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Abstract

Thesis is devoted to high resolution spectroscopic studies of heteronuclear alkali
dimers. Research objects are NaRb and NaCs molecules. They were chosen to
respond the demand for accurate spectroscopic information on the electronic
states of these molecules, especially the ground states, due to growing inter-
est to cold collision experiments with Na–Rb and Na–Cs pairs. Besides, the
theoretical calculations needed a comparison with reliable experimental data.
Therefore the following main goal of the present research was introduced: to
obtain accurate spectroscopic information on the ground and selected excited
states of the NaRb and NaCs molecules. The method applied is a Fourier
transform spectroscopy of Laser induced fluorescence. For the first time the
X1Σ+, a3Σ+, C1Σ+, D1Π states of NaRb and X1Σ+, a3Σ+ states of NaCs have
been studied experimentally with high accuracy in a wide range of internuclear
distances. Accurate empirical potential energy curves of these states have been
determined and compared with the recent theoretical calculations. Our work
has demonstrated that Fourier transform spectroscopy of laser induced flores-
cence is a powerful tool for studying not only of ground states, but also excited
states due to collision induced transitions. The results obtained in the course
of work open path for new experimental studies, e.g. dynamic and structural
studies of these molecules and cold collision experiments with atomic pairs.
Thesis consists of Abstract, 6 Chapters, including Introduction and Conclu-
sions (105 pages, 50 figures and 18 Tables), and of References (105 citations).
Thesis is written in the English language.



Anotācija

Promocijas darbs ir velt̄ıts heteronukleāro sārmu metālu divatomu molekulu
augstas izšķirtspējas spektroskopiskiem pēt̄ıjumiem. Pēt̄ıjuma objekti ir NaRb
un NaCs molekulas. Tās tika izvēlētas, lai apmierinātu piepras̄ıjumu pēc
prec̄ızas spektroskopiskās informācijas par šo molekulu elektroniskajiem
stāvokļiem. Pateicoties augošai interesei par auksto sadursmju eksperimen-
tiem ar Na-Rb un Na-Cs atomu pāriem, ı̄paši interesanti ir šo molekulu pa-
matstāvokļi. Ar̄ı ab initio aprēķinu precizitātes novērtēšanai ir nepieciešams
sal̄ıdzinājums ar ticamiem eksperimentāliem datiem. Tāpēc promocijas dar-
bam tika izvirz̄ıts galvenais mērķis: iegūt prec̄ızu spektroskopisku informāciju
par NaRb un NaCs molekulu pamatstāvokļiem un atsevǐsķiem ierosinātiem
stāvokļiem. Kā metode š̄ı mērķa sasniegšanai tika izvēlēta lāzera inducētās flu-
orescences Furjē spektroskopija. NaRb molekulas X1Σ+, a3Σ+, C1Σ+ un D1Π
stāvokļi un NaCs molekulas X1Σ+ un a3Σ+ stāvokļi pirmoreiz tika ar augstu
precizitāti eksperimentāli izpēt̄ıti plašā starpkodolu attālumu diapazonā. Tika
noteiktas šo stāvokļu emp̄ıriskās potenciālās ener ‘gijas l̄ıknes un sal̄ıdzinātas ar
teorētiskajiem aprēķiniem. Darbs parād̄ıja, ka lāzera inducētās fluorescences
Furjē spektroskopija ir laba metode ne tikai pamatstāvokļu, bet ar̄ı ierosinātu
stāvokļu pēt̄ıjumiem, pateicoties sadursmju izrais̄ıtām pārejām. Darbā iegūtie
rezultāti paver iespējas jauniem eksperimentiem, piemēram, šo molekulu di-
namiskiem un strukturāliem pēt̄ıjumiem, auksto sadursmju eksperimentiem ar
atomu pāriem.
Promocijas darbs satur anotāciju, 6 nodaļas, ieskaitot ievadu un secinājumus
(105 lapas, 50 attēli un 18 tabulas), kā ar̄ı literatūras sarakstu (105 atsauces).
Darbs ir uzrakst̄ıts angļu valodā.
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Chapter 1

Introduction

Motivation

Alkali-metal diatomic molecules have been a subject of scientific research for already more than a century
since the first observation of Na2 fluorescence in 1891 [1]. A lot of significant results have been obtained in
this field already in pre-laser epoch [2, 3], but a real breakthrough has happened after invention of a laser.
And since then alkali-metal diatomic molecules have proved to be in a focus of intensive experimental
and theoretical studies. This is explained by the fact that they are the simplest molecules consisting
from atoms having only one valence electron, therefore they can be used as test objects to probe different
theoretical approaches. Understanding the structure of diatomic molecules is an essential step from atoms
to bigger molecules. From the experimental point of view these molecules can be produced relatively easy
and their spectra can be excited with a variety of conventional laser sources (Ar+, He–Ne, dye lasers,
etc.). From these experiments researchers can derive information about potential energy curves (PEC)
of molecular states, permanent electric dipole moments, lifetimes, transition dipole moments, etc. and
compare them with theoretical calculations. In spite of seemingly simple structure of alkali-metal dimers
accuracy of fully theoretical (ab initio) calculations is not yet sufficient, due to the fact that Schrödinger
equation cannot be solved analytically for these molecules, and approximations are used. For example,
discrepancy of empirical and theoretical potential energy curves for heteronuclear dimers can reach several
hundreds cm−1, versus experimental error of less than 0.1 cm−1. Therefore comparison with experimental
data is essential for making choice among different models and theoretical approaches.

Homonuclear alkali dimers (e.g. Na2, K2) are the best studied diatomic alkali molecules. There is
much less information on heteronuclear alkali molecules. The best studied heteronuclear alkali dimer is
NaK molecule. There are still large gaps in knowledge of the structure of other molecules and the task of
the molecular spectroscopy is to obtain accurate information about different electronic states, especially
the ground state. Experimental knowledge of the ground state is essential, as all molecular transitions
have their origin there. Accurate description of the ground state in the form of molecular constants or
PEC is demanded for assignment of observed transitions, which is, in turn, a necessary step for further
studies of excited states. Also knowledge of ground state PEC allows one to construct the so-called
difference-based potentials from the ab initio PECs [4]. In a number of cases this approach yields a much
better representation of excited molecular states compared to pure ab initio. Study of diatomic molecules
also provides information about interactions of electronic states through observations of perturbations
in the spectra [5]. For example, study of phenomena like Λ-doubling allows one to measure directly the
strength of intramolecular 1Π ∼ 1Σ± interaction, yielding an essentially novel insight into the structure
not only of an isolated 1Π state, but of a 1Π ∼ 1Σ± complex.

Especial interest is put on studies of the ground and lowest triplet states near the asymptote. This
is motivated by the other field of research of alkali dimers—formation of cold molecules. Currently, the
goal of many researchers in the fields of atomic and molecular physics, physical chemistry and chemical
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physics is to produce dense samples of ultracold1 polar molecules (see Special issue on Cold Molecules [6]
and references therein). This interest is motivated by the fact that molecules offer intriguing properties
which are not available with atoms. This especially applies to heteronuclear molecules, which have
permanent electric dipole moments. Formation of ultracold molecules is of actual interest for such fields
as: controlling chemical reactions and collisions (ultracold chemistry) [7]; observation of Bose-Einstein
condensation (BEC) and Fermi degeneracy with molecules; high resolution molecular spectroscopy; tests
of fundamental theories such as search for an electric dipole moment of the electron [8, 9]; quantum
computation using aligned molecular dipoles as qubits [10], etc.

Ultracold alkali atomic samples have been already successfully created and atomic BEC was formed.
This became possible thanks to elaboration of methods for cooling, trapping, and manipulating of atoms.
In 1997 and 2001 Nobel prizes in physics [11] were awarded for the research in this field, which highlights
the general importance of these developments and achievements.

Now physicists move to more complex and challenging systems—to diatomic molecules. Cooling
molecules is more difficult than cooling atoms. The complex molecular internal level structure does not
allow a simple extension of laser cooling to molecules. Despite this, considerable progress has been made
and we are in a period of very rapid world-wide growth in this new field. One of the most promising
methods allowing to reach ultracold temperatures is photoassociation of ultracold atoms [12]: a pair of
atoms first resonantly absorbs a photon to create a molecule in an excited electronic state, which may
then be stabilized into a long-lived electronic state by spontaneous emission, or by induced emission from
a second laser. The development of cold molecule formation schemes appears to be crucially dependent
on accurate spectroscopic information about the molecules and on active interplay between theory and
experiment (see Ref. [13, 14] and references therein). The stable alkali homonuclear ultracold molecules
were formed [15, 16, 17, 18, 19]. Recently successful production of ultracold RbCs [20], KRb [21, 22]
and NaCs [23] heteronuclear dimers via photoassociation was reported. Ultracold collisions and trap loss
experiments were also performed for Na–Li [24] and Na–Rb pairs [25, 26]. In parallel, active theoretical
investigations are done in order to choose the most promising ultracold molecule formation scheme, e.g.
photoassociation rates of mixed cold alkali atom pairs and formation rates of cold heteronuclear alkali
dimers in their ground state were computed, which showed that all alkali pairs involving either Rb and
Cs are well suited for that purpose [27].

Another prospective method for formation of ultracold molecules is via magnetic Feshbach resonances.
In the ultracold regime the collision of two atoms is described by the scattering length, which is very
sensitive to the interaction (molecular) potential. If the atoms or the molecule or both are paramagnetic,
the potential can be tuned by an external magnetic field. A Feshbach resonance occurs when the energy
of the unbound state (the atomic pair) and of the bound state (the diatomic molecule) become equal. The
scattering length changes at a Feshbach resonance. It can be made positive or negative and its magnitude
arbitrarily large. By tuning through a resonance the atom pair can be driven into the bound molecular
state. Information on scattering lengthes and Feshbach resonances can be obtained from traditional
spectroscopy (molecular beam, laser-induced fluorescence spectroscopy) by studying energy positions of
the last bound molecular levels with respect to the dissociation limit, see e.g. [28]. Knowledge of scattering
lengths is also essential for formation of BEC, because the stability of a condensate is controlled by the sign
of the scattering length. Two groups have found Feshbach resonances in heteronuclear systems [29, 30].
The next step is to transfer molecule to more tightly bound states using, for example, stimulated Raman
process via b3Π ∼ A1Σ+ mixed levels [31]. Therefore data from conventional short-range spectroscopy
about molecular electronic states and especially the strongly mixed b3Π ∼ A1Σ+ complex are needed for
planning such type of experiments.

Heteronuclear diatomic molecules are also interesting objects for applied science. For example,
prospective application of polar diatomics, especially in the 1Π states, is connected with their usage
for sensitive non-contact probing and mapping of external electric field distribution via changes in laser-
induced fluorescence caused by parity mixing due to quasi-linear Stark effect [32, 33].

1As “cold” usually designate molecules with translational temperatures between 1 and 1000 mK, and as “ultracold”—
with translational temperature less than 1 mK.
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Research objects and goals

Research objects of the present Thesis are NaRb and NaCs molecules. They were chosen to respond
the demand for accurate spectroscopic information on the electronic states of these molecules, especially
the ground states, due to growing interest to cold collision experiments with Na–Rb [25, 26] and Na–Cs
[23] pairs. Besides, the ab initio calculations [34, 4, 35] needed a comparison with reliable experimental
data. Therefore the following main goals of the present research were introduced:

1. To obtain the NaRb X1Σ+ and a3Σ+ state accurate empirical PECs in a wide range of internuclear
distancess and to perform the combined analysis of these states taking into account hyperfine
mixing.

2. To obtain the NaRb C1Σ+ state accurate empirical PEC.

3. To obtain the NaRb D1Π state accurate empirical PEC, to study Λ-splitting in this state.

4. To obtain the NaCs X1Σ+ and a3Σ+ state accurate empirical PECs in a wide range of internuclear
distances; to perform the combined analysis of these states taking into account hyperfine mixing.

Method and tasks

The method chosen for fulfilling these goals is a Laser Induced Fluorescence (LIF) method. The following
methodological tasks have been formulated:

1. To prepare experimental setup for performing LIF measurements in the NaRb and NaCs molecules.

2. To excite electronic transitions in NaRb and NaCs, involving the states of interest, by using different
laser sources.

3. To perform vibrational, rotational and isotopomer assignment of progressions in electronic spectra,
as well as for rotational relaxation transitions. In the case of the D1Π state to analyse the derived
Λ-splittings.

4. To perform a fitting procedure of potential energy curves to experimental data. To analyse the
quality of potentials and to compare with available ab initio data.

A number of experiments have been carried out in order to realize these tasks. The initial part of
experiments (NaRb X1Σ+ state) was done in Riga, in the Laboratory of Optical Polarisation of Molecules
(head Prof. R. Ferber), Institute of Atomic Physics and Spectroscopy, University of Latvia. The further
experiments were performed using high-resolution Fourier-transform spectrometer in the laboratory of
Prof. E. Tiemann, Institute of Quantum Optics, University of Hannover.

The structure of the Thesis is the following. In the Second Chapter the theoretical background of
the performed research is briefly given. In the Third Chapter the experimental setups are described. In
the Fourth Chapter the results on the NaRb X1Σ+, a3Σ+, C1Σ+ and D1Π states are presented, whereas
the Fifth Chapter is devoted to the NaCs X1Σ+ and a3Σ+ states. Results and conclusions are given in
Chapter 6.

Publications

The main results of the Thesis are presented in the following scientific papers:

[dis1] O. Docenko, O. Nikolayeva, M. Tamanis, R. Ferber, E.A. Pazyuk and A.V. Stolyarov, Experimen-
tal studies of the NaRb ground state potential up to v′′ = 76 level, Physical Review A 66, 052508
(2002).
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[dis2] O. Docenko, M. Tamanis, R. Ferber, A. Pashov, H. Knöckel, and E. Tiemann, Potential of the
ground state of NaRb, Physical Review A 69, 042503 (2004).

[dis3] A. Pashov, O. Docenko, M. Tamanis, R. Ferber, H. Knöckel, E. Tiemann, Potentials for modeling
cold collisions between Na (3S) and Rb (5S) atoms, Physical Review A 72, 062505 (2005).

[dis4] W. Jastrzebski, P. Kortyka, P. Kowalczyk, O. Docenko, M. Tamanis, R. Ferber, A. Pashov,
H. Knöckel, E. Tiemann, Accurate characterisation of the C(3)1Σ+ state of the NaRb molecule,
European Physical Journal D 36, 57-65 (2005).

[dis5] O. Docenko, M. Tamanis, R. Ferber, A. Pashov, H. Knöckel, E. Tiemann, The D1Π state of the
NaRb molecule, European Physical Journal D 36, 49-55 (2005).

[dis6] O. Docenko, M. Tamanis, R. Ferber, A. Pashov, H. Knöckel, E. Tiemann, Spectroscopic studies of
NaCs for the ground state asymptote of Na + Cs pairs, European Physical Journal D 31, 205-211
(2004).

The obtained results have been reported in a number of international conferences, which is reflected
in the following conference abstracts:

• O. Docenko, I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, E.A. Pazyuk and A.V. Stolyarov,
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Chapter 2

Structure and spectra of diatomic
molecules

2.1 Born-Oppenheimer approximation

For the full quantum-mechanical treatment of a molecule it would be necessary to solve the time-
independent Schrödinger equation (SE)

ĤΨi = EiΨi, (2.1)

where Ĥ is the non-relativistic Hamiltonian for the molecule, Ei and Ψi are energies and wavefunctions
(WF) of molecular eigenstates. For diatomic molecules Ĥ may be approximated as a sum of three
operators

Ĥ = T̂n(R, θ, ϕ) + T̂ el(r) + V̂ (r,R), (2.2)

where T̂n – nuclear kinetic energy operator,
T̂ el – electron kinetic energy operator,
V̂ – operator of the electrostatic potential energy of the nuclei and electrons,
R – internuclear distance,
θ, ϕ – angles, which specify the orientation of the internuclear axis (molecule-fixed coordinate system)

relative to the laboratory coordinate system,
r – coordinates of all electrons in the molecule-fixed frame.
However, the entire molecular system composed of interacting electrons and nuclei is so complicated

that an exact quantum-mechanical solution is impossible and approximations are needed. Since the
electrons are very much lighter than the nuclei, the electron motion is much faster than that of the
nuclei. Thus, at each instant the electronic energy may be considered to have reached its equilibrium
value corresponding to current internuclear distance. This justifies treating the vibration and rotation
of nuclei separately from the electronic motion. It is therefore reasonable to treat the electronic motion
first, considering nuclei as fixed. This approximation is called the Born-Oppenheimer (BO), or adiabatic
approximation. It allows one to express the total molecular wave function as a product of nuclear Ψn

and electronic Ψel wave functions:

ΨBO = Ψel(r,R) ·Ψn(R, θ, ϕ), (2.3)

Treating motion of electrons in the adiabatic approximation, the internuclear distance R is a parameter
of Ψel. In this way the electrons are found to be capable of occupying several states, each giving the
molecule a particular value of the energy U(R), for each internuclear distance. In this treatment U(R),
which is the sum of the electron energy and energy of electrostatic interaction between the two nuclei,

8
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appears as the potential energy. It can be viewed as the potential energy curve (PEC) in which the
nuclei move, but it should be noted, that PECs do not correspond to any physical observable. They
are a concept, derived from a specific set of assumptions for defining a particular type of approximate
wavefunctions (2.3).

Factorization of the WF and separation of radial and angular variables (as in the case of hydrogen
atom) allows to reduce the problem of a diatomic molecule to the radial Schrödinger equation:

[
− ~

2

2µ

d2

dR2
+

~2

2µR2

(
J(J + 1)− Ω2

)
+ U(R)

]
ΨvJ(R) = EvJΨvJ(R), (2.4)

where µ = MAMB

MA+MB
– molecular reduced mass, MA and MB being the masses of atoms A and B,

J(J + 1) – an eigenvalue of the square of the total angular momentum operator Ĵ2,
Ω – projection of J on the internuclear axis,
v and J – vibrational and rotational quantum numbers.
Equation (2.4) has the form of the elementary Schrödinger equation for a particle moving in one-

dimensional effective potential

Ueff (R) = U(R) +
~2

2µR2

(
J(J + 1)− Ω2

)
(2.5)

Here the first term is the total electronic potential, while the second is a centrifugal potential as-
sociated with the rotation of the molecular axis. Thus, the effect of increasing the rate of molecular
rotation manifests itself as an addition of an increasingly strong repulsive centrifugal term to the basic
(rotationless) PEC for a given electronic state.

Since it is actually seldom possible to solve the electronic wave equation, it is customary to use
empirical expressions for U(R).

2.2 Classification of electronic states and Hund’s cases

Classification of molecular electronic states is made according to good quantum numbers which arise from
angular momenta which commute with the total Hamiltonian. Let’s consider different angular momenta
and coupling between them in a diatomic molecule.

There is a close parallelism between the various angular momenta involved in molecules and those in
atoms, however molecules involve more types of angular momenta (see Table 2.1) because of the possibility
of rotation of a molecule. In addition, for linear and symmetric-top molecules the projection of various
angular momenta on the symmetry axis may be of interest as well as their projections on a direction
fixed in space. The diatomic molecule is somewhat similar to an atom subjected to a very large electric
field along the direction of the molecular axis. This field produces a large Stark effect which interferes
with the orbital motion of the electrons.

Although the orbital angular momentum is not constant and the quantum number L loses its signif-
icance, in many cases the projection Λ of L on the axis is constant. The energy is dependent on the
value of Λ, which is, of course, integer and may be equal to Λ, Λ − 1, . . . , −Λ. However, positive and
negative values of Λ have the same energy, so that unless Λ = 0, the levels are doubly degenerate. This
degeneracy may be removed by the rotation-electron interaction discussed below (Λ-type doubling).

If the electronic orbital angular momentum Λ along the internuclear axis of a linear molecule is 0,
±1, ±2, ±3, . . . , the molecule is said to be in a Σ, Π, ∆, Φ, . . . state, respectively. If the electronic
spin S is 0, 1

2 , 1, . . . the state is said to be singlet, doublet, or triplet—again in analogy with the atomic
case. Thus 1Π term indicates S = 0 and Λ = 1. The component of the total angular momentum along
the molecular axis can take the values Λ + S, Λ + S − 1, . . . , Λ− S, and is written as a right-hand term
subscript, for example, 3Π1. Its absolute value is denoted Ω.

The sequence of electronic terms is denoted by numbers or letters. Numbers are attributed in analogy
with atomic principal quantum numbers, i.e. (1)1Σ+, (2)1Σ+, (3)1Σ+, etc. in the order of increasing
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Table 2.1. Molecular angular momenta and their notations

Electronic orbital angular momentum L
Projection on molecular axis Λ
Electron spin angular momentum S
Projection on molecular axis Σ
Sum of spin and electronic orbital momentum (L+S) Ja

Rotational angular momentum R
Total orbital angular momentum including rotation of molecule N
Total angular momentum excluding nuclear spin J
Projection on molecular axis Ω
Total angular momentum including nuclear spin F

energy. In the alphabetic way of labelling electronic states, the ground state is always labelled X, and, in
order of increasing energy, other states of the same spin multiplicity are labelled A, B, C, . . . , etc., while
states of different spin multiplicity are labelled a, b, c, . . . , etc.

Molecular angular momenta may interact, or couple together, in a various ways. The coupling cases
were first systematically treated by Hund [36], who described five ideal cases. Molecules do not fit such
ideal descriptions exactly, but Hund’s cases are usually very good approximations to the actual states
of many linear molecules. Which case applies most closely depends on the relative energy of interaction
between the angular momentum vectors. Coupling between the nuclear spin and other vectors by hy-
perfine interaction is much smaller than other couplings, and is not treated in these cases. Interactions
whose relative magnitude needs to be considered occur between any two of the vectors L, S, N, R and
A, where A is a vector directed along the molecular axis. Interactions between two of those vectors will
be represented by a notation like {L, S}.

Choice of Hund’s cases means also a choice of basis set, which implies a partitioning of the Hamiltonian
into a part H0, which is fully diagonal in the selected basis set, and a residual part, H′. The basis sets
associated with Hund’s cases reflect different choices of the parts of H that are included in H0. Although
in principle the eigenvalues of H are unaffected by the choice of basis, as long as this basis set forms a
complete set of functions, one basis set is usually more convenient or appropriate than the others for a
particular problem.

In the Hund’s case (a), the strongest interactions are between the molecular axis and L and between
the axis and S. L interacts strongly with the axial field of the molecule and hence precesses about the
molecular axis, so that its projection Λ is constant. The electronic spin can not be coupled directly to
the internuclear axis, since its associated moment has purely magnetic nature. But when Λ 6= 0, the
magnetic field generated by orbital motion interacts with the spin angular momentum and coupling of S
to the internuclear axis becomes possible, with projection Σ being constant. For Λ = 0 states Σ is not
defined. In Hund’s case (a) the total angular momentum along the molecular axis is Ω = |Λ + Σ|. Then
Λ + Σ adds vectorially to the rotational angular momentum R to form the total angular momentum
(excluding nuclear spin) J. The angular momenta Ω and R hence precess around the vector J which
is fixed in space. Schematically this coupling can be expressed as {{{L, A}, S}, R}. Good quantum
numbers in Hund’s case (a) are J , S, Λ, Σ and Ω. The notation of electronic terms is 2S+1Λ.

In Hund’s case (b) the electron spin is coupled more strongly to N=Λ+R than to the molecular axis.
L, however, is still strongly coupled to the molecular axis. Shortly, coupling scheme is {{{L, A}, R},
S}. As for molecules with Λ = 0 the coupling between the spin and the molecular axis is small, they
typically fall in Hund’s case (b). However, there are molecules with Λ 6= 0 which also fall in case (b).
These are usually very light molecules, such as hydrides, which rotate rapidly, increasing strength of the
spin-rotation coupling. Good quantum numbers in Hund’s (b) case are J , N , Λ and S. The notation of
electronic terms is 2S+1Λ.
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In molecules involving heavy nuclei, the spin-orbit interaction {L, S} may be larger than the {L, A}
interaction. This gives Hund’s case (c) with coupling scheme {{{L, S}, A}, R}. In this case Λ and S are
not good quantum numbers any more. L and S add vectorially to form a vector Ja which is then coupled
to the internuclear axis with a projection Ω on this axis. Therefore the only good quantum numbers are
J and Ω. The electronic states are designated as Ω. It should be noted that Hund’s case (c) starts to
be important also for lighter molecules, when internuclear distance becomes sufficiently large, as in this
case coupling of the angular momenta to the molecular axis weakens.

Hund’s case (d) occurs when the coupling between L and the rotational momentum R is much larger
than that between L and the molecular axis. This case is an intermediate between (b) and (e), as a
decoupling of a part of the electronic motion from the axis takes place. The electron motion is described
in two parts. One part (the core) is coupled to the axis and results to Jcore and the other is free with
respect to the molecular frame forming with Jcore the total momentum J. An example of such state is a
molecule with a Rydberg electron orbiting around the core with its orbital angular momentum l and its
spin s.

Hund’s case (e) appears for a highly rotating molecule, where rotational energy is so large that the
coupling to the axis is of no importance anymore. Another example of this case is an atom pair close to
dissociation. Due to weak binding energy the Hund’s case (e) can already appear for slow rotation.

2.3 Symmetry properties of the wavefunctions

For the classification of molecular electronic states, the symmetry properties of the wavefunctions are
very important. The electronic basis functions associated with positive and negative signs of (Λ,Σ, Ω)
are degenerate. However, they are not symmetrized and only their linear combination has a well-defined
symmetry. This symmetry is called parity and can be even (+) or odd (−). Even WFs are those which
remain unchanged after inversion of spatial and spin coordinates of all electrons and nuclei, whereas
odd WFs change their sign. This symmetry alternates with J , therefore a label free of J-dependence is
introduced, the so called e/f parity: total parity is +(−1)J for e levels and −(−1)J for f levels.

For Σ states there is possible another type of symmetry arising from the reflection in any plane
containing internuclear axis: Σ+ and Σ− states.

For homonuclear molecules (or more rigourously—when two nuclei have the same charge) there exists
also a center of symmetry and WFs remain unchanged or change their sign when reflected at this center.
This leads to gerade (g) — ungerade (u) symmetry.

2.4 Λ-doubling

In Hund’s cases (a) and (b) the interaction between the rotation of the nuclei and orbital angular momen-
tum L has been neglected. For larger speeds of rotation this interaction must be taken into account and
is found to split each rotational level J into two components in the states with Λ 6= 0 which are doubly
degenerate without rotation. In general, this splitting increases with increasing rotation—that is, with
increasing J . It is present for all states with Λ 6= 0 and is called Λ-type doubling (shown qualitatively in
the energy level diagram in Fig. 2.1).

The two Λ-doubling components do not correspond simply to projections +Λ and −Λ of L on the
internuclear axis, but are linear combinations of wavefunctions for positive and negative values of Λ.
The electronic-rotational WF |ΛJMε〉 can be expressed as a linear combination over rotational |ΛJM〉
parts [5]:

|ΛJMε〉 =
1√
2

(|Λ〉|ΛJM〉+ ε| − Λ〉| − ΛJM〉) (2.6)

ε being the “parity index” distinguishing between the two Λ-doublet states possessing total parity +(−1)J

for ε = +1 (e levels), and −(−1)J for ε = −1 (f levels).
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Figure 2.1. Rotational levels in the Σ+ and 1Π states.

