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Abstract

The solution of non-linear problems in mechanics is usually a complex task.
It requires much more e¤orts in analytical and numerical part of the solution
(pure analytical solution for most problems is not possible at all). This work
comprises solutions of several non-linear problems involving cracks growth
and fractures.
In the �rst part of the work experimental procedure was elaborated in

order to �nd delamination properties of the unidirectional and translaminar-
reinforced composites. Bridging law, which can be calculated from experi-
mental data, is found to be important material property. Simple numerical
procedure, which uses previously found bridging law, is proposed in order to
simulate crack growth in composite laminates.
In second part the three-dimensional mathematical model for analysis

of Hot Dry Rock geothermal reservoirs is presented. By utilizing Laplace
integral transform and Green�s function the solution is reduced to integral
equation over the surface of the fracture, which eliminates the need for dis-
cretizing the unbounded 3D reservoir. Using presented model temperature
and thermally induced stresses can be found anywhere in the reservoir at
any time, which makes this model quite e¢ cient in geothermal reservoirs
analysis.
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1 Introduction

1.1 The aim of the work

The main aims of the work are development of experimental and numerical
procedure for analysis of composites delamination and development of three-
dimensional numerical model of geothermal reservoirs. To achieve the goal
the next tasks should be performed:

� Experimentally analyze the delamination of unidirectional and
transversally reinforced composites.

� Show that bridging law is material property and can be used to predict
composite delamination.

� Develop a three-dimensional numerical model of geothermal reservoir
for prediction of extraction temperature for long time periods.

� Investigate the in�uence of thermally induced stresses on fracture sta-
bility inside reservoir.

1.2 Actuality of the work

Fiber reinforced composites are widely used in modern airplanes, construc-
tions etc. These materials are lightweight and have superior properties.
However, heterogeneous structure of such materials is the reason of more
complex mechanical behavior, then traditional materials. Composites have
many failure modes and therefore new experimental and numerical methods
are required to predict the critical loads or durability of structures made from
composites. In this work the delamination of �ber reinforced composites in
presence of bridging have been studied.
The utilization of geothermal energy is important question and has been

studied for many years. One of the primary tasks of geothermal reservoir
planning and management is maximization of energy output for long time
period. Complex mathematical and numerical models are required to solve
this problem. In this work new three-dimensional model for geothermal reser-
voirs have been developed.

1.3 Scienti�c novelty and the main results

Experimental technique has been elaborated for measuring delamination
properties of unidirectional composites. Similar methodology has been suc-
cessfully applied to the delamination of transversally reinforced composites.
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Numerical procedure is proposed for prediction of delamination process
in composites using experimentally obtained data.
New numerical model has been developed for simulation of geothermal

reservoirs. The proposed model allows to calculate temperature distribution
and thermally induced stresses inside reservoir for long time periods and pre-
dict the fracture slip or opening as result of thermal cooling of surrounding
rock. The computer program has been developed based on proposed numer-
ical model.

1.4 Approbation of work and the publications

The main results of the work are stated in 6 scienti�c publications:

1. A. Ghassemi, S. Tarasovs, A. H.-D. Cheng A 3-D study of the e¤ects of
thermomechanical loads on fracture slip in enhanced geothermal reser-
voirs, Int. J. of Rock Mech. & Min. Sci., Vol. 44, 2007, pp. 1132�1148.

2. A. Ghassemi, S. Tarasovs, A. H.-D. Cheng Three-Dimensional Integral
Equation Modeling of Injection Induced Thermal Stress in an Enhanced
Geothermal Reservoir, Int. J. Numer. Anal. Meth. Geomech, 2005,
29, 829�844.

3. A. Ghassemi, S. Tarasovs, A. H.-D. Cheng An integral equation solu-
tion for three-dimensional heat extraction from planar fracture in hot
dry rock. Int. J. Numer. Anal. Meth. Geomech., 2003, 27, 989�1004.

4. V. Tamuzs, S. Tarasovs Fracture toughness and bridging law of 3D
woven composites. Fracture of Polymers, Composites and Adhesives
II, 2003, ESIS Publication 32, 515�524.

5. V. Tamuzs, S. Tarasovs, U. Vilks Delamination properties of
translaminar-reinforced composites. Comp. Sci. Technol., 2003, 63,
1423�1431.

6. V. Tamuzs, S. Tarasovs, U. Vilks Progressive delamination and �ber
bridging modeling in double cantilever beam composite specimens, Eng.
Frac. Mech., 2001, 68, 513�525.

The main results of work are reported and discussed at the international
scienti�c and technical conferences in the following reports:
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1. A. Ghassemi, S. Tarasovs Fracture slip and opening in response to water
injection, Proc. of GRC 2006 Annual Meeting, San Diego, California,
USA, September 10�13, 2006.

2. A. Ghassemi, S. Tarasovs A three-dimensional numerical study of frac-
ture slip due to cold water injection in enhanced geothermal reservoirs,
Proc. of 41st. U.S. Symposium on Rock Mechanics (USRMS), Golden,
Colorado, USA, June 17�21, 2006.

3. A. Ghassemi, S. Tarasovs Fracture slip and opening in response to
�uid injection into a geothermal reservoir, Proc. of 31th Workshop on
Geothermal Reservoir Engineering, Stanford, California, USA, January
30�February 1, 2006.

4. A. Ghassemi, S. Tarasovs Three-dimensional modeling of Injection In-
duced Thermal Stresses, Proc. of 6th North American Rock Mechanics
Symposium �GulfRocks04, Houston, Texas, June 5�10, 2004.

5. S.Tarasovs Three-dimensional �nite-element modeling of �ber bridging
in unidirectional composites, 13th International Conference �Mechan-
ics of Composite Materials�, Riga, Latvia, May 16�20, 2004, Book of
Abstracts, p.186.

6. A. Ghassemi, S. Tarasovs Three-dimensional modeling of Injection In-
duced Thermal Stresses with an Example from Coso, Proc. of 29th
Workshop on Geothermal Reservoir Engineering, Stanford, California,
USA, January 26�28, 2004.

7. V. Tamuzs, S. Tarasovs The revised technique of composite delamina-
tion tests. Proc. of 6th International Fracture Conference, 10-12 Sep.
2003, Selcuk University Konya, Turkey, 295�304.

8. V.Tamuzs, S.Tarasovs, A.Bogdanovich, J.Singletary Toughness and
Bridging Law of 3D Woven Composites, 3rd ESIS TC4 Conference
on Polymer and Composites, Les Diablerets, Switzerland, 15�18 Sep-
tember, 2002.

9. V. Tamuzs, S. Tarasovs, U. Vilks Delamination and �ber bridging phe-
nomenon experimental and numerical investigation. Proc. of Inter-
national Conference on New Challenges in Mesomechanics, Vol. 2,
Aalborg University, Denmark, August 26�30, 2002, pp. 605�611.

10. V.Tamuzs, S.Tarasovs, U.Vilks, A.Bogdanovich, J.Singletary Delami-
nation Fracture toughness of 3D Woven Composites, 10th European
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Conference on Composite Materials: ECCM-10: Composites for the
Future, Brugge, Belgium, June 3�7, 2002, Booklet of Abstracts, p. 3.

11. A. Ghassemi, A. H.-D. Cheng, S. Tarasovs A three-dimensional solu-
tion for heat extraction from a fracture in Hot Dry Rock using the
boundary element method. Proc. of 27th Annual Workshop �Geother-
mal Reservoir Engineering�, Stanford, California, USA, January 28�30,
2002.

12. V.Tamuzs, S.Tarasovs Modelling of progressive delamination and �ber
bridging in DCB specimens, Conference on Mechanics of Composite
Materials, Riga, Latvia, June, 2000, Book of Abstracts.

13. V.Tamuzs, S.Tarasovs Fiber Bridging and R-Curve for Interlaminar
Fracture of Unidirectional Epoxy-Carbon Composites, ASME Mechan-
ics & Materials Conference, Blacksburg, USA, June, 1999, Book of
Abstracts, p. 89.
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Figure 1: The specimen geometry, loading scheme and measured parameters.

2 Delamination of composites

The resistance to delamination is one of the most important characteristics
of laminate and unidirectional composites. One of the interesting features of
crack propagation in laminates is extensive �ber bridging, which often can be
observed during delamination. This phenomenon can increase the fracture
toughness of composites in Mode I up to ten times and therefore it is very
important to know how this material property should be measured and how
implement it in numerical calculations.
The most popular method of determining the interlaminar fracture tough-

ness in composites is the test of double cantilever beam (DCB) specimens [1].
One of the standard methods to express the ability of material to increase the
fracture toughness during crack propagation is so called R-curves - fracture
resistance as a function of crack extension.
The concept of a bridging law, traction on a crack faces as a function of

crack opening, was introduced in 1992 [2] to characterize the crack growth
resistance of a material.
In this work the in�uence of specimen geometry on R-curves is investi-

gated and scheme of measurements and calculations to predict the resistance
of crack propagation in specimens is proposed.
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2.1 Energy release rate in DCB specimens

The geometry of a DCB specimen is shown in Fig. 1, where h is the thickness
of the specimen, which was varied, a0 is an initial notch, a is the length of a
propagated crack, d is the crack opening under the applied wedge forces P ,
and �� is the crack opening at the tip of the initial notch. The description
of the loading and measurement method is given later, in the experimental
part.
The energy release rate in a DCB specimen is de�ned in a usual way:

G = � @�
b@a

(1)

where b is the width of a specimen, a is the crack length, � is the potential
energy accumulated in the system. For linear elastic system it can be written
as:

G =
P 2

2b

@c

@a
(2)

where c = d=P is the compliance of the system.
Neglecting the bridging e¤ect, the de�ection of an ideal console, with

length a and bending sti¤ness EI = Ebh3=12, under a load P is equal to
a3P=3EI. The full opening of the DCB equals the doubled de�ection,

d =
2a3P

3EI
(3)

and the compliance is

c =
2a3

3EI
(4)

Using Eqs. (2) and (4), the most popular formula for the DCB is obtained:

G(P; a) =
P 2a2

EIb
(5)

Combining Eqs. (5) and (3), another modi�ed formulae for G can be
obtained

G(P; d) =
P 2

EIb

�
3EId

2P

�2=3
(6)

Applying Eqs. (5) and (6) to an ideal isotropic cantilever beam, equal
results will be obtained. But, strictly speaking, they are all invalid for DCB
specimens, since boundary conditions at the end of cracked part of specimen
are not the same as at the clamped end of cantilever beam. As result, the
de�ection of real specimen for given load and crack extension always will
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Figure 2: Specimens of three di¤erent thicknesses after testing and enlarged
bridging zone of a 7-layer specimen.

be greater, then it is predicted by beam theory (3). The de�ection is even
higher for unidirectional composites, since in Eq. (3) the interlaminar shear
is neglected. The error is very big for short crack and diminishes when
the crack propagates. Therefore, obtained above formulas will give di¤erent
results and comparing G calculated directly from �nite element analyses with
Eqs. (5) and (6), it is found that Eq. (6) performs better even for very short
cracks and in presence of large scale bridging.

2.2 Experimental part

The investigated specimens were produced from epoxy/carbon sheets of
thickness 1.3 mm. The initial crack was precut by a diamond saw of thick-
ness 0.1 mm and sharpened by a thin blade to extend the initial crack to
25 mm. The width of the cracked specimen b is 11.1 mm. Then the strips
of the same material and the same width were glued on both sides of the
precracked strip to produce specimens of di¤erent total thicknesses, namely
3.93, 6.56 and 9.15 mm corresponding to 3, 5, and 7 layers. The �bers are
oriented along the specimen. The length of a specimen is 80 mm for 3-layer
and 200 mm for 5- and 7- layer ones.
The material is characterized by the following elastic constants: modulus

in the �ber direction E1 = 155 GPa, transverse modulus E2 = E3 = 9 GPa,
shear modulus G12 = 5 GPa and Poisson ratio � = 0:28.
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Figure 3: Typical experimental load-displacement curves: h = 9:15 mm.

The specimens were loaded by a wedge load under displacement control
with a constant speed of 1 mm/min. Seven specimens of thickness 3.93 mm,
eight specimens of thickness 6.56 mm and three of thickness 9.15 mm were
tested.
The load value was registered by the dynamometer of a MTS testing

device, but the crack opening d at the edge of specimens was measured by a
strain clip gauge as shown in Fig. 1. The crack opening �� at the precrack tip
was also measured by second strain clip gauge attached to the top and bottom
sides of the specimen. The crack propagation was measured visually. So, the
values of P , d, and � were measured and stored for each crack increment �a
equal to 2 mm.
Extensive bridging was observed during the crack propagation. The spec-

imens with extended and opened cracks are displayed in Fig. 2.
The measured load-displacement curves for 7-layer specimens are shown

in Fig. 3. Each point on the curves corresponds to a crack increment �a = 2
mm. These values are used later in R-curves calculations (Fig. 4). Energy
release rate in all cases was calculated using Eq. (6).

2.3 Bridging law

Calculating the J -integral [3] around the crack tip and along the crack faces
with a bridging zone, the following result for the energy release rate is ob-
tained:

G = J =

Z
S

w(�ij)dy�
Z
S

Pi
@ui
@x
dS = 2

a0Z
a

�(x)
@uy
@x
dx+G0 =

��Z
0

�(�)d�+G0

(7)
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Figure 4: Experimental R-curves for specimens with thickness h = 9:15 mm.

from which follows [4, 5] that

�(�) =
@G

@��
(8)

where �(�) is traction on a crack faces as a function of crack opening.
For a specimen having a thickness h, the dependences P (a), d(a) and

��(a) are measured, where �� is the crack opening at the point where the tip
of the initial precrack has been located. With G(a) and ��(a) known, the
bridging law �(�) is obtained from Eq. (8) and later can be used for numerical
simulation of crack propagation in DCB specimens with any thickness.
In Fig. 5a the energy release rate G as a function of the crack opening is

plotted for all investigated specimens. The curves for specimens of di¤erent
thickness almost coincide, taking into account typical scatter of fracture tests.
Calculated bridging laws for these specimens are plotted in Fig. 5b.

2.4 Numerical simulation by FEM

The numerical procedure for the simulation of crack propagation taking into
account �ber bridging is based on the �nite element method with nonlinear
�interface elements� embedded along a potential delamination line. The
crack propagation is then modeled by introducing an appropriate stress-
displacement relationship for the interface elements.
To model the e¤ect of �ber bridging, we will separate the total energy

dissipation in a sample into two speci�c terms associated with the crack
tip propagation and with �ber bridging, respectively. We need, therefore,
to choose an appropriate stress-displacement relationship for the interface
elements, Fig. 6, where � is the traction across the element and � is the
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Figure 6: Stress-displacement relationship for interface elements.

opening of crack faces. This work will concentrate on the Mode I fracture
only; therefore, the stresses and displacements are both normal to the crack
face.
The �(�) curve, Fig. 6, comprises three parts corresponding to the dis-

placement intervals (0; �0), (�0; �1), and (�1; �2). The �rst and second part
is responsible for the crack initiation and crack tip propagation. When the
stress ahead of the crack tip reaches �t (the tensile strength of the material)
the distance between the elements (interface thickness) is equal to �0, and
the crack starts to propagate. Behind the crack tip, the stress decrease, and
the distance between the crack faces increases up to �1. This region is called
the �fracture process zone�. The numerical tests have shown that the precise
value of �0 has little e¤ect on the solution, provided that �0 is su¢ ciently
small to simulate an initially very sti¤ interface. The crack opening �1 de-
pends on the initial critical fracture energy G0c, which is supposed to be a
characteristic of the material. So, the crack opening is chosen such that the
area under the curve to the point �1 is equal to G0c.
The third part of the stress-displacement relationship (interval from �1 to

�2) depends on the bridging law and the area under the curve represents the
energy dissipation due to bridging, Gbr. As the crack opens, the stress level
decreases, being equal to zero at the end of the bridging zone.
Since, for the materials with extensive bridging, the energy release rate

during steady state crack propagation, Gss, is up to ten times higher then at
the crack initiation, Gc, �2 will be many times greater then �1. A typical its
value for carbon-�ber reinforced plastics is several millimeters. If the actual
bridging law for a material is known, it must be utilized when de�ning the
properties of the interface elements.
Using calculated in previous section bridging law of specimen with thick-

ness 9.15 mm as a stress-displacement relationship for the interface elements
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in FEM, the load-displacement curves and R-curves are calculated for all
tested specimens. The results are summarized in Fig. 7, and a su¢ ciently
good agreement with the experimental data for all specimen geometries is
observed.

