LATVIJAS UNIVERSITATE-UNIVERSITY OF LATVIA

ALGORITHMIC PROBLEMS IN
ANALYSIS OF REAL TIME SYSTEM
SPECIFICATIONS

Karlis Cerans

Riga, 1992

LATVIJAS UNIVERSITATE.UNIVERSITY OF LATVIA

Algorithmic Problems in Analysis of Real
Time System Specifications

Karhs Cerans

A Thesis for the Dr.sc.cornp.
Degree at University of Latvia

Institute of Mathematics and
Computer Science

University of Latvia

Riga, Rainis blvd. 29,

Latvia. 226250

Copyright @1992 Karlis Cerans

University of Latvia
Riga, 1992

Abstract

The thesis is devoted to the study of analysis antomation possibilities (decidability and
undecidability of reachability, infinite behaviour possibility and bisimulation equiva-
lence problems) for various kinds of real time system specification formalisms. The
investigated formalisins are based on finite state model control structure enriched in
various ways to reflect data and time dependencies of the modelled system behaviour.

Decidable proved are, first, the vertex reachability and infinite behaviour possi-
bility (infinite feasible path existence) problems for programs in a simple theoretical
programming language, called LTIBA, which is an enrichment of the Finite State
Machine model with variables, suitable for modelling real time system behaviour de-
pendencies both on quantitative time constraints (the LTIM system of commiands)
and external data (the LBASE systemn of commands). An effective symbolic charac-
teristic of the sets of all feasible program paths in the terms of path set projectivity is
also given for LBASE, LTIM and LTIBA programs whenever possible. The undecid-
ability of the vertex reachability problem is proved for programs in a language LTIM’
which is a slight variation of the considered time constraint specification language
LTIM. :

In the thesis also the strong and weak (dbstracted from system internal actions)
bisimulation equivalence problems are proved decidable for the formalism of Parallel
Timer Processes (PTP), which are provided with the real time labelled transition sys-
tem semantics and allow to express in a direct way the quantitative time constraints
on the behaviour of concurrent real time systems. Various enrichments of the basic
PTP model by additional features (including the processes with the dependencies on
external data) are also considered and investigated w.r.t. decidability of the vertex
reachability, infinite path feasibility and bisimulation equivalence problems. An unde-
cidability result regarding the considered algorithmic problems is obtained for a class
of timed processes supplied with memory cells for moving the timer value information
along the time axis.

Finally, in the appendix an example of the reachability and path feasibility analysis
of a simple real time system, specified as a process in the C.C.1.T.T. telecommunica-
tion system specification Janguage SDL, is presented.

Anotacija

Disertacija veltita dazadu reald laika sistému apraksta formalismu analizes auto-
matizacijas iesp8ju 1zpétei (pétita atrisinamiba sasniedzamibas. bezgaligas darbibas
iesp&jas un bistmulacijas ekvivalences algoritmiskajam masu problémam). Aplikoto
apraksta formalismu pamata gemts galiga automata modelis, kas bagatinats ar lidzek-
liem, kas Jau) aprakstit model&jamo sistému darbibas atkartbu no laika un datiem.

Algoritmiskd atrisinamiba pieradita, vispirms, programmas virsotnes sasniedza-
mibas un bezgaliga realizéjama cela eksistences (bezgaligas programmas darbibas
iespéjas) problémam programmam vienkarsa teorétiska valoda LTIBA. Katra prog-
ramma valoda LTIBA lidz ar galigu vadibas grafu satur mainigos, kas at]auj aprakstit
modeléjamas reala laika sistémas atkaribu gan no temporali kvantitativiem posa-
cljumiem (LTIM komandu sistéma), gan ari no aréjiem datiem (LBASE komandu
sistema). Situaci)as, kuras tas iespejams, apluikojamo valodu LBASE, LTIM un
LTIBA programmu realizéjamo celu kopam dots efektivs simbolisks raksturojums
projektivitates terminos. Virsotnes sasniedzamibas problémas algoritmiska neatrisi-
namiba pieradita programmam valoda LTIM’, kas tikai nedaudz atikiras no pétitas
temporalo atkaribu specifikiciju valodas LTIM.

Darba pieradita ari stingras un vajas (no sistémas darbibas iek3éjiern notikumiem
abstrah€tas) bisimulacijas ekvivalences problému algoritmiska atrisinamiba paralélo
taimeru procesu (PTP) modelim, kuram definéta reala laika ieziméto pareju sistému
semantika, un kas atlauj dabiska veidia aprakstit paralélu sistému atkaribu no tem-
porali kvantitativajiem nosacijumiem. Virsotnes sasniedzamibas, bezgaligas darbibas
iespejas un bisimulacijas ekvivalences problému algoritmiska atrisinamiba pétita ari
dazadiem PTP modela paplasindjumiem ar papildus sistému apraksta lidzekjiem (t.sk.
procesiemn ar aréjo datu atkaribas attélo§anas iespéjam). Bisimulacijas ekvivalences
un virsotnes sasniedzamibas problému neatrisinamibas rezultats iegiits ar atmigas
§iinam paplaSinatu taimeru procesu klasei.

Darba pielikuma aplikots piemérs vienkarsas reéla laika sistémas, kas uzdota ki
process C.C.L.T.T. telekomunikaciju specifikaciju valoda SDL, sasniedzamibas un celu
realizéjamibas analizei.

m

AHHOTAIUA

Jnccepraipaouiad paboTa NOCBAINEHA WCCTIENOBAHMIO BOIMOKHOCTE! ABTOMATYEZAIAM AHATBZA
PASITNHEIX MYTIENEN CUCTEM DEATTHONO BPEMEHM (MCCTEPEAHE] HA PA3PELLIMMOCTD MACCORL I ITPOG-
JeMB] IOCTYDKAMOCTY, BOIMOOKHOCTH GeckoneyHoll pafoTy ¥ GucrMYNsIpsOHHON SKBMBATEHT-
Hocvl). PacoMoTpeHHbE MONEHM Ga3UpPYIOTCA Ha NIOHSTHE KOHEYHOTO ABTOMAT, PACIIMPEHHOTO
3ieCh PAIMYHLIMH CTI0C0GaMIM U151 OGECTIEHEHMS BOIMODKHOCTEN] OTTHCAHMSA 3ARMCHMOCTH paboTs!
MOTETMPYEMBIX CHCTEM OT BPEMEHHBIX YCTIOBMMIM M OT IAHHBIX

AJTTODUTMIHECKAS PAIPE IMMOCTS JOKA38HA CHAMRIIA JUIA MACCORBIX ITPOGIIEM JOCTYDKMMOC-
TH BEDUIMHLI M1 BOBMOSKHOCTH GeckoneyHol paboTV VISt IIpOrpaMM B HECTIOMCHOM TEOPEeTHURC-
koM sauike LTIBA, sansmonyiMes pacimmpeHmeM KOHEYHO-ARTOMARTHOM MONe/TH ITyTeM BReieHUs
TIEPEMEHHBIX U TIOBBOISIKALEE EbIPASHTE IARACUMOCTS MODETMPYEMOH CUCTEMBL KaK OT TeMIo-
PTRHO KOMIMYECTREHHLIX OfpaHueriii (eucrema konavarn LTIM), Tak oT BHEIHUX JAHHBIX
(cuerenma xomvarr LB A SE). B euryanpsx, Korpa 370 BoBMmIGo, teKTHBHOE CHMBOITAMECKOE
OTMCAHMUE MHOOKECTS BCEX PEAVIM3YeMbIX ITyTel B IPOrpaMvax MeonenyeMsx ssbkos LBASE,
LTIM, LTIBA mano B TepMiHAX ITPOSKTUBHOCTH. AJIOPMTMIAHECKAS HEPAIPEIIFMOCTS TIpob-
JieMb] JOCTYDKMMOCTH BEpLIMHB] inkca3aHs Ui oporpamM B sasie LTIM’, xoropoe Tomxo
TIOHEMHOI'Y OTIMYAETCS OT PACCMOTPEHHOO BLITE A3AIKA OITACAHUS BPEMEHHLIX 33BMCHMOCTEN
LTIM. -

B pabore noiazana TaiOKe PASPEMUMOCTS CTPOTOH M ciaboli (aberparvpoBaHoll OT BHY-
TPeHHMX coBbITMI CHCTEMEI) GHCHMYIIAIMOHHON SKBHBANEHTHOCTM [MOJEJM TIPOLECCOB C
napanemsLMH Talivepavit (PTP), MMEICIIMM CEMAHTMKY PEASHOMO BpeMEHH OTIPefeNeHHYIO
TIOCPEICTROM CUCTEM TIOMEYEHHRIX NEPEXOIOR, ¥ TIOSBO/ISTIALIAM TTDMEIM OBPA30M OTTHMCATS 35-
BHCHMOCTY TNAPANIENTRHBIX CHCTEM PESJIHHOMO BPEMEHH OT BPEMEHHO KO/IAYECTRBEHHNX YCIOBMIL
PaspetmavocTts mpofinieM JOCTYDIMMOCTY BEDIIMHB], BOBMOOKHOCTH Beckoneunolt pabomv v 6w
CHMYTISIMOHHON SKEMBANEHTHOCTH MCCENOBAHA TAIOKE JUIA HEKOTORLIX PaCLUMpeHMH OCHOBHON
voner PTP (comepoianpix Taioke CpencTsa M OIHACaHNS 3ABUCHMOCTY MODETHMPYEMBIX CHC-
TeM OT [3HHLIX). PesysmTaT HepaspelIMMOCTH PACCMATIMESEMBIX ATTOPHTMIHECIIAX TTpoG/eM
TKUTYSeH JUIS KJISCCA TeMIIOPAITRHEIX ITPOLIECO0B MMBICIAX THHKH MAMSITY [UIS TIEPERIDKEHMS
TalMEPHBIX 3HAUEHMI IO BPEMEHHOM OCH,

Hakorbiy, B TDUNIOMEHIN paccMOTPEH IPHMED AHATUSA JOCTIDKMMOCTH M PEATTHSYeMOCTH
MyTell B cRELpApMKAUMA HECTOKHON CHUCTEMb] PEATRHOTO BPEMEHM, 3aNAHHOW ITPOUECCOM Ha
s3eie SDL, paspaboratinoro MKKTT 1151 OMMCAHNST TENEKOMMYHUKALTMOHHBIX CHCTEM.

v

Acknowledgements

First of all,] want to thank my thesis advisor Prof. Janis Barzdips for his sugges-
tion to look at the time constrained real time system analysis, for his really noteworthy
advices and continuous encouragement in my work on the thesis over the vears.

I am very thankful to all my colleagues at Department of Computer Science, In-
stitute of Mathematics and Computer Science for the provided possibility to work
on my thesis, for their understanding, support and encouragement. Among my col-
leagues | want to thank especially Prof. Audris Kalnips for a number of interesting
discussions we have had on the topic of the real time system analysis and automated
test case generation and Lolita Zeltkalne for her help to improve the English in the
most important parts of the thesis.

I want to express also my thanks to my colleagues and {riends abroad - Uno
Holmer, Wang Yi, K.V.S. Prasad, Alan Jeffrey and Prof. Bengt Nordstrom in Gote-
borg, as well as Kim G. Larsen and Jens Chr. Godskesen in Aalborg both for numerous
interesting discussions on the real time process calculi, and for the provided possibility
to have a look on a wide spectrum of the ongoing research in the general area of the
program correctness in the world.

My deepest thanks are also to Dr. Agnis Andzans and Prof. Risigs Freivalds who,
though not being in a direct relation with my thesis work, have done very much for
my mathematical and scientific education.

Perhaps the most important help I recieved during the work on the thesis was that
by my parents Silvija and Henrihs and my sister Kristine, let me say:

Paldies Jums, milie vecaki un masa!

Riga, Latvija
June 17, 1992 Karlis Cerans.

Contents

1 Introduction

1.1 "Real Time Systems™
1.2 Symbolic Models of Real Time Systems
1.3 Automation of Model Analysis
1.4 Languages for Specifying Data and Time Dependencies
1.4.1 Dependencies on Integer Valued Data
1.4.2 Time Constraint Specification Languages
143 Results.
1.5 Parallel Timer Processes
1.5.1 Modelling and Reachability
1.5.2 Bisimulation Equivalences for PTPs
1.6 Comparison with Related Work
1.7 Organization of the Material

I Languages for Data and Time Dependencies

2 Mathematical Preliminaries

2.1 Labelled Graphs.o
2.2 Projective Path Sets

3 Language Definitions

3.1 The Language LBASE

3.2 Languages LTIMand LTIBA
3.3 Feasibility and Reachability

4 Finite Path Feasibility
4.1 Variable Vector Value Set Partitionings
4.2 Path Feasibility Graphs L

4.3 LBASE: Perfectnessof BG(P)

4.4 Basic Graphs for LBASQ programs

O =1 Ov s A

12
13
15
16
18
21

22

23
23
25

31
31
34
37

CONTENTS
4.5 LTIM: Perfectnessof BG(P)

5 Path Inequality Systems
5.1 Path lnequality Systems for LBASE
5.2 Path Inequality Systems: LTIM
53 Pommt Classes

6 LBASE: Infinite Feasible Paths
6.1 Accomplished Loopso
6.2 Existence of Accomplished Loop
6.3 Accomplished Loops: Sufficiency
6.4 Accomplished Loops: Decidability
6.5 Feasible Fair Paths

7 Infinite Path Feasibility: LTIM and LTIBA
7.1 Progressing and Conservative Paths
7.2 Feasibility of Conservative Paths
7.3 Feasibility of Progressing Paths
7.4 F-projectivityof Path Sets
7.5 Infinite Path Feasibility in LTIBA, ..

8 Programs With Integer Counters
8.1 Undecidability of Reachability for LTIM*
8.2 Comparison with Background
8.3 T"Positive™ LTIM Programs

I1 Models With Real Time Semantics

9 Parallel Timer Processes
9.1 The Basic PTP Model
9.1.1 A Simple Example

9.2 Modelling of PTPs by LTIM Programs

10 Enrichments of PTPs

10.1 Processes with Inactive Timers
10.2 Processes with Extended Time Conditions
10.3 Processes with Nondeterministic Timer Settings

10.4 Processes with Data Parameters

53
53
57
61

98

99
99
104
104

CONTENTS

11 Deciding Bisimulation Equivalences
11.1 Strong and Weak Equivalences.
11.2 Symbolic Processes e
11.3 Deciding Strong Equivalence

12 Deciding Weak Equivalence
12.1 Timer Value Inheritance
12.2 Deciding Weak Equivalence

13 Equivalences for PTP Enrichments
13.1 Processes with Nondeterministic Timer Settings
13.2 Processes with Data Dependendies.

14 Compositional Properties of PTPs
14.) CSP-like composition
14.2 CCS-like composition

15 Timed Processes with Memory

16 Conclusions
16.1 Proof Techniques

Bibliography
A Bisimulations for Action Timed Graphs

B Example of a Real Time System Analysis
B.1 Example Specification Language: SDL
B.1.1 Histories and Tests for SDL Processes
B.2 Passenger Lift Specification
B.3 Modelling of SDL Processes in LTIBA
B.4 Anpalysisof SDL Processes
B.4.1 Path Feasibility Grapbs: Optimizations
B.4.2 A Path Feasibility Graph for LTIBA Lift
B.4.3 A Complete Test Set for Lift Process

124
124
126
129

133
133
134

142
142
146

149
150
151

156

163
166

168

172

Chapter 1

Introduction

1.1 "Real Time Systems”

The texm "real time system” is often used in different situations to denote different
categories of objects. In our case let us have as the starting point the convention to put
in the real time system category any object whose behaviour is observed with respect
to a "time” dimension, assumed on its turn to coincide with the usual category of
time, shared by most of people (we are not looking at the relativity theory treatment
of the time, mathematically the "time” dimension might be identified with the real
number axis provided with some additive arithmetics).

A lot of "objects” we encounter in various situations fall under this definition
of real time systems. The example list could be started by a simple gas-cooker in
a kitchen, by nurnerous kinds of vending and bank machines, by the electric lamp
on my table, or a sensor giving temperature measurements in reaction to the actual
temperature fluctuations in some environment. Regarding more "serious” examples
of real time systems, one could consider telephone exchanges, computers and their
networks, offices, banks, aircrafts and their control systems, etc. Also every human
being him- or herself can be viewed as a (very complicated) real time system. The
earth’s atmosphere is also a real time system, perhaps one of the most complicated
(save the human beings themselves) we are 10 deal with in our everyday life.

The thesis is devoted to the analysis of models of real time svstems. Generally.
a model of one system, S, is some other system &' which has some "important”
properties common with S and is "simpler” than S due to not taking into account
(due to the abstracting from) some S properties which are considered as "irrelevant”.
We shall be more precise about the kind of models under consideration a little below.

One can distinguish at least two principal purposes for which the real time svstem
models can be used:

¢ to describe or to discover the regularities in the behaviour (the rules determining

1.2. SYMBOLIC MODELS OF REAL TIME SYSTEMS 5

the behaviour) of some existing r.t.s. {e.g. ip order to learn, how 1o use it for
our purposes, or to adopt our behaviour to the system (as in the case of the
weather (the atmosphere)));

¢ to investigate the properties and the behaviour of some system which we want to
build (most commonly, in order to ensure ourselves that we are actually going to
build a system which has sufficiently many properties common with our desire).

The contribution of the thesis is oriented mostly towards the second purpose,
however, nobody forbids in principle to apply the below considered models and their
analysis algorithms also to the already existing systems, were there a necessity for it.
It is also not the primary aim to consider here very complicated r.t.s. as the humans
or the atmosphere, it would be nice, if the contributed ideas could help in the analysis
of real time systems of "medium complexity” size.

1.2 Symbolic Models of Real Time Systems

Over the last decades of years a lot of models (or, rather, model classes), oriented to
the applications in the real time system design and manufacturing have appeared and
been widely used. They are ranging from probably the simplest one, the Finite state
machines ("FSM", for short), to theoretical and practical real time system specifica-
tion languages with wide variety of offered system modelling constructions (on the
theoretical side, various process calculi like CCS [Mil80, Mil89], CSP [Hoa85], Petni
Nets [Pe62] (see also [Re85]), temporal logics [Em91], etc. As to the practical real
time specification languages, one could mention, for instance, SDL [CC89], LOTOS
[1SO89a] and ESTELLE [ISO89b]). What is common for all these model classes, is
their symbolic nature which allows to have a computer support in building, modifying
and analyzing them.

One can notice that even a computerized model is assumed to reflect all the logical
(including timed) behaviour of the entire system, it is considerably cheeper to build
such a model, if compared with the building of some preliminary version of the system
itself from any kind of hardware (or even by some low-level programming language).
Observe also that such a preliminary version of a system is almost inevitably being a
subject of rather drastic changes afterwards.

So, 2 possible methodology for the use of models in the real time system manufac-
turing could be, as follows: first, build a model of the system you want to construct,
second, make sure (up to the level of confidence, determined by your requirements and
possibilities) that your model is correct (in most of the cases it might be necessary to
make some modifications to the model), third, using the final model as a specification,
implement the real system itself (this implementation also can be, in principle, at least

CHAPTER 1. INTRODUCTION 6

partially mechanized (auiomated)). One can use the model (the specification) also
for automated test case generation for the system’s implementation.

In a stepwise design methodology of real time systems a series of models for a
system can be used: at early design stages only some general sysiem properties (e.g.
the block structure and signal routing, etc.) are modelled. the model is afterwards
step-by-step refined, so making the system specification more and more precise.

If one has obtained a detailed symbolic model of somer.t.s. (say, a program in some
executable very high level specification language, such as SDL or LOTOS), it becomes
possible to study its behaviour in various environments (to “run” the program on
various test examples), so finding out and getting rid of a number of bugs both in the
model implementation and, perhaps, also in some principal design decisions (when the
model of the system behaves in a way not expected before, and the requirement for the
system not to behave so was not realized up to this time). Various program dynamic
(runtime) analysis techniques (program annotation, etc.) can be successfully applied
at this stage. One can also develop and use various debuggers for error detecting and
localization in the model (see, for example, [KE89], [BKA89]). There is an ongoing
research [BKM91, Kal9l] to obtain methods for SDL program testing automation,
intended to capture both program control and data information, also resulting in a
tool ultimately oriented towards improving the r.t.s. model quality. One can observe.
as in [ABBCK91], that the need in various tools to improve the reliability of r.t.s. is
relatively higher than the need of corresponding tools for the most of non-real-time
applications since the real time systems have relatively higher demands on reliability
(consider, e.g., a system controlling an aircraft, or even a nuclear reactor. Nobody will
be satisfied also, if some widely used communication protocol shows up some errors
time and again).

In the case of very safety-critical systems it might be possible to prove some de-
sirable properties of the system, however, this task seems to be verv work-consuming
and must be done individually for every modification of the svstem. There are al-
ready some proof-assistance systems (in general, not particularly designed for prov-
ing programs correct) which may help to make computer-checked proofs, see [BM79,
GMWT79) (at the considered level of confidence, perhaps. the "manually” carried proofs
do not convince strong enough about the model "correctness” for it is possible to make
errors also in proofs (for example, by overlooking some possibilities when performing
a huge case analysis), as they could have been made in the programs)). It should
be noted, however, that the formal property proving nowadays cannot be carried out
for the systems of practical size; also in the case it turns possible to prove some
correctness properties in principle, one can find this proving too costiv.

1.3. AUTOMATION OF MODEL ANALYSIS

~1

1.3 Automation of Model Analysis

As observed above, the real time system model property proving is a very hard job.
One might want to see, if there could be some tools for this proving automation,
which, say, given a specification of the system by some kind of mode) (for instance, as
a program in SDL) and a property, formalized in some logics, returns either a proof or
a disproof of this property possession by the system. Not difficult to see that this plan
cannot be fulfilled in its full generality since one is faced very soon with the deciding
of undecidable problems (equivalent to, say, the halting node reachability for Turing
machines). However, the mode] analysis autornation possibility is so attractive, that it
is reasonable to make a (further) abstraction from some features of the model (system)
in order to obtain a simpler model (with some more of the modelled system behaviour
properties not reflected), which could be the subject of the (some kind of) analysis
automation.

What is usually abstracted out in order to obtain automatically analyzable models
of real time systems, are any kind of system data dependencies. Alsc quantitative real
time constraints (stating, for instance, that an event b cannot be performed before 3
seconds have passed after an occurrence of some other event a) are usually a subject
of such an abstraction. Various infinite control structures like process signal queues
in SDL systems use to be replaced by their bounded "approximations”™.

So, by abstracting of a number of more or less "unimportant” system work char-
acteristics, one obtains a simple model like a Finite state machine (a finite directed
graph with nodes interpreted as “states” and edges interpreted as "transitions” be-
tween these states, every transition has ascribed a label, which is interpreted as an
"event” observable during the system's behaviour). Provided with such a model one
can easily test the reachability of a given state, also find out, if the machine satisfies
some ternporal logic property (see [CES86] for this approach carried out systemat-
ically), it is also possible to provide algorithms for automated checking of various
equivalences between two systems (most popular kinds of equivalence are (in the or-
der of increasing strength) the trace (language) equivalence, the failures equivalence
[Hoa85) and the bisimulation equivalence |Par81, Milg9]). For the FSM models it is
easy to check also the presence/absence of deadlocks. The check whether a given sys-
tem can exhibit an infinite behaviour (or is forced to terminate afier a finite number
of steps) is also straightforward.

A pumber of important properties of real time systems still can be checked using
the FSM-like models (one can observe that a "parallel composition” of two real time
systems, both modelled by FSMs, also can be expressed as a Finite state machine,
so the FSM analysis techniques can be used also to check various synchronization
problems in concurrent r.t.s.). However, there are also many cases when the system’s
bebaviour is crucially ipfluenced by, say, quantitative time measurements. If two
processes, A and B, are working in parallel, it might be very important, whether

CHAPTER 1. INTRODUCTION 8

a certain signal from A to B is produced by A and consumed by B before a timer
in B times out. Also an external observer may wish to distinguish a system which
gives a response to some his stimulus in 5 seconds from another one. giving the same
reaction, but only delayed for 7 or 8 seconds. In such cases the FSM model appears
to be too rough for adequate modelling of the desired real time behaviour (real time
system). A similar problem arises also, if the modelled system appears to be essentially
dependent on some other data from an infinite domain of values, as. say, integer or
rational numbers (any dependencies on finite-valued data can be, at least in principle,
modelled by a FSM with the set of states coinciding with the set of all possible data
values. However, if the number of possible data values gets very large, this approach
also is to be abandoned due to the practical infeasibility).

The most common solution to this problem consists in designing models (model
classes) for real time systems which are, first, richer than FSMs in that they are
able to reflect, at least partially, the desired system properties (e.g., the dependencies
on quantitative timed constraints) and, second, permit automated analysis of one or
other kind (it may well be that the reachability problem for the models in such an
"ennched” model class is decidable, whereas some equivalence problem is not; even
more, for Parallel Timer Processes, considered below, the bisimulation equivalence
problem turns out to be decidable, while the trace and failure equivalence problems
are not).

The thesis is devoted to the study of possible enrichments of the FSM model by
features allowing to specify the system behaviour dependencies on quantitative timed
constraints and integer-valued data and the elaboration of suitable algorithms for
these enriched model analysis. We generally assume the density of the time domain
(time axis, going beyond the model system’s execution), so any event, which is allowed
to appear in some time interval [t;,t;] within the model behaviour (¢, and t, are
real-valued time constants), may appear at any real moment within this interval
(actually, for the decidability purposes the domain of allowed action/event firing times
1s assumed to consist of rational numbers).

The main theoretical results of the thesis are

o deciding algorithms for the reachability and infinite behaviour possibility (infi-
nite feasible path existence) problems for programs in a simple language LTIBA,
allowing specification of both data and time dependencies of real time systems,
and

o deciding algorithms for strong and weak (abstracted from internal actions)
bisimulation equivalence problems for Parallel Timer Processes, a model com-
positional model with the real time semantics, designed for the specification of
the quantitative time dependencies of concurrent r.t.s.

We also explain the relations between the considered models and investigate some

1.4. LANGUAGES FOR SPECIFYING DATA AND TIME DEPENDENCIES 9

variations of them in order both to outline the extendability of the obtained algorithms
to more general timing specification formalisms and to show the limits of the real time
systemn analysis automation possibilities (various undecidability results obtained).
Before proceeding to a more formal treatment of these problems, we outline the
considered models and obtained results in some more detall and give some points to
the background and related work by others.

~-

1.4 Languages for Specifying Data and Time De-
pendencies

1.4.1 Dependencies on Integer Valued Data

First of all we consider a ™ programming language” LBASE, which in addition to the
finite-state control structure permits in every program a finite number of integer-
valued internal variables with the following possible commands (here x, y are variable
names, ¢ is an integer constant):

o 7x, input of a (new) value from the program input gate into the variable x;
® X — y (x « c), assign the value of the variable y (the constant ¢) to x;

» X<y (x<e, ¢<Yy), compare the values of the two specified variables (or the
variable and the constant), the decision on further program control flow can
depend on the result of this comparison;

¢ NOP, a dummy operator.

No arithmetical transformation of data is permitted in LBASE programs. However,
the infinite domain of possible data values (integer numbers) makes the standard FSM
analysis techniques based on the "state-space™ explaration not directly applicable for
LBASE programs.

The language LBASE is a slight dialect (simplification) of the base programming
language Ly, considered in [BBK74, BBK77, ABBCKS91] (we do not care here about
the input tapes for the programs, the program output operators are not considered,
as well (the usage of the output operators does not contribute theoretically any new
modelling abilities into the language). The STOP operators of Lo are simply replaced
by dead-end nodes here). '

It was proved first in [BBK74] (the first English version can be found in [BBK77))
that the statement (node, vertex) reachability problem for Lo programs is decidable.
Actually, these papers consider a more practical problem of automated complete test
system generation according to the well-known testing criterion C, - covering of all

CHAPTER 1. INTRODUCTION 10

feasible (executable on some input) program branches, what, of course. includes the
deciding which branches in the program are feasible.

To say some more words about the background, in [BKB74. BBKT77. Auz84a.
Auz84b] the reachability problem was proved decidable also for programs with more
complicated data dependencies, including various kinds of counters. stack and direct
access files, see [ABBCK91] for a survey. However, as the data structures in programs
become more complicated, the node reachability problem becomes undecidable very
soon (it is enough to have two 2-way counters provided with the test for 0, or even
one l-way counter provided with the constant assignment to the counter and the
comparison of the counter and other variable values [BKB74] (see also Section 8.2)).

All the work, done previously for the automated analysis of Lg-programs and its
modifications, was oriented to the non-real-time applications, considering a program
as an object which, having staried at some time on some finite amount of input data,
normally executes a finite number of steps and outputs a result (the case when a
program executes forever was considered as an abnormality). So, in the "white-box”
approach to the program analysis taken (the program control structure is assumed
observable during the program execution) the program behaviour was normally char-
acterized by the set of all finite feasible paths in it. As to the real time applications, it
is usual to assume (at least theoretically) that the system under specification is going
to work endlessly ad infinitum by reading more and more input data, as they arrive
at the system’s input. So a number of important problems concerning the infinite
behaviour of the system (and its model) arise, say,

e can a given system, specified by a LBASE program, exhibit an infinite behaviour
at all (i.e. is there an infinite feasible path in the given program), or the system
is always forced to terminate after finite number of execution steps,

e is a given program statement reachable within such an infinite behaviour, or

» 1s the system able to visit some designated nodes (for instance, the nodes with
input statements attached to them) infinitely often within some behaviour (or
is it able to avoid some statements in an infinite run), etc.

In Part I of the thesis the reader can find all these problems proved decidable for
LBASE programs from program texts, see Section 1.4.3 for a more detailed obtained
result outline.

1.4.2 Time Constraint Specification Languages

Concerning the time constraints in real time system specifications, we come up with
the following simple language {2 slight modification of LBASE). called LTIM. Every
program in LTIM is allowed to have, first, a finite number of rational-valued variables

1.4. LANGUAGES FOR SPECIFYING DATA AND TIME DEPENDENCIES 11

with permitted operations over them just as for LBASE program variables (ioput,
assignment, comparison, NOP). One special variable z, named real time counter can
also be used in any LTIM program in the following operations:

o z & x;, assigning the value of X; to z, provided that the value of z does not de-
crease via this assignment. The decision for further control flow in the program
can be done depending upon whether or not the value of z actually was not less
than x; before the assignment.

® X; «— z + c, assigning the value of z increased by c to x; (for the sake of simplicity
only nonnegative cs are allowed here).

It is important to note that the real time counter z cannot appear in the program
input operators, or as the Jefthand side of an assignment operator (so, there is no way
to decrease the z value during the program execution).

When using a program in the language LTIM to model the quantitative timed
aspects of some r.t.s. behaviour, the program is assumed to read step by step all the
sequence of the system transition (event) firing times from its input gate. The "time
counting” for LTIM programs is "absolute”, and for every moment of the modelled
system behaviour the value of the program real time counter z at the corresponding
program execution moment is used to represent the numeric value of the "current
system clock reading”™ (the current numeric value of the time moment in the system).
Any time a new system event firing time is read by the program, the value of its real
time counter is advanced to hold this new time moment by the positive assignment
operator. The variable activation operators of the program naturally represent the
timer setting in the modelled r.t.s.; the timer timeout in the system can be represented
in the program by the z value advancement up to the value of sometimes previously
activated variable (and the control flow passing along the appropriate edge in the
program graph).

The real time system modelling by means of the programming language LTIM
constructs is considered in some detail in Section 9.2.

Having defined two simple languages LBASE and LTIM, we come up with a unified
formalism, called the language LTIBA, containing the facilities of the both simple
languages.

The usage of the Janguage LTIBA programs in the r.t.s. behaviour modelling allows
to describe at least to some extent the dependencies of r.t.s. both on the timing and
external data constraints, see Section 10.4 for these modelling possibilities considered
in some detail.

Let us note just that according to the above given interpretation the time moments
in LTIBA (LTIM) programs can be treated as some kind of data - a feature which could
be useful in various situations, e.g., when reasoning about real time office information

CHAPTER 1. INTRODUCTION 12

systems with input and output messages often carrying parameters of the tvpe “time
moment”.

1.4.3 Results

The main results in Part [, containing a detailed discussion on the languages LBASE,
LTIM, LTIBA, can be grouped, as follows:

First, the vertex reachability problem for LTIBA programs is proved decidable.
This decidability follows from a more general result stating that the set of all finite
feasible paths of an arbitrary LTIBA program P can be given a characteristic of being
the set of projections of all paths in some FSM, effectively construable from P (let
us call the program path sets with this property projective). This result implies also
that certain kinds of program verification problems (those, concerning finite feasible
statement and branch sequences) can be dealt with automatically.

Second, decidable for LTIBA programs is also the problem of infinite feasible path
existence (the problem of program ability to exhibit an infinite bebaviour). Regarding
the characterization of the set of all infinite feasible paths in LTIBA programs. a direct
analogue of the path set projectivity does not hold, in general, for there can be infinite
not feasible paths with al] finite prefixes feasible both in LTIM and LBASE programs.
We propose instead a similar, slightly weaker, property of program infinite path sets,
called ”F- projectivity” (the specified path set must coincide with the projection set of
all fair paths in a FSM provided with a special set of designated states; a path in such
a machine is fair iff it visits some of the designated states infinitely often). It is proved
that for all LTIM programs the sets of infinite feasible paths are indeed (effectively)
F-projective. F-projective in LTIM programs are also various other interesting infinite
path sets, e.g., the set of paths executable with no bound on the "limit value™ of the
real time counter, etc. As to the LBASE case, a simple example shows that also the
F-projectivity criterion is not always satisfied by the set of all infinite {easible paths
in a program (so not giving such a hope also in the general case of the whole language
LTIBA).

Other infinite path feasibility problems, such as whether there exists an infinite
feasible path, containing a given node infinitely often/at least once, are showed for
LTIBA programs decidable, as well. We consider also the algorithms effectively gen-
erating the infinite program work histories which visit the specified program nodes
the desired number of times. These algorithms can be used Lo generate for determin-
istic LTIBA programs some kind of "infinite tests” which could guide the program
behaviour according to, say, some faimess-style correctness conditions.

Third, it is showed that for a slight modification of the language LTIM, where
the rational data type for the language program variables is replaced by integers (all
the variable handling commands remain the same), the vertex reachability problem
becomes undecidable. This result gives a new class of programs with counter having

1.5. PARALLEL TIMER PROCESSES 13

undecidable vertex reachability problem (if a one-way counter can be compared with
other program variables, there is no need in order to obtain the undecidability to
have a possibility to reset the counter to explicit constants from time to time). The
result gives also some evidence about the "modelling power™ of LTIM constructs. It
is possible to interpret the result also as an instance of comparison of the possibil-
ities to analyze discrete and dense data structures with "the same” constructs over
them, where in the dense case “the battle is won” (for the most of models intended
to capture the timed behaviour of r.t.s. the situation is quite opposite: in the discrete
case the treatment of the time information fully reduces to the analysis of some FSM
model, whilst in the corresponding dense case the generated state space is "essentially
infinite” and so cannot be dealt with. by a straightforward exploration). '

We consider also two sublanguages of LTIM, called LTIM, and LBASQ (see Sec-
tion 3.2 for definitions), which are useful in various aspects of the r.t.s. behaviour
modelling and admit nicer characteristics of the infinite feasible path sets (the pro-
jectivity property) than the whole general language LTIM.

The language LTIM and LTIBA construct interpretation within the real time
sernantics allows to obtain the analysis automation results for a family of Parallel
Timer Process models, discussed below in Section 1.5. We give also an example in
Appendix B, how the obtained LTIBA program analysis algorithms can be used in
automation of the analysis and testing of programs in the C.C.L.T.T. telecommuni-
cation systern specification language SDL [CC89]. 1t is showed, for instance, how
to solve a problem of automatic complete test system generation for SDL processes
(according to some analogue of the testing completeness criterion Cy).

Most of the results listed in this section are published in Section 9 and Section 10
of [ABBCK91], written by the author (the results concerning the analysis of finite
path feasibility and the modelling of the SDL constructs), and [Cer92a), where the
infinite path feasibility problems for LTIBA programs a.nd the undecidability result
for programs in the integer-valued modification of LTIM are considered.

1.5 Parallel Timer Processes

The languages LBASE, LTIM and LTIBA for specifying the dependencies of real
time systems on data and/or time constraints allow to specify these dependencies
(especially in the case of the time constraint modelling) in an indirect way via the
standard programming data structures (variables, counters, etc.).

The direst way of representing the timing information when modelling real time
systems consists in the usage of models which also have some notion of time (usually,
still associated with some mathematical data structure, resembling the important
properties of the "real time”, (e.g., the set of all nonnegative real pumbers provided

CHAPTER 1. INTRODUCTION . 14
with comparison and constant addition operations)) and interpreting the real system
timing behaviour using the model timing features. We call such models provided with
the notion of time the models with the real time semantics.

We consider one such model class, called Parallel Timer Processes ("PTP"s), able
to mode] the r.t.s. behaviour dependencies on the quantitative timed constraints (see
Section 9.1 for a formal definition of the model).

For expressing the quantitative timed constraints in a sequential svstem it may
seem natural to introduce special "delay” or "waiting” primitives, associated with
certain time periods, and insert them into the system’s bebaviour between the con-
secutive events the "time distance™ between which is of importance. However, the idea
of treating these "waiting” actions as primitives does not work, if combining the real
time systems in parallel: neither can these "actions” be considered as interleaving,
nor it is possible to consider them as indivisible entities for synchronization. Another
idea for the time constraint expression, which is implemented also in the PTP model
(no claim about the originality, see [MF76], [CC89)] and [ACD90] for actually the same
idea exploited) is not to introduce the "delays™ of the system as its work primitives,
but provide the system with some facilities which can "measure™ the time interval
lengths between various events.

Intuitively, a PTP is a finite state machine provided with a number of "timers”
for controlling its timed behaviour. ‘Every timer is an abstract device that can be set
up to give its timeout after certain specified period of time. In the PTP model every
timer is represented as a variable, which can receive its initial value by its setting,
say t — 5. After the setting the timer value is assumed to decrease synchronously in
accordance with some global clock and, having reached the 0 value, the timer is said
to give its timeout.

Every timer during the process execution is set up when a transition along some
edge in the process occurs. On the other hand, every transition along an edge in
the process may require some timers to have reached the 0 value, this way the idea
that some certain period of time must have been passed between the transitions is
implemented. Every PTP also has an explicitly specified initial timer value setting.

The edges in the PTPs are divided into two classes: the first ones (we call them
instantaneous and colour red) have the property that, if a transition along such an
edge is enabled (i.e. all the needed timers have reached the 0 value), it must be
imrnediately executed. The second class of the process edges. called possibly waiting
and coloured black, can allow the transitions along them to be delaved for some time,
e.g. unti) the process environment decides this transition to be performed.

The semantics of Parallel Timer Processes is given operationally in the terms of
labelled transition systems ("LTS"). Every edge in 2 PTP is assumed to have ascribed
to it a label from a given finite set L of action names, interpreted during the process
behaviour as the actions the process participates in (such actions can be either signal
input/output, reading a data value from a bus, or even offering a cup of coffee by

1.5. PARALLEL TIMER PROCESSES 15

some coffee-machine). Following the idea of timed transition systems of [Wan90}, we
define for every PTP P in the set of its states the relations P’ — P”, meaning that

the process can move from the state P’ to P” by performing the action o € L, and
e(d . e
P prior d > 0 (we assume d € Q*°), representing the process delzy transitions

and meaning that the process state P’ can be transferred into P” just by letting the
time to pass for d units.

The PTP model is demonstrated to have a compositional semantics (a number of
static process algebra combinators, including both the CCS-like and CSP-like paraliel
composition, are defined for PTPs, see Chapter 14), this allows to model as PTPs
wide subsets of algebraic timed specificatior formalisms Timed CCS of [Wan90] and
Timed CSP, as presented operationally in [Sch9l].

The PTP model has a number of features common with the already existing models
of the Timed Graph family (see [ACD90), [NSY91}), Section 1.6 outlines the common
and different points in these models.

We consider also various possible extensions of Parallel Timer Processes (processes
with inactive timers, processes with nondeterministic timer settings etc.), either al-
lowing to reduce the size of the system specifications, or introducing some new time-
modelling features (e.g. the ability to set a timer nondeterministically to some value
in a specified (bounded or unbounded) time interval).

Concerning the specification of real time systems with the dependencies on both
data and time constraints, we propose some enrichments of the PTP model with either
integer or rational valued external data (see Section 10.4).

1.5.1 Modelling and Reachability

In Section 9.2 we give a method for modelling Parallel Timer Processes by LTIM pro-
grams (actually, a subset of LTIM, called LTIM,, suffices for this modelling purpose).
The most important point in this modelling is the precise demonstration how the lan-
guage LTIM constructs can be used in the real time system modelling. It also allows
to obtain an algorithm for deciding the vertex reachability problem for PTPs proved
already decidable by other (direct) methods for a related model of Timed Graphs in
|ACD90).

Regarding the considered extensions of PTPs, we also show how to model them
using the programs in the languages LTIM and LTIBA, so illustrating the need and
sufficiency of the considered simple theoretical language constructs to model various
real time constructions (e.g., it is showed that it is not possible 1o model processes
with unbounded nondeterministic timer settings by LTIM, programs, the whole class
of the LTIM programs suffices for this modelling). ‘

Rega:ding the analysis of the timed specification formalisms with data dependen-
cies, an interesting result shows that really very slight changes in the definition of the

CHAPTER 1. INTRODUCTION 16

corresponding PTP extensions (called in Section 10.4 PTPBs and PTPBgs) put the
obtained specification model class either on the side of models with decidable vertex
reachability problem, or on that with the vertex reachability problem being undecid-
able. In the case of the decidable model of PTPBos this decidability is proved via
the modelling of the considered data dependent processes by LTIBA programs. The
algorithms of this modelling can be also used to decide for PTPBgs other algorithmic
problems, discussed in Section 1.4 and considered more thoroughly in Part I (consider,
e.g., an infinite feasible fair path existence problem).

We obtain also an undecidability result of the vertex reachability problem for the
parallel timer processes with memory cells ("PTPM”s). Intuitively, a memory cell
can be used to store the value of a timer (when some transition is executed) and to
retrieve it afterwards at some later moment -of time. A typical example of a timed
process with a memory cell is the ice-hockey timer (formalized in the process calculi
Timed CCS in [Wan91b]), whose time-counting can be at any morment interrupted and
afterwards restarted with the time period value being the one it had at the moment
of the interruption.

This undecidability result may look not very surprising since the adding of some
extra constructors to any language may well turn some algonthmic problems for it
undecidable. The point in the PTPM model consideration can be seen both for the
timed behaviour it represents and its seeming "similarities” with the PTPQ model (an
extension of PTPs with rational-valued data) considered in Section 10.4 and having
the vertex reachability problem decidable.

1.5.2 Bisimulation Equivalences for PTPs

The vertex reachability problem is just the simplest theoretical algorithmic problem
in the analysis of models of real time systems. For the sake of real time sysiem
verification one might often want also to show that his/her implemented system is
"equivalent” in some sense to a specification of the system. It would be really nice, if
such "equivalence” test could be performed automatically for some class of models.

As to the models for quantitative time constraint specification. a result obtained in
[AD90] states the undecidability of the timed trace inclusion problem for Timed Biichi
automata ("TBA"). This result can be easily extended to show also the undecidability
of the trace equivalence problem for TBAs (see Section 1.6 for some remarks regarding
the TBA model). One might naturally want to see. whether there is some decidable
equivalence property for concurrent systems with timing.

Since the semantics of Parallel Timer Processes is given by labelled transition
systems one can, following {Par81] and [Wan90], define the bisimulation equivalence
for PTPs. The idea of the bisimulation equivalence is that two processes P, and P,
are equivalent, iff there exists a binary relation R C §P x $* (5§F denotes the set of
the process P states) such that

1.5. PARALLEL TIMER PROCESSES 17

o the pair (sg‘,s,f’) of the process P, and P; iniiial states is in R, and

o for every pair (s,r) € R, if by some transition (real or delay) from s jt is
possible to move to some state s', then there exists the same transition (the
transition labelled by the same action) from r to such a state r’ € ST for which
the resulting pair of process states (s',7’) € R (the converse with s and r in
changed roles must also hold).

1t is proved in the thesis that the problem, whether two given Parallel Timer Processes
are bisimilar (bisimulation equivalent), or not, is decidable.

One can notice that the bisimulation equivalence is the strongest equivalence for
the specification models with the LTS semantics (see, e.g., [Mil89]).

We consider also the so-called weak bisimulation equivalences {observation equiv-
alences) which declare some actions from the process action repertoire to be invisible
and for every pair of process states request that every generalized transition (perhaps
containing in it an arbitrary number of "invisible” transitions) from the state of one
process must be matched by some appropriate generalized transition from the cor-
responding state of the other process (see Section 11.1 for precise definitions, made
in accordance with [Wan90]). It is proved in the thesis that also weak bisimulation
equivalence problem for Parallel Timer Processes is decidable.

The decidability of both strong and weak bisimulation equivalences is shown also
for a class of processes with nondeterministic timer settings (requiring the nondeter-
minism in these settings to be bounded).

Among the ennichments of PTPs which have decidable bisimulation equivalence
problem fall also the processes with rational-valued external data. Regarding the pro-
cesses with integer-valued external data the bisimulation equivalence problem seems
to be much harder (undecidable?), though the reachability problem also for this pro-
cess class can be easily dealt with using the modelling of the processes by LTIBA
programs.

As to the previous and related work on deciding bisimulation equivalences for
timed specification formalisms, the decidability results were obtained only regarding
rather simple process classes, namely, in [HLW91] the strong bisimulation equivalence
was proved decidable for the class of regular (i.e. built without the parallel composition
operator) Timed CCS processes (these processes can be, in fact, modelled as PTPs
with one timer). In [Che91] a similar decidability result was obtained for recursion-free
finite timed processes.

The results regarding the decidability of bisimulation equivalences are published
in |Cer92b] (full proofs in a shightly simplified case) and [Cer92¢| (a conference paper
describing the general results). Both of these papers contain also some discussion
on the undecidability of the vertex reachability problem for the timed processes with
memory. An early paper on the deciding strong bisimulation equivalence for a vari-
ant of PTPs is [Cer91], it also outlines one possible way of interpreting Timed CCS

CHAPTER |. INTRODUCTION 1

o2}

processes from [Wan90] as PTPs (the way of TCCS modelling as PTPs considered in
[Cer91] differs from that considered here in Section 14.2). The results regarding the
automated analysis of r.t.s. specification formalisms (the enrichments of PTPs) cov-
ering both the system data and time dependencies are unpublished for the moment.

1.6 Comparison with Related Work

The theoretical background of the languages LBASE, LTIM and LTIBA has alreadv
been discussed in Section 1.4.1. We consider here the related approaches to the
analysis of quantitative-constrained real time system specifications.

The first nontrivial result concerning time-constrained r.t.s. model analysis was
the enumerative analysis algorithm in [BM83] for Time Petri Nets ("TPN™, for short)
[MF76] (in fact, solving the reachability problem for bounded TPNs).

Timing information in TPNs is closely tied up with the net transition firing mech-
anism, so specializing the possible general results on analyzability of time-dependent
systems to a particular model class with time and certain kind of structure informa-
tion {every transition of the net has associated two real numbers @ and b, a < b,
called the earliest and latest transition firing times, respectively. The transition in
the net is allowed to fire when it has been continuously enabled for a time units; when
the total transition continuous enabledness time reaches b time units, the transition
is forced to fire). Regarding the TPN model one can look also [GMMP89], where
various transition firing enforcement mechanisms for TPNs are discussed.

As to more recent formalisms for time constraint specification and analysis, the
family of Timed Graph models [ACD90], [AD90], [NSY91] has become rather popular
(also the PTP model introduced here in Section 1.5 can be considered as some variant
of Timed Graphs).

A Timed Graph ("TG"), defined originally in [ACD90}, is an automaton provided
with a finite number of clocks which are assumed to be the variables whose values
are synchronously increasing along the passage of time. It is allowed to reset these
variable values to 0 at the automaton transition firing times. The conditions for the
automaton’s transition enabledness are obtained by observing the "current” values of
the clocks (comparing them with a priori given constants).

It is proved in [ACD90] that the model checking for TGs w.r.t. branching-time
temporal logic formulae (provided also with some means for expressing timed be-
havioural properties) is decidable (this result, clearly, means also the decidability of
the vertex reachability problem for TGs). Using similar methods (time region graph
copstruction), in [AD90] the language emptiness problem for Timed Bichi automata
("TBA™) is proved decidable. As mentioned already above, in [AD90] the language in-
clusion problem for TBAs is proved undecidable (intuitively, a TBA is a Timed Graph
provided with edge labels and Bichi-style acceptance conditions over the timed traces

1.6. COMPARISON WITH RELATED WORK 19

of the automaton).

Regarding the quantitative time constraint modelling approach by the languages
LTIM and LTIBA, it can be viewed, first, as a.theoretical clarification of the relations
between the typical real time system specification constructs and standard program-
ming techniques, as the program variables and counters are. As observed already in
Section 1.4.2, the treatment of the time moment information as data for the modelling
programs also could be useful for some kind of applications.

The LTIM .system of commands is also somewhat more powerful time constraint
specification formalism, if compared to other existing models with decidable vertex
reachability problem (Timed Graphs), see, e.g., the modelling of the PTPNs of Sec-
tion 10.3 by LTIM programs (one can find some more timed systems which can be
described as LTIM programs, but cannot be modelled as TGs). However, the point
is to be made about the indirect way of the time constraint expression in the lan-
guage LTIM, what may appear not very convenient for the use of the language by
practitioners.