Λ-splitting can be treated as electronic-rotational perturbation between the 1Π state and 1Σ± states.
In the case of regular perturbations [5] the splitting ∆ef between e and f components of the initially
degenerate rovibronic 1Π levels is expected to be very small. Its main J dependence can be approximated
by the second order nondegenerate perturbation theory as

∆Π
ef = qΠ

vJJ(J + 1), (2.7)

where the so-called q-factor qΠ
vJ possesses a definite sign. The expression for q-factors takes the form

qΠ
vJ =

1
2µ2

∑

Σ

(−1)k
∑
vΣ

|〈vΠ
J |LΠΣ/R2|vΣ

J 〉|2
EΠ

vJ − EΣ
v′J

(2.8)

and is expected to be a rather smooth function of the vibrational v and rotational J quantum numbers.
Here LΠΣ(R) are the L-uncoupling electronic matrix elements between the sampled 1Π state and the
remote 1Σ± states (k = 0 and 1 for 1Σ+ and 1Σ− states, respectively). The EvJ and |vJ〉 are the
eigenvalues and eigenfunctions of the vibrational SE. Due to the factor R−2 in Eq. (2.8), the main
contribution to the q values of the given 1Π state comes from 1Π ∼ 1Σ± interactions having large matrix
elements at relatively small internuclear distance R.

In such a way the q-factors reflect directly the measure of intramolecular 1Π ∼ 1Σ± interaction,
yielding an essentially novel insight into the structure not only of an isolated 1Π state, but of a 1Π ∼ 1Σ±

complex.

2.5 Laser-Induced Fluorescence. Selection rules and intensity
distribution

For studying internal energy structure of molecules one must probe it with electromagnetic radiation,
i.e. to excite a molecule and to observe absorption or emission transitions between electronic, vibrational
and rotational levels. In our work we applied a method of laser-induced fluorescence, in which incident
monochromatic laser radiation selectively populates excited state levels (v′, J ′). Following this, the laser-
induced fluorescence is observed. Its spectrum contains radiation from all allowed transitions to levels of
lower states (v′′i , J ′′i ). Due to selective population of upper state levels the resulting spectrum is much
easier to identify than absorption spectra.
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The spontaneous transition probability Akm is proportional to the square of the matrix element of
the electric dipole moment operator:

Akm ∝
∣∣∣∣
∫

ψ∗k · r · ψmdτndτel

∣∣∣∣
2

, (2.9)

where r is the radius-vector of the excited electron and the integration extends over all nuclear and
electronic coordinates. Within the BO approximation the total wave function can be separated into a
product of electronic, vibrational and rotational factors. If the electronic transition moment does not
critically depend on the internuclear separation R, the total transition probability is then proportional
to the product of three factors

Akm ∝ |Mel|2|Mvib|2|Mrot|2, (2.10)

where the first factor
Mel =

∫
ψ∗′elψ

′′
eldτel, (2.11)

represents the electronic matrix element that depends on the coupling of the two electronic states. The
second integral

Mvib =
∫

ψ′vibψ
′′
vibdτvib, with dτvib = R2dR (2.12)

depends on the overlap of the vibrational wave functions in the upper and lower states. The square of
this integral is called the Franck-Condon factor and it primarily determines the intensity pattern of the
observed transitions. The third integral

Mrot =
∫

ψ′rotψ
′′
rotgidτrot, with dτrot = dϑdϕ (2.13)

is called the Hönl-London factor. It depends on the orientation of the molecular axis relative to the
electric vector of the observed fluorescence wave. This is expressed by the factor gi(i = x, y, z), where
gx = sin ϑ cos ϕ, gy = sin ϑ sin ϕ, and gz = cos ϑ with ϑ and ϕ being the polar and azimuthal angles.

Only those transitions for which all three factors are nonzero appear as lines in the fluorescence
spectrum. The Hönl-London factor is always zero unless

∆J = J ′ − J ′′ = 0, ±1, with exception J ′ = 0 = J ′′ = 0 (2.14)

which is one of two main selection rules governing laser-induced fluorescence (LIF) spectra. The second
one is the parity selection rule:

+ ←→ −.

Thus in 1Σ ↔ 1Σ transitions only P (J ′ − J ′′ = −1) and R (J ′ − J ′′ = 1) lines are possible, whereas in
1Σ ↔1 Π transitions Q lines appear additionally at ∆J = 0.

2.6 Perturbations

If the BO eigenenergies Ei don’t coincide with the experimentally observed energies, it means that the
assumed approximation is not valid, or, in other words, that the matrix representation of the total
Hamiltonian, constructed by evaluating matrix elements between BO basis functions, has significant off-
diagonal elements. Then a SE solution must be expressed as a linear combination of BO eigenfunctions.
The coefficients of this expansion are determined by diagonalizing total Hamiltonian in the BO basis.

Neglecting some interactions, or couplings, in the molecule then corresponds to omitting some off-
diagonal matrix elements. As a result of such approximation, observations don’t fit calculations and this
difference is treated as a perturbation in the framework of the used model.

Let’s describe the nonzero off-diagonal matrix elements of the total Hamiltonian
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Ĥ = Ĥel + T̂n(R) + ĤROT (2.15)

between approximate BO product basis functions. The off-diagonal matrix elements of the electronic
energy operator Ĥel give rise to electrostatic perturbations. The off-diagonal matrix elements of nuclear
kinetic energy operator T̂n(R) give rise to nonadiabatic interactions. The off-diagonal matrix elements
of nuclear rotation operator ĤROT give rise to rotational perturbations: spin-electronic and electronic-
rotational. The total Hamiltonian discussed above is non-relativistic. Relativistic effects mainly consist
of three parts: spin-orbit, spin-rotation and spin-spin interaction.

Selection rules for perturbations are ∆J = 0, e ↔ e, f ↔ f (except for the hyperfine perturbations).

2.7 Hyperfine structure in diatomic molecules

In most atoms the predominant mechanism responsible for the hyperfine structure is the magnetic dipole
interaction between a nuclear magnetic moment and magnetic fields of the atomic electrons. Effects of
nuclear electric quadrupole moment are smaller and give small deviations from the expected magnetic
hyperfine intervals.

However, for most molecules in the ground state (usually the 1Σ state) the magnetic fields due to
various electrons almost completely cancel, giving zero or only very small magnetic fields at the nucleus.
The cancelation of magnetic fields in molecules due to electronic motions is simply because the electrons
are paired—for each electron with an angular momentum and hence magnetic field, there is another
electron in a similar state but with oppositely directed angular momentum. But even for these molecules,
however, there are weak interactions involving nuclear magnetic moments. These include interaction
between magnetic moments of two nuclei in the same molecule (spin-spin interactions) and interaction
between a nuclear magnetic moment and rather small magnetic fields produced by molecular rotation
(spin-rotation interactions).

For the rare molecules having odd number of electrons, such as NO, ClO2 and NO2, a complete pairing
of electron spins is impossible. These molecules in the ground state are hence paramagnetic and have
large magnetic hyperfine structures. For the overwhelming majority of molecules, however, magnetic
hyperfine effects are extremely small, and electric quadrupole hyperfine interaction plays the major role
for molecules in the ground state.

When a molecule has non-zero electronic angular momentum, i.e., is in some state other than 1Σ,
the magnetic fields associated with this momentum interact strongly with the nuclear moments present
in the molecule, giving rise to a magnetic hyperfine structure of a magnitude comparable to one found
in atoms. The interaction is either due to electronic orbital angular momentum L or to spin angular
momentum S.

Typical features of the molecular magnetic hyperfine interactions may be compared with those of
atoms. The interaction of the nuclear spin with the electronic spins in the atomic case is treated quite
differently in s state (L = 0) and non-s states. For non-s states, the spin coupling may be written as
the interaction of two point magnetic dipole. For s-states, this interaction vanishes (as does the orbital
interaction), and the actual hyperfine coupling must be accounted for by a more refined treatment of
the magnetic interaction, namely by treating the interaction of the nuclear magnetic moment with the
electronic currents via the Dirac equation for the electron. Advantage may be taken of the spherical
symmetry of the potential field in which electron moves to express the hyperfine splitting in the form [37]

Ehfs =
16π

3
µ0µI

I
Ψ2

r(0)I · S, (2.16)

where µ0 – Bohr magneton, µI – nuclear magnetic moment, I – nuclear spin, S – electron spin moment,
Ψ2

r(0) – the electron density at the nucleus. This energy is called Fermi contact interaction.
In the case of diatomic molecule the potential field possesses only axial symmetry and no classification

of state according to a total angular momentum quantum number can be made. Thus, there can be no
separation of the hyperfine interaction into characteristic s- and non-s forms. Nevertheless, effects similar
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to the atomic s-state interactions are found and term like in Eq. (2.16) appears in the energy expression
for molecular state. Whenever there is an appreciable amount of s character to the WF of an unpaired
electron, the hyperfine interaction which is proportional to Ψ2

r(0) may be expected to dominate. In
particular, a3Σ+ molecular state, which is one of the subjects of research in this thesis, shows non-
vanishing hyperfine structure and Fermi contact interaction is responsible for it.

As was described in Section 2.2, in Hund’s cases the hyperfine interaction was not taken into account.
Let’s analyze the coupling appropriate for the a3Σ+ state of NaRb and NaCs molecules if nuclear magnetic
moment is introduced into the coupling scheme. The appropriate Hund’s case for the a3Σ+ state is (b).
Then there are three possible hyperfine coupling schemes: (bβN ), (bβS) and (bβJ ) (here β indicates that
the total nuclear spin I couples to N, S, and J, respectively, rather than to the internuclear axis). Case
(bβN ) is rarely observed because both S and J are usually associated with much larger magnetic moments
than N, so I couples primarily to S or J rather than to N. Cases (bβS) and (bβJ) are the two important
hyperfine coupling schemes in the case (b) limit. Whether a state belongs to case (bβS) or (bβJ ) depends
on the relative strength of the coupling of S to I or N, or, in other words, whether Fermi contact or
spin-rotation interaction is dominant.

Figure 2.2. Coupling scheme for Hund’s (bβS) case

For the NaRb and NaCs a3Σ+ state because of the spherically symmetric s atomic orbitals composing
the a3Σ+ state, the spin-spin and spin-rotation interaction are expected to be very small and the Fermi
contact interaction to dominate in the a state. In this case it is appropriate to employ the Hund’s case
(bβS) (see Fig. 2.2). The total electron spin S and nuclear spin I1 are coupled to form G1, then G1 and
nuclear spin I2 are coupled to form G2, and finally G2 and N couple to give F. Here N is the sum of the
rotational angular momentum and the electronic orbital angular momentum. However, at high N-values
a deviation from the pure (bβS) case can take place due to the spin-rotation interaction. Such deviations
can happen also due to perturbations [38].

Nuclear spins are coupled in the order of decreasing coupling energies. Hence for NaRb molecule
I1 is for 85(87)Rb and I2 for Na, and for NaCs I1 is for Cs and I2 for Na, because nuclear spins are
I(23Na) = 3/2, I(85Rb) = 5/2, I(87Rb) = 3/2, I(133Cs) = 7/2.

2.8 Long-range behavior

If two atoms lie sufficiently far apart, that their electron clouds overlap negligibly, then one can ignore
electronic coupling and fine-structure effects, an their interaction energy can be expanded as

U(R) = D −
∑
m

Cm

Rm
(2.17)

where D is the energy at the potential asymptote, the powers m are positive integers, and the nature
of the atomic species to which a molecular state dissociates determines which powers contribute to this
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expansion. Perturbation theory yields explicit expressions for the Cm constants in terms of the properties
of the isolated atoms and the symmetry of the particular molecular state.

The first-order perturbation theory contributions to (2.17) are terms corresponding to the electrostatic
interactions between permanent electric moments (charge, dipole, quadrupole, . . . ) on the component
species, and the associated inverse powers are the same as those occurring for the interaction between
such charge distributions in classical physics.

The second-order perturbation theory interactions involve only even values of m, and are of two types.
The first is the “induction” interaction between a permanent electric moment on one particle and the
electron distribution on the other; terms of this type also have explicit classical analogs. The other type
of second-order term is the non-classical “dispersion” interaction (m ≥ 6), which may be thought of as
arising when the instantaneous electric moment due to a momentary electron configuration on one species
induces a moment on the other, and then interacts with it, with this interaction being averaged over the
full electronic configurations. “Dispersion energy” terms contribute to all interactions between atomic
systems. Eq. 2.17.

The term C6
R6 expresses the London dispersion energy. It corresponds to dipole-dipole interaction.

Term C8
R8 appears from the dipole-quadrupole interaction, whereas C10

R10 term arises from quadrupole-
quadrupole and dipole-octopole interaction.

R. Le Roy [39, 40] proposed to express the lower R limit (in literature refered to as Le Roy radius) of
Eq. 2.17 validity as

RLR = 2
[√

〈r2
e〉a +

√
〈r2

e〉b
]
, (2.18)

where 〈r2
e〉a is the expectation value of the square of the radius-vector of the electrons in the valence shell

of atom a (in other words, the radius of the valence electron shell). At this distance the exchange energy
is approximately 10% of the Coulomb energy.

It means that two atoms must be far apart enough so that the mutual distortion of their charge
clouds is small and that the short-range interactions (the charge-overlap interaction, i.e. the Coulomb
repulsion between the electrons, and exchange interaction imposed by the Pauli exclusion principle) are
small compared to the long-range interactions. The criterion (2.18) has been widely adopted in the
long-range analysis of various molecular states.

An accurate knowledge of long-range potential curves is crucial in the interpretation of new physical
phenomena associated with ultracold atoms, such as cold collision dynamics, photoassociative ionization,
fine- and hyperfine predissociation, and the stability of Bose–Einstein condensates. Attention is often
centered on the values of the multipolar expansion dispersion coefficients used to characterize the long-
range region of the potential at large internuclear distance R where the exchange energy is much smaller
in magnitude than the Coulomb (dispersion) energy.

In long-range limit, where atomic overlap is small, the exchange energy for two S -atoms forming a
molecule, is written as

Eex(R) = 1/2[Ua(R)− UX(R)], (2.19)

where UX(R) and Ua(R) are the potentials of the X and a states. Thus, when the two lowest electronic
potentials of a diatomic molecule—the singlet X1Σ+ state and triplet a3Σ+ state—are known precisely
up to near dissociation, their potentials can be used to determine the exchange energy as a function of
internuclear distance.

The exchange energy can be also estimated from the properties of individual atoms. The exchange
interaction expression calculated using the surface integral method of Smirnov and Chibisov is [41, 42]

Eex(R) = ±J(A,B, α, β, R) ·R[2/α+2/β−1/(α+β)−1] · e−(α+β)R, (2.20)

where α =
√

2Ia and β =
√

2Ib (Ia,b – ionization energy of each atom in atomic units). The function
J(A, B, α, β,R) can be expanded in a power series

∑
n JnRn(α − β)n/n! with coefficients Jn expressed

as integrals that must be solved numerically. The constants A and B are related to the size of the wave
function of each atom in the region of interaction [64].
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2.9 Empirical level energy expressions

2.9.1 Band constants

Energy of the rovibronic level E(v, J) of the molecule in the 1Σ state can be expressed using the so-called
band constants – spectroscopic constants derived from the analysis of vibrational and rotational bands in
the spectra1.

EBC(v, J) = G(v)+Bv[J(J +1)]−Dv[J(J +1)]2 +Hv[J(J +1)]3 + · · · ≡
∑
m

Km(v)[J(J +1)]m (2.21)

The first term in this equation is the vibrational energy G(v). It also can be expressed as a polynomial,
expanded over powers of (v + 1/2):

G(v) = ωe(v + 1/2)− ωexe(v + 1/2)2 + ωeye(v + 1/2)3 + ωeze(v + 1/2)4 + · · · (2.22)

The coefficients in (2.22) are called vibrational constants. The first of them ωe is a classical oscilla-
tor frequency, but further coefficients ωexe, ωeye, etc. take into account the vibrational unharmonicity,
therefore they are called unharmonicity constants. The rest terms in (2.21) describe the rotational energy
and coefficients before J(J + 1) are called rotation constants. Be is the inertial rotation constant and
represents rotational energy of the rigid rotator (index e stands for its equilibrium value, see below). De,
He, etc. – centrifugal distortion constants (CDC) in the equilibrium state. Corresponding constants for
an arbitrary vibrational level are Bv, Dv, Hv, etc.

At small energies (small v and J values) vibrational and rotational motions are almost independent,
but as energy grows their interaction must be taken into account. Mathematically, this is maintained by
the dependence of rotational constants on vibrational quantum numbers:

Bv = Be − αe(v + 1/2) + α2(v + 1/2)2 − α3(v + 1/2)3 + · · · (2.23)
Dv = De − βe(v + 1/2) + β2(v + 1/2)2 − β3(v + 1/2)3 + · · · (2.24)
Hv = He − he(v + 1/2) + h2(v + 1/2)2 − h3(v + 1/2)3 + · · · , (2.25)

where αi, βi, hi are constants of rotation-vibration interaction. Equilibrium values of the rotational
constants are:

Be =
~2

2µR2
e

(2.26)

De =
4B3

e

ω2
e

(2.27)

He =
2De

3ω2
e

(
12B2

e − αeωe

)
(2.28)

where Re denotes the position of the potential minimum.

2.9.2 Dunham constants

Dunham [43] has calculated the energy levels of a vibrating rotor in the quasiclassical Wentzel-Kramers-
Brillouin (WKB) approximation for any potential which can be expanded as a powers series of (R−Re)
in the neighborhood of the potential minimum:

U(ξ) = a0ξ
2(1 + a1ξ + a2ξ

2 + · · · ), (2.29)

1For Ω 6= 0 states J(J + 1) should be replaced with J(J + 1)− Ω2
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where ξ = R−Re

Re
. The centrifugal term is also expanded as

Ur(ξ) = BeJ(J + 1)(1− 2ξ + 3ξ2 − 4ξ3 + · · · ) (2.30)

This type of potential is essentially a Taylor series expansion beyond a harmonic oscillator leading
term, and, if enough terms are included, it can give an arbitrarily accurate representation of a potential
over any finite range of R. Dunham derived expressions for spectroscopic constants in terms of the
coefficients in the expansion. Thus Dunham provided a very simple and convenient method for computing
spectroscopic constants from a theoretical potential energy curve. The parameters a0, a1, a2, . . . are
obtained by a least squares fit of the theoretical curve to the Eq. (2.29) and then theoretical spectroscopic
constants can be calculated for comparison with the empirical values.

However, the power series expansions (2.29) and (2.30) are not suitable for the inverse process of
determining an “experimental” potential curve from known spectroscopic constants. This is because of
their very poor convergence. The expansion (2.30) converges only for |ξ| < 1, that is for R < 2Re, and
in practice it is found that the useful range of convergence is much less than this.

Dunham showed that in the case of a such power series expansion the energy levels can be written in
the form

E(v, J) =
∑

l,m

Ylm(v + 1/2)l(J(J + 1))m (2.31)

where Ylm are called Dunham constants. By comparison of (2.31) with (2.21) one can derive correspon-
dence between Ylm and band constants:

Y1,0 = ωe Y0,1 = Be Y0,2 = −De

Y2,0 = −ωexe Y1,1 = −αe Y1,2 = βe

Y3,0 = ωeye Y2,1 = α2 Y2,2 = −β2

· · · · · · · · ·

However, it was found by Dunham that these relations are true only if Be/ωe is small, which is usually
the case. According to Dunham’s formulae there is also a non-vanishing term Y0,0. For excited states
this term is replaced by a constant term Te. The value of potential minimum U(Re) however differs from
Te by the value of Y0,0 which in terms of the other constants may be written as

Y0,0 =
Be

4
+

αeωe

12Be
+

α2
eω

2
e

144B3
e

− ωexe

4
. (2.32)

Dunham constants are widely used by spectroscopists thanks to relative easiness of calculation and
direct physical meaning of several first coefficients.

The fact that Dunham’s energy level formula is based on the concept of potential energy curve provides
many self-consistency checks between molecular constants, for example, the Kratzer relation,

Y0,2 = −4Y 3
0,1

Y 2
1,0

, (2.33)

which is valid for harmonic or Morse potentials (see Section 2.10.2), and the Pekeris relation,

Y1,1 =
6Y 2

0,1

Y1,0

[
1−

√
−Y2,0

Y0,1

]
, (2.34)

which is valid for a Morse potential.
If there are several isotopomers the question appears of appropriate transformation of the molecular

constants. In the simplest treatment, independent sets of Dunham molecular constants are obtained
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for each isotopomer. However, this involves considerable redundancy, since the resulting constants for
different isotopomers are known to be interrelated:

Y β
lm =

∑

l,m

Y α
lm

(
µα

µβ

)m+ l
2

=
∑

l,m

Y α
lmρ2m+l, (2.35)

where Y α
lm – Dunham constants of α isotopomer;

µα = Mα
AMα

B

Mα
A+Mα

B
– reduced mass of α isotopomer;

Y β
lm, µβ – Dunham constants and reduced mass of β isotopomer.

2.9.3 RKR potential

With the expressions for the vibrational energy G(v) and inertial rotational constant B(v) obtained from
empirical fits, the potential energy curve of the molecular state may be determined through the Rydberg-
Klein-Rees (RKR) method [44], which is based on the first-order WKB approximation. RKR method
allows to obtain the classical turning points of the nuclear motion without making any assumptions
about the potential curve. This gives the possibility to construct the potential up to the highest observed
vibrational level. RKR method is based on Klein integrals:

R+(v)−R−(v) = 2

√
~2

2µ

∫ v

vmin

[G(v)−G(v′)]−
1
2 dv′, (2.36)

1
R−(v)

− 1
R+(v)

= 2

√
2µ

~2

∫ v

vmin

B(v′) [G(v)−G(v′)]−
1
2 dv′, (2.37)

from which the outer and inner classical turning points R+(v) and R−(v) can be determined. vmin is the
extrapolated value of the vibrational quantum number at the potential minimum.

2.10 Direct Potential Fit Analysis

It is seldom possible actually to solve the electronic wave equation, therefore it is customary to use
an empirical expression for U(R). So, one of the main spectroscopical tasks is to restore the potential
energy curve (PEC) from the observations. The most widely used method for a long time was construc-
tion of RKR potential from Dunham molecular constants. This method however has several important
disadvantages:

1. Method is based on the first-order WKB approximation, which is accurate only for heavy molecules,

2. RKR is defined only in turning points of vibrational motion and does not contain information about
extrapolation in the region not covered by the experimental data,

3. It fails for “exotic potentials”, such as double minimum potentials,

4. A lack of self-consistency in vibrational and rotational constants due to strong inter-parameter
correlation in the Dunham expansion can result in unphysical bends of the RKR potential.

As an alternative, various fully quantum mechanical techniques have been developed, providing de-
termination of PECs directly from the experimental data—direct potential fit (DPF) analysis. These
methods compare observed transition energies with eigenvalue differences calculated numerically from
an effective radial Schrodinger equation (2.4) for a parameterized potential energy function and use a
least-squares (LS) fit to optimize the values of those potential function parameters.

For a wide variety of cases, this approach has been shown to represent the experimental data with
equivalent accuracy and usually much more compactly than do conventional analyses based on fits to
empirical level energy expressions.
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2.10.1 Pointwise Potentials

In the earliest applications of the DPF approach the PEC was represented by a polynomial-corrected
pointwise potential (PCPP)2. It was proposed in 1975 by Kosman and Hinze [46] and in 1977 by Vidal and
Scheingraber [47] as a fully quantum mechanical method for defining an accurate potential energy curve
of a diatomic molecular state. In literature this method is often mentioned as IPA (Inverted Perturbation
Approach) method because the basic idea of it is to find such a correction δU(R) to initial approximate
potential U0(R), that the set of eigenvalues {EvJ} obtained by solving the Schrödinger equation with
U0(R) + δU(R) will agree with the set of experimental eigenvalues {Eexpt

vJ } in the LS sense.
For an efficient and rapidly converging method the functional form of the correction function δU(R)

is of crucial importance. Most conveniently, δU(R) can be described as a linear superposition of some
functions fi(R):

δU(R) =
∑

i

cifi(R) (2.38)

In this case the coefficients ci are given by a system of linear equations:

δEvJ =
∑

i

ci〈Ψ0
vJ |fi(R)|Ψ0

vJ 〉, (2.39)

where Ψ0
vJ are WFs obtained with the initial potential U0(R). This system is generally overdetermined

and can be solved by a LS method.
As an appropriate choice of fi(R) functions, Kosman and Hinze [46] have selected Legendre poly-

nomials Pi(x). Vidal and Scheingraber [47] proposed to use functions fi(R) = Pi(R) exp(−R2n), with
1 ≤ n ≤ 5. This modification was made in order to avoid unphysical oscillations of the potential
outside the Rmin and Rmax, determined by the last Eexpt

vJ observed. For systems with small reduced
masses that approach yielded significant improvements over the accuracy of RKR potentials. However,
the polynomial-type correction functions used in most applications cannot be extrapolated in a realistic
manner, so this approach provides no sensible description of the system beyond the range of internuclear
distances used in the analysis.

PCPP approach is also model-dependent and is not flexible enough when potentials are of “exotic
shape”, e.g., double well or shelf state potentials. Facing this problem, A. Pashov and coworkers in
2000 [48] proposed to express the correction to the potential curves in a set of N equidistant3 points
{Ri, ui} connected with a cubic spline function. This method is often called a modified IPA method in
literature, and potential energy function is further referenced to as spline-pointwise potential (SPP), as
proposed in Ref. [45].

It is possible to show [48, 49, 50] that the correction appears as a linear combination of known functions
Si(R) with coefficients ui:

δU(R) =
∑

i

Si(R)ui (2.40)

Si(R) may be considered as a measure of the strength of the “contribution” of ui to the value of
δU(R). In the grid points (R1, R2, . . . , Ri, . . . ) the value of Si(R) is always zero except the case of the
for R = Ri, where it is 1.

From Eq. (2.40) we derive a system of linear equations

Ek = E0
k +

∑

i

〈Ψ0
k|Si(R)|Ψ0

k, 〉∆ui, (2.41)

where ∆ui is the correction to the ith fitting parameter. Replacing Ek with Eexpt
k provides a set of

M linear equations (M denotes the number of experimental levels) with N unknowns (where N is the
number of the fitted parameters, i.e. grid points).

2Terminology suggested by Y.H. Huang and R.J. Le Roy in Ref. [45].
3Initially the method was developed for the case of equidistant grid of points, but later generalized to irregular spaced

grid.
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Expansion (2.40) is very flexible and allows smooth and accurate interpolation of a variety of functions.
It imposes no limitations on the shape of the fitted curve and therefore can be applied to both regular
and irregular potential energy curves. The flexibility, however, can often result in unphysical oscillations
of the fitted potential curve. This happens usually in the regions which are not sufficiently described by
the experimental data. To handle the problem the Singular Value Decomposition (SVD) [51] is used for
minimization of the merit function χ2(U). This method allows to select such parameters which can not
be determined from the fit (have huge standard deviation and change value from minus infinity to plus
infinity) and set their values to zero. In our case it means that grid points which will have small influence
on eigenenergies will be fixed at some initial values. The strength of the SVD is governed by a singularity
parameter ζ. If ζ = 0, the SVD solution will not differ from the usual LS method. Increasing ζ we can
monitor behavior of χ2 and we stop increase of ζ when χ2 goes beyond some limit.

Recently an additional tool for providing a smooth solution was suggested [50]. Generally, the usual
way of obtaining a smooth fitted function f(R,a) is to add to the merit function χ2(a) a regularizing
functional H(a) which is responsible for the smoothness of the solution and to minimize the sum

χ2(a) + λ2H(a), (2.42)

where λ is a parameter used to tune the degree of regularization. Possible forms of H(a) can be found
in [51]. One of them is :

H(a) =
∫ R2

R1

[f ′′(R,a)]2dR. (2.43)

By minimizing the integral of the square of the second derivative, one sets the additional condition
that the fitted function should be as close to a straight line as possible between R1 and R2. Since in
the method described the fitted potential is defined as a cubic spline function drawn between given grid
points (Ri, ui), the second derivative U ′′(R,u) between these points is a linear function of R. Therefore,
a simplified form of the regularizing functional is introduced:

H(u) =
∑

i

[U ′′(Ri,u)]2, (2.44)

where U ′′(Ri,u) denotes the second derivative of the potential in a grid point Ri.
When λ = 0, the system (2.41) remains unchanged, i.e., no regularization is imposed. Increasing λ

results in flattening of the potential in competition with the initial condition defined by Eq. 2.41. Again
a compromise between smoothness and χ2 must be searched.

A key strength of the SPP form is its model-free nature − it can treat any shape of potential energy
curve without the intrinsic limitations imposed by choice of a particular analytic form. Construction
of SPP has been successfully applied to analyses of data for a number of standard (normal single-well
potential) and nonstandard (double-minimum, shelf-state, or barrier potential) cases [52, 53, 54, 55, 56,
57, 58, 59] and has been widely applied in the present work.

2.10.2 Analytic Potentials

A wide range of analytic functions for representing ordinary single-minimum potential energy curves have
been proposed over the years. However, exact analytic expressions for vibrational and rotational level
energies can be obtained only for several of them. These functions in simplest cases are defined by two or
three parameters which typically characterize the well depth De, the position of the potential minimum
Re, and the well shape. Let’s consider several kinds of potentials that are widely used as the simplest
models or as the basis of flexible many-parameter potential, and also the potentials which were applied
in this work.
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Morse Potential

It is a sum of attractive and repulsive exponential terms

UMorse(R) = De

[
e−2β(R−Re) − 2e−β(R−Re) + 1

]
= De

[
1− e−β(R−Re)

]2

(2.45)

whose vibrational eigenenergies are:

G(v) = ωe(v + 1/2)− ωexe(v + 1/2)2 (2.46)

This potential is widely used, but its main disadvantage is that exponential form doesn’t fit the
inverse-power behavior of long-range potentials.

Lennard-Jones (m,n) Potentials

This is a family of potentials with inverse-power attractive and repulsive terms

ULJ (R) =
Cm

Rm
− Cn

Rn
+ De = De

[
n

m− n

(
Re

R

)m

− m

m− n

(
Re

R

)n

+ 1
]

(2.47)

where m > n are both positive integers. This potential doesn’t have analytic expressions for vibrational
and rotational energies, whereas it is widely used because of the simplicity of the form (especially for
fixed m = 2n) and because it allows one to provide the correct long-range behavior on the potential by
setting n equal to the power of the first non-zero term in Eq. 2.17.

Generalized Morse-Type Potential Functions

This is a generalization of the Morse function where the exponent parameter is expanded in a power
series in some R–dependent expansion variable:

β = β(R) = β0 + β1y(R) + β2y(R)2 + β3y(R)3 + · · · (2.48)

The great advantage of this functional form is that the Morse potential structure gives the basic
shape of the potential, and only modest smooth variations in β(R) are required to give a flexibility in
the describing details of the shape. In contrast, in simple power-series potential forms the polynomial
expansion is responsible both for the basic structure and for accounting for details of the shape.

Dunham’s power series expansion

– see Section 2.9.2.

Morse-Lennard-Jones4 Potential Function

In 2000 [60] R. Le Roy and P. G. Hajigeorgiou introduced a new analytical model for the internuclear
potential energy function of a diatomic molecule which has the same flexibility and compactness yielded
by the variable-exponent Morse-type potentials, but which can also incorporate the correct theoretically
known inverse-power long-range behavior. The new model is a kind of a generalization of the prototypical
Lennard-Jones (2n, n) function with the form

U(R) = De

[
1−

(
Re

R

)n]2

, (2.49)

4In the original work [60] this function was called the “modified Lennard-Jones oscillator” potential because of a wish
to emphasize the inverse-power long-range behavior. Later the authors redefined the leading term in the acronym MLJ.



CHAPTER 2. STRUCTURE AND SPECTRA OF DIATOMIC MOLECULES 23

It is a qualitatively correct model for a single minimum diatomic molecule internuclear potential
energy function, but does not have a flexibility required to represent accurately extensive experimental
information. That’s why the function was modified in the following way:

U(R) = De

[
1−

(
Re

R

)n

φ(R)
]2

, (2.50)

where φ(R) is the modifying function, which is used in order to bring the potential into a better correspon-
dence with the experimental data. Analysis showed that this function can not be efficiently represented
with the power expansion because of its shape and relatively rapid variation with internuclear separa-
tion. In turn, its exponential representation φ(R) = exp[−βMLJ (z) · z], where z = R−Re

R+Re
is a generalized

variable, appeared to be more suitable. That’s why the MLJ potential was introduced in the form

UMLJ (R) = De

[
1−

(
Re

R

)n

e−βMLJ (z)z

]2

. (2.51)

In the limit R →∞ (z → 1), the MLJ potential takes the form

U(R) = De − 2De

(
Re

R

)n

e−β∞ = De − Cn

Rn
. (2.52)

An appropriate choice of the power n imposes the correct theoretically predicted limiting long-range
functional behavior.

The constant β∞ in Eq. 2.52 indicates that βMLJ (z) must be expressed as a function which will
naturally approach a finite limit as R → ∞ (z → 1). The simplest way of doing this is to write it as a
power series in z:

βMLJ (z) =
M∑

m=0

βmzm, (2.53)

so that

lim
z→1

βMLJ (z) =
M∑

m=0

βm. (2.54)

MLJ potential has been successfully tested for several molecular states, e.g. Rb2 ground state poten-
tial [62] and has been also implemented in the current research.

In Ref. [63] a new, flexible potential model has been proposed by E.Tiemann and coworkers. The
potential is represented as a truncated expansion over analytic functions:

U(R) =
n∑

i=0

ai

(
R−Rm

R + bRm

)i

, (2.55)

where ai, b and Rm are parameters (Rm is close to the equilibrium distance). The parameter b models
the very different steepness of the potential inside and outside Re and is chosen such that the number of
ai coefficients needed to represent the potential is minimized.



Chapter 3

Experimental setup

In this Section the experimental setups used in the present experiments performed in the laboratories at
the University of Latvia and the University of Hannover will be described.

3.1 Experimental setup at the University of Latvia

Laser induced fluorescence (LIF) was excited by an Ar+ laser (Spectra Physics 171) operating in a single-
mode regime at 514.5 nm wavelength. LIF has been dispersed by a double monochromator DFS-12 with
1200 lines/mm diffraction gratings and 5 Å/mm inverse dispersion in the first diffraction order, providing
at reasonable slit width the 0.2 Å spectral resolution. Fluorescence progressions have been detected up
to 680 nm by a FEU-79 photomultiplier operating in a photon counting regime. Simultaneously detected
Ar and Ne discharge lines have been used as frequency standards. The average uncertainty of LIF line
positions was estimated as ca. 0.1 cm−1. A scheme of the setup can be seen in Fig. 3.1.
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Figure 3.1. A scheme of the LIF experimental setup in Riga. E – cell with electrodes, M – monochromator,
PEM – photoelectric multiplier, CAMAC – data acquisition interface, R – recorder, PC – computer, U –
voltage supply, L – lenses.

NaRb molecules were formed from a 4:1 mixture (by weight) of natural Rb (containing 72% of 85Rb
and 28% of 87Rb) and 23Na metals in an alkali-resistant glass thermal cell at temperature ca. 550 K.
At the initial stage of the experiment a cell with electrodes and connected to the vacuum pump was

24
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used. Applying of electric field [65] allowed us to distinguish between the 1Π− 1Σ and 1Σ−1 Σ doublet
progressions. Then the evacuated cell not connected to the vacuum system was used. The cell was heated
in a two part resistance oven, maintaining approximately 20 0C higher temperature in the upper part
than in the lower one in order to prevent metal condensation in the upper part of the glass cell.

3.2 Experimental setup at the University of Hannover

In this Section the LIF experimental setup used in the studies performed at the University of Hannover is
described. A diagram of the setup can be seen in Fig. 3.2. A laser beam passes through the sample in the
heat-pipe oven (or metal cell) and a fluorescence is collected in the direction opposite to the propagation
of the laser beam and then focused into the input aperture of IFS 120 HR Fourier-transform spectrometer.
Let us describe the main parts of the experiment in more detail.

Figure 3.2. A scheme of the LIF experimental setup in Hannover. FTS – Fourier-transfrom spectrometer,
M – mirrors, M1 – mirror with slit, L – lenses, F – optical filter, DB – dark box, PC – computer.

3.2.1 Preparation of the molecules

For preparation of the molecules a heat-pipe oven or a metal cell were used. A single section heat-pipe
(HP) cell is made of a stainless steel tube. A commercial oven from the Carbolite company was used for
heating the cell. It allows to reach temperatures close to 1500 K and can be used to heat a tube with
diameter smaller than 60 mm. The pipe is 960 mm long, has a diameter of 34 mm and a wall thickness
of 2 mm. The inner part of the heat-pipe is covered by a fine metal mesh. The alkali metal is placed
near the center of the tube. Each end of the tube is closed by a glass window with antireflection coating.
The end parts are water cooled. Thus during a heating a micro-climate develops in the tube, and alkali
metal atoms evaporate out and diffuse into the cold zones where condensation occurs. The liquid metal
is then sucked back towards the center by surface tension forces between the metal atoms and the mesh.
In order to prevent atom condensation on the windows, the buffer gas is used. As the buffer gas, we used
argon with typical pressure of few millibars (mbar). A schematic picture of the heat-pipe can be seen in
Fig. 3.3.

The NaRb molecules were produced in a heat-pipe oven by heating 5 g of Na (purity 99.95%) and
10 g of Rb (purity 99.75%, natural isotopic composition) from Alfa Aesar. The oven was operated at
temperatures between 560 K and 600 K and typically with 2 mbar of Ar buffer gas. The heat-pipe was
in operation for about 120 hours without refilling and at the end of the experiment it was still in good
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Figure 3.3. A scheme of a heat-pipe.

operation condition. After the end of experiments the heat-pipe was filled with argon and disconnected
from the vacuum system. After half a year it was successfully operated again.

For experiments with NaCs in order to ensure safe operation with Cs, a metal cell was designed (see
Fig. 3.4). The 300 mm long cell has approximately 30 mm in diameter and CF flanges are welded at
both ends for mounting sapphire windows (Varian Vacuum Technologies). A metal container is appended
at the side of the cell for two ampullae with 1 g Na and 1 g Cs and closed by a CF flange. The end
of the Na ampulla was cut just before the loading. The cell is connected to the vacuum apparatus via
a metal bellows-all-welded valve from Swagelock welded to the cell. In this configuration the whole cell
(including the windows, container and the metal valve) can be heated up to 700 K. After the cell was
pumped for several days at temperatures up to 400 K, low enough for not losing Na, the Cs ampulla was
broken by shaking the cell. The advantages of using a metal cell compared to traditional heat-pipe ovens
are safe procedures for loading, possibility for operation with small amounts of metals, and also without
presence of a buffer gas. Usually the cell was heated to 550 − 600 K and operated without buffer gas.
Unfortunately, after about 20 hours of operation a leak in the sapphire windows of the cell was found. It
might have happened due to general non-resistance of the welding between the sapphire and the metal
of CF flange to alkali metal vapors.

For longer experimental studies of NaCs a heat-pipe oven (see Fig. 3.5) was designed as described
above which was provided with a short metal container welded to the central part of the pipe. A 5 g
glass ampulla of Cs from Alfa Aesar was loaded in the container and closed with a CF flange. About 10
g of Na were loaded in the heat-pipe in a usual way. After several days of conditioning, the Cs ampulla
was broken by shaking the heat-pipe oven. Since the container was mounted close to the pipe and heated
simultaneously with it up to the same temperature, the heat-pipe was operated in a simple single-section
heat-pipe regime. The oven was operated at temperatures between 560 K and 600 K and typically with
3 mbar of Ar buffer gas. The oven was in operation for about 50 hours without refilling and at the end of
the experiment it was still in good working condition. Like NaRb heat-pipe after the end of experiments
it was filled with argon and disconnected from the vacuum system. After 6 months, and afterwards after
12 months it was successfully operated again and no metal refilling appeared to be necessary.

The heat-pipes of construction designed at the University of Hannover appeared to be very efficient
for work with alkali-metal dimers. Their important advantages are rather simple design, safe operation
with metals and long lifetime.
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Figure 3.4. Metal cell used for experiments with NaCs.

Figure 3.5. Oven with the NaCs heat-pipe.
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3.2.2 Lasers

Several different types of cw lasers were used in the present experiments.

1. Ar+ laser (Spectra Physics BeamLok 2060) operated at lines 514.5, 501.7, 496.5, 488.0, 476.5 nm
in a multimode (typical power 0.5-3 W) and a single mode regime (typical power 100-500 mW).

2. Tuneable single-mode frequency doubled Nd:YAG1 laser with a typical output power of 70 mW at
532.2 nm. Tuning range app. 3 cm−1.

3. Ring dye laser Coherent 699-21 with Rhodamine 6G dye (tuning range 550–590 nm, peak at 560
nm) with power ca. 100 mW, pumped by Nd:YAG frequency doubled laser (Verdi, Coherent).

4. Linear dye laser Coherent 599 with DCM dye (tuning range 610–695 nm, peak at 645 nm) with
power ca. 70 mW, pumped by Ar+ laser.

3.2.3 Fourier-Transform Spectrometer

Fourier-Transform Spectrometer (FTS) is a dual-beam interferometer, which is most frequently of the
Michelson type, as shown in Fig. 3.6. If the arms of the interferometer have equal lengths, the path

D

2

Compensation
plate

Beam
splitter

Detector

Figure 3.6. Principal Fourier spectrometer scheme based on the Michelson interferometer.

difference between the two interfering beams is zero. If one mirror is shifted by ∆/2, an optical path
difference of ∆ is introduced. For the case of monochromatic radiation with frequency σ in wavenumbers
and equally intense beams the intensity at the detector is

I(∆) = I0(1 + cos(2πσ∆)) (3.1)

If the light source emits a spectrum B(σ) we then obtain

I(∆) =

+∞∫

0

B(σ)(1 + cos(2πσ∆))dσ =
I(0)
2

+

+∞∫

0

B(σ) cos(2πσ∆)dσ, (3.2)

where I(0) =
∫ +∞
0

B(σ)dσ.

1Nd:YAG stands for neodymium yttrium aluminum garnet
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After applying the theorems of Fourier analysis we get that

B(σ) = const

+∞∫

0

[
I(∆)− I(0)

2

]
cos(2πσ∆)d∆, (3.3)

which is called the main integral equation of the Fourier-transform spectroscopy. It expresses the fact,
that spectrum B(σ) can be calculated as the Fourier transform of the interferogram

[
I(∆)− 1

2I(0)
]

(Sometimes only I(∆) is called interferogram). The interferogram has many similarities to a hologram.
Every part of it contains information on the whole structure, but high resolution is achieved only when
a large part of it is utilized. One of the great advantages of FTS is that all spectral lines are recorded
at the same time (the multiplex or Felgett advantage). Further, a FTS has a comparatively high light
collecting efficiency, since it does not require narrow slits for the above-mentioned reasons (the Jaquinot
advantage). Spectrometers of that kind have a very good signal-to-noise ratio and instruments with a
resolution of R = 107 can be constructed. The movement of a mirror is controlled by fringes from a
He-Ne laser.

In practice, the movable mirror can only be moved over a limited distance (typically about 1 m or
more) and therefore the upper integration limit in Eq. 3.3 is finite. Such a limited integration gives rise
to side maxima of the spectral lines. Using a mathematical trick, which involves the multiplication of
the integrand in (3.3) by a particular function, the unwanted maxima can be suppressed. However, this
procedure, which is called apodization, gives rise to broader spectral lines. The simpliest apodization
functions are boxcar and triangular ones.

Michelson was fully aware of the spectroscopic potential of his interferometer, but the lack of sensi-
tive detectors and nonexistence of computers for performing Fourier-transform algorithms became insur-
mountable barriers for its practical implementation. That’s why practical Fourier-transform spectroscopy
appeared only in the early 1950s. Its development was greatly aided by the invention of the “fast Fourier
transform” algorithm. Today, commercial Fourier-transform spectrometers are widely available and used
for spectroscopy in many diverse disciplines.

In the present work we used the Fourier-Transform Spectrometer IFS 120 from Bruker Optics. It
operates (with appropriate change of optics and detectors) in a spectral range from 63200 cm−1 in the
ultraviolet region to 450 cm−1 in the infrared region. The instrument allows to obtain relative accuracy
better than 0.5 · 10−7σ and an absolute accuracy better than 5 · 10−7σ, where σ is a frequency in
wavenumbers. In the region of 20000 cm−1 it corresponds to 0.001 cm−1 and 0.01 cm−1 accuracies,
respectively.

Fourier spectrometer IFS 120 is operated with the help of OPUS software, which allows one to set the
scan parameters (resolution, aperture, frequency range, number of scans, electrical filters, apodization
function, etc.), initializes measurement, performs the Fourier transformation of the interferogram and
allows further data processing. This model of the Fourier spectrometer has a useful tool of operation in
“Preview mode”, which makes possible to visualize a low-resolution spectrum in several seconds. This is
especially important for searching the signal in an unexplored frequency region.

The LIF signal was detected with a Hamamatsu R928 photomultiplier tube (range of sensitivity
54000−11100 cm−1) or a silicon diode (range of sensitivity 25000−9000 cm−1) depending on the desired
wavelength region. The scanning path of the spectrometer was set to reach a typical resolution of 0.0115–
0.03 cm−1 and the typical number of scans for averaging varied between 10 and 20. In order to avoid
the illumination of the detector by the He-Ne laser, used for calibration of the spectrometer, a NOTCH
interference filter with 8 nm full width at half maximum was introduced. For better signal-to-noise ratio
some spectra were recorded by limiting the desired spectral window with colored glass or interference
filters.



Chapter 4

NaRb molecule

4.1 Background

Among heteronuclear alkali dimers, the NaRb molecule is relatively little known. First experiments with
NaRb were made in 1928 by Walter and Barratt [66] who found an absorption spectrum of the NaRb
molecule in the green region 18404-18753 cm−1. In 1936 Kusch [67] found a new band system of NaRb in
the red region 15778-16678 cm−1. This system was assigned as a 1Π−1 Σ+ transition and the vibrational
constants ωe and ωexe of both X1Σ+ ground state and the 1Π excited state were determined.

The next experiments with the NaRb molecules were made only in 1981 [68]. They were the first in
a series of measurements in NaRb performed in the Prof. Hajime Katô group in Japan. In Ref. [68] the
LIF spectra of NaRb, excited with the He-Ne, Kr+ and Ar+ lasers were recorded. Green band system in
20000-17000 cm−1 region was assigned as the D1Π − X1Σ+ transitions, but red band system in 17000-
14000 cm−1 as B1Π − X1Σ+. Spectroscopic constants and dissociation energies of the X1Σ+, B1Π and
D1Π states were obtained. A few rovibronic levels of the D1Π state with vibrational quantum numbers
v′ = 0−13 and rotational quantum numbers between J ′ = 11 and 100 were studied. Molecular constants
for the bottom of the D1Π state potential were estimated for the first time from the transition frequencies
in the D–X LIF spectra as well as their intensity distributions.

The first high-resolution studies of NaRb were made in 1991 [69]. 23Na85Rb B1Π(v′ = 0 − 12) ←
X1Σ+(v′′ = 0 − 6) transitions were studied using the technique of Doppler-free laser polarization spec-
troscopy. Molecular constants Gv, Bv, Dv and Hv and Dunham molecular constants of the X and B
states were obtained. Dissociation energy of the X and the B states were estimated as 5030 ± 2 cm−1

and 1319± 2 cm−1, respectively.
The energy levels of the B1Π state were found to present many irregularities due to perturbations.

The fluorescence spectrum to the a3Σ+ state following an excitation to a strongly perturbed B state level
was recorded with monochromator. According to their assignment they observed transitions to v = 0−17
and N = 13 − 25 and obtained from these data Dunham molecular constants of the a3Σ+ state. The
dissociation energy value obtained for the a3Σ+ state was 182± 2 cm−1.

In Ref. [70] perturbations in the B1Π state were studied in more detail. A number of the rovibrational
levels of the B state were found to be strongly perturbed. Molecular constants of the c3Σ+ and the b3Π1

states were estimated. The hyperfine splitting of the c3Σ+ state was observed.
In Ref. [71] hyperfine structures of the triplet states were analyzed. The sub-Doppler high resolution

excitation spectrum of NaRb was measured by selectively monitoring the fluorescence intensity from
perturbed levels to the a3Σ+ lower state. Many transitions were observed to the (2)3Σ+ state perturbed
by B1Π. Fully resolved hyperfine splittings were observed and analyzed.

In 1996 [72] S. Kasahara et al. measured high-resolution spectra of the B1Π − X1Σ+ transitions in
the 23Na85Rb molecule by the technique of the Doppler-free optical-optical double resonance polarization
spectroscopy OODRPS (pump beam excites the B1Π(v′, J ′) level, whereas probe beam is scanned across

30
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Figure 4.1. Potential energy curves for the low lying singlet (solid lines) and triplet (dashed lines) states
of NaRb from ab initio calculations [34].
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the B1Π(v′, J ′) − X1Σ+(v′′, J ′′) transitions). 44 level energies with J ′′ = 10 and 12 in the v′′ range
5–30 were obtained. Combining data from 1996 and 1991 [69] the Dunham constants valid up to v′′ = 30
(57% of the potential well depth) were obtained and RKR potential in the internuclear distance range
2.86 ≤ R ≤ 5.17 Å was constructed.

In the same work transitions to the a3Σ+ state level (v′′ = 4, N ′′ = 15) from the B1Π(v′ = 8, J ′ = 15)
level were measured by the Doppler-free OODRPS. The hyperfine splittings, which are described by
Hund’s case (bβS), were observed, and the hyperfine constants ANa and A85Rb of the a3Σ+ (v′′ = 4)
level were determined as 0.0293 and 0.0336 cm−1, respectively. The hyperfine splittings were identified
as originating from the Fermi contact interaction.

In 2001 W.T. Zemke and W.C. Stwalley [73] made analysis of all available experimental and theoretical
data about the X1Σ+ and a3Σ+ states in order to obtain potentials of these states in a wide range of
internuclear distances. The experimental data used were from Ref. [69, 72]. Dunham molecular constants
for the X state from Ref. [72] were replaced my more precise analogue. Hybrid potentials of the X1Σ+ and
a3Σ+ states were constructed using experimental data, theoretical long-range potentials, and exponential
repulsive wall extrapolation. As a result, new, more accurate values of the dissociation energies of the X
and a states were obtained, being 5030.75± 0.10 cm−1 and 183.0± 0.10 cm−1, respectively. The authors
of Ref. [73] have concluded that further experimental studies of the X state in the v′′ > 30 region are
required to refine the NaRb X1Σ+ state potential curve in the intermediate energy region.

Laboratory of Optical Polarisation of Molecules at the University of Latvia has also contributed a lot
to the studies of NaRb.

Accurate measurements of the Λ-splitting energy ∆e/f of particular rovibronic levels of the B1Π
and D1Π state by means of the Radio Frequency – Optical Double resonance (RF-ODR) method were
performed in Ref. [65]. The measured ∆e/f values were used to determine the q factors [4] and the
permanent electric dipole moments for a number of v′, J ′ levels employing dc Stark effect in the 1Π
states [65].

In Ref. [4] the experimental D–X LIF intensities and rovibronic term values were simultaneously
embedded in a non-linear least-square fitting procedure to refine the D1Π potential.

Recently the spontaneous lifetimes (about 20 ns) have been determined for a number of D1Π(v′, J ′)
levels from LIF decay after pulsed excitation [74].

In the paper [75] the first study of the fully mixed A1Σ+ − b3Π complex of the NaRb molecule based
on high-resolution sub-Doppler spectroscopy and intensity measurements was performed. A two-laser
V-type pump–probe excitation scheme was employed to obtain A←X transition frequencies to 16 A-state
vibrational levels from v = 6 to v = 21 with J from 8 to 23. Additionally, relative intensities in A→X
LIF spectra have been recorded, including progressions with all observable transitions to the ground
state vibronic levels, the latter yielding unambiguous v assignment of the observed A-state levels. All
experimental rovibronic term values and all measured intensity distributions were embedded in a direct
simultaneous weighted nonlinear fitting in the framework of an elaborated inverted channel-coupling
approach allowing authors to obtain the deperturbed relativistic diabatic potentials of the interacting
A1Σ+ and b3Π states.

LIF intensity distribution as a deperturbation tool and its application to the fully-mixed A1Σ+−b3Π
complex of NaRb was further discussed in more detail in Ref. [76].

The most comprehensive theoretical studies of the NaRb molecule have been reported in Ref. [34]
where potential energy curves (PEC) for the ground and several excited states up to their atomic limits
are given. In Ref. [4] ab initio calculations of the 11 lowest electronic states potential energy curves,
transition dipole moments for a number of electronic transitions, and L-uncoupling matrix elements
between 1Π and 1Σ+ states with respective Λ-doubling constants are presented.

Na-Rb system is an interesting object for studying atom-atom collisions at ultra-low temperature as
well as a promising candidate for two-species Bose-Einstein condensate. Results of experimental research
performed in different groups on inelastic cold collisions in Na-Rb trap were reported in Refs. [25, 26, 77],
analyzing trap losses as dependent on trap laser intensity and frequency. Theoretical calculations of
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long-range potentials exist [78, 79, 80, 81]. Calculations of the Na-85Rb and Na-87Rb scattering lengths
have been recently reported in Refs. [82, 83, 84, 85], where results obtained in this thesis [dis1, dis2] were
used.

Summarising, at the moment of the beginning of this work most of information on the NaRb electronic
states was fragmentary and of accuracy, insufficient for demands of modern spectroscopy, especially cold
collision physics. Available information on the X1Σ+ state was of high accuracy, but limited at v′′ = 30
and low J ′′. The lowest triplet a3Σ+ state was studied in a wide range, but with low accuracy. D1Π
state was also investigated in a limited range of quantum numbers with low accuracy. C1Σ+ state has
never been observed previously.
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4.2 NaRb X1Σ+ state: Experiments at the University of Latvia
[dis1]

During the studies on the permanent electric dipole moments and q factors in the B1Π and D1Π states
of NaRb performed at the University of Latvia [65, 4], it was realized that information on the X1Σ+

ground state is insufficient, therefore we put forward a goal to obtain accurate X1Σ+ state potential,
which would be applicable in a wide range of vibrational and rotational quantum numbers.

4.2.1 Observations

The usual way of extending the range of ground state vibrational levels v′′ observed in emission for
alkali dimers is to observe either the A–X or C–X transitions, instead of the B–X. In the present study
we made use of the opportunity to excite the high vibrational levels of the C1Σ+ electronic state in a
direct C1Σ+ ← X1Σ+ transition and to exploit the subsequent visible emission. As follows from the ab
initio potential curves [4] depicted in Fig. 4.1, there is enough reason to predict that C1Σ+ → X1Σ+

fluorescence can be excited by visible Ar+ laser lines and that it should be intense up to sufficiently high
v′′ levels of the X1Σ+ state due to considerable shift between the respective potentials (similarly to the
case of the NaK molecules, see [86]). In the early paper on the NaRb LIF studies [68] it was reported
that the Ar+ laser 514.5 nm line induced fluorescence spectrum was observed up to 14000 cm−1 (710
nm). This spectrum was later [69] recognized as the transitions ending on high v′′ levels of the X1Σ+

state. The simplicity of the excitation scheme and the convenient visible range of LIF encouraged us to
undertake further investigations of the C → X emission in order to reach as many as possible v′′ > 30
rovibronic levels and, thus, to fill the gap between the accurate low v′′ experimental data [72, 69] and
calculated long-range data [73, 79].