3 Three-dimensional analysis of geothermal
reservoir

Nonlinear fracture mechanics can be applied to the problems of di¤erent
scales, from small cracks in composites to large fractures in rocks. Hot rocks
and geothermal �uids in the subsurface can be an economical source of energy.
The temperature in the subsurface rock can rise to 350�C at a depth of 5
km. According to [6], seventy two countries have reported direct utilization
of geothermal energy (space heating, industrial use, bathing and swimming,
etc.) with total installed capacity 28,268MWt. The total annual energy use is
273,372 TJ (75,943 GWh), indicating a 43% increase over 2000. Geothermal
electricity is currently being generated in 24 countries with total running
capacity approximately 8030 MWe and and electric energy production is
nearly 57,000 GWh [7].
The Hot Dry Rock (HDR) concept of geothermal energy production in-

volves drilling two or more wells into the reservoir to intersect permeable
fractures of natural or man-made origin, injecting cold water into one part
of the well system, and recovering hot water from the other.
Physical and mathematical models play an important role in the plan-

ning and development of geothermal reservoirs. A number of analytical and
numerical solutions exist for the prediction of heat extraction from fracture
systems in geothermal reservoirs. The physical mechanisms are sometimes
complicated and include mechanical, hydraulic, thermal, and chemical e¤ects
and their coupling.
The main aim of this work is development of new three-dimensional math-

ematical model of HDR geothermal reservoir. The model should predict tem-
perature and induced thermal stresses evolution within the reservoir during
cold water injection. Fracture opening and slip also will be analyzed using
nonlinear fracture mechanincs concepts.

3.1 Fluid �ow

Figure 8 gives a schematic view of heat extraction from a hot dry rock system
by circulating water through a natural or man-made fracture. The fracture
is assumed to be �at, of �nite size and with arbitrary shape. The geothermal
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Figure 8: Heat extraction from a planar fracture.

reservoir, on the other hand, is of in�nite extent. It is assumed that the
geothermal reservoir is impermeable to water and has constant heat conduc-
tion properties. The heat storage and dispersion e¤ects in the fracture �uid
�ow are negligible. The fracture width is small such that the �ow in the
fracture is laminar and governed by the lubrication �ow equation:

r2 p(x; y) = �
�2�

w3(x; y)
q(x; y); x; y 2 A (9)

where p is the �uid pressure, � the �uid viscosity, w the fracture width, and A
the fracture surface (see Figure 8). Assuming that the �uid is incompressible,
the reservoir is impermeable to �uid �ow, and the fracture width does not
change with time, we can write the �uid continuity equation as

r2 � q(x; y) = Q�(x� xe; y � ye)�Q�(x� xi; y � yi) (10)

where r2� is the divergence operator in two dimension. In the above we
have considered an injection well located at (xi; yi), and an extraction well
at (xe; ye), both with discharge Q, and � is the Dirac delta function.
Combining (9) and (10), we obtain the following second order partial

di¤erential equation

r2 �
�
w3(x; y)r2 p(x; y)

�
= �2�Q [�(x� xi; y � yi)� �(x� xe; y � ye)] (11)

which is subject to the boundary condition

@p

@n
= 0 on @A (12)

where @A is the rim of the planar fracture (Figure 8), and n is the outward
normal of @A. With known fracture width, the above equation can be solved
for the pressure distribution in the fracture using �nite element method.
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3.2 Heat transport

The heat transport occurs both in the geothermal reservoir and the fracture.
For the geothermal reservoir, the heat conduction is governed by the three-
dimensional di¤usion equation:

Krr2 Td(x; y; z; t) = �rcr
@Td(x; y; z; t)

@t
; x,y,z 2 
 (13)

where �r is the rock density, cr is the speci�c heat of rock, Kr is the rock
thermal conductivity, 
 represents the in�nite geothermal reservoir (Figure
1), and Td is the normalized temperature de�cit with a value between zero
and one:

Td =
T0 � T
T0 � Tinj

(14)

in which T is the temperature, T0 is the initial rock temperature, and Tinj is
the temperature of injected water.
For heat transport in the fracture the governing equation is

q(x; y) � rTd(x; y; 0; t) =
2Kr

�wcw

@Td(x; y; z; t)

