the finite element calculations, accelerating one full evaluation of the glass build-up to ~300 milliseconds. This speed enables the use of optimization algorithms. An existing genetic optimization library "GeneticSharp" has been adapted to use machine learning models to find several economical and code-compliant options of insulated glass unit build-up.
 
URI
https://dspace.lu.lv/dspace/handle/7/55809
Collections
  • Bakalaura un maģistra darbi (EZTF) / Bachelor's and Master's theses [5688]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV