

iOS Applications Testing
Ivans Kulesovs

Faculty of Computing

University of Latvia

Riga, Latvia

Enterprise 2.0 Department

C.T.Co Ltd.

Riga, Latvia

ivans.kulesovs@gmail.com

Abstract— Mobile applications conquer the world, but iOS

devices hold the major share of tablets market among the corporate

workers. This study aims to identify the aspects (i.e. features and/ or

limitations) that influence the testing of the native iOS applications.

The aspects related to general mobile applications testing are

identified through the systematic literature review of academic

sources. iOS applications testing aspects are identified through the

review of non-academic (multivocal) literature sources. The

identified aspects are merged and discussed in detail using the

reviewed sources and based on the author’s professional experience

in iOS applications testing. The references to credible sources are

provided in order to support the professional experience findings.

The study eliminates the gap that exists in the academic world in

regards to iOS applications testing. The practitioners are also

encouraged to fulfill their iOS applications testing strategies with the

identified aspects.

Keywords—iOS application; mobile application; testing;

quality; verification and validation; systematic literature review;

I. INTRODUCTION

According to Clearwater Technology Mobile Computing
Sector Report

1
, the mobile computing industry is expected to

be worth almost US $330 billion by 2015. According to the
same study, 67 % of corporations allow workers to use the
tablets, but 51 % of corporations even buy the tablets for them.
iOS devices hold 75 % of the tablets market share among the
corporate workers.

With the growth of platform abilities applications become
more complex

2
 to satisfy the increasing user needs. The

increased complexity means that there are many aspects that
should be taken into consideration when testing mobile
applications. Mobile workers mostly use native business
applications on their devices; otherwise there would not be
such a dominant position of the single operating system. That
is why iOS native applications are the subject of the main
interest for this study.

Despite the fact that the topic being hot, there are only
some academic studies [1] – [3] performed that systemize the
generic aspects that should be taken into consideration when
testing the mobile applications without specifying the
platform. Other studies - [4] and [5] that include the clear
distinction between the platforms, concentrate on some narrow
topic. On the other side, there are different iOS testing
checklists, mind maps, blogs etc. available in the internet. This
motivates the author to perform the systematic literature
review of academic literature in the field of mobile testing and

perform the literature review of the available non-academic
(or multivocal, as per [6]) sources in the field of iOS testing.

It was decided to concentrate both reviews on aspects of
manual testing of such quality characteristics as functional
suitability, performance efficiency, compatibility, reliability,
maintainability, and portability according to ISO/IEC 25010
[7]. That is why the test automation, security, and usability
testing are out of scope (except parts that are closely related to
or are on the border line with the quality characteristics
mentioned above).

The following research question was formulated:

RQ: Which aspects (i.e. features and/ or limitations)
influence the testing of functional suitability, performance
efficiency, compatibility, reliability, maintainability, and
portability of the iOS native business applications?

The results of both reviews are merged in order to answer
the research question. The goal of the study is to eliminate the
gap that currently exists between academic and non-academic
sources in the field of iOS applications testing, as well as to
provide the sufficient details for practitioners to make their
iOS applications testing strategy more complete and solid.

The paper is organized as follows: in Section II the
research methodology is described; in Section III the merged
results gathered through both reviews are presented; in Section
IV the details of the identified iOS testing aspects are
discussed, and conclusions based on the findings are presented
in Section V.

II. RESEARCH METHODOLOGY

The systematic literature review (SLR) of the academic
sources was performed in order to gain the aspects of the
mobile applications testing. The multivocal literature review
(MLR) was performed in order to gain the exclusive aspects of
iOS applications testing. Fig. 1 shows the stages of sources
selection for the whole review process applied in this paper.

The procedure described by Kitchenham and Charters [8]
was followed in order to conduct the systematic literature
review. The qualitative review approach was applied in order
to include a rigor into the systematic review of multivocal
literature as suggested by Ogawa and Malen [6]. They define
the multivocal sources as accessible, but non-academic
writings on the topic.

Author thanks C.T.Co Ltd. (http://mobile.ctco.eu/) for allowing and stimulating the conduction of the research based on the real software projects.

1 - http://www.clearwatercf.com/documents/library/Mobile_Report_FINAL.pdf

2 - http://pages.crittercism.com/rs/crittercism/images/crittercism-mobile-benchmarks.pdf

http://mobile.ctco.eu/
http://www.clearwatercf.com/documents/library/Mobile_Report_FINAL.pdf
http://pages.crittercism.com/rs/crittercism/images/crittercism-mobile-benchmarks.pdf

Fig. 1. Process of sources selection for SLR and MLR

A. Systematic Literature Review

The search of academic literature for SLR was performed
in two iterations. The first iteration was executed using the
databases and search criteria that are described below. 12
papers were selected as relevant to answer RQ. The second
iteration was executed based on the references in the papers
selected after the first iteration. Some relevant sources were
found, but they appeared to be non peer-reviewed. The details
of each iteration can be found in Table 1.

TABLE I. NUMBER OF PAPERS LEFT AFTER EXCLUSION/ INCLUSION

DURING EACH SLR STAGE

Iteratio
n

Stage Number of
Academic
Works after
Stage

1 1. Initial repeatable search (duplicates

removed)

946

 2. Refined search to include works from 2014 772

 3. Exclusion upon titles 33

 4. Exclusion upon abstract 18

 5. Exclusion upon full text 12

2 6. Secondary search based on references in
selected results

0

 Total: 12

1) Databases. The following databases were used to search
the keywords described in the Search Keywords section: IEEE
Xplore (IEEE further in the text), ACM Digital Library
(ACM), and Springer Links (Springer).

2) Search Keywords. Appropriate keywords were searched
in metadata. Due to the search engines differences, metadata
should be treated as a search within the title, OR abstract, OR
keywords for ACM and as a search within the title only for
Springer, while IEEE has an option to search within all
metadata at once.

Because preliminary search of keywords “iOS application”
and “testing” or “iOS application” and “quality” returned
small amount of results, the keyword “iOS” was substituted
with “mobile”. It was also given a try to shorten the word
“application” to “app”. The following search string was used:
(("iOS apps" OR "iOS applications") OR ("iPhone OS apps"
OR "iPhone OS applications") OR ("mobile apps" OR "mobile
applications")) AND ("quality" OR "testing" OR
“verification” OR “validation”).

3) Inclusion/ Exclusion Criteria. Only peer-reviewed
papers in English were selected. There was no limitation given
on the type of the source (i.e. journals, conference proceedings
etc.). Papers starting from the year 2007 were chosen, because
it is the year when iOS (iPhone OS at that time) was released.
The year 2013 was chosen as the last year of publication for
the search results repeatability. The search was also refined by
adding papers from the year 2014 in order not to miss the
latest available information.

Irrelevant papers were excluded upon title, then upon
abstract, and then upon full text. The main credit was given to
the papers that offered some categorization or general
overview of mobile applications testing. Papers that mention
only the specific testing type of mobile applications (i.e. unit
testing, security, usability etc.) or that are related to test
automation were excluded from the results after additional
acquaintance with abstract because they do not focus on the
aspects asked in RQ. Only non-shortened version of papers
were included if two versions of the same paper for different
occasions (e.g. conference proceedings and magazine) were
identified.

3) Data Extraction and Synthesis. The data extraction
phase involved the extraction of aspects and categories of
aspects related to RQ from the selected studies. The categories
of multiple non-overlapping aspects are mentioned in some
papers, while the detailed description of aspects from single
category is mentioned in others. The data synthesis phase
includes the merge of aspects from the different papers that
appeared to have the same meaning. In order to make the data
more usable the aspects were divided between 4 large clusters:
Environment, Application Lifecycle, Inside the Application,
and (functional or performance aspects of) UI/ UX.