@z

����
z=0+

(15)

where �w is the water density, cw is the speci�c heat of water.
Prior to the heat extraction operation, the temperature of the rock and

the fracture �uid is assumed to be a constant, T (x; y; z; 0) = T0, and at the
injection point (xi; yi; 0) the temperature equals that of the injected water:
T (xi; yi; 0; t) = Tinj. The extraction temperature T (xe; ye; 0; t) is unknown.
The initial and the boundary condition can be expressed in terms of Td:

Td(x; y; z; 0) = 0; Td(xi; yi; 0; t) = 1 (16)

To facilitate the treatment of the time variable, we apply Laplace transform
to the above equations and obtain

Krr2 eTd(x; y; z; s) = s�rcr eTd(x; y; z; s) (17)

q(x; y) � r eTd(x; y; 0; s) = 2Kr

�wcw

@ eTd(x; y; z; s)
@z

�����
z=0+

(18)

eTd(xi; yi; 0; s) = 1

s
(19)

where the wiggle overbar denotes the Laplace transform, and s is the trans-
form parameter. Equations (17)�(19) form a complete solution system.
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The system of Equations (17)�(18) is de�ned in three spatial dimen-
sions. It has been demonstrated that by utilizing Green�s function of three-
dimensional di¤usion equation, the solution system can be reduced to a two-
dimensional integral equation. For the temperature on the fracture surface
(z = 0) we obtain

eTd(x; y; 0; s) = � �wcw
4�Kr

Z
A

h
q(x0; y0) � r eTd(x0; y0; 0; s)i

1

r
exp

�
�
r
�rcrs

Kr

r

�
dx0dy0; x; y 2 A (20)

where r =
p
(x� x0)2 + (y � y0)2.

The general scheme for solving the system represented by (20) involves
discretizing an arbitrary shaped fracture surface into a number of elements
de�ned by a total of n + 1 nodes. An unknown temperature de�cit eT id is
associated with each node, with the exception of the injection point, whereeTd = 1=s is the imposed boundary condition. As a result, there are n un-
known discrete temperatures. Equation (20) is then applied to the n nodes
by selecting in turn their nodal locations as the base point. This produces n
equations to solve for the n unknowns.
The area integration in (20) is performed element by element with refer-

ence to local co-ordinates (�; �):

eTd(x; y; s) =
��wcw
4�Kr

neX
m=1

Z
Am

"
qx(�; �)

@ eTd(�; �; s)
@�

+ (21)

qy(�; �)
@ eTd(�; �; s)

@�

#
1

r
exp

�
�
r
�rcrs

Kr

r

�
d�d�

The values of qx, qy, @ eTd=@�, and @ eTd=@� within the element are interpolated
from their nodal values based on bilinear shape functions. The resulting lin-
ear system contains the nodal values of temperature as unknowns. An LU
decomposition scheme is then employed to solve the matrix. The solution
obtained above is in the Laplace transform domain. It is necessary to trans-
form the solution back into the time domain. This is achieved by using an
approximate Laplace inversion method. The widely used Stehfest method [8]
is adopted for this purpose.

3.3 Thermally induced stresses

Let us assume that the reservoir rock is isotropic, homogeneous and elastic.
The change in temperature �T = T � T0 can be related to the Goodier
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thermoelastic displacement potential � through this Poisson equation:

r2� = m�T (22)

where

m =
(1 + �)�T
(1� �) (23)

is the thermoelastic constant, �T is the coe¢ cient of linear thermal expansion
and � is the Poisson ratio. Here we recall the de�nition

u = r� (24)

where u is the displacement vector.
Consider an instantaneous heat source of unit intensity located at

(x0; y0; z0) and at time t0. Solving for the displacement potential de�ned in
(22), we obtain Green�s function

��(x� x0; y � y0; z � z0; t� t0) = � m

4��rcrR
erf

�
Rp
#

�
(25)

where
# = 4�(t� t0) (26)

and

� =
Kr

�rcr
(27)

Now, for a distribution of heat sources with the intensity �(x; y; t) over the
fracture surface A, the resultant displacement potential at any given location
and time can be obtained from the Duhamel�s principle of superposition:

�(x; y; z; t) =

tZ
0

Z
A

�(x0; y0; t0) ��(x� x0; y � y0; z; t� t0) dx0dy0dt0 (28)