When comparing the language LTIBA to other existing r.t.s. specification for-
malisms, investigated w.r.t. the analysis automation possibility, an important point
is the lafguage LTIBA ability to reflect the system dependencies on both the timing
and data constraints. The infinite path feasibility studies in data-dependent for-
malisms are also novel. Regarding the feasibility of infinite paths in time-dependent
formalisms, the TG and TBA models already are given the semantics in the terms
of infinite traces of the corresponding automata. So, from a practical standpoint,
the novelty of the infinite path feasibility studies in LTIM programs is mostly associ-
ated with the coping with the generality of the language LTIM constructs (for Timed
Graphs and similar timing specification formalisms the infinite path feasibility does
not appear as a more serious problem, if compared to the finite path feasibility).

Regarding the Parallel Timer Process model, considered in Part II, its. most im-
portant difference from TGs is the defined operational semantics (labelled transition
system), yielding the possibility to consider the bisimulation equivalences between
PTPs (the TG model has the semantics just in the terms of completed traces)'.

The most "visible” difference between PTPs and TGs is the mechanism of ex-
pressing the time constraints: for PTPs this is done by setting a timer initially up
to some value and then waiting until the timer decreases downto 0, while the TGs
model a particular time interval by initial resetting of a continuously increasing clock

'If compared to the TG model, as defined in [ACD9(], PTPs also do not have the requirement
oflno more than finite number of transitions, performed in a finite time (it is important to remove
this requirement Lo be able 1o define the LTS sernantics), and they are allowed to have a number
of transitions within a single time moment (one could define also the LTS semantics for processes
not allowed to have more than one transition associated with one moment of time. however, the
algebraic theory of processes becomes much nicer, if the transitions of such kind are allowed).

CHAPTER 1. INTRODUCTION 20

to 0 and observing the value of the clock in order to find out whether the interval has
been passed.

It is of some importance to have a formalism with decreasing timers when looking
for an interpretation of the language LTIM constructs in the real time. Some ex-
tended PTP variations (consider especially the processes with nondeterministic timer
settings) also outline some new theoretical situations regarding the time constraint
analysis (observe also some “duality” in the time constraint handling by TGs and
PTPs (clocks vs. timers)).

There already exists also a variant of TGs (also using increasing clocks, as the
original model), defined in [NSY91] and called Action Timed Graphs ("ATG"s), which
is provided with the LTS semantics (and, so, the notions of bisimulation equivalence)®.

PTPs differ from ATGs basically by the design decisions regarding the ways how a
transition along some edge can be forced to execute. In the PTP model the necessity
of the transition firing is made explicit by denoting the edge with which the transition
is associated as red, while in ATGs the transition firing necessity depends on a rather
complex statement regarding all possible values of the clocks in the process "waiting
future” and the enabledness conditions of other edges. We consider the ATG model
thoroughly in Appendix A and show how the PTP analysis algorithms (deciding of
the bisimulation equivalences) can be modified to apply to the analysis of ATGs.

Tbe most important novel point in the PTP model presentation is in the provided
strong and weak bisimulation equivalence deciding algorithms for the processes. The
enrichments of PTPs, especially those provided with internal data variables, outline
also some possibilities and impossibilities of the reachability analysis in the data
dependent formalisms with real time semantics.

As to the deciding bisimulation equivalences for other timed specification for-
malisms, an interesting interpretation of the results of the thesis can be obtained
regarding the decidability and undecidability of the equivalences for various classes
of Timed CCS processes defined in [Wan90], [Wan9la] and [Wan91b] (note that the
notions of the strong and weak bisimulations are central in the theory of TCCS), see
Section 14.2 and Chapter 15 for a discussion on this interpretation topic. Let us note
that it is due to the chosen edge firing enforcement mechanism for PTPs that we can
translate the nets of regular TCCS processes into the PTP model in a rather direct
way.

20ne could notice that the method of defining the semantics for ATGs in [NSY91) does not
assign a well defined semantics Lo the class of all ATGs (the so-called "time-stop” processes, which
are neither able to perform a real transition, nor can wail for any amount of time, appear in some
situations, though, possibly considered as pathological).

1.7. ORGANIZATION OF THE MATERIAL 21

1.7 Organization of the Material

Part I contains the investigation of the reachability and various infinite path feasibil-
ity problems for programs in the languages LBASE, LTIM and LTIBA (the outline
of the part contents can be found in Section 1.4). The presentation of the material of
Part I begins with some mathematical background from graph and automata theory
(Chapter 2), developing the notation and simple results for future use. Chapter 3
gives the definitions of the languages LBASE, LTIM and LTIBA, as well as the al-
gorithmic problems of program analysis (path feasibility and vertex reachability). In
Chapter 4 most of the constructions needed for deciding the statement reachability
problem and characterizing finite feasible path sets in LBASE, LTIM and LTIBA pro-
grams are given. The last points in these problems are resolved by the path inequality
system technique (Chapter 5), useful also afterwards when reasoning about the infi-
nite path feasibility (see especially Section 5.3). The infinite path feasibility analysis
in LBASE and LTIM programs is done in Chapter 6 and Chapter 7, respectively.
Chapter 7 discusses also the implications of obtained results for LTIBA programs.
Finally, Chapter 8 shows the undecidability of the vertex reachability problem for
LTIM programs with integer data type (instead of otherwise used rationals).

Part II is mostly devoted to the development and analysis of the Parallel Timer
Process model and its enrichments. In Section 9.1 the basic model of PTPs is intro-
duced and a simple example of a real time system, specified as a PTP, is considered.
Section 9.2 gives the methodology of the real time construct, used in the definition
of PTPs, expressing in the programming language LTIM. In Chapter 10 2 number
of possible enrichments of the PTP model is considered, the most important being
the processes with external data dependencies, described in Section 10.4. Also the
vertex reachability problem deciding algorithms for the considered PTP enrichments
are outlined there.

The strong and weak bisimulation equivalence problems for PTPs are proved de-
cidable in Chapter 11 and Chapter 12, respectively. In Chapter 13 the bisimulation
equivalence deciding algorithms are outlined also for the processes with nondeter-
ministic timer settings and the processes with rational-valued data variables. The
compositional properties of the PTP mode} are considered in Chapter 14, giving also
one possible way of Timed CCS process modelling by PTPs. Finally, Chapter 15 shows
the undecidability of the vertex reachability and bisimulation equivalence problems
for the PTP model enrichment by memory cells.

In Appendix A we show the applicability of the obtained bisimulation deciding
algorithms to the Action Timed Graph model.

Appendix B is devoted to the analysis of a simple real time system (a process,
controlling a passenger lift), specified in the C.C.I.T.T. specification language SDL;
also the complete set of test data for the considered lift process is constructed.

Part |

Languages for Data and Time
Dependencies

Chapter 2

Mathematical Preliminaries

In the following chapters we define the programs in the languages LBASE, LTIM,
LTIBA formally as labelled graphs. We are also going to characterize the program
path feasibility in the labelled graph terms. To provide some background for the
further studies we, first, refresh some more or less standard graph-theoretic notions
(labelled graph, edge, path, path coordinate, etc.) and, second, introduce at the
graph-theoretic level some new notions for characterizing finite and infinite path sets
in Jabelled graphs (various kinds of projectivity). Both of these problems are dealt
with during this chapter.

2.1 Labelled Graphs -

Let us mean by a Jabelled graph a nine-tuple
G=(V,E,f,t,LV,lV,LE,IE,ng), where
» V is a finite set of vertexes and E is a finite set of edges;

o f:E—=Vandt:E — V give for every edge ¢ € E its source and target
vertexes, respectively;

¢ Ly is a set of vertex labels and Iy : V — Ly is a vertex labelling function;
e Lgis aset of edge labels and lg : E — Lg is an edge labelling function, finally,
* n§ € V is the graph's initial vertex.

) We consider also labelled graphs with acceptance conditions, the graphs of this
kind are defined as tuples

G =(V,E, f,t,Lv,lv,Lg,lg,nS, 5S¢, S1),

CHAPTER 2. MATHEMATICAL PRELIMINARIES 24

where, in addition to the graph components, S € V and §; C V" are called the finite
and infinite acceptance sets for G. respectively.

Definition 2.1 A finite (resp. infinite) path in the labelled graph G is any sequence
of the form o = ngeo,miey, ...,y (Tesp. o = nge€p,nie€y, ...} where n; € V(G) and
e; € E(G), as well as f(e;) = n; and (e;) = niyy for all used edge indices 1.

We introduce for every path a the set CRd, of its coordinates in a way
e CRd, = {0,1,...,k} for a finite path a = npeo, ..., nk, and
e CRd, =N = {0,1,2,...} for an infinite path a.

For a finite path a we call k = card(CRd,) — 1 the length of (intuitively, the path's
length is the number of edges in the path). We use the square brackets [, | to denote
the optionality of the last element in an arbitrary path, so the sequence

Tp€o, M1€yy - -+ [,nk]
denotes arbitrary finite or infinite path in a specified graph.

Definition 2.2 A path o = npep, nyey, ... |, nk] in the graph G 1is called initial, if it
starts from the graph initial vertez (i.e., if ng = n§).

We also call a path o starting from the graph G vertex n € V a n-path in G.

Definition 2.3 A path o (either initial or not) in the graph with acceptance condi-
tions is called accepting if

o for a finite path a its final vertez n; is in the set Sf,

o for an infinite path a the vertezes of the path n; € S| for infinitely many indices
t (we call an infinite accepting path also fair).

For the purpose of the future use we define for two paths a and 8 in G, such that
the path a = ngep, ni€y, ..., nx is finite and the path S starts with the last vertex of
a (i.e B = niex, nip1€k41,-- - [: Nits))y the concatenation a + 5 in a way

o+ = noto, M€y, ..y NECk, kg1 €kgrs - - - [Mkgs]

Notation. Given an arbitrary graph G with or without acceptance conditions, we
let V(G), E(G), Lv(G), Lg(G) to denote the sets of vertexes, edges, vertex and
edge labels of the graph G respectively. The potation of fs and ic is further on
used for the graph G edge-vertex incidence functions f and g. For G being a graph

2.2. PROJECTIVE PATH SETS 25

with acceptance conditions let S¢(G) and S;(G) denote the corresponding finite and
infinite acceptance sets of G.

Given a labelled graph G, let us denote by Py(G) the set of all finite paths of G
and by P,(G) the set of all infinite paths of G. For G being a graph with acceptance
conditions, let Py ,(G) be the set of all finite accepting paths in G and P, .(G) - the
set of all infinite accepting (fair) paths in G. The corresponding sets of initial paths
of G (finite, infinite, finite accepting, fair) are denoted by PY(G), P5(G), P} ,(G) and
P2 ,(G) respectively. :

2.2 Projective Path Sets

In this section we introduce some simple notions for characterization of path sets in
the Jabelled graphs, useful later on when speaking about the sets of all {finite, infinite)
feasible paths in programs.

Definition 2.4 Given iwe labelled graphs G and H, such that Ly(H) = V(G) and
Le(H) = E(G), we call a path a = ngeg,nyey,...[,ni) in G a projection of a path
o = fiply, Ay €y, -. . |, k] in H, writlen a = proj(o’), if the path a coincides with the
path o' vertez and edge label sequence, i.c., if

¢ CRd, = CRd,: and

o n; = lyy(n;) and e; = Igy(&) for all i € CRA, (2 < k for the edge labels in
the case of finite a, o).

We can look at the projection operator proj as at a function mapping the set of paths
of a given graph H onto the set of sequences of certain kind. In this spirit we allow
to write proj(X X) for XX C Py(H)U P,(H) being a subset of the graph H path
set to denote the set of the projections of the paths of X X.

In what follows we will be more interested in the characterization of the initial
path sets, therefore we develop the projectivity theory on the basis of them.

Definition 2.5 Given a set of finite paths U C Py(G) of a labelled graph G, we call
a graph H a projectivee for the path set U, if U coincides with the set of projections
of all finite initial paths of H, i.e. proj(P}(H)) = U.

For U C P/(G) being a set of finite paths of a graph G we call a graph H with a finite
acceptance condition a T-projectivee for U, if U = proj(P],(H)).
For U C P,(G) being a set of infinite paths in G we call the graph H for U

* w-projectivee, if U = proj(P5(H)),
* F-projectivee, if # = proj(PS (H)).

CHAPTER 2. MATHEMATICAL PRELIMINARIES 26

Definition 2.6 A set U of finile paths in a labelled graph G is called (classically)
» projective. if there exists a labelled graph H which is a projectivee for U.
o T-projective, if there ezists a T-projectivee for U.
A set U of infinite paths in G is called classically
» w-projective, if there ezists an w-projectivee H for U,
o F-projective, if there ezists an F-projectivee for U.

In the case, if this will not lead to confusion, we will use the term "projectivity™ also
to denote the w-projectivity of infinite path sets.

In what follows we will be more interested in the effective versions of projectivities
rather than the classical ones defined above for we want the projectivees for some
graph path sets (e.g., the sets of all feasible paths in programs) to be built effectively
from input of the graphs from some given classes.

Definition 2.7 Let S be a set of labelled graphs and let for every G € S U(G) be
some finite set, effectively computable from G. Let P(G,u) € PY(G) for every graph
G € S and every u € U(G) be some set of finite paths in G.

We call the family of the graph path sets

{P(G,u) C 'P?(G) |G €S &ueU(G))
effectively projective iff
o for every G € S and u € U(G) the set P(G,u) is classically projective and

o there exists an algorithm which, given the graph G € S and an element u €
U(G), produces a projectivee for P(G).

For the simplicity of formulations we allow ourselves to speak about the effective
projectivities of the graph path sets P(G,u) "for every given G € S and u € U(G)",
understanding by this the effective projectivity of the whole graph path set family.
We allow also to omit the class S in the definition of the effective projectivity, if it is
clear from the context.

In a similar way we define the effective versions of T-projectivity of finite path sets
and w-projectivity and F-projectivity of infinite path sets in graphs from S. Let us
further on, unless otherwise stated, mean by the path set projectivities the effective
versions of them.

The following simple properties of the projective path sets appear useful in various
situations of the program path feasibility analysis. Let LL be a class of labelled graphs,

2.2. PROJECTIVE PATH SETS 27

we consider the effective projectivities of the path sets in the graphs G € LL. For
the sake of simplicity we do not consider the dependence of the graph path sets on
additional parameters u € U(G), the generalization of the results to the case with the
parameters is completely straightforward.

Lemma 2.8 If for every graph G € LL finite path sets A(G) C P}(G) and B(G) C
PYG) are projective (resp. T-projective) then also the sets C(G) = A(G)N B(G) and
D(G) = A(G) U B(G) are projective (resp. T-projective).

Proof: Let H, be a projectivee for A(G) and Hp-a projectivee for B(G). We show
how to construct the projectivees He and Hp for the path sets C(G) and D(G)
respectively, so proving the eflective projectivity of C(G) and D(G).

Let V(Hc) = {(n,m) € V(Ha) x V(Hag) | lvin,)(n) = lv(pg(m)} with the vertex
(n,m) labelled by ly(y.)((n,m)) = ly(z,)(n). As to the edges in Hc, let us draw an
edge é from (n,m) to (n’,m’) labelled by [if and only if there are edges labelled by
! both in H, from n to n’ and in Hp from m to m'. It is easy to see that He is the
desired projectivee for C(G) provided the graph initial vertex nflc = (nFa nliey.

As to the T-projectivity of C(G), it suffices to define for the graph He the finite
acceptance set Sp(He) = {(n,m) | n€ Sp(Ha), me Sr(Hp)}.

For the set D(G) the corresponding projectivees are constructed, by taking a copy
of H, and a copy of Hp, as well as a new initial vertex ng’”. We label the vertex nf”
by n§ and define it to have the outgoing edges with targets and labels of both all
edges outgoing in H,4 from n.g" and all edges outgoing in Hp from nf5 (in the case
of H, and Hp being the T-projectivees, the finite acceptance set for Hp is defined as
Se(HA)USH(Hp)UQ, where Q = {n!P}, if either ni'* € Sp(Ha), or n® € Sp(Hp),
Q = @ otherwise).0

Lemma 2.9 If for every graph G € LL infinite path sets A(G) € P2(G) and B(G) C
P2(G) are w-projective (resp. F-projective) then also the sets C(G) = A(G) N B(G)
and D(G) = A(G) U B(G) are w-projective (resp. F-projective).

Proof: The cases of D(G) projectivilies are dealt with by the same method, as in
the proof of Lemma 2.8.

As 1o the set C(G), we construct a graph He, as in the proof of Lemma 2.8. Easy
to see that H is an w-projectivee of C(G).

In the case of F-projectivity of A(G) and B(G) we construct also first the graph
He. We construct furthermore a new graph HZ. provided with an infinite acceptance
set, which will serve as the F-projectivee for C(G). We define every vertex of Hj to
be a pair (z,a) with z = (n,m) € V(H¢) and a € {0,1,2). An edge from (z,a) to
(',a') with the label [in H{ is drawn if and only if

¢ there is an edge [rom z to 2’ labelled by ! in He and

CHAPTER 2. MATHEMATICAL PRELIMINARIES

wo
[v]

» one of the following holds:

—a=d=1lora=d =2 0r

—a=0,a"=2and : = (n,m) withn € 5;(H,), or
—a=0,a=1and z = (n,m) with m € S;(Hp), or
—a=1,a"=0and 2/ = (n',m') with n’ € §;(Ha), or
—a=2,d=0and = (n,m) with m' € §;(Hp).

We define the graph's Hy initial vertex to be ((nf",né"’), 1) and the infinite accep-
tance set S;(Hz) = {(z.a) | a = 0}.

It is easy Lo see that in Hy accepting are only those paths which infinitely many
times visit both the vertexes {(n,m),a) with n € S;(H,) and the ones with m €
Si(Hg) (for a path to be accepting in Hg, it must for at least one a € {1,2} both
infinitely many times leave the region of vertexes with the second component ¢ and
infinitely many times return to it, what is possible only if the path infinitely many
times visits both ((n,m),a) for n € S/(H,) and for m € S;(Hg)). So, if a path in
H is accepting, its projection belongs to both A(G) and B(G).

On the other hand, for every path a € A(G) N B(G) it is easy to find a path o
in Hg such that both o is accepting and a = proj(a’), when one builds the path o
inductively, it suffices to choose the target vertex (z, a) of the current edge witha =0
whenever possible.D

We show also the following sufficient condition for the path set projectivity which
is often in one or other form used in program reachability graph construction (see. for
instance [BBK74, ABBCK91]), we will find it later on useful also for our purposes.

Lemma 2.10 If in every labelled graph G € LL every finile path a € P?(G) has an
effective (computable from a) characteristic S(a) such that

e forall o € T’})(G) the characteristic S(a) € S for a finite characteristic set S,
and ’

o for all o, B € 'P/°(G) ending with one vertex n € V(G) for all paths vy starting
fromn in G S(a+7) =SB+,

then for every S® C S the set of paths A(G) = {a € PUG) | Sla) € S°) s (effec-
tively) T-projective.

Proof: We construct a T-projectivee H for the set A(G). Every vertex of H is a pair
(n,S) for n € V(G), § € S, and is labelled by n. We build the graph H inductively
by starting with the initial vertex nf = (n§,S(n§)) (nS is a path of length 0 in G)
and draw an edge from (n, S} to (n’, S'), labelled by ¢ € E(G). whenever both

2.2. PROJECTIVE PATH SETS 29

s the edge e in G leads from n to n', and

» there exists an initial path o’ ending with (n, S} in the already drawn part of
H, such that for a = proj(a’) S{a + ne,n’') = §".

[t is easy to see both that this edge drawing process eventually stops (since both the
sets V(G) and § are finite) and that for any o' being ap initial path in H, which
ends with (n, S) and has a = proj(a'), the characteristic S(a) = S. Now it remains
to define the finite acceptance set Sp(H) = V(G) x S° for H, so easily obtaining the
required T-projectivity.O

For the sake of completeness in studying the notions of the path set projectivity,
we investigate also the closeness under the complement of various kinds of projective
graph path set classes.

As it is easy to see from simple examples, both in the cases of finite and infinite
projective path set classes the complementability property does not hold. As to the
T-projectivity and F-projectivity, the following results together with Lemma 2.8 and
Lemma 2.9 show that these path set classes are closed under all boolean algebraic
operations.

Lemma 2.11 If for every graph G € LL & finite path set A(G) C PG) is T-
projective, then also its complement B(G) = PJ(G)\ A(G) is T-projective.

Proof: First of all define for an arbitrary labelled graph H its characterizing au-
tomaton H® as a finite automaton with the set of states V(H) and external (input)
alphabet V(H) x E(H) x V(H). For every edge ¢ € E(H), leading from n;, = fy(e)
to ny = ty(e) in H, in H® a corresponding edge & from n; to n,, labelled by the
triple (n,,e, n,), is drawn. The initial vertex of H® is defined to be ni and the set
of accepting states is Sp(H) (the automaton H*® accepts some words in the alphabet
V(H) x E(H) x V(H) according to the standard finite automaton word accepting
discipline).)

In order to show the T-projectivity of B(G), we start with a T-projectivee H,
for A(G). We build a characterizing automaton HY for H, and afterwards translate
each its edge label (fy(e), e, ty(e)) into {I(fu{e)). (e}, I(ty(e))) for I = ly(y) and
I'= Iy being the H vertex and edge labelling functions, respectively. Let us denote
the obtained automaton by H'. It is easy to see that H' accepts those and only those
words in the alphabet V(G) x E(G) x V(G) which correspond to the paths o € A(G)
of G (corresponding to the path a = ngeg, i€y, - - -, 7 in G is the word

{no, €0, 11), (M1, €2, 13}, + ooy (Tky, kg, T2E)).

It is easy to see that the language of the words corresponding to G paths # € B(G) can
be accepted by some finite automaton with the external alphabet V(G) x E(G) x V(G)

CHAPTER 2. MATHEMATICAL PRELIMINARIES 30

for it is the intersection of the language of G characteriaing automaton GO with the
complement .of H' language. The Tvprojectivity of B(G) follows immediately.O

Lemma 2.12 If for every grmph G E £L @n 'nfinite path set A(G) o; P~iG) & F-
projt:(:tft}f;, then also its complement B(G) = ~(G) \ A(C) is F.pro)t:(:tiTJf.

Pro;,..;.f, Th es proof follow. precisely the same lines as the proof of I..>mma 2.1 1, using
the infinite path acceptance condition 5i(H) instea-d of SF(H). The most sopbisti-
catedstep Of the proof is to show the complementability of Buchi-acceprable iofinire
word language class, for it the reader is referred to, for instance, ISVW87j.D

Chapt er 3

Language Definitions

We begin with the definition of the programming language LBASE for dealing with
integer-valued data.

3.1 The Language LBASE
Every program P in the language (fa:ﬂily of programs) LBASE is a labelled graph
P= (VvEsfvtvLV11V$-LEs IE,TI.:)

(see Section 2.1) provided with a finite number of integer-valued internal variables
Ti,...,Tm and, intuitively, with an input gate for receiving the variable values from
the environment of the program.
Every edge of the program P (i.e. e € E) is labelled either by " + ™ or by ™ —" (i.e.
YELg={"+"," ="} forall e € E). Every P vertex n € V(P) is labelled by an
operaLor of one of the following kind {c denotes bere any integer constant, i.e. ¢ € Z.
Here and in the following we use the convention to put variable and constant names
in boldface whenever they are used as syntactical parts of operators, otherwise (in
mathematical expressions; etc.) they are put in itelics):

¢ ?x; for 1 < i < m, the input operator, denotes the reading of a (new) value
from the program input gate into the variable z;;

® X; X5 (%; — ¢) for 1 £4,7 <m and ¢ € Z, the assignment operator, denoles
the assigning of the value of the variable'z; (the constant c) to z;;

® X <xj(x<e, c<x)forl<i,j<mand c€Z, the comparison operator,
denotes the comparison of the two variables (or the variable and the constant),
during the execution produces an output flag " + ™ or " — 7, depending on
whether the actual values of z;, z; satisfy the operator’s inequality or not (used

CHAPTER 3. LANGUAGE DEFINITIONS 32

to determine the outgoing edges of the current vertex along which the further
program control flow can be passed);

¢ NOP, the dummy operator, does not have any effect on the variable values and
allows any further control flow.

We consider also LBASE programs with acceptance sets by introducing in the tuple
for program definition arbitrary subsets Sp and S; of the program vertex set V.

Further on let us use the notation p(n) (instead of lv(n)) to denote the operator,
attached to a program vertex n € V.

Intuitively, at the beginning of the program execution every variable z, is assigned
the "value” 0. During the program execution every program variable can assume
integer values, 1.e. at every moment of the program execution the program "variable
value vector” is an element of Z™. Let us give the formal semantics for program
operators in the terms of variable value vector transformation and the effects the
operators impose on the further program control flow.

For arbitrary LBASE program P we define its set of variable value vectors, denoted
by Vp, to be Z™, where m is the program P variable set cardinality. We call the
element i)f = (0,...,0) € Vp the initial P variable value vector. We denote the
components of any m-dimensional vector ¥ € Z™ as v.z),...,0.27, (50 stressing the
relation between the variable value vector components and the program variables (the
value of the variable z; in the vector ¥ € Z™ is 0.z;)).

Let #[z; « ¢] for any vector v € Z™ denotes another vector & with all but the ith
component coinciding with corresponding components of ¥ (i.e. for j # 1 ¥z, = ¥.z;).
the :th component of &’ is taken to be ¢ (¥'.z; = ¢, it is required that ¢ € Z for this
construction being admissible).

The semantics for every language operator p is given as two following functions:

® ¢,, the variable value transformation function, for p being an assignment, com-
parison or dumry operator ¢, : Vp — Vp, for an input operator p ¢, : VpxZ —
Z™ (the extra Z intuitively standing for the domain of values, appearing at the
program input gate) and

o Yyt Vp — 20477 (s Ve 2 — 277N the set-valued function of
admitted operator's output flags.

Assume v € Vp = Z™,c € Z,1 < 1,5 < m, the definitions of functions ¢, and ¥, for
a program operator p are, as follows:

o for p being an input operator 7x; @y(1.¢) = Dlz; —], ¥(F.c) = {"+ "}

¢ for p being an assignrnent operator X; «— X; ¢,(7) = t'[r — T, r,] for p being
the operator X; — ¢ &,(7) = t{z; — c]. In both cases v, (¥) = {" +

3.1. THE LANGUAGE LBASE 33

s for a comparison operator p always ¢,(5) = ¥, the output flag function is defined,
as follows:
— if p is an operator x; < X; then ¥,(¥) = {" + "}, if ¥.2; < 0.z;, otherwise
() = {" ="},
~ if p is an operator ¢ < xj then ¥,(7) = {” + "}, if ¢ < ¥.z;, otherwise
¥p(0) = {" -7},
— if pis an operator X; < ¢ then ¥,() = {" + "}, if §.2; < ¢, otherwise
(D) = {" ="})
» for p being NOP always ¢,(9) = 0 and () = {" +",” = "}.
The semantics of a whole LBASE program is defined by its state transition system:
(V x Vp, E,—,(nF,55)) where
o V x Vp is the set of system’s states (i.e. every state of the system is a pair (n, D)
where n € V' is a program vertex and & € Vp is a variable value vector);
o 5§ = (nf,5F) is the system’s initial state (intuitively, the program execution
begins from its initial vertex nf with every variable initialized with 0 value);

—C (V x Vp) x E x (V x Vp) is the transition relation between states (every
transition has its start state, end state and is labelled by some program edge
e € E), defined the following way (we use the more comprehensible notation
81 — s, to denote {s1,€,8;) E—):
(n1, th) = (na, 52)

iff the edge e is leading from n; to n,, the edge label Ig(e) € Pyn,)(D1) and
the new variable value vector ¥z = @yn,)(1) (for p(n:1) being an input operator
lp(e) € Ypm)(Dr,a) and U, = @y,)(t1, @) for some integer a € Z. For the
purpose of the path feasibility studies it is not necessary to consider the inputs
of different values as different transitions, bowever later on we will sometimes
use the notation sy —= s, to denote that the transition from s; to s, is done
along the edge e by reading the value a from the environment).

Without loosing generality we can assume that for every vertex n € V(P) for a
LBASE program P with either an input or assignment operator p(r) attached all
outgoing edges are labelled by ” + ” (according to the defined semantics (state tran-
sition system) the ™ — "-labelled edges from these vertexes cannot affect the program
bebaviour in any way).

One more observation to be made is that the programs in the language are, in
general, highly nondeterministic for we do not impose any requirements on the ways
of the program connectivity (the number of, say, " + "-labelled edges, outgoing from
one vertex in the program is not a priori bounded).

.
3

CHAPTER 3. LANGUAGE DEFINITIONS 34

3.2 Languages LTIM and LTIBA

Every program in LTIM also, as the LBASE programs are, is 2 graph provided with
a finite number of internal variables and (intuitively) with an input gate for receiving
variable values from the environment. The first difference of LTIM programs from
LBASE programs is that every program variable may assumne rational values (instead
of integer ones in LBASE), rational are also the values the program receives through
its input gate.

The programs in LTIM has as the permitted vertex labels (operators ascribed to
1ts vertexes) first of all the analogues of LBASE operators (here ¢ denotes a rational
constant):

s 7x, the input operator;

& X; « X;j (x; — ¢), the assignment operator;

e X; < Xj (% €€, ¢<xj), the comparison operator;
o NOP, dummy operator.

Furthermore, every LTIM program has one special internal variable z, named the real
time counter, with the following operators at the program vertexes permitted:

o z & x;, the positive assignment operator, assigns the value of z; to z, provided
that the value of z does not decrease via this assignment. The operator produces
the output flag "+ 7, if the assignment was successful, otherwise (i.e., if the value
of z; is less than that of z) the " —" flag is produced (tbe value of z is not changed
in this case);

& X; «— z + ¢, the variable activation operator, assigns the value of z increased by
¢ to z; (for the sake of simplicity only nonnegative c's are allowed here).

As in the LBASE case, we require every LTIM program P edge e € E(P) to have a
label Igp)(e) € {"+",” —="}. We consider also the LTIM programs with acceptance
conditions by introducing in the program (labelled graph) defining tuple arbitrary
subsets Sp and S; of the program vertex set V, as well as use the notation p(n)
(instead of ly(n)) to denote the operator, attached to a program vertex n € V.

We give the formal semantics of LTIM programs in a way similar to the defining
semantics for LBASE programs in Section 3.1.

Since every program variable now may assume rational values. we define for ar-
bitrary LTIM program P its set of variable value vectors, denoted by Vp. to be
Q*? x Q™, where m is the number of ordinary P variables (not including the real
time counter). by Q*® we denote here and further on the set of nonnegative rational

3.2. LANGUAGES LTIM AND LTIBA 35

numbers (the usage of Q for the set of all rationals is standard). We define the ele-
ment 7§ = (0,...,0) € Vp to be the initial P variable value vector. Let us denote
the components of any m + 1-dimensional vector ¥ € Q*° x Q™ as #.z, 0.2y, - ... T.Zp
(with the intention to use such vectors ¥ as program the program P variable value
vectors)

As in the case of LBASE programs, we introduce the notation t]z; — ¢ for
TEQPx Q™ ce€ Q% andi = 0,1,...,m (assume Tp = z. meaning by = the
syntactical identity) in a way

s 3]z; « c].z; = c and
¢ Ulz; ~ ¢}.z; = v.z; for z; # z..
The semantics for every LTIM operator p is given as two functions:

® ¢,, the variable value transformation function, for p being an assignment, com-
pariton or dummy operator ¢, : Vp — Vp, for an input operator p ¢, :
Vp x Q — Vp and

o i Vp = 2477 (9, Vp x Q = 284777} for an input operator p), the
set-valued {unction of admitted operator’s output flags.

Assume ¥ € Vp,c€Q, 1 £ 1,7 <m, the definitions of functions ¢, and ¥, for input,
assignment and comparison and dummy (NOP) operator p in the program P are
precisely the same, as for corresponding LBASE operators (see Section 3.1). For p
being a specific LTIM operator, its semantics is defined, as follows:

o if pis a positive assignment operator z < x; then
~ if 5.z < 3.z, then ¢,(%) = U]z «— .z;] and ¥,(¥) = {" + "},
@ ={-"%

e for p being a variable activation operator x; « z + ¢ ¢,(¥) = v]z; — 0.z + €]
and ,(3) = {7 +").

The semantics of a whole LTIM program is defined by its state trapsition system
just as for LBASE programs (see Section 3.1) with the only exception being ¢ € Q
{instead of ¢ € Z) taken as the second argument in the semantic functions ¢, and ¥,
for an input operator p.

As in the case of LBASE programs we assume that for every vertex n € V(P) for a
LTIM program P with either an input or assignment, or variable activation operator
p(n) attached all outgoing edges are labelled by " + "

_ It is important to note that the LTIM program real time counter z cannot appear
in the input operators, as well as the lefthand side of any assignment operator. So the

~ otherwise (i.e.,if 0.z > 0.z;) ¢p(V) = v and Y,(0

CHAPTER 3. LANGUAGE DEFINITIONS 36

variable z is not subject for arbitrary value assignment, one can find out that there is
no way to decrease the z value during the program execution. Easy to see that without
this or some other discipline limiting the use of the counter variable (i.e.. if we allow
it to receive arbitrary values from the input and retain all other kinds of operators in
the programs), we could pot obtain any decidability results for algorithmic problems
in the considered program analysis.

The language LTIM appears to be able to express rather general time-dependent
behaviour of real time systems (see Section 9.2 and Section 10 below for the detailed
discussion on the real time system modelling by LTIM programs). We consider also
some sublanguages of LTIM the programs in which appear later on to be the subject
of easier automated analysis.

First of such languages, we call it LBASQ, is the language consisting of LTIM
programs without real time counter. To put it otherwise, in the language LBASQ
programs are permitted just the language LBASE operators, except that all constants
used in them can be arbitrary rationals, as well as all program variables are rational-
valued. For the analysis of LBASQ programs it is the best to consult Section 4.4
where the absence of the real time counter in the programs is exploited in order to
obtain more general results than those possible for the general case of LTIM programs.

Yet another sublanguage of LTIM, useful when modelling temporal quantitative
constraints on r.t.s. is LTIM, which constrains the programs of using the LTIM oper-
ators by dividing the ordinary program variables into two categories (along with the
ordinary variables every LTIM, program can have also a real time counter):

o simple variables z,, z;,.. ., z,, allowed t0 appear just in the comparison, variable
activation and both sides of the assignment operators;

e a single special input variable £ which is the only program variable which can be
used in the input operators and the right-hand side of the positive assignment
operators. It is required also that no assignment of the form xs «— x 1s used in
the program (i.e. there is no way, how to get an arbitrary value from the input
into a simple variable except than moving this value through z).

An important language considered in the theses is LTIBA with every program P in
it allowed to have both a finite number of integer valued variables z8,z%. 28 with
allowed LBASE operators over them and a finite number of rational valued variables
z,:'{,zz,...,.’rz with allowed LTIM operators (z is the real time counter). Every
vertex in a LTIBA program P has either a LTIM or LBASE operator. ascribed to 1t
(type mismatch in LTIBA programs is forbidden).

As in the LBASE and LTIM programs, every edge of P has either a label {" + "}
or {" — "}, one of the program vertexes, nf, is marked as initial. We follow also the
conventions not to ascribe {7 — "} labels to the edges outgoing from the vertexes with
input, assignment or variable activation operators.

3.3. FEASIBILITY AND REACHABILITY 37

Given a LTIBA program P we define for it the variable value sets V8 = Z™ and
T=Q*xQn let Vp=VE x VL.

For the sake of simplicity in defining the semantics of the program P we asso-
ciate with it a LBASE program P? which is obtained from P by replacing all LTIM
operators, used in P by a LBASE operator NOP (clearly, Pp is a LBASE program,
moreover V(PB) = V(P) and E(P?) = E(P), changed are just the program vertex
labels) and a LTIM program P7, obtained from P by replacing all LBASE operators
by a LTIM operator NOP.

Clea.rly, Vps = VP a.nd Vpr = VI. Let the program P initial variable value vector

(vo Oy) for 57 ® being the program P2 initial variable value vector and u,J
bemg the initial variable value vector for the program PT.

The semantics of P is defined as in the case of LBASE and LTIM programs by
the state transition system

(V(P) x Ve, E(P),—,(n{,55)) where
o V x Vp is the set of system’s states
o 55 = (nf,5L) is the system’s initial state

e —C (V(P) x Vp) x E(P) x (V(P) x Vp) is the transition relation between
states defined in a way (using the notation s, —— s, to denote (s, e, 52) €—):

(n, (TF,57)) = (ma, (55, 97))
iff both
- (77.1,!.)'18) L (nz,ﬁf) in PB and

- (n,,f)'f) —5 (ny, 87) in PT.

3.3 Feasibility and Reachability

Let LL denote any of the three programming languages LBASE, LTIM and LTIBA.
We define for any finite or infinite path a = figép, R1é1,. .. [, 2] in a LL-program
P the selectors for the ith vertex of a to be n;(a) = #, and the ith edge by e;(a) = é;.
For a finite path o the last vertex of o is denoted by n.(a) (i.e. n.(a) = k).
A history of a LL-program P is any sequence

- B = soeo, s1€1,. .. [.Sk]

with s; = (n;, 5;) for every used index 1, provided s; —> s,y for every 1;2 < k— 1 in
the case of the finite sequence .

CHAPTER 3. LANGUAGE DEFINITIONS 3

o

We define also the selectors s,(3) = s,. €i(B8) = e.. as well as n;(8) = n, and
5(8) = v 10 denote the ith state. edge, graph vertex and variable value vector of
B, respectively. For a finite history 8 we define also s.(8) = s.. n.(f) = nx and
7.(B) = ¥) to denote the last state, vertex and variable value vector of the history 5.

We call a history f of a'program initial if the bistory’s first state sp(£) is the initial
state s} of the program’s state transition system.

It is according to the definition of the history that for a every history 5 the sequence
a(B) = no(B)eo(B), n1(B)er(B), ... [, n.(B)] is a2 path in the program, let us say that
the history § goes along the path a(f) in the program. Let for every history 3 along
the path o in the program the set of coordinates CRds = CRd,.

Definition 3.1 A path o in a program P is called weakly feasible iff there is a history
along 1. An instial path a in e program 1s called feasible iff it has an tnilial program
history along it.

It is easy to see that there can be initial paths in LL programs. which are weakly
feasible, but not feasible, e.g. in the case of LBASE program one can consider a
one-edge path

x>0+ Ty

provided the vertex to which the operator "x > 0" is ascribed to is the program P
initial vertex nf (it is for the sake of readability that we show in the examples here
and further on only the path vertex and edge labels).

Definition 3.2 Let P be a LL-program with acceptance sets Sp(P) for finite paths
and S;(P) for infinite paths. We call an initial path o in P correct iff it is accepting.
A vertez n € V(P) 1s called

& reachable iff it is contained in some feasible path a (i.e. n = n;(a) for some i),
s correctly reachable iff it is contained in some feasible correct path of P,

» f-correctly reachable iff it 1s contained in some finite feasible correct path of P;
o w-correctly reachable iff it is contained in some infinite correct path of P.

It is easy to see that both f-correct reachability and w- correct reachability as well as
ordinary reachability problems for every LL-program P reduce to the correct reacha-
bility by choosing appropriate acceptance sets Sp(P), Sj(P):

s reachability: Sp(P) = V(P), S}(P) = V(P) (actually, S;(P) is irrelevant};
s f{-correct reachability: Sp(P) = Sp(P), S}(P) =0,
s w-correct reachability: Sx(P) = 0. Sj(P) = S;(P).

3.3. FEASIBILITY AND REACHABILITY 39

Solving the vertex reachability problem for some class of programs, it is sometimes
useful to demonstrate in the case of the positive answer on the reachability, how the
given vertex is reached. In the case of the ordinary reachability this problem can
be sirply solved by exhibiting a history along some path, leading to this vertex. If,
however, some kind of correct vertex reachability is consideted, it seems useful that
one could exhibit such a history reaching the given vertex, which could be continued
along some accepting path. For the case of f-correct reachability the problem can be
solved by exhibiting a history along the whole accepting path, containing the given
vertex (this path is finite). As to the w-correct reachability we have, in general,
no ways, how to define the whole history along some fair path in the program in a
finite time. To overcome this problem we define the following notion of the history
computing (generating) by an algorithm.

Definition 3.3 We say that an algorithm M computes {generates) an infinite history
v along a path a in a LL program P, if on the input of the path a coordinate k €
CRd, = N and the program P variable z;, the algorithm M in a finite time outputs
the value Dy(v).z; of the variable z; in the history v at the path o coordinate k.

One could allow such an algorithm to use various possibly infinite input data struc-
tures containing the description of the path a (or some other extra input, specified for
each concrete history computing problem separately). However, since the algorithm
is required to work in finite time (= finite number of steps), it can use for determin-
ing the value 6g(v).z; for fixed ¢ and k only the information from some finite path a
fragment (finite region of the input data in general).

In what follows, we proceed to deciding the considered reachability problems,
as well as investigate the possibilities to characterize (in the terms of projectivity,
see Section 2.2) the sets of feasible (correct) paths in LBASE, LTIM and LTIBA
programs.

Chapter 4

Finite Path Feasibility

The aim of this chapter is to give the most of the proof of the following theorem:

Theorem 4.1 The set of all finite feasible paths of every LTIBA program is effectively
projective.

We base the proof of the finite feasible path set projectivity in given LTIBA
program P on the explicit construction of the graph containing as projections of
paths all feasible paths in P. The proofs of the finite feasible path set projectivity
are given for LBASE and LTIM programs independently, i.e. we prove

Theorem 4.2 There ezists an algorithm which, given a LBASE program P, con-
structs for it a graph G(P) such that the set of all finite (initial) feasible paths in P
cotncides with the set of the projections of all finite tnitial paths in G(P).

Theorem 4.3 There ezists an algorithm which, given a LTIM program P, constructs
for it a graph G(P) such that the set of all finite (initial) feasible paths in P coincides
with the set of the projections of all finite initial paths in G(P).

After having proved Theorem 4.2 and Theorem 4.3, the overall result of Theo-
rem 4.1 for LTIBA programs can be obtained according to Lemma 2.8 the {ollowing
way.

Given a LTIBA program P we construct for it the LBASE program P?Z by re-
placing all LTIM operators in P by a LBASE operator NOP and the program P7 by
replacing all LBASE operators of P by NOP. Easy to see that a sequence

ﬂ = (ﬂo, (UOB! Ug‘))eov (n'l’ (le’v;"))El’ e [5 (n‘l! (Uka UD)]
is a history of P along a path « if and only if both

o B8 = (no.vB)eo, (n1.vBYey,. .. [, (ns. vE)] is a history of PE along a and

4.1. VARIABLE VECTOR VALUE SET PARTITIONINGS 41

o 87 = (ng,v])eo, (ny,vey, ... [, (e, v])] is a history of PT along a.

So, a path e in P is feasible if and only if it is feasible both in PZ and P7, the
applicability of Lemma 2.8 is straightforward.”

Before we start the description of the projectivees, called also the path feasibility
graphs, for LBASE and LTIM programs, et us note that the constructions (including
the graphs themselves) made during the proof are to be used afterwards (in the infinite
path feasibility analysis) also without direct relation to the theorem.

4.1 Variable Vector Value Set Partitionings

We begin with the description of the path feasibility graph vertexes for LBASE and
LTIM programs. For this purpose we define for a given LBASE or LTIM program
P a finite partitioning Cp of the set Vp of all program P variable value vectors the
following way.

Let cmin be the minimal and ¢, the maximal among the constants, used in
the operators of P, and the initial variable value 0. Let Cons(P) = {Cmin,Cmin +
L...., Cmaz} be the set of P constants (recall that we have agreed to have all constants
for both LBASE and LTIM programs integers), Vars{P) = {z,,72,...,Zm} — the set
of P variables, let Ap = Cons(P)U Vars(P).

Let for a vanable value vector ¥ € Vp and a constant ¢ € Cons(P) always b.c =
¢ € Z (we already have the notation on ©.z to denote the value of the variable z in
the vector 7).

We consider first the case of a LBASE program P.

Definition 4.4 Two varicble value vectors 5 € Vp and #3 € Vp of a LBASE program
P are called equivalent, writien ¥, = ¥, and belong to one Cp-equivalence class iff

for any a,b € Ap the relation Ty.a < y.b holds if and only if the relation D,.a < G2.b
does.

Intuitively, two variable value vectors for 2 LBASE program P are equivalent, if
they coincide on P variable and constant value ordering.

Example 4.5 If the program P has constanis —) and 5 and variables z,,. .., z, then
the variable value vectors

vy = (0, 6, 16, —7) and ¥, = (0, 8, 1991, ~2)
are equivalent, but
U3 = (0, 6, 16, —7) and ©,(1, 6, 16, —T)

are not, since U3.2) = 0 € {Cominy - - - » Cmaz}, While U421 =1 # 0.

CHAPTER 4. FINITE PATH FEASIBILITY 42

1t is easy 1o see that every element of Cp of a LBASE program P can be charac-
terized by a simple inequality system, which determines the ordering of all program
variable and constant values (representing all the constants {cmn,....Cmar}) On the
number line.

For & € Q*° x Q™ being a variable value vector for a LTIM program P we define
for any additive expression expr over P variables and constants its value ¥.expr w.r.t.
v in a way that v.c = ¢ and

U.expr, + U.expr, = U.(expr, + expr,), v.expr, — v.expr, = v.(expr, — expr,)

(for z € Vars(P) v.z is already defined as the value of z). We define the set Bp(?)
of base expressions (called further also base points), associated with &, to consist of

e all P variables and constants a € Ap,

o the expressions z + c for a variable z € Vars(P) and ¢ € Z, such that both
0.2 € 0.2 < 0.2+ Cpqr and 0.2 < 5.2+ ¢ < 0.2 + Cmay (DOtice that ¢ can be also
negative).

Example 4.6 Let a program P have constants 0,1 and 3 and variables z,ty,15.15 let
for the value vector ¢ v.z = 15.43, v.4y = 16.2, 0.1, = 17.43, 0.t3 = 19. Then the set
Bp(D) contains the following base points:

s 0,1, 3, 2, ty, t; and i3,
o z+1, z+2, 2+ 3 (we treat the ezpressions like z and z + 0 as identical) and

o L+, 4, +2, 122, 1, -1, and iy + 1 (there is no base point of the form tz+ ¢
for c € Z, because v.13 < 0.2 + 3 does not hold).

Definition 4.7 The partitioning Cp for a LTIM program P is defined by the equiva-
lence relation =, such that for 0y,0, € Vp 0, =1y iff

¢ Bp(D)) = Bp(¥;) = Bp and
o for all expr,expr’ € Bp ©).expr < ¥y.expr’ if and only if t;,.expr < 0y.expr’.

Intuitively, one Cp-equivalence class for 2 LTIM program P consists of all variable
vector values which coincide on

e variable and constant value ordering,

» integral parts and ordering of fractional parts for all expression ¢, = z; -z values
laying between 0 and cpar-

-J. VARIABLE VECTOR VALUE SET PARTITIONINGS 43

Example 4.8 Let a program P and its variable value vector V be those described in

Example .1.6. Example ~.6 already gives us the set of base points Bp(ii) = Bp(C)
for V. E C. The equivalence class C COnsists of those and only those vectors V with
op(ii) = Bp(C) for which the values v.b for b E BP(C) turns into evidence the

following inequality system:

0<l <3<z=t.-2<t<z+1=t. 1<t +1,
wt+tl<z+2=02<u+2<z+3=w0+1<ts

We call any element C E Cp for either LBASE or LTIM program P a (variable)

configuration of P. For P being a.LTIM program let for any configuration C Bp(C) -~
op(v) for some (=for every) v e C. For the sake of uniformity we define Bp(C) = Ap
forevery C E Cp for every LBASE program P.

Proposition 4.9 The set Cp of all configurations for any program P either in LBASE
or LTIM s finite.

Proof: Inthe LBASE case it is obvious tha.t the fi..nitenumber of all program variables
and constants can be ordered on the number line only in finitely many different ways.
For P being a LTIM program, notice that there are only fi..nitelymany different base
point sets Bp(v) forv E vp (for any variable or constant x E Ap no more than c",,,, 1
expressions of the form z + ¢ for ¢ E Z may satisfy V.z ~ v, vx +¢~ vz +c",,,,
as well as the expression x +c¢ may belong to Bp(i) only if -c", ee=:S ¢ ~ Cm..r). For
every base point set Bp = Bp(v) for some v the points of Bp can be ordered on the
number line only in finite number of different ways (actually, these orderings are far
from being all feasible, however, this is not important for proving the finiteness).O

We define for every configuration C E Cp of either LBASE or LTIM program P the
relations <c. ~c and =c for a, S € Bp(C) (for a, bE Ap, if P is a LBASE program)
In a way that

e« a~C biffv.a~ vb for some (= for every) v E C;
ea=Chiffa~C band b~C a;
e a<cbhiffa~c band not b ~C a (not a =C b).

IYeuse also a ~C b as a synonym to b :Sca and a >C b as a synonym to b <cC a.

For a variable value vector V E Vp let (til denote the configuration C E Cp to
\Chichthe value vector V belongs to: V E C.

It is easy to see that for P being either LBASE or LTIM program, the Cp-
equivalence class (VN containing the initial variable value vector ((0,0, ... ,0)) is
ingleton (ie. (VN = {vb}y

CHAPTER 4. FINITE PATH FEASIBILITY 44

4.2 Path Feasibility Graphs

In this section we define the path feasibility graphs BG(P) based on the introduced
variable value set partitionings Cp (Section 4.1) for both LBASE and LTIM programs
P (actually the constructions of this section can be performed provided that Cp is
an arbitrary finite program P variable value set partitioning with the singleton class
[5F] for program initial variable value vector).

Let us associate with the program P and its variable value set partitioning Cp a
family of Cp-graphs. A graph G is said to be a Cp-graph, iff

e the set of its vertexes V(G) C V(P) x Cp (i.e. every vertex in G is a pair (n,C)
for n € V(P), C € Cp);

» ly((n,C)) = n € V(P) for every (n,C) € V(G);

o E(G) C E(P) xCp x Cp, every edge & = (¢,C,,C3) € E(G) is leading from
16(8) = (fr(e), C1) to ta(€) = (tp(e),Ca) and is labelled by I5() = ¢ € E(P):

o the initial vertex of G is n§ = (nf,[5£]).