B. Multivocal Literature Review

1) Data Sources and Search Strategy. Sources for MLR
were searched in Google (http://www.google.com/). The
combination of the same keywords as for SLR, excluding the
“mobile applications” OR “mobile apps” part, was used for
the first search iteration. The keyword “checklist” was added
for the second iteration. The first 50 relevant articles per
iteration (see Appendix B) based on the Google ranking
algorithm were taken for subsequent analysis.

TABLE II. NUMBER OF PAPERS LEFT AFTER EXCLUSION DURING EACH

MLR STAGE

Iteration Initial Stage 1 Stage 2 Stage 3

Iteration 1 50 20 5 5

Iteration 2 50 20 5 4

Total 9

2) Inclusion/ Exclusion Criteria. The sources were
excluded during three stages by evaluating 1) Title/ partial text
available in the search results; 2) full text; 3) overall quality.
The sources related to iOS testing only were included into the
final results, i.e. the sources containing only information about
general mobile testing aspects were excluded. The sources on
security or unit testing, as well as the sources on testing
automation were excluded as well. Duplicates were excluded
upon title during the first exclusion stage. Some sources were
excluded on the second stage because they directly referred to
other sources found.

3) Data Extraction and Synthesis. The data extraction
phase involved the extraction of aspects and aspects categories
asked in RQ. Some sources already contain categorized lists of
aspects while other are materials written in narrative. The data
synthesis phase includes the merge of aspects from the
selected sources. The identified aspects were divided between
the same clusters as done for SLR.

III. RESULTS

A. Summary of Reviews

Despite the fact that the search criteria for SLR includes
studies starting from 2007, the first selected study was
published in 2009 [S2], but the most productive years are 2012
(5 studies: [S3], [S4], [S9], [S11], and [S12]) and 2013 (3
studies: [S1], [S8], and [S10]). 2 studies [S5] and [S6] were
published in 2011, and 1 study [S7] was published in 2014. 2
studies [S3] and [S5] are related to narrow topic of mobile
application lifecycle, 1 study [S10] is related to user
complaints about iOS applications, and other 9 sources [S1],
[S2], [S4], [S6] – [S9], [S11], and [S12] are related to general
testing of mobile applications.

Between the sources selected through MLR, 7 sources
[M23], [M43], [M45], [M49], [M78], [M95], and [M97] were
published in 2013, and 1 source was published in 2012 [M56]
and in 2014 [M5]. 5 sources [M5], [M43], [M45], [M49], and
[M56] are blog posts, 2 sources [M23] and [M97] are testing
checklists, 1 source [M78] is a white paper, and 1 source
[M95] is a mind map. All the blog posts describe the testing
only of one or some aspects, while other sources try to cover
the whole iOS testing field.

B. Aspects of iOS Applications Testing

The aspects that influence the testing of iOS applications
gathered through SLR and MLR are shown in Table 3. If a
source is referred in the table before the details of an aspect, it
means that aspect is just mentioned in the source without
pointing the details that are related to iOS applications testing.

TABLE III. ASPECTS OF IOS APPLICATIONS TESTING

Environment

Hardware

Devices iPad, iPhone,
iPod [M23,
M78, M95,
M97].

Screen size, resolution & pixel ratio,
processing efficiency, memory, storage
capacity; [S2, S6, S7, S8, S9, S10, S11,
S12, M78, M95, M97]
motion activities [M95, M97].

Simulator [S2, S6, S8, S9, S12, M5]

External
Accessories

Headphones [S1, S4, M97], keyboard [S1, S4]; wired/
unwired [S1, S4].

Operating System

OS Variety [S7, S8, S9, S12, M78, M95,
M97]

OS upgrade [S8]

Restrictions and
Privacy Settings

[S2, S7, S8, S10]
Safari, Camera, Siri, IAP (in-app purchase), Location
Services, Contacts, Calendars, Photos, Social
Networking, Microphone, Motion Activities, Cellular
Data Use, Background App Refresh [M23, M49, M95].

Resources
Limitations Lack of storage, amount of memory, running out of

battery, processing capabilities. [S2, S3, S4, S8, S10,
S11, S12]

Consumption Memory consumption, battery consumption. [S2, S4,
S11, S10, S12, M23]

Connectivity
Network Types Wifi, Cellular networks; [S2, S4, S7, S12, M45, M97]

Bluetooth [S2, S4, S12, M97]; Airplane mode. [M95,
M97]

Network
Conditions

[S1, S2, S4, S10, S11, S12]
Strong/ no/ poor connection; connection loss [M23, M45,
M49, M95].
Ask for connection [S2].

Internalization
Region Formats [S11]

Date format, hour format [M95, M97]

Date/ Time
Settings

Switching between time zones, system time too fast/ too
slow. [M95]

Application Lifecycle

Installing and
Launching

[S11, M23, M97]

Background [S3, S4, S5, M23, M95]

Crash [S8, S10, M78, M95]

Low-Memory
Warnings

[S3, S4, S5, S6, M95]

Interruptions [S2, S3, S4, S5, S11]
Call/ SMS [S1, M23]; push notifications [M23, M95],
system alerts [S1]; GPS signal [S1]; audio/ video [M23,
M95, M97].

Application
Update

[S8, M95, M97]

Inside the Application

Keyboard [S2]
Extended keyboard [M49].

Data Import/
Export

Email; Bluetooth/ network (peer to peer) [M23, M95].

Logging/
Analytics

[M95, M97]

In-App
Purchases

[M95]

Web View [S7, M95]

UI/ UX

Gestures [S7, M95]

Smooth
Animation

[S10, M95]

Pull to Refresh [M95]

Orientation Portrait, landscape. [S2, S4, M95, M97]

Half Pixels [M95]

Localization [S8, M97]
Native characters and special symbols [M23].

Accessibility VoiceOver, accessibility zoom etc. [M43, M56, M78,
M95, M97]

There are three types of iOS devices: iPad, iPhone, and
iPod mentioned in [M23], [M78], [M95], and [M97] that have
different screen size, resolution & pixel ratio, processing
efficiency, memory, and storage capacity, as per [S2], [S6],
[S7], [S8] – [S12], [M78], [M95], and [M97]. It is claimed in
[S2] that functionalities, usability issues in the interface
design, and user behavior “to be tested in emulator”, while
other sources [S6], [S8] – [S10], and [M5] state that almost
everything should be tested on the real device to get the
reliable test results. There are also different types of the
external accessories, both wired and wireless [S1, S4], like
headphones [S1, S4, M97] and keyboard [S1, S4] that can be
connected to the device.

It is claimed in many sources [S7] – [S9], [S12], [M78],
[M95], and [M97] that the variety of operating systems (OS) is
an important testing aspect, while OS upgrade is mentioned
explicitly only in [S8]. It is possible to set the restrictions on
the usage of different hardware or OEM software completely
or for the specific application within the iOS [M23, M49,
M95].

Mobile devices have limited power, processing, and
memory resource [S2 – S4, S8, S10 – S12]. Thus resources
consumption efficiency plays an important role in application
success [S2, S4, S10 – S12, M23]. Applications should also be
checked on different networks, i.e. strong WiFi connection,
cellular network (LTE, 3G, EDGE), and in Airplane mode
[S2, S4, S7, S12, M45, M49, M95, M97]. Different network
conditions (e.g. slow connection, packets loss etc.) should be
taken into consideration as well [M95]. Different regional
settings, like data and time formats [M95, M97], as well as
time zones [M97] are also the subject of interest.

iOS application lifecycle consists of several phases, and
there are specific conditions that can uniquely influence
application’s behavior while being in the definite phase. An
application can be just installed and launched for the first time
[S11, M23, M97], work in foreground, stay in background [S3
–S5, M23, M95], receive memory warnings [S3 – S6, M95],
be interrupted by a call or SMS [S1, M23], system alert [S1],
push notification [M23, M95], GPS signal [S1], or audio/
video from another application [M23, M95, M97]. It can even
crash [S8, S10, M78, M95]. Or it can also be updated to the
next version [S8, M95, M97].