4.2.2 Analysis of the C1Σ+ → X1Σ+ progressions

In our experiments we used the Ar+ laser 514.5 nm (19429.826 cm−1) line for exciting the C1Σ+ → X1Σ+

progressions, which stem up to v′′ = 76, thus providing the data about vibrational levels v′′ > 30. These
progressions, possessing maximum intensity in the red spectral range, can be attributed to the C–X
system originating from high v′ > 30 levels. Such assumption is proved by tentative evaluation of the
respective Franck-Condon factors using the difference based ab initio C1Σ+ potential [4].

Experimental justification is as follows. First, no singlet red LIF progressions have been observed,
only the doublet-type series which correspond to the Σ−Σ transitions. Additionally, we have undertaken
a Stark-effect based test which showed that applying an external electric field up to 5 000 V/cm did not
cause any changes in the red LIF spectra. If it were the D1Π state, due to the Stark-induced e/f mixing
in the 1Π state (see [4, 65]) the triplet LIF spectra would be observed instead of the doublet spectra. The
above considerations allowed us to conclude that LIF progressions observed in the red spectral range up
to 680 nm originated from the C1Σ+ state.

Fig. 4.2 presents fragments of the C1Σ+ → X1Σ+ fluorescence progressions in the range of high
ground state v′′ values. To assign the transitions in this spectrum, it was necessary to go to smaller
v′′ < 30 region where accurate spectroscopic constants of the Na85Rb ground state from Refs. [69, 73]
are applicable. This was the most difficult part of the experiment due to smaller intensities of the C–X
transitions in the low v′′ region and the partial overlapping with D–X transitions. As a result, we have
registered and assigned five C1Σ+ → X1Σ+ fluorescence progressions presented in Table 4.1 which were
excited by different modes of the 514.5 nm line. For small J ′′ (J ′′ < 27) the progressions assignment was
based on Dunham molecular constants [73], while for large J ′′, as well as for the 23Na87Rb isotopomer, a
numerical solution of the radial Schrödinger equation was exploited with the RKR potential constructed
from molecular constants, given in Ref. [73].
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Figure 4.2. Pieces of the C→X fluorescence spectrum induced by absorption of the Ar+ laser 514.5 nm
line. (a) C1Σ+(v′ = 34, J ′ = 42) ← X1Σ+(v′′ = 1, J ′′ = 43) in Na85Rb; (b) C1Σ+(v′ = 39, J ′ = 26) ←
X1Σ+(v′′ = 4, J ′′ = 25) in Na85Rb and C1Σ+(v′ = 35, J ′ = 63) ← X1Σ+(v′′ = 1, J ′′ = 62) in Na87Rb.
Vibrational assignment of the C1Σ+ state levels was established in later studies (see Section 4.5).

4.2.3 Analysis of term values

The total data set included in the analysis of the X1Σ+ state term values comprises three parts. The
first part contains the present measured 302 term values Eexpt

v′′J ′′ assigned to both Na85Rb and Na87Rb
isotopomers corresponding to v′′ ∈ [24, 76]; J ′′ ∈ [12, 64] levels (see Table 4.1). The average accuracy of
these data is estimated as 0.1 cm−1. The second part contains 44 highly accurate (with a line position
uncertainty σexpt

v′′J′′ ≈ 0.003 cm−1) experimental term values for v′′ ∈ [5, 30]; J ′′ = 10, 12 levels of Na85Rb
given in Table I of Ref. [72]. The third part contains eight v′′ ∈ [0, 3]; J ′′ = 10, 12 term values restored
using the relevant Gv, Bv, Dv and Hv molecular constants of the 23Na85Rb isotopomer given in Table I
of Ref. [69]; it is assumed that the uncertainty of these data σexpt

v′′J ′′ does not exceed 0.003 cm−1.
Altogether 354 term values of the NaRb X1Σ+ state were treated simultaneously by the combined-

isotopomer weighted least-squares (WLS) fit:

σ̄f = min


 1

N −M

N∑

v′′J′′

(
Eexpt

v′′J′′ − Ecalc
v′′J ′′

σexpt
v′′J′′

)2



1/2

, (4.1)

where N is the total number of the experimental energies, and M is the number of the fitting parameters
obtained below by both Dunham-type and direct potential fit analysis.

4.2.4 Dunham-type fit

Term values for the isotope-substituted NaRb molecule were represented by a Dunham expansion. The
Dunham parameters Ylm of the Na85Rb isotopomer presented in Table 4.2 were obtained by the weighted
linear LS fitting procedure (4.1) accompanied by experimental determination of the optimum power de-
grees (lmax, mmax) for each vibrational and rotational expansion. During the fit the lowest centrifugal
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Table 4.1. C1Σ+(v′, J ′) − X1Σ+(v′′, J ′′) transitions induced by the 514.5 nm Ar+ laser line. Eexpt
v′J ′ =

Ecalc
v′′J′′ + νlaser are the respective C1Σ+ term values. Parameters ∆Ev′J ′ = Eexpt

v′J′ − Eshift
v′J′ account for

uncertainty in the fluorescence series origin, Eshift
v′J′ denoting the corrected term value. ∆EDunh

v′J ′ and
∆EMLJ

v′J′ values were obtained within the Dunham-type and direct MLJ potential fits, respectively. The
errors given in parentheses are equal to two standard deviations. All energies are in cm−1.

Isotopomer v′′ J ′′ J ′ Eexpt
v′J′ observed v′′ range ∆EDunh

v′J′ ∆EMLJ
v′J ′

23Na85Rb 1 12 13 19600.11 [21,70] 0.12(±0.04) 0.10(±0.05)
23Na85Rb 4 25 26 19947.63 [26,76] -0.01(±0.04) -0.01(±0.02)
23Na85Rb 1 43 42 19720.75 [15,71] 0.19(±0.09) 0.21(±0.11)
23Na87Rb 3 61 60 20056.69 [27,71] 0.48(±0.25) 0.35(±0.22)
23Na87Rb 1 62 63 19858.11 [24,71] 0.37(±0.30) 0.18(±0.16)

distortion constants (CDCs) Y0,2, Y1,2 and Y0,3 were held fixed at the values obtained from highly ac-
curate v′′ ∈ [0, 6]; J ′′ ∈ [0, 80] term energies, see Table III in Ref. [69]. Five adjustable parameters
∆EDunh

v′J′ presented in Table 4.1 were added to the fitting procedure to remove systematic errors caused
by an uncertainty of the present experimental series origin, i.e. Eexpt

v′J ′ . The resulting molecular constants
presented in Table 4.2 reproduce the high accuracy data [69, 72] corresponding to J ′′ = 10, 12 levels with
r.m.s.= 0.002 cm−1 while the present experimental term values are reproduced with r.m.s.= 0.1 cm−1.

The resulting G(v′′) and B(v′′) expansions were further applied to a conventional first-order RKR
potential construction [44] up to the last observed vibrational level v′′ = 76. A non-physical bend (a
“turning over”) had appeared in the inner wall of the RKR curve for v′′ ≥ 55 levels. This means that
the obtained vibrational and rotational constants are not self-consistent for upper vibrational levels due
to strong correlation between the rotational and CDC parameters. The bend problem was solved by the
exponential extrapolation of the inner wall and respective correction of the outer wall.

The quality of Dunham, RKR and hybrid approaches is illustrated by Fig. 4.3 (a, c). In contrast
to EDunh and ERKR term values, the Ehyb ones systematically deviate from the experimental data for
v′′ > 35, the difference reaching its maximum at v′′ ' 58. At the same time, the pronounced systematic
errors of the ERKR values corresponding to highest vibrational terms still remain, see Fig. 4.3 (a).

4.2.5 Morse-Lennard-Jones potential fit

To consistently process different sets of experimental and theoretical data, we applied a direct potential
fit analysis based on the Morse-Lennard-Jones (MLJ) potential (2.51) (see also Section 2.10.2). Since the
reduced masses of the Na85Rb and Na87Rb isotopomers are very close to each other, the difference in the
respective adiabatic correction to the relevant Born-Oppenheimer potential can be neglected. Hence, the
adiabatic potentials for both isotopomers can be represented by a single mass-independent curve.

The power n = 6 predicts correct long-range behavior of the NaRb ground state potential U(R) ∼
De−C6/R6 dissociated into two 1S state atoms. In the z-region covered by the experimental term values
the exponent parameter β(z) is approximated by the ordinary polynomial expansion

∑M
m=0 βmzm. To

extrapolate the β(z) function to the “dark” interval between the region covered by experimental data
and the dissociation limit, the ordinary cubic spline βE(z) =

∑3
n=0 bn(z − 1)n was adopted. Respective

coefficients b0 = β∞, b1 = 0, b2 = [3(βM − b0) − β′M (zM − 1)]/(zM − 1)2 and b3 = [β′M − 2b2(zM −
1)]/3(zM − 1)2 are determined by matching smoothly the β(z) polynomial expansion at the meeting
point zM = (RM −Re)/(RM +Re). Here βM ≡ βE(zM ) = β(zM ); β′M ≡ ∂βE(zM )/∂z = ∂β(zM )/∂z and
the boundary conditions are used at R →∞, i.e. βE(1) = β∞ and ∂βE(1)/∂z = 0.

The β∞ = 0.638 value was estimated according to β∞ = ln[2DeR
6
e/C6] [60], where the dispersion

coefficient C6 was taken from Ref. [79]. The matching point RM = 11 Å was fixed at near the right turning
point of the last observed vibrational level v′′ = 76. The equilibrium distance Re, polynomial coefficients
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Table 4.2. Dunham parameters (in cm−1) for the X1Σ+ state of the Na85Rb isotopomer, obtained from
a simultaneous fit of the total set of the experimental term values corresponding to both Na85Rb and
Na87Rb isotopomers. Five additional fitting parameters corresponding to origin uncertainties in the
present C → X LIF series are given in Table 4.1. The value of Y0,0 is calculated.

Y0,0 −0.0225 Y2,1 1.558186× 10−6

Y1,0 106.844973 Y3,1 −5.705886× 10−7

Y2,0 −0.3769493 Y4,1 3.065820× 10−8

Y3,0 −1.3253577× 10−3 Y5,1 −7.845547× 10−10

Y4,0 6.1584938× 10−5 Y6,1 9.305117× 10−12

Y5,0 −4.7069851× 10−6 Y7,1 −4.254388× 10−14

Y6,0 1.8256265× 10−7 Y †
0,2 −1.2107× 10−7

Y7,0 −4.4448825× 10−9 Y †
1,2 −9.50× 10−10

Y8,0 6.4873784× 10−11 Y2,2 1.78× 10−10

Y9,0 −5.2293387× 10−13 Y3,2 −1.92× 10−11

Y10,0 1.7866377× 10−15 Y4,2 5.3× 10−13

Y0,1 7.011329× 10−2 Y5,2 −4.6× 10−15

Y1,1 −2.823823× 10−4 Y †
0,3 2.08× 10−13

No. of data 354
Total no. of parameters 31
No. of fitting parameters 27
σ̄f 1.18

† Value and uncertainty are taken from Table III of Ref. [69].

βm (m ∈ [0, 9]), as well as the origins of the present five LIF series were considered as adjustable fitting
parameters during the weighted non-linear LS fit. The required initial set of the Re and βm values was
estimated by a transformation of the present RKR potential to its MLJ counterpart. The De = 5030.75
cm−1 value [73] was fixed during the fit as considering dissociation energy as a free parameter in the MLJ
approach has often been found to noticeably underestimate De value [62]. The resulting MLJ potential
given in Table 4.3 reproduces low-J ′′ term values from Refs. [72, 69] with r.m.s.= 0.004 cm−1 while the
present experimental term values with r.m.s.= 0.1 cm−1.
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Table 4.3. MLJ potential (2.51) parameters for the X1Σ+ state of NaRb obtained from a direct fit to the
experimental term values corresponding to both 23Na85Rb and 23 Na87Rb isotopomers. The numbers in
parentheses are equal to two standard deviations. Five additional fitting parameters corresponding to
the origin uncertainties in the present C → X LIF series are given in Table 4.1.

De (cm−1) 5030.75a (±0.10)a

Re (Å) 3.64421 (±1.1× 10−3)
β0 -6.312091 (±4.4× 10−4)
β1 9.665262 (±7.1× 10−4)
β2 12.70902 (±1.2× 10−3)
β3 65.58015 (±2.3× 10−3)
β4 -15.30441 (±4.3× 10−3)
β5 -643.6652 (±3.1× 10−2)
β6 2488.876 (±0.30)
β7 -10772.84 (±0.78)
β8 22720.46 (±0.74)
β9 -16240.38 (±0.46)
RM (Å) 11.0
b∞ 0.638804
b2 -0.986641
b3 -1.525996
No. of data 354
Total No. of parameters 21
No. of fitting parameters 16
σ̄f 1.27

a Value and uncertainty are borrowed from Ref. [73].
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4.2.6 Results and conclusions

1. LIF spectra to the NaRb X1Σ+ ground state up to v′′ = 76 were recorded for the first time using
C1Σ+ → X1Σ+ transitions. The obtained data set consists of 300 transitions in Na85Rb and Na87Rb
to ground state levels in the range v′′ = 24− 76, J ′′ = 12− 64, with typical accuracy of 0.1 cm−1.
The last observed level is (v′′ = 76, J ′′ = 27).

2. Transition frequencies were used for a direct fit of a MLJ potential energy curve. The fitted potential
describes the present experimental data with r.m.s.= 0.1 cm−1. Experimental PEC covers 99.85%
of the potential well depth. Term energies were also represented by the Dunham expansion and
RKR potential.

3. MLJ construction allowed us to match gently the previous highly accurate experimental term values
available for the bottom of the potential with its long-range behavior through the intermediate v′′

region completely covered by the present measurements. In spite of the moderate accuracy of the
current measurements (0.1 cm−1) the derived MLJ potential significantly improves the description
of the NaRb X1Σ+ ground state in the v′′ & 35 region.

4. Highly accurate experimental term values for the extended range of rotational levels would be
desirable for further improvement of the ground state potential.

5. C1Σ+ state has been observed for the first time. Rotational and isotopomer assignment of five
levels has been made.
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4.3 NaRb X1Σ+ state: Experiments at the University of Han-
nover [dis2]

4.3.1 Experiment

In the experiments in Hannover the NaRb molecules were studied with the same LIF method, but two
important changes compared to the experiments performed in Riga have been introduced: producing of
molecules in a heat pipe oven and fluorescence analysis with a Fourier-transform spectrometer. Another
great advantage of the laboratory in Hannover is a variety of available laser sources, see Section 3.2.

The heat-pipe oven was operated at temperatures between 560 K and 600 K and typically with 2 mbar
of Ar as buffer gas. At these conditions apart from the atomic vapors all three types of molecules were
formed: Na2, Rb2 and NaRb. This mixture was illuminated by three different laser sources: a single
mode, frequency doubled Nd:YAG laser, Ar+ ion laser, and Rhodamine 6G dye laser. Setting the working
temperatures as low as possible we reduced the density of the Na2 molecules reaching a relatively intense
NaRb spectra almost free of Na2 emission. As follows from Ref. [87], Rb2 fluorescence can be observed
when using for excitation Ar+ lines with wavelength smaller than 496.5 nm. We clearly observed Rb2

progressions in the IR region (C1Πu → 21Σ+
g ), and also noticed some weak lines in the visible range,

which could be attributed to Rb2 based on their spacings.
The Ar+ ion laser was operated both in a single-mode and multi-mode regimes. The 514.5 nm,

501.7 nm, 496.5 nm, 488.0 nm, and 476.5 nm lines induced fluorescence mainly due to the D1Π → X1Σ+

transitions in NaRb. The Na2 B1Πu → X1Σ+
g band was also observed, especially exciting with the

bluer Ar+ laser lines. Along with the D ← X system, the 514.5 nm line excites also transitions in the
C1Σ+ ← X1Σ+ system of NaRb, as was established in our experiments in Riga [dis1] (see Section 4.2).
Ar+ laser line 501.7 nm also excites the C state, but the resulting fluorescence is very weak. Only one
progression was identified. Altogether with the Ar+ laser lines 93 D1Π → X1Σ+ and 12 C1Σ+ → X1Σ+

progressions were identified.
We used the following method in order to bring the frequency of the single-mode Ar+ laser exactly in

resonance with desired transitions. As a first step we recorded the LIF spectrum for a given frequency
simultaneously with the Fourier spectrometer and a GCA/McPherson Instruments scanning monochro-
mator (1 m focal length). The high resolution Fourier spectrum helped us to assign unambiguously the
record of the monochromator. Then we set the monochromator on a strong and pronounced line of the
progression of interest and tuned the Ar+ laser frequency until the maximum signal on the monochroma-
tor was achieved. The frequency stability of the laser with a temperature stabilized intra-cavity etalon
was sufficient in order to perform 10–20 scans with the Fourier spectrometer.

The Nd:YAG laser excited the C1Σ+ ← X1Σ+ and D1Π ← X1Σ+ systems of NaRb (see Fig. 4.4). The
frequency was varied between 18787.25 cm−1 and 18788.44 cm−1 and spectra were recorded at frequencies
which excited strong fluorescence. 38 D1Π → X1Σ+ and 17 C1Σ+ → X1Σ+ progressions were assigned.

The dye laser (Rhodamine 6G dye) excited the B1Π ← X1Σ+ transitions and also weak transitions
in the C1Σ+ ← X1Σ+ system and was used for two reasons. The first was to enrich the information on
the ground-state levels with intermediate vibrational quantum numbers because of the gap between the
levels from the D ← X system (mainly with low v′′) and those from the C1Σ+ ← X1Σ+ system (mainly
with high v′′). Second, we wanted to excite levels of the B state with significant triplet admixture due
to perturbations from the neighboring c3Σ+ and b3Π states [69, 70]. Indeed, scanning the frequency of
the dye laser from 16729 cm−1 to 16965 cm−1 we encountered a large number of excitations where a
second fluorescence band around 12000 cm−1 appeared along with the B ← X system (see Fig. 4.5). The
analysis of this band confirmed that we have observed transitions to the a3Σ+ lowest triplet state (see
Section 4.4)

4.3.2 Assignment of LIF progressions

The assignment of the recorded spectra was simplified by the MLJ potential (see Table 4.3) obtained from
the experiments performed in Riga. First, spectra induced by the Ar+ laser were assigned, because they
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Laser

Figure 4.4. The D1Π → X1Σ+ and C1Σ+ → X1Σ+ bands of NaRb excited by a single mode Nd:YAG
laser (18787.985 cm−1).

10000 10500 11000 11500 12000 12500 13000 13500 14000 14500

[B1Π, c3Σ+, b3Π] - a3Σ+ system
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Figure 4.5. The B1Π → X1Σ+ and [B1Π, b3Π, c3Σ+] → a3Σ+ bands of NaRb excited by a single mode
Rhodamine 6G laser at frequency 16927.97 cm−1. In the zoom box the continuum due to the bound-free
emission to the repulsive wall of the a3Σ+ state is seen.
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were partly known from the low-resolution studies [68, 65, 4, dis1]. Identification of 5 C → X progressions
(see Table 4.1) from previous studies was clearly confirmed by high-resolution measurements. The longest
observed progression ends at v′′ = 76, see Fig. 4.6. Identification procedure was much faster that in the
case of monochromator data due to high accuracy of the FTS data. High accuracy allows not to construct
the Birge-Sponer plots1 for the whole progression, but to use only several vibrational levels of the series
for identification.

The assignment procedure was realized with the help of the programs (Ident.exe, Find3.exe) made
by Dr. A. Pashov. As an input data the Ident program gets wavenumbers of the successive P , R or
Q lines and the laser frequency. It calculates vibrational and rotational differences between observed
lines. Then it compares these differences with the corresponding differences between the eigenenergies,
calculated by solving SE or by Dunham expansion. The best 10 combinations of quantum numbers are
given in the output for each isotopomer. Among them the best guess is made and the term energy of
the upper level is also calculated from the frequency of the first listed transition and the eigenenergy of
the corresponding level of the lower state. The exciting frequency value is searched in the vicinity of the
given laser frequency and is also given for each assignment hypothesis. With different hypotheses one can
calculate the LIF progression (Find3 ) and compare the calculated frequencies with the observations. In
such a way assignment of LIF progressions becomes much faster, of course with two prerequisites: high
accuracy data and sufficiently good initial potential or Dunham constants.

After we identified the strongest progressions, which were already observed in previous studies [68, 65,
4, dis1], a new spline pointwise PEC was fitted. This preliminary potential was further improved filling
additionally collected experimental data; this sequential procedure allowed continuous checking of the
assignment, especially for high J ′′ and in cases of large gaps in v′′. The total data set (Fig. 4.7) consists
of more than 6150 transitions in Na85Rb and 2650 in Na87Rb.

14910 14915 14920 14925 14930 14935 14940 14945

C1Σ+(39,26)    X1Σ+(4,25)
Na85Rb

v"=  76        75              74                    73                             72

Wavenumber, cm-1

Figure 4.6. The vibrational progression up to v′′ = 76 in Na85Rb excited by a single-mode Ar+ laser line
514.5 nm.

In order to exclude any fitting parameters depending on the details of the excited states, we fitted the
ground-state potential directly to the observed differences between ground-state levels [59]. Due to the

1Plot of vibrational spacings versus vibrational quantum number.
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Figure 4.7. The range of vibrational and rotational quantum numbers of the observed ground state energy
levels in Na85Rb and Na87Rb.

large number of observed transitions, we restricted the possible combinations of line frequencies within
a fluorescence progression only to pairs of one P and one R line. That is, we calculated only differences
between each P and all R lines of a given progression. In our case of 8800 transitions we selected about
43300 differences for representing the different cases of vibrational intervals.

The uncertainties of the differences were estimated taking into account the instrumental accuracy
and resolution, and the signal-to-noise ratio (SNR) for both transitions forming the difference. The
uncertainty of strong lines was set to 0.003 cm−1 increasing to 0.007 cm−1 for weaker ones with SNR < 2.
Differences which were measured several times were averaged with weighting factors determined from their
uncertainties.

4.3.3 Construction of potential energy curve

The ground singlet states of both isotopomers of NaRb are described in the adiabatic approximation with
a single potential-energy curve. The potential was constructed as a set of points {Ri, U(Ri)} connected
with cubic spline function [48] (see Section 2.10.1). In order to ensure proper boundary conditions
for solving the Schrödinger equation for high vibrational energy levels, potential energy curve shape at
distances up to R ≈ 20 Å has to be accounted for. Therefore for R > Rout we adopted the usual dispersion
form

U(R) = De − C6

R6
− C8

R8
− C10

R10
(4.2)

with coefficients C6, C8 taken from Refs. [80, 81]. The connecting point Rout and the parameters De

and C10 were varied in order to ensure a smooth connection with the pointwise potential as follows.
Initially, the PEC was constructed in a pointwise form up to 16 Å. After each fitting iteration De and
C10 were adjusted to fit the shape of the pointwise potential between 13.0 Å and 16.0 Å to the analytic
formula. The crossing point of the pointwise and the long-range curves was taken as Rout. Since the
experimental data are almost insensitive to details of the potential shape in this region, we found this
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procedure sufficient and did not fit the long-range parameters directly to the experimental data. Once the
final form of the PEC was achieved, we found that it is possible to extend the validity of the long-range
expression down to < 11.8 Å.

The final set of potential parameters consists of 51 points. In order to calculate the value of the
potential for R < Rout a natural cubic spline [51] through all 51 points and for R > Rout the long-range
expression (4.2) should be used with parameters listed in Table 4.4. This final PEC gives a standard
deviation of σ = 0.0031 cm−1 and a normalized standard deviation of σ̄ = 0.70 showing the internal
consistency of the data set and the quality of the derived potential.

Table 4.4. Pointwise representation of the potential energy curve for the X1Σ+ state of NaRb.
R [Å] U [cm−1] R [Å] U [cm−1]
2.101916 21110.5539 5.167536 2866.7126
2.200000 16374.1819 5.328985 3174.1150
2.298084 12751.3674 5.490435 3450.2078
2.396168 9944.6386 5.651884 3694.1882
2.494252 7761.9582 5.813333 3906.7423
2.592337 5992.3235 6.065085 4179.8842
2.690421 4637.9707 6.253898 4343.3002
2.788505 3543.2165 6.442712 4476.4609
2.886589 2638.9307 6.631525 4584.0755
2.984673 1900.4037 6.820339 4670.5331
3.082757 1308.0797 7.009152 4739.7196
3.180841 845.5522 7.197966 4794.9580
3.278926 498.1298 7.386780 4839.0226
3.377010 252.2899 7.556326 4870.9517
3.475094 95.41660 7.783673 4904.8112
3.573178 15.73046 8.098462 4939.0358
3.671262 2.3375 8.384103 4961.0335
3.792152 62.2402 8.669744 4977.0314
3.933165 217.7034 9.014483 4990.8655
4.074177 443.0825 9.398621 5001.4491
4.215190 718.3282 9.722105 5007.8576
4.360290 1035.8028 10.201818 5014.3657
4.521739 1411.4474 11.214546 5022.0531
4.683188 1794.2206 12.227273 5025.7686
4.844638 2170.6796 13.240000 5027.9612
5.006087 2530.6262
De = 5030.8480 cm−1

Rout = 12.090520 Å C8 = 3.590 · 108 cm−1Å8

C6 = 1.293 · 107 cm−1Å6 C10 = 3.539 · 1010 cm−1Å10

In order to find the region where the PEC is unambiguously characterized by the experimental data we
analyzed the uncertainty of the fitting parameters as described in Ref. [54, 59]. In Fig. 4.8 the uncertainties
of the fitted potential for intermediate internuclear distances are presented for three different values of
the singularity parameter ζ (see Section 2.10.1). Although the outer classical turning point of the last
observed energy level (v′′ = 76, J ′′ = 27) is 12.4 Å, we see that the shape of the potential energy curve
is unambiguously fixed (within the experimental uncertainty) approximately only between 3.0 Å and
9.8 Å since the uncertainties there almost do not depend on ζ. Therefore, although the fitted potential
energy curve describes all the experimental data up to v′′ = 76, there is no rigorous way to estimate
the uncertainty of its shape beyond 9.8 Å (see also [59]). The result of Fig. 4.8 might indicate that the
correlation between the left (R < 3 Å) and right (R > 9.8 Å) branch of the potential becomes significant.
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In this respect the reported potential in Table 4.4 for these regions is only one possibility which describes
our observations within the error limits.
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Figure 4.8. The derived standard deviation (in logarithmic scale) of the points of the pointwise potential
curve of the NaRb X1Σ+ state for three different values of the singularity parameter ζ.

From the PEC we derive some parameters which will be useful when applying the potential for other
calculations and spectroscopic studies. Their values are not rounded in order to keep consistency with
the data from Table 4.4:

1. equilibrium distance of the potential, Re = 3.643415 Å;

2. position of the level with v′′ = 0 and J ′′ = 0, E00 = 53.3117 cm−1 with respect to potential
minimum;

3. the dissociation energy of the ground state, calculated with respect to E00, DX
0 = 4977.5363 cm−1.

In Fig. 4.9 the MLJ curve and the hybrid potential [73] are compared with the pointwise (PW)
potential of this study. The reason for the difference between the PW potential and the MLJ potential
around Re is probably that for the construction of the latter potential the rotational quantum numbers
for levels with v′′ < 30 were limited only to the values of J ′′ = 10, 12. That’s why rotational constant
Bv of MLJ potential was inevitably determined with large uncertainty. Note that Bv determination
error corresponds to shift of the whole potential along the internuclear axis, which is clearly indicated in
Fig. 4.9.

The hybrid potential from Ref. [73] was constructed using the whole range of available rotational
quantum numbers from the literature [69, 72], and therefore the agreement with the present study around
Re is much better. The deviations between the PW and the hybrid potential reaching 20 cm−1 for
intermediate internuclear distances are caused by the extrapolation between the theoretical long-range
part of the potential and the experimental short-range part. In the same region the experimentally
determined shape of the MLJ potential is in a much better agreement with the present study.