Similar to (20), the above equation involves the integration over the �nite
fracture surface only. To facilitate the treatment of time, we apply Laplace
transform to (28) and obtain

e�(x; y; z; s) = Z
A

e�(x0; y0; s) e��(x� x0; y � y0; z; s) dx0dy0 (29)

where

e��(x� x0; y � y0; z; s) = � m

4�s�rcrR

�
1� exp

�
�
r
s

�
R

��
(30)
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We realize that the source intensity e� is just the cooling �uid-induced tem-
perature �ux on the fracture surfaces, and

e� = �2Kr
@ eT
@z

�����
z=0+

(31)

Utilizing the heat transport equation (18) in the above and substituting it
into (31), we obtain

e�(x; y; z; s) =
m�w cw
4�s�rcr

Z
A

h
q(x0; y0) � reT (x0; y0; 0; s)i (32)�

1

R1
� 1

R1
exp

�
�
r
s

�
R1

��
dx0 dy0

The right-hand side of the above equation consists entirely of known quan-
tities, because the �uid �ow and the temperature in the fracture have been
obtained from the previous stage of solution based on (20).
The stresses are related to the displacement potential by the following

formula e�ij = 2G @2e�
@xi@xj

� �ijr2e�! (33)

With Eq. (33) the thermally induced stresses can be found anywhere in
the geothermal reservoir.

3.4 Fracture Slip

In this work, the fracture opening and slip are determined using a 3D elastic
displacement discontinuity method. The displacement discontinuity method
is an indirect boundary element method which is based on the fundamental
solution of a point displacement discontinuity (DD) in an in�nite elastic or
poroelastic medium. This technique has been used extensively in mining and
hydraulic fracturing.
The tractions on the fracture surface due to displacement discontinuities

can be written in form of integral equation of the �rst kind:

�ij(x) =

Z
�

��ijkn(�; x) �Dkn(�) d� (34)

with known values of �ij and unknown values of �Dkn. The kernel �
�
ijkn

represents the e¤ect of a point displacement discontinuity at point � on the
tractions at point x. A general analytical solution of this equation is not
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possible, therefore it is necessary to solve it numerically by transforming the
integral equation into a system of algebraic equations. The fracture surface
is divided into number of elements and induced stresses on element �m�due
to a constant spatial distribution of normal and shear DD�s on element �r�
are given by:

�mij (x) = S
rm
ijkn(�; x)�D

r
kn(�) (35)

It should be noted, that for a planar fracture shear stresses depend on
both shear components of displacement discontinuity while the normal stress
components depend only upon the normal component of DD. Thus, the �zz
stress component for the elements are independent of �xz and �yz; therefore,
they can be solved separately. Applying Eq. (35) for normal and shear
stress components and summarizing the in�uence coe¢ cients of all elements,
two systems of algebraic equations are formed for N closure and 2N ride
unknowns:

�zz = KzzDzz (36)�
�xz
�yz

�
=

�
Kxx Kxy

Kyx Kyy

� �
Dxz

Dyz

�
(37)

where K is the matrix of in�uence coe¢ cients; Kzz represents the normal
stresses due to normal DD�s in the z-direction, Kxy represents the shear
stress in the x-direction due to shear DD�s in the y-direction, and so on.
When the fracture remains open, these equations can be solved in a sim-

ple manner. In this case, the slip corresponds to the magnitude of shear
displacement discontinuities. However, a di¤erent approach is needed when
the fracture is closed. In this case, the fracture is modeled using a rigid
perfectly plastic Mohr-Coulomb element. The shear strength of the Mohr-
Coulomb element is given by:

� = c0 + �n tan�ef = c0 + �n tan(�in + 'dil) (38)

where �ef is the e¤ective friction angle of the joint/fault surface, �in is intrin-
sic friction angle, 'dil is dilation angle, �n is the compressive stress acting on
the fracture surface and c0 is the cohesion. The standard Coulomb friction
model assumes that no relative motion occurs if the equivalent shear stress
(Eq. 39) is less than the critical stress, predicted by Eq. (38).

� eq =
q
�2xz + �

2
yz (39)

The fracture aperture is a¤ected by the amount of shear displacement
and is equal to:

a = U tan('dil) (40)
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Figure 9: Inclined fracture with one injection well and two production wells.

where 'dil is dilation angle and U =
p
D2
xz +D

2
yz.