A maximal Cp-graph, denoted MG(P), is defined as a Cp-graph with the set of
vertexes V(G) = V(P) x Cp and the set of edges E(G) = E(P) x Cp x Cp.

Intuitively, the maximal Cp-graph is a graph which is obtained by taking card(Cp)
copies of the program P, one copy for each configuration C € Cp and afterwards
drawing all edges from (n;, C;} to (n},C}) whenever an edge from n; to n! is drawn in
P. The whole family of Cp-graphs is obtained by erasing in various ways some edges
of MG(P). ~

Definition 4.10 We call a Cp-graph G for a LBASE or LTIM program P the basic
graph, denoted BG(P) provided G has an edge é = (e, C,,C,) leading from (ny,Cy)
to (n2,C,) if and only if there ezist variable value vectors 0y € C, and 4, € C; such
that (ny, ;) — (ny,¥:) in the P state transition system.

The remainder of the proof of Theorem 4.2 and Theorem 4.3 is devoted to

o the proof that the graph BG(P) is indeed a path feasibility graph for every
LBASE or LTIM program P, and

o the demonstration of the effectivity of the graph BG(P) construction from the
input of the given program P.

In fact, we study the properties of the graphs BG(P) in slightly more detail than
needed for the proofs of the theorems because of these graph further usability in the
program infinite path feasibility analysis.

4.2. PATH FEASIBILITY GRAPHS 45

Given a path
a = (n.o, Co)éo, (”’1) Cl)éh nee [! (n‘n Ck)]

in an arbitrary Cp-graph G we define the selectors n;{a), Ci{a) and e;(a) to denote the
ith program vertex, Cp-equivalence class and program edge on the path a, respectively
(iLe. ni(a) = n;, Ci(e) = C; and ei(a) = Igg)(&)). The similar notation of n.(«a),
C.(a) is used to denote the last program vertex and Cp-equivalence class of a finite
path a. Let us define also for every G edge é = (e, Cy, C,) the corresponding program
edge label to be ”(é) = IE(p)(IE(G)(é)) = IE(p)(e) € {” +"" - ”}.

Now we define for every Cp-graph also the set of its histories, so giving some
semantics to the syntactical Cp-graph construction done so far.

Let B = (ng, Go)eo,- - - [, (nk, Ui)] be a history of the program P, then for an ar-
bitrary Cp-graph G we call B a history along a path a = (ng, Co)éo,- - . [, (ns, Ci)]
in G iff CRds = CRd, and for all 1 € CRd, both #; € C; and ¢; is labelled by %&;
(equivalently, é&; = (e, Ci(a), Cip1(a))).

Intuitively, a Cp-graph is a "refinement” of the program P in a sense it admits
along any path o only those P histories in which after every step the program variable
value vector satisfies the configuration (belongs to the Cp-equivalence class), ascribed
to the current vertex of the path.

Definition 4.11 A path a (either initial or not) in a Cp-graph G is called feasible
iff there ezists a history of G along .

Observe that in the case of the Cp-graphs we do not distinguish between the feasibility
and weak feasibility of the graph paths, as it was done for the programs.

Fact 4.12 Every history v of any (not necessarily basic) Cp-graph G along a finite
or infinite path o is also a history of P along proj(a). For o being an initial path in
G the history v is initial along proj(e).

Proof: Follows from definitions, observing in the case of the initiality the property
of {5'] being singleton: [5F] = {#F}.D

Fact 4.13 Every history B along e path o in P is also o history along a path o', such
that o = proj(a’), in the Cp- basic graph BG(P). Moreover, if B is initial, the path
o' also can be chosen initial in BG(P).

Proof: Gjven 2 history

B = (no, to)eo, (n1, 01)€y, .. [, (R, Bi)]

the corresponding path in BG(P) is of the form

(no, lﬁﬁl)éOv (n'l) [61])617 v [v (nh lﬁ.’f])]v

CHAPTER 4. FINITE PATH FEASIBILITY 46

the existence of the appropriate ¢;s is due to the definition of BG(P).

The initiality of &' is also straightforward from the definitions. O

As one can see, in the basic graph BG(P) every path with the length] (containing
only one edge in it) is feasible, no matter what partitioning Cp of the program variable
vector value set one chooses (actually, for this purpose also the trivial partitioning
with 1 element containing all the set Vp would do, though it is not admitted here for
in this case the set [55] is not singleton).

Definition 4.14 A basic graph BG(P) is called perfect, if every finite path in BG(P)
is feasible.

Proposition 4.15 For a perfect graph BG(P) the set of all finite feasible paths in
the program P coincides with the set of projections of all finite initial paths in BG(P).

Proof: Straightforward from Fact 4.12, Fact 4.13 and the definitions of path feasibility
in programs and Cp-graphs.D

Corollary 4.16 If there ezists an algorithm which, given a program P, constructs a
perfect graph BG(P), then the set of all finite feasible paths of P is projective.

It is easy to see that similar results can also be obtained for the T-projectivity of the
set of all finite feasible correct (accepting) paths of the program P (one simply defines
the finite acceptance condition for the graph BG(P) in a way (n,C) € Sp(BG(P))
iff n € Sr(P)).

In order to complete the proof of Theorem 4.1 we show the perfectness of the basic
graphs BG(P) for both LBASE and LTIM programs w.r.t. the partitionings Cp defined
in Section 4.1 (Lemma 4.17 and Lemma 4.29), as well as the effectivity of the graph
BG(P) construction from given program P (Proposition 5.5 and Proposition 5.10).

4.3 LBASE: Perfectness of BG(P)

Lemma 4.17 Every finite path in the basic Cp-graph BG(P) for given LBASE pro-
gram P is feasible (i.e. for every LBASE program P the graph BG(P) is perfect).

Proof: We obtain the statement of the lemma as a corollary of the following more
general result.

Let us call a path a in BG(P) feasible with the initial value (n, o) (with the final
value (n',7")), if there exist a history v along a such that (ng(v).%p(v)) = (n,0)
(respectively, (n.(v),0.(v)) = (n/,v7)).

Lemma 4.18 [f an initial finite path o in BG(P) is feastble with the final value
(n,v") and a (finite or infinite) path § is feasible with the initial value (n, ") for
some 0" € [v], then the path o + B is feastble.

1.3. LBASE: PERFECTNESS OF BG(P) 47

Having proved the lemma, it is now completely straightforward to use the induction
on the path length in order to obtain the proof of Lemma 4.17. The {ollowing is
another interesting corollary of Lemma 4.18.

Corollary 4.19 If two paths a and 8 in BG(P) end with the same vertez, then for
an arbitrary (finite or infinite) path v in BG(P) the path o + v is feasible if and only
if the path B+ v is.

Proof of Lemma 4.18: Let C = [¢'] = [#"] € Cp. The proof idea is to show that
there is ¢ € C, such that both « is feasible with the final value (n,?) and B is feasible
with (n, %) as theinitial value, this allows us to build explicitly a history along o + 8
in BG(P). We begin with the notion of a P-uniform mapping and some its properties.

Definition 4.20 We call @ mapping p: Z — Z P-uniform, if for every z,y € Z
o 1 <y implies p(z) < ply), i.e. p is strictly monotone, and

® p(Cmin) = Cmin 6nd p(Cmaz) = Cmaz, i.e. p preserves all the constanis ¢ €
CO"!S(P) = {Cmin;- scmn.r} ’

We extend any mapping p : Z — Z in a polymorphic manner also to the structures,
containing integers as elements in a way the mapping p replaces any integer component
z with p(z) and does not change the structure’s components of other types, e.g., for
a vector § € Z™

p(?) = (p(v.21), p(5.72), ... - , P(¥.Zm)).

Fact 4.21 For a P-uniform mapping p and any 5 € Vp [8] = [o()].

Proof: Follows from definitions. D
The following is the main point in the proof of Lemma 4.18:

Lemma 4.22 For a P-uniform mapping p and an arbitrary history v along a path ~
in BG(P) the sequence p(v) is also ¢ history of BG(P) along v.

Proof: According to the definition of the history, it is enough to check that, if

(nidy) 2o {ny,5,), then also {n,,p(#)) — (na, p(52)), Fact 4.2] will ensure that

the new history p(v) goes along the same path in BG(P) as the history v.
Consnder the language LBASE operator p, associated with the program P vertex
- Itis straightforward according to the definitions of the semantic functions ¢, and
(See Chapter 3) that for p being an input operator

P(ep(D1,c)) = dp(p(1,p(c)) and (51, c) = (B, p(c)),

CHAPTER 4. FINITE PATH FEASIBILITY 48

and for p'being an assignment, comparison or dummy operator
P(@:(51)) = dp(p(01)) and (D) = ¥,(p(%1)).

The existence of the transition {ny, p(%)) —— (na2, p(%,)) (provided there exists
the tramsition {n,, ;) —+ (n,,7;)) now is straightforward from the definition of the
transition relation — in the program F state transition system.O

Definition 4.23 Given two variable value vectors ¥y and T, satisfying the same con-
figuration C = [1,\] = [02], we call the vector Uy sparser than 0, if for any two program
variables z;,z; € Vars(P)

z; <¢ z; implies Dz, — th.7; < 0,.2, — 1.7,
xC 4y J - J

Fact 4.24 For any two vectors oy and ¥, with [5,] = [t2] = C there ezisis a vector
U3 € C such that U3 is sparser than both given vectors ¥y and 5.

Proof: The vector U3 can be constructed, as follows. For all variables yy,y2,...,¥s
greater than cmg in C and ordered in ascending order according to C (i.€. Cmar <c V1,
¥ <c yiq1 Vi), define

U351 = max{f1.y1, V2.4 } and By.yis1 = T390 + max{Dy.yiy) — 0¥, V2.¥i41 —O2¥i)

One can similarly define also the v3-values for variables, less than c¢pin in C. It is
obvious that the constructed vector by is sparser than both @, and ©,.0

Fact 4.25 For any two variable value vectors U; and D, such that v, ts sparser than
Uy, there exists a P-uniform mapping p with p(¥).a) = ¥;.a for every P variable or
constent a € Ap.

Proof: Define p(c) = ¢ for all ¢ € Cons(P). For > ¢ma: let y.a(z) be the maximal
of values v;.a for a € Ap, which is does not exceed z. Let us define

p(z) = vp.a(z) + (¥y.¢(z) — 7).
For £ < cpmin one defines
p(z) = U2.b(z) — (¥,.b(z) — z), where

91.5(z) is the minimal of values).a which are not less than z. It is because of the
sparseness of ; w.r.t. o, that the defined mapping p is strictly monotone. The P
constant preservation by p is by definition.O

Given the variable valve vectors ¥" and " with [#] = [#"] = C let f € C be a
vector which is sparser both than 7 and ' (see Fact 4.24). Due to Fact 4.25 there are

44. BASIC GRAPHS FOR LBASQ PROGRAMS 49

P-uniform mappings Pl and P2 such that p,(ii'} = P2(ii"} = V. Let w be the history
along o- in BG(P) with the final value (n,ii"). Lemma 4.22 guarantees that pdild
also is a history along o- in BG(?), its final variable value vector is

In a similar way one establishes that />2(112) is a history along fI with j as initial
variable value vector: v = VO(P2(112)) It is according to the definition of the history
that we can glue the obtained two histories together so obtaining e history along o +fi
in BG(P), what means the feasibility of the path o + 1 in BG(P).O

So we have completed the proof of Lemma 4.18. Since we have the result of
Lemma 4.17 as a corollary, it remains for the proof of Theorem 4.2 to show only the
effectivity of the graph BG(P} construction from the text of the program P, what is
done in Proposition 5.5 using the path inequality system techniques (see Chapter 5).

4.4 Basic Graphs for LBASQ programs

Although the projectivity of the set of all finite feasible paths for LTIM programs is
demonstrated in the full generality in Section 4.5 and Section 5.2, we consider here
an alternative approach for proving projective the sets of all finite feasible paths in
LBASQ programs (LTIM programs without the real time counter, intuitively, the
LBASE programs with the rational-valued variables).

Let us given a LBASQ program? define the partitioning Cp of the P variable
value set Vp = Qm, as it was done in Definition 4.4 for LBASE programs, by taking
two variable value vectors VI and V2 equivalent, if they coincide on P variable and
constant value ordering (i.e., iff for any a, S€ Ap via . vib iff v2a D v2b).

We construct also the (LBASE-like) basic graph BG(P) according to the parti-
tioning Cp, as described in Section 4.2.

Lemma 4.26 For every history u along a finite path o in the basic groph BG(P)
of a LBASQ program P and every one-edge path i = (n, C)e, (n', C') with (n, C) =

(n.(0). C.(0-)) there exists a history 1 along o' = o+l with v;(II''a = v;(ll).a for all
1E C72do and a E Ap [i.e. n is a continuation of .

roof: Sincefl is a path in BG(P) we have for e = IEBG(P))(e) (n. V)~ (n',ii)
‘jthij E C and ii*t E C'. Since v.(Il) E C, we can exhibit a monotone mapping
: Q -+ Q with pva) = v.(I).a forall a E Ap. Easy to see that the history .
ntinued by (n, p(v))e, (n, p(ii')) is the desired history 11'.0

orollary 4.27 For every LBASQ program P its LBASE-like basic graph BG(P) s
erfeet.

CHAPTER 4. FINITE PATH FEASIBILITY 30

Proof: The feasibility of every finite path in BG(P) is straightforward by induction
from Lemma 4.26.0

The effectiveness of the graph BG(P) construction for LBASQ programs is ob-
tained in a similar way as for LBASE programs in Section 3.1, we do not consider the
details.

Observe, that an analogue of Lemma 4.26 for LBASE programs does not hold.
In the case of integer-valued variables we cannot exhibit the corresponding monotone
mapping p : Z — Z with p(v.a) = v.(v).afor alla € Ap forinthecase t.a = 17, 0.b=
19 and ©.(v).a = 1992, ©.(v).b = 1993 we are required to define p(17) = 1992 and
p{19) = 1993, but what to do with p(18) (observe the monotonicity)? We have dealt
with the problem of finding a history along the prolonged path in the case of LBASE
programs by some updating of the given initial history by a P-uniform mapping in
order to get the final history variable value vector "sufficiently sparse™.

As a straightforward corollary from Lemma 4.26 we obtain also

Fact 4.28 FEvery infinite path in the (LBASE-like) basic graph BG(P) for a LBASQ
program P is feasible.

Proof: Given an infinite path a in BG(P) we consider the sequence ag. ay, ... of all
its finite prefixes. According to Lemma 4.26 we have a sequence of finite histories
Vo, 11, - - ., the history v, along the path «;, with (v,) = 0,(v) for all 1,7 € N. So
we obtain a history v along a by defining 7;(v) = 0;(v;) for all 1 € N (intuitively, v is
a "pointwise limit” of the history sequence v, vy, ...).0

As the analogue of Lemma 4.26 for LBASE programs does not hold we need to
look for other techniques for studying the infinite path feasibility in LBASE programs,
what is done in Chapter 6.

4.5 LTIM: Perfectness of BG(P)

Lemma 4.29 Every finite path in the basic Cp-graph BG(P) for given LTIM program
P is feasible (i.e. for every LTIM program P the graph BG(P) s perfect).

Proof: First of all we introduce two kinds of mappings, which we need for the proof.

Definition 4.30 We call a mapping p: Q — Q u-stable iff p is strongly monotone
and p(z) =z VI < u
A strongly monotone mapping 0 : Q — Q 1is called v-uniform iff

o o preserves all P constants (i.e. o(c) = ¢ for all c € Cons(P)) and

s g(z+c)=o(z)+cforallz >v, ce N.

U LTIM: PERFECTNESS OF SCtr, 51

As in the case of mappings Z --- Z, we extend the mappings Q --- Q in a poly-
morphic manner to other structures, containing rationals as elements in a way these
mappings apply to all components of the rational type and do not change any com-
ponents of other types.

Lemma 4.31 If an initial finite path a in BG(?) has a history m along it and a
(finite or infinite) path fJ with (n.(a),C.(II") = (no(fJ),Co(fJ)) has a history "2 along
II. then there is a history 113along a *+ fJ such that

where the mapping p is v.(lldz + Cm=-stable and a is ii'o(112).z-uniform. Moreover,
ti,e variable value vector V;(V3) can be effectively computed given the variable value
vectors v.(v,), VO(V2), as well as V;(Il,), ifi <k, and V;_.(V2), ifi >k

Intuitively, the lemma is just a stronger version of an analogue of Lemma 4.18 for
I.TIM programs. We need the lemma in this formulation afterwards when we study
Lneinfinite path feasibility in LTIM programs.

Proof of Lemma 4.31:

Proposition 4.32 Given a finite history v = (no, vo)eo, (n" vile" ... y (noee V.) of a
LTIM program P along a path o in BG(P), for every vi z + Cmaz-stable mapping p
the sequence

is also a history along <.

Proof: First of all, since p is ih.z + Cm=-stable, it follows from the definition of
the configuration and the fact that Vi ~ k V;.z T cmaz S Ve.z + cmor that for all
S [p(v;)d = (v;}. The check that a transition (n,p(V)) =~ (n',p(V)) s in the
P slate transition system, given this transition system contains (n, V) ~ (', ill
is straigrttforward ~ from the transition system definition (i.e. the semantics of LTIM
programs). 0

Proposition 4.33 For afinite or infinite history 1l along < in BG(P), starting with
ino. VOl. for every vo.z-uniform 'ffillpping a the sequence U(Il) is also a history of
BG(?) along <.

CHAPTER 4. FINITE PATH FEASIBILITY 32

Proof: Similar to the proof of Proposition 4.32. Foralli € CRd, [o(ti(v))] = [£.(v)]
because o is also 4;(v).z-uniform, this leads to the coincidence of the base point sets

Bp(o(5:(v))} = Be(ti(v)) (for all z € Ap,c € Z
o(0:(v)).z € o{Bi(v)).z,0(Fi(v)).z + ¢ L o(Vi(v)).2 + Cmax

if and only if
Bi(v).z < 6(v).z, Bi(v).z + ¢ < i(v).2 + maz),

as well as the base point orderings.
The transition relation preservation by o is also straightforward from the defini-

tions, notice that for the input statement p(n) given (n,5) == (n', &) one obtains
e:a(a)

(n,o(v)) — (n',o(¥)).0

Lemma 4.34 For ty,% € C € Cp of a LTIM program P there ezisis a Dy.2 + Cmaz-
stable mapping p and Uy.z-uniform mapping o such that p(t,) = o(v;) = v3 € C. The
mappings p and 0 can be computed given the vectors v, and v;.

Proof: First of all define the values o(9,.z;) = ¥,.z, for the base points z; € Bp(C)
with z; <¢ Z 4 Cmaer and extend the definition of ¢ to the pair of intervals | — 0o, 7.2 +
Cmaz) = | — 00,D).2 + Cmec] in 2 piecewise linear way with the graph corner points at
already defined values (taking into account also o(c) = ¢ for ¢ € Cons(P)). It follows
from the definition of the partitioning Cp that such a value definition does not violate
the uniformity of 0. In what follows, the mapping o is extended to Q — Q defining
o(z)=o(z—1)+1forz > 2.2 + Cmax-

It is easy to see that also a).z + Cmac-Stable mapping p can be defined to meet
p(th) = o(2).0

Lemma 4.34 together with Proposition 4.32 and Proposition 4.33 give an explicit
way how to obtain every variable value vector of a history v3 demanded in Lemma 4.31.
so giving also the proof of the lemma.D

Having proved Lemma 4.31, it is straightforward to follow the same induction
arguments as in the LBASE case in order to obtain the proof of Lemma 4.29.0

Now in order to complete the proof of Theorem 4.1 it remains to show only the
effectiveness of the basic Cp-graph construction for LBASE and LTIM programs,
what is dealt with by the techniques of Chapter 5. Perhaps the reader can find this
effectivity rather obvious because the only thing needed is to determine automatically
which paths of the length one (i.e. containing only one edge) in the maximal Cp-graphs
MG(P) for LBASE and LTIM programs P are feasible.

Chapter 5

Path Inequality Systems

In this chapter we develop the path inequality system technique (for the paths in
program path feasibility graphs) which allows both to demonstrate the effectivity of
the basic graph construction for both LBASE and LTIM programs, so completing the
proof of Theorem 4.1, and serves as the basis for the infinite path feasibility analysis
in the programs (see especially Section 5.3).

5.1 Path Inequality Systems for LBASE

Let G be a Cp-graph for a LBASE program P. Let us fix an arbitrary finite or infinite
path a in G. We obtain in this section some symbolic characteristic of the set of
all histories along o in G in a form of inequality system, allowing to establish the
eflectivity of the BG(P) construction from MG(P) for LBASE programs P.

First of all we define for the path o the set Pt, of points on a, each point being a
pair (a:r) for a program variable or constant a € Ap and a path coordinate r € CRd,
(so0 Pty = Ap x CRA,). Given a history 8 along a in G one can associate with it a
mapping I'g : P1, — Z, defined

Ts((air)) = v,()-a,

i.e. the mapping I'y gives for every point on o its "value” on the history £ (recall
that for a constant ¢ € Ap the notation #.c is used to denote simply the value of c).
Let us call the mapping I's the generator of the history f.

In a similar way, every mapping I' : Pt, — Z is a generator of a sequence

Br = (no(a),T(Z; 0))ea(a), (m(a), T(E: 1))es(e), .. . [, (mi(a), T(Z: k))]
f‘;r k = card(CRd,)~1 being the length of e and I'(Z; i) for every i used as a shorthand

(T(z1;8), Dlz21), Tz 1))

CHAPTER 5. PATH INEQUALITY SYSTEMS 54

Let us call the sequence fr the sequence generated by the mapping I'.

It is easy to see that not all sequences generated by mappings I' are histories of G
along @, however, some of them are. In particular, for any history J along the path
a the sequence, generated by the generator of § is the history # itself (i.e. fr, = 8).

The idea of the path o inequality system is to give a simple symbolic characteristic
of all mappings ' which correspond to (are generators of) the histories along a.

Let for an arbitrary program P operator p and an arbitrary a € Ap we say that
a ub p (a unchanged by p) if and only if p does not assign a new value to a (obviously,
for any P constant ¢, ¢ ub p, no matter which operator p is). The only cases when
the relation a ub p does not hold is when a is the variable into which the input or
assignment operator puts the value.

Let for a given program P vertex n € V(P) and edge label 1 € {" +"." = "} for
z,y € Ap

® T <q1Y, if p(n)is a comparison operator x <y and /=" + ", and
o y <.z, if p(n) is a comparison operator x <y and [=" - " orelse y <, z.
The relation <, in the set Pt, of points along « is defined the following way:

e (a;r) <o (b;r)fora,b € Ap and r,r+1 € CRd, whenever a <,; bfor n = n.(a)
and ! = Ig(pj(e,(a)) (the inequalities requested by the statement exit labels on
the path are reflected),

o if a ub p(n,(a)) for a € Ap, r,r + 1 € CRd,, then (a;r) <, (a;r + 1) and
(a;r+1) <4 (a;r),
o if a <¢, (o) bfor a,b € Ap, then (a;r) <, (b;r) (after every execution step the

program variable values satisfy the corresponding configuration),

o the relation &, is transitive, i.e. for wy, wq, ws € Pla, if wy <, we and wy <, wa,
then also w, <, w;.

Let us call for an arbitrary path a the set of inequalities {w; <, w, | wy,w, € Pt,}
the path a inequality system and denote it by N,.

Easy to see that for every o the relation <, is a partial order. We define also an
equivalence relation =, such that w =, v’ for w,w' € Pi, if and only if w <, W
and v’ <, w. Let w <, w’ for w,w’ € Pt, if and only if w £, w' and the inverse
w’ <, w does not hold. Let w’ >, w mean w <, w’ and w’ >, w be another notation
for w <, w'.

Example 5.1 Let P have 3 variables, denoted here by z,y and u, as well as the
constants ¢min = 0.Cmar = 1. Let in a Cp- graph G the path

5.1. PATH INEQUALITY SYSTEMS FOR LBASE 55

a = (n0~Cg)éo, (n,,Cl)él, (nQ,Cg), where

p(no) =7u and p(n) =X —y,

&) = lgpy(lgcy(€)) =" +7 fori=0,1,
0 <¢, 1 <y T <o ¥ <gp U,

0 <c, 1 <¢, T <¢y, ¥ <¢y, and

0 <, 1 ¢, T =¢, ¥ <¢, u.

Then the path inequality system N, looks as follows:

(0:0) =4 (0;1) =4 (0;2) <4 (1;0) =, (1;1) =4 (1;2) <4 (2;0),

(:0) =a (2;1) <o (2;2) =0 (3;0) =a (¥31) =a (3;2),

(1;2) <o (u;0), (1;2) <o (u;1) =4 (u;2), but the points (u;0) and (u;1) are <, -
incomparable.

Definition 5.2 Given a path a in a Cp-greph G, we call a mapping T : Pt, — Z a
solution of N, if and only if

» Ve € Cons(P):T(¢;r)=¢, -~
o for any two points wy,w; € Pl,:
1 if wy =, wy then T(w,) = I'(w;)

2. if wy <4 wy then ['(wy) < T(wn).

Proposition 5.3 For every path a in a Cp-graph G every solution T of N, generates
a history ofG a,]ong a.

Proof: Consider the sequence
ﬁl" = (no(a)v F(fv 0))60(0)9 (nl(a)s F(Ea 1))61(0)1 s [’ (ﬂk(Q), F(E’ k))]’

geuerated by some solution I’ of A,. In order to prove that Ar is a history along a,
1t suffices to prove that

¢ for every i € CRd, T'(Z;i) € Ci(e) and
¢ loreveryi € CRd,, i # k
(ni(@), T(%8)) =2 (niga (@), T(F:4 + 1)),
what |s straightforward from the definitions of the path a inequality system and the

program P state transition system (observe, that we do not have - - --labelled outgoing
edges from the program nodes with attached input or assignment operators).0

CHAPTER 5. PATH INEQUALITY SYSTEMS 36

Proposition 5.4 Every hislory along o in a Cp-graph G 1is generated by some solu-
tion of the path a inequality system A,.

Proof: Follows from definitions.O

Proposition 5.5 The construction of the basic graphs BG(P) for LBASE programs
P from the given program tezt is effective.

Proof: First of all, given a LBASE program P it is easy to build for it the maximal
Cp-graph MG(P) (see Section 4.2). According to the definition of BG(P), in order ro
obtain the graph BG(P) from MG(P) it suffices to determine and erase all infeasible
edges in MG(P) (i.e. the edges for which the path containing only this edge does not
have any history v along it (no points about any initiality of v)).

One can easily check whether for given edge é = (e, Cy, C;) the inequality system
of the path a; = (fp(e), C1)e, {tp(e), C2) in MG(P) is contradictory or not. Due to
the Proposition 5.3 and Proposition 5.4 this check will give also the answer about the
path ¢; feasibility.0

So we bave completed the proof of Theorem 4.2.0

Lemma 5.6 There ezists an algorithm which, given a finite path a in BG(P) for a
LBASE program P ezhibits a history v of P along a.

Proof: Any algorithm for solving the path inequality systems (i.e. linear inequality
systems over integer variable values) yields some solution I' of N, (since a is feasible,
there is a solution of NV,). Take v to be the history, generated by I'.0

We do not consider here the methods for solving path inequality systems, let us
note just that the very special form of the systems plays a crucial role for the solving
process.

Corollary 5.7 There ezists an algorithm which, given an initial finite path a in a
LBASE program P

o determines, whether o is feasible; and,
o if o is feasible, ezhibits a program history along a.

Proof: The path a is feasible if and only if it is a projection of some initial path o'
in BG(P) (Proposition 4.15 and Lemma 4.17). Apy history along o’ in BG(P) is also
an initial history along a.0

Note. Actually there is no need in the construction of the whole graph BG(P) for
deciding feasibility of a certain program P path a, it is enough to consider only that
part of BG(P) which has as projections all feasible initial subpaths of a. In [BBK74]
even a simpler approach was chosen by associating a path inequality system directly
with a path in the program.

52 PATH INEQUALITY SYSTEMS: LTIM 5i

Corollary 5.8 There exists an algorithm which, given a vertex n E \I(P) of a LBASE
program P

¢ decides, whether n is reachable (f-correctly reachable); and

« if n is reachable (f-correctly reachable), exhibits an initial program P history Il
along an [accepting} path a of P, which contains n, i.e. n = n;(ll) = ni(a) for
some i E Cnd".

Proof: Given the vertex n E VIP) we can look in the graph BC(P), whether there
isa vertex (n, G) E v(BC(P)) for some G E Cp which is contained in some initial
(Initial accepting) path a' in BC(P) (an initial path in BC(P) is called accepting. if
Itends with (n'. G') for n' being an accepting vertex in P and G' E Cp). Let a be the
projection of a'. Clearly, a is feasible. We obtain the needed history » along a using
tbe deciding algorithm of Proposition 5.i.0

Let us note that the actual graph BC(P) building process should not necessarily
go through the construction of the maximal graph MC(P). One can for given con-
figuration G E Cp, program vertex n E V(P) with its operator pin) and edge e s.t.
fe) = n construct all configurations G' for which there exist VE G, a E Z and
¢ EC' suchthat (n, G) ~ (tp(e), G"). In the case of the comparison or dummy op-
erator one needs only to consider the configuration G' = G, for assignment operators
alsothe configuration G' is uniquely determined. Ifp(n) isan input operator, one must
consider "all possible places" where the value a can be put w.r.t. the configuration G.

This method of inductive building of the graph BC(P) allows to avoid the con-
struction of a usually very large number of unneeded maximal graph vertexes. so
savinga both the time and space resources for the rea.chability analysis. Actually also
the "optimized" algorithms have in the worst case both the runtime and used mem-
ory exponential in the number m of the program variables, however only gathering all
possible optimizations one can hope to obtain practically feasible program analysis
i:lgorithms (see Section B.4.1 in Appendix B for the outline of some further possible
path feasibility graph reduction techniques).

52 Path Inequality Systems: LTIM

In a similar way as for LBASE programs, we consider a Cp-graph C ofa LTIM program
P. and define an inequality system oN" for every path a in G.

We define for the path a the set 'Pt" of points on a. in a way 'Pt" = {(b;r) IrE
~T2d" bE Bp(Gr(a))} (i.e. r is a coordinate on a and b is a base point of the rth
configuration of a).

Given a history f3 along a in G we associate with it a mapping I's : 'Pt, -+ Q.
defined

fli(@a; 1) = Vi(B3).a

it
o

CHAPTER 5. PATH INEQUALITY SYSTEMS

and called the generator of 8.
Easy to see that every mapping I : Pt, — Q is a generator of the sequence

Br = (no(a), T'(Z; 0))es(a), {n1(e), [(Z; 1)}er(a), ... |, (ne(a), T(Z; k)]
for k = card(CRd,) — 1, provided for every i
P(Z;2) = (T(z) (20;4). Dz i), -, T(zm; 1))

Asin the LBASE case, we call the sequence Sr the sequence generated by the mapping
T.

Also in the case of a LTIM program P it is easy to see that for any history § along
the path o the sequence, generated by the generator of 3 is the history g itself (i.e.
Bry = B).

Let for an arbitrary program P operator p and an arbitrary a € Ap we say that
a ub p (a unchanged by p) if and only if p does not assign a new value to a. We
extend also the predicate ub p also to expressions in a way that, if expr; ub p and
expr, ub p, then also expr, + expr, ub p and expr, — expr, ub p (it is especially
important, that whenever a ub p for a € Vars(P) then for all c € Z a + c ub p).

Let for a given program P vertex n € V(P) and edge label Il € {" +7,” = "} for
z,y € Ap

® <, y,if p(n)is a comparison operator x <y and I ="+ ",

o y <,sz,if p(r) is a comparison operator x <y and [=" = ",

"

o T <.z, if p(n) is a positive assignment operator 2z S xandl="-—

o z <.z, if p(n) is a positive assignment operator z L xandl="+".

We let also z <, y whenever z <. y.
The relation <, in the set Pt, of points along « is defined similarly, as for LBASE
programs:

e (a;r) <, (byr)fora,b€ Ap and r,r+1 € CRd, whenever a <,; bforn = n,(a)
and I = Ig(py(e.(a))

o if a ub p(n.(a)) for a € Bp(C.(a)) N Bp(Cryy(a)), ror+ 1 € CRA,, then
(a;r) <o (a5r+1) and (a7 + 1) <, (a57),

o il a <¢,(ay b for a,b € Bp(C,(a)), then (a;r) <, {b;r),

o therelation <, is transitive, i.e. for wy, wy. wy € Pt,. if wy <, wy and wy <, wa.
then also w; <, wa.

5.2. PATH INEQUALITY SYSTEMS: LTIM 59

The path o inequality system is defined as the set of inequalities A~ = {WI ::0:"w2 |
U .w2 E Pt}

Let also in the LTIM case w =", wi for w,w E Pt", if and only if w ::0:"y and
u' ~"w as well as, w <", w ifand only ifw :0" w and the inverse w' (", w does not
hold. Let wi - w mean w 0" w and w' >", w be another notation for w <", w.

Definition 5.9 Given a path ct in a Cp-graph G of a LTIM program P and a set
A~ Pt" we call a mapping " :A ...Q asolution of NO w.d. A if and only if

« "le E Cons(P) :fAEe; r) =g,
e for any two points wi, w2 E A:

Loifw =", we then f'(wl) = f(ID2)
2. if wi <", w2 then f'(wdl < f'(ID2), as well as

« for (a;r), (b;r) EA, such that b= a+c [cE Z), always f'(b) = f'(a) +ec.

A mapping I IPt;Q is a solution of NO, if it is a solution of N", w.r.l. Pt",.

Similarly, as in the LBASE case, it can be obtained from the definitions that the

analogues of Proposition 5.3 and Proposition 5.4 hold also for Cp-graphs of LTIM
programs.

Proposition 5.10 The construction of the graphs BG(P) for LTIM programs P from
the program text is effective.

Proof: As in the proof of Proposition 5.5 we construct first the maximal Cp-graph
MG(P). In order to obtain the needed graph BG(P) it remains only to check whether
[or given edge € = (g, Cu C, in MG(P) the inequality system of the path c. =
(fp(e), Cl)e, (tp(e), Cz in MG(P) has a solution or not, and in the case of the solution
existence effectively exhibit one. Indeed, the process of finding a solution for N, = No.
(as well as the process of finding a solution for any MG(P) path inequality system)
reducesto solving a simple system of linear equations and inequalities W.r.t. the values
of the points (a; r) E Pt, with a E Vars(P) being program P variables (all equations
and inequalities of the system are of the form f(1D})Ar(W2) +c forw E Pt, and cE Z,
-c", e :5;C::0cm..~ AE {=, <.::0:}).One can observe that also for LTIM programs we
do not have the obviously infeasible” - <labelled edges, outgoing from vertexes with
~ither input, assignment or variable activation (x .- z + c) operators ascribed.O

Proposition 5.10 completes the proof of Theorem 4.3 (see Lemma 4.29), so resolv-
mgalso last missing points in the proof of Theorem 4.1.0

Asin the case of LBASE programs, we have also for LTIM programs the following
re:;ult.

CHAPTER 5. PATH INEQUALITY SYSTEMS 60

Lemma 5.11 There exists an algorithm which, given a finite path & 1n BG(P) for a
LTIM program P ezhibits a history v of P along a.

Proof: Any algorithm for solving the path inequality systems (i.e. linear inequality
systems over rational variable values) yields some solution [of A/, (since « is feasible,
there is a solution of A/,). Take v to be the history, generated by I'.O

Concerning the general case of the analysis of LTIBA programs we have the fol-
lowing consequences of the proof of Theorem 4.1.

Corollary 5.12 The LTIBA program vertez reachebility problem is decidable.

Proof: Build a projectivee H for the set of all finite feasible paths in given program
P and look whether there is a path a in H from the inijtial vertex to some vertex
n’ € V(H), labelled by the given P vertex n.0

Corollary 5.13 The set of all finite correct (accepting) paths for a LTIBA program
with finite acceptance set 1s T-projective.

Proof: Asin the proof of Theorem 4.1, we can due to Lemma 2.8 consider the cases
of LBASE and LTIM programs independently. For P being either a LBASE or LTIM
program with the finite acceptance set Sp(P) C V(P) let in the basic graph BG(P)
Sr(BG(P)) = {(n,C) € V(BG(P)) | n € S¢(P)}.

Due to Proposition 4.15 (note the perfectness of BG(P) according to Lemma 4.17
(LBASE) and Lemma 4.29 (LTIM))

o every finite accepting feasible path o in P is a projection of some initial path
o’ in BG(P), o' is accepting according to the definition of Sp(BG(P)) due to
n.(a) = n.(a');

o the projection of every finite initial accepting path in BG{P) is a feasible ac-
cepting path in P.O

Corollary 5.14 The f-correct reachability problem for LTIBA program verteres is
decidable.

Proof: Build a T-projectivee H for the set of all finite feasible paths in given program
P and look whether there is an accepting imitial path o in H containing some vertex
n' € V(H) which.is labelled by the given P vertex n.0

Observing the fact that a path in a LTIBA program P is feasible if and only if it
is feasible in both the programs P® and PT (see Section 3.2) and using the effectivity
of the solving of path inequality system both for LBASE and LTIM program basic
graphs (Lemma 5.6 and Lernma 5.11), we obtain also for LTIBA programs (see note
in Section 5.1 after the proof of Corollary 5.7) the following result.

5.3. POINT CLASSES 61

Corollary 5.15 There ezists an algorithm which, given an initial finile path ¢ in a
LTIBA program P

o determines, whether o is feasible; and,

o if o is feasible, ezhibils a program history along c.

Corollary 5.16 There ezists an algorithm which, given a vertez n € V(P) of a
LTIBA program P

o decides, whether n is reachable (f-correctly reachable); and,

o if n is reachable (f-correctly reachable), exhibits an initial program P history v
along an (accepting) path e of P, which contains n.

Proof: Follows from the proofs of Corollary 5.12 and Corollary 5.14 by Corol-
lary 5.15.0

5.3 Point Classes

In what follows we develop some further techniques for infinite path feasibility analysis
in both LBASE and LTIM programs.

From now on let us concentrate on the analysis of the basic graphs for LBASE
and LTIM programs out of the whole family of Cp-graphs, defined in Section 4.2.
The similar definitions of path inequality systems in basic graphs BG(P) for the
LBASE and LTIM programs allows to make some constructions for programs in these
languages in a uniform way, we assume that P is a LL-program for LL being either
LBASE or LTIM.

First of all we mention some simple and useful properties of the path inequality
systems in the graphs BG(P) for LL programs P.

Fact 5.17 The inequality system N, for every finite path o in BG(P) for o LL
program P is not contradictory, i.e. there is a solution of N,.

Proof: Follows from Theorem 4.] and Proposmon 5.4 (consider also its analogue for
LTIM programs).0

Fact 5.18 For every path a in BG(P) and every r € CRd, a,b € BP(C,(a)) the
mequality (a;r) <, (b;r) holds if and only if a <¢,(ay b does.

CHAPTER 5. PATH INEQUALITY SYSTEMS 62

Proof: Follows from Fact 5.17: since A/, is not contradictory, there cannot be anv
inequality of the sort (a;r) <, (b:r) without the corresponding o« <¢,) b (notice
that for all a,b € Bp(C) always either a <¢ b. or b <¢ a or a =¢ b).0

Fact 5.18 eliminates the need to consider the inequalities a <, b generated by
@ <, (a)s b in the definition of the path inequality systems - every such inequality is
already contained in A, because of the corresponding inequality in the graph vertex
(n.(a),C.(a)) configuration C.{a).

Let us for a being a path in BG(P) for a LL program P and r € CRd,, define the
set of points Pt,(r) associated with the path o coordinate r in a way

Pto(r) = {{a;u) € Py |r = u}

(for a LBASE program P Vu Pt,(u) = {(a;u) | « € Ap}, in the LTIM case Pt,(u) =
{(a;u) | a € Bp(Cu(a))}).

Fact 5.19 If(a;t) <, (b;t+r) for (a;t),(b;t+r) € Pt,, then for everyi =1,...,r—1
there ezists w € Pty(t +t) such that (a;t) <o w <, (bt + 7).

Proof: Let (a;s) <! (byu) for (a;s),(b;u) € Pt, iff either s = u and a <¢ b for
C =Cula),ora=2b s =1u+1 and a ub p(n,(c)), orelse a = b, u = s + 1 and
a ub p(n,(a)). Since <, is the transitive closure of <!, (a;t) <, (b;t + r) implies the
existence of an inequality chain (a;t) <) wy < wp <, -+ < (bt + 1) easy to see
that w, € Pt,(t + 1) for at least one w, in the sequence.0

A similar result can be easily obtained also for the relation >,.

Fact 5.20 If wy =, wy for wy € Pi,(1) and wy € Pt (t + r) then for every i =
1,...,r —1 there exists w € Pt (t + 1) such that w =, w,.

Proof: Easily obtained from Fact 5.19.0

The following simple result guarantees the "locality” of the relations <,, >,, so
allowing to mix the usage of the inequality system of the whole path o with the
inequality system of a path o fragment 8 when considering the points within the
fragment B.

Fact 5.21 Let B be a subpath of a in BG(P) from ith to jth path o coordinate
(i,7 € CRd,). Then for w € Pi, (i) and w' € Pt,o(j) w <, ' if end only if w <5 '
and w >, w' if and only if w 25 w'.

Proof: Follows from Fact 5.18, Fact 5.19 and the definition of <,.0

53 POINT CLASSES 63

We consider the set Pt, of points along a path o in BG(P) and define a parti-
tioning Q" =0 {((w))" |WEPt,} of Pt" according to the equivalence relation =", i.e.
((Wn)* = (wz2po iff wi =" w2 for any two whw2 E Pt,. We often omit the index o
in the denotation of the —o - equivalence classes if it is clear from the context.

Definition 522 We call any element ofj Qo [ie. any =" . equivalence class) the
point class along the path cr.

We introduce also the extended set of point classes 00 = Q" U {-00, +00}. We
extend the inequalities <O' =", S" to be defined also for the (extended) point classes
along the given path o, we will allow ourselves even to mix the points and point
classes in some such inequalities. By definition, Vii; E 00 -oo S" W SO +oo, for
wE Q" we have -oo <0 w <" +oo0.

The following notion of the point class stability is very important in studying the
infinite path feasibility for LBASE programs.

Definition 5.23 Given an infinite path o in BG(P) we call a point class li; E Q"
stable along the path o iJand only if there exists u E N such that for all u' 2: u one
can find some P variable or constant a E Ap (a base point a E Bp(C.(cr))) with the
point (a; u) E W.

Intuitively a point class corresponds to the "life-cycle” of a "value" in the program
during its execution along the path o: the "value" is read from the input (at this
time the first element of the point class appears in Pi,,), afterwards it can "visit"
(be assigned and re-assigned to) various variables, may be at some path coordinate
the value "disappears” from the program since it becomes not held by any program
variable or constant (the constants hold only their own fixed values, of course). A
point class is stable if it represents a "value" which never disappears from the program
while executing along the infinite path o (obviously, every point class, containing a
constant at some stage, contains this constant forever and, so, is stable, however,
there can be also other stable point classes along the path (e.g. when some variable
keeps its "value" forever)).

Fact 524 The number of stable point classes along an infinite path in BG(P) for a
LBASE program P does not exceed the number card(Ap) of program P variables and
constants.

Proof: Starting from some point in the path after every execution step every stable
point class must be represented by some variable or constant (i.e. for some u E Nand
every u' ~ u for every stable point class li;there exists a E Ap with (a; U) E w).0
Now we obtain some means for analyzing more carefully the relation :;" for a
given path cr. More precisely, given a point (ar) of the variable (constant) a at

CHAPTER 5. PATH INEQUALITY SYSTEMS 64

some coordinate r in the path, we want to know for every natural s. which points at
the coordinate r + s are greater, which are less and which incomparable with (a:r)
according to the relations <,, <, (these constructions are afterwards used in both the
LBASE and LTIM program infinite path feasibility analysis).

Definition 5.25 Given a path & and a point (a;r) € Pt, let us define for a natural
s, such that r + s € CRd,

o the lower bound of (a;r) at the coordinate r + s on a as the point class
inf,((a;r),s) € aa such that .
I if w <, (a;7) for no w € Pty(s+r), then inf,((a;r),s) = —o0,

2. otherwsse, inf,((a;r), 8) = ({(bir + 5)))o. where (b;7 + &) is the mazimal of
points at the coordinate r + s with (b;r +3) <, (a;r) (for every (¥ ,s+r) €
Pia(s+r), if b <c,,, b, then (b;r + 3) <, (a;7) is nol contained in N,);

e the upper bound of (a;r) at the coordinate r + s on o as the point class
sup,((a;r),s) € Q, such that
L. if(a;r) <, w for no w € Pt,(s + 1), then sup,((a;r),s) = +o0,

2. otherwise, sup,_((a;r), s) = {(b;ir + 5))u, where (b;r + s) is the minimal of
points at the coordinate r + s with (a;r) <, (b;r+s) (for every (¥,s+r) €
Plo(s+r), if ¥ <c,,, b, then (a;r) <, (V;r + 5) is not contained in A,,).

Example 5.26 For the path a from Ezample 5.1

infoa((z;0),2) = (L 2))o = {(1:0),(1;1),(1,2)}
sup,((£:0),2) = ((y; 2o = {(z:2),(y:2),. ..}
inf,((2;0),2) = (((y.-)))

sup,((z;0),2) = +

Following there are some simple and useful properties of the point bounds. Let a
be a fixed path in BG(P) for a LL program P.

Fact 5.27 If (a;r) <, (b;r) for some a,b,r then for every s
o infa((a;r), s) < infa((bir), s),
o sup,((a;r),8) <, sup,((bir),s).

Proof: Follows from the transitivity of <,.D

Fact 5.28 If (w)) = (w)) =w € Q, forw € Ply(t) and w' € Pt (i + r) then also
w = sup, (w,r) = inf,(w,r)

5.3 POINT CLASSES 65
Proof: Straightforward from definitions.0

Fact 5.29 If for some w € Pt, and somer inf,(w,r) = sup,(w,r) then also {w)) =
inf,(w,r) = sup, (w,r).

Proof: Follows from Fact 5.20 and the definitions.O

Proposition 5.30 For everyw = (a;1) € Pl,, for every j, k € N, such that i+3+k €
CRd,

o sup,(w, k + j) 2, sup,(w, k) and
o info(w, k + 5) <, infa(w, k).

Proof: According to Fact 5.19 there exists w’ € Pi,(k) such that w <, w' <,
sup,{w, k + j). According to Fact 5.18 for the configuration Cisi(a), the only possi-
bility not to contradict the definition of sup, is to take w’ >, sup,(w, k). The result
for the upper bounds follows by the transitivity of >,. The case of the lower bounds
is treated similarly.0

Proposition 5.31 If(b;t+r) € sup,((a;t),r) then sup_((b;t+r),s) = sup, ((a;t),r+
s) for every s. Similarly, if (b;t + r) € inf,{(a;t),r) then inf.((bit + r),s) =
infa((a;1),r + s) for every s.

Proof: Let (b;¢ + r) € sup,((a;1),r). Due to Proposition 5.30 sup,((a; t),7 + s) >,
(bit+r). Ifw >, (b;2+r) for some w € Pt,(f+r+s) such that w <, sup, ((a;1),7+s),
Fact 5.19 gives v’ € Pi,(t + r) with (e;t) <, w' <, w. In both cases, if either
w' <, (bt + 1), or not, a contradiction with the definition of upper bound follows,
to sup,((a;t),r + s) = sup,((b;t + r),s). The case of the lower bounds is treated
milarly.0

Let us call this result the transitivity of lower and upper bounds of points.

Chapter 6

LBASE: Infinite Feasible Paths

It is easy to see that there can be infinite not feasible paths with all finite prefixes
feasible in both LBASE and LTIM programs, e.g.

et Nyt 3ix<y;t+T Tvitet VL Yit4t, Yy — Vit+o goto3: and

M4 2.y < X"+, z:—y;'r; y—z+1,7+-; goto2:.

So, at least for some LBASE and LTIM programs P their basic graphs contain
infinite infeasible paths. Moreover, it is not obvious how to find out whether the given
program has an infinite feasible path at all. This chapter addresses the problem for
LBASE programs.

Theorem 6.1 There is an algorithm which, given a LBASE program P, decides
whether it has an infinite feasible path.

Proof: According to Fact 4.12 and Fact 4.13, an infinite initial path in the program
P is feasible if and only if it is a projection of some initial feasible path in BG(P). So,
instead of deciding the existence of an infinite feasible path in the program, we can
decide the existence of such a path in its basic graph. In what follows, the variable
value information after every execution step, contained in basic graph vertexes will
be in essential use by the deciding algorithm.

Theorem 6.2 There is an algorithm which, given the graph BG(P) for a LBASE
program P, decides whether il has an tnitial infinite feasible path.

Proof: The idea of the proof is to find a property PP of finite paths in BG(P) such
that

e every infinite feasible path contains as subpath at least one path satisfving PP,

6.L ACCOMPLISHED LOOPS 67
¢ an infinite path in BG(P), consisting of infinitely many times repeated path
satisfying PP, is feasible, and

« it is decidable whether there is a finite path satisfying PP in BG(P).

6.1 Accomplished Loops

We start with the definitions yielding the notion of an accomplished loop which is
afterwards proved to be able to serve as the abovementioned finite path property PP.

Let us call any P variable and constant set A ~ Ap constant holding, if Cons(P) ~
A

Given a constant holding (and so nonempty) set A ~ Ap and a configuration
C ECp, Jet M = M(A, C) be one of the elements of A, such that va EA :a <c M
and m = mIA, C) E A such that 'va E A : m <c a (it may be the case that some
of the variables M, m are not uniquely determined, in such a case take any suitable
variable or constant).