Since the primary data from Ref. [69] were not available to us, we were able to check our potential
only against the data published in Ref. [72]. Forming differences between transition frequencies exactly
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Figure 4.9. Differences between the pointwise representation of the NaRb ground-state potential derived
in this study (PW) and previous potential energy curves from Ref. [73] (hybrid), Table 4.3(MLJ). The
energy at the equilibrium point Re is set to zero for all potentials and used as a reference point.

as for our LIF data, we found an agreement with the differences predicted by the present PEC from Table
4.4 with a standard deviation of 0.0026 cm−1, well within the expected experimental error of 100 MHz.
Only two transitions (v′ = 12, J ′ = 11)− (v′′ = 17, J ′′ = 10) and (v′ = 12, J ′ = 11)− (v′′ = 19, J ′′ = 10)
were excluded from this comparison since differences with them showed systematically large deviations
reaching 0.01 cm−1.

The classical turning point of the last observed energy level (v′′ = 76, J ′′ = 27) is around 12.4 Å.
Although this point lies beyond the Le Roy radius for the NaRb 32S+52S asymptote (RLR = 11.2 Å), the
analysis of the PEC uncertainties indicates that with the present body of experimental data it is unsafe
to determine C6 and other dispersion coefficients. For this reason the experimental PEC was smoothly
connected to a long-range potential formed by dispersion terms taken from the literature [80, 81]. For
better description of the near asymptotic region of the PEC transition frequencies to weakly bound energy
levels are needed and a combined analysis of the X1Σ+ and a3Σ+ states at long internuclear distances
should be made (see Section 4.4.5).

4.3.4 Dunham molecular constants

We fitted a Dunham expansion to the observed X1Σ+ state levels using the program Zweiat [88]. In the
Table 4.5 the set of Dunham coefficients for Na85Rb is listed. It describes the whole set of the measured
differences for both isotopomers with a standard deviation of 0.003 cm−1 and a normalized standard
deviation of 0.84. For calculating the eigenvalues for Na87Rb the usual scaling rules were used. The
distribution of the indexes of the Dunham coefficients indicates that for description of such a large set of
vibrational and rotational quantum numbers the parameters of the Dunham expansion lose their original
meaning of “spectroscopic constants”. The extremely small values of some coefficients ∼ 10−40 cm−1

indicate that they should be used with caution. Also, the extrapolation properties of such a set of Dunham
coefficients are doubtful. Therefore, we prefer to give the full description of the experimental data by
a potential-energy curve, which is obviously a much better physical model, and to present Dunham
coefficients only for convenience since there are still applications where their use is easier and faster.
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Table 4.5. Dunham coefficients Yik for Na85Rb, in cm−1, derived from the experimental data with v′′ ≤ 76
and J ′′ ≤ 200.

i k Yik i k Yik

1 0 106.8544964 0 2 -1.20357 ×10−7

2 0 -0.37984464 1 2 -7.98199 ×10−10

3 0 -7.703864 ×10−4 2 2 -4.21837 ×10−12

5 0 -5.390011 ×10−7 7 2 -1.2888117 ×10−17

7 0 6.5551619 ×10−10 8 2 1.760426295 ×10−18

9 0 -1.9725192 ×10−12 9 2 -1.17937534 ×10−19

10 0 9.9663375 ×10−14 10 2 4.906556 ×10−21

11 0 -2.5123 ×10−15 11 2 -1.3413739 ×10−22

12 0 3.7418 ×10−17 12 2 2.3980927 ×10−24

13 0 -3.33869 ×10−19 13 2 -2.684354 ×10−26

14 0 1.652 ×10−21 14 2 1.70 ×10−28

15 0 -3.48 ×10−24 15 2 -4.6349 ×10−31

0 1 7.019021 ×10−2 0 3 1.4803 ×10−13

1 1 -2.943389 ×10−4 1 3 1.9481 ×10−15

2 1 -1.699605 ×10−6 3 3 -9.3543 ×10−18

4 1 -1.474183 ×10−9 8 3 7.87129 ×10−24

6 1 5.732233 ×10−12 9 3 -6.789833 ×10−25

7 1 -3.68622 ×10−13 10 3 2.13759 ×10−26

8 1 1.031766 ×10−14 11 3 -2.61852 ×10−28

9 1 -1.2551 ×10−16 13 3 1.974 ×10−32

11 1 1.22142 ×10−20 15 3 -1.0266 ×10−36

13 1 -1.6097 ×10−24 1 4 -1.953 ×10−20

14 1 9.446 ×10−27 2 4 -1.906 ×10−21

5 4 1.11596 ×10−24

6 4 -7.344 ×10−26

8 4 7.4791 ×10−29

10 4 -6.261 ×10−32

11 4 8.982 ×10−34

14 4 -6.3065 ×10−40

7 5 -1.3005 ×10−33
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4.3.5 Results and conclusions

1. High-resolution LIF spectra to the NaRb X1Σ+ ground state were obtained for the first time using
the FTS method. The obtained data set consists of more than 6150 transitions in Na85Rb and
2650 in Na87Rb to the ground state levels in the range J ′′ = 1 − 200, v′′ = 0 − 76, with typical
uncertainty of 0.003 cm−1.

2. Transition frequencies were used for a direct fit of a spline-pointwise potential energy curve. The
fitted potential describes more than 43300 differences between 4090 energy levels of both isotopomers
with a standard deviation σ = 0.0031 cm−1 and a normalized standard deviation of σ̄ = 0.70.

3. Experimental PEC covers 99.85% of the potential well depth. The classical turning point of the
last observed energy level (v′′ = 76, J ′′ = 27) is around 12.4 Å and this level is about 4.5 cm−1

below the asymptote.

4. Term energies were also represented by the Dunham expansion. Obtained set of constants repro-
duces the experimental term energies with σ = 0.003 cm−1 and σ̄ = 0.84.
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4.4 Combined analysis of the NaRb a3Σ+ and X1Σ+ states [dis3]

The experimental data on the lowest triplet state a3Σ+ of NaRb until now were scarce [72] or obtained
at low resolution [69] (see Section 4.1). The goal of the present experiments was twofold: extending
experimental information about the triplet a3Σ+ state and collecting data close to the NaRb ground state
asymptote, see Fig. 4.1. This would allow us to derive more reliable X1Σ+ and a3Σ+ state potentials
at large internuclear distances. Constructing the appropriate Hamiltonian for the problem, it should be
taken into account that both states, a3Σ+ and X1Σ+, couple by hyperfine interaction, which is for the
most weakly bound states of the same order of magnitude as the binding energy itself. Thus close to the
asymptote these states loose their triplet or singlet character and coupled channels treatment should be
applied (see e.g. [89, 90, 63, 91]).

4.4.1 Observations and assignment of the triplet spectra

A well known technique for reaching the triplet manifold from singlet states is through singlet and triplet
molecular states mixed by perturbations (e.g. the spin-orbit coupling). Such perturbations between
the B1Π, b3Π and c3Σ+ states in NaRb were reported by Wang et al. [69, 70]. Therefore, we used a
Rhodamine 6G single mode dye laser and excited transitions to levels of the B1Π, b3Π and c3Σ+ complex,
see Fig. 4.1. In Fig. 4.5 we present a typical fluorescence spectrum, where along with the B → X band
system, a weaker band appears around 12100 cm−1, which is due to decay to the a3Σ+ state, together
with a continuum spectrum from bound-free emission to the repulsive branch of the a3Σ+ state. This
type of progression to the triplet state originates from the mixture of relatively low vibrational levels of
the B1Π state with levels of the triplet b3Π and c3Σ+ states.

The dispersed fluorescence spectra of the transitions to discrete levels of the a3Σ+ state were found
to be different depending on whether the excitation is a Q type or P , R type: after Q excitation we
observed mainly triplet progressions, and after P , R excitation doublet progressions were observed. Let’s
describe the origin of this structure.

In the 1Π ← 1Σ+ excitation only f level of 1Π(v, J) can be excited in Q transition and e level of
1Π(v, J) can be excited in the P or R transition. The fluorescence to the triplet state a3Σ+ can be
allowed through mixing of a triplet state to the B1Π state, induced mainly by the spin-orbit interaction.
Looking at the ab initio calculations we can estimate that the possible perturbing state is either the c3Σ+

or the b3Π state. H. Katô and coworkers state in their paper [69] that when the perturber is the c3Σ+

state, doublet progressions are always observed, independently of an excitation type, whereas when the
b3Π state perturbs the B1Π state, doublets are observed at P or R excitation and triplets at Q excitation.

At the same time, analysis made by A. Stolyarov [92] showed that the B1Π state is mainly perturbed
by the c3Σ+ state, whereas influence of the b3Π state is much less. And appearance of triplet and doublet
progressions, nevertheless, can be explained with the c3Σ+ perturber model only as well (see Fig. 4.10).
Selection rules for perturbations are ∆J = 0, e ↔ e, f ↔ f (except for the hyperfine perturbations). If
the perturbing state is the c3Σ+ state, the B1Π(v, Je) level interacts with the c3Σ+ (v, N = J, J) which
results into fluorescence to N ′′ = J + 1 and J − 1 levels. The B1Π(v, Jf ) level can interact with the
c3Σ+ (v, N = J + 1, J) and (v, N = J − 1, J) levels. This leads to appearance of progressions with
transitions corresponding to N ′′ = J−2, J and J +2. If only one c3Σ+ state level is mixed with the B1Π
state f level, then we see doublets with N ′′ = J + 2, J or N ′′ = J − 2, J depending on the perturbed
c3Σ+ state level.

Assignment of the observed spectra was made using the a3Σ+ state hybrid potential from Ref. [73],
based on the experimental data by Katô group [69]. Assignment was also checked, where it was possible,
by finding the corresponding B1Π → X1Σ+ transition or checking laser resonance in B–X transition.
Distinguishing between different isotopomers was simplified by observing the HFS of the triplet lines
(see Section 4.4.3). The new vibrational numbering in the a3Σ+ state was established in this study (see
below). An example of transitions to the a3Σ+ state is shown in Fig. 4.11.
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Figure 4.10. Schematic illustration for allowed transitions of the fluorescence to the a3Σ+ state induced by
the spin-orbit interaction between the B1Π and c3Σ+ state levels following an excitation B1Π ← X1Σ+.
Here quantum number J is assumed to be even. If J is odd, the sign of parity (+ or –) should be
exchanged.
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Figure 4.11. Progression to the a3Σ+ state in Na85Rb excited with a single mode Rh6G laser at frequency
16925.89 cm−1. Corresponding singlet transition is B1Π(8, 15) ← X1Σ+ (0, 15).
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4.4.2 Transitions to near-dissociation levels

In order to observe transitions to weakly bound singlet and triplet ground state levels close to the atomic
asymptote from a common upper level we took advantage of the long-range changeover, namely that
close to the atomic asymptote the Hund’s case (a) and (b) electronic states develop to the Hund’s case (c)
coupling and finally to the Hund’s case (e) where the electronic angular momenta are uncoupled from the
molecular axis. That is, the c3Σ+ state at long internuclear distances becomes a mixed state with triplet
and singlet character giving rise to transitions to the ground a3Σ+ and X1Σ+ states. These transitions
between case (c) states are indicated by arrows in Fig. 4.12.
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Figure 4.12. Excitation schemes for studying the electronic states correlating to the Na(3S1/2) +
Rb(5S1/2) asymptote. For clarity the fluorescence bands are indicated only by the corresponding triplet
or singlet component of the B1Π− b3Π− c3Σ+ complex.

In our experiments we observed several spectra which we interpret as long-range changeover. In
Fig. 4.13 an example of the resolved fluorescence is shown when exciting a B1Π state v′B = 25 level
mixed with c3Σ+ state levels. Similarly to Fig. 4.5, bands to the X1Σ+ and a3Σ+ states are seen. In
the same figure the calculated Franck-Condon factors (FCF) for B1Π → X1Σ+ transitions are shown
as crosses. The FCFs were calculated applying a B1Π state potential based on the molecular constants
from Ref. [70] and new measurements with polarization labeling spectroscopy [93]. They give reasonable
agreement with the experimental intensities down to approximately 12700 cm−1, where the FCFs predict
the end of the B–X band. In reality this fluorescence progression is seen to be continuing down to 12500
cm−1, where it appears simultaneously with the corresponding transitions to the a3Σ+ state from the
common upper state level. These additional transitions to the X1Σ+ state arise due to the long-range
changeover of the c3Σ+ state to the Hund’s case (c).

A typical portion of the spectrum containing Q-type (∆J = 0) transitions with J ′ = 19 is shown
in Fig. 4.14 reaching va = 18 of the a3Σ+ state and vX = 78 of the X1Σ+ state. The assignment of
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Figure 4.13. A comparison between the calculated Franck-Condon factors (FCF) for the B–X transitions
(crosses) and the experimental intensities of the fluorescence progression excited by dye laser (Rh6G) at
17377.37 cm−1. The absorption of the molecular fluorescence by the atomic Rb D2 line is the reason
for low line intensities around 12800 cm−1 compared to prediction by FCF. The band seen below 12600
cm−1 is an overlap of singlet and triplet structure.
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Figure 4.14. Transitions to levels near the Na(3S1/2)+Rb(5S1/2) asymptote for J ′′ = N ′′ = 19 of Na85Rb
excited with Rh6G laser at frequency 17377.29 cm−1. The assignment of the triplet state levels is
according to the new vibrational numbering established in this study.
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the triplet state levels is according to the new vibrational numbering established in this study below.
Similar spectra were recorded for a wide range of J ′ quantum numbers (J ′ = 10− 23) including also P -
and R-type (∆J = ±1) transitions. In this way abundant information on the near asymptotic levels of
the a3Σ+ and X1Σ+ states was collected. These spectra are particularly interesting also because they
show the whole pattern of singlet and triplet levels for a given rotational quantum number close to the
asymptote, so it should be possible to establish the coupling between the the a3Σ+ and X1Σ+ state levels
through hyperfine interaction and to distinguish the exchange energy.

It is worth mentioning that in case of excitation above the (3S+5P1/2) asymptote no such progressions
were observed, probably due to pre-dissociation of the Ω = 1 (3S+5P3/2) levels due to coupling to the
continuum above the asymptote (3S+5P1/2).

The total data set for the a3Σ+ state consists of more than 900 transition frequencies to 490 energy
levels as shown in Fig. 4.15 for both isotopomers 23Na85Rb and 23Na87Rb. The experimental uncertainty
was estimated to be 0.003 cm−1 for lines recorded with high signal-to-noise ratio (SNR > 5). The data set
for the X1Σ+ state obtained previously, see [dis2], was correspondingly enriched by about 250 transitions
adding some 150 new rovibrational levels.
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Figure 4.15. The range of vibrational and rotational quantum numbers of the observed energy levels in
the a3Σ+ state of Na85Rb and Na87Rb.

4.4.3 Analysis of the hyperfine splitting of the a3Σ+ state levels

At the resolution used in the experiments, the hyperfine structure (HFS) of the triplet lines were partially
resolved (see Fig. 4.16). The hyperfine splitting of the a3Σ+ levels is caused by the Fermi contact
interaction, and the appropriate theory was described in detail by Kasahara et al. [72] for Na85Rb in low
vibrational levels of the a3Σ+ state (see also Section 2.7). The effective Hamiltonian for the electronic
spin S and the nuclear spin I defines the interaction parameters:

Hhfs = ARb · SRb · IRb + ANa · SNa · INa (4.3)

From the experimental spectra the ANa and A85
Rb constants were determined [72] which describe

the observed splitting within a Hund’s case (bβS) coupling scheme (see Figs. 2.2 and 4.17). Generally,
the molecular coupling parameters correspond to the atomic constants A. But for atoms forming a
diatomic molecule the dependence of these parameters on the bond length and thus on the vibrational and
rotational quantum numbers cannot be excluded (see Ref. [94]). Within the resolution of our experiment
we recorded partially resolved hyperfine structure of the a3Σ+ state levels and since our data covered a
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much broader range of a3Σ+ levels of both isotopomers than in Ref. [72], we checked the dependence of
ANa, A85

Rb and A87
Rb on the vibrational and rotational quantum numbers and determined the A87

Rb constant
for Na87Rb for the first time, see Fig. 4.18.
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Figure 4.16. Hyperfine splitting of the transitions to the a3Σ+ state in Na85Rb and Na87Rb.

Figure 4.17. Scheme of momenta coupling and formation of the HFS in Na85Rb.

In Fig. 4.16 examples of the observed hyperfine splitting of transitions to a3Σ+ state levels in Na85Rb
and Na87Rb are shown. Within the resolution of the present experiment these splittings are the same in
each isotopomer group for almost all observed rovibrational levels of the a3Σ+ state. The only feature,
where slight deviations from the pattern in Fig. 4.16 were observed, is for va = 16 in Na85Rb. These
deviations, however, as it was later justified by the analysis, are due to local perturbation by the vX = 76
level of the X1Σ+ state separated by only several tenths of a wavenumber. Therefore, extending the
range of observations from Ref. [72], we found that the hyperfine splitting of the a3Σ+ state for both
isotopomers is characterized by two constants which are very close to those of the corresponding free
atoms. A comparison for A85

Rb and A23
Na was done in Ref. [72]. Our value for A87

Rb = 0.113(1) cm−1 (see
Fig. 4.18) also agrees with the atomic parameter 0.11399 cm−1 [95].

The hyperfine-structure-free positions of the triplet state levels are shifted from the central component
of the hyperfine pattern (see Fig. 4.16) by 0.017 cm−1 for Na85Rb and by 0.062 cm−1 for Na87Rb. Using
these energy levels, potentials without HFS corrections are obtained below.

4.4.4 Single potential fit for the a3Σ+ state

At the first stage of the analysis we applied a single-potential approach for describing the experimental
observations of the a3Σ+ state. The levels corrected for hyperfine structure were used to construct a
potential curve for the a3Σ+ state in a manner similar to that used for the X1Σ+ state. For short and
intermediate internuclear distances the potential curve is represented by a set of points connected with
natural cubic spline functions [48]. In order to reduce any undesired oscillations of the curve close to
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Figure 4.18. HFS splitting in the a3Σ+ state of Na87Rb as dependent on the HFS constant A87
Rb. The

dotted vertical line shows the A87
Rb value, which corresponds to the observed HFS splitting.

the asymptote caused by too high flexibility of the spline representation we applied the regularization
technique [50]. Initially, the potential was adjusted to fit all constructed 1935 differences between the
observed line positions in both isotopomers. Once relatively good agreement between calculated and
measured differences was achieved, we excluded high vibrational levels from the fit, since we expected
possible shifts due to their interactions with the X1Σ+ state.

As a first approximate potential for the fit we adopted the curve from Ref. [73]. Unfortunately, all
our attempts to reach quantitative agreement with the experimental observations failed and we obtained
systematic deviations up to 0.05 cm−1. The same happened when trying to fit data only for one of
the isotopomers. After analysis of additional second-order spin-spin and spin-rotation interactions, we
concluded that their magnitude should be much smaller than our experimental uncertainty and, therefore,
they cannot explain the deviations. Then we decided to revise the vibrational numbering of the a3Σ+

state established for the first time in Ref. [69] and afterwards used in Ref. [73]. In fact, our observed
spectra do not show any vibrational level below the level named va = 0 in Ref. [69]. However, when
we shifted the vibrational numbering by one vibrational quantum, i.e. now the lowest observed levels
became va = 1, we achieved almost immediately a good fit for va < 15 in Na85Rb and the same potential
was able to describe the experimental observations in Na87Rb within their uncertainty without additional
adjustment. The high quality of the fit including low vibrational levels (va = 1) from both isotopomers
with a single potential curve is taken as a proof for the correctness of this new assignment. Additionally,
we tried also fits by shifting the vibrational numbering by two and three quanta which were not successful.

4.4.5 Analysis of the X1Σ+ and a3Σ+ states by coupled channels calculations

The final forms of the X1Σ+ and a3Σ+ state potentials were determined in a coupled channels analysis
which takes into account the hyperfine interaction between these states.

The absolute position of the a3Σ+ state in the energy scale with respect to the X1Σ+ state was adjusted
so that the spacings between eigenenergies of both potentials agree with the separation of spectral lines
decaying to the corresponding energy levels from a common upper state level (e.g., see Fig. 4.14). Here
the hyperfine splitting was added to the eigenenergies of the triplet state. This procedure was performed
for levels far from the asymptote to avoid possible shifts due to the hyperfine interaction between the X
and a states.

For large internuclear distances (typically larger than 11 Å) we adopted the standard long-range form
of molecular potentials:
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ULR(R) = D − C6

R6
− C8

R8
− C10

R10
± Eex (4.4)

where the exchange contribution is given by

Eex = AexRγ exp(−βR). (4.5)

Here D is the energy of the atomic asymptote with respect to the minimum of the X1Σ+ state. It
coincides with the dissociation energy of this state, DX

e . The exchange energy is repulsive for the triplet
state (plus sign in (4.4)) and attractive for the singlet state (minus sign). All parameters in Eqs. (4.4,4.5)
are the same for the X1Σ+ and a3Σ+ states.

As a first guess we used the long-range parameters derived for the X1Σ+ state [dis2] also for the
triplet a3Σ+ state. For the exchange energy we adopted the estimate of Ref. [82]. The connecting points
between the short and the long-range potentials were chosen such that a continuous and smooth transition
between the two representations for R below or above the connection point Ro is ensured.

Since the analysis of the molecular hyperfine structure has shown that the corresponding splitting is
independent of the vibrational and rotational structure and agrees with the atomic values, the interactions
that couple the X1Σ+−a3Σ+ system can be modeled by the atomic hyperfine splitting of the correspond-
ing atoms. The total Hamiltonian describing the interactions between ground state Na and Rb atoms is
similar to that given in Ref. [91] and is adapted for the case of different atomic species. It contains the
kinetic energy operator for the relative radial motion between two atoms, the Born-Oppenheimer poten-
tials for the X1Σ+ and a3Σ+ states, a hyperfine contact interaction for Na atom and Rb atom, and the
nuclear rotation. Weak magnetic spin-spin and second-order spin-orbit interactions can be neglected for
the purpose of this study. These interactions become important when the accuracy in the determination
of the position of weakly bound levels reaches a few megahertz (10−4 cm−1). Details on such calculations
have been discussed in Ref. [63] for the case of Na2. The coupled channels code used in the present
studies is based on Fourier Grid Hamiltonian method [96].

Preliminary coupled channels calculations with potential curves determined in single channel fits
showed that the shifts of the calculated energy levels with respect to the unperturbed ones, i.e. the
eigenvalues of the single potentials, exceed the experimental uncertainty only for vX ≥ 74 of the X1Σ+

state and va ≥ 14 of the a3Σ+ state. The strongest one is the coupling between the vX = 76 of the X1Σ+

state and va = 16 of the a3Σ+ state in agreement with our experimental observations on the hyperfine
structure. For these levels the coupling leads to shifts of the order of 0.02 cm−1, see Fig. 4.19. Generally
however, although shifted, the whole pattern of the hyperfine splitting is preserved so that the levels can
still be classified as singlet and triplet in the studied region. This is further confirmed by calculating the
expectation values of the magnitude of the total spin operator S for levels within the coupled system;
these differ by no more than few percent from 0 or 1 for the observed levels, with exception for levels
closer to the asymptote.

As a next step of analysis, the molecular potentials for the singlet and triplet ground states were
fitted by taking into account the coupling between them. The coupled channels calculations are quite time
consuming due to the large number of observed rotational quantum numbers, and it would be inefficient to
fit the potentials directly as a coupled system. The following iterative procedure was adopted instead: first
the shifts of the calculated levels of the coupled system with respect to the eigenenergies of single potentials
were determined as a first order correction, because the initial single-channel potentials were already a
good approximation. Therefore, the experimental data were corrected by the corresponding shifts and
molecular potentials were fitted to the corrected experimental data in a single channel fit. Thus a better
approximation of the potentials was obtained and the procedure was repeated until the experimental
data were described by the coupled channels calculations within the experimental uncertainties.

In the single channel fit only the dissociation energy, the dispersion coefficients and the exchange
energy parameter Aex were adjusted assuming the long-range expression (4.4) to be valid beyond Ro,
approximately 11 Å. These parameters were fitted simultaneously to the experimental data for the X1Σ+

and the a3Σ+ states. When a change of the long-range parameters led to discontinuity in the connecting
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Figure 4.19. Piece of spectrum excited with Rh6G laser at 17377.30 cm−1. Dashed lines denote the
eigenenergies according to the single channel triplet (va = 16) and singlet (vX = 76) calculations.

point Ro, the connecting point was shifted and/or separate fits of the pointwise representations of the
potentials were carried out.

In several iterations we obtained the potentials of X1Σ+ and a3Σ+ states, listed in Tables 4.6 and 4.7,
respectively. For convenience, quantities like Te (position of the potential minimum), Re (equilibrium
distance) and D0 (dissociation energy with respect to the first rovibrational level v′′ = 0, J ′′ = 0) are
also given. In order to assess the quality of the fitted potentials, in addition to the experimental data
sets sorted separately for transitions to the singlet and the triplet state, a new combined data set was
constructed. It contains all transitions to high vibrational levels of both states (vX ≥ 74 and va ≥ 14).
Differences between these selected transition frequencies were calculated not only between the transitions
to a given electronic state, as done before, but also differences between transitions to different states were
formed. This is possible since by a single excitation transitions to both the singlet and the triplet state
were observed. Extremely precious are progressions appearing by the so called long-range changeover,
since they contain information about high vibrational levels of both states and allow the separation
between the states near the asymptote to be precisely estimated. The combined data set contains 555
transition frequencies forming about 3700 differences. The potentials from Tables 4.6 and 4.7 reproduce
these differences with a standard deviation σ = 0.0025 cm−1 and a dimensionless standard deviation of
σ̄ = 0.63 and they reproduce the total experimental data for the triplet state with σ = 0.0035 cm−1 and
σ̄ = 0.59 and for the singlet state with σ = 0.0032 cm−1 and σ̄ = 0.73.

Figure 4.20 gives the magnitude of singlet-triplet coupling by the deviations of energy levels of the
X1Σ+ and the a3Σ+ states calculated with coupled channels code from the eigenvalues of the single chan-
nel potentials. The several points for each vibrational level correspond to different rotational quantum
numbers (7 < J ′′(N ′′) < 27). The top and bottom axis, va and vX , respectively, are scaled such that
the values va, vX of closest level approach form a vertical line. The larger deviations appear for higher
J ′′ (N ′′). Note that the deviations for singlet state levels are larger than for the corresponding triplet
state levels. Therefore, long-range analysis based only on singlet transitions would introduce larger sys-
tematic distortions in the fitted potential curve for large internuclear distances than analysis based only
on triplet transitions. This statement can be indirectly confirmed making single channel calculations
with the potentials from Tables 4.6 and 4.7 showing that the a3Σ+ state potential reproduces differences
between levels with va > 7 with a σ̄ = 0.70 (the coupled calculations give σ̄ = 0.62) while the X1Σ+ state
potential reproduces differences between levels with vX > 68 with a σ̄ = 2.18 (the coupled calculations
give σ̄ = 0.52). So within the present experimental uncertainty the triplet state can still be considered
as a single state, whereas a single channel treatment of the X1Σ+ state will lead to incorrect description
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Table 4.6. Pointwise representation of the potential energy curve for the X1Σ+ state of NaRb.