[M49] warns about the need to check an extended
(Chinese) on-screen keyboard, while [S2] mentions on-screen
keyboard as a generic aspect that should be taken into
consideration. According to [M23] and [M95] data can be
shared via email or Bluetooth, or another network between the
applications. According to [M95] and [M97] it is necessary to
check application’s logging and analytics features. Testing of
In-App Purchase component is mentioned in [M95]. Testing
of Web View component is mentioned both in [S7] and
[M95].

An application can be manipulated with a variety of
gestures [S7, M95]. When animated transitions occur, they
must run smoothly [S10, M95] irrespectively of the task
executed in parallel. Testing for half pixels glitches and testing
of Pull to Refresh feature are mentioned in [M95]. The

necessity of checking the application both in portrait and
landscape is noticed in [S2], [S4], [M95], and [M97]. The
importance of localization testing is mentioned in [S8] and
[M97]. [M23] identifies the need for testing of native
characters and special symbols. It should also be checked that
application works as designed when accessibility features of
OS are enabled [M43, M56, M78, M95, M97].

IV. DISCUSSION AND IMPLICATIONS

Despite the fact that the Results section shows the
identified aspects of iOS applications testing gathered through
SLR and MLR, the author feels the necessity to discuss the
details of identified aspects. There are also some aspects that
are known to the author (like iAd), but they are missing in the
reviewed literature. Some of the details are provided in the
reviewed sources. Others are added based on the author’s
more than three years of professional experience of leading
more than 20 iOS applications testing projects for several
Global Fortune 500

3
 and other multinational companies,

giving the references to iOS Developer Library
4
 or other

credible sources where possible.

A. Hardware

1) Devices. While there are three types of iOS devices,
business applications are mostly developed for iPads

5
, and

sometimes have reduced iPhone versions
6
. iPods generally are

out of scope.

iPad 1
st
 generation devices, as well as iPhone 3G and

iPhone 3GS are not taken into consideration anymore when
new applications for iOS are developed. Only iPhone 3GS has
limited support by iOS 6 (the latest iOS version at the moment
of writing is iOS7), but both other mentioned devices already
are not

7
.

iPad 2
8
 and iPad mini

9
 both have non retina display (i.e. a

display with lower pixel density than the latest iOS devices)
and generally the same hardware options. They are the least
powerful iPad devices that support the latest iOS version.
Special checks that application design fits the small screen of
the device and that every UI control can be easily interacted
with should be performed on iPad mini.

iPad 4
10

 and iPad 3
11

 both have retina displays, but iPad 4
is more powerful than iPad 3. Generally, it is enough to have
only one device of any generation to cover this category of
devices.

iPad Air
12

 and iPad mini retina
13

 both have new GPU (but
still retina display) and new M7 64-bit core processor that has
built-in hardware for motion activities like accelerometer,
gyroscope, and compass.

iPhone 4
14

 and higher all have retina displays. iPhone 4S
15

has a faster dual core processor in comparison with iPhone 4.
iPhone 5

16
 and iPhone 5C

17
 are both packed with even faster

next generation processor. iPhone 5S
18

 is packed with already
mentioned M7 64-bit core processor.

Despite the fact that iPhone 5
th

 generation devices have
larger screen size in comparison with iPhone 4

th
 generation

devices, applications designed for iPhone 4
th

 generation

3 - http://money.cnn.com/magazines/fortune/global500/index.html

4 - https://developer.apple.com/library/

5 - http://www.apple.com/ipad/business/

6 - http://www.apple.com/iphone/business/

7 - http://support.apple.com/kb/ht5457

8 - http://support.apple.com/kb/sp622

9 - http://support.apple.com/kb/SP661

10 - http://support.apple.com/kb/sp662

11 - http://support.apple.com/kb/sp647

12 - http://support.apple.com/kb/SP692

13 - http://support.apple.com/kb/SP693

14 - http://support.apple.com/kb/sp587

15 - http://support.apple.com/kb/sp643

16 - http://support.apple.com/kb/sp655

17 - http://support.apple.com/kb/SP684

18 - http://support.apple.com/kb/SP685

http://money.cnn.com/magazines/fortune/global500/index.html
https://developer.apple.com/library/
http://www.apple.com/ipad/business/
http://www.apple.com/iphone/business/
http://support.apple.com/kb/ht5457
http://support.apple.com/kb/sp622
http://support.apple.com/kb/SP661
http://support.apple.com/kb/sp662
http://support.apple.com/kb/sp647
http://support.apple.com/kb/SP692
http://support.apple.com/kb/SP693
http://support.apple.com/kb/sp587
http://support.apple.com/kb/sp643
http://support.apple.com/kb/sp655
http://support.apple.com/kb/SP684
http://support.apple.com/kb/SP685

devices can still run on iPhone 5
th

 generation devices, but
there are black bars above and below application content,
unless properly named and to a larger screen accordingly sized
launch image is provided.

19

Generally speaking, one device from each generation
would be enough to cover the whole set of iPhones, in case of
application under test does not rely on the specific function of
the device like motion activity or finger print of iPhone 5S or
Siri (advanced voice control) that is available only starting
from iPhone 4S.

2) Device vs. Simulator. The author’s professional experience

supports the statement expressed in [S6], [S8] – [S10], and

[M5] that for achieving good quality of the application, it

should be tested on the device rather than on the simulator,

because testing results can vary. It also should be taken into

consideration that application can behave differently when it is

built in debug, not in release mode.
20

3) External Accessories. There are different kinds of
accessories, both wired and wireless [S1, S4], that can be
attached to the device: headphones [S1, S4, M97], keyboard
[S1, S4], stylus etc. It can occur that an application handles the
inputs and outputs from/ to external accessories in a different
way than it does without them, or it does not handle them at
all.

21
 External accessories from different manufacturers can

behave differently, e.g. styluses from different manufacturers
can have different configurations inside the application in
order to handle the palm (interaction) rejection etc.

22

B. Operating System

1) iOS Variety. Release of the new iOS version almost always

leads to the major retesting cycle for the non-trivial

applications. New Xcode
23

 version (that includes new version

of iOS SDK and compiler)
24

 is shipped together with the new

iOS version. Thus, there can be completely different test

results when the same code is built by the different Xcode

versions.
The following update strategy is followed by the

development organizations which the author works or worked
for when the new iOS version is released:

1. Current application version built by previous the Xcode
is checked on the new iOS version (preliminary checks
are done already on Beta or GM versions).

2. Major failures, if any, are fixed, and the application is
released with remark that it supports the latest iOS
version.

3. More thorough testing cycle follows when the
application current version is built by the new Xcode
afterwards.

It is possible to leave the application version built by the

previous Xcode for some period of time if, for example, active
development currently is not planned. But here is a list of
situations when developers are forced to rebuild the
application with the new version of Xcode:

 New iOS version does not support the methods that
were previously deprecated, but still used in the
application; new supported methods that substitute the
deprecated ones are available with the new Xcode, e.g.
detection of UDID.

25

 Apple announces that all the new applications or
application updates submitted to the App Store must be
optimized for new iOS and built with the latest
Xcode.

26

 Application should be redesigned for the marketing
purposes, because of the iOS redesign (as it occurred
with iOS 7

27
), but new UI is achieved using the latest

Xcode.

It is worth mentioning that devices with the previous iOS
version should always be available and handled carefully in
case some of the applications developed within the
organization still support it. It should not be forgotten that
there is no official way to install any previous major iOS
version after the release of the latest major iOS version

28
. It

should be taken into consideration that not all users update
iOS version as soon as it is released

29
, but can continue to use

the previous one for quite a long period of time. From the
author’s experience, it is especially applicable for enterprise
users – they update iOS version only after the enterprise
infrastructure that supports the latest iOS version is ready.