Let us introduce a partitioning {BA,c,UA,c,LAcl of the set Ap in a way:

« Bac = {aEAp Im :Sca:ScM) we call this set the bounded interval of C
w.r.t. A,

e Uac ={aEAp |M <c a}, the upper interval of C w.rt. A;
« LAc = {aE Ap la <c m}, the lower interval of C w.rt. A.

Definition 6.3 We call afinitt path a with Cnd" = [D, I, ... ,k} a (n, C, A /k)- loop
for (n, C) E V(BG(P)) and A ~ Ap being a constant holding set iff

* (I{)(@).Co(a)) = (nk(a).Ck(@) = (n,C),
e (o))" = (((@; k)" for all a E A.

\ (n, C,A, Kk)-loop in BG(P) is a path of the length k, starting and ending in the
same vertex (n, C), provided for all a E A

« the point classes (see Definition 5.22) containing (a; 0) have representants (a'; i) E
(((@ 0)))" with a' E Ap for all coordinates i along the path o, and

« these representants for i being the path's last coordinate k come back to the
variables a, i.e. 'va EA: (a; k) E ((& 0)))"

\ path in BG(P) iscalled a (n, C, A)-loop, ifit isa (n, C, A, k)-loop for some kEN.

Definition 6.4 We call a (n, C, A, k) - loop o in BG(P) accomplished if

CHAPTER 6. LBASE: INFINITE FEASIBLE PATHS 68

o for every a € Bac U Uy the lower bound inf,({(a:0), k) = {(b:k))) for some
be A,

o for every @ € Bac U Lac the upper bound sup,({a;0), k) = ((b: k))) for some
be A

Intuitively, a path ais a (n, C, A)-loop whenever the variables and constants a € A
have persistent values along o (these values can be stored in other variables for the
intermediate path coordinates). The property of a being an accomplished loop tells
that the upper and lower bounds of all other program variables at the beginning of
the path reduce along the path to these variables with the persistent values (save the
upper bounds of variables upper the largest variable from A and the lower bounds of
variables below A).

Due to the finiteness of the sets V(P),Cp, Ap, the proof of the Theorem 6.2 now
follows from the following three lemmas:

Lemma 6.5 Every feasible infinite path in BG(P) contains a fragment, which is an
accomplished (n,C, A, k) - loop for somen € V(P),C € Cp.k € N and A C Ap -
constant holding set of P variables and constants.

Lemma 6.6 Every infinite path o in BG(P), which after some initial fragment
consists of infinitely many times repeated accomplished loop a, is feasible. Moreover,
there exists an algorithm which given the initial fragment v and the loop o in BG(P)
computes some history along .

Lemma 6.7 There exists an algorithm which, given a vertez (n,C) in BG(P) and
a constant holding set A C Ap, decides whether there is an accomplished (n,C, A) -
loop in BG(P).

It is easy to see that, having proved these lemmas, one can look for the existence of
an accomplished loop in BG(P), which is reachable (in the graph theoretic sense) from
the graph initial vertex, by using the algorithm yielded by Lemma 6.7 on all possible
arguments n,C, A. If in some case an appropriate accomplished loop is found, we
have got, according to Lemma 6.6, a cyclic infinite feasible path in the BG(P) (and
so, in the program P). If it turns out that in no case of n,C, A a corresponding
accomplished loop exist, then according to Lemma 6.5 there is no infinite feasible
path in BG(P) (in P).

Before proving the lemmas let us note that we do not claim the feasibility of every
infinite feasible path which infinitely many times contains an accomplished loop, the
proof of Theorem 6.17 below gives a counterexample. Lemma 6.6 just asserts the
feasibility of infinite paths which, starting from some point coentain nothing else but
some infinitely many times repeating accomplished loop.

6.2. EXISTENCE OF ACCOMPLISHED LOOP 69

6.2 Existence of Accomplished Loop

Proof of Lemma 6.5: Let us assume that we have in BG(P) an infinite feasible path
a. Let W, = {th,...,,} be the set of stable point classes along o (the finiteness
of the set ‘W, is by Fact 5.24). Let for every w € W, #(w) be the least path
a coordinate i for which the equation % = ({(a;))e holds for some a € Ap. let
#o = max{#(w) | @ € W,} (#+ € CRd, is the least path o coordinate at which
all stable point classes along o already have their representants, clearly, for every
w € W, and every : > #, there exists a representant (a;1) €).

Clearly, some of BG(P) vertexes are repeated in o infinitely many times, let us
take one of them, say (n,C), and let j;,j2,-.. be an infinite sequence of increasing
indices j such that j; > #,, which have the vertex (n;(a),C;j(a)) coincident with
(n,C). |

Let x(,i) € Ap for w € W,,? € N denotes some P variable or constant a such
that {{(a;7:)) = . Let x; : Wo — Ap for every i be the mapping with xi(w) = x(w,1)
for every w € W,. :

Since the set Ap is finite, there exist a mapping x : W, — Ap which is (exten-
sionally) equal with x; for infinitely many indices i. Let us fix one such mapping x
and define a subsequence (1,),en = (7i,)sen Of (Ji)ien such that x;, = x for every s.

We define the set A € Ap by letting a € A for a € Ap if and only if a =¢ b for
some b € x(W,) = {x(®) | & € W,}.

Now consider the sequence of finite paths

ﬂ-l = (nh (0), Cll (0))éh LR (nl.(a)v C[,((!)),

and prove that for some sufficiently large s the path $, is an accomplished loop.

First of all, it is clear from the construction that for every s the path 8, is a
(n,C, A,l, — 1}) - loop.

In order to prove that for some s the path A, is accomplished (n,C, A,l, — 1) -
loop, assume the contrary. Without loosing generality, let for some a € Bac UUse
for every u € N inf,((a; 4), u) is not a stable point class along o (the case of unstable
upper bound is analogical).

Observe that @ € Bac U Usc means a >¢ m(A,C). Since Cp(a) = C we
obtain that (e;1,) >, (m(A,C);L). Due to the monotonicity of the lower bounds
(see Fact 5.27) for all u

inf, ((a; 1), ¥) 20 infa((m(A, C); h),u) = ((m(A, C) h)he

.(observe that m(A,C) € A by the definition of m, so the point class {(m(A,C); 11))a
1s stable along a).

Due to the feasibility of the path o there exists a history v along it, generated by
some mapping I', : Pl, — Z which preserves the relations <,.<,, =, (see Defini-
tion 5.2), let @ = [,((m(A,C);).

CHAPTER 6. LBASE: INFINITE FEASIBLE PATHS 70

The non-stability of the point classes inf,((a:l}),u), » € N means that for in-
finitely many coordinates u; the classes inf,((a; 1)), u;) are different. Moreover, due
to the Proposition 5.30, for u; > u; always

info((a;), u,) <sinfa((a; h),u).

Let uy, us, ... be such a sequence of the increasing coordinates u; with all the point
classes w(u,) = inf,((a;), u;) different. Then the sequence

T, (w(uy)), T (w(us)), ...

is an infinite decreasing sequence of integers having the lower bound i < T, (w(u;))
for every i, a contradiction.O

6.3 Accomplished Loops: Sufficiency

Proof of Lemma 6.6:

Let us prove first that every path ™ in BG(P) which consists of infinitely many
times repeated accomplished (n, C, A, k) - loop o (without any pre-period) is feasible.
First of all consider the inequality system A, of the path a. Let us call all the point
classes {{(a;0))), for all a € A stable along a (by the definition of an accomplished
loop for every such a {{(a;0))) = {{(a; k)}), so also for every ¢ < k one can find b € Ap
with {((b;{))) = {((a;0))). Recall that up to now we had defined stable point classes
only along infinite paths).

Lemma 6.8 The path a inequality system N, hos a solution T : Pt, — Z such that
Jor every a € Bac (i.e. for every variable or constant a in the bounded interval of C
w.r.t. A) T'(a;0) = I'(a; k).

Let us introduce a new inequality system A, which consists of all the N, inequalities,
as well as of the ones (a;0) =’ (a; k) for all ¢ € Bac. To prove the lemma means to
prove that the new system has a solution. Let us denote by = the transitive closure
of the relation (=, U =') € Pt, x Pt,, as well as by </, the transitive closure of
<o U= let w <, v, if w<), v and not w=, w'
Definition 6.9 Let us call sequence of A inequalities wi A jwyhy ... wyA,wy, where
w; € Pt, for every 1 the increasing loop, if for everyi < n A; is either <, or =’
An =<,.

and

Obviously, did N, contain an increasing loop, it were contradictory.
We prove the inverse, i.e., if . does not contain an increasing loop, it has a
solution.

6.3 ACCOMPLISHED LOOPS: SUFFICIENCY iJ

Let us show, how to define the values f(io) for nonnegative w E Pt~ (i.e. for .
with (0;0) :S~w). Obviously, any constant is :S" - comparable with every w E Pt~,
[he case of w :S" (0; 0) is analogous with the considered one.

For any w E Pt~ whenever w =" (c;0) for some ¢ E Canst?) let f(w) = c.
Consider now the points from the set W = {w [w~" (c",aziO)}. Due to the absence
of an increasing loop in .N~pne can order all the points w E W in a finite sequence
w\w2, .. w. ina way to meet

. W < w; for no i <j and,
e if w; == w;+e then for all r :::;s also w; =~ w;+r

(assume we have found which points w E W are to be taken as w" wz, .. .w._ and
wewant to determine w; the ith element of the sequence. In the case, if there is no
not yet chosen points which are =~-equal with w;_j, one can let wi to be one of the

points for which wj <~ w; holds for no wj E W \ (wi;, .. ,wi-y: did not such wi
exist, we could get an increasing loop).

Clearly, one can define now step by step the values f(w;), starting from i = 1to
, =35, letting few,) = c"jaz+J and for every i > 1 few;) = f(w;_d, ifwi =~ w,_y,

otherwise few;) = f(w;-d + 1, so obtaining the needed solution T of .N~.
Now in order to prove Lemma 6.8, it remains to prove the absence of increasing
loops in .N~.

Lemma 6.10 There is no increasing loop in N~.

Proof: Assume the contrary: there is in .N~an increasing loop

‘\ote that N" is not contradictory, so Ai is =" for at least one i. Due to the transitivity
of :;;~and the implications

w, e we <" war =>w, <" ows,
referred to further on as the transitivity of <" one may assume that the given in-
creasing loop consists only of boundary points, i.e. for every i either wi = (a; 0) or
w, = (& k) for some a. Since Cola) = Ck(a), then (3 0) :S" (b; 0) if and only if
(@ 1le) :S~(b; k) (recall Fact 5.18). So, if an increasing loop contains a fragment

(a 0) ="(a Kk =0 (b k) =" (b; 0),

tbis fragment can be replaced by (a; 0)::;", (b; 0) and can be further reduced by the
ira.nsitivity with the reduced loop still remaining to be increasing.

CHAPTER 6. LBASE: INFINITE FEASIBLE PATHS 72

Hence, if there exists an increasing loop in A, there also exists an increasing loop
in one of the following two forms:

(ay;0) =' (@13 k) <4 (a2;0) =" (az2;k) <a ... <o (0} =" (@ k) <4 (ay;0), or

(a3 k) =" (a1;0) <, (an k) =" (a2;0) <o ... <o (@ k) =" (a4;0) <o (a1; k).

In the first case there are two possibilities: either a; Sey(a) @1, OF @i >¢y(a) @4 for
some z. For both alternatives we easily conclude that (4;0) =’ (b; k) <, (5;0) for some
b (recall the definition of ='), so, (b; k) <, (b;0) for some b € B4 . Were we taken the
increasing loop of the second form, this would lead us to the inequality (b; k) >, (b;0)
for some b € Byc. Because of the full symmetry, let us consider further only one
case, say, that of (b; k) <, (b;0).

According to the definition of an accomplished loop,

inf((%; 0), k) = ((a; £)) = ((a;0))

for some a € A. Clearly, a # b, easy to see also {{(a;0))) # (((b;0)) (otherwise,
due to Co(a) = Ci{a), one could conclude also (((b;0)) = (((b; k))), what contradicts
(5; £) < (b:0)).

By the definition of the lower bound (a; k) <, (4;0), so since (a;0) =, (a; k), also
(a; 0) <4 (b;0). Hence by Fact 5.18 a <¢,(a) b, 50 @ <¢,(a) b, as well. Since a #¢,(a) b,
one concludes a <¢,(a) b, this brings the inequality (b; k) <, (;0) in contradiction
with the definition of inf((4;0), k) = (((e; k))). OO

Now let us continue the proof of Lemma 6.6, namely, the proof of the feasibility
of the path a®, consisting of the infinitely many times repeated accomplished loop a.
Let us start to define the solution I' : Pt,. — Z, yielding some history along a” (let
us note just that the set Pt,- is infinite).

Lemma 6.8 ensures us about the possibility to assign in a consistent way the integer
values for all stable point classes along o and all points between them, i.e. for all
w € Pt,e such that

{(m(A,C) 000 =((m(A,C)itx k) o w Sae ((M(A,C)00) = ({M(A,C);tx k),
it is enough to consider one solution Ty of A, and for every point w = (a;t x k +r)
with r < k define I'(w) = To(a; r).

In order to exhibit a complete solution T of A,. it remains to define ['(w) for

W >g+ Wnas = ((M(A,C);0))0r and © <q» Wenin = ((m(A.C); 0)),-.

Easy to see that these are independent tasks, due to the full symmetry let us consider
only the case of the points greater than w,..

6.4 ACCOMPLISHED LOOPS: DECIDABILITY 73

Following the argument similar to that used in the proof of Lemma 6.8. if we

could exhibit a sequence wi, wz, .. of all points wi >,, wmnr such that w, <0' w;
fornoi <j and wi —o- wj implying w; —o- w. for all s between iand i. we could
step by step define the values f(w) for all w >0' wmoz in a way f(Wi+d = I'lu»}, if
L+1=0 wi, and f(wi+d = f(Wi) + 1 otherwise.

We exhibit the sequence wi, wz, .. and define the values I'(wiy I'(w2), .. by
scanning inductively all the path o* coordinates 0,1,2, .. and at each coordinate
k define the points wi, wi+, .. ,wi+. (provided the points upto w1 were defined

before the kth coordinate) to cover all the points (3 t) >,., wmnr With t :Sk for which
iDfo-((a;t),k - t) = wmar and which are not defined to be w; forj < i (i.e. which
have info.((a; t), k- 1- t) >, wmar (clearly, t <K)).

Since the inequality system No is not contradictory, we can for every k order all
the points wi, wi+;, .. ,wi+. to be defined at the path o' coordinate k and define their
values r(w) in a consistent way with :S,.. It follows from the definition of inf,.. and
the stability of wmar that also w :S,.. w' is not possible for w defined at a coordinate
later than w', hence the sequence wi with wj <,.. wi for no i < j and wi =,. wj
implying wi =,.. w. for all s between i and j can be (effectively) exhibited and the
solution I, effectively defined for all w in this sequence.

The existence of the history » along o' is finally demonstrated by observing that
every point w >,.. wmo, SOmetimes appears in the sequence (Wi);eN. Really, according
to the definition of an accomplished loop and the tra.nsitivity of inf,.. (see Proposi-
tion 5.31) we have for every (a; t) >0' wm--.that inf,..((a; t),) = wm= at least when
OD¢éfull o - loop is contained between the coordinates t and t +r in o.

Observe that we have provided an algorithm defining a solution I' : Pt,.. -+ Z
of the path o inequality system N,.., so demonstrating also the effectivity of the
generation of a history along <. let us denote the history, generated by I', by vr.

If the path o' in BG(P) is prefixed by some initial path ,,/,so obtaining an infinite
path "/+ <. the existence of a history along "/+ - is by Lemma 4.18 (a history
along "1 is by Lemma 4.17 and Lemma 5.6).

For the algorithm, genera.ting a history along "/+ @, observe that the uniform
mappings Pi in the proof of Lemma 4.18 can be computed effectively from v.(/I"r) and
tio(ur) (see Fact 4.24 and Fact 4.25). O

6.4 Accomplished Loops: Decidability

Proof of Lemma 6.7: We call a path a in BG(P) a (n, C)-path, if < is starting
from (n,C) (i.e., if (no(a),Co(a)) = (n,C)).

Let for arbitrary finite (n, C}-path a of the length k = card(CRlio - 1) for all
1, E Vars(P)

« sUPo-x; = {a E Ap I (3 k) E SUp,.((x;; 0), K)},

CHAPTER 6. LBASE:INFINITE FEASIBLE PATHS 74

o inf,.z; = {a € Ap | (a; k) € inf,((z,;0).k)}.

Let s?paé—é {(sup,-Z1,...,SUp,.Tm) and infad=d (infy.zy,...,in{,.7..).

Proposition 6.11 If two paths « and B end with the same vertez (n',C’) in BG(P)
— —

and inf,=infs, as well as s?pazs:pﬁ, then for every v, starting from (n'.C’),

.—D '—0 — —
info4,=infgy,, as well as sup, . =supg,. .

Proof: Follows from the transitivity of bounds, see Proposition 5.31.0

Proposition 6.12 A (n,C)-path a in BG(P) is an accomplished (n,C, A, k)-loop for
some k € N if and only if

® a €sup,.a, a € inf,.a for allae AN Vars(P),
o for every variable 1 € Bac U U the set inf,.z contains at least one a € A,
o for every varigble € Byc U Lac the set sup,.z contains af least one a € A.

Proof: Follows from the definition of an accomplished loop.O

Fact 6.13 The set of all possible distinct pairs (s:pa,info) Jor a betng a (n, C)-path
in BG(P) is finite.

Proof: Follows from the finiteness of Ap.D

Lemma 6.14 The set of all accomplished (n,C, A)-loops in the graph BG(P) for
given (n,C) € V(BG(P)) and a constant holding sei A C Ap is T-projective.

Proof: Follows from Lemma 2.10 according to Proposition 6.11, Proposition 6.12 and
Fact 6.13.0

The result of Lemma 6.7 now is a direct consequence from Lemma 6.14.0

So we have proved all the lemmas, needed for the proof of Theorem 6.2, so proving
also the theorem itself, as well as Theorem 6.1.00

Corollary 6.15 The problem of whether a given LBASE program P has an infinile
feasible path containing a given vertez n in its graph, is decidable.

Proof: Test for the existence of an accomnplished loop in the basic graph BG(P)
which is reachable (in the graph theoretic sense) from the BG(P) initial vertex via
some vertex (n,C) for some C € Cp.0

Corollary 6.16 If a LBASE program P contains an infinite feasible path, then it
contains also an infinite periodic feasible path (possibly with some pre-period).

Proof: Follows from Lemma 6.5 and Lemma 6.6.D
For a real time system the existence of a periodic infinite feasible path is a rather
natural feature saying that the system has a normal "execution cycle”.

65. FEASIBLE FAIR PATHS 75

6.5 Feasible Fair Paths

As one can see from the following example, the set of all infinite feasible paths in
given LBASE program may be not characterizable as the set of projections of all fair
paths in some finite graph:

X x> 0"+ ARy y < X"+, B:?v; v<y"+" Y. v;y>0,~
1 1 It~

an infinite path in this program is feasible iff the sequence a of A and B labels in it
belongs to the set (AB+)w and 3k such that there are no more than k adjacent B's
in o. SOwe have proved the following result.

Theorem 6.17 The set of all feasible infinite paths in a given LBASE program P is
not necessarily F-projedive.

At the same time it is possible to check, whether a given LBASE program has an
Infinite feasible path satisfying some fairness conditions.

Theorem 6.18 There exists an algorithm which, given a LBASE program? with a
fairness set FS ~ V(?), decides whether there is an infinite feasible fair path in P
(i.e. a path containing some vertex n E FS infinitely often).

Proof: We define the fairness set BFS ~ V(BG(?)) for the vertexes of BG(?)
ina way (nC) E BFS iffn E FS. An accomplished loop in BG(P) is ca.lled
F-accomplished iff it contains at least one vertex from BFS.

Lemma 6.19 Every infinite feasible fair path in the basic graph BG(?) of a LBASE
program? contains at least one Fsaceomplished loop.

Proof: Given an infinite feasible fair path c in BG(?), consider the sequence of
paths {3. defined in the proof of Lemma 6.5. Let flo' be that of these paths which is an
accomplished loop. Clearly, the paths fl. are accomplished loops also for all s 2: s,
Since o is a fair path, the path ;3. for some s contains a vertex (n', C') E BF S, so ;3.
ISF-accomplished.O

Now, in a full analogy with the proof of Theorem 6.2, we decide, whether there is
a F-accomplished (n, C, A)-loop in BG(?), which is reachable in the graph-theoretic
sense from the BG(?) initial vertex. If some such F-accomplished loop ct is found,
the path o consisting of infinitely many times repeated loop ct with some necessary
pre-period is both feasible (according to Lemma 6.6, taking into account Lemma 4.17
dnd Lemma 4.18) and fair (since there is at least one vertex from BFS in every
Instance of the loop a). If the answer is that there is no (reachable) F-a.ccomplished

CHAPTER 6. LBASE: INFINITE FEASIBLE PATHS 76

loops in BG(P), we obtain according to Lemma 6.19 that there is no infinite feasible
fair path in BG(P).

As to the deciding of the existence of a F-accomplished (n,C, A)-loop for given
{n,C} € V(BG(P)) and a constant holding set A C Ap, notice that both the
sets of accomplished (n,C, A)-loops and paths containing at least one vertex from
BFS are T-projective (see Lemma 6.14 for the case of the accomplished loops).
Lemma 2.8 guarantees the T-projectivity also of these set intersection - the set of all
F-accomplished (n,C, A)-loops, so obtaining the decidability of the F-accomplished
(n, C, A)-loop existence problem.O

Let us note that using the infinite feasible fair path existence decision algorithm,
yielded by the proof of Theorem 6.18, we can decide for LBASE programs also the
correct statement reachability problems, considered in Section 3.3.

Corollary 6.20 The problem of w-correct vertez reachability for LBASE programs is
decidable.

Corollary 6.21 The problem of correct verter reachability for LBASE programs is
decidable.

The corresponding results with some proof ideas demonstrated are given in Sec-
tion 7.5 for the more general case of LTIBA programs, here we do not focus on the
proof of the corollaries.

Chapter 7

Infinite Path Feasibility: LTIM
and LTIBA

Asobserved already in Chapter 6, there can be infinite not feasible paths with all finite
prefixes feasible also in LTIM programs. In this chapter we obtain the characteristics
of the set of all infinite feasible paths in LTIM programs in the tenus of F-projectivity,
as well as discuss the decidable infinite path feasibility problems for the programs in
the "united" language LTIBA.

Theorem 7.1 The set of all infinite feasible paths for every LTIM program P is
F.projective.

Observe that we can using the already established results easily have a more
general result for a sublanguage of LTIM:

Fact 7.2 The set of all infinite feasible paths for every LBASQ program P is w-
projective.

Proof: Follows from Fact 4.28 and the effectivity of the LBASE-like basic graph
construction for LBASQ programs (see Section 5.1).0

For the characteristic of the set of all infinite feasible paths in LTIMo programs,
see Corollary 7.12.

As in the case of LBASE and LBASQ programs, we study the infinite path feasi-
bility in the basic graph of the given program P. We obtain the result of Theorem 7.1
from the following

Theorem 7.3 There exists an algorithm which given a graph BC(P) for a LTIM
program P constructs an F-projedivu for the set of all infinite initial feasible paths
o BC(?) .

!vforeover. if the graph BC(P) is provided with a fairness set FS ~ V(BC(P)),
Go F-projectivee can be constructed for the set of all feasible fair paths in BC(?).

CHAPTER 7. INFINITE PATH FEASIBILITY: LTIM AND LTIBA 78

Proof: In order to prove that some infinite path in a given basic graph BG(P) is
feasible, we follow the same general idea of exhibiting a sequence of "pointwise con-
vergent” histories along the finite prefixes of the given path, which turned useful for
LBASQ program basic graphs in the proof of Fact 4.28. However, since we do not
have the analogue of Lemma 4.26 for LTIM programs, we are to define the objects.
converging to the overall history in more tricky ways, which are applicable only to
certain classes of BG(P) paths (see the proofs of Lemma 7.7 and Lemma 7.11). We
are giving also a symbolic characteristic of the set of all feasible paths in BG(P)
(Lemma 7.5) what allows to obtain the needed F-projectivity of the feasible path set
(see Section 7.4).

First of all, if the program P does not have positive constants and, so, does not
have variable activation operators (except the ones of the form t — z), every infinite
path in BG(P) becomes obviously feasible (actually the LTIM programs without
positive constants are even simpler than LBASQ programs), so the graph BG(P)
with the infinite path acceptance set taken to be V(BG(P)) serves as the desired
F-projectivee (actually, even as an w-projectivee).

7.1 Progressing and Conservative Paths

Let us call a LTIM program nontrivial, if it contains at least one positive constant
¢ > 0 and consider in this section only the LTIM programs of this kind. We start to
obtain some symbolic characteristic of every feasible initial infinite path in BG(P).

Definition 7.4 An infinite path o in BG(P) for a LTIM program P is said to be:

» progressing, if for every natural k and every point w € Pt (k) there exists j € N
such that infa(w;j) <o (24 Cmazi K + 1),

o conservative, if there ezists j € N such that sup,((z +1;7),k)) >, (27 + k) for
every k € N (i.e. the inequality (z+1;7) <, (z;7 + k) does not hold for any k).

Lemma 7.5 An infinite initial path in the feasibility graph BG(P) for a nontrivial
LTIM program P is feasible if and only if it is either progressing or conservative.

Proof: We prove the following:
e every infinite initial feasible path in BG(P) is either progressing or conservative,
e every initial conservative path in BG(P) is feasible, and

e every initial progressing non-conservative path in BG(P) is feasible.

7.2. FEASIBILITY OF CONSERVATIVE PATHS 79

Lemma 7.6 Every feasible initial path in BG(P) for a nontrivial LTIM program P
1s either progressing or conservalive.

Proof: Consider an infinite initial feasible path a in BG(P) as well as an initial
history v of BG(P) along «. There are two possibilities: either the sequence of values
(3:(v).2)ieN 1s bounded by some constant M (i.e. 5;(v).z < M for all i € N), or for
every M € Q there exists i € N such that 4;{v).2 > M.

In the first case there exists i € N with #;(v).z + 1 > Gj4i(v).z for all k € N, so
it 1s easy to conclude that the path « is conservative (were it not so, some inequality
of the form (z + 1;k) <, (z; k + j) would be present in the a inequality system A,
what implies that the mapping I', generating the history v is not a solution of A%, a
contradiction.

As to the case of U;(v).z > M for all M, it is easy to see in a similar way that the
path & must be progressing.0

7.2 Feasibility of Conservative Paths

Lemma 7.7 Every initial conservative path in BG(P) for a nontrivial LTIM program
P is feasible.

Proof: A path o in BG(P) is called fully conservative, if the inequality (z +1;0) <.
(z;k) does not hold for any k. We prove that every fully conservative path in BG(P)
is feasible, the general result of the feasibility of arbitrary conservative paths follows
from Lemma 4.31 and the feasibility of all finite paths in BG(P) (Lemma 4.29).

Let o be a fully conservative path in BG(P). We obtain a solution (see Defini-
tion 5.9) T : P, — Q of its inequality system N, as the pointwise limit of mappings
[1 Pt,, — Q for a; being the prefix (initial subpath) of a with the length ¢ and [}
being the solution of A/, w.r.t. the point set Pt,,.

Let Ty be some solution of the "path” ag = {(n¢(a),Co(e)) inequality system
satisfying the inequality

ro(I;O) > ro(Z + Cmar; 0) +1

for every z € Bp(Cyla)) with z >Cola) Z + Cmar (€asy to see that z € Vars(P) for
every such z).

Let § be the shortest distance between any two non-equal values ['o(z;0), [o(y;0)
forz,ye Bp(Co(a)), we define 8o = §/3 as well as for all 1 &4, = 6;/2.

Let us define for every i € N the set £; in a way

Li={(z;k) € Pta | k <1 & (z:k) <o (2 + Emazi 1)}

The sequence of mappings (I;)ieN is defined inductively in a way that for all ¢

CHAPTER 7. INFINITE PATH FEASIBILITY: LTIM AND LTIBA 80

o forw e L; Ti(w) <To(z+ cmar;0) + 1 and
o for w € Pty \ Li Ti(w) > Toz + cmaz; 0) + 1.

Assume that we have already defined a mapping I'; which is a solution of A, w.r.t.
the point set Pt,, and satisfies these requirements, we are to show, how to define a
corresponding mapping I'iy1.

We let v; be the history along the initial fragment a; of the path a, generated by
T';. Since there exists a history along the one-edge path

o = (ni(a), Ci(@)ei(a), (nin1(a), Cina(a))

then according to Lemma 4.31 there exists also a history vy along the path ai; =
a; + o, such that for all points (z;k) € Pt,, Tx(vitr).T = p{Ti{v:).z) for some
0;(¥i).2 + Cmaz-stable mapping p. Let us denote the generator of the history vy, by
" ([° : Pt,,, — Q already is a solution of A, w.r.t. the point set Pi,,,,, we will
obtain the mapping i1 from the mapping ['" by changing some its values slightly.
in order for I';,, to meet the additional requirements, imposed on the mappings [';).

For the sake of comprehensibility let us introduce the notation z; for the points
(z + cmaz; 1) along the path o.

Due to the stability of the mapping p we have

o ['"(w) = Iy(w) for all w € £, (observe that w <, Z; for all w € £;) and
o I"(w) > T'y(z;) for all w € Pt,, \ L; (observe the strong monotonicity of p).

Let us define T4y (w) = T (w) = Ii(w) for all w € £;.

Now we want to define the values ['i1y(w) for w € A = Ly \ £; (the definition
of ['iy1(w) for w & L4y is done afterwards). The point set A consists, in general, of
two disjoint point sets

A= Loy NPL(i + 1)

(the points at the new coordinate ¢ + 1) and
Y =AnPt,,

(the points w € Pt,, for which w <, Ziy, but not w <, 3;).

Let U C A® be the least set of points (z;1 + 1) with either (z;1 4+ 1) =, (b;1) for
some (b;i) € L;,or z = y+cforc € Z and (y;1 + 1) € U (intuitively, the set U is
the set of points w at the coordinate i + 1 the values I'(w) of which are unequivocally
determined for any solution ' of the path a,,; inequality system by the definition of
the values T'(w’) = [y (w') for w' € L;), let us call every point w € U inherited.

Fact 7.8 For every I'"(z;i + 1)-uniform mapping o (see Definition 4.30) satisfying
o(I'*(w)) =T (w) for all w € U and for w = =, the mapping T* : L;,, — Q defined

7.2. FEASIBILITY OF CONSERVATIVE PATHS 81
o M(w)=T"(w) forwe L; and
o I'(w) =o([(w)) forwe A,

is a solution of N, w.r.t. the point set L;,,.

Proof: Follows from the definition of the path inequality system solution (Defini-
tion 5.9) by observing that ¢(I'*(w)) > I'*(%;) for all w € Y, observe also z;;, € U.O

Let U = A®\ U be the set of points, called new at the coordinate i + 1. We define
for every new point w its basement bas(w) to be the largest (w.r.t. <,) point among
the inherited ones and %;, which are less than w (clearly, all the points, considered
here, are mutually comparable w.r.t. <,).

It can be obtained from the definition of the partitioning Cp for LTIM programs
that one can define the I'*(z;i + 1)-uniform mapping o considered in Fact 7.8 in a
way to meet I'*(w) < ['*(bas(w)) + 6iy1 for all w € U, let us define 'iyy (w) = T+ (w)
for w € L4 for one such fixed mapping ['*.

Regarding the already defined values of I';,; we can prove

Fact 7.9 Tiy1(z + cmarit + 1) < To(2 + Cmas3 0) + 1.

Proof: We prove that I';,1(z;1+1) < [p(2+41;0), what is equivalent to the statement
of the fact.

Let for every t = 0,1,...,7 + 1 binf(¢) be the maximal of points w € Pt,(t) with
w <, (z;1 4+ 1) (binf(f) can be looked at as a "backwards lower bound™ of (z;i + 1)
at the path a coordinate t), (i.e. we require in addition to w <. (z;i+ 1) that for
all w' € Pt,(t) whenever w' <, (z;i+ 1), then also v’ <, w (we do not demand the
svntactical uniqueness of binf(t), just take one point which meets the requirements of
the definition)). Let

binf(t) = (be;t) € Pta(2) for all 2.

Due to the non-decreasing nature of the program real time counter z for all t z <¢ &
for C = Ci(a). Since a is fully conservative, we obtain also that forallt b <¢ z+1,
were 1t not so, we could obtain

(231 +1) 24 binf(t) 2, (z + Lit) 24 (24 1;0),

a contradiction with the full conservativity of a.
According to the definition of the mappings I'; (observe also I'j1x(w) = T;(w) for
alt w € £,) we have that for all t < i +1

Frpr(binf(t + 1)) — Ty (binf(2)) < 141,

indeed, always binf(t) € £,. So we obtain

CHAPTER 7. INFINITE PATH FEASIBILITY: LTIM AND LTIBA 82
Tin{z;7 4 1) = Tiga(binf(z + 1)) < To(binf(0)) + (6 + 2+ --- + 6,11) <
< To(z+1:0) — &+ 36 < To(z:0) + 1,
as requested (observe that
To(binf(0)) < To(z + 1;0) — & due to binf(0) <, (z + 1;0)

according to the definition of 'y and 6).0
According to the definition of the set L4, we obtain from Fact 7.9 that T'iyy(w) <
Fo(?o) for all w € L,‘.H.

For (z; k) ¢ L;,, we define the values ['i41(x; k) the following way:
o for k < i always ['iy1(z; k) = Ti(z; k), as well as

o [ii(z;1 4+ 1) = Ii(b;1) whenever (z;1+ 1) =,,,, (b;t) for some b. Otherwise
define [iy1(b;t + 1) = Q(z) for some value

Q(z) > To(z + tmari 0) + 1

(such values 2(z) can always be chosen in a way Ty becomes a solution of A/,
w.r.t. Py, \ Ly since

Ti(b;7) > To(z + cmasz: 0) + 1 for all (b;7) € P, \ Liys

and for any two rationals values z,y € Q such that r < y there always exists
v € Q such that r < v < y).

Now it is easy to see also that [';4, is the solution of A, w.r.t. the whole point
set Pt,,,, since the definition of the set £, does not admit any inequality w <, w'
to hold for w' € Liy; and w € Pt,,,, \ Lis1, observe also that the points (b1 + 1) €
Ptaiyr \ Liy1 are not involved in any relation b= ¥ + ¢ for ¥' € Bp(Cipa(a)).

In order to show that we obtain the solution of A, as a limit of the sequence
(T':)ieN it remains to show the convergence of (I';(w));en for every w € Pt,, what on
its turn follows from the fact that whenever I';(w) € Q for some ¢, we have

o if w € £; then for every j both w € £y, and [y (w) = Ti(w),
o else, ie., if w € Pt,, \ L, then either

— for every j w ¢ L4, and, so, ['j;,(w) = T;(w), or else

- w € L,4; for some j, what is the case considered above.

So we have completed the proof of Lemma 7.7.0

7.3. FEASIBILITY OF PROGRESSING PATHS i 83

Lemma 7.10 There ezists an algorithm which for every cyclic conservative path o/ =
Y+ " in BG(P) given its pre-period v and period B computes some history along o.

Proof: For o' = v + 8" being an infinite conservative path in BG(P) consisting of
the pre-period v and infinitely many times repeated loop (path) 8 we have according
to the o’ conservativity that there exists a coordinate k starting from which the tail
of o is fully conservative. Due to the cyclic nature of B° we conclude that fully
conservative is already the path o = §°.

Let us show an algorithm which computes a history » along the fully conservative
cyclic path @, the computability of some history along the overall initial path o’ will
then follow according to Lemma 4.31 and Lemma 5.11.

For a being any fully conservative path in BG(P) the construction of some appro-
priate mapping T4y from T in the proof of Lemma 7.7 can be easily done effectively.
The only problem with computing a history along any fully conservative path in
BG(P) is the uncertainty for a given point w € Pl,, \ L; whether or not w € L, for
some k € N. This uncertainty can be resolved positively, in principle, at arbitrarily
large ks. We show how to overcome this problem for the cyclic fully conservative path
ain BG(P).

Let (n,C) = (no(B),Co(B)) = (n.(B),C.(8)). We denote by k the length of the
loop 8.

Let for z € BP(C) with z >¢ z + tmar (equivalently, (z; kg) & Li, for all g € N;
clearly, we have z € Vars(P)) define b(z) € Vars(P) U {+oo} to meet -

o (b(z); k) =, sup,((z;0), k), if supa((z;O),ll:) >4 (z + Cmaz; k), and
o b{x) =z, i sup,({z;0), k) <o (z + Cmaz; k). '

According to the definition of the sets £; we easily obtain that for ¢ € N (z;kq) € L;
for all i if and only if for &(z) = z for no j € N, what can be easily tested due
to the monotonicity of b and the finiteness of the set of considered variables z. The
monotonicity and transitivity of the point bounds (Fact 5.27 and Proposition 5.31)
allow to determine whether w € £; for some i also for other points along o.0

7.3 Feasibility of Progressing Paths

Lemma 7.11 Every initial progressing non-conservative path o in BG(P) for a non-
trivial LTIM program P is feasible. Moreover, there exists an algorithm which com-
putes a history along every such a.

Proof: Let a be an initial progressing non-conservative path in BG(P). Let ap, ay, - - -
be the sequence of all finite prefixes (initial subpaths) of a.

CHAPTER 7. INFINITE PATH FEASIBILITY: LTIM AND LTIBA 84

In order to prove the feasibility of o we exhibit a solution (see Definition 5.9)
[: Pt, — Q of the path ¢ inequality system A,. We define for every k € N the sets

Li={{z;1) € Pty | 1 S k & info((z:1), k — 1) <o (2 + Cmar; k)} and
E = {(z;1) € Pty |1 < k & {z71) =4 (2 + Cmazi k)),
let Vk E;‘ = [,k @] E)‘.
Since a is progressing, for every patural k and every point w € Pt,(k) there exists
j € N with
info(w,7) <o (2 + Cmazi K+ 7)

. Due to the non-conservativity of o
(24 Cmasi K+ J) <o (2 + Cmari K+)

for some j' > j, so, according to the definition of inf,, for every natural k and every
point w € Pt,(k) one can find ;' € N with

infa(w,7') <o (2 + Cmaz; K+ 37), s0

Pto = UienLy. Clearly, also Pt, = UrenCy, as well as £, € £, forall k € N.

We obtain the solution I' as a pointwise limit of the sequence of mappings (i)xeN
such that for all k Ty : £} — Q, each I'; being a solution of N, w.r.t. L} (see
Definition 5.9). Easy to see that, if we could exhibit such a convergent sequence of
mappings ', the limit mapping ' : Pt, — Q would be a solution of N, w.r.t. Pt,.

Now let us define the mappings I'y satisfying for every k the additional requirement
that for all w € £} Tw(w) < Tw(Zx) (recall that we use the shorthand z; to denote
the point (z + cmozi 1) € Pla).

First of all for every variable £ € Vars(P) and constant ¢ € Cons(P) let I'y(z +
¢ 0) =c€ N, as well as ['o(z;0) = 0 and To(¢;0) = <.

Assume that we have defined an appropriate mapping I'; : £ — Q - a solution of
N, w.r.t. £); we show, how to define [';yy : £i,; — Q - a corresponding solution of
N, w.r.t. Ly

First of all let I : Pt,, — Q be a solution of the path a inequality system N,
w.r.t. the point set Pt,, , which is consistent with I'; for w € L} (clearly the appropriate
values I'(w) for w >, Z; can be defined).

According to Lemma 4.31 and the relations between the program histories and
their generator mappings we obtain a mapping I'" : Pt, ,, — Q which is a solution
of N, w.r.t. the point set Pt,,, and meets I'(w) = ['?(w) = I';(w) for all w € L] (it
is of importance that for all w € £! we bave [?(w) = I'(w) < Ty(z))).

The mapping I'" can be "almost™ taken as the seeked mapping I',y1 with the
only possible exceptions that I'"(w) > I'*(Zi41) for some w € L£],,. Since ["(w) is a
solution of N, w.r.t. Pt,,,,, we easily conclude that in this case w € A for

A€ Pta, N (Lis \ L)

7.4. F-PROJECTIVITY OF PATH SETS 85

being the set of points w which are <,-incomparable with Z;,,.

For w € L], \ A we define T'iyy(w) = I"(w). As to w € A, observe first that the
set A can be non-empty only if Ziy1 >4 Z; (equivalently, if (z;:+1) >, (2;1)). In this
case the corrections made to the values I'*(w) before taking them as the corresponding
values [';4;(w) are the following. ’

Let wg be the largest point (w.r.t. <,) from the set

{w € Pt°i+) | w< zi+l} U {Ei}

(clearly, all points from this set are <,-comparable). We define a strongly monotone
mapping 7 : Q — Q satisfying 7(z) €]"*(wq),I"(Zi+1)[for all z € Q and let for
weA

Lina(w) = =(I"(w)).
It is easy to see that any mapping Ii41 : £},; — Q defined the above described way
both is a solution of M, w.r.t. £, and meets ['iyy(w) < iy (Ziga) for all w.

So we have completed the inductive step of the construction of an appropriate
mapping ;4 from T;. Clearly, the construction of some mapping ['i4; can be done
effectively from the given mapping I';. So we have completed both the proofs of
Lemma 7.11 and Lemma 7.5. DO

We can apply the obtained result of Lemma 7.5 to the analysis of the programs
in the sublanguage LTIMg of LTIM by observing that every path in the basic graph
BG(P) for a LTIM, program P is either conservative (in this case the value of z is kept
constant forever along the path starting from some path coordinate), or progressing
{z is the only variable for which the inequality (z; k) >4 (z+ Gmaz; k) can hold at some
path coordinate k and whenever the positive assignment operator is executed at the
coordinate k+1, the lower bound of (z; k) becomes obviously equal with (z + ¢maz; {))-
So we have obtained the following result.

Corollary 7.12 Every infinite path in the graph BG(P) for a LTIM, program P is
feasible (the set of infinite feasible paths for @ LTIMy program P is w-projective).

Let us just note that actually the theory of progressing and conservative paths
was not fully needed in order to obtain this corollary, it was just an easy way to state
it in the presence of the general theory, developed mostly for other purposes.

7.4 F-projectivity of Path Sets

Lemma 7.13 There ezists an algorithm which, given a graph BG(P) for a nontriv-

1al LTIM program P constructs an F-projectivee for all initial conservative paths in
BG(Py.

CHAPTER 7. INFINITE PATH FEASIBILITY: LTIM AND LTIBA 86

Proof: First of all we show, how to build F-projectivees for all fully conservative paths
starting from one fixed vertex (n,C) € V(BG(P)) (i.e. fully conservative (n,C)-paths
in BG(P)), the construction of the F-projectivee required by the lemma will be given
afterwards.

Let us associate with every finite {(n,C)-path a in BG(P) a characteristic S(a) =
sup,((z + 1;0), k) for k being the length of a. It is easy to see according to the
definition and properties of the upper point bounds (see Section 5.3) that whenever
two (n,C)-paths a and 8 end with the same vertex (n',C’) € V(BG(P)) and have
S(a) = 8(B), then for every (n’,C’)-path v in BG(P) S(a++v) = S(8+7). Clearly,
also the set of all possible S(a) values for various a is finite (always

S(a) € Bp = {be Bp(C) | C € Cp}).

So, we can construct in a similar way, as in the proof of Lemma 2.10, a finite labelled
graph H™C) with the vertexes ((n',C"), b) for (n,C") € V(BG(P)) and b € Bp(C")
such that for every ((n,C),z + 1)-path o, ending with {{n',C’),b) in H'O) the
projection a = proj(a’) is a {n,C)-path in BG(P), ending with (n’,C’), and having
the characteristic $(a) = b.

We associate with the graph H™€) the infinite acceptance (fairness) set

S(H™ON = {((n,C),b) | b >¢r 2).

Let us also delete the "garbage” consisting of the vertexes ({n’,C'}, b} with b <¢/ z
together with all edges incoming in and outgoing from these vertexes. It is easy to
see that the obtained graph H(™C) serves as the desired F-projectivee for all fully
conservative (n, C)-paths in BG(P).

In order to have an F-projectivee for all initial conservative paths in BG(P) let us
take first the graph BG(P) itself and label every vertex and edge in it by itself). For
every edge ¢ in the considered graph, leading from (n,C) to (n’,C’), let us introduce
a new edge from (n,C) to the initial vertex of H*"C") labelled also by e. Let the
initial vertex of the newly obtained graph H be that of BG(P) and the infinite
acceptance set be the union of all infinite acceptance sets for all graphs H"C) for
(n,C) € V(BG(P)). Since an initial path in BG(P) is conservative if and only if
some its postfix (a terminal subpath) is fully conservative, the graph H can be taken
as the requested F-projectivee for all initial conservative paths in BG(P). Observe
also that all constructions made in order to obtain the graph H from BG(P) are
effective.O

Lemma 7.14 There ezists an algorithm which, given a graph BG(P) for a nontriv-
ial LTIM program P constructs an F-projectivee for all initial progressing paths in
BG(P).

7.4. F-PROJECTIVITY OF PATH SETS 87

Proof: Let us show how to build the F-projectivees for the sets of all progressing
(n,C)-paths which contain the vertex (n,C) infinitely often. The F-projectivees for
initial paths in BG(P), containing some specific vertex (n, C) infinitely often are easily
obtained due to the fact that the addition of an initial fragment to the path in BG(P)
does not change the path property of being or being not progressing (observe Fact 5.27
and Proposition 5.31). An F-projectivee of the set of all initial progressing paths in
BG(P) can be built according to Lemma 2.9 (observe the finiteness of V(BG(P)),
every infinite progressing path in BG(P) contains at least one graph vertex infinitely
often).

Assume that we have the vertex (n,C) fixed and consider the (n,C)-paths in
BG(P). Let m € Bp(C) be the maximal base point of Bp(C), the only nontrivial case
to consider is m >¢ z + Cmqy (Otherwise the construction of the needed F-projectivee
1s trivial).

Let for every finite (n, C)-path & in BG(P) the characteristic S(a) =inf.((m;0), k)
for k being the length of a. It is easy fo see according to the definition and properties
of the lower point bounds (see Section 5.3) that whenever two (n,C)-paths « and
G end with the same vertex (n’,C’) € V(BG(P)) and have S(a) = S(B), then for
every (n',C’')-path v in BG(P) S(a+v) = S(B+ 7). Clearly, also the set of all
possible S(a) values for various a is finite. So, we can construct in a similar way, as
in the proof of Lemma 2.10, a finite labelled graph H with the vertexes ({r’, C"}, b) for
{n',C") € V(BG(P) and b € Bp(C"), such that for every ((n,C), m)-path ¢, ending
with ((n',C"),b) in H the projection a = proj(a’) is a {n,C)-path in BG(P), ending
with (n’, C") and having the characteristic S(a) = b.

We introduce in the graph H one more vertex {{n,C), *}, labelled by (n,C) and
having the following incoming and outgoing edges:

* an incoming edge, labelled by e € E(BG(P)) from z € V(H) whenever an edge
labelled by e is drawn in H from z to {{n,C),b) for some b <¢ z + Cmari

¢ outgoing edges with the same labels and targets, as the edges leading from
({n,C),m).

Let the graph H initial vertex be ({n,C),m) and the infinite acceptance set S;(H) =
{{(n,C}),%)}.

[order to prove that H is an F-projectivee for the set of all progressing (n,C)-
paths which contain the vertex (n,C) infinitely often, let us observe first that due to
Fact 3.27 and Proposition 5.31 an (n,C)-path, containing the vertex (n,C) infinitely
often is progressing if and only if there exists a sequence of the path o vertexes
((ﬂ.,(a),C.-,(a))),-eN such that

s forall 5 (n; (a),Ci(a)) = (n,C) and

CHAPTER 7. INFINITE PATH FEASIBILITY: LTIM AND LTIBA 88

¢ S(¥) €¢ z + Cmas for every path o defined as the fragment of o from
(nl'; (O'), Ci, (0’)) to (ni,u (a)v Ci;n (O‘»

(since the vertex (n, C) is contained in o infinitely often we can wait for (n;,(a), C;,(«))
insertion in the defined sequence of path a vertexes until S{a’~!') <¢ 7 + ¢maz, it is
due to the progressivity of a that such a moment will be eventually reached at some
a coordinate).

Now it is easy to see that both

e for the projection o = proj{a’) of any accepting path o’ in H the abovedefined
sequence of the path a coordinates 7; can be chosen {let us take the sequence
of indices ¢; for which the ¢;th vertex of o' is {(n,C),*)), and

e for every path a with the abovedefined sequence of coordinates i; there exists
an initial path o' in A such that both e = proj(a’) and for every ¢; the i;th
vertex of o’ is ({r,C),*).

So we conclude the proof of Lemma 7.14.0

The proof of Theorem 7.3, and so also the proof of Theorem 7.1 now is obtained
from Lemma 7.5, Lemma 7.13 and Lemma 7.14 using also Lemma 2.9 for building the
needed F-projectivees for the sets of paths being either conservative or progressing in
the graphs BG(P). Lemma 2.9 is used also to build the F-projectivee for the set of
all feasible fair paths in BG(P).00

There is one more interesting path set in every LTIM program (the graph BG(P)
for a program P), namely the set of 2l paths feasible with no bound on the limit value
of the real time counter z, let us call these paths non-Zeno feasible both in a program
P and its graph BG(P). It turns out that the set of all non-Zeno feasible paths in
every graph BG(P) for a LTIM program P (and, so, in the program P itself) is also
F-projective. We do not consider the detailed proof, just note the following results:

Lemma 7.15 An infinite path « in BG(P) for a LTIM program P is non-Zeno
feasible if and only if for every k € N the tnequality (z;k + 1) <, (z + 1;k) does
not hold for somel (i.e. sup,(z; k +1) >4 (z + 1, k) for some).