R [Å] U [cm−1] R [Å] U [cm−1]
2.100000 23623.67465 5.791989 3880.39592
2.200000 17634.41477 5.973808 4088.60966
2.300000 13279.18859 6.155626 4262.33458
2.400000 10069.56048 6.337444 4405.67319
2.500000 7667.49769 6.519263 4522.91885
2.600000 5874.22172 6.701081 4618.17079
2.700000 4521.74692 6.882899 4695.19866
2.800000 3427.90598 7.064718 4757.28897
2.900000 2528.63531 7.246536 4807.26121
3.000000 1798.65045 7.428355 4847.46365
3.131998 1060.60559 7.610173 4879.81088
3.263996 544.13656 7.791991 4905.89082
3.395993 215.36397 7.973810 4926.95998
3.527991 43.57832 8.155628 4944.02973
3.659989 0.83395 8.499301 4968.08811
3.791987 62.11989 8.699301 4978.43703
3.973805 276.44925 8.899301 4986.78123
4.155624 597.14349 9.192121 4996.27537
4.337442 984.16758 9.514223 5003.97364
4.519260 1405.59678 9.942941 5011.19667
4.701079 1836.47101 10.461689 5016.98016
4.882897 2257.79571 11.152144 5021.73265
5.064716 2655.74803 12.101429 5025.42308
5.246534 3020.92992 13.050715 5027.33721
5.428352 3347.84205 14.000000 5028.47884
5.610171 3634.22011
D = 5030.50235 cm−1

Ro = 11.2967 Å
C6 = 1.3237 · 107 cm−1Å6 Aex = 2.8609 · 104 cm−1Å−γ

C8 = 2.9889 · 108 cm−1Å8 γ = 5.0081
C10 = 1.5821 · 1010 cm−1Å10 β = 2.2085 Å−1

TX
e = 0 cm−1 RX

e = 3.6434 Å
DX

e = 5030.502(50) cm−1 DX
0 = 4977.187(50) cm−1
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Table 4.7. Pointwise representation of the potential energy curve for the a3Σ+ state of NaRb.

R [Å] U [cm−1] R [Å] U [cm−1]
2.944440 29489.89467 6.468399 4872.49275
3.155560 18461.93317 6.605337 4882.75826
3.366670 12363.70802 6.794944 4896.83178
3.577780 8991.52099 6.984550 4910.34530
3.788890 7126.77387 7.174157 4923.07187
4.000000 6095.47898 7.363764 4934.83385
4.198190 5552.35782 7.553371 4945.59408
4.396380 5237.10044 7.990520 4966.55716
4.594570 5062.99324 8.427668 4982.64596
4.792760 4957.08727 8.864817 4994.72299
4.990949 4890.76470 9.301966 5003.67683
5.189139 4852.15516 9.739114 5010.27403
5.387328 4832.98126 10.176263 5015.16200
5.585518 4827.17289 10.941010 5020.80312
5.783708 4830.40026 11.705758 5024.24404
5.920646 4836.15057 12.470505 5026.30776
6.057584 4843.78306 13.235253 5027.62932
6.194522 4852.68409 14.000000 5028.49121
6.331461 4862.36273
D = 5030.50235 cm−1

Ro = 11.3370 Å
C6 = 1.3237 · 107 cm−1Å6 Aex = 2.8609 · 104 cm−1Å−γ

C8 = 2.9889 · 108 cm−1Å8 γ = 5.0081
C10 = 1.5821 · 1010 cm−1Å10 β = 2.2085 Å−1

T a
e = 4827.14727 cm−1 Ra

e = 5.6003 Å
Da

e = 203.355(50) cm−1 Da
0 = 193.365(50) cm−1
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Figure 4.20. Deviation ∆E of the energy level positions for the a3Σ+ state (solid squares) and the X1Σ+

state (open triangles) calculated with coupled channels code from the eigenvalues of the single channel
potentials. The a3Σ+ state vibrational quantum numbers va are given on the top x-axis, whereas X1Σ+

state ones vX – on the bottom x-axis. Several points for each vibrational level correspond to different
rotational quantum numbers (J ′′ = N ′′ = 7− 27).

of the long-range potential.
The combined analysis on ground state and lowest triplet state potentials has led to a revision of

the dissociation energy of the X1Σ+ state derived in [dis2]. The difference between the minimum of the
X1Σ+ state and the Na(3S1/2)-Rb(5S1/2) atomic asymptote (with respect to the center of gravity of the
hyperfine structure) amounts to DX

e = 5030.502 cm−1 with an estimated uncertainty of ±0.05 cm−1.
This should be compared to the 5030.848 cm−1 from Ref. [dis2] and the 5030.75 cm−1 from Ref. [73] in
order to highlight the importance of the coupled channel analysis. The value of the dissociation energy
with respect to the first rovibrational level amounts to DX

0 = 4977.187 cm−1. The corresponding values
for the triplet ground state are Da

e = 203.355 cm−1 and Da
0 = 193.365 cm−1. The Da

e differs significantly
from the most recent value from Ref. [73] not only due to the improved experimental data set, but mainly
due to the new vibrational assignment established in this study.

4.4.6 Discussion

The estimation of the uncertainties of the long-range parameters is a problematic question. In the work
on Ca2 X1Σ+ state [97] the parameters for the long-range part of interatomic potential were determined
experimentally by fitting them to abundant and accurate experimental data, and confidential intervals
for the fitting parameters were obtained from the Monte Carlo simulations. In contrary to the situation
on the Ca2 ground state asymptote, the structure of the alkali metal Na and Rb atomic pair is much
more difficult to model due to the presence of nonzero electronic and nuclear spins. Therefore, the direct
estimation of the parameter uncertainties using Monte Carlo simulations would be very time-consuming.

Moreover, the experimental data in this study cover a narrower part of the long-range potential
than in the Ca2 case. On the long-range side the outermost classical turning point in NaRb at 15.6 Å
(v′′X = 78, J ′′ = 20) has to be compared with 20 Å in the case of Ca2. Due to difference in the electronic
structure of the Rb atom (open valence shell) and the Ca atom (closed subshell) the pure long-range
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Figure 4.21. Comparison of present empirical and ab initio [34] potential energy curves.

potential expression (4.4) cannot be extended to as small internuclear distances as for Ca2. The narrower
range not only increases the uncertainty of the fitted parameters, but also increases the ambiguity in
connecting the long-range potential to the pointwise representation (this problem was discussed already
in Ref. [97]). Additionally, a new degree of freedom was added in the fit—the term Aex for the exchange
energy expression (4.5), the correlation of which with C6 term was discussed in Ref. [97].

On the other hand, a single set of long-range parameters was fitted to data belonging to two different
electronic states which gives desired constraint for the variation of the long-range parameters. For exam-
ple, in the successive iterations the D value varied only between 5030.49 cm−1 and 5030.56 cm−1, while
the value of C6 between 1.300 · 107 cm−1 Å6 and 1.354 · 107 cm−1 Å6. Although these intervals cannot
be treated as some confidential limits, they still give some indication about the expected uncertainty of
the fitted parameters.

The difficulty to provide the fitted long-range parameters with a rigorous estimation of their uncer-
tainty is not only due to limited size of the present experimental data set, but also because of one of the
main requirements, i.e. the smooth connection between the long-range and the pointwise representation
of the potentials, was not built into the fit. The problem here is not just technical, but also conceptual,
since in this case the uncertainty of the short-range potential energy curve should be estimated, which
is delicate in the regions with a small amount of experimental data, because the results become model
dependent (see, e.g., [55, 59, 50]).

It is worth mentioning that in the present analysis a direct experimental estimation of the exchange
energy parameter Aex was done. Since the other parameters (i.e., β and γ) were fixed to their estimated
values from Ref. [82] and were not fitted, we would avoid commenting directly on the physical meaning
of Aex alone. We would rather state that all three parameters together give a good representation of the
exchange energy contribution, derived from a direct fit to the experimental data.

Without being able to associate reliable uncertainty limits to the experimental dispersion coefficients
and taking into account the strong correlation between them, we cannot compare strictly our values
with the recent ab initio predictions [80, 81], although they are close to each other. In order to check
the consistency of the theoretical calculations we tried to construct potential curves using values for
C6 and C8 from [80, 81] and fitting only C10 and Aex to the experimental data, corrected as discussed
in the previous section using the potentials from Tables 4.6 and 4.7. The new potentials reproduce the
experimental observations with similar quality which confirms the reliability of the theoretical coefficients.
The analytic representations of these curves (2.55) are given in Table III of the EPAPS in [dis3].

Empirical X1Σ+ and a3Σ+ state PECs are compared to the ab initio ones in Fig. 4.21.
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The obtained PECs of the X1Σ+ and a3Σ+ states were applied for calculating of scattering lengthes
and prediction of Feschbach resonances for Na-85Rb and Na-87Rb different quantum states (see [dis3]),
which is important for cold collision experiments with Na-Rb pairs. Results were compared to the results
of other groups [82, 83, 84, 85].

4.4.7 Results and conclusions

1. New high-resolution LIF data were collected for the a3Σ+ state of NaRb using the FTS method.
More than 900 transition frequencies to 490 energy levels were identified. The range of observed
vibrational and rotational quantum numbers is v′′ = 1 − 18 and N ′′ = 1 − 80. The typical
experimental uncertainty is 0.003 cm−1.

2. The new vibrational numbering in the a3Σ+ state was established from the isotopic effect in this
study: vibrational numbering was changed by +1, compared to the one used in Ref. [69].

3. Data on the high-lying levels of the a3Σ+ and X1Σ+ state were obtained simultaneously using the
long-range changeover in the c3Σ+ state. The data set for the X1Σ+ state obtained previously (see
[dis2]) was correspondingly enriched by about 250 transitions adding some 150 new rovibrational
levels. Turning point of the last observed level (v′′X = 78, J ′′ = 20) is 15.6 Å being approximately
1 cm−1 below the asymptote.

4. Both X1Σ+ and a3Σ+ states potentials were fitted simultaneously to spline-pointwise potential
energy curves smoothly connected to the long-range potential, taking into account the hyperfine
mixing of these states close to the asymptote. Analysis revealed that the shifts of the calculated
energy levels with respect to the unperturbed ones, i.e. the eigenvalues of the single potentials,
exceed the experimental uncertainty for vX ≥ 74 of the X1Σ+ state and va ≥ 14 of the a3Σ+ state.
New potentials reproduce experimental frequency differences for the a3Σ+ state with σ = 0.0035
cm−1 and σ̄ = 0.59 and for the X1Σ+ state with σ = 0.0032 cm−1 and σ̄ = 0.73.

5. Long-range coefficients C6, C8, C10, as well as exchange energy parameter Aex were fitted. Disper-
sion potential is in good agreement with the ab initio one.

6. New, more precise values of dissociation energies are obtained for both X1Σ+ and a3Σ+ states:
DX

e = 5030.502± 0.05 cm−1 and Da
e = 203.355± 0.05 cm−1.

7. For not confusing the reader with three different X1Σ+ state potentials, it should be stressed what
are their differences. The MLJ potential provides reliable predictions, but of limited accuracy (ca.
0.1 cm−1) and in a limited quantum number range, defined by the experimental data. X1Σ+ state
potential from [dis2] allows for highly accurate predictions up to v′′=73 and in this range is of the
same quality as the potential from [dis3]. For v′′ ≥74 hyperfine mixing of the a and X state should
be taken into account, therefore potential from [dis3] is recommended.

8. New potentials allowed reliable predictions of scattering lengthes and Feshbach resonances, neces-
sary for cold collision experiments with Na-Rb pairs.
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4.5 NaRb C1Σ+ state [dis4]

We present results of the first detailed experimental study of the C1Σ+ state of the NaRb molecule.
During the study of the ground state of NaRb, done in Riga [dis1] and particularly in Hannover by
Fourier-transform spectroscopy of laser-induced fluorescence [dis2], it turned out that a lot of information
about the excited C1Σ+ and D1Π states was available from the recorded spectra. Here the C1Σ+ state
analysis based on these experimental data and newly derived data by colleagues from the Institute of
Physics and Institute of Experimental Physics in Warsaw is presented.

4.5.1 Observations and term value analysis

The experimental details have been described in Section 3.2. Among the lasers used for the X1Σ+ state
studies Nd:YAG and Ar+ laser lines 514.5 and 501.7 nm excited not only the D1Π−X1Σ+ transitions but
also the C1Σ+−X1Σ+ transitions. A single mode, frequency doubled Nd:YAG laser with frequency varied
between 18787.25 cm−1 and 18788.44 cm−1 gives rise to 18 C1Σ+ → X1Σ+ progressions (see spectrum
example in Fig. 4.4). The range of v′ covered in the C1Σ+ state by the Nd:YAG laser is v′ = 21 − 30.
The Ar+ ion laser line at 514.5 nm also efficiently excites transitions in the C1Σ+ ← X1Σ+ system. Here
a range of v′ = 32 − 44 in the C1Σ+ state was obtained. Overall, 12 progressions were assigned. The
Ar+ ion laser line 501.7 nm also excited C1Σ+ ← X1Σ+ transitions in NaRb, however, the resulting
fluorescence was very weak and we were only able to observe it at higher temperatures (620 K). The only
identified progression originates from v′ = 46. Finally, a term value for v′ = 5 was obtained from a weak
C1Σ+ → X1Σ+ LIF spectrum excited by a Rhodamine 6G dye laser.

Due to the presence of argon buffer gas and very high signal-to-noise ratio, several strong fluorescence
lines were accompanied by a large number of collisionally-induced rotational satellites from levels (v′, J ′±
∆J) with ∆J up to 12 (see Fig. 4.22). The analysis of these satellites has increased the Fourier data set
for the C1Σ+ state significantly. It also allowed us to establish a relative numbering of the rovibrational
levels of the C1Σ+ state. Overall, from the analysis of the FTS spectra we obtained 138 term values of
Na85Rb and 66 of Na87Rb C1Σ+ state with undoubtedly assigned rotational quantum numbers by using
the eigenenergies of the ground state potential from Ref. [dis2].

The assignment of the excited C1Σ+ state levels for the observed LIF progressions was made in two
steps. First, a rotational and isotopomer assignment was established using the X1Σ+ state PEC [dis2].
Then the energy of the excited state level was obtained by adding the experimental transition frequencies
to the respective ground state term values calculated from the PEC. Relative vibrational numbering was
established from v′, J ′ term values plotted against J ′(J ′+1). Initial absolute numbering was based on the
so-called difference-based potential, which was used in order to improve the reliability of the theoretical
calculations [34]. Following the idea of Ref. [4], first the difference between the ground state and the C1Σ+

state ab initio potentials was calculated and then the result was added to the experimental potential of
the X1Σ+ state of Ref. [dis2]:

Udif
C (R) = Uexpt

X (R) +
(
Uab initio

C (R)− Uab initio
X (R)

)
. (4.6)

The basic idea shared with Ref. [4] is that there are contributions, which are neglected in the ab
initio calculations, being common for different electronic states. Therefore, usually the accuracy of
the difference between two ab initio PECs is expected to be better than the quality of the individual
potentials. Although this was stated for a specific ab initio approach in Ref. [4], here we applied a
similar procedure to the calculations of Ref. [34] and found that it gives quite good results. The initial
v′ numbering suggested using the difference-based potential was later confirmed.

As has been already discussed, e.g. in Ref. [59], if exciting the molecular sample with a single mode
laser and observing the fluorescence in a direction parallel to the laser beam, the resulting fluorescence
does not suffer from Doppler broadening. The line frequencies, however, can be shifted from the Doppler-
free values within the Doppler profile. As a result, the overall uncertainty of determining the absolute term
value from the transition frequencies is generally limited by the Doppler broadening (about 0.03 cm−1
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Figure 4.22. P and R collisionally-induced rotational satellites accompanying the LIF lines C1Σ+(v′ =
21, J ′ = 48) → X1Σ+(v′′ = 46, J ′′ = 47, 49). Excitation with Nd:YAG laser at frequency 18788.235
cm−1.

FWHM for typical operation temperatures). Therefore we initially adopted the experimental uncertainty
value of 0.01 cm−1 which was later justified by the data analysis.

From the FTS data a significant portion of the middle part of the C state PEC could be constructed.
However, the bottom of the C state was still uncertain, since the main body of FTS measurements covered
the region from v′ = 21 to v′ = 46, with a single measurement of v′ = 5. In addition, it was important
to investigate the possibility for collecting experimental data on the shelf region. Therefore, to enlarge
and complete the data, a new experiment using the method of polarization labeling spectroscopy (PLS),
which is well suited for the studies of excited states, was performed by our collaborators in Warsaw. In
their experiments, the C1Σ+ ← X1Σ+ excitation spectrum of NaRb was studied by the V-type optical-
optical double resonance polarization labeling spectroscopy (V-type PLS) with two independent pump
and probe lasers [98]. Levels in the range v′ = 0 − 64 were studied with accuracy of 0.05 cm−1. The
whole data field available from both Hannover and Warsaw measurements is shown in Figure 4.23 and
consists of rovibrational levels with v′ = 0− 64 and J ′ = 4− 123.

4.5.2 Construction of potential energy curve

Due to the special shape of the potential energy curve of the C1Σ+ state (see Fig. 4.1) we decided to
construct a spline-pointwise potential with the IPA method [48], which is preferable for description of
such irregular potentials. A use of regularization functional [50] allowed to overcome potential oscillating
behavior in the regions poorly constrained by the experimental data. The initial guess of the PEC was the
difference-based theoretical potential Udif

C (R) (4.6) defined in an equidistant grid of 33 points between
2.65 and 12.7 Å. With only few iterations of the IPA routine it was possible to fit all the LIF data for
both NaRb isotopomers with a single PEC. This was considered as a first indication that the vibrational
numbering suggested by the difference-based theoretical potential is correct. Since the FTS data set
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Figure 4.23. Distribution and sources of the experimental data used in the analysis of the C1Σ+ state of
NaRb, accuracy of FTS data is 0.01 cm−1, of PLS data – 0.05 cm−1.

had quite a limited range of vibrational quantum numbers (from 21 to 46), we tested the vibrational
assignment by constructing new potentials assuming a vibrational shift of ∆v = +1 and ∆v = −1.
The attempts to fit the experimental results of both Na85Rb and Na87Rb with a single potential within
the experimental uncertainty failed in these cases, as we expected. An additional test was made by
comparing the calculated Franck-Condon factors (FCF) of the C–X transitions with the experimental
intensity distributions of LIF. It was found that only the potential with the initially assumed vibrational
assignment was able to give FCFs reproducing the observations.

The preliminary potential constructed with the FTS data allowed our colleagues from Warsaw to
assign unambiguously the C–X transitions observed with the PLS method. They selected for labeling
such ground state levels from which favorable FCF to the bottom of the C1Σ+ state and to the shelf
region exist. For low v′ deviations of the measured and the predicted line positions, calculated with the
preliminary C1Σ+ state potential and the X1Σ+ state potential from Ref. [dis2] reached up to few cm−1

for v′ = 0−2. The C1Σ+ state potential was gradually improved as new data with lower v′ were included.
The final potential describes the experimental term energies of both Na85Rb (1001 levels) and Na87Rb

(160 levels) isotopomers. The potential is defined at 49 points and is listed in Table 4.8. To larger distances
a long-range expansion was used

ULR(R) = D − C6

R6
− C8

R8
− C10

R10
(4.7)

with C6 and C8 taken from Ref. [78]. Here D is the energy at the atomic asymptote. From theoretical
predictions from Ref. [34], which, however, do not take into account the fine-structure splitting, we
concluded that the C1Σ+ (Ω = 0) state correlates to the Na(3P1/2)+Rb(5S1/2) asymptote, because
it is the lowest state correlating to Na(3P)+Rb(5S) limit. The energy of the C1Σ+ state asymptote
D = 21986.672 ± 0.10 cm−1 was calculated from the Na (3p1/2) level energy [99] 16956.1703 cm−1 and
the value of the ground state dissociation energy De(X1Σ+) = 5030.502±0.10 cm−1 [dis3]. The potential
reproduces the PLS data with a standard deviation of 0.037 cm−1 and a dimensionless standard deviation
of 0.79. The LIF data are reproduced with a standard deviation of 0.0083 cm−1 and a dimensionless
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Table 4.8. List of potential energy grid points for the C(3)1Σ+ state. The full data set is represented
with a standard deviation of 0.037 cm−1.

R (Å) U(R) (cm−1) R (Å) U(R) (cm−1)
2.6000 27339.156 5.7188 18627.109
2.7190 25761.642 5.8799 18856.61
2.8380 24277.932 6.0410 19091.257
2.9570 22970.966 6.2020 19326.105
3.0760 21903.509 6.3631 19557.231
3.1950 21024.166 6.5241 19780.173
3.3140 20270.612 6.6852 19990.929
3.4330 19631.429 6.8462 20183.582
3.5519 19105.284 7.0073 20350.56
3.6709 18678.278 7.2342 20519.818
3.7899 18338.747 7.4612 20608.871
3.9089 18075.017 7.6881 20666.835
4.0278 17876.402 7.9151 20728.386
4.1468 17733.865 8.1420 20807.328
4.2658 17639.271 8.5707 21017.979
4.3848 17585.876 8.9993 21330.484
4.5038 17568.111 9.4280 21740.865
4.6228 17581.281 9.8567 21910.956
4.7418 17621.977 10.2853 21950.712
4.8815 17699.64 10.7140 21968.14
5.0209 17805.681 11.1427 21976.325
5.1605 17936.028 11.5700 21980.261
5.3001 18086.687 12.0000 21982.33
5.4397 18254.406 12.4300 21983.475
5.5793 18435.788
Rout = 12.11009 Å
D = 21986.672 cm−1 C8 = 2.1416 · 109 cm−1Å8

C6 = −2.429 · 106 cm−1Å6 C10 = 9.36942 · 109 cm−1Å10

Potential minimum
Rmin = 4.51 Å Umin = 17568.07 cm−1

standard deviation of 0.83. The combined dimensionless standard deviation for both data sets amounts
to 0.80. Dissociation energy De of the C1Σ+ state obtained with the present potential is 4418.60 cm−1.
Its uncertainty is conservatively estimated as 0.3 cm−1 and takes into account the uncertainties of the
ground state De and the Umin of the C1Σ+ state.

4.5.3 Dunham-type fit

For a conventional spectroscopic use a list of Dunham coefficients for the C1Σ+ state of Na85Rb is given
in Table 4.9. They reproduce the experimental term energies in the range 0 ≤ v′ ≤ 40 and 8 ≤ J ′ ≤ 121
with a dimensionless standard deviation of 0.92. Including the levels of the shelf region for an entire
description of the data by the Dunham formalism would be unreasonable due to an enormously large
number of parameters necessary.
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CHAPTER 4. NaRb MOLECULE 69

Table 4.9. Dunham parameters for the C(3)1Σ+ state of Na85Rb for the limited range 0 ≤ v′ ≤ 40 and
8 ≤ J ′ ≤ 121. Te + Y0,0 is referred to the minimum of the ground state potential. The limited data set
is represented with a standard deviation of 0.02 cm−1.

parameter value (cm−1) uncertainty (cm−1)
(Te + Y0,0)Dun 17568.128 0.012

Y1,0 63.6019 0.44×10−2

Y2,0 -0.04156 0.57×10−3

Y3,0 -0.22266×10−2 0.33×10−4

Y4,0 0.30505×10−4 0.86×10−6

Y5,0 -0.3383×10−6 0.82×10−8

Y0,1 0.4579804×10−1 0.50×10−5

Y1,1 -0.13316×10−3 0.11×10−5

Y2,1 -0.1195×10−5 0.89×10−7

Y3,1 0.4089×10−7 0.28×10−8

Y4,1 -0.8097×10−9 0.32×10−10

Y0,2 -0.91916×10−7 0.28×10−9

Y1,2 0.9417×10−9 0.29×10−10

Y2,2 -0.2788×10−10 0.70×10−12

4.5.4 Discussion

The present measurements characterize 77% of the C1Σ+ state potential well depth—from the bottom
up to about 21000 cm−1 (see Fig. 4.24), which is still about 1000 cm−1 below the Na(3P)+Rb(5S)
asymptote. The last observed rovibronic level is located well in the shelf region. In Fig. 4.24a the
experimental potential is compared to the ab initio potential from Ref. [34] (triangles in Figure 4.24a)
and the difference-based potential (full circles).

As one can see, the difference-based potential is much closer to the experimental one than the ab
initio potential, so that the statement from Ref. [4] is confirmed here. The red line in Fig. 4.24a displays
the difference ∆E = Uexpt

C − Udif
C , referring to the magnified right hand side scale, for better visibility,

and shows variations of about 100 cm−1. This finding suggests that for more reliable predictions of
excited state potentials it is better to use the differences of ab initio potential curves with respect to the
experimental potential, if it is known with high precision.

Some caution has to be applied to the uncertainties of the Dunham parameters given in Table 4.9
and especially for that of Te. During the fitting procedure for the potential energy curve we observed
that the potential minimum is determined with relatively large ambiguity. Umin varied from fit to fit,
depending on the number of fitted parameters to within ±0.2 cm−1. In Fig. 4.24b the standard error of
the fitted parameters is shown for three different values of the singularity parameter ζ used within the
Singular Value Decomposition technique (see Section 2.10.1) in order to avoid changes in the potential
shape not caused by the experimental data. Regions where the standard error does not change with ζ
are fixed mainly by the experimental data. Outside these regions the variation of the potential is limited
by ζ and therefore its shape is less well described within the present data set. Note the increase of the
uncertainty around the potential minimum, which reaches 0.3 cm−1. On the other hand the value of Te

determined from the Dunham coefficients (with Y0,0 = 0.022 cm−1 for the C state) was not so sensitive
to the number of Dunham coefficients and the range of the experimental data being always around the
value reported in Table 4.9.

In principle, Te +Y0,0 should coincide with Umin. However, a small difference remains, but well within
the expected uncertainty of Umin. Presently, we attribute the large difference in the estimation of the
uncertainty to the kind of flexibility of both representations: the small uncertainty in Te in the fit of
Dunham coefficients originates from the rigidness of this model, whereas the larger uncertainty in Umin
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is due to the small amount of experimental data near the potential minimum and the flexibility of the
pointwise representation of the potential. We would like to stress here the intrinsic uncertainty in the
determination of the potential minimum, which is only indirectly defined by the experimental data and
is model dependent, especially when extrapolated from a scarce data set.

A particular shape of the C1Σ+ state with the “shelf” implied its possible suitability as an intermediate
state for photoassociation (PA) of cold NaRb ground state molecules. However, analysis showed that the
largest PA rates for the X1Σ+ − C1Σ+ transition are smaller by about two orders of magnitude when
compared to the results for the NaRb X1Σ+ −A1Σ+ transition [27]. This gives indeed preference to the
choice of the A1Σ+ state for PA experiments.

4.5.5 Results and conclusions

1. NaRb C1Σ+ → X1Σ+ high-resolution LIF spectra were obtained for the first time using the FTS
method. The data field of the C1Σ+ state has been enlarged significantly by the term values
obtained from the analysis of the rotational relaxation lines. Experimental term value uncertainty
is 0.01 cm−1.

2. From the analysis of the FTS spectra 138 term values of Na85Rb and 66 term values of Na87Rb
C1Σ+ state in the range v′ = 5; 21− 46, J ′ = 4− 123 were obtained.

3. FTS term energies together with the data obtained by our collaborators in Warsaw by polariza-
tion labeling spectroscopy technique were incorporated into a direct fit of a single spline-pointwise
potential energy curve to the level energies. The PEC describes the experimental term energies of
both Na85Rb (1001 level) and Na87Rb (160 levels) isotopomers with σ = 0.037 cm−1 and σ̄ = 0.80.
The FTS data are reproduced with σ = 0.0083 cm−1 and σ̄ = 0.83.

4. Dissociation energy of the C1Σ+ state obtained with the present potential is 4418.6± 0.3 cm−1.

5. Term energies were also fitted to Dunham expansion below the “shelf region”. The obtained set of
constants reproduces the experimental term energies in the range 0 ≤ v′ ≤ 40 and 8 ≤ J ′ ≤ 121
with σ̄ = 0.92.
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4.6 NaRb D1Π state [dis5]

During the study of the ground state of NaRb, done in Hannover by means of Fourier-transform spec-
troscopy of laser-induced fluorescence [dis2] it turned out that a lot of information about the excited C1Σ+

and D1Π states was available from the recorded spectra. A significant amount of data became available
from analysis of rotational relaxation lines. Below, the D1Π state analysis based on these experimental
data is presented. Detailed analysis of the observed Λ-doubling for various rovibrational levels is also
given.