2) Restrictions and Privacy Settings. In iOS a user can set
different restrictions, both system and application wise, on the
usage of different hardware or OEM software. For example, it
is possible to restrict the usage of Safari, Camera, Siri, IAP
(In-App Purchase), Location Services, Contacts, Calendars,
Photos, Social Networking, Microphone, Motion Activities,
Cellular Data Use, Background App Refresh etc. [M23, M49,
M95] The application should handle cases when it tries to
access the restricted item. The user should also be warned
about the restriction and instructed how to remove it

30
 or

offered to remove the restriction within the application if it is
possible.

C. Resources.

1) Limitations and Consumption. Due to the fact that a
mobile device has more limited storage, memory, power, and
processing capabilities than an ordinary PC [S2 – S4, S8, S10
– S12], examination of how the applications handle these
limits and operate within these limits are of special interest.
The application should check for the free storage availability
when the new data is added/ downloaded. Otherwise, from the
author’s experience, the user will not be able to operate with

19 - https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/
iPhoneOSProgrammingGuide/AdvancedAppTricks/AdvancedAppTricks.html

20 - https://developer.apple.com/library/ios/documentation/Tools
Languages/Conceptual/Xcode_Overview/DebugYourApp/DebugYourApp.html

21 - https://developer.apple.com/library/ios/featuredarticles/
ExternalAccessoryPT/Articles/MonitoringEvents.html

22 - http://www.apartmenttherapy.com/tablet-stylus-test-lab-comparison-of-
pencil-intuos-pogo-connect-jot-script-tech-test-lab-reviews-196850

23 - https://developer.apple.com/xcode/

24 - https://developer.apple.com/library/mac/documentation/DeveloperTools/
Conceptual/WhatsNewXcode/00-Introduction/Introduction.html

25 - https://developer.apple.com/library/ios/documentation/uikit/reference/
UIDevice_Class/DeprecationAppendix/AppendixADeprecatedAPI.html

26 - https://developer.apple.com/news/?id=12172013a

27 - http://www.apple.com/pr/library/2013/09/10iOS-7-With-Completely-
Redesigned-User-Interface-Great-New-Features-Available-September-18.html

28 - http://www.itproportal.com/2013/09/29/why-apple-wont-allow-you-to-
downgrade-your-iphone-from-ios-7-to-ios-6/

29 - http://appleinsider.com/articles/13/12/31/ios-7-now-installed-on-78-of-
active-apple-handheld-devices

30 - http://support.apple.com/kb/ht4213

https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/AdvancedAppTricks/AdvancedAppTricks.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/AdvancedAppTricks/AdvancedAppTricks.html
https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview/DebugYourApp/DebugYourApp.html
https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview/DebugYourApp/DebugYourApp.html
https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/Articles/MonitoringEvents.html
https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/Articles/MonitoringEvents.html
http://www.apartmenttherapy.com/tablet-stylus-test-lab-comparison-of-pencil-intuos-pogo-connect-jot-script-tech-test-lab-reviews-196850
http://www.apartmenttherapy.com/tablet-stylus-test-lab-comparison-of-pencil-intuos-pogo-connect-jot-script-tech-test-lab-reviews-196850
https://developer.apple.com/xcode/
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/WhatsNewXcode/00-Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/WhatsNewXcode/00-Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/uikit/reference/UIDevice_Class/DeprecationAppendix/AppendixADeprecatedAPI.html
https://developer.apple.com/library/ios/documentation/uikit/reference/UIDevice_Class/DeprecationAppendix/AppendixADeprecatedAPI.html
https://developer.apple.com/news/?id=12172013a
http://www.apple.com/pr/library/2013/09/10iOS-7-With-Completely-Redesigned-User-Interface-Great-New-Features-Available-September-18.html
http://www.apple.com/pr/library/2013/09/10iOS-7-With-Completely-Redesigned-User-Interface-Great-New-Features-Available-September-18.html
http://www.itproportal.com/2013/09/29/why-apple-wont-allow-you-to-downgrade-your-iphone-from-ios-7-to-ios-6/
http://www.itproportal.com/2013/09/29/why-apple-wont-allow-you-to-downgrade-your-iphone-from-ios-7-to-ios-6/
http://appleinsider.com/articles/13/12/31/ios-7-now-installed-on-78-of-active-apple-handheld-devices
http://appleinsider.com/articles/13/12/31/ios-7-now-installed-on-78-of-active-apple-handheld-devices
http://support.apple.com/kb/ht4213

the data that already is inside the application due to crashes.
The application should be checked for efficient battery
consumption as well [S2, S4, S10 – S12, M23]. It can be
verified using Xcode Instruments tools

31
. Battery usage

logging can also be enabled on the device that is provisioned
for the development

32
. Instruments tools can also be used for

profiling the efficiency of memory and processor resource
utilization.

D. Connectivity

1) Network Types. During Alpha testing the application is
mostly checked in the laboratory environment [S2]: on the
strong WiFi connection and in the Airplane mode. The
working on the cellular data (LTE, 3G, EDGE) should be
checked as well [S2, S4, S7, S12, M45, M97], especially if the
application utilizes a lot of traffic. The user, at least, should be
warned when large data synchronization occurs on the cellular
network.

2) Network Conditions. There are different network conditions
possible [S1, S2, S4, S10 – S12, M23, M45, M49, M95] (e.g.
slow connection, packets loss, etc.). It should be checked if
under these conditions:

 The application handles different network conditions
on the first launch.[M95]

 Proper error messages are shown on timeouts and other
network errors. [M95]

 The interaction with UI (i.e. the main thread) is not
blocked. [M95]

 The corrupted data is not stored, or at least can be
redownloaded.

For simulating different network conditions Apple
Network Link Conditioner can be used [M45]. This tool is a
part of Xcode Developer Tools

33
 and can simulate network

conditions on the device if the network connection from Mac
is shared. It can also be enabled directly on the device that is
provisioned for development.

Sometimes it is also necessary to check a poor connection
or a connection loss/ switching in the real world. From the
author’s experience, the most common cases that should not
be simulated, but should be checked in the field are:

 The traffic loss while the device “thinks” that it is still
connected to the network (e.g. entering the elevator or
walking outside the network coverage).

 Switching from WiFi to the cellular network and vice
versa, switching from one WiFi access point to
another, switching between different cellular network
types.

 Only cellular network conditions (e.g. inbound/
outbound connection speed, packet loss ratio etc.) can
be simulated, but the device will still think that it is on
WiFi. Thus, the real cellular network should be used to
check the cellular network specific functionality of the
application.

 The situation when the device is not connected to any
network should be checked separately to make sure
that this condition is treated the same way as the
Airplane mode.

E. Internalization

1) Region Formats. Applications should be tested using
different region formats [S11] that have different hour format
(24 or 12) [M95, M97] and different coma separators. For
example, German Switzerland and United States regions cover
these both differences. From the author’s experience, the
specific Arabic and Israel region formats should be explicitly
tested if the application’s functionality is directly related to the
calendar and weekend days.

2) Date/ Time Settings. When the application receives
updates from backend, and especially when creation/ update
timestamps for items are visible (but the same also applies for
locally created items), it is necessary to check how the
application behaves with different time settings [M95]:

 When switching between time zones.

 When the system time is too fast or too slow.

Besides checking that functionality works properly itself, it
is necessary to check that relative times are properly
calculated [M95].

F. Application Lifecycle

1) Installing and Launching. The application should be
installed both on the device that already contained some
version of the application and on the clean device after the
factory reset. The user should be warned through a message or
a progress bar in case the access to the application
functionality is given in more than 5 seconds after launching.
[M23]

2) Background. The background mode is one of the major
cycles of iOS application lifecycle. If the application cannot
be sent to the background in approximately 5 seconds, then
iOS kills it. The same is applicable when going back to the
foreground.