Proof idea: Clearly, for every non-Zeno {easible path for every k the corresponding
! can be found.

In order to prove the reverse, show that for every history v, along the prefix ax
of a there exists a continuation veyr of v (perhaps with some values t,(vi).z >
Tk(¥k)-2 + Cmer modified) along agyr such that Tey (Vi) z > Oe(vy).2 + 1.0

Lemma 7.16 There ezists an algorithm which, given a graph BG(P) for a LTIM
program P constructs an F-projectivee for all initial paths o in BG(P) such that for
all k sup,(z;k + 1) >5 (z + 1;k) for some L.

Proof: Similar to the proofl of Lemma 7.14.0

1.5 INFINITE PATH FEASIBILITY IN LTIBA 89

7.5 Infinite Path Feasibility in LTIBA

In this section we sum up the results obtained both for LBASE and LTIM programs
in order to characterize the possibilities to analyze the infinite path feasibility in the
programs in the language LTIBA containing the means for the description of both
data and time dependencies.

Theorem 7.17 There is an algorithm which, given a LTIBA program P, decides,
whether it has an infinite feasible path. There is an algorithm which, given a LTIBA
program P with an infinite acceptance set, decides, whether it has an infinite feasible
fair path.

If the progmm P contains an infinite feasible (fair) path, the deciding algorithm
can be asked to compute a history along one such path.

Proof: Consider the LTIM program pT which is obtained from P by replacing all
LBASEoperators of P by the dummy LTIM operator NOP and the LBASE program
pB which is obtained from P by replacing all LTIM operators of P by the LBASE
operator NOP (see Section 3.2). Consider the basic graph BG(pT) of the program
I'l, According to Theorem 7.3, let us build an F-projectivee H(P) for the set of all
infinite initial feasible (fair) paths in BG(pT).

Every vertex n E V(H(P)) is labelled by some program P vertex n = ly(n) E
ii®) (actually, is labelled by some BG(PT) vertex, which is on its turn labelled by
nE ViP)), as well as every edge € E E(H(P)) has a labellE(e) E E(P).

We construct a LBASE program HB from H(P) by replacing every H(P) vertex
label n E ViP) by its pB operator pin) (if the vertex n has a LTIM operator p
associated with it in P then pin) is the dummy LBASE operator NOP) and every
H(P) edge label e E E(P) by the edge e label IE(P) E {" +n,n- n} inP.

Accordingto Theorem 6.18 one can decide whether the program HB has an infinite
feasiblefair path (the fairness set for the program HB is inherited from the graph
H(P)).

If some infinite fair path o in HB is found, we can take, according to Lemma 6.5
and Lemma 6.6 o to be a path consisting of infinitely many times repeated accom-
plished (F-accomplished) loop. According to Lemma 6.6 we can generate a history
g along the HB pa.th o.

Consider the path o in H(P) (the vertexes and edges of H(P), as well as the
vertexand edge incidence are in H(P) the same, as in HB), let o- be the projection
of o in BG(pT). Since o is cyclic in H(P), so is o* in BG(p). Since H(P) is
an F-projectivee of the set of all initial infinite feasible (fair) paths in BG(PT), we
havethat the path o' is feasible (and fa.ir). According to Lemma 7.5, the path o' is
either progressing, or conservative. Since o is cyclic, it is easily decidable, whether
it isconservative, or not, so in each case one can generate a history vT along o' (see
Lemma7.10 and Lemma 7.11).

CHAPTER 7. INFINITE PATH FEASIBILITY: LTIM AND LTIBA 90

Let o” be the projection of the BG(PT) path o' in PT (and, so, in P). Clearly,
we have that »7 is a history along @” in PT. It is also straightforward from the
construction of H2 and the construction of the path o” that the defined H? history
vB is also a history along a” in the LBASE program P®, so we have demonstrated
the existence of an infinite feasible (fair, according to the construction) path o” in P
together with an algorithm generating a history along a”.

On the other hand, if there is an infinite feasible (fair) path a in P, it is a projection
of some initial fair path o’ in BG(PT), what on its turn is a projection of some initial
fair path o” in H(P). Observe that a” is also an initial fair path in HZ, as well as that
the H? path o” vertex and edge label sequence (which is the only information which
determines the feasibility of a path) coincides with that of the P? path . Since o is
feasible in PP, also a” is feasible in HZ; so we conclude that a” is an initial feasible
fair path in H5.0

Corollary 7.18 There ezists an algorithm which given a vertez n € V(P) for a
LTIBA program P decides whether there ezists an infinite feasible path tn P containing
the vertez n infinitely often.

Proof: Follows from Theorem 7.17 by defining the fairness set for the program P to
be {n}.0

As to the possibilities to characterize the set of all infinite feasible paths in LTIBA
programs, we can note the following

Corollary 7.19 The set of all feasible infinite paths in e given LTIBA program P is
not necessarily F-projective.

Proof: Follows from Theorem 6.17 since every LBASE program is also a LTIBA
program.D
However, as in the case for both LBASE and LTIM programs, we have

Corollary 7.20 If a LTIBA program P contains an tnfinite feasible path, then it
contains also an infinite periodic feastble path (possibly with some pre-period).

Proof: Lemma 6.5 and Lemma 6.6 allow to find a periodic feasible path in the
program H® from the proof of Theorem 7.17.0

Let us note that using the infinite feasible fair path existence decision algorithm,
yielded by the proof of Theorem 7.17, we can decide for LTIBA programs also the
correct statement reachability problems, considered in Section 3.3.

Corollary 7.21 The problem of w-correct verter reachability for LTIBA programs
is decidable. Moreover, if some vertez n in a program P is w-correctly reachable,
there exists an algorithm generating a history of P along an infinite accepling path o
conlaining the vertez n.

7.5. INFINITE PATH FEASIBILITY IN LTIBA 91

Proof: Construct for the given program P and vertex n € V(P) an F-projectivee
F(P}) of the set of all fair paths in P containing n (at this point we have no claim about
the feasibility of the paths, clearly, such a projectivee F(P) can be constructed). We
define a program P’ as the one obtained from F(P) by replacing every F(P) vertex
label n = ly(p(pyy () € V(P) by the P operator p(n) and every edge label e € E(P) by
lgipy(e) € {" +7,™ —"}. Clearly, there exists an infinite feasible fair path, containing
n,in P if and only if there exists an infinite feasible fair path in P’, what is decidable
according to Theorem 7.17. Moreover, every history along an infinite feasible fair
path « in P, generated by the aigorithm of Theorem 7.17, is also a history along the
projection a’ of & in P, what is a fair path in P and contains the given vertex n.0

Corollary 7.22 The problem of whether a given LTIBA program P has an infinite
feasible path containing a given vertezr n in its graph, is decidable.

Proof: Follows from Corollary 7.21.0

Corollary 7.23 The problem of correct vertex reachability for LTIBA programs is
decidable. Moreover, if some veriez n in a program P is correctly reachable, there
ezists an algorithm generating a history of P along an accepting path a containing
the vertez n.

Proof: Follows from Corollary 5.14, Corollary 5.16 and Corollary 7.21.0

Chapter 8

Programs With Integer Counters

The main aim of this chapter is to prove the undecidability of the vertex reachability
problem for programs in the language LTIM’, what is the variant of LTIM over integer-
valued variables. We give also some background illustrating the decidability and
undecidability results for various program classes with integer counters known so far.
An interesting result, yielding a subclass of LTIM’ programs with decidable vertex
reachability problem, is considered in Section 8.3.

8.1 Undecidability of Reachability for LTIM’

We define the language LTIM’ the following way.
Every program in LTIM’ is assumed to have a finite number of integer-valued ordi-
pary variables z,,Z3,...,Z. and a counter z with the following operators permitted:

e all LBASE operators (input, assignment, comparison) over the ordinary vari-
ables z;;

e z < x and x < z - the LBASE comparison between z and ordinary variables;
e a counter increasement z — 2 + 1, increasing the value of the counter z by 1.

The program begins its execution from its initial vertex and all variable values set to
0. The formal semantics of LTIM' programs is given in a similar way, as for LBASE
and LTIM programs in Chapter 3.

We have included in the system of operators of LTIM’ only those which are needed
in order to prove the undecidability of the vertex reachability problem. As to the
counter increasement operator z «— z + 1, it can be easily modelled by operators
which syntactically more resemble LTIM operators (variable activation and positive
assignment) as a block:

8.1. UNDECIDABILITY OF REACHABILITY FOR LTIM’ 93

Theorem 8.1 The statement (vertez) reachdbi]ity problem for LTIM’ programs is
undecidable.

Proof: The proof follows from the well-known result (see [Min67]) that for every
recursive function ¢; there exists a so-called Minsky machine which computes the
function ;. Every Minsky machine is a program which uses only two counters Z,
and Z, in the following allowed operations:

Zi—Z;+1 Zi—27;-1 Z;=0 —_l STOP

H]

Without the loss of generality we can consider only those Minsky machines which
have 0 as the initial value for both its counters Z; and Z;. We demonstrate the
undecidability of the vertex reachability problem for LTIM’ programs by showing,
how to construct for every considered Minsky machine M a corresponding LTIM’
program P(M) which has a special end vertex @ € V(P(M)) reachable if and only if
M stops its execution with the final counter values Z; = 23 = 0.

For every Minsky machine M the corresponding LTIM® program P(M) will have
5 ordinary internal variables a,,a2,b;, b, and z, as well as the counter z. For v €
{ay,a3,;,b,) we define the macro v «— >v+1 to stand for the following sequence of

operators:
——* T Hx>v Hv«—x]_

First of all we show, how to construct for every Minsky machine’s instruction its
model]jug block of LTIM’ operators:
. Z; — Z; + 1, the counter increasment (t = 1,2):

{z._z.HHas s —>ag. ,+1Hb3 i —3bs_i+1<b;e—b; + 1/—{b; —b; + 1

2. Z; « Z; — 1, the counter decreasment (i = 1,2):

{ZQ—Z+IH33_30—2&3_1+1 ba_;j—3bs_;+1 aj—aj+1 Ha;a—a-,+q-—

3. Z; = 0, the test for 0 (i = 1,2):

R R a; =12 [bi =z —_—
[+

b=z -+ +

CHAPTER 8. PROGRAMS WITH INTEGER COUNTERS 94

4. STOP, the halting operator:

The program P(M) is constructed from the given Minsky machine M by replacing
every M instruction by the its modelling block. Let V(M) be the set of the machine
M vertexes, we define a configuration of M as a triple (n, p;, p;) for n € V(M) and
p1,p2 € N being the values of the counters Z, and Z,, respectively. We say that
a program P(M) state (n’, %) for n € V(P(M)) and ¢ € N x Z° models the given
configuration (n,p;, p2) of the machine M, if n’ =n € V(M) and

vh —tz=tz—0v.ay=p;; by—Vz=06z~7v.a,=p;

If the machine M stops with the values of counters Z;, Z, being py = p, = 0, then
P(M) can reach its vertex € by a history v proceeding along the same path, as M,
and executing every macro-operator v « >v+41 as v « v+ 1 (i.e. the corresponding
value read from the input into the variable z in each case must be just v + 1), in this
case for the sequence ¢;, ¢z, . .., cx of M configurations there is a sequence sy, 52, ..,
of P(M) states in v such that s; models ¢, for all 1 < k, and s, = (@, %) for some g
with

60.01 = 170.07 = l‘)’o.bl = 601)1 = l-)'o.Z,

s0 the vertex @ is reachable in P(M).

On the other hand, if the vertex @ is reachable in P(M), then consider an initial
history v along a path o in P(M), which contains @.

Observe that in every history v’ of P(M) we have according to the P(M) con-
struction that, if n;(v') € V(M) (i.e., if the ith vertex of the history v’ is also the
machine M vertex), then both

l-)..'.b1 - 6,-.2 2 17;‘2 - !-)','.01, and 6|b7 - !7.'.2 2 17,'.2 il L—‘,'.ag.
As to the bistory v, if for some n;(v) € V(M) we have either
v.by — Uz = (17,'.2 - ‘l-).,'.al) +d, or v;.b; — G;.z = (6,’.2 - 17,'.02) +d,
for d > 0 then for all ;7 > i with n;(v) € V(M) also
Uj.by — T5.2 2 (¥.2 — U5.a1) + d, or §;.by — ;.2 > (0,.2 — 0,.az) + d.
Since at the end of the history v we have

v —v.z=0z~v.a,=0,and 0.0y ~ 0.2 = .2 — v.ay = 0.

82. COMPARISON WITH BACKGROUND 95

we conclude also

for all i with n;(v) E v(M).

This means that in the history v every P(M) macro-operator v + ~v+1 was
actually executed by increasing the value of v just by I.

Clearly, the path a consists of consequent fragments, each fragment modelling one
machine M instruction, let a' be the path in M which corresponds to the P(M) path
c. It isstraightforward to prove by induction using the construction of P(M) that the
machine M executes along the path a' and that for s" sz, .. sk being the sequence
of states s; = (n,, V.) in v for which n EVv (M) and ci, c2,-. .ck being the sequence
of M configurations each c, is modelled by so

Since the vertex @ appears in P(M) only in the modelling fragment of the M
halting operator, we establish also that M indeed stops with O final values of its
counters ZI and Z2.0

8.2 Comparison with Background

In this section we formulate some already known decidability and undecidability re-
sults for the vertex rea.chability problem for some program classes which permit the
use of counters in the programs.

Let us define the language L, by allowing programs in it to have all the facilities
of LBASE, as well as one special counter variable z with the permitted operations
l,eing the assignments z +- ¢ for ¢ E Z, the standard two-way counter operations:
z~z+ 1, z+ z- 1and the test z =0 with 2 exits: "+ and --".

The language L, is defined by enriching the LBASE program facilities in another
way: every program in L, is allowed to have in the addition to all LBASE facilities a
special counter variable z with the permitted operations z +- ¢ for ¢ E Z, the counter
increasment z +- z + 1, and the test z < x (x < z) with 2 exits: -+- and "-" for
1 being an ordinary program variable. Notice that there is no counter decreasment
Dperations in the language ~, the counter used by any program in the language is
‘one-way" .

Theorem 8.2 [BBK77}. The vertex reachability problem is decidable for L; pro-
grams, but undecidable for ~ programs.

It can be learned from the theorem that the comparison of the counter variable
with an ordinary variable (which can receive its value from the input) is rather lethal
forthe deciding of the rea.chability (it is possible to obtain the undecidability even if
considering only one one-way counter in the programs). The proof of the theorem.

CHAPTER 8. PROGRAMS WITH INTEGER COUNTERS 96

given in [BBK77], uses the modelling of a Minsky machine’s configuration sequence
by the input to the program. the counter is used just to check that the sequence of
values appearing on the input encodes such a sequence (what can be easily done, if
the counter can be reset to the constants as many times, as needed).

The result of Theorem 8.1, obtained originally in this work, is stronger since it
allows to get the undecidability of the reachability problem out of the program class for
which the comparison between the counter and ordinary (input) variables is allowed,
but which do not have the possibility to decrease the counter in anv way.

8.3 ”Positive” LTIM Programs

Comparing the time constraint specification formalisms over the discrete (integer)
and dense (rational) time variable value domains, the result of Theorem 8.1 vs. the
Corollary 5.12 seems at first sight rather surprising for the "normal” intuition tells
us that the discrete case should be the subject of an easier analysis automation (as
it is in the most of other timed specification formalisms). What is the reason for the
undecidability of the vertex reachability for LTIM’ programs, is the iofinite discrete
structure with every element of it being "individual” in some sense (this "individu-
ality” can be characterized by the property that whenever z < y for z,y € Z, then
also z < y —1). If one disables this "individuality” property of integers in one or
another way, the vertex reachability problem for the programs of the restricted kind
may again become decidable, as it is shown by the following result (outlined).

Let us call a path in a LTIM program "positive”™, if every exit from a comparison
operator in it is labelled by - - - (recall that we have only strong inequalities x <y,
X < ¢, x <c¢ admitted in the LTIM comparison operators) and every exit from the
positive assignment operator is labelled by ~+". Let us call a history 8 of a LTIM
program P integer-valued, if for every 1 € CRds and every z € Vars(P) we have
vi(B).x € Z. We call a path o in a LTIM program integer feasible, if there is an
integer-valued history along it.

Lemma 8.3 Every feasible positive path in a LTIM program P with all ezplicit con-
stants being integers is also integer feasible.

Proof: Consider a feasible path o in a given program P with all explicit constants
being integers, let A be some history along a. The integer valued history 3’ along o
is obtained from the history 8 by defining for all i € CRd,, and a € Vars(P)

5.(f).a = [5(8)-a

(by |z] we denote the "integral part” of the real number x (i.c. the largest integer
which does not exceed z)). Since for < y we have always also [z] < |y]. as well as

8.3. "POSITIVE™ LTIM PROGRAMS 97

for an integer constant ¢ always |z 4 ¢| = |z] + ¢, we obtain that 3’ is a history along
« from the semantics (state transition system) definition for the LTIM programs (the
positivity of the path o guarantees that at no point at the path the further control
flow is passed in accordance with r < y for some variable values z and y, in which
case the analogue |z] < |y] would not necessarily hold).O

Let us call a LTIM program "positive”, if all the constants used in its comparison
and variable activation operators are integers and it has only positive paths. Clearly,
we obtain from Lemma 8.3 the following result

Theorem 8.4 The set of all feasible paths in a positive LTIM program coincides with
the set of its integer feasible paths.

Observe that a path in a LTIM’ program is feasible if and only if it is integer feasible
in "the same™ LTIM program (just having the variable values interpreted over the
variable value space of rational numbers), so, in fact the result of Theorem 8.4 together
with Theorem 4.3 allows to give the projectivity characteristics to the set of all finite
feasible paths in a given positive LTIM’ program, what implies the decidability of the
vertex reachability for positive LTIM’ programs.

Regarding the path feasibility analysis for positive LTIM, programs, the program
{easible path set coincidence with the set of all integer feasible paths allows to use
for this analysis, in fact, just simple FSM state space enumeration techniques, which
apply to the integer valued analogues of the LTIM, programs.

Part 11

Models With RealTime Semantics

Chapter 9

Parallel Timer Processes

We begin the consideration of real time specification models by the Parallel Timer
Processes (see Section 1.5 for some motivation) for which the decidability of both the
vertex reachability and the strong and weak bisimulation equivalence problems (see
Chapter 11 and Chapter 12) are demonstrated.

In this chapter we introduce the basic model of PTPs (Section 9.1) and show the
decidability of the reachability problem for PTPs via modelling of PTPs by LTIM,
programs (see Section 9.2). Further on a number of possible enrichments of the basic
PTP model which still retain decidable at least the vertex reachability problem are
considered in Chapter 10.

9.1 The Basic PTP Model -

Assume that we have a predefined finite set L of events. We define the basic model
(model class) of Parallel Timer Processes over the event set L.

Let G = (V, E, f,t, L,lab) be a finite edge-labelled graph with the set of vertexes
V. the set of edges E, the set of edge labels L being the set of events, and the edge
labelling function lab: E — L {when compared with labelled graphs from Section 2.1,
the graph G does not have vertex labels, the graph’s initial vertex also is not specified
vet).

We assume that in the graph G every edge ¢ € E is coloured either red (instanta-
neous) or black (possibly waiting), we denote the set of red edges of G by R and that
of black ones by B.

Given such a graph G and a finite set of timers (time variables) 7, we define a
timer automaton by associating with every e € E :

* a set y(e) C 7T of timers, called the edge e condition (on what timers the
transitions along e depend) and

CHAPTER 9. PARALLEL TIMER PROCESSES 100

e a timer setting function é(e) : 7 — 7 U Q*° (every timer can be set either to
some nonnegative rational constant, or to some (other) timer value. some timer
values may remain unchanged).

We denote a concrete timer setting function ¢ : 7 — 7 U Q*° by a vectorial
assignment

(thth e)tM) - (¢(tl)v ¢(t2)v EREN] ¢(tm)>,

or, if no confusion can arise, also as a vector of simple assignments
t = B(th), tz — ta), .., tm — B(tm).

Moreover, it for some ¢t € 7 we have ¢(t) = t, the corresponding simple assignment
can be omitted (see below the semantics for the intuitive justification).

For & = (V,E, f,1,L,lab,T,~, ¢} being a timer automaton we define the set of its
states to be

S*={(v,8)|veV, 6:T - Q*°).

The paralle! timer process (PTP, for short, called also timed process, if no confu-
sion can arise) is defined as a pair P = (®,3), where & = (V. E, f,1. L, 1ab,T,v,¢) is
a timer automaton and s € S® is defined to be the process P initial state.

For the process (®,s) with the set of timers 7 = {t,t2,...,{,,} let ¥i < m
5 X 8(t;) and & = (6, ..., 6m).

Example 8.1 In order to have some illustration for the constructs, used in the Par-
allel Timer Process definition, consider a process P with

Vertexes vy, Ug;
Timers T = {t1, 3,13, 1 };
Edges € from v, to v, red, labelled by a,

condition {t;, 13},

timer setting (ty, {2, {3, ta) — (t2, 7, t2, 5);
e from v; to vy, red, labelled by a,

condition {t;,1,},

timer setting (f,, f2, {3) — (3, 6, {2);
€ from v, to vy, black, labelled by b,

condition {t3},

timer setting (t3) «— (t,) and

Initial state so = (vy,(0.7,3.14,2,0)) (the vector (0.7,3.14,2,0) is the encoding of the
function & with 6(t,) = 0.7, 6(2;) = 3.14, etc.). .

The pictorial representation of P is given in Figure 9.1. Here and further on we
follow the convention to represent the black edges as dashed. Notice also the way,
how the initial state of the process is depicted.

9.1. THE BASIC PTP MODEL 10!

Figure 9.1: A Parallel Timer Process

For a timer automaton <1we interpret all its edge labels a E L as the real events
which may occur during the "life time" of the processes, associated with <1gsuch an
action can be either a sending or receiving a signal, reading or writing some data, some
kind of synchronization, or any other kind of communication with the automaton's
environment; we abstract here from the nature of the actions).

For every real action a there are certain rules (see below the formal definition)
according to which a process, which is allowed to perform a, is changed to another
process (associated with the same automaton <I»while performing the action (the
automaton <lehanges its state while executing the action a). To formalize this be-
haviour we define below for every a E L the transition relation ~ in the set SI x S~
with P --"...Q meaning that the process P can perform the action a and then become
Q

Every process P = (4),s) is assumed to work in time, to formalize this behaviour
lie define also, as in [Wan90], a special kind of dela.yactions ((d) with d E Q+O for
the processes, meaaing by the relation P ~ Q that the process P can become Q
just by letting time to pass for d units.

Every real (non-delay) action, occurring in the process, is associated with the
change of the process initial vertex along some edge of the timer automaton, so we
definefirst the relations ~ for e EE and a E L.

Let <I= (V, E, I,t, L,lab, T",,p) be a timer automaton, then
(<1, & - (<1>,(v',<5',
if the edge e E E is leading from v to v’ and is labelled by labe) = a, and

o forevery t E ,(e) <5 = O (timing enabling condition; the transition of the
process along the edge is possible only when the values of timers this edge
depends on have reached 0) and

CHAPTER 9. PARALLEL TIMER PROCESSES 102

o for every timer t € T its new value é'(t) is computed by the setting ¢(¢) in a
way:

- if ¢(e)(t) = c € Q*°, then &'(t) = ¢,
- 1f¢e)()=t € T, then §'(t) = 6(t').

Let (8, (1,8)) —= (@, (v, 8)) iff (B, (v,6)) = (&, (v/, &)) for some € € E.

For delay transitions:

¢(d)

(®, (v,8)) —> (D, (v,6)) iff

o for every red edge e € R outgoing from v (i.e. having f(e) = v) there exists
t € y(e) with §(t) > d (no red edge will be enabled during the waiting of
d seconds. If a transition along a red edge is enabled, a longer delay of the
process at the current vertex is not possible (either this transition, or some
other, must fire immediately)),

o foreveryt € T §'(t) = §(t) S d, where 2 8y & maz{0,z — y)} for all z,y (the
values of all timers are synchronously decreasing downto 0 along the passage of
time).

Let for s,5' € §° s — s’ whenever (®,s) = (@, 5") for v being either 0 € L or
e(d) with d € Q*°.

Example 9.2 For the timed process from Example 9.1 the following chain of transi-
tions is possible:

<2 a «1.14) b ¢(3.86)

)
80 — S —+ 83 — 53 —+ 8¢ —+ Sy, where

v

so—(v,(07 3.14, 2, 0)),

= (v, (0, 1.14, 0, 0)),
= (vg, (1.14, 7, 1.14, 5)),
= (vs, (0, 5.86, 0, 3.86)),
= (v, (0, 5.86, 3.86, 3.86)),
= (v1, (0,

Y1,

Since there are no enabled red edges at s3, the process could, starting from it.

develop also as
¢(2.25) 3 ¢(1.61)
§3 —* 8¢ —/* S — S5, O

¢(3.86) @ «(3)
S3 — S8 — Sg —+ $10---., where

91. THE BASIC PTP MODEL 103
s6 = (V2, (0, 3.61, 0, 1.61»,

s7 = (VI, (0, 3.61, 1.61, 1.61»,

s = (V2, (0, 2, 0, O»,

59 = (vi> (3, 6, 2, O»,

s10 = (V" (0, 3, 0, O».

Concerning the labelled transition system semantics of Parallel Timer Processes
the followingimportant properties can be observed:

* time Heterminacy ([wWan90J) meaning that, if P ~ P' and P ~ P", then
pl=p'}

« time contmwty ((Wan90D) | meaning tha.tP «ra P'f and only if P w4 P" (2
p' for some P";

« time-stop freeness (this property is similar to the deadlock-freeness considered
in [NSY91J),meaning that for every PTP P always

- either P ~ P(d) for every dE Q+O for some P(d), or

- P~ P ~ P" forsomedE Q+O and somea E L.

Let us assume that the given set of L of events contains a special event (action)
TEL assuming the transitions -2... to be internal transitions of the process, they ale
invisiblefor any external observer of the process. We define L« = L \ {T} be the set
ofall visible events from the set L (this set is usually ranged over by 0').

The presence or absence of the + labels in the processes is absolutely irrelevant
whenone studies the vertex reachability problem in the processes (see Section 9.2).
The T actions become important when one studies various equivalences between pro-
cesses(e.g., the weak bisimulation equivalence defined in Section 11.1) which want to
consider two processes as equivalent, if they exhibit the same observable behaviour,
nomatter how many and what internal actions each one of these processes performs.
\Iso the compositional operators for processes (see Chapter 14) may distinguish be-
tweenvisible and internal actions of the processes.

It is not claimed that Parallel Timer Processes is a completely new model; it has
" number of constructions, similar to the models of the Timed Graph family (see
:AD90],[ACD90]and [NSY91J). Some discussion o11 the relations between PTPs and
(,thertimed specification formalisms is done in Section 1.6 and Appendix A.

CHAPTER 9. PARALLEL TIMER PROCESSES 104

9.1.1 A Simple Example

Let us show how the PTPs can be used in the description of a simple real time
process in telephone exchanges, which controls the timed aspects of the dialling of
phone numbers by the abonents. 1t is assumed that a phone number is a sequence
of digits containing at least two digits. The abonent dials all the number’s digits
one after another and leaves some time between the dialling of any two digits. The
controlling process is assumed to interrupt the number dialling in any of the following
three cases:

o the first digit of the number does not arrive in 30 seconds after the beginning
of the dialling (picking up the receiver);

o the current digit which is not the first does not arrive in 20 seconds after the
arrival of the previous digit; and

e the total time delay from the beginning of the number dialling reaches 60 sec-
onds.

The process shown in Figure 9.2 has the following external events as the labels on
its edges: “Call”, "Digit”, "Tim” and "Connect”. The number dialling begins with
the event "Call”, the reception of every digit is modelled by the event "Digit”. The
event "Tim” means the interruption of the number dialling (the corresponding signal
is sent to the abonent) and the event "Connect” stands for the successful completion
of the number dialling. The process timer set is 7 = {D, T}, where D controls the
current digit arrival time (observe that the timer D is set on different edges to different
values (timeout periods)), and the timer T controls the total number dialling time.
The process vertexes are "SLEEP”, "WFD" (Waiting First Digit), "WD” (Waiting
Digits) and "CONN". We define also every edge labelled by the label "Call” or "Digit”
to be black (these events are normally initiated by the environment of the process),
all edges in the process labelled by either "Tim™ or "Connect” are red, the transitions
along these edges (timeout, or succesful completion) must occur as soon as they are
enabled. The initial state of the process is assumed to be the pair consisting of the
vertex "SLEEP" and the timer value assignment § with §(t) =0 for allt € T.

9.2 Modelling of PTPs by LTIM Programs

In this section we show, how the Parallel Timer Processes, introduced in Section 9.1,
can be modelled by LTIMg programs. So we both illustrate one possible methodology
of the language LTIM (see Section 3.2) construct interpretation in a model with real
time semantics and obtain some useful results about the path set projectivity in PTPs
(implying the decidability of the reachability problem for PTPs).

9.2 MODELLING OF PTPS BY LTIM PROGRAMS 105

{T} Tim

Tim
{T} Tim

Connect
0

Figure 9.2: A Dialling Control Process

It should be noted tha.t the vertex rea.chability problem for a model similar to
PTPs (Timed Graphs) is already solved in [ACD90] by the method of time regions,
without any use of intermediate models (like LTIMo programs in our ca.se). The pri-
mary interest in the PTP as LTIM program modelling methodology is in showing the
relations between the analysis of programs (processes) with rea.!time semantics (ex-

pressedin the terms of the constructs like the relations ~) and programs with other
data structures. Some further points about this relation can be found in Chapter 10,
where by a similar process modelling techniques the vertex rea.cha.bility problem is
proved decidable for more genera.!model classes with the real time semantics.

Let us introduce first some notation. Let for a PTP A = (ell, s) with

el = (v, E Lt L 1ab, T, 'Y¢) and s = (v,5)
« 45= >(4), and SI = s together with VI = Vand 8* = 8;

e V@A) =Vel) =V, EA) =E-) =E TA) =T@) =T, O=, m=¢,
and

* SA = S. (i.e. the set of the process A states is defined to coincide with the set
of the automaton 4>states).

Let 6.* be the set of all mappings T ...eQ+0 (S0, sa = VeAl x DA).
Fora PTP A = (ell, s) we call a.sequence

Giei: (d;,(10),Si+I}ieN (or, «ieir (di(Li)Si+bi<k)

le." infinite (resp. finite) initiaJ history of A work provided

CHAPTER 9. PARALLEL TIMER PROCESSES 106

¢ so=5and s; €S for all 7,

e s) eicey Sig1 With d; € Q™0 o, € L for all i.
Associated with these histories there are paths voeg, vyey, ... and vees, vi€), ..., vk in
the graph (see Section 2.1) A® = (V,E, f,t, L, lab v3) of the process A {see Sec-
tion 2.1, let us say further on "in the process A"), with s; = (v;,6') for all i. Let
us say, as in the case of LTIBA programs, that the defined histories go along the
associated paths.

We call a path in the timed process A initial, if it begins with the vertex v{.

An initial path in the process A is called feasible, if there is an initial history along
it. A vertex v € V(A) is called reachable, if it is contained in some feasible initial
path of A.

Theorem 9.3 There ezists an algorithm which, given a Parallel Timer Process A
constructs a projectivee for the set of all (both finite and infinite) feasible paths in A.

Corollary 9.4 The vertez reachability problem for Parallel Timer Processes ts decid-
able.

Proof of Theorem 9.3: Given a PTP A we construct for it first the modelling
LTIMg program M{A).

We let the program M(A) vertex set to contain, first, the set of all process A
vertexes: V(A) C V(M(A)) (some other vertexes of M(A) will appear later on). We
define for every A timer t € T a corresponding variable z* in the program M(A). For
every program M(A) variable value vector 7 € Vas4) let 6(7) be the mapping 6 € A4
defined

§(t)=v.z' ©F.zforallt € T(A)

(z is the real time counter of the program M(A) and & is the positive minus operation).
Let us say that the program variable value vector ¥ is modelling the process timer
value assignment 6(%) (it can be the case that for one process timer value assignment
there are more than one modelling program variable value vectors).

We say also that the program M(A) state s = (n,7) for n € V(A) (recall V(4) C
V(M(A))) models the process A state

7s(s) = (n,0(3)).

We complete the modelling program construction by building for every process
A edge ¢ € E(A) leading from a vertex n to n’ a program fragment of the LTIM,
operators which is to be put between the vertexes n and n’ in M(A) and allows a
modelling program history (transition chain) through the fragment from the program

2. MODELLING OF PTPS BY LTIM PROGRAMS 107

state s = (n.%) to some state s’ = (n’,7") if and only if the process A can do a
transition along e (possibly preceded by some waiting) from ws(s) to ms(s') (see
Lemma 9.5 for the modelling statement expressed more precisely).

Assume that we have an edge e € E(A), leading from n to n’ in A, let y(e) =
{t1,...,t,}. The edge e is modelled in M(A) by the program fragment, having the
following block structure:

o @~~~

Figure 9.3: Modelling Block Structure

where z is the input variable for M(A) (recall the definition of the programming
language LTIMg in Section 3.2) and the blocks A0, ASS and A, B, ...,C are defined
in the following.

We clarify simultaneously also the roles which are plaid in the modelling by every
block, so we assume that the program is executing the modelling fragment, starting
from some state (n,v,) which corresponds to the process state (n,é) for 6 = 6(%,).
Let the program variable value vectors at the beginning of every block A0, 4, B, ...
be denoted by ¥40,94, 78, - .. respectively.

» The block AD checks that after waiting d = ¥ 40.2 ~ Up.z units of time in the
state (n, 6) the transition along the edge e in A is enabled (i.e. for all £ € 7(e)
&(t) < d). It is defined to be the chain

—‘lz<x‘l l'_——[z<x‘2 }———' "

¢ The blocks A, B, ..., C are associated every one with one outgoing red edge from
the vertex n in the process. Every of these blocks checks that the corresponding
red edge did not become enabled before waiting d units of time (so preventing
the process ability to wait d units and then execute a transition along the edge
¢). The block, corresponding to a red edge ¢’ with y(e'} = {u;,..., %} is defined

as

Figure 9.4: The A,B....,C blocks

CHAPTER 9. PARALLEL TIMER PROCESSES 108

o The block ASS models the timer setting ¢(e) by the chbanging the program
M (A) variable values in order to obtain é' = #(v,). It contains for every A
timner t € 7 such that ¢(e)(t) # t the assignment operator

- xt — 2z +c,if (e)(t) = ce Q*°, and
- xt—x" i ge)t)=ueT

(since the timer setting ¢(e) has the vectorial semantics, it can be needed in
some cases to replace some of these assignment operators by a pair of operators
x® — x" and x* — x® where z° is an auxiliary variable, the first of these
operators must be put in the assignment sequence before any assignment with
z* as the lefthand side).

We add into the program M(A) also the initializing fragment, containing the
assignments x* «— §A(t) for all ¢ € T(A).

Let us define for every program M(A) edge e the corresponding process A edge
é = ng(e) to be the edge in the modelling fragment of which the program edge e lies.

Let for n,n' € V(A), d € Q*® and & € E(A)

(n,) 25 (0, 7') mean that
e ¥.z=v.z+dand

o there exists a finite history v of M(A) with (n,¥) as the initial value and with
{n',¥") as the final value such that rg(e;(v)) = € for all { < card(CRd,).

Lemma 9.5 If(n,é) A eo, (n’, ') in the process A, and the program variable value

vector ¥ € Vaqqa) is taken such that §(0) = 6, then we have also (n,7) L, (n', V") in
the program M(A) for some ¥ with 8(7") = §'.

Reverse, if (n,0) N (n',7") in the modelling program M(A) and o = lab(e) € L,
then (n, 8(5)) =2, (n',0(")).

Proof: Follows from the construction of the modelling program.0

Let us introduce for the program M(A) the finite and infinite acceptance sets
Ser(M(A)) = Si{M(A)) = V(A).

We define for every initial accepting path « in M(A) a corresponding path =p(a)
to be the path ¢ = ngep, ... [, ns] in the process A for which

s ng, Ny, ...[,nx] i3 the sequence of all path o vertexes which belong to V(A), and

o for every two vertexes n; and n,4; in o' every program M(A) edge e which lies
in the path e between n; and n,1 has 7g(e) = ¢,.

9.2. MODELLING OF PTPS BY LTIM PROGRAMS 109

Lemma 9.6 An initial path o' in the process A is feasible if and only if there exists
a feasible initial accepting M(A) path a with o' = xp(a).

Proof: Let o be a (finite or infinite) feasible accepting path in M(A) and o' = 7p{a).
Let us denote by iy, 14, . .. [, ik] the sequence of all indices ¢ for which the ith vertex
of the path a n;(a) € V(A). Then for every history v along @ in M(A) we have

- die .

(n,-,(u),v,-)(u)) - (TL.'H,(II), v.')“(l/)), where
¢ ¢, = np(ei,(a)) and
o d=1;,,.2— ¥ .z for every two adjacent indices i; and 4.

According to Lemnma 9.5 the sequence
v = (((R),6), €2 0y (Rj41, 1))

for (R,,6;) = ws((ni,(v), Ti;(v)}) and & = ng(ey;), o; = lab(€;) for all ;7 is a history
of the process A along o'. The initiality of v’ in A is by the construction of M(A)
and the initiality of v in M(A).

Reverse, if the path o' is feasible in A, the existence of an appropriate feasible
initial path a in M(A) also is straightforward from Lemma 9.5.0

Finally, we show how to construct for the process A the graph G(A) which is the
projectivee for both the sets of all finite and infinite feasible paths in 4. Having built
the modelling program M(A) for the process A, let us build a projectivee BG(M(A))
for the set of all initial finite feasible paths of M({A) (see Theorem 4.3). Since M{A)
is 2 LTIM, program, the graph BG(M(A)) is also a projectivee (w-projectivee) for
the set of all infinite feasible paths in M(A) (see Lemma 7.12).

Given the graph BG(M(A)), the construction of G(A) is done, as follows:

* V(G(4)) = {(n,C) € V(BG(M(A))) | n € V(4)), a vertex (n,C) in G(A) is
labelled by n € V(A);

* there is an edge from (n,C) to {n’,C"), labelled by é € E(A), if and only if there
exists a path 8 in BG(M(A)) from (n, C) to (r',C') with 7g{e;(8)) = ¢ for all
1 < card(CRdg) (i.e. for all program M(A) edges in the projection of 8).

the graph G(A) initial vertex is (v#, C§!) where Cf = [54] for the M (A) variable
value vector 53 which is obtained after the executing the initializing fragment
with the assignments x* «— §4(t) for all t € T(A) (clearly, 6(v3) = 84, it is
according to the definition of configuration for LTIM programs that the set C¢'
is singleton (the scaling of number line must be done before in order to make
all program constants integers)).

CHAPTER 9 PARALLEL TIMER PROCESSES 110

Figure 9.5: The "Positive" A,B,... ,C blocks

The proof that G(A) is the needed initial projectivee for the set of all feasible paths
in A is straightforward. o

Note. The presented modelling methodology of PTPs by LTIMg programs in
general admits also non-positive paths in the obtained modelling programs (see Sec-
tion 8.3 for the definition of a "positive” LTIM program). However, if one changes
the transition impossibility controlling blocks AB, ... ,C (depicted in Figure 9.4), as
shown in Figure 9.5 (in fact we just introduce a somewhat wide nondeterminism in
the programs), it can be easily seen that for every PTP A its modelling program
M(A) is a positive LTIMg program (all the modelling characterizing results remain
true also for the "new" modelling program).

It is easy to define the notion of an integer valued history and integer feasible
paths (as well as integer reachable vertexes) also for PTPs, as it was done for LTIM
programs in Section 8.3. Using the positivity of the modelling program, as well as
the result of Theorem 8.4 we easily obtain the following result characterizing the set
of all feasible paths in a PTP.

Theorem 9.7 The set of all feasible paths in an arbitrary PTP with all explicit Con-
stant used in the timer settings and the initial timer value assignment being integers
is feasible If and only if -it is integer feasible.

This result givesyet another way for the deciding the vertex reachability problem
for Parallel Timer Processes.

Chapter 10

Enrichments of PTPs

In this chapter we consider some enrichments of the Parallel Timer Process model
which can be introduced still retaining the possibility of the automated rea.chability
analysis. We look also for the ways how the additional specification constructs can
be modelled by means of the languages LTIM and LTrBA. Of particular importance
w this chapter is Section 10.4, where the data dependent enrichments of PTPs are
considered and studied w.r.t, their analysis automation possibilities.

10.1 Processes with Inactive Timers

In various timed specification formalisms, the programming language SOL [CC89]
fleinga typical example, a timer uses to be an abstract device which can be either
active (set up to produce a timeout after some period of time), or inactive (never
going to produce a timeout without a prior activation]. Only if a timer is active,
it has in a given process state an associated time value showing the time remaining
Leforeits timeout. The inactive timer idea. can be easily adopted also for PTPs the
followingway (we ca.llthe newly obtained processes the PTPs with Undefined values,
or simply "PTPU"s, for short).

Let u be a special timer value ("u" for "undefined”), u . Q. Welet u8 d =u
forall d E Q+O (the values u 8 u and d 8 u for d E Q+o are not defined), let
60 %) Q+OU{u}. The value u is assumed to be also incomparable with the numbers
on bgir(m)g) less or grea.ter (i.e. no one of the relations u <d, d <u, u = d holds for any
. Q+0).
The definition of PTPUs now is simply obtained from the basic definition of PTPs
1see Section 9.1) by, first, allowing every process state to be a pair (v,b) for v E V(P)
and {;: T > CIO (instead of " : T -> Q+0), and, second, allowing the value u to
Appear in the timer settings associated with the process edges (i.e. for every edge e of
L PTPU A 4 T > T uCrol.

CHAPTER 10. ENRICHMENTS OF PTPS 112

Figure 10.1 shows, how the process controlling the timing aspects of the phone
number dialling, described in Section 9.1.1, can be rewritten to exploit the undefined
timer value possibility to reduce the process vertex set cardinality (observe that we
have here an auxiliary timer L which can assume only the values 0 and u). For the
sake of illustration we replace the only timer D, controlling in Figure 9.2 the current
digit arrival time by two timers: F for controlling the first digit arrival time and N
for the "next” (not the first) digit arrival time.

.—-{ SLEEP }

|0
1Call
T —60; F « 30;
Ne—u, Leu
Connect
1}

Figure 10.1: A PTPU for Dialling Control

It is easy to see that the proof of Theorem 9.3 can be easily generalized to apply
also to the processes with undefined timer values, what means also the decidability
of the vertex reachability problem for PTPUs.

The idea of dealing with the undefined timer values consist in modelling of them
by the corresponding program variables assuming a certain fixed otherwise not used
value, say, ~1. So, every edge e timer setting #(e) with ¢(e)(t) = u causes the
operator x* «— (—1) to be included in the corresponding modelling program fragment
{the block ASS associated with e).

It is not difficult to define the appropriate mapping 6 : Vpgqay — A* and to invent
the modelling fragments in LTIM, which should be used as the blocks A0, A, B,...,C
and ASS in order to obtain the analogue of Lemma 9.5 holding, we do not consider
the details.

10.2 Processes with Extended Time Conditions

One particular peculiarity of the PTP model] is that the timer value conditions which
allow a transition along a given edge to be performed are of the form é(t;) = 0 for

103 PROCESSES WITH NONDETERMINISTIC TIMER SETTINGS 113

ail i E "Y(e). It seems useful sometimes to have these conditions of a more general
kind. allowing, as in the Timed Graph model [ACD90, AD90] them to be boolean
expressions over the predicates t.sc; for t, ET, > E {<,~, =~ >} and c, E Q+o. A
transition along an edge e with such condition in the generalized process, called EPTP.

ISenabled in a state (v, 0) for v = I(e) if and only if the condition's boolean expression

Interpreted in the standard way over the timer values li(tp,8(tk) evaluates to
true. Again, whether a transition along an enabled edge must be executed, or a
further delay of the process is allowed, is the matter of the edge e colour (i.e. either
eis red or black). In order to obtain the time-stop freeness of the process labelled
transition systems let us require that every predicate b over the timer values, which is
associated with a red edge, is dosed in the sense that only the non-strong inequalities,

joined by the positive connectives (i.e. & or V) are allowed to define b.

The extended time conditions do not cause any very principal problems in applying
the above considered schema of the deciding the vertex reachability problem for the
processes by reducing it to the finite and infinite path set projectivity of LTIMg
programs. The most important new point, if compared with the modelling of the
basic PTPs, here appears in the constructions for the check, whether in the current
process state (N, 8) the transition, requiring the conditions, say, 8(t) > 5 and o(u) :S 7,
can be performed, or not. As in the proof of Theorem 9.3 (see Figure 9.3) we input
first the (absolute) time moment of the transition firing (?x), then assign it positively
to z It remains to check now that the current value of x' is greater than z *+5 and
that the value of xv is not greater than z + 7, what is done, as follows (observe that
the variable x does not carry any essential information at this moment and we are
free to use it as an auxiliary = variable):

=1X+-7+5~1 X<xt HX+-Z+7H X< o

10.3 Processes with Nondeterministic Timer Set-
tings

The ability to ascribe the same external behavior (=the same label) to both red (in-
stitntaneous) and black (possibly waiting) edges in a PTP gives a possibility to express
Ir. the PTP model nondeterministic interval-like delays saying that, for example, an
action a is going to be executed in a process P between 3 and 5 seconds passed after
‘orne other action b was performed. These are constructs, typical in Time Petri Nets
\IF76, GMMP89] (see also Section 1.6 for some discussion).

\" Here we look at another possibility to introduce delays of nondeterministic length

CHAPTER 10. ENRICHMENTS OF PTPS 114
in the PTP model. First of all, let I(Q*°) be the set of all intervals of Q*°, i.e.

HQ*") = {Ja. el len @2l Jern el Jer ol | @0 € QY% 2 € QTP U {00}, o) S 2.

We obtain the definition of a PTP with Nondeterministic timer setting (a2 PTPN,
for short) from the definition of PTP by letting for every process edge e € E to have

the timer setting
dle): T - Tul(Q™)

{(intuitively, every timer can be assigned either the value of other timer. or some value
from a specified time value interval).

The semantics of such a timer setting is defined to have early binding of the
concrete t; value from the specified interval at the moment of the setting execution
(the moment of a transition firing along the edge), i.e. for ¢(e)(t) = [¢1, c2] we require
in the definition of the transition

(v, 8) =5 (v, 8)

that (%) € [e1,¢2) N Q*Y, (in the other cases the corresponding interval (i.e.], ¢y,
etc.) must be taken instead of ¢y, ca).

We call a PTPN bounded, if all nondeterministic timer settings on its edges have

finite upper delay bounds ¢; < +00. The model of bounded PTPNs appears to have
theoretically approximately the same expressive power, as standard PTPs and can be
analyzed both w.r.t. reachability, path feasibility and equivalence by almost the same
methods, as developed for PTPs. However, the unboundedness of the nondeterminism
brings essentially new problems in the process analysis (PTPNs can not be any longer
modelled by LTIM, programs (in a sense of retaining a homomorphism between the
state sets), more general LTIM constructs are needed). In the case of the unbounded
nondeterminism some infinite not {easible paths with all finite prefixes feasible may
appear in the processes and their modelling programs (see e.g. Figure 10.2), so elimi-
nating also the possibility of modelling PTPNs by LTIM, programs also in the sense
of the path feasibility.
For modelling PTPNs by LTIM programs one can use the same schema as in the
modelling of PTPs by LTIM, programs. Also the state modelling relation x5 : V(A) x
Vas(ay = S4 can be taken precisely the same as in the proof of Theorem 9.3. The only
difference appears in the edge modelling fragments just in the block ASS modelling
the timer setting, when for ¢(e)(t) = [c1, c2| we have the modelling fragment

- i
L e o [}

For, say, é(e)(t) = [c1, +00[the corresponding modelling fragment is

__r 25t HPZ-H:IH xt < x r.__‘

10.4. PROCESSES WITH DATA PARAMETERS 115

LD

R+—1

Re1 LOOP

{R} |{T}

Figure 10.2: Infinite Infeasible Path: An Example

One can observe that in the case of the only bounded nondeterminism in a PTPN
A all infinite paths in the modelling program M (A) path feasibility graph BG(M(A))
are progressing in the sense of Section 7.1, so, according to Lemma 7.5 we again have
the initial projectivity of the sets of both finite and infinite feasible path sets in A.
As to the unbounded nondeterminism, a counterexample to the infinite feasible path
set initial projectivity is straightforward (Figure 10.2 again).

It is possible to prove for bounded PTPNs also the decidability of bisimulation
equivalences (see Section 13.1), this decidability is hardly believable for the unbounded
PTPNs, even in the simplest case of the strong bisimulation (it is still an open prob-
lem).

10.4 Processes with Data Parameters

In this section we consider a more principal possibility to enrich the PTP model by
introducing in it the integer-valued data (we call the newly obtained processes the
PTPBs ("B" for the LBASE system of commands over the parameters)).

Assuming predefined the set finite L of events the processes can participate in, we
define a PTPB process to be a pair P = (®,s) for & being a TD-automaton ("T~ for
“time” and "D” for "data”):

¢ =(V,E, L, lab, T, W,labw,yr,vw, é1, ¢w), where
* V,E,L and T are the sets of vertexes, edges, edge labels and timers, respec-
tively, lab: E — L is the ® edge labelling function (see the definition of PTPs

in Section 9.1);

s for every e € E 7r(e) and ¢7(e) are the timer condition and timer setting,
associated with e, also defined already for PTPs; :

¢ W= {z,,2;,...,2,} is a finite set of integer-valued variables;

CHAPTER 10. ENRICHMENTS OF PTPS 116

e labw : E — W ascribes to every process edge a variable;

o for every automaton’s edge ¢ € E yw/(e) is called the variable value condition.
associated with e, and is an arbitrary boolean formula built by the connectives
&, V and — from the elementary predicates of the form a < b, where every of
the elements a and b is either a process variable £ € W, or an integer constant
c € Z (let us call the formulas of this kind Lnear);

o for every automaton’s edge ¢ € E ¢w(e): W — WUZ is the variable setting
function (analogous to the timer settings ¢r(e’)); we have also

s= (vl 68,65) for vl € V, 6£: T — Q*° and 6§ : W — Z being the process initial
state. Every state of the process also is a triple (v, é7,6w) forv € V, ér: 7 — Q*°
and éw : W — Z.