4.6.1 Observations and term value analysis

The experimental details have been described in Section 3.2. The Ar+ ion laser lines 514.5 nm, 501.7 nm,
496.5 nm, 488.0 nm, and 476.5 nm efficiently induced the D–X fluorescence in NaRb. Overall 130
progressions were assigned. The range of vibrational quantum numbers v′ observed in the D1Π state
with the Ar+ laser lines is v′ = 0 − 39. A tunable single mode, frequency doubled Nd:YAG laser was
also used to excite D1Π− X1Σ+ transitions in NaRb. The laser frequency was varied between 18787.25
cm−1 and 18788.44 cm−1 giving rise to 38 D–X progressions. The range of vibrational levels excited in
the D1Π state by the Nd:YAG laser is v′ = 0− 16.

Due to the presence of the argon buffer gas and very high signal-to-noise ratio several strong fluores-
cence lines were accompanied by large number of collisionally-induced satellites with ∆J up to ±30. To
enrich the rotational relaxation spectra some spectra were recorded at 10 mbar buffer gas pressure. In a
few spectra collisionally-induced transitions from the neighboring vibrational levels were also observed.
The analysis of rotational satellites has enlarged the data set of the D1Π state significantly.

Similarly to the case of the C1Σ+ state, the rotational and isotopomer assignment was established
using the X1Σ+ state PEC [dis2]. Then the energies of the excited levels were obtained by adding the
experimental transition frequencies to the respective ground state term values calculated from the PEC.
The vibrational numbering for v′ ≤ 12 was obtained with the help of the D1Π state Dunham constants
and corresponding RKR potential from Ref. [4]. For higher levels a graphical analysis of the term energies
as a function of J ′(J ′ + 1)− 1 helped us to unambiguously establish the continuation of the vibrational
numbering. This plot, giving also an overview of the data field, is shown in Fig. 4.25.

Overall, from the analysis of the Fourier spectra we obtained 1182 term values of Na85Rb and 314
term values of Na87Rb for the D1Π state. The range of vibrational and rotational quantum numbers
is v′ = 0 − 39 and J ′ = 1 − 200 respectively. As in the case of the C1Σ+ state (see Section 4.5), the
attributed experimental uncertainty value is 0.01 cm−1.

4.6.2 Λ-doubling and q factors

The D1Π − X1Σ+ rotational relaxation spectra appeared due to collisional population of neighboring
rotational levels in the D1Π state preferably with the same symmetry (e or f ) and subsequent D–X
emission according to selection rules for electric dipole transitions. Q lines were typically accompanied
by Q satellites, whereas the doublet lines were accompanied by P , R doublet satellites. However, in a
number of cases the strongest parent lines had additional satellites coming from the neighboring rotational
levels of the opposite symmetry. Thus, a strong Q line had not only a Q satellite branch, but also the
P and R satellites (see Fig. 4.26). This opened the opportunity to establish directly the Λ-splitting of
rotational levels of the D1Π state. From the analysis of the Q lines we obtained f level energies, whereas
from the analysis of the P and R lines we obtained the energies of e levels. Then the evaluation of q
factors is straightforward:

Ee − Ef ≡ ∆e/f = qJ ′(J ′ + 1). (4.8)

This allowed us to obtain q factor values and their sign for 20 vibrational levels in the interval
v′ = 0− 35 in a wide range of rotational quantum numbers (J ′ = 20− 122).
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For most of the vibrational levels the measured q factors are around 0.9 · 10−5 cm−1. As q factors
are calculated from the Λ-splitting energy ∆e/f , q factor uncertainty is determined by the uncertainty of
about 0.004 cm−1 of the Λ-splitting energy . The latter arises mainly from two sources: the uncertainty
of the experimental D–X transition energy difference (0.003 cm−1) and the uncertainty of the calculated
energy difference between the ground state levels (0.003 cm−1, as stated in [dis2]). Note, that the q factor
uncertainty is inversely proportional to J ′(J ′ + 1).

In few cases an anomalous behavior of the Λ-splittings was observed, clearly indicating a local per-
turbation in the D1Π state. Fig. 4.27 presents an example of such a perturbation for the vibrational level
v′ = 10 with the perturbation center around J ′ = 31 for Na85Rb.
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Figure 4.27. The dependence of ∆e/f/J ′(J ′+1) on J ′ for v′ = 10 level in Na85Rb (triangles) and Na87Rb
(open circles). The arrow marks the q factor determined from the RF-ODR experiment, see Table 4.10.

Analysis of q factors outside the local perturbation regions in v′ = 0 − 30 range did not reveal a
vibrational or isotopomer dependence within our accuracy, whereas a slight decrease of q factors with J ′

was observed. Thus it was possible to describe the whole set of q factors by linear J ′-dependence

q = q0 + q1J
′. (4.9)

Fig. 4.28 presents approximately eighty q factors plotted as a function of J ′. These q values are
obtained from about thousand experimental q factors after performing a weighted average for a given J ′.
The large scatter of q values for low J ′ comes from the very small Λ-splittings, which are comparable
with the experimental uncertainty. The resulting fit parameters in (4.9) are q0 = 1.079(14) · 10−5 cm−1

and q1 = −2.30(15) · 10−8 cm−1.
The q factors measured in this work are consistent with the RF-ODR measurements [4], which are

of higher accuracy, but cover a very limited set of measured levels with J ′ ≤ 52. The values qRF−ODR

presented in Table 4.10 and Fig. 4.28 have been recalculated using experimental Λ-splitting values from
Ref. [65] and the recently established correct J ′ assignment from [dis2]. A comparison between the
experimental q factors and the ab initio calculations from Ref. [4] is included in Table 4.10 and Fig. 4.28.
The ab initio q factors were obtained from the electronic structure calculations performed by means of
the many-body multi-partitioning perturbation theory (MPPT), using the singlet-singlet approximation,
i.e. the Λ-splitting is determined by electronic-rotational perturbations caused by distant singlet 1Σ+

states. Analysis of L-uncoupling matrix elements between the D1Π state and the X, A, C and E1Σ+
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Table 4.10. The D1Π state qRF−ODR factors (in 10−5 cm−1) obtained from the RF-ODR experiments in
Ref. [65] and recalculated for correct J ′ values; J ′ in parentheses corresponds to the previous assignment
from Ref. [65]. The given uncertainty is one standard deviation. qab initio are the calculated values from
Ref. [4].

Isotopomer v′ J ′(J ′[65]) qRF−ODR qab initio

Na85Rb 0 44(44) 0.971± 0.003 +1.20
Na85Rb 1 8(7) 0.93± 0.09 +1.22
Na85Rb 4 27(25) 0.93± 0.02 +1.17
Na85Rb 4 43(41) 0.989± 0.002 +1.16
Na85Rb∗ 6 47(44) 0.992± 0.003 +1.13
Na87Rb 10 37(36)∗∗ 1.723± 0.002 +1.10
Na85Rb 12 52(50) 1.0101± 0.0012 +1.06
∗ – isotopomer changed compared to Ref. [65]
∗∗ – perturbed level
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states showed that the Λ-splitting in the D1Π state is mainly determined by the interaction with the
C1Σ+ state. The calculated q factors are in good agreement with the experimental data, but slightly
larger (see Fig. 4.28), probably because of neglecting the influence of the 1Σ+ states higher than the
E1Σ+ state in the calculations.

Note that the only experimental q factor in Table 4.10 showing strong deviation from calculations
is the one for the level v′ = 10, J ′ = 37. Present measurements (see Fig. 4.27) support the statement
already proposed in Ref. [4] that this discrepancy is attributed to a local perturbation.

4.6.3 Construction of potential energy curve

The D1Π state for both isotopomers of NaRb is described in the adiabatic approximation with a single
potential energy curve. The potential was defined as proposed in Ref. [48] as a set of points {Ri, U(Ri)}
connected by cubic spline functions. Fitting procedure is similar to one used for the NaRb C state. In
order to avoid unphysical oscillations in the regions not sufficiently determined by the experimental data,
we applied the regularization procedure [50].

As an initial guess for the potential curve, we took the RKR potential constructed using molecular
constants from Ref. [4]. Since the shift of the f levels under the influence of far lying higher Σ− states
is expected to be very small, the potential fit was based on the f levels considered as “unshifted”. The
e levels were also included in the fit after subtracting from their experimental term energies the value of
the Λ-splitting q(J ′)J ′(J ′ + 1) determined in the previous section. Levels showing deviations more than
0.03 cm−1 (about 7% of the whole data set) were not included in the final fitting procedure. These levels
are considered either as perturbed (see Section 4.6.5) or as Doppler-shifted levels.

Taking into account the q(J ′) dependence of Eq. 4.9, the final spline-pointwise potential fits all un-
perturbed energy levels of both isotopomers with a standard deviation of 0.008 cm−1 and a dimensionless
standard deviation of 0.78. It consists of 35 points and is given in Table 4.11. In order to interpolate
the potential, a natural cubic spline [51] through all 35 grid points should be used. Note, that if the J ′

dependence of the q factors is neglected and a single averaged q factor (0.87 · 10−5 cm−1) is used, we get
a standard deviation of 0.009 cm−1 and a dimensionless standard deviation of 0.88.

Initially, the PEC was constructed in a pointwise form up to 10 Å. In order to ensure the proper
asymptotic behavior of the potential we connected the PEC with a long-range (LR) branch, for which
we adopted the usual dispersion form

U(R) = D − C6

R6
− C8

R8
− C10

R10
(4.10)

with coefficients C6 and C8 taken from Ref. [78]. The dissociation asymptote D of the D1Π state cor-
relating to the Na(3P3/2) + Rb(5S1/2) atomic limit was calculated from the Na(3P3/2) level energy [99]
(neglecting hyperfine structure, referred to the hyperfine center of gravity) and the X1Σ+ state dissoci-
ation energy 5030.50(10) cm−1 [dis3]. The connecting point Rout and the C10 parameter were varied in
order to ensure a smooth connection with the pointwise potential. Thus, the C10 parameter presented
here should be considered just as an effective coefficient.

The D1Π state dissociation energy obtained in the present experiment is 2311.30(14) cm−1. The
accuracy of the derived D1Π state dissociation energy is associated with the accuracy of the X1Σ+ state
dissociation energy [dis3] and the estimated uncertainty of 0.1 cm−1 of the D1Π state potential minimum
value. The dissociation energy with respect to the first bound level (v′ = 0, J ′ = 1f) is 2274.79(10)
cm−1.

In Figure 4.30a the experimental IPA potential is compared with the ab initio potential from Ref. [34]
(full circles). Also the difference-based potential Udif

D (R) (4.6) suggested in Ref. [4, 75] as an improved
estimate from ab initio results is given in Figure 4.30a (open circles). It is produced from the difference of
the ab initio D1Π and X1Σ+ state potentials given in Ref. [34], which is then added to the experimental
ground state potential Uexpt

X given in Table 4.6. As can be seen, the difference-based potential is signifi-
cantly closer to the IPA potential than the ab initio one. Similar conclusions were obtained in studies of
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Figure 4.29. Standard error of the fitted parameters for different values of the singularity parameter ζ.

Table 4.11. List of the grid points of the potential energy curve for the NaRb D1Π state. Energies are
given with respect to the minimum of the ground state (Table 4.6).

R (Å) U(R) (cm−1) R (Å) U(R) (cm−1)
2.80000 26088.574 5.28571 20599.728
2.97500 23892.559 5.42857 20762.635
3.15000 22416.175 5.57143 20916.356
3.32500 21452.447 5.71429 21058.223
3.50000 20753.769 5.85714 21186.491
3.60000 20448.239 6.00000 21300.660
3.70000 20203.231 6.29429 21491.459
3.80000 20013.336 6.58857 21630.673
3.90000 19872.445 6.88286 21729.052
4.00000 19775.498 7.17714 21798.073
4.14286 19703.369 7.64762 21870.204
4.28571 19697.224 8.11810 21915.936
4.42857 19744.947 8.58857 21945.594
4.57143 19835.458 9.05905 21964.683
4.71429 19958.393 9.52952 21977.465
4.85714 20104.327 9.86476 21984.053
5.00000 20264.751 10.20000 21989.488
5.14286 20432.036
Rout = 9.94559 Å
D = 22003.868 cm−1 C8 = 3.4178 · 109 cm−1Å8

C6 = −1.5046 · 107 cm−1Å6 C10 = −1.6265 · 1010 cm−1Å10

Potential minimum
Rmin = 4.2279 Å Tmin = 19692.564 cm−1
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the NaRb A1Σ+ − b3Π complex in Ref. [75] and by present studies of the NaRb C1Σ+ state [dis4]. The
difference between the IPA potential and the RKR potential from Ref. [4] is shown in Fig. 4.30b.

4.6.4 Dunham expansion

For the convenience of simple spectroscopic estimations we have also fitted a Dunham expansion with
the conventional Ylk coefficients to the unperturbed energy levels, where l and k are powers of (v′ + 1/2)
and [J ′(J ′ + 1)− 1], respectively. The levels are described with a standard deviation of 0.009 cm−1 and
a dimensionless standard deviation of 0.87 for both isotopomers. The Dunham parameters, rounded as
described in Ref. [61], are listed in Table 4.12. It is worth mentioning that the Te = 19692.06 cm−1,
Re = 4.2155 Å, ωe = 73.26 cm−1 and Be = 0.05244 cm−1 values from Ref. [4] for Na85Rb are rather
close to the ones in the present work.

Table 4.12. Dunham parameters (in cm−1) of the Na85Rb D1Π state for v′ ≤ 39, J ′ ≤ 200, valid also for
Na87Rb employing the conventional mass relations.

Te 19692.5496 Y0,2 -0.105723 ×10−6

Y0,0 -0.019 Y1,2 -0.12890 ×10−8

Y1,0 73.10306 Y2,2 0.202 ×10−10

Y2,0 -0.281142 Y3,2 -0.473 ×10−11

Y3,0 -0.53893 ×10−2 Y5,2 0.423 ×10−14

Y4,0 0.11707 ×10−3 Y6,2 -0.104 ×10−15

Y6,0 -0.40941 ×10−6 Y0,3 0.2124 ×10−12

Y7,0 0.18988 ×10−7 Y3,3 -0.1245 ×10−15

Y8,0 -0.3688 ×10−9 Y4,3 0.1342 ×10−16

Y9,0 0.27 ×10−11 Y5,3 -0.345 ×10−18

Y0,1 0.5212303 ×10−1 Y0,4 -0.118 ×10−17

Y1,1 -0.221455 ×10−3 Y1,4 -0.141 ×10−18

Y2,1 -0.62437 ×10−5 Y4,4 -0.95 ×10−22

Y3,1 0.33948 ×10−6

Y4,1 -0.30585 ×10−7

Y5,1 0.1196 ×10−8

Y6,1 -0.252 ×10−10

Y7,1 0.20 ×10−12

4.6.5 Perturbations

As stated above, the obtained PEC fits most of the observed levels with a standard deviation of 0.008
cm−1. However, we have measured a number of v′, J ′ levels whose experimental term values deviate from
the calculated ones by more than 0.03 cm−1 indicating a possible presence of local perturbations. In cases
where a long series of rotational satellites was observed we could follow how both e and f components
behave in the particular local perturbation region. In Fig. 4.31 differences between the observed term
values (Eexpt) and energies calculated with the PEC (Ecalc) are shown for vibrational levels v′ = 23 and
10. It is obvious that both e and f components are perturbed in the presented J ′ ranges. This means
that perturbations are caused by nearby triplet states, apparently the d3Π or the e3Σ+, see Fig. 4.1. For
higher vibrational levels the additional influence of the E1Σ+ state cannot be excluded.

We have to confess that we were not able to study perturbations systematically due to the accidental
character of optical excitations of different v′, J ′ levels by fixed-frequency laser lines. Nevertheless, we
have found more than 10 perturbation regions in the v′ = 0 − 39 interval. The largest observed deviation
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Figure 4.31. The difference between observed and unperturbed (calculated from the IPA potential) term
energies for vibrational levels v′ = 10 and v′ = 23 of the D1Π state.

of a term value reached almost 2 cm−1 for v′ = 38, J ′e = 79. A list of perturbation regions is given in
part 5 of the supplementary online material of [dis5].

4.6.6 Results and conclusions

1. NaRb D1Π → X1Σ+ high-resolution LIF spectra were obtained for the first time using the FTS
method. The data field of the D1Π state has been enlarged significantly by the term values obtained
from the analysis of the rotational relaxation lines.

2. From the analysis of the FTS spectra 1182 term values of Na85Rb and 314 term values of Na87Rb
for the D1Π state were obtained. Experimental term value uncertainty is 0.01 cm−1. The range of
vibrational and rotational quantum numbers is v′ = 0 − 39 and J ′ = 1 − 200. The present FTS
measurements characterize 93.5% of the D1Π state potential well.

3. A large set of q factors in the D1Π state was obtained allowing to derive their dependence on
the rotational quantum number J ′. No vibrational dependence of q factors was observed within
the accuracy of present measurements. In several cases an anomalous behavior of a q factor was
observed, clearly indicating a local perturbation in the D1Π state.

4. Experimental term energies were incorporated into a direct fit of a single spline-pointwise potential
energy curve to the level energies. The PEC describes the experimental term energies of both NaRb
isotopomers with σ = 0.008 cm−1 and σ̄ = 0.78.

5. Dissociation energy of the D1Π state obtained with the present potential is 2311.30± 0.14 cm−1.

6. Term energies were also fitted to the Dunham expansion. The obtained set of constants reproduces
the experimental term energies with σ = 0.009 cm−1 and a dimensionless standard deviation of
σ̄ = 0.87 for both isotopomers.

7. Analysis of perturbation regions revealed that both e and f components are perturbed, thus tes-
tifying to the triplet character of perturbing state. Apparently, either the d3Π or the e3Σ+ state
perturbs the D1Π state.



Chapter 5

NaCs molecule

5.1 Background

The first spectroscopic observation of the NaCs molecule by Walter and Barrat [66] dates back to 1928.
Later, Weizel and Kulp [100] succeeded in a partial analysis of the rotationally unresolved band spectra
of Walter and Barrat and were able to deduce vibrational term differences of the lowest vibrational levels
in the X1Σ+ state and in an excited state at Te ≈18230 cm−1 which they labeled as the D state but
which they could not further characterize.

Accurate experimental spectroscopic information on NaCs is still limited, including that on the ground
state. A combination of polarization spectroscopy and optical double-resonance methods in Ref. [101]
has provided precise data for the lowest part of the X1Σ+ ground state limited to vibrational quantum
numbers v′′ ≤ 21, and measurement of laser-induced fluorescence by means of a grating spectrograph
yielding data for higher levels up to v′′ = 64. Combined analysis of these data gave Dunham coefficients,
RKR potential and an estimate of the dissociation energy De = 4950 ± 100 cm−1 of the X1Σ+ ground
state. In the same paper first analysis of the excited D(2)1Π state is presented. The Dunham molecular
constants are given for v′ = 0 − 2, while inclusion of levels v′ = 3 − 7 into the fit showed numerous
deviations thus testifying presence of perturbations in the D1Π state. The authors of Ref. [101] also
pointed out that the Ar+ 515.4 nm line excited low vibrational levels of the 1Π state correlating to the
Na(3P)+Cs(6S) asymptote. This state was labelled as the G1Π state.

Kopystynska et al. [102] studied the laser-induced fluorescence spectra in a cell with different mixtures
of alkalis. Exciting with Ar+ laser at 514.5 nm they found several progressions one of which around 660
nm they identified as a progression of NaCs to the a3Σ+ state. Because of fairly low resolution they used
several indirect arguments for this identification. However, the present studies showed that these were
transitions to the X1Σ+ state (see below).

An extensive theoretical study of the electronic structure of NaCs has been performed by Korek et
al. [35]. Potential energy curves for 32 electronic states were calculated far out to the atomic asymptotes.
Low electronic states from Ref. [35] are shown in Fig. 5.1. It can be seen that the calculated sequence
of singlet terms makes the alphabetic notation of the excited electronic states ambiguous. Thus, only
numeric electronic state classification is used hereafter.

The pair of Na and Cs atoms is presently one of the interesting objects in relation to experiments
with mixed alkali-metal species at ultracold temperatures. Results of experimental research performed
on inelastic cold collisions in Na-Cs trap were reported in Refs. [103, 77]. Experimental observation
of ultracold NaCs+ molecular formation in a novel two-species magneto-optical trap was described in
Ref. [104]. Recently, also first successful formation of translationally cold NaCs molecules starting from a
laser-cooled atomic vapor of Na and Cs atoms was realized [23]. In these experiments the colliding atoms
were transferred into bound molecular states in a two-step photoactivated process in which the atoms
were first photoassociated by trap photons into an excited state molecular complex and then allowed to

80
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Figure 5.1. Low singlet and triplet electronic states in NaCs according to Ref. [35].
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decay into a bound molecular ground state.
Calculations of NaCs long-range potentials are found in [78, 79, 80, 81].
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5.2 NaCs X1Σ+ state [dis6]

The goal of the present investigation was to study the ground X1Σ+ electronic state of NaCs in a wide
range of internuclear distances with the help of the Fourier-transform spectroscopy.

5.2.1 Experiment

Experimental details are found in Section 3.2. Strong laser-induced fluorescence (LIF) was observed when
the sample was illuminated with Ar+ laser operated at lines: 514.5, 496.5, 488.0, 476.5 nm (single mode)
and by a single mode dye laser with Rhodamine 6G dye. This allowed us to observe the (3)1Π− X1Σ+,
(2)1Π − X1Σ+ and (4)1Σ+ − X1Σ+ transitions in NaCs along with Na2 progressions. As the working
temperatures were relatively low, the Na2 signals were weak and did not disturb the measurement and
the identification of the NaCs bands. Pure Cs2 bands were not observed during these experiments.

Ar+ lines 514.5 and 496.5 nm excited the (3)1Π−X1Σ+ and (4)1Σ+−X1Σ+ transitions in NaCs. Ar+

lines 488.0 and 476.5 nm excited only the (3)1Π state. Overall 55 (3)1Π−X1Σ+ and 14 (4)1Σ+ −X1Σ+

progressions were assigned. The frequency of the Rhodamine 6G laser was varied between 17527 cm−1

and 17768 cm−1 which allowed us to record and assign about 40 (2)1Π → X1Σ+ and 10 (4)1Σ+ → X1Σ+

progressions.
Due to a considerable extension of the (4)1Σ+ potential in internuclear separation, see Fig. 5.1, it was

possible to observe transitions to high vibrational levels of the ground state (up to v′′ = 83) close to the
dissociation limit.

5.2.2 Analysis and potential construction

The assignment of the recorded spectra was simplified by the published X1Σ+ state RKR potential in
Ref. [101]. After we identified the strongest progressions, a spline-pointwise potential was fitted to the
differences of the transition frequencies similarly to the case of NaRb. This preliminary potential was
further improved adding more newly collected experimental data in the fit; this sequential procedure
allows continuous checking of the assignment, especially for high J ′′ and in case of gaps in v′′. The total
data set (Fig. 5.2) consists of more than 5070 transitions corresponding to 2892 different ground state
levels in NaCs.

Fig. 5.3 gives a short section of the many recordings to show the quality of data and also the reliability
of the extrapolation to the atomic ground state asymptote; the last observed level is v′′ = 83. This
progression is given as an example having low J ′′ = 10, 12 to reduce the influence of the centrifugal
potentials in the energy scale very much getting a proper extrapolation. The calculation with the potential
derived below predicts that v′′ = 84 would be the last bound vibrational level for these J ′′ values.

For the construction of the empirical PEC of the ground state we used both spline-pointwise and
analytic potentials.

Analytic potential is represented as a truncated expansion over analytic functions (2.55), where fitting
parameters are ai. This analytic form is used in the interval Ri < R < Ro. For the long-range region
R ≥ Ro the following expression is applied:

ULR(R) = De − C6

R6
− C8

R8
− C10

R10
− Eex, (5.1)

where exchange energy is
Eex = AexRγ exp(−βR). (5.2)

Parameters β and γ are estimated as discussed for heteronuclear species in [82] from the atomic
ionization energies of Na and Cs, see Eq. 2.20. C6, C8 and C10 were fixed to their most recent theoretical
values from Refs. [81, 80]. De and Aex were fitted. Rm, b and the connecting points Ri and Ro were kept
fixed to values, which allowed fast convergence of the fitting routine.
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Figure 5.2. The range of vibrational and rotational quantum numbers of the observed ground state energy
levels in NaCs.
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Figure 5.3. The vibrational progression up to v′′ = 83 in NaCs excited by a single mode Ar+ laser line
496.5 nm.
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For short internuclear distances R ≤ Ri the potential is smoothly extended with the expression

USR(R) = A exp(−B(R−Ri)), (5.3)

where A and B were adjusted in order to ensure smooth connection between the extension and the
analytic form.

For the fit 29 potential coefficients according to Eq. (2.55) were used which allowed us to fit almost
all observations within experimental accuracy. Only levels with a turning point larger than about 12 Å
showed systematic deviations. Table 5.1 gives the derived parameters of the potential, describing the
experimental data with a normalized standard deviation σ̄ = 0.88. Using the potential, eigenvalues of
the radial Schrödinger equation can be derived in the quantum number limits according to the overview
in Fig. 5.2 with an averaged accuracy of better than 0.003 cm−1.

Spline-pointwise potential was constructed similarly to the case of the NaRb X1Σ+ state, described
in Section 4.3.3. The final potential contains 51 points and is given in Table 5.2. Experimental data for
v′′ < 84 and J ′′ < 180 are reproduced with a standard deviation 0.0029 cm−1 and dimensionless standard
deviation 0.61. Note, that in the case of the spline-pointwise potential the contribution of the exchange
energy is incorporated into the C10/R10 term, thus C10 being an effective parameter.

In the traditional way we performed also fits of the observed energy levels to the Dunham power
expansion (2.31). The fit gives a standard deviation 0.0027 cm−1 and a normalized standard deviation
0.73 for v′′ < 84 and J ′′ < 180, comparable to the result of the potential fit. For v′′ < 61 and J ′′ < 180
the corresponding parameters are 0.0023 cm−1 and 0.61. This representation of all energy levels by 56
parameters Ylm is contained in Table 5.3 and will give more reliable calculations of energy levels compared
to those Ylm reported in Ref. [101] because of their limited data set.

5.2.3 Discussion

From the very large body of highly resolved fluorescence data we could derive a potential energy curve of
the X1Σ+ state with the correct asymptotic behavior. Experimental data cover 99.97% of the potential
well depth. The extrapolation of the potential for large internuclear separations starts at the largest
classical turning point 15.28 Å from the highly-lying level v′′ = 83, J ′′ = 12 and covers the small
extrapolation energy 1.4 cm−1 from the rotationless asymptote. If we assume that the theoretical values
of the dispersion coefficients have an accuracy of about 1% for C6 and 10% for the others then the
extrapolated dissociation energy results to the very precise value De = 4954.18±0.10 cm−1. The exchange
energy does not influence the estimation because at these large internuclear separations its value is already
significantly smaller than the dispersion contributions (Le Roy radius for the NaCs ground state is 11.9
Å). The new De value is in excellent agreement with the first estimation made in Ref. [101], but a factor of
103 more precise. Also the newly determined potential functions and the Dunham parameters supersede
the earlier published results significantly.

Reporting the dissociation energy with respect to the unobservable minimum of a potential curve
introduces a model dependence by the different kinds of setting up the potential curve which results in
slight variations of the potential minimum but perfect representation of the vibrational ladder. To remove
this ambiguity it is much better to relate the dissociation asymptote to an observable level. Here we use
v′′ = 0, J ′′ = 0, giving the dissociation energy with the symbol D0 according to the generally accepted
nomenclature of molecular spectroscopy: D0 = 4904.836± 0.10 cm−1.