34
 That is why it is necessary to check that the

application changes the state in sufficient amount of time even
with the large amounts of data inside. The application can also
perform the refreshes in the background using the special
multitasking feature provided in iOS 7 or if it uses the
Location Services, plays audible content in backround, etc.

34
 It

should be checked that all the data is preserved [M97], but
specific data is updated and is not corrupted after the
application is returned to the foreground. All the animations
should be restarted as well – it does not occur automatically.

3) Locked Device. Apple warns that improper design or
implementation of cryptographic operations can introduce
performance or battery life problems. Locking the device with
passcode can influence the applications that can operate in
background. What is more, the device denies the access to the
keychain and files.

35
 From the author’s experience, the

incidents including data loss and crashes can occur if the
application needs access to the keychain during the
background activity, but the situation when the keychain is not

31 - https://developer.apple.com/library/ios/documentation/AnalysisTools/Reference/Instruments_User_Reference/Introduction/Introduction.html

32 - https://developer.apple.com/library/ios/recipes/xcode_help-devices_organizer/articles/provision_device_for_development-generic.html

33 - https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/NetworkingOverview/WhyNetworkingIsHard/
WhyNetworkingIsHard.html

34 - https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/ManagingYourApplicationsFlow/
ManagingYourApplicationsFlow.html

35 - https://www.apple.com/ipad/business/docs/iOS_Security_Oct12.pdf

https://developer.apple.com/library/ios/documentation/AnalysisTools/Reference/Instruments_User_Reference/Introduction/Introduction.html
https://developer.apple.com/library/ios/recipes/xcode_help-devices_organizer/articles/provision_device_for_development-generic.html
https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/NetworkingOverview/WhyNetworkingIsHard/‌WhyNetworkingIsHard.html
https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/NetworkingOverview/WhyNetworkingIsHard/‌WhyNetworkingIsHard.html
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/ManagingYourApplicationsFlow/ManagingYourApplicationsFlow.html
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/ManagingYourApplicationsFlow/ManagingYourApplicationsFlow.html
https://www.apple.com/ipad/business/docs/iOS_Security_Oct12.pdf

available is not handled properly. It usually takes a long time
to isolate the cause of such incidents. It is easy to crash the
application just by frequent locking with a passcode and
unlocking the device if the file data protection strategy is
poorly designed.

4) Crash. There is an option to use crash reports [M95]
when the tester cannot reproduce the exact steps that led to the
crash. Some crash reports if symbolicated (i.e. converted to
the proper stacktrace using debug symbols of the build)

36
 can

give a hint on the exact scenario that led to crash. Others are
not useful if the crash occurred not in the application, but in
iOS itself.

5) Low-Memory Warning. When iOS needs more memory,
it unloads applications that are currently in the background
[S4, S5, M95]. Prior to iOS 6, if the application needed even
more memory it could unload cashed images (if cashing was
performed) and not visible views of the currently running
application. In such cases it was possible to see only the
placeholders of images or the application could even crash if
unloaded data reload was not properly handled during the
further navigation activities. Now developers must handle
actions to perform when memory warning is received
completely on their own.

37, 38
 If the application utilizes a lot of

memory (usually it means that there are memory leaks in the
application) then it can be fully unloaded from the device
memory by iOS itself.

38
 Low-memory warnings can be

simulated by Xcode Instruments (but only for the
simulator).

38,39
 From the author’s experience, they can be

easily reproduced on the device when many heavy pages are
loaded in Safari or when photos or videos are made while the
application under test is running on the background. Working
with very large data or quick and frequent refreshes of data in
UI collections can cause low-memory warnings when the
application under test is running on the foreground.

6) Interruptions. The application should preserve its state
and should not freeze if it receives an incoming call or SMS
[S1, M23], system alert [S1], or local, or push [M23, M95]
notification while being in the foreground, especially when
activities occur on the main thread.

It is possible to open the application through the push
notification if it is received when the application is in the
background or closed. Different navigation start points should
be checked in case the application also does some navigation
actions inside itself on confirming the push notification. The
application icon badge update should also be checked
including the case when several updates are received in a
row.

40, 41

For applications that play audio/video it should be checked
that other audio/ video streams are paused on in-application
audio stream start. It should be checked if audio continues to
play or not when the application is in the background (to play
or not - it depends on the requirements). [M23, M95, M97] It
is worth mentioning that audio/ video inside the Web Views is

handled in a different way than audio/ video played natively.
42

7) Application Update. The migration process of the
application from the previous versions should be tested before
the new version of the application that will be available to the
final user is released. [M95, M97] After the application is
updated from the previous version it should be checked that:

 The data is not corrupted.
43

 The user preferences stay in place. [M95]

 Saved credentials are still there. [M95]

 Previously registered push notifications are still
received.

43
 [M95]

The updates should be performed using the different
possible paths starting from the very first application release
[M95]. From the author’s experience, in some cases (e.g. due
to the requirements change, or the incomplete data model
design during the first release) data model changes can be so
significant that users are asked to perform the backup of their
data and to perform the clean install of the application.
Encrypted data migration is also the subject of interest. When
there is a backend server and it is updated as well, it is
necessary to check the old application versions on the new
server version if there is no mechanism that does not allow
connecting to the server with the old versions of the
application.

G. Inside the Application

1) Keyboard. Editable UI elements should be focused
through auto scroll after onscreen keyboard appears. In
practice, it is often forgotten to check how they behave in case
of split, undocked, extended [M49] or external keyboard [S1,
S4], only docked and merged onscreen keyboard is taken into
account. From the author’s experience, non standard keyboard
appearances often influence the usability of those editable
elements that are placed near the screen bottom border.

2) Data Import/ Export. Many applications support
different file formats that they can operate with. There are
different ways how supported file formats can be imported
into or exported from the application. They are:

 Open In from email, web browser, or other
applications;

44

 via Air Drop;
45

 via Email;[M23, M95]

 via iTunes;
46

 via Photos application/ Camera;
47

 via Bluetooth/ network (peer to peer); [M23, M95]

 import (download and open) from URL.
48

36- https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/
AppDistributionGuide/AnalyzingCrashReports/AnalyzingCrashReports.html

37 - https://developer.apple.com/library/ios/documentation/uikit/reference/
UIViewController_Class/Reference/Reference.html

38 - https://developer.apple.com/library/ios/documentation/iphone/conceptual/
iphoneosprogrammingguide/PerformanceTuning/PerformanceTuning.html

39 - https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/
iOS_Simulator_Guide/InteractingwiththeiOSSimulator/
InteractingwiththeiOSSimulator.html

40 - https://developer.apple.com/library/ios/documentation/NetworkingInternet/
Conceptual/RemoteNotificationsPG/Introduction.html

41- https://developer.apple.com/library/ios/documentation/NetworkingInternet/
Conceptual/RemoteNotificationsPG/Chapters/IPhoneOSClientImp.html

42 - https://developer.apple.com/library/ios/documentation/AudioVideo/
Conceptual/AVFoundationPG/Articles/00_Introduction.html

43 - https://developer.apple.com/library/ios/technotes/tn2285/_index.html

44 - https://developer.apple.com/library/ios/qa/qa1587/_index.html

45 - http://support.apple.com/kb/ht5887

46 - http://www.apple.com/itunes/

47 - https://developer.apple.com/library/ios/documentation/AudioVideo/
Conceptual/CameraAndPhotoLib_TopicsForIOS/Introduction/Introduction.html

48 - https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/
URLLoadingSystem/Tasks/UsingNSURLDownload.html

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AnalyzingCrashReports/AnalyzingCrashReports.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AnalyzingCrashReports/AnalyzingCrashReports.html
https://developer.apple.com/library/ios/documentation/uikit/reference/UIViewController_Class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/uikit/reference/UIViewController_Class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/PerformanceTuning/PerformanceTuning.html
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/PerformanceTuning/PerformanceTuning.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/InteractingwiththeiOSSimulator/InteractingwiththeiOSSimulator.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/InteractingwiththeiOSSimulator/InteractingwiththeiOSSimulator.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/InteractingwiththeiOSSimulator/InteractingwiththeiOSSimulator.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/IPhoneOSClientImp.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/IPhoneOSClientImp.html
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/AVFoundationPG/Articles/00_Introduction.html
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/AVFoundationPG/Articles/00_Introduction.html
https://developer.apple.com/library/ios/technotes/tn2285/_index.html
https://developer.apple.com/library/ios/qa/qa1587/_index.html
http://support.apple.com/kb/ht5887
http://www.apple.com/itunes/
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/CameraAndPhotoLib_TopicsForIOS/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/CameraAndPhotoLib_TopicsForIOS/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/URLLoadingSystem/Tasks/UsingNSURLDownload.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/URLLoadingSystem/Tasks/UsingNSURLDownload.html

It should be checked that the application handles (i.e. is
registered to open and can open

49
) supported file formats in

non case sensitive manner.
50

 Naming of the exported data
should be verified as well.