The idea behind the semantics of PTPBs is that every real transition of the process
along an edge e € E is associated both with the event lab(e) € L and with the input
of some integer value into the variable labw(e) € W. Given an edge e € E with
lable) = o € L, the transition 2253 for u € Z from the state (v, 67, éw) s.t. v = f(e)
along e with the input of the value u into the variable laby(e) = z, is possible iff both

e &p(t;) =0 for all ¢, € yr(e) and

o the interpretation of the formula v () over the variable values 6% (z) for z € W,
defined
8y(z) = bw(z) for z # x;, and §p(z;) = u

evaluates to true (treating the meaning of the inequality signs and the logical
connectives in the standard way). Observe that variable value condition is
interpreted taking into account the new value of the input variable z; = labw {e).

The target state of such a transition along e is {t(e), 67, 6y} where t(e) is the target
vertex of € and &, §iy are obtained {rom 67 and &Y by the settings ¢r(e) and du(e)
in a standard way:

o 57(t) = &x(t'), if pr(e)(t) = t' € T, and

o 8p(t) = ¢, if pr(e)(t) = c € Q*°, as well as
o Siy(z) = 8 (y), if dwle)(z) = y € W, and
o 8y(z)=c, if pw(e)(z) = c € Z.

We retain for PTPBs the edge colouring (red and black edges) and assume that
a transition along a red edge must occur as soon as it is enabled (if there are some
values u € Z for which the transition is enabled and some others for which the

104. PROCESSES WITH DATA PARAMETERS 117

condition 1w(e) forbids the transition, one of the enabling values must be taken and
the transition along the edge has to be executed immediately).
The definition of the semantics of PTPBs is completed by saying that they admit

also the delay transitions ~ during which no variable values are changed and the
timers change their values by synchronous decreasing downto 0 as in the case of basic
PTPs. More precisely,

(oll,(v,Sr,c5w)) ~ (<Il(v,c5~,chw)) iff
« for every red edge € E R outgoing from v either

- there exists t E 1T(e) with Sr(t) ~ d, or

- (orall u E Z the variable value condition)W(e) interpreted over the values
O0w(x) yields false (iffor some u E Z a transition along a red edge can be
executed, no further delay is possible);

o forevery t ET ¢5T(t) = c5r(t) € d.

Using the facilities offered by PTPBs wegive in Figure 10.3a slightly more detailed
-specification™ of the phone number dialling control process (see Section 9.1.1, as well
as figure 9.2 and Figure 10.1). First of all we replace the "fictive" timer L from the
PTPU specification (Figure 10.1) by an (integer-valued) variable x. More importantly,
every signal "Digit", incoming into the process now carries an integer parameter d
which is to be bound between 0 and 9 (which digit has been dialled). In our toy
example it is not possible to deliver any reasonable information about all the dialled
digits to the connection seeking process (initiated by the event "Connect"), so we
deliverjust the lest digit of the dialled number. Formally, this delivery is done by the
--input" of some value into another variable, n, however the:variable value condition
requires this new value to coincide with the current value of d. So, if the connection
seeking process "synchronizes" with our process on the event "Connect" by offering
any variable value for this synchronization, the synchronization will necessary be
performed on the value of d.

At first sight it seems rather obvious to generalize the modelling methodology,
givenin the proof of Theorem 9.3 (see Lemma 9.5) also to the case of the PTPB
modelling by LTIBA programs. However, the situation turns so that we have the
following,at first sight rather surprising result:

Theorem 10.1 The vertex reachability problem for PTPBs is undecidable.

Proof sketch: The construction, presented in Figure 10.4, allows to increase the
".clueof an arbitrary variable a by | every time when the path fragment from the
lertex V to the vertex Viis executed (@ is an auxiliary vertex from which no other

CHAPTER 10. ENRICHMENTS OF PTPS 118

—{ SLEEP Ff

8.0
Cal Tim {N},0) Tim
T —60; D« 30; {F},0
B —

0, (n=d)

Connect, n

| igit, 7d \Digit, 7d

o 10,(0<d<9) '8,(2>0,0<d<9)
1 4 !

[}

D 20 —————- —~{ CONN

+q ze1

Figure 10.3: The PTPB phone

0,(a<b) |t,—2 UuU 7z
{t1},{a<z < b)
{tz2}

U’ a—b

Figure 10.4: A Variable Increasment in PTPB

vertex is reachable, every edge in this fragment is red): had b received any other
value (i.e. not that of a + 1) greater than the value of a, the process execution would
reach the vertex @ since the transition, pending on the timer t; becomes enabled in 1
second after the process reaching the UU vertex. So, such a block can be used as the
operation a + a+1 in any machine with counters. The variable value decreasment is
done in a similar way, recall for the undecidability that in PTPBs we have unlimited
possibilities to use the variable comparison operation.Q

It turns out that we can restrict the PTPB model just slightly in order to retain
the decidability of the vertex reachability (and the finite feasible path set projectivity)
for the restricted model, called PTPB,.

First of all, given a linear formula (predicate) yw over the variables z € W, let
us call yw semi-closed w.r.t. z; € W, if the formula contains positively (i.e. within
an even number of negations) no more than one occurrence of inequalities z, < a

10.4. PROCESSES WITH DATA PARAMETERS i 119

and a < z; for a being either a variable £ € W, or an integer constant (the number
of negative occurrences of these inequalities (corresponding naturally to the positive
occurrences of inequalities z; > a and a > z;) is not limited).

We call a PTPB A a PTPBy, if for every red edge e € E(A) its variable condition
vw(e) is semi-closed w.r.t. the edge input variable labw(e) € W (the variable value
conditions on black edges are not constrained by any additional requirements).

Even a simpler natural way of restricting PTPBs when seeking the decidability
of the vertex reachability problem would be rather acceptable: one could simply
forbid any use of the input variable value in the inequality system determining the
possibility of the transitions along the edge. However, as the further results show,
this is not necessary, so we manage to save a considerable modelling power of the
decidable specification formalism (also the phone number dialling process, described
in Figure 10.3 is a PTPBy).

We define for PTPBs the notions of the process graph, path, history, feasible path,
etc. the same way as it is done for PTPs in Section 9.2

Giver a PTPB A we let A# to be the set of all mappings 67 : 7(A4) —» Q*° and
A3 to be the set of all mappings éw : W(A) — Z.

Theorem 10.2 There exists an algorithm which, given ¢ PTPBy A constructs a pro-
Jjectivee for the set of all finite feasible paths in A.

Corollary 10.3 The vertez reachability problem for PTPBys is decidable.

Proof of Theorem 10.2: Given a PTPB, A we construct for it the modelling LTIBA
program M(A) following similar lines, as in the proof of Theorem 9.3 for the PTP
modelling.

We let first the program M(A) vertex set to contain the set of the process A
vertexes: V(A4) C V(M(A)) (some other vertexes of M(A) will appear later on).

We define for every A timer ¢t € 7 a corresponding LTIM variable z7 in the
program M(A), for every A variable y € W the LBASE variable z2 is defined in
M(A), as well.

For every program M(A) variable value vector # = (58, 57) € Vaa) let 87(57) be
the mapping 67 € A4 defined

6r(t) = 57.zT © 57 .2 for all t € T(A),
let 88(58) = §5 € A be defined by
és(y) = JB.:f for all y € W(A).

Let us say that the program variable value vector ¥ is modelling the process timer
and variable value assignment 6(%) = (87 (37), §8(58)).

CHAPTER 10. ENRICHMENTS OF PTPS 120
We say also that the program M(A) state s = (n,¥) for n € V(A) (recall V(A) C
V(M (A))) is modelling the process A state

def

7s(s) = (n,8(v)).

As In the case of modelling PTPs by LTIMy programs, we define the modelling
program fragments, corresponding to the process A edges in order to meet

Lemma 10.4 If (n,6) A, e, (n’,6"Y in the PTPB process A, and the program
variable value vector U € Vpq(ay is taken such that §(¥) = &, then we have also

(n,v) L, (n', 7"} in the program M(A) for some i with 8(7") = §'.
Reverse, if (n,0) — L, (n',¥") in the modelling program M(A) and 0 = lab(e) € L,
then (n, 6(5)) <=2 (n', 8()).

(The definition of the relation — is just the same, as in the proof of Theorem 9.3,
take into account that now every M(A) variable value vector ¥ is a pair (52, 7T)
and that the existence of the history v in M(A) is equivalent to the existence of
corresponding histories vF and »7 in the programs M(A)? and M(A)7 (see Section 3.2
for the definitions of the programs P? and P7 from given LTIBA program P)).

The modelling of one edge ¢ € E(A) is also done {ollowing similar lines, as the
modelling of PTP edges in the proof of Theorem 9.3, however, some technical details
are additional.

Lemma 10.5 For every linear formula v over the variable set W there exists a
LBASE program block B(v) with one entry and two exits (labelled by "+ and ~ -~),
such that the computation of the block starting from the variable values

v B=63(y) forally e W

leads to the ezil -+~ if and only if the process variable values ép salisfy the formula
7; otherwise the computation always leads to the = - exit.

Proof: The elementary predicates are translated, as follows (here and further on the
little labels on the edges denote the exits of the modelling block components (program
operators; blocks, corresponding to subformulae), while the labels, shown as the edge
targets denote the exits of the whole block):

y>c —-x?>c+—-® and y>u —xB>xB 2

T _

104. PROCESSES WITH DATA PARAMETERS 121

As to the composed formulas, their translations by the program blocks are obtained
inductively on the subformula structure the following way (here B(y) denotes the
block for translating the formula 1):

The correctness of the translation is straightforward. O

As in the modelling of PTPs. we consider an edge e E E(A), leading from n to n'
ina PTPB A, let-y(e) = {tl, ... ,t.}. The modelling block structure for the edge e in
M(A) issimilar to that in Figure 9.3, however, some slight additions and changes are
present (the input of a LBASE variable A« which corresponds to the process variable
y = labw(e) E W, the block is moved to the end of the modelling chain for it
makes use of the new value of A. while the A, B, ... ,C blocks need the "old" value):

~n'"
Figure 10.5: Modelling Block Structure: LT1BA

The blocks AO,ASS and A, Be... ,C have the same principal roles as in Figure 9.3,

The block AOchecks the sa.tisfication of the edge e conditions (both 6(t) = 0 for
i, E-IT(e) after waiting of d time units and 1w (observe the interpretation of""'lwover
the variable value assignment e5fv. including the value, received from the input):

e H oo o =l Mo £

The block ASS is obtained from the settings h(e) and tPw(e) as in the modelling
of PTPs (for every variable x: the assignment x~ .- x~ for u = alw(e)y) E W
ix~ « c forc=<pbwe)ly E Z) is present (similarly for variables X; for t E 7)).

CHAPTER 10. ENRICHMENTS OF PTPS 122

Up to this point the constructions made were possible also for the whole class of
PTPBs. The problem in the modelling PTPB processes is that we cannot in general
build for given red edge e a corresponding LTIBA block which allows a control flow
through it if and only if there does not exist any input value for which the transition
along e becomes enabled (because of the fulfillment of the condition yw(e)), the
example in Theorem 10.1 is based just on this point, see Figure 10.4.

In the case of PTPBgs we obtain the modelling possibility from the following
important result {combined with Lemma 10.5).

Lemma 10.6 For every linear formula v over the set W of integer-valued variables,
if v is semi-closed w.r.t. y € W, then there ezxists a corresponding linear formula +°
over the set of variables W° = W\ {y} such that

o 7% is true for fized variable values §(z), z € WP if and only if

o there exists ¢ value u = 8(y) € Z such that v is true for the variable values §(z),
zTEW.

Moreover, for every such v the corresponding formula 4° can be effectively obtatned

from .

Proof: Exclude the variable y from the formula « by replacing every chain of relations
alyAzb for 21,29 € WOU Z and \; € {<, <} by a)b, where) is the strongest of the
relations A;. Due to the semi-closeness of ¥ no more than one of A, is strong inequality
(<), so in the case of the validity of 4° over some variable value assignment §, also the
value of y yielding the validity of 7 can be found, we do not consider further details.0

Now the modification of the transition impossibility controlling blocks (Figure 9.4}
is straightforward: the block, corresponding to a red edge ¢’ with vr(€') = {uy...., u, }
is defined as:

“Ix‘Tl <z—’L—-[x§2 <z P-_‘ o ——{XE.-<Z HB('YW(e')OTl

Figure 10.6: Transition Impossibility Controlling Blocks

We add into the program M(A) also the initializing fragment, containing the
assignments x§ «— 62(t) for all t € T(A) and xB — §8(y) for all y € W(A).

The rest of the proof of the theorem is very similar to the case of the basic PTPs
(Theorern 9.3), its detailed consideration is omitted (since the graph BG(M(A4)) has

104. PROCESSES WITH DATA PARAMETERS 123

not been defined for LTIBA programs, we have to use simply some Tvprojectivee
for the set of all finite feasible accepting paths in M (A) (obtained in the proof of
Theorem 4.1 from the graphs BG(M(A)B) and BG(M(A)V) by Lemma 2.8).0

Via the modelling of PTPBos by LTIBA programs (Lemma 10.4) on can prove
also various interesting results about the infinite path feasibility in PTPBos (see Sec-
tion 7.5 for some list of results in LTIBA program analysis).

There is also another alternative for introducing the data in the parallel timer
model: we obtain the definition of a PTP with Rational data (PTPQ, for short) if we
replace the integer data type of the non-timer variables in the definition of PTPBs by
the rational one. '

For the linear formulas over rational-valued variables the requirement of semi-
closeness is not necessary for an analogue of Lemma 10.6 to hold. So, using a sim-
ilar schema, as in the PTPBg modelling, one can model every PT PQ in the lan-
guage, called, say, LTIQo, every program in which is allowed to have two complects
of rational-valued variables: one of them with allowed LTIMg commands over them
lused in handling the timed aspects of the process behaviour) and the other without
the real time counter and allowed LBASQ commands (used in handling the data as-
pects of the process behaviour), any interaction between both the variable complects
is forbidden (clearly, every LTIQo program is also a LTIM program).

Since the programs in both the languages LTIMo and LBASQ have w-projective
infinite feasible path sets (see Corollary 7.12 and Fact 7.2), the w-projectivity re-
sult holds also for the sets of all infinite feasible paths in LTIQo programs due to
Lemma 2.9.

Using the modelling of PTPQs by LTIQo programs one shows the w-projectivity
of the set of all infinite feasible paths also for PTPQs (an analogue of Lemma 9.5
~nd Lemma 10.4 is useful for the modelling correctness proof, we do not consider the
details).

In Section 13.2 we give also the principal schema of the deciding bisimulation

equivalences for PTPQs (in fact we consider for the sake of simplicity only the strong
equivalence), what is interesting to mention is that a similar algorithm if tried on
Ihe deciding bisimulation equivalences for PTPBos, runs into serious problems about
whichit is not clear for the moment, how they can be dealt with at all.
,~lithe above considered enrichments of the PTP model still retained the decidability
of, at least, the process vertex reachability problem (as it will be seen from the proofs
of Chapter 11and Chapter 12, the most of the enriched models (save the cases of not
bounded PTPNs and the integer data dependent formalisms PTPB, PTPBo) permit
«lsothe automated bisimulation equivalence decision). However, it is very easy to
e'lend the PTP model also in a way to have all the interesting analysis problems,
'Includingthe vertex reachability, undecidable, a very natural (and rather "similar" to
PTPQs) such extension is considered in Chapter 15.

Chapter 11

Deciding Bisimulation
Equivalences

This chapter is devoted to the deciding bisimulation equivalences for Parallel Timer
Processes. After the definitions of the equivalences in Section 11.1 we consider the
notion of region (symbolic) processes which play a crucial role in the deciding al-
gorithms {Section 11.2) and show the algorithm of deciding the strong bisimulation
equivalence in Section 11.3. The further arguments, needed in the deciding of the
weak bisimulation equivalence, are postponed to the next chapter.

11.1 Strong and Weak Equivalences

Let A ¥ LU {e(d)|d € Q*°} be the set of all actions ranged over by v.

We define the strong timed bisimulation equivalencein the set P of tirned processes
in the usual way (see [HLW91)):
Definition 11.1 Let F(R) be the set of all (P,Q) € P x P satisfying

i) whenever P = P' then Q — Q' with (P, Q") € R for some @',
ii) whenever Q = Q' then P —~ P' with (P',Q’) € R for some P'.

Then R is a timed bisimulation if R C F(R). We define the timed bisimulation
equivalence, writlen ~, to be the greatest firpoint of F.

We prove in this chapter the following theorem.

Theorem 11.2 There is an algorithm which, given two Parallel Timer Processes A
and B, decides whether A ~ B or not.

11.1. STRONG AND WEAK EQUIVALENCES 125

It has been proved to be often useful to abstract from certain actions when ob-
serving a process behavior, this leads to the notion of weak (abstracted) bisimulation
equivalence in process algebras. In our case with the semantics of processes given by
the timed transition systems we face two principal alternatives whether to abstract
from timed transitions in the process behaviour or not.

Here we choose to have the timed transitions (i.e. Ld)o) non-abstractable (as it was
done in [Wan91b]). As to the time abstracted case we just note that the equivalence
obtained this way still depends on the timing constraints on the behaviour of the
process: these constraints can eliminate some still observable action sequences as
impossible. The reader may himself convince that this equivalence can be shown
decidable by using the path set projectivity techniques, demonstrated for PTPs in
Section 9.2, combined with the standard bisimulation deciding algorithms for Finite
State Machines (see e.g. [KS83]).

Let P == Q if and only if P(—-)"Q (i.e. P may become Q by doing a sequence
of —-transitions). Define for & € Lo the relation P = Q as P =5 —+== Q. For

delay transitions let, as in [Wan90] P «“ Q whenever
d
Pt A < g

for some dy,dy,...,dx with d) +dy + - di = d.

Intuitively, g is rather complex relation for it allows the abstracted waiting to
be split into elementary waitings by the 7-actions at arbitrary time moments and
without a priori bound on the number of the splitting moments (we afterwards show
such an a posteriori bound, see Lemma 12.4).

Letting v to range over Lo U {e(d) | d € Q*°} we can now define the weak timed

bisimulation for timed processes (observe that P == Q iff P 9 Q):

Definition 11.3 Let F(R) be the set of all (P,Q) € P x P satisfying

i) whenever P =5 P then Q = Q' with (P',Q’) € R for some Q',
it} whenever Q = Q' then P =% P’ with (P',Q) € R for some P'.

Then R is a weak timed bisimulation, if R C F(R). We define the weak timed
hisimulation equivalence, written =, to be the greatest fizpoint of F.

Theorem 11.4 There is an algorithm which, given two Parallel Timer Processes A
and B, decides whether A = B or not.

Observe that the result of Theorem 11.2 follows from that of Theorem 11.4 in the
case of no edges in the processes A and B are labelled with the 7-actions.

CHAPTER 11. DECIDING BISIMULATION EQUIVALENCES 126

Let for a given finite process P = (®.(x,8)) d{P) be the set of processes (8N
with v" being a vertex in ® graph and §'(t) < ¢” for every P timer ¢, where ¢¥ is deﬁned
to be a constant which exceeds both all timer values from é and all constants used
in ¢ edge assignments. It is easy to see that every P derivative (= a process which
can be obtained from P by performing some sequence of transitions) falls into the
set d(P) (the converse might not be true). So, without loosing generality in deciding
whether A ~ B, A = B one can consider ~ and = to be the maximal bisimulations

in the set d(A)xd(B)Q‘PxP.

11.2 Symbolic Processes

Without the loss of generality we assume that all the explicit constants c, used in the
edge timer value assignment vectors ¢(¢) in the graphs of A and B, are integers (were
it Dot so one could change the scale of the number line to ensure it; easy to see that
the behaviour of the processes is not affected by the scale change).

In order to decide whether A ~ B, A =~ B we give an effective characteristic (by
the means of a finite partitioning) of all bisimilar process pairs within d(A4) x d(B)
in a way described below (it turns out to be too rough for the proof to consider
partitionings of d(A) and d(B) independently: the proof cornerstone Lemma 11.7
does not hold for any nontrivial partitioning of d(A 1) x d(B) which is obtained as the
product of independent partitionings of d(A) and d(B)).

For T = {t},12,...,tm} being a finite set of timers, let us represent every 7 timer
value assignment 6 : 7 — Q*° as the vector (6(t),...,8(1,)) € (Q+°)™. Let = be
an equivalence relation in the set A7 of 7 timer value assignments such that §' = §2
if and only if

o [8'(t)] = |6*(t;)) for every i =1,...,n and
o for every i,j

— {8'(t)} 2 {6'(t;)} if and ooly if {62(t.)} 2 {6%(t;))
- {8'(t:)} = 0 if and only if {2(t))} = 0

(here || denotes the “integral part” of z, i.e. the largest integer, which is not greater
than z, and {z} stands for the fractional part of z (i.e. {r} =z~ |z]))

Given 6 € A7, let us denote the equivalence class C C A7 w.r.t. = with § € C by
C(6) and call it the time region of 7, corresponding to §.

Given a timer value assignment one can easily compute its corresponding time
region (one can use the time region representations. say, by linear inequality systems
in order to make all computations with them effective).

11.2. SYMBOLIC PROCESSES 127

Example 11.5 If T = {1},12,...,t:} end § = (0.7, 1, 1.23, 4, 17.23, 17.75, 17.75),
then the time region C(8) can be described as an inequality system
C(&)=(0<il<l=t2<!3<2<4=i4<1_7<15<t6=i7<18,

0= {ta} = {ta} < {ts} = {t:} < {ts} < {te} = {ta}).

Clearly, if for every t € T and every timer value assignment § € A C Az always
§(t) € [0,¢] € Q*°, then the set of the corresponding time regions {C(8) | § € A} is
finite.

The presented time region construction is actually the same, as used in [ACD90] for
demonstrating the effectivity of the model checking procedure over Timed Graphs.
One may see also [ABBCK91] to find out other situations, where similar ideas of
variable value space partitioning have worked in deciding reachability for various
classes of data-dependent programs.

Definition 11.6 Let P = (&4, (v7,6R)) € d(A), Qi = (®g, (v&,69)) € d(B), we
say that (P, Q1) = (P2, Q2) iff

o vP = vf and v? = v fi.e. the verteres of corresponding processes coincide)
aend

o 5P §0 xR gQ’, where :: denotes the concatenation of two vectors.
It is important to notice that for (P,@) = (P, Q2) it is not enough to have
vh = oP2 @ = y9 and 6P = 672 69 = §9 one needs also the timer values in P,

o be ordered w.r.t. the timer values in Q, the same way as the timer values in P, are
ordered w.r.t. those in Q3. .

Lemma 11.7 Let P, P, € d(A), @,Q. € d(B), such that (P, Q1) = (P2, Q).
Then P, = @, if and only if P; = Q;.

Proof: Let us give another characteristic of the equivalent process pairs:
Definition 11.8 We call a mapping p : Q*° — Q*° uniform if

s p is strongly monotone (z > y implies p(z) > p(y)),

o p(z) + ¢ = p(x + ¢) for every natural ¢ and every z € Q*°,

* p(0)=0.

We extend any mapping p : Q*°© — Q*° in a polymorphic manner to any struc-
‘ures containing nonnegative rationals as elements in such a way that the mapping

CHAPTER 11. DECIDING BISIMULATION EQUIVALENCES 128

p is applied to every component a € Q*° of the structure and does not change any
component of other type, for example.

p(81, 62, .. 6m) = (p(1), p(82), - - s P(6m))s

as well as for P € d(A), Q € d(B) p(P,Q) = (P',Q’), where P and Q' have the
same vertices as P and Q respectively, but the corresponding timer vector 67 :: §¢' =
(:: §9), etc. The proofs of the following facts easily follow from definitions:

Fact 11.9 (P, Q) = (P2, Q2) if and only if there ezists a uniform mapping p. such
that (P, Q1) = p((P2,Qa))-

Fact 11.10 Whenever p: Q*® — Q*° is a uniform mapping, then for everyd € Q*°
the mapping pq, defined py(z) = p(z + d) — p(d) for every z, is also uniform.

Fact 11.11 Whenever p: Q*° — Q*° is a uniform mapping, then for every d,d' €
Q*° and every z € Q*°
(pd)a(T) = pasa(T).

Proof:
(pa)ar(z) = palz + d') — pa(d') =
= plz +d+d) - p(d) — (p(d + d') — p(d)) =
=plz+d+d) - pld+d) = pasar(z).0

Proposition 11.12 Whenever P, = p(P,) for the processes Py, Py € d(A)Ud(B) and
some uniform mapping p, then,

o if B, - P,, then P, AN p(P]),

o« if LY Py, then P 2D 5Py,

o if P, = Pi, then P, = p(P}),
o if P P!, then P pty pal Fy).

Proof: Consider first the untimed transitions. Since Py and P; have the same graph
vertex, as well as the same timers with 0 values and, so, the same transitions along the
same edges enabled, the result follows by observing that for every possible newly ap-
pearing timer value ¢ € N (remember scaling!) p(c) = ¢ (because of the p uniformity),

use induction along the (——)* derivation for the transition ==.
d
As to the timed transitions consider first the case P L)» P’ Let P, have a state

{v,6), then the state of P, is (v, p(§)). By the definition of <=) for every red edge €.

11.3. DECIDING STRONG EQUIVALENCE 129

outgoing from v, there exists t; € y(e), such that §(;) > d. By the monotonicity of p

for every such t; p(6(t;)) 2 p(d), so P, — leldp P, for some P;.

In order to prove that P; = pg(Fy) it remains to consult the definitions of the

. . d . . .
transition relation <% and the mapping pq (for every P, timer {; consider 2 cases

whether §(t;) < d or 6(t;) > d, in both the result follows easily).
The general case of P x4 P follows from Fact 11.11 by the induction along the

", .. - . d
elementary transition chain in the derivation M n

Let P =' Q if and only if P, = @ for some (P;,Q;) = (P,Q). By showing that
x' is a weak bisimulation we complete the proof of the lemma.
Take some P =’ Q, let P, = Q, and (P, @) = (P,Q), then (P,,Q Yy = p((P, Q))
for some uniform p (Fact 11.9). By Proposmon 11.12 whenever P ==> P’ then P, ==
p(P'). Since P, = @, then also @, == @, for some @} with p(P’) = Q’ Since the
inverse of a uniform mapping is also uniform, Proposition 11.12 gives Q@ == p~}(Q}),
easy to see that (P/,p~1(Q1)) = (p(P'),Q}) and so P' = p7}(Q}), as requested.
All the other cases (including the timed ones) are very similar to the considered
one, their detailed analysis is omitted.D

Now let us consider a partitioning X, p of the set d(A) x d(B), generated by =,
easy to see that it is finite (for every P € d(A) U d(B) any its timer value does not
exceed maz{c?,cP}). For arbitrary P € d(A), Q € d(B) let us denote by X (P, Q) the
element in this partitioning to which the pair (P, Q) belongs to and call it a region
process, corresponding to {P,@Q) (one could call the region processes also symbolic
processes due to their symbolic nature).

For the completion of the proof of Theorem 11.4 it suffices to check whether for a
given set X C X, p the corresponding set of process pairs Ry = {{P,Q) | X(P.Q) €
X'} is a bisimulation (observe that there is only a finite number of different symbolic
process sets X C X4 g), we deal with these problems in Section 11.3 for the case
of strong bisimulation and in Chapter 12 for the weak bisimulation (see especially
Section 12.2).

11.3 Deciding Strong Equivalence

For the sake of simplicity we consider first the deciding of the strong (i.e. non-
abstracted) bisimulation equivalence. We begin with some results, characterizing
the "waiting bebhaviour” of the processes.

Let for P € P P{d) be the process which is obtained from the process P by letting

lime to pass for d units (P 49, P(d)) provided P can perform such a waiting (observe

CHAPTER 11. DECIDING BISIMULATION EQUIVALENCES 130

that according to the semantics of timed processes (time-determinacy property) such
process P(d) is always unique for every P and d).

We let u(P) for P € P to denote the minimal nonzero P timer value fractional part
(if al] timer values in P are integers, let u(P) = 1), let u(P,Q) = min{u(P), u(Q)}.
We call a process P stable, written P ¥ if and only if there exists d > 0, such that
P pa).

Fact 11.13 For P € P, if P 2% then for all d < u(P) P Y2 p(d).

For P € d(A) and Q € d(B), if P 25 and Q X2 then for all d,d' €]0, u(P, Q)]
always P(d), Q(d), P(d'), Q(d’) ezist and X(P(d), Q(d)) = X(P(d'). Q(d")).

Proof: Follows from the semantics of processes and the definition of region processes
{equivalence relation =).0

wT

Definition 11.14 Let for X = X(P,Q) € X4 p with P 25 and Q 224
o nexto(X) = X(P(p/2),Q(n/2)) and
o nexty(X) = X(P(p),Q(n)), where p = p(P,Q).

According to Proposition 11.12 and since for (P, Q") = p({P”, Q")) for uniform
p always u(P', Q") = p(u(P",Q")), we obtain that the operation next, for region
processes is well (uniquely) defined. In order to obtain the well-definedness of nezt,,
consider also the monotonicity of p and Fact 11.13.

The following result is used below (see Lemma 11.17) to obtain a symbolic char-
acteristic of waiting for region processes.
Lemma 11.15 Given a set Ry = {{P,Q) | X(P,Q) € X} with X C Xap, the
Jollowing two statements are equivalent:

1. for every (P,Q) € Ry and every d > 0 whenever P 4, P(d) then also Q 49,

Q(d) and (P(d),Q(d)) € Rx; and
2. forevery X = X(P,Q) € X, if P YL then both nexto(X) € X and nexty(X) €
X.
Proof: Consider (1.) = (2.) and assume (P,Q) fixed. Since P . according to
Fact 11.13 for all d € [0, u(P, Q)] P <% P(d). According 1o (1.) we obtain that also

Q 9, Q(d) for all d € [0, u(P,Q)], moreover (P(u(P,Q)/2), Q(u(P.Q)/2)) € Ry.
hence nezto(P, Q) € X, and (P(u(P,Q)), QulP, Q))) € Ryx. so, nezt (P.Q)e X.

As to (2.) = (1.), assume (P, Q) € Ry and d € Q*° with P % P(d) fixed, and
consider the sequence

(Po, Qo) (P.Q1), (P2.Q2).... where

11.3. DECIDING STRONG EQUIVALENCE - 131

e Pp= P and Qo = @, as well as
o Pip1 = Pi{ps) and Qi = Q;‘(Pri) (we abbreﬁate pi = p(P, Qi)

According to (2.) we inductively establish that (P;, Qi) € Rx for all ¢ all the time the

elements (P, Q;} can be defined. I at some stage either Pi(p), or Qi) does not

exist, we have (Px, Qi) € Ry, so we conclude according to (2.) and Fact 11.13 that
the process P cannot continue its waiting: Pi ﬂo, in this case we have pg + py +
Lo+ k-1 2 d

Since for every ¢ the sum po+ p; + ...+ p; can be expressed as [+ c for f being a
fractional part of some P or Q timer value and ¢ € N (it follows from the semantics
of timed processes), as well as both the processes P and @ have just finite number of
different timer value fractional parts, no more than finite number of the elements in
the defined sequence can occur before the time moment d is reached.

So we have either P(d) = P; and Q(d) = Q: for some i, or P(d) = Fi(y)
and Q(d) = Q:(y') with x' < g, in both cases we obtain (P(d),Q(d)) € Ry ac-
cording to (2.) (observe that X(Pi(u"), Qi(#')) = X(Pi(pi/2), Qi(u:/2)) according to
Fact 11.13).0

Let us introduoe in the set X4 p of region processes the relations —— for ¢ € L in
a way X =5 X' iff there exist (P,Q) € X and (P',@’) € X’ such that P - P’ and
Q -5 Q. We use the following notion of symbolic bisimulation in order to give an
efficient characteristic of the set of all bisimilar process pairs (P,Q) € d(A4) x d(B):

Definition 11.16 The set X € X4 isa strong symbolic bisimulation if and only if
forall X = X(P,Q)e X

o whenever P — P' then X — X(P',Q') € X for some Q’;
o whenever @ - Q' then X - X(P',Q') € X for some P';
o whenever P ﬂ', orQ ﬂ, then both nexto(X) € X and next)(X) € X.

Since every (strong) bisimulation Ry C d(A) x d(B) contains together with every
pair of timed processes (P, @) also all process pairs (P, Q') with X(P',Q') = X(P.Q)
(see Lernma 11.7) and the set X, g of all region processes is finite, the following two
results complete the proof of Theorem 11.2 (decidability of strong timed bisimulation
equivalence for PTPs).

Lemma 11.17 The set Rx = {(P,Q) | X(P, Q) € X} is a strong timed bisimulation
tf and only if the set X is a strong symbolic bisimulation.

Proof: Easily obtained from Lemma 11.15, Proposition 11.12 and the definitions.O

CHAPTER 11. DECIDING BISIMULATION EQUNALENCES 132

Lemma 11.18 It is decidable whether a given set X ~ X,08 is a strollg symbolic
bisimulatioll,

Proof: In order tocheck, whether X is a symbolic bisimulaiion (i.e, whether R~ is
a strong timed bisimulation), we take lor every XE X a r,epreseotalive(P,Q)E X
Since ror every tr E L the set of zr-denvatives Pof every given timed process Po
is finite [i,e, the e {P E.'P | Po .Z. P'}). the check whether for all P'fl with
P ..1L. P there exists Q' with both Q" Qand X(P',Q) E X (as well as the case

with Ps and Qs in ch.anged roles) is effective. As to the-case of timed transitions, the
check, whether for given X « XA,a with either P ~ or Q ~ for some (={orevery)
representative {p. Q} E X the processes ne:J:to(X) and ne%td X) existand belong Lo
X are dearly effective.D

Chapter 12

Deciding Weak Equivalence

In this chapter we complete the proof of Theorem 11.4 (decidability of weak bisimula-
tion equivalence for Parallel Timer Processes). We begin with some technical points
about the timer value inheritance.

12.1 Timer Value Inheritance

In this section we briefly consider some technical points regarding the timer value
maintenance along the process derivations. The results of this section will be used to
prove the correctness of the weak bisimulation deciding algorithms below.

Definition 12.1 Let P € P and P g P,. We say that a process Py timer t inherits
the value from the process P timer © € T(P) along the given derivation P 44 Py,

if for every process P’ contained in this derivation and having P 4 p there erists
a timer t' € T(P) with 67 (t') = §P(1°) — & (50, also §74(t) = 67(t°) — d).

Proposition 12.2 If P 24 P, for d < 1, then for every Py timert € T(P,) = T(P)
with 0 < {6F4(t)} < 1 —d the timer t inherits its value from some P timer 1 € T(P)
with {67 (%)} > 0.

Proof: Assume the contrary and look for the earliest process P’ in the given derivation

. . &
P P, such that the P, timer ¢ inherits its value from some P’ timer t', let P’ &) Py

for @' < d. Since P’ is the earliest such process, we infer, according to the semantics
of timed processes and the agreement to have all constants used in P timer settings
integers, that 67'(¢) € N. The definition of the timer value inheritance gives us
6Fa(t) = 6F'(t') — &, due to & < d we obtain {§7(t)} > 1 — d, a contradiction (the
case d' = 0 is excluded by the proposition requirements).0

CHAPTER 12. DECIDING WEAK EQUIVALENCE 134

Fact 12.3 Whenever P i—dg Py, @ g Qa4 for d < p(P,Q) we have p{ Py, Q4) >
u(P,Q) —d.

Proof: Straightforward from Proposition 12.2 and the definition of u(P, @).0

Lemma 12.4 Let for a sequence of process pairs ((P;,@Qi))ies with I = N, or] =

0,1,...,s for some s € N, we have P; HEY Py, and Q; gg Qi+1 with d; = p(P;, Q)

for all i. Then for k* = card(T(Po)), k9 = card(T(Qo)) and i > u(k” + k9 +1)
with u € N-arbitrary we have do + dy + - - + di_y > u.

Proof: Let for every ¢ dy+d; + -+ + di_y = p.. According to Proposition 12.2
we obtain that, if piy; = pi + #(P;, Qi) < 1, then every P timer ' with {§7(t')} =
u(P;,Q;) inherits its value from some Py timer t with {67(t)} > 0, as well as every
Q; timer ¢ with {69 (¥')} = u(P:, Q:) inherits its value from some Qo timer t with
{6%(2)} > 0.

Since the processes Py and Qo have together no more than kP + k9 different timer
value fractional parts, the delays p; €]0,1[can be for no more that kF + k9 different
indices i, so we have pyr 0, > 1. We can now repeat the construction by taking
(Per 41041, @ur4ia+1) 1nstead of (FPo, Qo) as many times, as needed, so obtaining the
result of the lemma.O

12.2 Deciding Weak Equivalence

For the deciding whether the processes A and B are weakly bisimilar, we follow the
same principal lines, as in the deciding strong equivalence, considered in Section 11.3.
We define first the generalized ("weak”) versions of the nezt operators for process
pairs.) :
Let for P € d(A), Q € d(B) for u = p(P,Q)
o whenever P ¥ then NA(P,Q) = {X(P(d).Qd) | Q <2 Qu& 0 < d <)} and
Y « Y
NAP,Q) = {X(P(u), Q) | Q <3 Q7). as well as

o whenever Q %5 then N2(P,Q) = {X4,Q(d)) | P <2 P & 0 < d < 4} and
NE(P,Q) = {X(P',Q(u) | P P}

Fact 12.5 For (P,Q) = (P',Q’) always A/]-’(P,Q) = ACI(P’,Q'), where] = A, B and
7=0,1

Proof: Follows from Proposition 11.12.0

12.2. DECIDING WEAK EQUIVALENCE 135

Fact 12.6 For every X € N{(P,Q) and for every d €)0,u(P, Q)| there exists Qq
with both Q <& Q, and (P(d), Qa) € X.

Proof: According to the definition of V! and the transition relation 2 e have
Qe) dd) o o,

withd; >0 and d; + d; + ...+ d, = & for some d&' €]0, u(P,Q)[-

It is easy to see by the induction along the Q# derivation that if we change in the
derivation of Qu the values of d; to disina way &' > 0and d +dy +...+d; =d, we
obtain the needed derivation of Qg with X(P(d),Q4) = X(P(d'),Qs).0

A similar result can be obtained also for the set VF.

Note: In the case both the processes A and B satisfy the maximal progress assump-
tion, stating that r-labels in the processes can be ascribed only to red (instantaneous)
edges (i.e. the internal actions in the processes must occur as soon as enabled), the
defined sets N&(P,Q), NA(P,Q), NE(P,Q) and NB(P,Q), and, so, also all the de-
ciding algorithm and its correctness proof given below become much simpler (we could

have, for instance, that N3(P,Q) = {X(P(d),Q.) | @ == @ <% Q. & 0 < d < u}).

However, since the overall proof follows the same princtpal ideas as the proof of The-
orem 11.2 (see Section 11.3), we consider just the general case and leave to find the
simplifications, obtained in the maximal progress case, for the reader himself.

The following lemma plays an important role in obtaining symbolic characteristics
of weak bisimulations Ry C d(A) x d(B).

Lemma 12.7 Given a set X C X4 5 with Ry = {(P,Q) | X(P, Q) € X the following
two statements are equivalent:

L. for every (P, Q) € Iéx and everyd > 0, if P £, (d) then Q 44 Qq for some
Qq vith (P(d),Qq) € Rx; and

2. for every X(P,Q) € X, if P ﬂr, then both X' € NN X and X" e NAnX
for some X', X”. :

Proof: (1.) = (2.) follows from Fact 11.13 and the definitions of N and M.
As to (2.) = (1.) assume (P, Q) € Rx and consider the sequence

(Po, Qo}s {(Pr, 1), (P2,Q2),..., where
e Py =P and Qo = Q (so, X(Po,@o) € X), as well as

CHAPTER 12. DECIDING WEAK EQUIVALENCE 136

o Py = Pilw) and Qi 2 Qi with X(Pisr, Qi) € AP(PLQ)N X
abbreviate u; = u(P;,Q;)), such Q.4 can always be taken due to (2.) provnded
X(P,Q:) € X and P, X5,

Clearly, if P — L) P(d), then either the sequence of (P, Q;) is infinite, or P, = P(d')
for & > d for some ¢ (the end of the sequence can be reached at Py only when Py ;ﬂrb)
According to Lemma 12.4 P; = P(d’) for & > d for some i in every case.

So, for a fixed value d with existing P(d) we have either

e P(d) = P, for some i, in this case (P(d), Qi) € Rx as well as Q KOS Q;; or
o P(d) = P;(p') with u’ < y; again we have X (P;,Q,) € & with Q =y Q., so we
obtain (P(d),Q4) € Ry for some Qq with @ LA Q4 from (2.) using Fact 12.6.0
In what follows we give a symbolic characteristic of every weak bisimulation Ry C
4(4) x d(B). U
We introduce for v € LyU{¢} in the set X, p of region processes the relations =

in a way X == X' iff there exist (P,Q) € X and (P',Q") € X’ such that P == P’
and Q == Q'

Definition 12.8 Let for any X C Xap F~(X) be the set of all X(P,Q) satisfying
o if P== P, then X(P,Q) == X(P',Q') € X for some Q’;
o if Q= @', then X(P,Q) = X(P',Q') € X for some F';

o if P ﬂ, then both X' € NHP,Q)NX and X" € NAP,Q)N X for some
X' X" and

o if Q XL, then both X' € NE(P,Q)NX and X" € NE(P,Q)N X for some
X', X"

Then X is a weak symbolic bisimulation, if X C F*(X).

The proof of Theorem 11.4 (the decidability of the weak bisimulation equivalence)
now can be completed by showing the following two results.

Lemma 12.9 For X € X4 5 and Ry = {{P,Q) | X(P.Q) € Xaxp} X is a weak
symbolic bisimulation if and only if Ry is a weak (timed) bisimulation.

Lemma 12.10 [t is decidable, whether a given set X C Ay p is a weak symbolic
bisimulation.

12.2. DECIDING WEAK EQUIVALENCE 137

Corollary 12.11 It is decidable, whether there ezists a weak symbolic bisimulation
X with X(A,B) € X.

Proof of Lemma 12.9: Let A" be a weak symbolic bisimulation. In order to prove
that Ry is a weak (timed) bisimulation, take (P, Q) € Rx. Since X is a weak symbolic
bisimulation and due to Lemma 11.7 all & for & € Ly and ¢- moves by P can be
matched by the corresponding moves of Q, and vice versa (whenever P =25 P’ then
X(P,Q) = X(P', Q') € X, according to the definition of == for region processes
Q= Q" (P',Q') € Ry since X(P,Q) € X).

We show, how to find a corresponding match Q' with @ 29 @ and (P', Q") € Rx
lor P’ with P 24 pr (the case of Ps and Qs in opposite roles is analogous).

Since P O P’ we have a derivation

P=P0=(>P¢;‘(isz=(>P{ﬂ)P2"'Q;_1wQ:=E—‘>Q',=Qd

ford; +---+d, = d and d; > 0 for all i. We inductively establish that there exist
Q:, Q! for al] 7 such that .

o (P;,Q:) € Ry and (P/,Q’) € Ry, as well as

o QX 0 and QB Qiforpi=dy + g +... +di.

Qi == Q! with (P!,Q}) € Ry provided (P, Qi) € Rx is proved already above;
QG Qipr with (P, Qinr) € Ry for (P!, Q) € Ry follows from Lemma 12.7.

The proof that for every weak timed bisimulation Rx = {(P,Q) | X(P.Q) € X}
the set X is a weak symbolic bisimulation is straightforward from the definitions,
Fact 12.5 and Lemma 12.7.0

Proof of Lemma 12.10: Since for every pair of timed processes (P, Q) € d(A)xd(B)
the set of process pairs (P, Q') with P = P’ and @ == Q' for every v € Lo U {¢}
is finite and effectively computable from (P, Q) (though the set of all corresponding
derivations can be infinite due to the repeating 7-loops, observe that the all newly ap-
pearing timer values in the processes in these derivations are integers from a bounded
interval), Proposition 11.12 guarantees the decidability of the untimed match exis-
tence for all processes X(P, Q) with either P ==, or Q =>.

Let us demonstrate the effectivity of the check, whether for given X € X with

P % for some (=for all, see Proposition 11.12) (P,Q) € X both the sets

NAP,Q)NX and NA(P.Q)N X

CHAPTER 12. DECIDING WEAK EQUIVALENCE 138

are not empty. Due to the finiteness of X, p it suffices to show the algorithms,
generating the sets N{{(P,Q) and N{(P,Q) from the given processes P € d(A) and

Q € d(B).
For this purpose we generalize slightly the notion of the region process (compare
the following definition with Definition 11.6).

Definition 12.12 Let for a given set T of timers we denote by AT the set of all
timer value assignments § : T — Q*°. Let for P,, P2 € d(A), @,,Q: € d(B) and
81,8% € AT we say that (P,@,8") = (P2, Q2,8%) iff

e vF = v and v¥ = v93, and
o 6P 6 2 6P 1 59 1 82
{see Section 11.2 for the definition of the relation = for timer value vectors).

Let X] 5 be the partitioning of (d(A) x d{B)) x AT, generated by the relation =, let
for every triple (P,Q,8) € d(A) x d(B) x AT X(P,Q,6) denotes the element of the
partitioning X7 5 to which the triple belongs to (i.e. (P,Q,8) € X(P,Q,6)) and is
called a (refined) region process, corresponding to (P, @, §).

Let us mention the following simple properties of the refined region processes.

Fact 12.13 Whenever X(P,Q,6) = X(P',Q’,8') for any 6,8, then always X(P,Q) =
X(P,Q).

Proof: Follows from definitions.0

Fact 12.14 (P,,@Q1,6") = (P;,Q,, 6% if and only if there exists a uniform mapping
p, such that (P, Qy,8") = p({Fy, @2, 6%)).

Proof: Follows from definitions.0
Let for a given triple (P,@,6) p(P,Q,6) be the minimal timer value fractional
part among either P or @ timer values, or the values 6(t) for t € 7.

Fact 12.15 For P € d(A), Q € d(B) and 6 € AT, if P 2% and Q X%, then for all
d,d €]0, u(P, Q, 6)] elways P(d), Q(d), P(d"), Q(d) ezist and

X(P(d),Q(d),6 6 d) = X(P(d'),Q(d), 6 & d).

Proof: Follows from the semantics of processes and the definition of refined region
processes. O

Definition 12.16 We define the processes nezty(X) and next,(X) for X(P.Q,6) €
XI.B with u(P,Q,8) = p in a way

12.2. DECIDING WEAK EQUIVALENCE 139

e nexty (X(P,Q,8)) = X(P(r), @(n),6 6) and
o nezto(X(P,Q,8)) = X(P(n/2),Q(n/2),6 © u/2).

Fact 12.17 For every region process X € X] g the processes nezto(X) and next,(X)
are unique (i.e. the operations nexty and next, over the refined region processes are
well-defined).

Proof: Assume X(P,Q,8) = X(P',Q',§'). According to Fact 12.14 (P',Q', &) =
p({P,Q,8)) for some uniform p. So we have u(P’,Q",§) = p(u(P,Q,6)), denote
1= u(P,Q,6).

Clearly, (6% :: 69 ::) © u = p(6 =2 69 =:) © p(u), s0
X(P(u),Q(u)6 © p) = X(P'(p(n)), Q'(p(1)), &' © p(u)),

what means the well-definedness of nezt,.
In a similar way
X(P(p/2),Q(n/2),6© 1/2) = X(P'(p(1/2)), Q' (p(1/2)). 8 © p(1/2)).
According to Fact 12.15 and the uniformity of p we have also

X(P(1/2),Q(p/2),6 © u/2) = X(P'(p(1)/2), Q' (p(1)/2),8' © p(1)/2),
i.e. the well-definedness of nerty.0

Now let us continue the pr@f of Lernma 12.10. Let us define 7 = {to} and let
8(to) = 1+ u(P, Q). Let for every region process X € X7 g the transitions ——, —
and — for the process) edge e € E(Q) (=for the process B edge) with lab(e) = 7
be defined as

o« X < neatT(X),

e X = next?(X) and

o X(P,Q,8) <+ X(P',Q",6) for e € E(Q') with @' <5 Q".

Let R}, be the set of region processes X(P’,Q’,6) which are reachable from
X(P,Q,) using the defined transitions — and —. Let Rpq C R} ¢ be the set of
processes with a derivation containing at least one — transition. We let also Rp g to
be the set of region processes, reachable from processes of R}, by one — transition,
followed by a number of — transitions.

Easy to see that both the sets Rpg and Rpg can be computed in a finite time
from the given processes P € d(A) and Q € d(B).

The proof of Lemma 12.10 now is completed by providing a simple decision algo-
rithm via the following result.