To set up the system of equations for a given problem, the in-situ stresses
and hydraulic pressure are applied in the initial solution step. Then thermal
load is applied incrementally, Then, an iterative solution process is used
taking into account Mohr-Coulomb friction criterion.
This mathematical model was implemented in a computer program for

the solution of temperature and stresses in cold-water injection into hot frac-
ture problem. Program has a user-friendly graphical interface to set up the
properties of reservoir and for solution visualization. The three-dimensional
plot of inclined fracture with one injection well and two production wells
is presented in Figure 9. The gray shaded area in plot represents the rock
cooled zone due to cold water injection in geothermal reservoir.
Figures 10�14 show temperature distribution, thermally induced stresses

and fracture opening/slip for inclined fracture problem (Figure 9) after 3
month of operation. Input parameters are shown in Table 1. It was assumed,
that fracture is located at a depth of 2330 m with an in situ stress of �v =
60:13MPa, �hmin = 34:81MPa, �Hmax = 50:88MPa, and a water pressure of
25MPa. Results show, that fracture opening and slip are strongly depend on
thermally induced stresses and it should be taken into account in geothermal
reservour analysis.
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E Young�s modulus 65:0 GPa
� Poisson�s ratio 0:185
�r rock density 2650 kg/m3

�w water density 1000 kg/m3

cr rock heat capacity 790 J/(kg K)
cw water heat capacity 4200 J/(kg K)
� thermal di¤usivity 5:1� 10�6 m2= sec
�T rock linear thermal expansion coe¢ cient 8:0� 10�6 1=K
Q injection rate 40 `= sec
TR rock temperature 180 �C
Tinj injection water temperature 30 �C
w initial average fracture aperture for �ow 10�3 m

Table 1: Input parameters.

Figure 10: Temperature distribution in the fracture after 3 months of oper-
ation.
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Figure 11: Normal stresses acting on the fracture plane after applying the
in-situ stresses, pressure, and thermal stresses.

Figure 12: Crack opening after 3 months of injection (maximum opening is
4 mm).
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Figure 13: Slip in the y-direction.

Figure 14: Shear slip in the y-direction in the absence of thermal stresses.
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4 Conclusions

Nonlinear fracture mechanics methods have been applied to the di¤erent
problems. Experimental procedure has been developed for determination
of unidirectional composite intralaminar fracture toughness. The additional
parameter crack opening displacement at the initial precrack tip (ICOD) was
measured to obtain the bridging law, which is independent on the geometry
of specimen. Similar methodology was applied to translaminar-reinforced
composites.

� It was demonstrated, that bridging law is characteristics of material
and therefore can be used to predict fracture propagation in di¤erent
situations.

� Simple numerical procedure has been used to simulate crack propa-
gation in unidirectional composites, using experimentally calculated
bridging law.

� It is recommended to use the graphs GIC vs. ICOD, instead of tra-
ditional R-curves (GIC vs. �a) for characterization of delamination
fracture resistance of composite with extensive bridging.

� Presence of transverse �bers does not delay damage initiation, but re-
sistance to crack propagation is greatly improved for such materials.

A 3D boundary element model for heat extraction/thermal stress has been
coupled with a 3D elastic displacement discontinuity method to investigate
the fracture opening and slip in response to pressure and cooling of the rock
under a given in-situ stress �eld. Using this approach, the e¤ects of each
mechanism on rock stress and fracture slip have been estimated. As results
of numerical simulation of heat extraction from geothermal reservoir it has
been found that:

� presented in this work integral equation scheme o¤er a fast and nu-
merically e¢ cient method to analyze temperature distribution inside
geothermal reservoir;

� three-dimensional heat conduction mechanism should be taken into ac-
count to estimate energy output of geothermal reservoir during long-
term operation;

� analysis of thermally induced stresses show that not only tensile stresses
develop due to the cooling, but also compressive stresses are generated
in the range just outside of the cooled zone;
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� the results of displacement analysis indicate that under typical �eld
conditions, a substantial increase in fracture slip is observed when ther-
mal stresses are taken into account. The amount of slip would depend
on the rock properties, in-situ stress, pressure, injection rate, and de-
gree of cooling. This slip can be accompanied by seismicity; it would
also result in redistribution of stresses in the rock mass and may induce
slip and seismicity elsewhere in the reservoir.
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