Files can be sent via email from the application. In most
cases, iOS native email client is used for this purpose. It
should be checked that there are default to, subject, and body
set on email creation. The application should also properly
handle the case when there is no email account configured.
[M95]

From the author’s experience, there are not many problems
encountered when images are imported from the Photos
application using the native view controller. But in case when
custom view controller is used, it should be more strictly
checked how it is synchronized with Photos application. The
robustness of the Camera component usage is also the subject
of worries. The Camera component tests should include the
device orientation change, rotation lock, background, etc., i.e.
the same aspects that should be checked for every mobile
application.

3) Logging/ Analytics. Public analytics engines are often
used for collecting crash reports, feature usage statistics and
other logs for further development activities and testing
thoroughness prioritization [M95, M97]. Analytics is mostly
used for publically available applications without own
backend server. Based on the author’s experience, if analytics
is used then the main points that should be checked are:

 Analytics gathering should handle situations when the
data is not available or has another format than
expected. It is better to send the wrong one or no
statistics than to break the UX.

 The statistics should not be sent via cellular networks.
In most cases only WiFi connection should be used.

 The analytics should not gather the data about the user
without his/ her permission. The user should be warned
about how and where the data will be used.

51

 Collecting the data should not break the UX in any
other way.

Enterprise applications can have other, more strict and
extensive rules for logging depending on the corporate policy.
Own logging protocols are used in such cases.

4) In-App Purchase. In-App Purchase (IAP) is a business
model that allows the user to buy virtual or digital
consumables, non-consumables, and subscriptions within the
application that is distributed via Apple App Store. It should
be checked that the purchased items are available on all the
devices that are registered for the particular user, and that
purchases are restored after the application reinstall, clean
install, and iOS update or clean install.

52

IAP products can be tested using special test users on
Apple test environments. It is also possible to test auto-

renewable subscriptions on these environments, because they
have compressed durations for testing purposes.

53

IAP password cashing system setting is of the special
interest. The password can be saved for 15 minutes or asked
each time the user makes any IAP.

54
 The application should be

checked for handling both options. [M95]

5) iAd. iAd is Apple’s platform that allows to “generate
revenue and promote … apps” by showing an advertisement
within the applications.

55
 Test advertisements, including the

erroneous one can be sent “over local networks or USB using
iAd Producer, or over the carrier network using Apple's test
servers”.

56
 There are two types of advertisement available:

banner views and full-screen advertisements.
57

 Apple suggests
checking that the application shows only fully loaded
advertisements. The application should pause other activities
when the user begins the interaction with a banner and should
restart them when the user finishes (or system cancels) the
interaction with a banner. Advertisements should appear
quickly and response to the device orientation changes.

57

6) Web View. Web View is a part of WebKit. Web Views
are used to represent the web content inside the native mobile
applications.

58
 The native application is called a hybrid when

most of the data inside it is represented using Web Views.
59

Web Views are often used in order to open different file
formats

60
or to login to the different content providers. It

should be checked that the links inside the Web Views are
opened in the way they are designed to (they are opened in the
same view by default

61
, but they often should be opened in a

default browser, for example). From the author’s experience,
unnecessary scroll bars and bouncing effects should be
eliminated if any.

H. UI/ UX

1) Gestures. The application can be manipulated with a
variety of gestures like tap, double tap, touch and hold, pinch,
pan, swipe, etc. It should be checked that gestures bring the
same user experience as suggested in iOS Human Interface
Guidelines.

62
 The applications made by Apple can be used for

reference. Based on the author’s practice, if some elements on
the definite application screen support non-trivial gestures
other than single tap, other screen elements around should be
checked for interaction using the same non-trivial gestures. It
also should be verified that unexpected interactions with
multiple UI elements at once are not allowed, because such
actions often lead to crash.

It is worth mentioning that minimal suggested tappable
area is 44 x 44 px.

63

2) Smooth Animation. The animation is used to improve
UX when the application responds to the user actions or when
it provides the user with a feedback about the occurring on the
screen. But they should not be “excessive or gratuitous”
otherwise they “can obstruct app flow, decrease performance,
and distract users from their task”.

64
 The animation should be

49 - https://developer.apple.com/library/ios/documentation/filemanagement/
conceptual/documentinteraction_topicsforios/Introduction/Introduction.html

50 - https://developer.apple.com/library/ios/qa/qa1697/_index.html

51 - https://developer.apple.com/appstore/resources/approval/guidelines.html

52 - https://developer.apple.com/in-app-purchase/In-App-Purchase-
Guidelines.pdf

53 - https://developer.apple.com/library/ios/documentation/LanguagesUtilities/
Conceptual/iTunesConnectInAppPurchase_Guide/Chapters/TestingInAppPurch
ases.html

54 - http://support.apple.com/kb/ht6088

55- https://developer.apple.com/library/ios/documentation/UserExperience/
Conceptual/iAd_Guide/Introduction/Introduction.html

56 - http://support.apple.com/kb/HT5245

57 - https://developer.apple.com/library/ios/documentation/userexperience/
conceptual/iAd_Guide/TestingiAdApplications/TestingiAdApplications.html

58 - https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/
DisplayWebContent/DisplayWebContent.html

59 - http://blogs.telerik.com/appbuilder/posts/12-06-14/what-is-a-hybrid-
mobile-app-

60 - https://developer.apple.com/library/IOs/qa/qa1630/_index.html

61 - https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/
DisplayWebContent/Tasks/SimpleBrowsing.html

62 - https://developer.apple.com/library/ios/documentation/userexperience/
conceptual/MobileHIG/InteractivityInput.html

63 - https://developer.apple.com/library/ios/documentation/userexperience/
conceptual/mobilehig/LayoutandAppearance.html

64 - https://developer.apple.com/library/ios/documentation/userexperience/
conceptual/mobilehig/Animation.html

https://developer.apple.com/library/ios/documentation/filemanagement/conceptual/documentinteraction_topicsforios/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/filemanagement/conceptual/documentinteraction_topicsforios/Introduction/Introduction.html
https://developer.apple.com/library/ios/qa/qa1697/_index.html
https://developer.apple.com/appstore/resources/approval/guidelines.html
https://developer.apple.com/in-app-purchase/In-App-Purchase-Guidelines.pdf
https://developer.apple.com/in-app-purchase/In-App-Purchase-Guidelines.pdf
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnectInAppPurchase_Guide/Chapters/TestingInAppPurchases.html
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnectInAppPurchase_Guide/Chapters/TestingInAppPurchases.html
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnectInAppPurchase_Guide/Chapters/TestingInAppPurchases.html
http://support.apple.com/kb/ht6088
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/iAd_Guide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/iAd_Guide/Introduction/Introduction.html
http://support.apple.com/kb/HT5245
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/iAd_Guide/TestingiAdApplications/TestingiAdApplications.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/iAd_Guide/TestingiAdApplications/TestingiAdApplications.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/DisplayWebContent/DisplayWebContent.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/DisplayWebContent/DisplayWebContent.html
http://blogs.telerik.com/appbuilder/posts/12-06-14/what-is-a-hybrid-mobile-app-
http://blogs.telerik.com/appbuilder/posts/12-06-14/what-is-a-hybrid-mobile-app-
https://developer.apple.com/library/IOs/qa/qa1630/_index.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/DisplayWebContent/Tasks/SimpleBrowsing.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/DisplayWebContent/Tasks/SimpleBrowsing.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/MobileHIG/InteractivityInput.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/MobileHIG/InteractivityInput.html
https://developer.apple.com/library/ios/documentation/userexperience/‌conceptual/mobilehig/LayoutandAppearance.html
https://developer.apple.com/library/ios/documentation/userexperience/‌conceptual/mobilehig/LayoutandAppearance.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/Animation.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/Animation.html

smooth irrespectively of the currently running background
tasks, thus the author recommends to test different animated
transitions for smoothness while heavy background tasks
occur.