CHAPTER 12. DECIDING WEAK EQUIVALENCE 140

Proposition 12.18 NV3(P,Q) = {X(P', Q) | 36: X(P',Q',6) € Rpq) and
NP, Q)= {X(P',Q)|36: X(P',Q'8) € Rpy}.
Proof: Consider first X(P(d), Qq¢) € NJA(P, Q). According to the definition of A

we have @ « Q. for some d €0, u(P, Q)][, so according to the definition of A e
can obtain

(dx)

¢ , e(dy ¢ + eld; + «]
Q=Q== Q™M =0 ™0 @, ™. Q.=
with dy +---+d; =d and d; > 0 for all i. Easy to see that for p; =d; +--- +d; Wi

o for every i <z X(P(p:),Q:,8° — pi) =524 .. =% X (P(pi), QL 8° — pi) with
e; € £(Q) for j =1,2,...,u, as well as

o for every i <z X(P(pi), @i, 8° — pi) — X(P(pis1), Qis1, & — pisa) (according
to Fact 12.3 and the definition of 6° we have u(P(p:), @4, 8% — pi) > diy1),

so we inductively along the derivation of Q4 conclude that all the abovementioned
region processes X (P(p:), i, 6 — pi) and X(P(pi), Qi, 8 - pi) belong 1o the set Ry,
so

X(P(d))Qdyso - P:) € R%_Q-
Since d > 0, we have z > 0, so
X(P(d))Qdyéo - P:) € RP»Q)

as requested.
As to X(P(p),Q.) € NJ(P,Q), consider again a derivation

e(dy)

Q=Q==0Q, ™M =% ™, .Q_, M = Q. =q.

withdy +---+d; = p and d; > 0 for all 1.
As in the above case we establish X(P(p;-1),Q,.,,8° = p:1) € Rp . Fact 12.3
gives us
#(P(Pz—l)v Q’x—h&o - P:-)) 2 I‘(Pvaé-o) = Pz-1,

according to the definition of §° we obtain
#(P(P:—l), Q;_ly‘so - P:—)) = f‘(Pv Qv6o) = Pz-1,

s0, according to the definition of —5, we obtain X(P(u),Qx,8° —) € Rpg, hence
also X(P(u),Qu, 8 — p) € Ry, as requested.

12.2. DECIDING WEAK EQUNALENCE 141

Assume now X € ropq letus prove that (P(d),Q~,5Jl-d) E X for some dE [0,1]
and some Q~with . Q~ Q-~.

Since X E U:.,Q it has ee.derivation from X(P, Q,CO) by the defined
transitions. We find 1.0edelay d and the pfocess Q~inductively along the derivation
of X. For the empty derivationtake t! == and Qo == Q.

Regaxding the induction step for X E HJ.,Q assume X = X(P(d)., Q~,F?- d) with

d E\O, ~bnd Q~ Q~. Consider 2 cases:

o X .Z.,, X' = X(P(),Q,F? - d), in this case Q~~ Q'and, so, Q ~ Q'
follows from the definition of the transrtion relation ~;

’

o XXY, according to Fact 12.5 we have

X =XPd), Qat), ~ - d+t) for I =(FPE), Qd'~ - d)2

It is easy to see that, if there isat least one™:™ transition in the derivation of X, we
have also the corresponding delay d > O.
For X E Ifp,Q consider again the derivation of X by ...~ and from

X(P, Q,CO), the existence of appropriate Q-~. again is straightforward.Cl

Chapter 13

Equivalences for PTP
Enrichments

In this chapter we outline the bisimulation equivalence decidability proofs for two
enrichments of the basic PTP model. Regarding the processes with nondeterminis-
tic timer settings (see Section 13.1) the obtained result appears to be mostly of the
theoretical interest for it is just outlining a slightly more general model with timing
with the decidable both strong and weak bisimulation equivalences. The second re-
sult regarding the processes with the dependencies on rational-valued external data
could be, at least in principle, of larger practical importance for the principally new
modelling abilities possessed by the processes (however, only a brief outline of the
proof is given in Section 13.2).

13.1 Processes with Nondeterministic Timer Set-
tings

In this section we consider the deciding bisimulation equivalences for bounded PTPNs
(see Section 10.3). The PTPNs have already got labelled transition system semantics,
the definition of bisimulation equivalences for them is standard (see Definition 11.1
and Definition 11.3).

Regarding the deciding the strong equivalence for PTPNs, it does not contain any
new ideas, if compared with the basic PTP case. Since the decidability of the strong
equivalence follows from the decidability of the weak one, we further on focus only on
the weak equivalence for PTPNs.

Also the proof of the decidability of the weak bisimulation equivalence for PTPNs
appears just to be a generalization of the corresponding proof for the basic PTPs and
follows the same schema. What turns the situation with PTPNs more complicated,
is that we cannot give any upper bound for the number of times per time unit when

13.1. PROCESSES WITH NONDETERMINISTIC TIMER SETTINGS 143

some tirer in the process reaches the 0 value (so, possibly enabling a transition along
a new edge), Lemma 12.4 does not generally hold for PTPNs.

Theorem 13.1 There ezists an algorithm which, given two bounded PTPNs A and
B, decides whether A~ B, A= B, or not.

Proof outline: First of all observe that the generalization of Lemma 11.7 and Propo-
sition 11.12 to the case of PTPNs is completely straightforward (one does not need
even the boundedness at this stage) with the only new point in showing that, if
P =25 P, then for a uniform mapping p also p(P) == p(P'), what can be dealt with
by observing that all interval bounds in the edge e timer setting are (taken) integers.i:
The finiteness of the intervals in the edge timer settings is important to ensure the
finiteness of the region process set X4 . -
Let us show, how, given a set X C X, g, check, whether the corresponding set

Ry ={(P,Q) | X(P,Q) € X} C d(A) x d(B)

is 2 weak bisimulation (in the case of the strong bisimulation the proof continue to
go precisely along the same lines, as in the case of PTPs, and is demonstrated in
Section 11.3).

Clearly, given X € X and a representative {P,Q) € X, the test whether all real
(i.e. = or ==) transitions of P into P’ can be matched by corresponding transitions
of @ with the resulting pair of processes in Ry 1s straightforward, though in the case
of nondeterministic settings there can be infinitely many different target states after
performed some real transition, these states can be easily grouped w.r.t. the region
processes the pairs (P, Q) belong to.

Using the techniques similar to those of the proofs in Section 12 2 one can reduce
the proof of the decidability of whether Ry for given X is a bisimulation to the
following lemma.

Lemma 13.2 Given (P,Q) € Rx such that P W1, it is decidable whether for all
d € [0, u(P)] there ezists Qg with both Q <& Q4 and (P(d), Q) € Ryx.
Note: Observe that we are using here u(P) instead of u(P, Q) used in the formulation

of Lemma 12.4 for Lemma 12.4 being not generally true for PTPNs. The building of
the sequence

(PO)QO)’ (Pth)a (PZ)QQ)P LY

as in the proof of Lemma 12.7 now is based on the idea of Py; = Fi(p(F;)) and is
used together with the result of Lemma 13.2 directly in the proo{ of the decidability

whether for a given pair of processes (P,Q) € X € X all 4, moves of one. process
can be matched by 24 rmoves of another Process.

CHAPTER 13. EQUIVALENCES FOR PTP ENRICHMENTS 144

Proof: Let py,puq,...,p, be all different P and @ timer value fractional parts with
0<pm <...<p,=p(P)

We define 7 = {t1,1,...,4,} and let §°%(¢;) = 1 + p; for all i = 1,2,...,5. Let
us define for every refined region process X € ’Y},H the transitions X — nezt (X),
X =5 neztT(X) and X(P',Q',6) = X(P',Q",6) for e € E(Q') with @ =5 Q"
(observe that the transition — of the region processes can still have more than one
target for the same source process). Let — denotes any sequence of — and ——
transitions.

Let Rpgq be the set of region processes X (P’,Q’,6) which

o are reachable from X (P, Q, é;) using the defined transitions ——, —— and ——,
and :

¢ have é(t,) > 1 (i.e. we consider the waiting only until the least P timer value
fractional part reduces to 0).

Easy to see that the set Rpq can be computed in a finite time from the given processes
P € d(A) and Q € d(B).

Fact 13.3 Whenever (P(d),Q',6) € X € Rpq we have 6 = 6% — d.

Proof: Follows from definitions.0
Let X = {X(P',Q",8) | X(P',Q'") € X}. Easy to see that the proof of Lemma 13.2
can be obtained from the following result.

Lemma 13.4 For Q' € d(B) Q & Q' and (P(1),Q.) € Ry if and only if
X(P(1:),@',6) € Rpg N X for some & with §(t;) = 1.

Given d with p; < d < piyy (resp. d < py) there ezists Qq with Q «“ Qa4 and
(P(d),Qd) € Ry if and only if X(P(d),Q',8) € Rpg N X for some Q',d',§ with
8(t) < 1 < 8(tis) (resp. 1 < 6(t1)).

Note: Have one proved the lemma, it would be possible for every interval Ju;, pit1|
(and every fixed delay value y,) to look in the generated set Rpgo whether it contains
a region process with corresponding values §(¢;), which belongs to X, so finding out

the answer about the timed match Qg with Q LLY Qq and (P(d),Qa) € X existence
for all d < u(P) = u,.

Proof of Lemma 13.4: Let for d,d’ < p(P) = p, d ~ d' whenever dAy; iff d'Ay;
for A € {,2},i€{],...,s}. Consider the following two propositions.

Proposition 13.5 IfQ L Qu for somed € [0, p,}, then X (P(d),Qa4,8°—d) € Rpg.

13.1. PROCESSES WITH NONDETERMINISTIC TIMER SETTINGS 145

Proof: According to the definition of 29 e have

e(ds)

Q=== ™e 0., e 5. =0
with dy +--- +d; =d and d; > 0 for all i. Easy to see that for p; =d, +---+d; Vi
e foreveryi <z X(P(p) Qi 8° — p;) 5 L = X(P(pi), Q, 8° — pi) with
e; € B(Q) for j =1,2,...,u, as well as
o for every i <z X(P(p:), @4 6% — pi) — X(P(Pis1): Qi41,8° — piy1).0
Proposition 13.6 Given d € [0, s,], whenever (P(d®),Q',6° — d°) € X € Rpgq for
some d® = d, there ezists Qq with Q <2 Qy and (P(d), Qa,6° — d) € X.

Proof: We prove first that (P(d'),Qa, 8 — d') € X with Q “ Q, for some & €
[0, 4,]. Since X € Rpg, it has a derivation from X (P, Q, 6% by the defined —, =
and — transitions. We find the delay & and the process Qg inductively along the
derivation of X. For the empty derivation take @’ = 0 and Qo = Q.

Assume for X € Rpq X = X(P(&),Q},6° — &) with Q &2 Q. Consider 3
cases:
[3 &1, e(d’
o X 54 X' = X(P(d),Q',6° — &), in this case Q) =5 Q' and, so, Q % @
follows from the definition of the transition relation —;
o X - X', we have X’ = X(P(& + &), Q4(d"), 6° — (& + d"))
for & = (u(P(d), Q4 8° — &))/2 and Q “Z5" Qu(a;

e X =5 X', we have X' = X(P(d' +d"),@y(d"),&® — (& +d"))
for & = p(P(d"), ', & — &'), again Q “C5 Q/(d").
Observe that in the case of d = p; we have also d° = p;, the proved result gives us
already the needed Qg4 with @ « Q. for in this case (P(d'), Qur,6°—d') € X requires
8(¢;) — &' =1 (we have
(P(d,Q,8° - d° € X and &°(t;) — d° = &°(t;) — mi = 1,

hence §°(¢;) — @ = 1 (recall the definition of region processes), so, d' = p;.

Since @ gg Qa, we have a derivation

Q== @, ™. ==

for dy +---+d; = d and d; > 0 for all i. The idea is to change the delays and the
timer values in this derivation slightly in order to have it ending with @4 and have

X(P(d),Qq4,8° —d) = X(P(d),Qu, 8 - &).
Since in the case u; < d < iy we also have p; < & < piyq and, so, i < d' < pipy

CHAPTER 13. EQUIVALENCES FOR PTP ENRICHMENTS 146

(80(t:) — d° < 1 < 6%tiyy) — d°, 50 82(2;) — d' < 1 < 8%(tign) — ',

we let puo = 0 to allow to treat the case d < u; uniformly), we can take a uniform
mapping p : Q% — Q*° (see Definition 11.8) satisfying

o p(z) =z for all z € [u(P),1] and for z = p;, 1 < 5
o o(d) = d.

It follows from Fact 11.10, Fact 11.11 and Proposition 11.12 that we obtain the deriva-
tion of Q4 with X(P(d), Qq4,8° —~ d) = X (P(d"), Qa:, 6° — d') by changing every timer

value g = §9+(t) of the process Q., placed in the derivation of Q4 in a way Q L Q.

to pa(g)-0 _
The result of Lemma 13.4 and, so Lemma 13.2, now can be obtained from Propo-
sition 13.5, Proposition 13.6 and Fact 13.3.000D

13.2 Processes with Data Dependencies

In this section we briefly outline the bisimulation deciding algorithms for the processes
which can depend both on quantitative time constraints and rational-valued external
data, namely, we consider PTPQs from Section 10.4.

We assume that PTPQs have already got the semantics in the terms of labelled
transition systems (analogically with PTPBs) over the transitions =5 for o € L,

u € Q, and) tor d € Q*°. So, the definitions of the bisimulation equivalences for

PTPQs is standard (for the sake of sirnplicity we consider only the strong bisimula-
tions, defined to be the relations R C P9 x P? such that for every (P,Q) € R and
every v € (L x Q) U{e(d)ld € Q*°)

i) whenever P —— P’ then Q —— Q' with (P, Q") € R for some Q’,
i) whenever @ —— @’ then P —> P’ with (P, Q") € R for some P’

and the strong bisimulation equivalence, written ~, defined as the largest strong
bisimulation).

Theorem 13.7 There ezists an algorithm which given two PTPQs A and B decides
whether A ~ B, or not.

Proof outline: The proof follows the same principal lines, as the proof of Theo-
rem 11.2, we outline the different points.
First of all we construct the region processes. For this purpose we assume all timed
constants (those used in the settings yr(e)) in both the graphs of A and B integers.
We define also an equivalence relation = in the set of the data variable value
vectors §w : (W(A) U W(B)) — Q in a way that 6! =, §? if for every ¢,

13.2. PROCESSES WITH DATA DEPENDENCIES 147

o 5(t) < 8'(t') i 6%(t) < 6*(t') and

o &M t) < c (6(t) 2 c) iff 8%(t) < c (8%(t) > c), here c is any constant used either
in A, B graph edge variable settings ¢w(e), or in conditions 1w (e).

Two process pairs (Py,Q;) and (P;, @) for P; € d(A) and Q; € d(B) with the
corresponding states

(o7, 67, 63) and (9, 67", 6%)
are called equivalent, written (P, Q) =p (P2, Q3), if and only if
o v = v and v9 = v,
o 55 631 = 6P 1 632 (cf. Definition 11.6) and
i 6y

A region process is a class of equivalent process pairs.
The uniform mapping technique is also used to characterize the equivalent process
pairs, in fact we have that (P, @) &p (P,, Q) if and only if

o vt = v/ and v9 = v@2,
o R 6?’ = p(65 = Sg’) and
o 60 = pu(6f = 63)

for a uniform p (see Definition 11.8) and a strongly monotone, A and B data constant
preserving, mapping pr,.

The analogues of Proposition 11.12 and Lemma 11.7 for PTPQs with the defined
equivalence relation =p are obtained in a similar way, as the original results are for
PTPs. Observe that the data part of the PTPQs is insensitive to the process waiting,
so also the symbolic characteristic of the bisimulations is obtained for PTPQs in a
rather similar way, as for PTPs (see Definition 11.16), one just defines for P € P?
P 2+ P’ whenever P =5 P’ for some u € Q. Also the decidability of the symbolic
bisimulation predicate for PTPQ region processes can be obtained easily.O

If one tries to obtain in a similar way a bisimulation deciding algorithm for PTPBos
the first problem encountered would be the unawareness, how to obtain an appropriate
finite partitioning of the data variable value space to have an analogue of Lerama 11.7
holding. Intuitively, the difficulty lies in the "individuality” of every integer number,
which can be sooner or later forced to appear in the possibility or impossibility of
some chains of transitions.

CHAPTER 13. EQUNALENCES FOR PTP ENRICHMENTS 148

h is hardly believable that the bisimulation equivalence problems for PTPBo,s
could be decidable by ally method, howevee, this hypotheses still needs some kiod
of proof statement. Perhaps one could look abo to some very restricted cases of
PTPBs, e.g., to the processes, pennittillg the comparison of the data variables in the
edge conditions only on being equal or not equal, (actually, for just this class the
deeidability of the bisimulation equivalence problems seems to be the case).

Chapter 14

Compositional Properties of PTPs

The Parallel Timer Process model allows a number of useful algebraic operations to
be defined over the processes, these are mostly vartous kinds of static process algebra
combinators, such as hiding, renaming, parallel composition, etc. (see [Hoa85, Mil89]
for the use of combinators in process algebras).

In this chapter we show how two kinds of parallel composition operators can be
defined for PTPs: one in the spirit of the CSP parallel composition ([Hoa85]), see
Section 14.1, the other one (considered in Section 14.2) resembling the parallel com-
position of Timed CCS ([Mil89], [Wan90]). We define in Section 14.2 also other
CCS-style static process algebra combinators and discuss how to use these composi-
tionality properties for the modelling of a large class of Timed CCS processes from
(Wan90] by PTPs. Such a modelling allows us to decide bisimulation equivalences for
the considered class of TCCS processes (called here TCCS nets).

For the sake of simplicity we do not consider in this chapter the processes with
value-passing (such as PTPBs and PTPQs from Section 10.4), we restrict our attention
just to the basic PTP model.

Let for a Parallel Timer Process A we write v —4 v’ for v,v' € V(A) and
e € E(A) with f(e) = v, t{e) = v’ and labe) = 0.

Technically, if we have a mapping ¢ : 7 — 7 U Q*° for some finite set 7 then
define for a finite set X the mapping

(6x X): (T x X)—= (T x X)uQ™®
n a way that for every z € X
o (¢ x X)((t,z)) = (¢(t),z) whenever ¢(t) € T, and
o (6 x X)({8,2)) = 4(1), if (1) € Q.

For T; and 7; being disjoint sets and the mappings ¢; : 7y —» TyUQ*% and ¢, : T —
7: U Q*° let the mapping

d=(*¢): (HUT) = (TUT)UQ™

CHAPTER 14. COMPOSITIONAL PROPERTIES OF PTPS 150

be defined as ¢(t) = ¢ (t) for t € Ty and ¢(t) = ¢o(t) for t € T5.

14.1 CSP-like composition

Recall that we have L to be the set of events for PTPs (used as edge labels), as well
as L = LoU {7} for 7 & Lo being an invisible (internal) event.
Let for a timed process A rlebs(A) C L denote the set of labels which are ascribed
to the red edges in A (i.e. rlabs(A) = {¢ € L | e € R C E(A) with lab(e) = 0}).
Let A and B be timed processes and K C Lo with

K N(rlabs(A)Urlabs(B)) =0 .

be some set of visible events. We define the process C = A | [K] |csp B called the
(CSP-like) parallel composition of A and B with the synchronization on the event set
K in a way

e V(C) = V(A) x V(B) and
o T(C)={(t,1) |te T(A)} U {{t,2) |t e T(B)},
as well as (v, w) e (v',w’) for o € L if and only if one of the following holds:

eceL\K,w=uw € V(B)and v =5, v’ for some ¢ € E(A), the colour of & is
inherited from that of e and

- 29(8) = A(e) % {1,
- 6°(8) = #(e) x (1) or

s c€L\K,v=v' € V(A)and w5 p w' for some e € E(B), the colour of é is
inherited from that of e and

- 7°(&) = 78(e) x {2},
= ¢°(&) = ¢%(e) x {2} or

eccKand v, v, wiSp w for some e € E(A), ¢ € E(B) (in this case
the colour of é necessarily is black) and

—7‘7(5)=‘r‘(e x {1} U~8(¢') x {2} and
- ¢°(8) (e") x {1}) = (¢5(e") x {2}).

14.2. CCS-LIKE COMPOSITION 151

The initial state of C is defined in a2 way v© = (v%,v®) and 6C is a mapping with
8€((t, 1)) = 64(t) for t € T(A) and 6°((t,2)) = &B(2) for t € T(B).

“Intuitively, two processes, working in parallel, are assumed ta synchronize on all
real visible actions ¢ € K (they necessarily must be ascribed to black edges), in all
other cases the actions can be performed by the processes A and B independently.

The soundness of the defined parallel composition operator w.r.t. the rules defining
the operational semantics for the Timed CSP processes (see [Sch9l]) is justified by
the following results which follow imrmediately from the composite process definition
and the semantics (labelled transition system) of PTPs.

Theorem 14.1 A|[K]|csp B = C fora € K if and ondy if C = A" | [K] |csp"
B' and A 25 A", B2 B’ for some A',B'.

Theorem 14.2 A | [K] lcsp B -5 C foro € L\ K ifand only if C = A’ |
[1\,] |csp B’ with either

e o€ L, B=FB and A2 A for some A’ or
eo€L, A= A and B2+ B’ for some B'.

Theorem 14.3 A | [K] lcsp B <2 C if and only if C = A" | [K) |csp B’ with

AL 4 g B

14.2 CCS-like composition -

In this section we describe another parallel composition operator for a subset of Paral-
lel Timer Processes, resembling the parallel composition (synchronization) of the pro-
cess algebra CCS [Mil80, Mil89) treating the time modelling, as in [Wan90, Wan9la,
Wan91b).

For this purpose we assume that for every visible event @ € Ly there exists a
complementary event @ € Lo such that @ = a.

We call a Parallel Timer Process A a TCCS-like process, if an edge e in A automa-
ton is red if and only if it is labelled by the invisible action 7 € L (this guarantees, by
the way, the property of the processes, called in [Wan90] the maximal progress, stating
that every internal action in a process must occur as soon as it becomes enabled).

For A and B being TCCS-like timed processes, let the process C = A |lccs B
called the (CCS-like) parallel composition of A and B be defined to have

o V(C) = V(A) x V(B), .
e T(C)={{t,1) |t e T(A)}U{{t,2) |t € T(B)} and

e
[L&]

CHAPTER 14. COMPOSITIONAL PROPERTIES OF PTPS 1:

o (v,w) AN (v',w’) for a 0 '€ L in the following three cases (we do not discuss
the edge colours separately since they are determined by the edge labels):

~w=uw € V(B) and v =5, ¢’ for some e € E(A), as well as y¢(¢é) =
y4(e) x {1} and ¢€(&) = ¢%(e) x {1}; or
—v =10 € V(A) and w ©S g w' for some ¢ € E(B), as well as 7€(¢) =

7B(e) x {2}, (&) = ¢7(e) x {2}; or

—o=rand v oS, v, w Dﬁs w' for some ¢ € E(A), ¢ € E(B) and
a,& € Lo provided

* 19(&) = v(e) x {1} U7P(¢') x {2} and
* ¢C(&) = ¢4(¢') x {1} » ¢°(e”) x {2}.

As in the case of the CSP-communication, the initial state of C is defined in a way
v€ = (v*,vP) and € being a mapping with §€((t, 1)) = §4(t) for t € T(A) and
§6((t,2)) = 68(t) for t € T(B).

Intuitively, two processes, working in parallel, are assumed to be able to synchro-
nize on all complementary pairs of visible actions «,& € Lo (unlike the case of the
CSP-like parallel composition, in this case the actions a € Lo still can be executed
without the participation of the other component, what makes some restrictions on
such an independent execution is the necessary instantaneous performance of the in-
ternal action whenever both the "complementary” actions become available). Some
further operations like restriction of CCS ([Mil89}) can be used to prevent a process
to exhibit the transitions associated with certain visible actious, so, for instance, en-
forcing in some cases the process to wait for the complementary action to become
enabled (if no other alternatives are offered).

The soundness of the defined parallel composition operator w.r.t. the rules defining
the operational semantics for the Timed CCS processes (see, for example [Wan90]) is
justified by the following results which follow immediately from the composite process
definition and the semantics (labelled transition system) of PTPs.

Fact 14.4 A CCS-like parallel composition of two TCCS-like timed processes also is
a TCCS-like timed process.

Let for given PTP P for every edge e € E(P) outgoing from the P initial vertex
(ie. fle) = v©) a(P,e) = maz{6P(t) | t € ~(e)} (according to the definition of
the processes (P, e) is the earliest time when a transition of P along e may occur
provided no other transitions fire before). Let for a € L

E(a,P) = {e € E(P)| f(e) = v* & lab(e) = a}

14.2. CCS-LIKE COMPOSITION 153

(E(a, P) is the set of the o-labelled P edges, outgoing from its inifial vertex). We
define for every o € Lg the earliest a-enabledness time of P (provided no other
transitions fire before) to be

#(P,a) = min{ji(P,e) | e € E(a, P}

The following results again are straightforward from the definitions.

Theorem 14.5 A ||ccs B e if and only if

o for every a € Ly either p(A,a) > d, or y(B,q) > d, and
o C= Alllcos B with A% 4, B pr.

Theorem 14.6 Allccs B — C fora € Lo if and only if C = A’ |lces B’ for
some A', B’ with either

e B=B and A A, or

e A=A and B4 B'.
Theorem 14.7 Allccs B — C if and only if C = A’ llccs B’ for some A', B’
with either

e B=PB and A A, or

e A=A"and B B, or

o A= A' and B -2+ B' for some o, € Lo.

In particular, these results show that, if one succeeds to interpret two Timed CCS
processes (see [Wan90]) as PTPs, their parallel composition also can be interpreted
as a PTP retaining the consistence with the Timed CCS process semantics.

We define also relabelling and restriction combinators of CCS (inherited also by
Timed CCS) for TCCS-like Parallel Timer Processes.

Let A be a TCCS-like PTP and g : Ly — Lo be a bijective mapping which for
every a € Ly satisfies g(@) = g(a). We assume also g(7) = 7 and define the process
Alg] (the process A, relabelled by the function g) in a way:

o V(Alg]) = V(A), T(Alg]) = T(A) and £(A[g]) = E(A) (also the edge incidence
functions f and ¢, as well as the conditions -y and timer settings ¢ are inherited
by Alg] from A);

CHAPTER 14. COMPOSITIONAL PROPERTIES OF PTPS 154
o for every ¢ € E(A) the label of e in Afg]

labag(e) = g(labae)).

As to the restriction combinator, given a process A and a label set X C Ly such
that @ € K implies @ € K, the process A\K (A with the restriction not to participate
in-the events from K) is defined by erasing all edges e from A automaton which are
labelled by lab(e) € K.

Clearly, we have the following results which justify the soundness of the defined
operators w.r.t. the original semantics of Timed CCS, given in [Wan90] (neither the
bijectivity of ¢, nor the complement preservation is important for the proofs of The-
orem 14.8 and Theorem 14.9. These properties, already present in the TCCS calculi,
just guarantee some nice laws to hold in the obtained algebra):

Theorem 14.8 For every o € L Alg] — B if and only if A B for o = g(d"),
B = B'lq].

Theorem 14.9 Alg) 25 B if and only if A <% B with B = B'[g).

Theorem 14.10 Foro € I A\K - B if and only if A > B’, B = B'\K and
sd K.

Theorem 14.11 A\K LA if and only if A 4 B and B = B\K.

Proof: Observe that while constructing A\ K we have not elin\jnated any red edge
from the process A graph.O

So we have defined for PTPs all the Timed CCS static combinators (parallel
composition, restriction and relabelling). Let us consider also the class of regular
TCCS processes which is constructed by the combinators

o NIL, the process constant which can do nothing but idle:
NIL Y9 NIL for every d € Q*°;

s action prefix 0.P for ¢ € L and a process P denotes the process which first
does ¢ and then behaves as P (for ¢ = a # 7 also an arbitrary delay of 0.P is
possible):

0P “+P and a.P Y ap

14.2. CCS-LIKE COMPOSITION © 15

-\summa'tion P + @ which has the following semantic rules:
PP QL@

P+Q-5 P’ P+Q-5(Q
PP QB¢
P+Q¥piq’

and

as well as mutually recursive guarded defining equations (see [Wan90], or [HLW91]
for the class of regular TCCS processes described more precisely).

Let us call a TCCS net every process which is obtained from regular processes by
(possibly repeated) use of parallel composition, restriction and relabelling combinators
{with the semantics, as defined in [Wan90}).

The modelling of regular TCCS processes as PTPs clearly can be done effec-
tively in one or other way (one can even manage to exhibit such a translation into
one-timer PTPs, if considering the semantics modelling up to the weak bisimulation
equivalence), we do not consider the details. Let us just note that, observing the de-
cidability of both strong and weak bisimulation equivalences for PTPs (Theorem 11.2
and Theorem 11.4), we have the outline of the proof of the following resuit.

Theorem 14.12 The strong and weak bisimulation equivalences for Timed CCS nets
are decidable.

It is not difficult to "cook” also various other parallel composition operators for
PTPs, perhaps also some making more essential use of the red edges with visible
labels in the processes. If one considers EPTPs, introduced in Section 10.2 the par-
allel composition with the broadcast communication between processes, introduced
in [Pra91], can also be easily modelled (actually, as the result of this modelling some
kind of timed broadcasting process model will appear).

For some undecidability results concerning the analysis of Timed CCS processes
see also Chapter 15.

Chapter 15

Timed Processes with Memory

Though the PTP model, introduced in Sectior 9.1, and its enrichments, considered
in Chapter 10, allow to describe infinite behaviour in time with overlapping time con-
strained intervals (simultaneous decreasing of timers for a number of parallel system'’s
components), these models still are not able to express every reasonable timed be-
haviour. As a very simple example of such behaviour one can consider an ice-hockey
timer [Wan91b] which can be interrupted at any time after the initial start-up and
later restarted with the value of the remaining time interval (i.e. the time left before
the time-out) the same it possessed at the moment of the interruption. One can easily
add to the PTP model some additional means, say, the memory cells for storing the
current timer values and retrieving them afterwards in appropriate moments (it is
reasonable to associate such moments with the real transitions in the process), which
would allow to capture also this kind of timed behaviour.

More precisely, one obtains a parallel timer process with memory (PTPM, for
short), if one adds to a given PTP

A = ((‘l, E, L) labv T? T ¢)y (U, 6))

a set M of memory cells and extends every edge timer setting ¢(e) for ¢ € E to be
the timer and memory cell setting

#le): (TUM)— (TuM)uQ*™.

Intuitively, the new operations to be performed while executing the transitions along
some process edges are of the sort of "remember”: m; — t; and "retrieve™: t; — m;
for t; € T,m; € M (the assignment of constants to memory cells and the value of
one memory cell to another is of less interest).

The semantics (labelled transition system) of PTPMs can be easily obtained as
a generalization of that of PTPs: every state for a PTPM A consists of its graph's
vertex and a value assignment 6 : 7 U M — Q*° both for timers and memory cells.

157

Every timer and memory cell setting ¢(e) is "executed” every time when a transition
along the edge e fires, and it works, as for PTPs, by defining the new values §'(u) for
2 €T UM in a way

o §(u) = 8(u'), if u' = ¢(e)(u) € T UM, and
o &'(u) =c¢,if ¢ = ¢(e)(u) € Q*°.

The main difference of the memory cells from the timers is that the values of the
memory cells do not decrease during the passage of time as the timer values do
(whenever

(®, (v,6)) 2% (3, (v, 8),

then &(m) = é(m) for every m € M).

The following results show that the bisimulation equivalence deciding algorithms
developed for PTPs cannot be extended to cope also with PTPMs.

Let for any PTPM A d(A) denote the set of derivatives of A (the least set
containing A and closed under the transition relation).

We call a vertex v € V in a given PTPM A = (®, so) reachableif (®, (v, 8)) € d(A)
for some timer and memory cell value assignment §.

Theorem 15.1 The vertez reachability problem for PTPMs with 5 timers and 1 mem-
ory cell is undecidable.

Corollary 15.2 The bisimulation equivalence pmblcm PTPMs with 5 timers and 1
memory cell is undecidable.

Proof of Theorem 15.1: We consider a variant of Minsky machines (defined
originally in [Min67]) with the allowed operations for every counter Z; (i = 1,2)
being (compare with the proof of Theorem 8.1 in Section 8.1)

, ’ ’ » where
by the definition £ 6y = maz {0,z — y}. We assume also that every Minsky machine
has 0 as the initial values of its counters. The proof of the theorem is done by reducing
the halting problem of the Minsky machines to the vertex reachability problem for
PTPMs.

It is easy to see that one can effectively construct for a given Minsky machine M
with 0 initial values for its counters a corresponding bounded machine B(M), with
variables z;, 2,73 and allowed operations over them

Z;—7Z;+1 Zi—Z; 61 l—— Z;=0 STOP

o z; —z;/2for i =1,2,3,

o T, — ;41,1 — 12,07 fori =2,3,

CHAPTER 15. TIMED PROCESSES WITH MEMORY 158

o tests r; = 0 with 2 exits (labelled " +™ and " — "), 1 = 2,3,
setting the variable values initially as z, = 1/2, z, =0, 23 =0, in a way that

e every M vertex v has its corresponding vertex b(v) in B(M) graph, reachable
in B(M) iff v is reachable in M, -

e during the B(M) execution all variable z; values remain strictly less than 1,

o if the value of z; (i = 2, 3) differs from the value of z; or from some of constants
0,1, then the corresponding difference it is not less than the value of z,.

The idea of the modelling of M work in B(M) consists in representing M counter
values Z, and Z, as the values of fractions z3/zy and z3/zy (zy works as the "unit”
to measure the values of the "counters” z, and z3). In any case, when M executes a
counter increase instruction, B(M) first decreases all its variable values by half and
executes the corresponding increase (by z;) instruction afterwards.

Now in order to complete the proof it remains to show how to model (in the sense
of the vertex reachability) the bounded machine’'s B(M) work by a finite PTPM
P(M) with 5 timers and 1 memory cell.

Let us denote the P(M) timers by to, t), 12, t3,t, and the memory cell by m. The
set of P(M) graph vertexes contains, first, all B(M) vertexes (the other vertexes will
appear further on during the modelling construction). Let P(M) have also a special
vertex @ from which no other vertexes are reachable. The construction of P(M) is
done by the independent building of fragments corresponding to the edges in B(M)
in a way described below.

Also during the runtime P(M) is intended to simulate every B(M) instruction
execution by executing the fragment which corresponds to this instruction. In order
to achieve such a simulation one of P(M) timers, {5, is used for giving time-outs after
every full initially fixed time unit. The timers t,,1, 13 are intended to have at the ¢,
time-out moments the corresponding values of B(M) variables z,, z;, 23 (the timer ¢,
and the memory cell m are playing an auxiliary role in the modelling constructions).

The key idea of the modelling is in the way how to keep the value of some timer
t; unchanged in some execution step (between two adjacent {5 timeouts; notice that
the timers always decrease synchronously with the passage of time). The solution to
this problem consists in the setting of the value of this timer to 1 (by a transition
along a red edge) immediately after it reaches the 0 value (the time intervals between
adjacent tg timeouts are also precisely 1). Further on, if the value of some timer is
the subject of change during some execution step, the moments of transition firing in
the process can be used to make the necessary timer and memory cell value setting
(to make all the assignments contained in this setting).

159

Every edge in P(M) is described below by its condition and timer and memory cell
setting, as well as its source and target vertexes (we do not count for edge labels, as
they do not have any effect on the vertex reachability). Unless otherwise stated, any
edge in P(M) is assumed to be red (every transition along the edge must be executed
as soon as it is enabled). Let us call an edge e, with the condition y(e) = {t,} (stating
that a transition along ¢ can be executed whenever 6(¢;) = 0) and setting f; — 1 a
simple edge with t;. When a simple edge has the same source and target vertexes, it
is called also a simple Ioop. Now we can describe the modelling construction itself.

If B(M) has an edge from v, to v, associated with the execution of an operation
z; — z; + z) (i = 2,3), in P(M) this edge is modelled by:

o the assignment m « t; (remember) added to every edge, incoming into v,;

o simple loops with t; and t5_; around v,;

¢ an edge from v, to v with the condition {t;} and the setting t; «— m (retrieve);
o simple loops with ¢,,; and {3 around v);

e a simple edge from v} to vy with t,.

If B(M) has an edge from v, to vy, associated with the execution of an operation
z; +— z;01; (1=2,3), in P(M) this edge is modelled by, first, the fragment for checking
that 6(¢;) # 1 (it can be the case that t; has been set to 1 right before the process
P(M) enters the vertex v, (by executing some other transition at the same time
moment), we have to eliminate such a possibility), which consists of:

o the assignment m «— ¢, added to every edge, incoming into v,;
¢ a simple edge with {; from v, to v], setting also t4 — m; .
¢ edges with the condition {5} from v’ to @ and from v, to @;

e an edge with the condition {t;} from v. to v} (here we use the idea that, if
8(t:) < 1, then also §(t;) + &(t;) < 1 (6(t) here denotes the timer’s ¢ value at the
last to timeout moment), which in its turn is justified by the abovementioned
invariant relation between the values of z;'s and ¢;’s at {, timeout moments; the
z;'s cannot be too close to 1 according to the B(M) construction);

s simple loops with ¢, and {s_; around v,, v}, v”;

¢ a simple edge with #; from v} to w,.

The following P(M) fragment from w, Lo v, performs the actual subtraction, provided
that the value of ¢; initially does not happen to be 1:

CHAPTER 15. TIMED PROCESSES WITH MEMORY 160

a simple loop with ts_; around wy;

e simple edges from w, to w, with t; and t;, both containing also assignments

m —t;
simple loops with t;, 23,3 around w!;

a simple edge from w/ to v, with tg, assigning also t; — m (retrieve).

If B(M) has an edge from v, to v; associated with the operation z; — z,/2, it is
modelled in P{M) the following way:

simple loops with ty,12,t3 around v,;
a black edge with @ condition and setting ¢4 «— 1 around v,;

a simple edge with {o from v, to v, setting also m ~ t, (the memory cell m now
(in the moment of the execution along this edge) coatains the actual (relative)
moment of the black transition firing, it will turn out that the further normal
execution of the process is possible only if §(t;) # 1 and 8(t;) = 2 x §(m));

an edge with the condition {t;} from v/ to @
an edge with the condition {t4} and setting {4, — m (retrieve) from v’ to v’;
edges with the conditions {,} and {#;} from v’ to @;

an edge with the condition {t;,14} and setting ty — 1 from v” to vi";

"
a

a simple edge with ¢y from v}’ to w,, assigning also {; — m;

simple loops with t;, t; (those of t),1,,t3 which are not ¢,;) around v, v” v/

ar“a

fragment for checking that §(t,) # 1, as described above (in the successful case
leads from w, to v).

If B(M) has edges from v, to vy, if z; = 0, and to v, if z; # 0, (i = 2,3), then
P(M) contains the following fragment for modelling this decision:

from v, to w, a test for §(t,) # 1;
a simple loop with ts_, around w,;

a simple edge with ¢, from w, to w, (in the case if the process has entered w!,,
clearly, 6(¢;) > 8(t;) > 0 (8(t) here stand for timer values at the last g timeout
moment));

161

e simple loops around w} with {3, ¢3;
¢ a simple edge with {, from w) to v,;
" o a simple edge with ¢; from w, to wl;
. simplé loops with t;,¢5_; around w;
¢ an edge with the condition {tc} from w! to @;

¢ an edge with the condition {to,;} and the setting ty «— 1 from w’ to v,. .

One defines the initial vertex of P(M) to be that of B(M), the initial timer value
vector for P(M)is 6 =1, 6 =05, & =0 fori=23,4, §(m) = 0. Now it is not
difficult to see that a vertex v in B(M) is reachable if and only if the same vertex v,
is reachable in P(M), so the decidability of the vertex reachability problem for timed
processes with memory cells would imply the decidability of the reachability (halting)
problem for Minsky machines, 2 contradiction.D

A similar undecidability result can be obtained for PTPMs with 2 timers and 4
memory cells (3 memory cells can simulate the bounded machine’s B(M) variables
7,22 and z3, the timers and the fourth memory cell are enough for performing the
bounded machine’s operations). For PTPMs with 1 timer and n memory cells both
the strong and weak bisimulation equivalence problems are easily decidable.

In fact, the undecidability result obtained here does not depend crucially on the
exact PTPM model chosen here, but is inevitable for every sufficiently general timed
formalism in which the timers are not uniform, i.e. they can change their values
with different speeds, (here - some timers can be held, i.e. stored into memory cells
(with values decreasing with the speed 0), the others decrease synchronously with the
passage of time (their value decreasing speed is 1 (or, the value change speed is —1,
if one wants to measure positively the increasing timers (clocks))).

The assignment operations between timers and memory cells, used in the mod-
elling of the bounded machine B(M) in the proof above, can be easily replaced by
simple "holding” and "releasing” of timers (any timer setting {; «— ¢; can be done by
setting both ¢, and ¢, to 1 at the moment when t; has reached 0 in the modelling
schema above).

As a particular example of such a "different speed timer” formalism one can con-
sider the process calculi Timed CCS (TCCS) (the version with time variables, defined
in (Wan9la, Wan91b), not the simplest version of TCCS nets, considered in Sec-
tion 14.2 and defined in accordance with [Wan90]). We assume the TCCS processes
provided with the process constants with explicit time parameters (or, equivalently,

CHAPTER 15. TIMED PROCESSES WITH MEMORY 162

the rec combinator for time-parameterized processes)!. A typical sequential Timed
CCS process is (compare Section 14.2)

€(2).0.¢(3).b@1.P(t),

where e¢ and b are action names, ¢(d) stands for a delay of d time units, the b@t
construction records into the time variable ¢ the time of the actual b action firing
w.r.t. the moment, when it was enabled (offered to the environment) first. After the
execution of b@t the free variable t in P(t) is bound by the value recorded by @t.
The TCCS contain also all usual CCS (see [Mil80, Mil89]) combinators {(sum, parallel
composition, hiding, renaming), for the precise definition of TCCS one can look in,
say, [Wan9la).

In order to obtain the undecidability of the bisimulation equivalence for TCCS
processes it is enough to consider the class R of "regular” processes (built without
the parallel composition, restriction and relabelling) with time variables (one can
allow only left-associative "positive minus” © operation in time expressions).

Really, given a PTPM P, one can associate with every vertex v of P one Timed
CCS process constant K(v) (with time parameters, carrying the P timer value infor-
mation at the states, associated with v). The defining equation for this constant is
obtained as the sum of expressions corresponding to all outgoing edges from v (we do
not consider the technical details).

One of the reasons for introducing the time variables in the Timed CCS [Wan9la],
clearly, was the desire to obtain algebraic timed process calculi with interleaving se-
mantics (the expansion theorem, allowing to eliminate (up to the bisimulation equiv-
alence) the parallel composition from the process specifications). However, as it can
be seen from Theorem 14.12 and the results of this chapter, the proposed method
in [Wan91a] of obtaining algebraically nicer calculi destroys other nice property of
them, namely, the decidability of the bisimulation equivalence (as well as any other
nontrivial algorithmic problems over the processes).

So, a dilemma of expansion theorem vs. decidability for timed specification for-
malisms appears. It looks likely to be the case that there cannot be any interleaving
timed specification formalism which would be rich enough (PTPs, or TCCS-nets in-
cluded) and have decidable at least the vertex reachability (or, stronger, bisimulation
equivalence) problems, however, this requires some further investigation.

'There are a number of principal examples of using process constants with time parameters
in TCCS [Wan91b) (including also the abovementioned example of ice-hockey timer), though the
original formal syntax and semantics of the calculi in (Wan9la, Wan91b] for the sake of simplicity
eliminate these processes.

Chapter 16

Conclusions

In the thesis work a variety of results characterizing the decidability of the vertex
reachability, infinite behaviour possibility and bisimulation equivalences are obtained
for various classes of data and time dependent real time system specification for-
malisms (see Introduction to the thesis for a detailed outline of the obtained results
and some discussion on the related work). Here we give just a brief summary of the
obtained results with some points made also to the possible emerging applications and
methodological interpretation, some possible future research lines are also mentioned.
In Section 16.1 we give some points about the most important proof methods, used
to obtain the results of the thesis.

The first group of the thesis results is devoted to effective characterizations of the
sets of finite and infinite feasible paths in simple theoretical programming languages
LBASE, LTIM, LTIBA and some their modifications. Regarding the program vertex
reachability problem and the effective symbolic characterizations of the sets of all finite
feasible program paths for these languages, a rather complete solution is obtained
(observe the path set projectivity property, proved in Theorem 4.1). We give also
some evidence for the "unextendability” of the obtained results to a "more powerful™
specification formalism (as the language LTIM" appears to be).

As to the infinite path feasibility in the programs, the obtained positive result tell
us about the decidability of the infinite feasible path existence in a given program
in any of these languages (also the existence of an infinite feasible fair path, etc. can
be decided, see Section 7.5 for the result summary). Regarding the infinite feasible
path set characterizations, these path sets only in LTIM programs obey, in general,
some kind of the projectivity property. An interesting theoretical problem for future
investigation could be the looking, if there exists for the infinite feasible path sets in
LBASE programs some effective characteristics of any kind (not just the projectivity
(and F-projectivity) disproved here for this purpose); one can observe the relations of
this problem to the inductive solving possibilities of simple infinite inequality systems
over integers.

CHAPTER 16. CONCLUSIONS 164

We have investigated also the algorithms for computing the histories along the
finite and infinite feasible paths in LTIBA programs (see Corollary 5.16 and Corol-
lary 7.23). These algorithms can be used in the automatic generation of complete test
sets for deterministic LTIBA programs (we assume the testing completeness criterion
to be C, — the covering of all feasible branches of the program). Let us consider the
LTIBA programs with acceptance conditions (both for finite and infinite paths) and
call a test for a program (a sequence of the values, appearing on the program input
gate) correct, if it guides the program behaviour along a finite or infinite accepting
path. We call a program branch correctly feasible, if it is executed on some correct test
for the program. According to Corollary 7.23 (in fact, we use just a slightly modified
version of it) we can for every program branch determine whether it is correctly fea-
sible, and in the case it is, exhibit an initial (finite or infinite) program history along
an accepting path, which contains the given branch. Next, it is easy to get for every
correctly feasible branch a test forcing the program execution in accordance with the
corresponding computed history. This way we obtain the algorithm for generating a
finite set of correct tests, covering all correctly feasible branches of the given LTIBA
program (one may prefer either the generating algorithms for infinite correct tests in
the spirit of Definition 3.3, or the finite initial fragments of these tests to be present
in the finite correct CTS, either of these requirements can be satisfied).

The results obtained regarding the models with real time semantics fall again in
two principal groups. First, we have the various results characterizing the decidability
of the process vertex reachability and related problems both for the considered basic
PTP model and a number of its enrichments. The positive results of this kind are
obtained by modelling the considered real time system specification formalisms in
the (various sublanguages of) the above studied programming language LTIBA. This
modelling is, first, illustrative in that it allows to see the relations between the analysis
of formalisms with real time semantics and that of programs with simple "ordinary”
data structures (variables, counters). Perhaps more important point in this modelling
is that it allows to transfer to the considered PTP enrichments (notice especially the
data-dependent formalism PTPBy) the analysis automation algorithms, developed for
LTIBA programs.

It should be noted that regarding the PTPB model family (PTPBs, PTPBys and
PTPQs) some further work is to be done in order to provide them with the compo-
sitional semantics, however, already the obtained results, showing the decidability of
the vertex reachability problem for PTPBgs and undecidability for PTPBs seem to
be imposing rather natural constraints on data and time dependent r.t.s. specification
formalisms with real time semantics, which are to be met in order to have decidable
at least the vertex reachability problem.

In the same "reachability result” group for the specification models with real

163

time semantics fall also in a slightly more intuitive way presented approach to the
SDL process analysis and testing automation, considered in Appendix B. One can
find in this appendix the illustration of the application of some (already previously
existing) general program reachability graph minimization methods in "tailoring™
the elaborated theoretical LTIBA program analysis algorithms to some slightly more
practical sitvations.

The second group of results regarding the specification formalisms with real time
semantics deal with another kind of very natural real time system analysis problem,
i.e. we show the decidability of strong and weak bisimulation equivalences for Par-
allel Timer Processes and some of their enrichments. The results of this group are
obtained without any use of intermediate models, however, the used methods are, in
principle, the same, as exploited to obtain the LBASE and LTIM program analysis.
results (finite partitioning of process state sets (though with some nuances here), the
uniform mapping technique, see Section 16.1 for some further comments). It is in-
teresting to point out also that the bisimulation equivalence can be proved decidable
for all considered real time specification formalisms with the "limit closed” sets of
feasible paths (PTPs, bounded PTPNs, PTPQs, also ATGs, as it can be seen from
Appendix A - the models in which every infinite path is feasible whenever all its finite
prefixes are feasible; for PTPUs and EPTPs the bisimulation equivalence can also
be shown decidable in a similar way). As to the r.t.s. specification formalisms with
the decidable vertex reachability problem, but not limit closed path sets (PTPBys
and unbounded PTPNs) the bisimulation equivalence deciding problems are left open
here, actually their decidability is hardly believable.

In the thesis we have considered a number of similar specification formalisms over
discrete (integer) and dense (rational) data and time "domains” (the languages LTIM
and LTIM’, LBASE and LBASQ, the data-dependent formalisms PTPB and PTPQ,
etc.). As one can observe, for all such situations in the case of the dense variable
value space stronger analysis automation results can be obtained (save the exception
of "positive” LTIM and LTIM’ programs, considered in Section 8.3). The seeming
contradiction with usually the opposite situation when some discrete systems can
be analyzed by the standard FSM "state exploration” techniques, while the corre-
sponding dense systems cannot due to their "essentially infinite” state space, can be
removed observing that the difficulties in the discrete system analysis are brought in
by the presence of infinite discrete structures (such as the integer numbers are), see
Section 8.3 and Section 13.2 for some additional comments regarding this compari-
son. We just note that for an analogue of PTPMs over the discrete time domain all
the problems, which have proved undecidable for PTPMs themselves (as defined over
the dense domain in Chapter 15), can be decided by rather standard FSM analysis
techniques. .