With our precise data on the ground state of NaCs we can check the identification of the observation
by A. Kopystynska et al. [102] to be a vibrational progression of the a3Σ+ state. As we were also using
the laser line 514.5 nm for excitation, we simply compared their recording with ours and our assignment.
It became immediately clear that their observation is a part of a progression to the ground state X1Σ+

with high vibrational levels 54 to 58. This explains the small value of the observed vibrational spacing
of 46 cm−1 compared to 99 cm−1 at the bottom of the potential well, but still being much too large to
be the vibrational spacing of the a3Σ+ state. The position of this progression, appearing as if it were a
separated band, is related to the intensity distribution according to the FCFs between (4)1Σ+ and X1Σ+

observed in this experiment.
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Table 5.1. Parameters of the analytic representation (Eqs. 2.55, 5.1, 5.3) of the potential energy curve of
the X1Σ+ state in NaCs.

for R ≤ 2.80 Å
Ri 2.80 Å
A 5509.4338 cm−1

B 1.5020227100 Å−1

for 2.80 Å < R < 12.70 Å
b -0.4000
Rm 3.85062906 Å
a0 0.0 cm−1

a1 1.29677346150536610 cm−1

a2 1.51728492476490264× 104 cm−1

a3 1.09095191433899363× 104 cm−1

a4 −2.45806495177720808× 103 cm−1

a5 −1.60799862149231794× 104 cm−1

a6 −8.70962559205579782× 103 cm−1

a7 2.18747535596727575× 104 cm−1

a8 −3.00243720449833432× 105 cm−1

a9 −7.86930451496603433× 105 cm−1

a10 3.39616970842697797× 106 cm−1

a11 7.35841534829050489× 106 cm−1

a12 −2.63747919952689409× 107 cm−1

a13 −4.45851005134318396× 107 cm−1

a14 1.35133654058888495× 108 cm−1

a15 1.76262769398831815× 108 cm−1

a16 −4.75687836575036168× 108 cm−1

a17 −4.47488337869063497× 108 cm−1

a18 1.21600041878172946× 109 cm−1

a19 7.46075675097115278× 108 cm−1

a20 −2.29173360205131388× 109 cm−1

a21 −8.70893719909687042× 108 cm−1

a22 3.09544150282176447× 109 cm−1

a23 8.19954467973030806× 108 cm−1

a24 −2.80675453436517239× 109 cm−1

a25 −6.96373081872487426× 108 cm−1

a26 1.51653594722299957× 109 cm−1

a27 4.44558531531333089× 108 cm−1

a28 −3.66990684866598368× 108 cm−1

a29 −1.35242647548431933× 108 cm−1

for R ≥ 12.70 Å
Ro 12.700 Å
De 4954.1847 cm−1

C6 1.550513× 107 cm−1Å6

C8 4.88540× 108 cm−1Å8

C10 1.7170× 1010 cm−1Å10

Aex 2.834990× 104 cm−1Å−γ

γ 5.12271
β 2.17237 Å−1
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Table 5.2. List of the grid points of the spline-pointwise potential energy curve of the NaCs X1Σ+ state.

R (Å) U(R) (cm−1) R (Å) U(R) (cm−1)
2.44 14592.03265 5.309291 2607.833543

2.54555 10993.97179 5.449736 2883.018858
2.65109 8333.922936 5.590181 3137.577798
2.75664 6200.27792 5.764437 3422.509004
2.86219 4704.209791 5.938693 3672.385991
2.967731 3546.457589 6.112949 3888.024578
3.073277 2601.150555 6.287205 4071.548022
3.178824 1838.927902 6.461461 4225.913132
3.28437 1236.46165 6.680398 4383.779883
3.389916 774.199269 6.899335 4507.87088
3.495462 434.903063 7.118272 4604.627148
3.601008 202.904811 7.410188 4700.743554
3.706555 63.776331 7.702104 4769.014757
3.812101 4.28667 7.99402 4817.532712
3.917647 12.343243 8.285935 4852.165924
4.023193 76.966249 8.577851 4877.058744
4.139968 202.475109 8.979235 4900.534908
4.256742 373.217075 9.38062 4915.981072
4.373517 578.740103 9.782004 4926.263296
4.490291 809.884575 10.183388 4933.429883
4.607066 1058.7412 10.986157 4942.059957
4.747511 1371.899737 11.788925 4946.650014
4.887956 1690.807508 12.591694 4949.386034
5.028401 2007.251894 13.394463 4951.0261
5.168846 2314.638541 14.197231 4951.974865
Rout = 12.3 Å
De = 4954.18655 cm−1 C8 = 4.8851 · 108 cm−1Å8

C6 = 1.54962 · 107 cm−1Å6 C10 = 1.8884 · 1010 cm−1Å10
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Table 5.3. Dunham coefficients (in cm−1) for the NaCs ground state.

Y1,0 98.8786618 Y0,2 -0.796345 ×10−7

Y2,0 -0.32115 Y1,2 -0.41069 ×10−9

Y3,0 -0.256 ×10−2 Y3,2 -0.46707 ×10−12

Y4,0 0.42816 ×10−3 Y5,2 0.572237 ×10−15

Y5,0 -0.62317 ×10−4 Y8,2 -0.4369589 ×10−19

Y6,0 0.60947 ×10−5 Y9,2 0.15324 ×10−20

Y7,0 -0.4233446 ×10−6 Y10,2 -0.159217 ×10−22

Y8,0 0.214274 ×10−7 Y13,2 0.10775 ×10−28

Y9,0 -0.8045518 ×10−9 Y15,2 -0.657872 ×10−33

Y10,0 0.2263192 ×10−10 Y0,3 0.8108 ×10−13

Y11,0 -0.478034677 ×10−12 Y1,3 -0.19155 ×10−14

Y12,0 0.7537892 ×10−14 Y2,3 0.17507 ×10−15

Y13,0 -0.873440396 ×10−16 Y6,3 -0.869044 ×10−21

Y14,0 0.721486439 ×10−18 Y8,3 0.16785 ×10−23

Y15,0 -0.401878463 ×10−20 Y9,3 -0.354 ×10−25

Y16,0 0.135217881 ×10−22 Y11,3 0.389062 ×10−29

Y17,0 -0.207498958 ×10−25 Y13,3 -0.218846 ×10−33

Y0,1 0.580099 ×10−1 Y1,4 0.31764 ×10−19

Y1,1 -0.2313 ×10−3 Y2,4 -0.618678 ×10−20

Y2,1 -0.12837 ×10−5 Y6,4 0.17395 ×10−25

Y3,1 0.965 ×10−8 Y8,4 -0.2046 ×10−28

Y4,1 -0.8798 ×10−9 Y10,4 0.101431 ×10−31

Y6,1 0.4168 ×10−12 Y12,4 -0.45229 ×10−35

Y8,1 -0.3308 ×10−15 Y13,4 0.747789 ×10−37

Y9,1 0.5194886 ×10−17 Y14,4 -0.424822 ×10−39

Y11,1 -0.391816 ×10−21 Y2,5 0.46738 ×10−25

Y13,1 0.1753605 ×10−25 Y7,5 -0.133787 ×10−31

Y8,5 0.56824584 ×10−33

Y9,5 -0.616878 ×10−35
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During the present experiment we have collected a large set of term values for excited states, partic-
ularly the (3)1Π state. These levels together with the collisionally excited levels were used for obtaining
the spline-pointwise PEC of the (3)1Π state [105].

5.2.4 Results and conclusions

1. High-resolution LIF spectra to the NaCs X1Σ+ ground state were obtained for the first time using
the FTS method. The obtained data set consists of more than 5070 transitions corresponding to
2892 different ground state levels in the range v′ = 0− 83, J ′ = 2− 179.

2. Transition frequencies were used for a direct fit of the analytic and spline-pointwise potential energy
curves. Analytic potential (29 parameters) reproduces experimental data with σ = 0.003 cm−1 and
σ̄ = 0.88, whereas spline-pointwise PEC (51 parameter) with σ = 0.0029 cm−1 and σ̄ = 0.61.

3. Experimental PEC covers 99.97% of the potential well depth. The classical turning point of the
last observed energy level (v′′ = 83, J ′′ = 12) is around 15.3 Å and this level is about 1.4 cm−1

below the asymptote.

4. A new, more accurate value of dissociation energy is obtained with the present potential De =
4954.18± 0.10 cm−1.

5. Term energies were also fitted to the Dunham expansion. The obtained set of constants reproduces
the experimental term energies for with σ = 0.0027 cm−1 and σ̄ = 0.73.
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5.3 Combined analysis of the NaCs a3Σ+ and X1Σ+ states

The a3Σ+ state of NaCs has never been studied experimentally before. At the same time there is a need
of accurate spectroscopic data on the lowest triplet state. Therefore the goal of the present experiments
was to collect experimental information on the NaCs a3Σ+ state, especially close to the asymptote and
to perform a combined analysis of the a3Σ+ and X1Σ+ states, taking into account their hyperfine mixing
close to the asymptote. In order to study the a3Σ+ state we decided to apply the same technique as for
the NaRb a3Σ+ state, i.e. to reach the triplet manifold through mixed singlet–triplet complex.

5.3.1 Observations

The first observation of transitions to the a3Σ+ state was made by us using a Rhodamine 6G single mode
dye laser [dis6]. Electronic structure calculations [35], see Fig. 5.1, show that there could be a coupling
between the (3)C1Σ+ state and a triplet state. However, with Rh6G we were able to observe only one
rather weak progression under excitation at 17344 cm−1. Excitation region was also unfavorable due to
strong Na2 emission. Identification was done based on the ab initio potential of a3Σ+ taken from Ref.
[35], however assignment was not unambiguous due to absence of the corresponding singlet transition
from the same upper state level.

In the next experiments we decided to excite the B1Π, b3Π and c3Σ+ complex of NaCs, similarly to
the case of NaRb. It should be noted that this complex has never been studied before unlike in NaRb.
Energy considerations based on Fig. 5.1 allowed us to choose the appropriate excitation region, which
corresponds to the lasing of the DCM dye. Thus we excited transitions to levels of the B1Π, b3Π and
c3Σ+ complex, and observed emission to the X1Σ+ and a3Σ+ states. Fluorescence to the lowest triplet
state was rather strong. Na2 signals were also sometimes intense, but did not disturb measurements and
identification of the NaCs B→X bands. Pure Cs2 bands were not observed during these experiments.
The frequency of the DCM laser was gradually varied between 14966 cm−1 and 15882 cm−1. The lowest
excitation frequency at which triplet band appeared was ca. 15145 cm−1. Fig. 5.4 presents a typical
fluorescence spectrum, where along with the B→X band system a weaker band appears around 11000
cm−1 due to decay to the a3Σ+ state.

11000 12000 13000 14000 15000

Laser

[B1Π, b3Π, c3Σ+]    a3Σ+   

[B1Π, b3Π, c3Σ+]    X1Σ+ 

Wavenumber, cm-1

Figure 5.4. The B1Π → X1Σ+ and
[
B1Π, b3Π, c3Σ+

] → a3Σ+ bands of NaCs excited with a single mode
DCM laser at frequency of 15788.934 cm−1.
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Figure 5.5. [B1Π, b3Π, c3Σ+] → a3Σ+ progression in NaCs, excited with a single mode DCM laser at
frequency of 15337.256 cm−1. The exciting transition is B1Π(0, 28) ← X1Σ+ (0, 28).

5.3.2 Spectra analysis

In order to be able to assign transitions to the a3Σ state, at the early stage of experiments we always
recorded B1Π →X1Σ+ transitions together with the [B1Π, b3Π, c3Σ+] → a3Σ+ ones, see Fig. 5.4.
Identification of B→X bands was straightforward thanks to high accuracy X1Σ+ state spline-pointwise
PEC obtained previously (see Table 5.2). In transitions to the lowest triplet state we observed progressions
of two types: doublets and triplets, and we explain this structure by the same considerations as in NaRb
(see Chapter 4.4.1 and Fig. 4.10). Typical example of triplet progression can be seen in Fig. 5.5.

For assigning of a progression to the a3Σ+ state it was necessary to find the singlet progression
coming from the same upper state level. For finding the correspondence between the singlet and triplet
progression we searched for relaxation lines of the singlet transitions and using them calculated excitation
energy for the neighboring J ′ level and put the laser at this new frequency. If the hypothesis were true
then we were able to observe the triplet spectra shifted relative to the old one. In such a way N ′′ value
for transitions to the a3Σ+ state was assigned. For vibrational numbering some initial relative numbering
was chosen based on the longest progressions. When a3Σ+ state energies at some N ′′ values (> 5) for
different vibrational levels were collected, we fitted these term values to molecular constants and then
used them for identification of several new progressions, always checking assignment with the help of
the singlet band. The next step was fitting a spline-pointwise PEC [48] to the new data. The obtained
potential was then gradually improved when more energy levels were added.

However, it was not always possible to find the corresponding singlet transition (the excited level
could be with so strong triplet character that the resulting singlet fluorescence is very weak, or B→X
FCF are small). In this case and also when singlet spectra were not available (for improving the SNR we
filtered out the singlet band at the later stage of measurements) N ′′ identification was always checked by
laser resonance in X→B transition.

A very interesting feature observed in transitions to the a3Σ+ state was that after Q excitation we
found rather different intensity distributions among multiplet components for different progressions, see
e.g. Fig. 5.6. As can be seen, sometimes the central component of the triplet completely disappeared
and we observed doublet with N ′-2 and N ′+2. Such structure is probably explained by the influence of
the strongly perturbed upper state wavefunction and will be investigated in the studies of the [B1Π, b3Π,
c3Σ+] complex.

As a result, we have obtained the data set for the a3Σ+ state consisting of more than 3000 transition
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Figure 5.6. Examples of different intensity distributions among multiplet components at Q excitation.

frequencies to ca. 940 energy levels as shown in Figure 5.7. Uncertainty was estimated to 0.003 cm−1.
The range of observed vibrational and rotational quantum numbers is 6 < N ′′ < 103, 0 < v′′ < 19. The
last observed level is v′′ = 19, N ′′ = 25, which has a classical turning point around 14.2 Å.

In our experiments we also observed several spectra caused by the long-range changeover similarly to
the case of NaRb [dis3]. Thus transitions to high vibrational levels of the X1Σ+ state were found together
with the a3Σ+ transitions and enriched the data field of the X1Σ+ state. However these spectra were
rare and the highest v′′ did not exceed the previously reached vX=83, see e.g. Fig. 5.8.

5.3.3 Hyperfine structure

At the resolution used in the experiments (typically 0.015-0.03 cm−1) the hyperfine structure (HFS) of
the triplet lines was partially resolved. Analysis showed that the hyperfine splitting of the a3Σ+ levels
is described within a Hund’s case (bβS) coupling scheme and is caused by the Fermi contact interaction
like in the a3Σ+ state of NaRb. The observed structure is well described by atomic HFS parameters for
levels not close to the asymptote (see Fig. 5.9). The strong deviations from the observed pattern appear
for va = 16, which will be explained below by taking into account hyperfine mixing of the weakly bound
X1Σ+ and a3Σ+ levels. The hyperfine-structure-free positions of the triplet state levels are shifted from
the central component of the hyperfine pattern by 0.039 cm−1 for NaCs.
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Figure 5.7. The range of vibrational and rotational quantum numbers of the observed energy levels in
the a3Σ+ state of NaCs.
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Figure 5.8. A piece of NaCs LIF spectrum excited at frequency 15805.510 cm−1, where both progressions
to the X1Σ+ and a3Σ+ states from a common upper level (v′B=11, J ′ = N ′ = 48) can be seen within the
same energy region due to the long-range changeover. FCFs of the B1Π-X1Σ+ transition in this region
are zero. Energy of the excited state level is 15990.581 cm−1.
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Figure 5.9. Typical hyperfine splitting of the transitions to the a3Σ+ state in NaCs. Vertical lines show
the result of coupled channels calculations

5.3.4 Fitting of potentials to experimental observations

Initially experimental data on the a3Σ+ state were fitted to the spline-pointwise potential in a single-
potential model. This approach allowed for obtaining of already sufficiently good potential, which however
showed systematic deviations for vibrational levels starting from app. v′′ = 15, which could be an indi-
cation of hyperfine mixing between the X1Σ+ and a3Σ+ state. The derived potential was transformed
to the analytic form (2.55) and used together with the analytic X1Σ+ state potential from [dis6] for
calculating the initial HFS corrections. The next steps of the fitting procedure were the same as in the
NaRb case: experimental data were corrected for the HFS shift and then single-channel potentials were
fitted; new potentials were used to calculate new corrections, etc. After approximate 5 iterations the
fitting procedure converged.

The absolute position of the a3Σ+ state in the energy scale was established using transitions to the
ground and lowest triplet state originating from the same upper state level. The X1Σ+ state data set
has also been enlarged by data obtained in other experiment [105] with Ar+ 501.7 nm and Nd:YAG laser
providing long (4)1Σ+-X1Σ+ progressions (accuracy of data with Ar+ 501.7 nm is 0.003 cm−1, Nd:YAG
data 0.01 cm−1). Thus data field for the X1Σ+ state was enriched by ca. 1350 frequencies. In total,
ca. 9500 frequencies corresponding to about 4700 energy levels of both a and X states were used in the
combined fitting procedure.

For the long-range region R ≥ Ro the expression (4.4) is applied with some modification: in the
present studies potential is given with respect to the atomic asymptote, therefore D is set to 0. C6, C8

and C10 coefficients and exchange energy parameter Aex were fitted. Parameters β and γ are estimated
as discussed for heteronuclear species in Ref. [82] from the atomic ionization energies of Na and Cs, see
Eq. 2.20.

For short internuclear distances R ≤ Ri the potential is smoothly extended with the expression

USR(R) = A + B/Rα, (5.4)

where α can be non-integer. Note that this expression differs from the previously used Eq. (5.3).
The derived potentials describe the total data set of the X and a states with a normalized standard

deviation of 0.78. The importance of applying the coupled channels approach can be illustrated with
the example of transitions to v′′a = 16 and v′′X = 79, see Fig. 5.10. The hyperfine coupling of the X and
a state levels is so strong that classification of levels as singlets and triplets becomes ambiguous, which
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is confirmed by spin operator expectation values, which value for several HFS components is about 0.5.
As can be inferred from Fig. 5.10, the coupled channels approach allows to reproduce the observed HFS
pattern with good accuracy.
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Figure 5.10. Hyperfine mixing of weakly bound singlet (v′′X = 79) and triplet (v′′a = 16) levels with
N ′′

a = J ′′X = 39. Solid red lines show the eigenvalues obtained with the CCC with the present potentials,
and dashed blue lines denote the single-channel eigenenergies.

The obtained dispersion coefficients are in good agreement with theoretical calculations from Refs.
[80, 81], see values in Table 5.1. Empirical C6 and C8 are in error limits predicted by theory, whereas
C10 value goes beyond the stated 10% uncertainty interval. Empirical potentials were compared with
ab initio potentials by Korek et al. [35], see Fig. 5.11. We can see that in the case of NaCs ab initio
potentials of the a and X states are much closer to the empirical ones than it was in NaRb (compare
with Fig. 4.21). Quantitatively it is also indicated by ab initio dissociation energy values: 214 cm−1 for
a state and 4923 cm−1 for X state.

5.3.5 Results and conclusions

1. Transitions to the a3Σ+ state of NaCs were observed for the first time. Spectra were recorded
using high-resolution FTS. More than 3000 transition frequencies to ca. 940 energy levels were
assigned. The range of observed vibrational and rotational quantum numbers is v′′ = 0 − 19 and
N ′′ = 6− 103. The typical experimental uncertainty is 0.003 cm−1.

2. The data set for the X1Σ+ state obtained previously (see [dis6]) was enriched by about 1350 tran-
sitions, using B→X, (4)1Σ+ →X1Σ+ bands and transitions caused by the long-range changeover.

3. Both X1Σ+ and a3Σ+ states potentials were fitted simultaneously to analytic potential energy
curves smoothly connected to the long-range potential, taking into account the hyperfine mixing of
these states close to the asymptote. New potentials reproduce experimental data for the a3Σ+ and
X1Σ+ state with σ̄ = 0.78.

4. Long-range coefficients C6, C8, C10, as well as exchange energy parameter Aex were fitted. Disper-
sion potential is in good agreement with the ab initio one.

5. Dissociation energies obtained with the present potentials for the X1Σ+ and a3Σ+ states are DX
e =

4954.22± 0.10 cm−1 and Da
e = 217.15± 0.10 cm−1.
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Table 5.4. Parameters of the analytic representation (Eqs. 2.55, 5.1, 5.4) of the potential energy curve of
the a3Σ+ state in NaCs. Potential is given with respect to the atomic asymptote.

for R ≤ 4.78 Å
A −0.164777827× 103 cm−1

B 0.184208874× 1019 cm−1Åα

α 0.236563805× 102

for 4.78 Å < R < 10.20 Å
b -0.6400
Rm 5.75585938 Å
a0 −217.137992 cm−1

a1 5.060041760921147 cm−1

a2 0.4718687621656754× 103 cm−1

a3 0.2514219323834187× 103 cm−1

a4 −0.8746237247738273× 102 cm−1

a5 −0.2154118954152781× 103 cm−1

a6 −0.2370010651661931× 103 cm−1

a7 −0.5975533223022640× 103 cm−1

a8 −0.4760140339369856× 103 cm−1

a9 0.3782291928282492× 103 cm−1

a10 0.6798234616502023× 103 cm−1

a11 0.6723220594269379× 103 cm−1

a12 −0.1248173837589433× 102 cm−1

a13 −0.4626112296933644× 103 cm−1

for R ≥ 10.20 Å
C6 1.545671× 107 cm−1Å6

C8 5.001807× 108 cm−1Å8

C10 2.019156× 1010 cm−1Å10

Aex 2.549387× 104 cm−1Å−γ

γ 5.12271
β 2.17237 Å−1

Te=−De −217.152(10) cm−1

Re 5.745 Å
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Table 5.5. Parameters of the analytic representation (Eqs. 2.55, 5.1, 5.4) of the potential energy curve of
the X1Σ+ state in NaCs. Potential is given with respect to the atomic asymptote.

for R ≤ 2.84 Å
A 0.900290886× 104 cm−1

B −0.113527906× 103 cm−1Åα

α −4.1859263636

for 2.84 Å < R < 10.20 Å
b -0.4000
Rm 3.85062906 Å
a0 −4954.220839 cm−1

a1 0.8980684901406436 cm−1

a2 0.1517322305891121× 105 cm−1

a3 0.1091020368289819× 105 cm−1

a4 −0.2458305183215540× 104 cm−1

a5 −0.1608232304418994× 105 cm−1

a6 −0.8705013039210540× 104 cm−1

a7 0.2188050377166237× 105 cm−1

a8 −0.3002538567610332× 106 cm−1

a9 −0.7869349465616797× 106 cm−1

a10 0.3396165702257235× 107 cm−1

a11 0.7358409821995481× 107 cm−1

a12 −0.2637478410754801× 108 cm−1

a13 −0.4458510218550479× 108 cm−1

a14 0.1351336683210848× 109 cm−1

a15 0.1762627711656325× 109 cm−1

a16 −0.4756878196895964× 109 cm−1

a17 −0.4474883318729266× 109 cm−1

a18 0.1216000437575875× 1010 cm−1

a19 0.7460756869348375× 109 cm−1

a20 −0.2291733580746639× 1010 cm−1

a21 −0.8708937018563435× 109 cm−1

a22 0.3095441525806588× 1010 cm−1

a23 0.8199544778248683× 109 cm−1

a24 −0.2806754519640437× 1010 cm−1

a25 −0.6963731310931557× 109 cm−1

a26 0.1516535914525204× 1010 cm−1

a27 0.4445582767694474× 109 cm−1

a28 −0.3669909023138414× 109 cm−1

a29 −0.1352434700004024× 109 cm−1

for R ≥ 10.20 Å
C6 1.545671× 107 cm−1Å6

C8 5.001807× 108 cm−1Å8

C10 2.019156× 1010 cm−1Å10

Aex 2.549387× 104 cm−1Å−γ

γ 5.12271
β 2.17237 Å−1

Te=−De −4954.221(10) cm−1

Re 3.851 Å
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Figure 5.11. Comparison of the present empirical NaCs a3Σ+ and X1Σ+ state potentials with ab initio
potentials from Ref. [35].



Chapter 6

Conclusions

In consistence with the goals and tasks of the present work the following main results have been
obtained:

• For the first time the NaRb ground X1Σ+ state and lowest triplet a3Σ+ state have been studied
experimentally in a wide range of internuclear distances with high accuracy. Spline-pointwise em-
pirical potential energy curves were obtained in a combined fitting procedure taking into account
the hyperfine mixing of these states close to the asymptote. The obtained potentials allow for
adequate modeling of cold collision experiments with Na-Rb pairs.

• A first detailed experimental study of the NaRb excited C1Σ+ state converging to the Na(3p) +
Rb(5s) states of separated atoms has been performed. The obtained data were incorporated into
a direct fit of a single spline-pointwise potential energy curve to the level energies. This method
allowed for description of this state including the shelf region.

• A detailed experimental study of the NaRb D1Π state converging to the Na(3p) + Rb(5s) atomic
limit has been performed for the first time with high resolution. The obtained data were incorpo-
rated into a direct fit of a single spline-pointwise potential energy curve to the level energies. The
D1Π state q factors, which describe the Λ-doubling, have been obtained in a wide range of rota-
tional and vibrational quantum numbers. The rotational dependence of q-factors has been derived.
Analysis revealed several local perturbation regions in the D1Π state.

• For the first time the NaCs ground X1Σ+ state has been studied experimentally in a wide range
of internuclear distances with high accuracy. The lowest triplet a3Σ+ state has been observed for
the first time and studied at high resolution in a wide range of internuclear distances. Analytical
empirical potential energy curves of the X1Σ+ and a3Σ+ states were obtained in a combined fitting
procedure taking into account the hyperfine mixing of these states close to the asymptote.

Concluding remarks

• Our work has demonstrated that Fourier transform spectroscopy of laser induced fluorescence is a
powerful tool for studying not only of ground states, but also excited states due to collision induced
transitions. Analysis of rotational satellites allows enlarging of the data sets significantly. In this
sense collision facilitated FTS LIF method can be considered for excited states as a method, com-
peting and complementary to two laser pump-probe spectroscopy experiments. Its main advantages
are relative easiness of the experiment, high accuracy and fast measurements.

• Applying of direct potential fit analysis allowed us to obtain empirical potential energy curves from
the observations. This fully quantum mechanical approach allows to represent the experimental
data with equivalent accuracy compared to conventional analysis based on fits to empirical level
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energy expressions, but at the same time provides us with much better physical model of the
electronic state.

• Analysis of the ground and lowest triplet state of NaRb and NaCs highlighted the importance of
taking into account the hyperfine mixing of weakly bound levels of these states near the asymptote
for providing the proper long-range description.

• Comparison of the derived empirical potentials of the ground and selected excited states of NaRb
and NaCs with the ab initio data allowed us to conclude that accuracy of ab initio potential energy
curves is growing over the years, but measurements are still necessary for meeting the demands
of modern spectroscopy tasks in the short-range region. Analysis showed that for more reliable
predictions of excited state potentials in many cases it is better to use the differences of ab initio
potential energy curves with respect to the ground state potential, if it is known with high accuracy.
On the other hand, ab initio long-range potentials are of much higher accuracy and show agreement
with the experiment consistent with the reported experimental and ab initio uncertainties.

• The results obtained in the course of work open path for new experimental studies, e.g. dynamic
and structural studies of these molecules (measurements of lifetimes, permanent electric dipole
moments, etc.) and cold collision experiments with atomic pairs.
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