3) Pull to Refresh. Pull to Refresh [M95] feature is a very
common user experience mechanism that is used for
performing delta data loads in mobile applications.

65
 It should

be verified that Pull to Refresh mechanism loads only the new
data, not the whole available data set, and that already loaded
data is persisted in case of the Pull to Refresh update failed. It
also should be checked how it behaves when the current data/
time and/ or data settings (e.g. format and zone) are changed.

4) Orientation. The application should be checked in both
orientations if applicable [S2, S4, M95, M97].

66
 Based on the

author’s experience, it can occur that UI elements are wrongly
placed on the orientation change, and the application can crash
when the user interacts with misplaced elements (it often
occurs with popovers

67
). The application can also crash when

the device is rotated during the execution of heavy operations.
Executing the actions after the rotation with the rotation lock
option enabled is also the subject of interest, because there are
several ways how the device orientation can be checked and
how the device orientation change is detected by the
application.

66, 68

5) Half Pixels. Sometimes there are half-pixels [M95] and
other unexpected blurs

69
 noticed when using the application.

They occur when UI elements are scaled or when their size
and origin are calculated, but not rounded to the whole pixels.
The same applies to the fonts. These UI glitches are more
visible on the non-retina displays and are often inspected in
practice using the 3-fingers accessibility zoom

70
.

6) Localization. The following should be checked in case
the application supports localizations:

 Localized text in images.[M95]

 Localized translated text fits the available area. [M95]

 The same text is localized in exactly the same way
when used in different parts of the application.

 Right-to-left text input and alignment [M95] for Arabic
and Hebrew languages.

 Native and special characters:

o persistence in a database or a file;

o printing and display [M23];

o writing to log;

o handling both by the client and the
server.

7) Accessibility. There are plenty of accessibility features
available in iOS [M43, M56, M78, M95, M97], i.e.
VoiceOver, accessibility zoom, bold text, invert colors etc.

70

They all change the way how the system and the applications
look and respond to the gestures. Thus it should be checked
that enabling the accessibility features of the system does not

break the application.

V. CONCLUSIONS

The literature review of both academic and multivocal
literature was performed. The majority of the sources selected
for the review, both academic and multivocal, were published
during the last three years period.

The results of SLR are mostly related to general mobile
applications testing aspects like limited resource utilization,
orientations, localizations etc., while the results of MLR
provided the needed details of iOS application testing aspects
(like definite restrictions and privacy settings, iOS
accessibility features, etc.), as well as identified some new
aspects like IAP, date/ time settings etc. The identified aspects
were divided between 4 large clusters: Environment,
Application Lifecycle, Inside the Application, and (functional
or performance aspects of) UI/ UX. The details of each aspect
were discussed based on the selected sources and the author’s
professional experience giving the appropriate references to
Apple Developers Library

4
 and other credible sources. Some

aspects that were not identified through literature reviews, but
are known to the author (iAd, update of Xcode, AirDrop etc.)
were discussed as well.

The author concludes that the study eliminates the gap that
existed in the academic world in regards to the identification
and detailed description of iOS application testing aspects.
These details should also be useful for practitioners who want
to make their iOS testing strategy more solid and complete.

ACKNOWLEDGMENT

Author thanks Darja Smite and Vladislavs Simanovics for
their valuable reviews.

65 - http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&
s1=8,448,084.PN.&OS=PN/8,448,084&RS=PN/8,448,084

66 - https://developer.apple.com/library/ios/featuredarticles/ViewControllerPG
foriPhoneOS/RespondingtoDeviceOrientationChanges/RespondingtoDeviceOrientationChanges.html

67 - https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIPopoverController_class/Reference/Reference.html

68 - https://developer.apple.com/library/ios/qa/qa1688/_index.html

69 - https://developer.apple.com/library/mac/documentation/userexperience/conceptual/applehiguidelines/IconsImages/IconsImages.html

70 - http://support.apple.com/kb/HT5018

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8,448,084.PN.&OS=PN/8,448,084&RS=PN/8,448,084
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8,448,084.PN.&OS=PN/8,448,084&RS=PN/8,448,084
https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/RespondingtoDeviceOrientationChanges/RespondingtoDeviceOrientationChanges.html
https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/RespondingtoDeviceOrientationChanges/RespondingtoDeviceOrientationChanges.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIPopoverController_class/Reference/Reference.html
https://developer.apple.com/library/ios/qa/qa1688/_index.html
https://developer.apple.com/library/mac/documentation/userexperience/conceptual/applehiguidelines/IconsImages/IconsImages.html
http://support.apple.com/kb/HT5018

APPENDIX A. SELECTED ACADEMIC LITERATURE SOURCES

Source Id

D. Amalfitano, A.R. Fasolino, P. Tramontana, and N. Amatucci,
“Considering context events in event-based testing of mobile
applications”, in Proc. IEEE 6th Int. Conf. Softw. Testing,
Verification and Validation Workshops, Luxembourg, ICSTW,
2013, pp.126-133.

S1

V.L.L. Dantas, F.G. Marinho, A.L. da Costa, R.M.C. Andrade,
“Testing requirements for mobile applications”, in Proc. 24th Int.
Symp. Comput. and Inform. Sci., Guzelyurt, ISCIS, 2009, pp. 555-
560.

S2

D. Franke, S. Kowalewski, C. Weise, and N. Prakobkosol, “Testing
conformance of lifecycle-dependent properties of mobile
applications”, in Proc. 5th Int. Conf. Softw. Testing, Verification and
Validation, Montreal, ICST, 2012, pp. 241 – 250.

S3

D. Franke, S. Kowalewski, C. Weise, “A mobile software quality
model”, in Proc. 12th Int. Conf. Quality Softw., Xi'an, Shaanxi,
QSIC, 2012, pp. 154 – 157.

S4

D. Franke, C. Elsemann S. Kowalewski, C. Weise, “Reverse
engineering of mobile application lifecycles”, in Proc. 18th Work.
Conf. Reverse Eng., Limerick, WCRE, 2011, pp. 283 – 292.

S5

D. Franke, C. Weise, “Providing a software quality framework for
testing of mobile applications”, in Proc. 4th Int. Conf. Softw. Testing,
Verification and Validation, Berlin, ICST, 2011, pp. 431 - 434.

S6

J. Gao, B. Xiaoying, T. Wei-Tek, T. Uehara, “Mobile application
testing: a tutorial”, IEEE Computer, vol. 47, no. 2, pp. 46-55, Feb.
2014.

S7

K. Haller, “Mobile testing”, ACM SIGSOFT Softw. Eng. Notes, vol.
38, no. 6, pp. 1-8, Nov. 2013.

S8

H.-K. Kim, “Mobile applications software testing methodology”,
Commun. in Comput. and Inform. Sci., vol. 342, 2012, pp. 158-166.