CHAPTER 16. CONCLUSIONS 166

It can be noted also that the thesis does not discuss the complexity issues of the
considered deciding algorithms. In fact, all the principal obtained algorithms (ver-
tex reachability and infinite behaviour possibility for LTIBA programs, strong and
weak bisimulation equivalences for PTPs and their extensions) are, roughly speaking,
worst-case polynomial in the size of the programs (processes) and exponential in the
program variable (timer) set cardinality. The calculation of the theoretical worst-case
bounds for the algorithm complexity is an interesting problem, however, it seems to
contain no principally new ideas. These bounds also seem to be not very illuminating
for the algorithm work characteristic in real situations, for these reasons, as well as
for the sake of brevity, they are omitted.

Regarding the practical aspects of the possible obtained algorithm implementation
and optimization some points are given in Appendix B. There exists also a wide
variety of further more or less general resource-saving methods in the state-space
exploration algorithms, one can see [BKM91], {Lar92] and [VC91] to obtain at least
some intuition about some possible methods of this kind. Hopefully, some of these
methods could be used also in the optimization of the deciding algorithms presented
here.

16.1 Proof Techniques

In this section we give some points about the main methods used to obtain the results
of the thesis.

Regarding the considered undecidability results, all of them were obtained by re-
ducing some well-known unsolvable problem to the examined one, this is the most
common way to cope with this kind of problems in general.

More important, some interesting methods can be fournd in the proofs showing the
decidability of one or other algorithmic problem.

First, most of the obtained principal results use the idea of the infinite program or
process state set partitioning into a finite set of classes, each class of the states having
all "essential” properties in common, so making it possible to consider such a class
as one vertex in a finite model of the system (e.g., its path feasibility graph), see
Section 4.1, Section 11.2 and Section 13.2 for some applications. This principle is not
in general novel and has already been successfully used, for instance, in [Auz84b] and
|ACDS90). A novel its application in the thesis is associated with the partitioning of
process pair state sets when deciding bisimulation equivalences for PTPs (see Sec-
tion 11.2 for details).

16.1. PROOF TECHNIQUES 167

Second, we have proposed in the thesis an original method of uniform mappings (see
Section 4.3, Section 4.5, Section 11.2 and Section 13.2 for some applications) for for-
malizing the relations between the program/system work histories which contain at
some point different elements from one program state set equivalence class (consider
especially Proposition 11.12, as well as Lemma 4.22, Proposition 4.32 and Proposi-
tion 4.33).

Third, a number of important results in Part | were formulated in the terms of the

path set projectivity, introduced in Section 2.2. It seems that the path set projectivity

could be just that abstraction in the terms of which the feasible path sets of programs

with data dependencies should be characterized in order to have the possibility tot
obtain as the corollary the applicability of various FSM analysis techniques to the

considered data dependent formalisms. The projective path sets in the graphs are

shown to obey simple algebraic properties, as illustrated in Section 2.2. However,

this methodology is applied in the thesis just to obtain concrete results, no general

investigation about its suitability is performed.

Bibliography

2
[AD90] R. Alur and D.Dill, Automata for Modelling Real-Time Systems, LNCS 443,
1990.

[ACD90] R. Alur, C.Courcoubetis and D.Dill, Model-Checking for Real-Time Sys-
tems, Proceedings from LICS’90 pp. 414-425, 1990.

[ABBCK91] A. Auzigs, J. Barzdips, J. Bicevskis, K. Cerans and A. Kalnigs, Auto-
matic Construction of Test Sets: Theoretical Approach, in Baltic Computer
Science, LNCS, No. 502, 1991.

[Auz84a] A.I.Auzins, On the Construction of Complete Sample Systems, Dokl. Akad.
Nauk SSSR, Vol.288, No.3, 1984 (In Russian).

[Auz84b] A.l.Auzins, Decidability of Reachability for the Relational Push-Down Au-
tomata, Programmirovanie, No.3, 1984 (In Russian).

[BB90] J.Baeten and J. Bergstra, Real Time Process Algebra, Technical Report,
Center for Mathematics and Computer Science, Amsterdam, 1990.

[BBK74] J.M.Barzdin, J.J.Bicevskis and A.A.Kalninsh, Construction of Complete
Sample Systems for Program Testing, in Latv. Gosudarst. Univ. Uch. Za-
piski, Vol.210, 1974 (In Russian).

[BBK77] J.M.Barzdin, J.J.Bicevskis and A.A.Kalninsh, Automatic Construction of
Complete Sample Systems for Program Testing, Proc. IFIP Congress, 1977,
North-Holland 1977.

[BKAS89] J.M.Barzdin, A.A.Kalnins and M.l.Auguston, SDL Tools for Rapid Pro-
totyping and Testing, in SDL'89: The Language at Work, North-Holland,
1989

[BKB74] J.M.Barzdin, A.A.Kalninsh and J.J.Bicevskis, Decidable and Undecidable
Cases of the Problem of Construction of Complete Sample Systems, in Latv.
Gosudarst. Univ. Uch. Zapiski, Vol.210, 1974 (In Russian).

BIBLIOGRAPHY ; 169

[BKM91] J.Borzovs, A. Kalnigs and I.Medvedis Automatic Construction of Test Sets:
Practical Approach, in Baltic Computer Science, LNCS, No. 502, 199].

[BM83] B.Berthomieu and M.Menasche, An Enumerative Approach for Analyzing
Time Petri Nets, Proc. IFIP Congress, 1983, North-Holland, 1983.

[BM79] R. Boyer and J.S.Moore, A Computational Logic, Academic Press, New
York, 1979.

[CC89] CCITT, Functional Specification and Description Language (SDL),
Recommendations Z.100, 1989.

[Cer91] K. Cerans, Decidability of Bisimulation Equivalence for Parallel Timed Pro-
cesses, to appear in Proc. of Chalmers Workshop on Concurrency, Goteborg,
1991.

[Cer92a] K. Cerans, Feasibility of Finite and Infinite Paths in Data Dependent Pro-
grams, to appear in Proc. of LFCS’92, Russia, Tver, 1992.

[Cer92b] K. Cerans, Decidability of Bisimulation Equivalences for Processes
with Parallel Timers, Technical report, Institute of Mathematics and
Computer Science, University of Latvia, Riga, 1992.

[Cer92¢] K. Cerans, Decidability of Bisimulation Equivalences for Parallel Timer Pro-
cesses, to appear in Proc. of CAV’92, Montreal, 1992.

[CES86] E.M.Clarke, E.A.Emerson and A.PSistla, Automatic Verification of Finite-
State Concurrent Systems using Temporal Logic Specifications, ACM Trans-
actions on Programming Languages and Systems, Vol.8, No.2, 1986.

[Che91] L. Chen, Decidability and Completeness in Real Time Processes, LFCS,
Edinburgh University, 1991.

[Dan92) M.Daniels, Modelling Real-Time Behaviour with an Interval Time Calculus,
Proc. of Conference on Formal Techniques in RT and FT Systems, Nijmegen,
1992

[Em91) E.A.Emerson, Temporal and Modal Logic, in Handbook of Theoretical Com-
puter Science, B, The MIT Press/Elsevier, 1991.

|GMMP89] C.Ghezzi, D.Mandrioli, S.Morasca and M.Pezze A General Way To Put
Time in Petri Nets, ACM SIGSOFT Eng. Notes, Vol. 14, No. 3, 1989.

[GMW79] M.Gordon, R-Milner and C.Wadsworth, Edinburgh LCF, LNCS No.78,
Springer-Verlag, 1979.

BIBLIOGRAPHY 170

[HLW91] U. Holmer, K.Larsen and Yi Wang, Deciding Properties for Regular Real
Timed Processes, in Proc. of CAV'91, 1991.

[Hoa85] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall,
1985.

[HR90] M.Hennesy and T.Regan, A Temporal Process Algebra, Technical Report
2/90, University of Sussex, 1990.

[ISOBQa] ISO, LOTOS: A Formal Description Technique Based on the Tem-
poral Ordering of Observational Behaviour, 1SO 8807, 1989.

(ISO89b] ISO, Estelle: ‘A Formal Description Technique Based on an Ex-
tended State Transition Model, I1SO 9074, 1989.

[Kal91] A.Kalnips, Global State Based Automatic Test Case Geperation for SDL, in
SDL'91: Evolving Methods, North-Holland, 1991.

[KS83] P.C. Kannelakis and S.A. Smolka, CCS Expressions, Finite State Processes
and Three Problems of Equivalence, ACM Symposium on Principles of Dis-
tributed Computing, 1983.

[KE89]) J.Karlson and A.Ek, SSI- An SDL Simulation Tool, in SDL’89: The Lan-
guage at Work, North-Holland, 1989.

[Lar92] K.G.Larsen, Efficient Local Correctness Checking, to appear in Proc. of
CAV’92, Montreal, 1992,

[MF76] P. Merlin and D.J. Farber, Recoverability of Communication Protocols,
IEEE Trans. on Communication Protocols, Vol. COM-24, No. 9, 1976.

[Mil80] R. Milner, A Calculus of Communicating Systems, LNCS No. 92, 1980

[Mil89] R. Milner, Communication and Concurrency, Prentice Hall Interna-
tional Series in Computer Science, 1988.

[Min67] M.Minsky, Finite and Infinite Machines, Prentice Hall, Englewood Cliffs,
N.Y., 1967.

[MT90] F.Moller and C.Tofts, A Temporal Calculus of Communicating Systems,
LNCS No. 458, 1990.

[NSY91] X.Nicollin, J.Sifakis and S.Yovine, From ATP to Timed Graphs and Hybrid
Systems, in Proc. of REX Workshop "Real-Time: Theory in Practice”, The
Netherlands, 1991.

BIBLIOGRAPHY 171

[Par81] D.Park, Concurrency and Automata on Infinite Sequences, LNCS No. 104,
1981.

[Pe62] C.A.Petri, Kommunikation mit Automaten, Schriften des Institutes fir
Instrumentelle Matematik, Bonn, 1962.

[Prad1] K.V.S.Prasad, A Calculus of Broadcasting Systems, TAPSOFT'91, in LNCS
No. 493, 1991.

[ReB5] W.Reisig, Petri Nets. An Introduction, Springer-Verlag, 1985.

[RR86] G.M. Reed and A.W. Roscoe, A Timed Model for Communicating Sequential ‘
Processes, LNCS No. 226, 1986.

[Sch91]) S.A.Schneider, An Operational Semantics for Timed CSP, Oxford University
Technical Report TR 1-91, 1991.

[SVW87] A.P.Sistla, M.Y.Vardi, P.Wolper, The Complementation Problem for Buichi
Automata With Applications to Temporal Logic, Theoretical Computer Sci-
ence No.49, 1987.

[VCI1] A.Valmari and M.Clegg, Reduced Labelled Transition Systems Save Verifi-
cation Effort, Proc. of CONCUR’91, Amsterdam, 1991.

[Wan90] Yi Wang, Real Time Behaviour of Asynchronous Agents, Proc. of CON-
CUR’90, LNCS No. 458, 1990.

[Wan9la] Yi Wang, CCS + Time = an Interleaving Mode! for Real Time Systems,
ICALP'91, Madrid, 1991.

[Wan91b] Yi Wang, A Calculus of Real Time Systems, Ph.D. theses, Chalmers
Univ. of Technology, Géteborg, 1991.

Appendix A

Bisimulations for Action Timed
Graphs

We bave already obtained some results about the deciding bisimulation equivalences
for timed specification formalisms, other than PTPs (see Theorem 14.12).

In this chapter we consider one more model, the Action Timed Graphs, intro-
duced in [NSY91) and being perhaps the closest specification formalism to PTP. We
show, how the strong and weak bisimulation deciding algorithms, developed for PTPs
in Chapter 11 and Chapter 12, can be modified to apply for deciding bisimulation
equivalences for ATGs. Some relations between the ATG model and the PTPs are
already discussed in Section 1.6.

We have some slight technical changes in the presentation of the ATG model, if
compared with the original paper [NSY91), made mostly for the sake of some uni-
formity with other presented material. Our definition of ATGs is also more specific
than in that [NSY91] for we describe precisely the class of graphs being the subject
of automated analysis (in the way, borrowed from the definition of Timed Graphs in
[ACD90]), this class of graphs is rich enough to cover all the applications, considered
in [NSY91).

As in the case of PTPs, we assume L to be a predefined set of events. Let
G = (V,E, f,t, L,lab,v§) be a finite edge-labelled graph with v§ as the initial vertex.

A clock is defined to be a variable taking its values from Q*°. For G being the
edge-labelled graph and T = {¢ty,...,t,} being a finite set of clocks, an Action Timed
Graph is defined by associating with every edge e € F

» a time condition b(e) € B(T) for B(T) being the set of all linear predicates
over the clock value set (Q¥°)" (every predicate b € B(T) is represented by
a boolean formula built by the standard logical connectives V,& and - from
the elementary predicates in the forms t;Ac, t;Mt; for t;,t; € 7, c € Q*® and
re {<,<,2,>)); and

173
¢ a clock reset set r(e) C 7.

Given an arbitrary clock value vector £ = (t9,...,2%) € (Q*%)" and a predicate
b € B(T), the interpretation of b over { yields either the value true, or the value
false in a standard way.

Let for any clock value vector ¢ = (2,...,t%) and d € Q* the vector i + d be
(8 +d,..., 12+ d).

Let b for b € B(T) be a predicate which is true for given clock value vector f iff
5(f + d) holds for some d € Q*° (intuitively, b holds sometimes in the future, see
the operatjonal semantics). It can be proved that for b being a linear predicate, the
predicate b also can be represented as linear.

Following [NSY91] we define for every vertex v € V the predicate en{v) over the
clock value vectors as

en(v) € U{b(e) | f(e) = v}

(the predicate en(v) gives all clock value vectors for which the predicate b(e) for some
edge e outgoing from v is satisfied).

Given the set of clocks r C 7 let ¢, : (Q*°)" — (Q*°)" be the function which
resets the values of the clocks t € r to 0 and does not change the values of other
clocks, i.e. we have

¢Y((t(l)v)to)) - (t . :t:) fOl‘
o 11 =0,ift; €r, and

~

Y= ift € (T \r)

The operational semantics of ATGs ([NSYQI]) is given as a labelled transition

system based on the relations — for o € L and =5 %, for d € Q*°. It is defined to
have the states (v,f) for v € V and f € (Q*)" (t.he initial state is (v$,0)) and the
transitions in accordance with the following two rules

v=fle)v' = el b)) en(o)i+d)
(v,8) — v, (o)) (v, 1) 9, (v,T+d)

Intuitively, the first semantic rule tells that a real transition can be executed from
the state (v,{) to the state (v’,?) at possibly another node, if the clock value vec-
tor { satisfies the predicate b, and that, during this execution the clock value vector
changes from f t0 $,(¢)(f) (some clocks are reset to 0). As to the second rule, it ex-
presses both the condition on the possible execution remaining (waiting) at the same
node (stating that some transition from this state must remain eventually enabled)
and the rule for the clock value changing during the waiting (synchronous increasing).

APPENDIX A. BISIMULATIONS FOR ACTION TIMED GRAPHS 174

We outline the bisimulation equivalence deciding algorithm for ATGs just by
stressing the different points in it, if compared with the bisimulation equivalence
deciding for PTPs, demonstrated in Chapter 11 and Chapter 12.

The weak bisimulation equivalence (based on the relations == and g) for ATGs
is defined by abstracting from some "interpal” actions in the standard way (e.g. as
for PTPs in Section 11.1), we do not consider the details here.

Given two ATGs Gy = (N, Ty, n}, —) and G3 = (N, Tz, n3, —), observe first
that, the constants, used in the predicates b € B(T;) are integers by definition.

As in the case of PTPs we define the time regions R(s,,sz) (symbolic processes)
of state pairs (sy,s2) for s; = (n;,{;) being a state of G; with the only difference
that we do not care for the ordering of the clock values, greater than cmsr - the
largest constant, used in the given graph transition clock value predicates (this idea
is explained in details for the time regions built for one TG in [ACD90}).

In order to obtain the analogues of Proposition 11.12, Fact 11.9 and Lemma 11.7,
which form the cornerstone for deciding bisimulation equivalences in the PTP case,
we have to change the definition of the uniform mapping slightly.

Definition A.1 A mapping p: Q — Q is called cpac-uniform, iff
e p is strongly monotone,

o p(x —¢) = p(z) — ¢ for £ cmazr and ¢ € N (it is important that this equality
holds also for ¢ > z), and

* p(0)=0.
Let for a cmor-uniform mapping p and z,d € Q
P(d) = cmaz — p(c - d) and pa(z) = p(z — d) + B(d).

Proposition A.2 For s, and s, being the states of etther Gy, or Gy, salisfying s, =
p(s1) for the cmoz-uniform mapping p, we have

o whenever 8, == 3}, then 3, == p(sy), and
d a(d
o whenever s, g s, then sy lg) pa(sy).

Lemma A.3 For s1,3) being the states of Gy and 53,5y being the states of Gy with
R(sy,52) = R(s],$}) always 3| =~ 57 if and only if s} = s}.

We do not consider the proofs of the proposition and the lemma in detail here, they
can be done using a similar schema, as in the PTP case (observing the definition

peculiarities of ATGs).

Observe that for Action Timed Graphs it is not always true that the existence

o, d' L . . .
of the transitions s “%} for all & < d implies the existence of the "limit” transition

s ﬁ)o, as is was in the PTP case (see Fact 11.13). If, however, for some ATG G all

the transition clock predicates are built by positive logical connectives from "upwards
closed™ elementary predicates (i.e. not admitting the form ¢; < ¢ (notice the strong
inequality), the form ¢; < ¢, as well as t; > ¢, #; > ¢, 4;Mt; are admitted). For
such ”closed” ATGs the further deciding of both the strong and weak bisimulation
equivalences can be done relying on the same symbolic relations, as defined for PTPs":
(just taking into account the increasing nature of the clocks in ATGs vs. the decreasing
nature of the timers in PTPs).

As to the non-closed ATGs, the deciding algorithms also can easily obtained,
following similar lines, as in the PTP case, however, the symbolic transition relations
for "bisimilar™ region detecting must be chosen in slightly different way, e.g. in the
case of the strong bisimulation (Definition 11.16), the timed case of the tramsition
relation should be split into two:

e whenever P ﬂ, or Q ﬂ| then nezto(X) € X, and

e whepever P ﬂvq, or Q u—'l‘:, then nezty(X) € X, where A "7} means that
AY for u = p(A, B)
(of course, in the case of ATGs the definitions of u(P, Q) and nezt;(P, @) must be
taken the "dual” ones w.r.t. the corresponding definitions for PTPs).
So, we have given a brief outline of the proof of the following

Theorem A.4 The strong and weak bisimulation equivalence problems for Action
Timed Graphs are decidable.

One can obtain similar decidability results also for various generalisations of ATGs
(which are still Action Timed Graphs in the sense of [NSY91]), allowing more general
timer reset functions associated with the graph edges. Since this generalisation does
not require any new ideas, and the "generalised” ATGs have not yet been considered
in any applications, it is not considered in detail here. Clearly, one cannot hope to
obtain the bisimulation deciding algoritfms for the models with undecidable vertex
reachability problem (see [ACD90] for some notes).

Appendix B

Example of a Real Time System
Analysis

We consider an example of how a real time system with both data and quantitative
time constraints can be specified and analyzed. For this purpose we choose to use the
language SDL [CC89) for writing the specification of the example (the Janguage SDL
is widely practically used in specification of real time systems in telecommunication,
and other kinds).

We introduce here the subset of the SDL language, needed for the example spec-
ification, and outline some possibilities of the SDL program analysis. In particular,
the possibility of automatic complete test set generation for the SDL processes is
considered.

As to the example itself, we consider the specification of a passenger lift control
program which is, first, described as an SDL process, then, modelled in the program-
ming language LTIBA. An initial projectivee for the set of all feasible finite paths in
the obtained LTIBA program is also given and a complete test set construction for
the SDL lift process is performed (on the basis of the LTIBA program path feasibility
graph).

The presented example is not fully practical for both some simplifications made
in the specification in comparison with even simple real lifts and the informal style of
the presentation. The example just shows some possible role which can be played by
the considered algorithms in the r.t.s. analysis. In fact, for the purpose of practical
use these algorithms still have to (and can) be rounded by a number of resource-
saving tricks (most of them already existing, just not considered in the main part of
the theses). One can see [ABBCKS1] for this optimization approach carried through
in more systematic way. A more practical approach to the SDL program analysis,
which is also going to capture both the program dependencies on data and on timers
(and involves the consideration of SDL systems which consist of several structural
components (processes)) can be found in [BKM91],{Kal91}.

B.1. EXAMPLE SPECIFICATION LANGUAGE: SDL 177

B.1 Example Specification Language: SDL

We describe the subset of the language SDL [CC89] used in the example specification
below. For the sake of readability most of the permitted language constructions are
introduced via examples. We also follow the terminology traditional for SDL in that
the "states” for a process are vertexes of special kind in its graph (see below), they are
not to be mixed with the states of the labelled transition systems, glvmg the process
semantics.

Only one SDL process is used to describe the real time system. SDL process is a
program executing in real time and communicating with the environment by means of
signals. SDL process has an input queue into which the environment at certain time
moments puts the signals for the process (a time moment can be arbitrary rational,
time counting begins at the process start). An input signal for the process may
have certain number of integer valued parameters, the signal is recorded in the queue
together with all its parameters. The process has also output signals, these signals are
sent to the environment at certain time moments according to the process program
(process diagram), as a reaction to the input signals.

SDL process is a finite state machine extended by the notions of variable and time
and provided with some special statements. More precisely, SDL process is assumed to
be able to use finite number of integer-valued internal variables, the process diagram
can contain the following constructions (statements).

1. START - the beginning of the process execution. We assume that all process inter-
nal variables are initialized to 0 at the execution of START. We depict the statement.
in the diagram the following way:

START

2. STATE/INPUT - the complex for awaiting/reading of iupu‘t signals. It has the
following form in the process diagram:

Ce)

5 5]

Here Q is a state name, S1 and S2 are the names of signals awaited in this state, x
and y are process internal variables to which the values of the parameters conveyed
by signal S2 are assigned at consumption (reading) of S2.

If the process has reached the state Q during its execution, it is awaiting for the
arrival of some signal in the input queue. At the moment when a signal arrives,

APPENDIX B. EXAMPLE OF A REAL TIME SYSTEM ANALYSIS 178

it is consumed (and the corresponding assignments of parameter values to internal
variables performed). Further control flow in the diagram depends on the name of
the consumed signal (we assume that every signal in the process input queue, which
is not awaited in the current state of the process, is not consumed by the process and
simply disappears from the queue).

3. OUTPUT - signal sending statement. It has the form

5(x)

and denotes the sending a signal to the environment at the "current” moment in
the process execution (when the instruction in the diagram is reached). Here S is
the signal name and x is the process internal. variable whose value is assigned to the
parameter of the signal.

4. TASK - internal action statement, representing the assignments to the internal
variables of the process, e.g.,

1 -

5. DECISION - variable comparison statement (in fact, the same, as used in the
language LBASE):

Q- 9

We allow also the decision statements with some exits unspecified (i.e. pending) in the
process diagram. If the process reaches such a pending exit within some its behaviour,
we call this behaviour incorrect.

6. SET, RESET statements and timer signals.

Every SDL process has a predefined function now at every time moment returning
the numeric value of the moment (certain nonnegative rational). A process may have
a finite number of timers, each timer being intuitively an "alarm-clock™ which can be
set up to send a special signal after the expiring of some certain specified time interval
(cf. the notion of timer in PTPUs, Section 10.1).

A timer in SDL process can be set up by the instruction (statement)

set(now + ¢,T1)

Here T1 is the timer name and ¢ - an integer constant (a timer js said to be active
after its setting). The activity of the timer T1 before it "rings” can be disrupted by
the following statement:

B.1. EXAMPLE SPECIFICATION LANGUAGE: SDL 179

reset(T1)

When the interval of the timer activity expires (i.e. ¢ time units have passed after its
setting) and it has not received the reset statement, a special signal is put into the
process input queue, the signal name being the same as the timer name. This signal
can be consumed at process states (a special input branch, corresponding to the timer
signal has to be added to the state):

)
S S

As to the cases of the timer signals not ‘awaited in some states, we assume their
disappearance from the input queue, just the same way as ignored are the external
input signals to the process.

If some already active timer is set, an automatic reset is executed for the timer
before the new setting (so, at every moment of the process execution no more than 1
"copy” of the timers of each name can be active). The timer reset (either explicit, or
implicit by the new setting) also removes all the signals with the corresponding name
from the process input queue (if there are such).

The execution of the process begins with START statement at the time moment
now = 0, further processing is performed in accordance with the process diagram.
We assume that all internal actions of the process (assignment, comparison, signal
sending/consuming, timer setting/resetting) are performed instantaneously, so the
function now may change its value (the time may progress) only if the process waits
for some signal (either external one, or a timer signal) in some state.

B.1.1 Histories and Tests for SDL Processes

For the purpose of the SDL program analysis we introduce the notion of the process
history.

First, a path in a SDL process P is every graph-theoretical path in the process
diagram.

At every moment of the process execution the process variable value vector, cor-
responding to this moment is defined in an obvious way. Let T(P) be the process
P timer set, we define the timer value assignment 6 : 7(P) — Q, corresponding to
the process execution moment to assign to an active timer ¢ the value of the absolute
time moment when the timer t is going to give its timeout. For an inactive timer ¢

APPENDIX B. EXAMPLE OF A REAL TIME SYSTEM ANALYSIS 180

define 6(1) = —1 (compare with the value definition for PTPUs in Section 10.1, we
have just some design changes here).
A history of the process P is any sequence

(((nh 6‘! 65)1 € : hi) (n"-H ’ t-;l'-i-l)él'+l>))i<k7

where n; € V(P) are the process P vertexes (placeholders for the all abovedefined
SDL operators, except input), 5; € Z* are P variable value vectors (k is the number
of P variables) and §; are P timer value assignments provided

® a = ngeg, n1€1,...,Nk is an initial path in the process, and

e the process execution along the path a from the process initial variable and
timer values, performing the transition along the edge ¢; at a the time moment
h; with the target variable value vector ¥;4; and timer value assignment 6,44, is
consistent with the defined process execution semantics;

¢ no two transitions, corresponding to signal consumption (either external input
signals, or the signals from timers) are simultaneous.

For the sake of simplicity we consider only finite initial histories of SDL processes.

If compared with the histories in PTP-like models, considered in Chapter 9 and
Chapter 10, the histories of SDL processes differ mostly in that they have the absolute
time describing the transition firing moments (i.e. the time relative to the beginning
of the process execution) and the timer values are expressed in the terms of the
absolute time of the process execution, whilst for PTP-like models every transition in
a history contains just the information about how much time has been passed from
the previous transition firing moment, as well as the timer values are relative to the
"current” time moment. The absolute time semantics for SDL processes is naturally
inherent in the language constructs (the function now), while for PTP-like models the
relative time based semantics definition was more suitable for studying the properties
like bisimulation equivalence (though there is no principal differences between the two
forms for real time system semantics expressing).

Every history v of a SDL process has associated in a natural way an input signal
sequence

(i, ki, £i), where

S; is the ith consumed input signal name (while executing in accordance with v), &,
is the time moment of the signal input (= the moment of the signal arrival into the
queue) and Z; is the parameter value vector, conveyed by the signal (note that the
timer signals are not included in this sequence since they are internal for the process).

For the purpose of the illustrativity let us depict the above considered input signal
sequence as

B.2. PASSENGER LIFT SPECIFICATION 181

(Su(Z1) at by), -.. , (Sk(Ze) at he).

One could the same way consider also the output signal sequence for the process, or
even a combined one, were there any interest in them.

The input signal sequences for SDL processes are important in that they can be
considered as tests for given process.

From the practical viewpoint it is fair to consider the SDL processes as a determin-
istic specification formalism (the determinism here means no more than one history
for every test, we have already got rid of simultaneously incoming signals which could
be eventually the only source for some non-determinism in the process behaviour).
This means that we can state the problem of exhaustive testing of the processes w.r.t.
some process structural element coverage criteria, e.g., one could consider the pro-.
cess test case sets which force the process to execute all feasible (executable on some
input) branches both of the STATE/INPUT complexes and the DECISION state-
ments, let us call the testing criterion requiring such coverage C, for SDL processes
(it is a straight analogue of the widely practically used program testing completeness
criterion C).

In what follows, we demonstrate (both via some general observations and on the
basis of an example) how the program analysis methods presented so far allow, given
a SDL process, automatically generate for it some set of test cases, which is complete
w.r.t. the completeness criterion C; (in fact, we are using here just very simple results
regarding the finite path feasibility in LTIBA programs (Theorem 4.1 and correspond-
ing corollaries in Section 5.2)). We are going also to consider only correct tests for
the processes, i.e. the tests not leading the process execution to the pending exits in
DECISION statements. '

B.2 Passenger Lift Specification

As an example to be considered w.r.t. the program analysis and automatic complete
test set generation, we describe as a SDL process a control program for some kind of
passenger lift. Let us give first some informal explanation of the process behaviour.

The environment for the lift control process consists of lift users and lift hardware.

A lift user can press a call button in every floor thus sending the signal S with
one parameter denoting the number of the call floor to the process. Besides that the
user can press any button in the lift-cage to pass the request for the lift to go to some
floor, so the signal R with the parameter denoting the destination floor number is sent
to the process. In some situations the user can also generate signals FU (FloorUp)
and FD (FloorDown) by leaving the lift-cage and entering it, respectively (i.e. by the
changing the status of the cage floor).

The lift hardware consists of lift driving motor, controlled by the signals MUp,
MDown and MStop, lift door motor (controlled by the signals MD1 (open the door),

APPENDIX B. EXAMPLE OF A REAL TIME SYSTEM ANALYSIS 182

MD?2 (close the door) and MDStop) and some sensors informing the process about
the physical state of the lift. The following signals from sensors are considered: Z(z)
- floor number z is reached, DOp (Door is Open), DC (Door is Closed).

The behaviour of the lift can be characterized by the following properties:

o the lift has no memory for the user requests, signals S(z), R(z) are accepted
for the processing only after the previous request has been executed;

o if an empty lift with the open door stays in some floor for more than 20 seconds,
the door becomes being closed;

e if the status of the cage floor has changed while the door is closing (i.e. somebody
managed to enter or to leave the cage), the closing of the door is interrupted, and
the door opens. Besides, if the door was being closed to execute some request
to go somewhere, the request is canceled.

The SDL process specification of the lift is given in Figure B.1, Figure B.2 and
Figure B.3.

B.3 Modelling of SDL Processes in LTIBA

The modelling of SDL processes as LTIBA programs is done following the same prin-
cipal lines, as the modelling of PTPs in Section 9.2 and PTPBys in Section 10.4.

The idea of the SDL process history simulation by a history of the modelling
LTIBA program work consists in representing the value of the process function now
at some point in the process history by the value of the modelling program real time
counter z at the "corresponding” point in the program history. Every time when a
new signal is read by the process from the process input queue, the time moment of
this signal arrival is read in by the modelling program, it is then positively assigned
to the program real time counter z, so guaranteeing the non-decreasment of the time
between the processing of two input signals. For the sake of brevity in modelling the
strong advancement of the time we define in the language LTIM (and, so, in LTIBA)
a macro-operator

+
2ttt as a block +

_ — t>2 5 zZ—t

I
The only difference of the macro-operator z = t from the positive assignment op-
erator z <= t is that in the case of values of z and ¢ coinciding in the former case

the further program execution is passed along the - -~ exit, while in the later one

B.3. MODELLING OF SDL PROCESSES IN LTIBA 183

(START) Idle LI/* FI=0 means Floor is Up,

Fl=1 means Floor is Down */

y:=1 > S(x) ‘ > R(u) |

Figure B.1: Lift Process: 1

APPENDIX B. EXAMPLE OF A REAL TIME SYSTEM ANALYSIS

|
FU \ > S(u).R(u)]

>]

set(now+20,T1)

1
Fl:=1

WaitEnter

uest)

DoorClosing

184

set(now+20,T1)

|
WaitEnter

2

| |
FD] >S(u),R(u)‘
|

[mez("mﬂ

(Wa.itEnter)

Fl

=1

Figure B.2: Lift Process: 2

DoorClosing

B.3. MODELLING OF SDL PROCESSES IN LTIBA 185

| - [|
S(u),R(u

> FU | > P | DSwRw)

|
+ :

mee] [mes
[1

Figure B.3: Lift Process: 3

the corresponding outgoing edge label must be »+~. The modelling of SDL process
constructs by constructs of the language LTIBA in order to meet the abovementioned
correspondence between the process and program histories is done, as follows:

1. The process START statement is transformed into the LTIBA program start label,
denoting the program initial vertex. .

2. The STATE/INPUT complex

Q

> T

is transformed, as shown in Figure B.4.

As to the LTIM system of commands we again, as in the case of the modelling
of PTPs, are satisfied with the LTIM, subset of them. In the example the variable
t is assumed to be the LTIM, input variable of the modelling program (see Sec-
tion 3.2 for the notion of the input variable explained). The outgoing edges from the
STATE/INPUT complex are corresponding to the outgoing edges from the process
state vertex. We put the labels S1, S2, ..., Sk on these program edges to describe
which program branch {edge) corresponds to which branch (edge) of the process.

APPENDIX B. EXAMPLE OF A REAL TIME SYSTEM ANALYSIS 186

Figure B.4: STATE/INPUT complex modelling

3. The process output signals are not reflected in the modelling program at all for
they do not affect the process path feasibility test case generation (tests do consist
only of process input signals, the output signal sequence is observable, when the pro-
cess is executing on some test).

4. The modelling of the process timers is done the following way.

We define a process P timer T statically active in a state Q whenever there exists
a path a from the process START vertex to Q such that among the timer T treating
operators ("set T", "reset T” and consumption of the T signal) the Jast one is "set
T” (i.e. the timer T is active "after the path a"). The timer T is always active in Q,
if T is active after every path from the process START vertex to Q and for every such
path in all the states after the last "set T” operator in the path the signal from T is
awaited (observe that we do not impose any claim on the feasibility of the considered
paths, so the statical activity and always activity of given process timer in a given
state can be easily checked by some standard graph algorithms).

As to the considered lift process (Figures B.1 , B.2 | B.3), we have in it only one
timer, T1. The only process state, in which T1 is active is WaitEnter, one can easily
see that T1 is also always active in WaitEnter.

Given a process P we introduce for every its timer Ti a LTIM variable t' into the
modelling program and add for all such variables the assignment operators t! — (—1)
in the program graph to be executed at the beginning of the program work (this
assignment simply reflects in the modelling program the initial inactivity of all process
timers).

The process operators for timer treating are modelled in the program, as follows:

B.3. MODELLING OF SDL PROCESSES IN LTIBA 187

Ce®] e

Now let us consider the modelling of the STATE/INPUT complex

it

in the presence of statically active timers in the state Q (the states without statically
active timers are modelled, as explained in (2.)). Let the set of statically active timers
in Q be {T'1,T'2} (we show the modelling translation on the example, covering all the
principal possibilities), then the considered STATE/INPUT complex is translated,
as demonstrated in Figure B.5 (this modelling situation resembles the PTP edge
modelling by LTIM programs, done in Section 9.2: if some transition fires at some
moment (here the moment is read from the input into the variable t), this firing will
be correct only if no red edge (=no branch, pending on some timer signal) require a
transition along it to be performed earlier).

Notice the presence of a loop, labelled by the timer T2. The signal from T2 is
not awaited in the state Q, however, if the timer-times out in such a not appropriate
moment, its signal is ignored and the timer itself is made "inactive” (actually at this
point we are using the modelling of SDL processes by LTIBA programs to explain
the semantics of the SDL processes themselves in more detail than it was done in the
intuitive description in Section B.1).

If for some state Q some timers Ti active in this state are always active in it, we
can the corresponding modelling fragment

’ th> _1—H tist } replace by a simpler one:

for the value of t* being greater than —1 every time the modelling program reaches
this block.

Using the described modelling algorithm we obtain the lift process modelling pro-
gram in LTIBA, as depicted in Figure B.6 and Figure B.7 (for the sake of brevity we
have shortened some names of the states, it is completely straightforward to establish

APPENDfX B. EXAMPLE OF A REAL TfME SYSTEM ANALYSIS 188

tle..(=1)

Figure B.5: TheTraaslation of "Timered" States

B.4. ANALYSIS OF SDL PROCESSES 189

the correspondence relation between them).

The following brief statements about the abovedefined SDL process as LTIBA
program modelling algorithm can be made.

Given a path a in a SDL process P, one can in a natural way associate with it
paths o in its modelling program M(P), which visit the same vertexes in the same
order, as the path a goes through in P, and have the edges between these vertexes
modelling the corresponding path o edges (see Section 9.2 for an analogic path relation
np between the paths in PTPs and their modelling LTIM programs), let us call all
such paths o the codes of a in M(P).

Let for any process history v along a path @ in P we call modelling program
M(P) history / along some program path a' coding the process path « the code of’
the history v provided

o the value of the function now at the end of the history v coincides with 7(v').z
- the value of z at the end of the history /',

o for every P timer Ti at the end of the histories v and ' respectively we have
§(Th) = v7 ¢,

o the P variable values at the end of v coincide with the corresponding modelling
program LBASE variable values at the end of #/, and

o for every v prefix i; there exists a v/ prefix v/ which is the code of v;.

A path a in the process modelling program is accepting, if it ends with some
vertex, corresponding to a SDL state of the process (equivalently, if the path a is the
code of some process path). One can easily obtain the following result characterizing
the defined coding relation:

Lemma B.1 For every SDL process P history a there exists precisely one modelling
program history, which is the code of a. Besides that, every modelling program history
along an accepting path in the program is a code of some process history, and the coding
relation between histories are both ways effective.

B.4 Analysis of SDL Processes

We begin this section with some theoretical remarks regarding the possibilities of the
automated analysis and complete test case generation for SDL processes, then we
proceed to the lift process example on the basis of which the ways of LTIBA program
path feasibility graph usage in the complete set test generation for SDL processes
is explained. Some points regarding the optimizations of the path feasibility graph
construction for LTIBA programs (if compared with the algorithm, given in the proof
of Theorem 4.1) are also considered.

APPENDIX B. EXAMPLE OF A REAL TIME SYSTEM ANALYSIS 190

— Dy |

Idle: 7%

Figure B.6: Lift Process: LTIBA: 1

B.4. ANALYSIS OF SDL PROCESSES

Figure B.7: Lift Process: LTIBA: 2

191

APPENDIX B. EXAMPLE OF A REAL TIME SYSTEM ANALYSIS 192

From Lemma B.1 it follows that a path in a SDL process is feasible if and only if
it has a feasible code in the modelling program. Since according to Corollary 5.13 the
set of all feasible accepting paths in the modelling LTIBA program is T-projective (see
Section 2.2 for the definitions), we obtain a similar T-projectivity result for the set
of all finite feasible paths in given SDL process, what allows to solve e.g. the process
vertex reachability problem.

Moreover, since we have the result of Corollary 5.16 for LTIBA programs (actually
we use a slight its modification), we can for every feasible branch in given program
(i-e. the branch, executable within some initial program history) effectively exhibit
the history on which this branch is covered. So we can, given a LTIBA program,
effectively exhibit a finite set of its histories which traverse the all feasible given
program branches. If one exhibits such a history set for a LTIBA program which is
modelling an SDL process P, Lemma B.1 guarantees that these histories are the codes
of the process P histories which also cover all feasible branches in P. Since the step
from an SDL process history to its associated input signal sequence is straightforward
and all the needed constructions are clearly effective, we have

Theorem B.2 There ezists an algorithm which, given a SDL process, generates for
it a complete test set w.r.t. the testing completeness criterion C,.

In fact, the result of the theorem can be generalized also to apply to SDL systems
which contain several parallel processes, one just needs to constrain the signal queue
lengths in the system (for SDL systems consisting of two processes provided with
infinite queues and two signals going each way between them, the process vertex
reachability problem can be easily shown undecidable).

Now let us consider the CTS generation for the lift process, specified in Fig-
ures B.1, B.2, B.3 and presented as a program in LTIBA in Figures B.6 and B.7. We
build first a finite path feasibility graph (initial T-projectivee for the set of all finite
feasible paths) of the lift program in LTIBA.

B.4.1 Path Feasibility Graphs: Optimizations

According to the definition of the path feasibility graph G(P) for a given program P it
may be the case that one path in the program is the projection of more than one path
in its path feasibility graph. Also both the LBASE and LTIM program path feasibility
graphs BG(P) (and, so, the path feasibility graph for the LTIBA programs), built in
the proof of Theorem 4.1 usually have this facility.

One can notice that for P being either a LBASE, or LTIM program, every vertex
in the path feasibility graph BG(P) is a pair (n,C) for n being a program P vertex
and C € Cp being a program variable configuration. Let for an arbitrary path a in
the program P the context S(a) be defined as the set of all configurations, which can

B.4. ANALYSIS OF SDL PROCESSES 193

be reached in BG(P) along the path «, more precisely, let
Sp(a) = {C € Cpl3a’ : a = proj(a’) & Cule) = C).

Clearly, one can, given a LBASE or LTIM program P, compute for it a finite
path feasibility graph with the vertexes (n,S) for S = S(a) for some P path a with
n.(a) = n, one just has to draw the edges between these vertexes in a way that an
edge, labelled by a program P edge from (n, S) to (n',S") is drawn if and only if

for every C' € S’ there exists C € S such that
there exists an e-labelled edge in BG(P) from (n,C) to (n',C").

This approach of the program path feasibility graph construction for LBASE pro-
grams was developed in [BBK74, BBK77] (see also [ABBCK9]] for a survey) and it
leads in practical examples to the path feasibility graphs of considerably smaller size
than BG(P)s considered above. The path context approach becomes especially at-
tractive since one can manage to provide the configuration set S(a) with a comparably
short and effective characteristics by the means of inequality systems (just as the vari-
able configurations for both LBASE and LTIM programs were characterized above in
Section 4.1) w.r.t. the "current” variable values after the execution of the path a. The
state-space saving effect arises since the variable configurations for LBASE programs
contain the information about the mutual relations of all pairs of variables, while the
path contexts S(a) do not require the determination of the unimportant (in some
sense) ordering of the variable pair values. The reason of the choosing the variable
configuration approach in this work was the intention to use the graph BG(P) also for
infinite path feasibility analysis, where, at least for our approach the full information
about the variable value comparisons after every operator execution was necessary
(see e.g. the definition of an accomplished loop in Section 6.1).

As to the case of LTIM programs, the path contexts are defined the same way, as
for LBASE programs, however, it may be not the case that a particular context S(a)
can be characterized by a simple inequality system w.r.t. the ”current” variable values
after the execution of the path a, in general, some more complex data structures are
needed. One possible solution to this problem is given in [ABBCK91], where every of
the path contexts S(a) is again partitioned into several subsets (each of them being a
configuration set, reachable along the path). This way both the obtained graph can
be shown to be a path feasibility graph for the given program, and every its vertex
becomes a pair (n,S) for n being a program vertex, and S - some set of program
variable configurations with their union being a solution set of some simple linear
inequality system.

However, given a LTIM, program P, for every path a in it the defined context
S(a) obeys the property of being a solution set of some simple inequality system,
so the further its splitting is not necessary. Just for the sake of brevity in the path

APPENDIX B. EXAMPLE OF A REAL TIME SYSTEM ANALYSIS 194

feasibility graph for the lift program two such splittings were made (see Figure B.9),
we save this way just about 9 reachability graph vertexes.

It could be at least theoretically an interesting problem to find the algorithms
looking for the "optimal” finite path feasibility graphs in given programs (these algo-
rithms also themselves should run in a reasonable time), however, it is not touched in
the thesis.

There are two more simplifications which are taken into account when building
the path feasibility graph for the LTIBA lift program.

First, we put in the graph only the vertexes, corresponding to the program vertexes
which are essentially located [ABBCK91], namely, a vertex class containing at least
one vertex for every loop in the program (we require also all accepting lift program
vertexes to be present).

Second, some of the path contexts (inequality systems) are simplified by the ex-
cluding variables whose values may become to be used in the future only after some
prior assignment (i.e. the "current” values of these variables are "irrelevant” for the
further behaviour of the program), see [ABBCK91] for a more detailed explanation
(just note that only program structure analysis techniques are used in this step to
make the decision about the "inessentiality” of some variables).

B.4.2 A Path Feasibility Graph for LTIBA Lift

The vertexes of the path feasibility graph are pairs (n, S) where n is an essentially
located program vertex and S is an inequality system characterizing the program
variable values (both LBASE and LTIM variables (base points) are taken into account)
after the program paths leading to this vertex {more precisely, the program paths
which are the projections of the graph paths leading to (n, §)).

The label of a given edge in the graph describes the path between the corresponding
essentially located vertexes in the program, which corresponds to this edge. For the
full description of such a path it suffices to denote the exits of the all program operators
(vertexes), where a real decision is being made (i.e. which have more than one exit),
see the graph.

In order to make the graph more readable we choose to denote all cyclic edges
around the vertexes by these edge labels put in the parentheses in the vertex descrip-
tion itself, e.g.,

WR.S6(S,R—-)

means that there are loops around the vertex WR, S6 which are labelled by S and
R — —. If the asterisks (**) are put in the parentheses for some graph vertex, look
for another vertex with the same name, where all outgoing edges from it are specified.

B.4. ANALYSIS OF SDL PROCESSES 195

WR,S6(S,R--) [B+ DClo,S7(S,R)

POP FD
DOpn,S6(S,R DOpn,S3(S,R)

WE,S5(S,R)

1

FD
DClo,S3(S,R) FlyU,S7(**)
DC-
S
Idie S2(R) | FlyU,S17(S,R) |"+——-| FlyU,S14(S,R,Z+) \
Z- Z-
R S+

Idle,S1() DOpn,S12(**)

Figure B.8: Path Feasibility Graph: 1

The path feasibility graph for LTIBA lift program is presented in Figure B.§ and
Figure B.9 and the explanation of the "context” components of the graph vertexes is
given in Figure B.10.

B.4.3 A Complete Test Set for Lift Process

Given the path feasibility graph for the LTIBA lift program, we can look for every
given branch b of the program, whether it is a projection of some branch in the graph.
If such a graph branch is found, we can consider an initial path a in the graph, con-
taining this branch and find some program history v along this path (in the case, if
there is no such branch in the graph, the corresponding program branch b is infeasi-
ble). The input signal sequence of the process history, coded by v, yields a test for
the SDL lift process, covering the process branch, which corresponds to b. Choosing
some order of the program branch consideration, one can obtain, for instance, the

APPENDIX B. EXAMPLE OF A REAL TIME SYSTEM ANALYSIS 196

DClo,S8(S,R)
DC++ [FU

DOp+ I FD DOp-~
DOpn,S9(S,R) DOpn,S12(S,R)
FU

FD Z- FU
| DCloS12(5.R) | lT*lyU,SS(s,MH H DClo,S16(S,R) }-—

DC- DC+-+

WR,S9(S,R--)

I

WE,S11(S,R

T1

- Z+

Idle SI3(R) [5== FlyU,57(S.R) ‘ FlyD,sm(s,R,zﬂ
S—4 ‘S+ 2~ Z-
@D,SlS(S,&ZH FlyU,S14(**) DOpn,S6(**)
2- Z-

DOpn,S3(**) DOpn,S12(**) DOpn,S9(**)

Figure B.9: Path Feasibility Graph: 2

B.4. ANALYSIS OF SDL PROCESSES S 197

S1: —1=tl<0=2z y=1, Fl=0
§2: —1=tl<0<az, y=1, Fl=0
53 “1=tl<0<z, x=y=1" Fl=0
S4: 0<z<z+20=t! x=y=1, Fl=0
$5: 0<z<t!<z+20, x=y=1, Fl=0
S6: ~1=tl<oczg, x=y=1, Fl=1
S7: -1=tl<0<z, x>y=1, Fl=1
S8: -1=t'<0<az, x>y>1, Fl=1
59: -1=t'<0<z, x=y>1, Fl=1
S10: 0<z<z+20=t! x=y>1, Fl=0
S11: . 0<z<t! <z+ 20, x=y>1, Fl=0
S12: —“1=tl<0<z, x=y>1, Fl=0
513: -1=tl <0<z, y>1, Fl=0
S14: -1=t'<0<z, x>y>1, Fl=0
S15: -1=tl <0<z, 0<x<y, Fi=0
S16: -1=tl<0<z, 0<x<y, Fi=1
S17: —1=tl<o0<z x>y=1, Fl=o0.

Figure B.10: Path Feasibility Graph: Contexts

APPENDIX B. EXAMPLE OF A REAL TIME SYSTEM ANALYSIS 198
Test N1. (R(0) at 1).

Test N2. (S(3) at 1), (S(0) at 2), (R(0) at 3), (Z(2) at 4).

Test N3. (S(2) at 1), (Z(2) at 2), (S(0) at 3), (R(0) at 4), (FD at 5), (FU at 6).

Test N4. (S(1) at 1), (DOp at 2), (S(0) at 3), (R(0) at 4) (observe that this test
invokes the timer signal T1 to come at the moment 22).

Test N5. (S(1) at 1), (DOp at 2), (FD at 3), (5(0) at 4), (R(1) at 5).
Test N6. (S(1) at 1), (DOp at 2), (FD at 3), (R(2) at 4), (S{0) at 5), (R(0) at 6).

Test N7. (S(1) at 1), (DOp at 2), (FD at 3), (R(2) at 4), (DC at 5), (Z(2) at 6),
(DOp at 7).

Test N8. (S(3) at 1), (Z(3) at 2), (DOp at 3), (DC at 24), (S(1) at 25), (S(0) at 26),
(R(0) at 27), (Z[2) at 28), (Z(1) at 29).

Test N9. (S(1) at 1), (DOp at 2), (FD at 23).
Test N10. (S(1) at 1}, (DOp at 2), (FD at 3), (R(2) at 4), (FU at 5).
Test N11. (S(2) at 1), (Z(2) at 2), (DOp at 3), (FD at 4), (R(1) at 5).

Figure B.11: A Complete Test Set for Lift Process

collection of the tests for the lift process, which form the needed Complete Test Set
(according to C,), as shown in Figure B.11