S9

H. Khalid, “On identifying user complaints of iOS apps”, in Proc.
35th Int. Conf. Softw. Eng., San Francisco, CA, ICSE, 2013, pp.
1474 – 1476.

S10

E. H. Marinho, R.F. Resende, “Quality factors in development best
practices for mobile applications”, in Proc. Computational Sci. and
Its App., Salvador de Bahia, Brazil, ICCSA, 2012, pp. 632-645.

S11

H. Muccini, F. Di Antonio, and P. Esposito, “Software testing of
mobile applications: challenges and future research directions”, in
Proc. IEEE 7th Int. Workshop Automation of Softw. Test, Zurich,
AST, 2012, pp. 29–35.

S12

APPENDIX B. SELECTED MULTIVOCAL SOURCES

The full list of the reviewed multivocal sources with
indicating the exclusion phase can be found here:
https://dspace.lu.lv/dspace/bitstream/handle/7/2739/iOS
Applications Testing - Multivocal Sources.pdf

Ia Source title Source URL Id

1 Testing iOS Applications http://blog.smartbear.com/mobile/
testing-ios-applications/

M5

1 Testing Criteria for iOS
Apps - App Quality

http://www.appqualityalliance.or
g/files/AQuA_testing_criteria_for

M23

Alliance _iOS_for_v1.0%20final%2022_o
ct_2013.pdf

1 Tips For Accessibility
Testing Of iOS Apps | Pat's
Tapestry

http://patstapestry.wordpress.com
/2013/05/24/tips-for-accessibility-
testing-of-ios-apps/

M43

1 Testing iOS Apps for
Tough Network Conditions
| Nearsoft

http://nearsoft.com/blog/testing-
ios-apps-for-tough-network-
conditions/

M45

1 TestElf Blog — We Find
These Common Bugs
When Testing iOS Apps

http://blog.testelf.com/post/56341
438836/we-find-these-common-
bugs-when-testing-ios-apps

M49

2 iOS Accessibility - A
Useful Guide For Testing |
Rosie Land

http://www.rosiesherry.com/2012
/09/02/ios-accessibility-a-useful-
guide-for-testing/

M56

2 The Essential Guide to
iPhone & iPad App
Testing

http://go.utest.com/rs/utest1/imag
es/uTest_Whitepaper_The_Essent
ial_Guide_to_iOS_App_Testing.
pdf

M78

2 iOS Testing mind map 1.2
– Now with more stuff |
Neglected Potential

http://www.neglectedpotential.co
m/2013/10/ios-testing-mind-map-
1-2/

M95

2 iOS Devices | Dave Addey http://daveaddey.com/?cat=16
(http://daveaddey.com/postfiles/A
gantReleaseChecklist2013.pdf)

M97

a. I – iteration.

REFERENCES

[1] H. Muccini, F. Di Antonio, and P. Esposito, “Software testing of mobile
applications: challenges and future research directions”, in Proc. IEEE
7th Int. Workshop Automation of Softw. Test, Zurich, AST, 2012, pp.
29–35.

[2] V.L.L. Dantas, F.G. Marinho, A.L. da Costa, R.M.C. Andrade, “Testing
requirements for mobile applications”, in Proc. 24th Int. Symp. Comput.
and Inform. Sci., Guzelyurt, ISCIS, 2009, pp. 555-560.

[3] J. Gao, B. Xiaoying, T. Wei-Tek, T. Uehara, “Mobile application
testing: a tutorial”, IEEE Computer, vol. 47, no. 2, pp. 46-55, Feb. 2014.

[4] D. Franke, S. Kowalewski, C. Weise, and N. Prakobkosol, “Testing
conformance of lifecycle-dependent properties of mobile applications”,
in Proc. 5th Int. Conf. Softw. Testing, Verification and Validation,
Montreal, ICST, 2012, pp. 241 – 250.

[5] D. Franke, C. Elsemann S. Kowalewski, C. Weise, “Reverse engineering
of mobile application lifecycles”, in Proc. 18th Work. Conf. Reverse
Eng., Limerick, WCRE, 2011, pp. 283 – 292.

[6] R.T. Ogawa, B. Malen, “Towards rigor in reviews of multivocal
literatures: applying the exploratory case study method”, Review of
Educ. Research, vol. 61, no. 3, pp. 265–286, Fall 1991.

[7] Systems and software engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE) – System and software quality
models, ISO/IEC 25010, 2011.

[8] B. Kitchenham, S. Charters, „Guidelines for performing Systematic
Literature Reviews in Software Engineering”, EBSE Tech. Rep., 2007,
vers. 2.3.

https://dspace.lu.lv/dspace/bitstream/handle/7/2739/iOS%20Applications%20Testing%20-%20Multivocal%20Sources.pdf
https://dspace.lu.lv/dspace/bitstream/handle/7/2739/iOS%20Applications%20Testing%20-%20Multivocal%20Sources.pdf
http://blog.smartbear.com/mobile/testing-ios-applications/
http://blog.smartbear.com/mobile/testing-ios-applications/
http://www.appqualityalliance.org/files/AQuA_testing_criteria_for_iOS_for_v1.0%20final%2022_oct_2013.pdf
http://www.appqualityalliance.org/files/AQuA_testing_criteria_for_iOS_for_v1.0%20final%2022_oct_2013.pdf
http://www.appqualityalliance.org/files/AQuA_testing_criteria_for_iOS_for_v1.0%20final%2022_oct_2013.pdf
http://www.appqualityalliance.org/files/AQuA_testing_criteria_for_iOS_for_v1.0%20final%2022_oct_2013.pdf
http://patstapestry.wordpress.com/2013/05/24/tips-for-accessibility-testing-of-ios-apps/
http://patstapestry.wordpress.com/2013/05/24/tips-for-accessibility-testing-of-ios-apps/
http://patstapestry.wordpress.com/2013/05/24/tips-for-accessibility-testing-of-ios-apps/
http://nearsoft.com/blog/testing-ios-apps-for-tough-network-conditions/
http://nearsoft.com/blog/testing-ios-apps-for-tough-network-conditions/
http://nearsoft.com/blog/testing-ios-apps-for-tough-network-conditions/
http://blog.testelf.com/post/56341438836/we-find-these-common-bugs-when-testing-ios-apps
http://blog.testelf.com/post/56341438836/we-find-these-common-bugs-when-testing-ios-apps
http://blog.testelf.com/post/56341438836/we-find-these-common-bugs-when-testing-ios-apps
http://www.rosiesherry.com/2012/09/02/ios-accessibility-a-useful-guide-for-testing/
http://www.rosiesherry.com/2012/09/02/ios-accessibility-a-useful-guide-for-testing/
http://www.rosiesherry.com/2012/09/02/ios-accessibility-a-useful-guide-for-testing/
http://go.utest.com/rs/utest1/images/uTest_Whitepaper_The_Essential_Guide_to_iOS_App_Testing.pdf
http://go.utest.com/rs/utest1/images/uTest_Whitepaper_The_Essential_Guide_to_iOS_App_Testing.pdf
http://go.utest.com/rs/utest1/images/uTest_Whitepaper_The_Essential_Guide_to_iOS_App_Testing.pdf
http://go.utest.com/rs/utest1/images/uTest_Whitepaper_The_Essential_Guide_to_iOS_App_Testing.pdf
http://www.neglectedpotential.com/2013/10/ios-testing-mind-map-1-2/
http://www.neglectedpotential.com/2013/10/ios-testing-mind-map-1-2/
http://www.neglectedpotential.com/2013/10/ios-testing-mind-map-1-2/
http://daveaddey.com/?cat=16
http://daveaddey.com/postfiles/AgantReleaseChecklist2013.pdf
http://daveaddey.com/postfiles/AgantReleaseChecklist2013.pdf

